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ABSTRACT 

TYPES OF HOMOLOGY AND SOME APPLICATIONS  

ON MANIFOLDS 

 

Merve KAHRAMAN ARİMAN 

 

Department of Mathematics 

MSc. Thesis 

 

Adviser: Prof. Dr. Ayşe KARA HANSEN 

 

 

Homology classes were first defined by Henri Poincare in his famous paper Analysis 

Situs. After Poincare, the development of combinatorial methods for the theory of 

simplicial complexes, simplicial homology, etc. was one of the most important 

expansions in topology. Continuous problems about spaces can be converted into 

combinatorial problems and can be solved by computers by aid of this theory. 

In this thesis, simplicial, singular and cellular homology theories have been studied. 

Since it is more applicable and basic version of all, simplicial homology theory will be 

introduced at first. 

Key Words: Homology classes, simplicial complexes, simplicial homology, cellular 

homology, singular homology 
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ÖZET 

 

BENZEŞİM TÜRLERİ VE KATMANLI UZAYLARDA  

BAZI UYGULAMALARI 

 

Merve KARAMAN ARİMAN 

 

Matematik Anabilim Dalı 

Yüksek Lisans Tezi 

 

Tez Danışmanı: Prof. Dr. Ayşe KARA HANSEN 

 

Homoloji sınıfları ilk olarak Henri Paincare'in ünlü makalesi Analysis Situs içerisinde 

tanımlanmıştır. Poincare'den sonra Simpleksler Kompleksi ve Simpleksler Benzeşimi 

için geliştirilen işlemler metodlar topoloji alanında atılan en önemli adımlardan 

olmuştur. Bu gelişmenin yadımı ile çözüm uzayı sonsuz büyüklükte olan problemler, 

bilgsayarlar tarafından da kolayca çözülebilen işlemsel metodlara dayalı problemlere 

dönüştürülebilir. 

Bu tez içerisinde; simpleks benzeşimi, tekil benzeşim ve hücresel benzeşim teorileri 

incelenmiş ve bu teorilerin faydaları ve birbirine üstünlükleri detaylı bir şekilde 

irdelenmiştir. Okuyucunun kolay takip edebilmesi amacı ile de tez, bu teorilerden en 

ilkeli olan basitçil benzeşim ile başlayacaktır. 

Anahtar Kelimeler: Homoloji sınıfları, simpleksler kompleksi, simpleksler benzeşimi, 

hücresel benzeşim, tekil benzeşim 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review 

Homology theory is a general procedure to associate a sequence of abelian groups to a 

topological space. For a topological space, it is much easier to calculate the homology 

groups instead of some other invariants.  

The motivation while defining homology theory is to distinguish shapes by their holes. 

In a topological space, the holes always can not be defined obviously or the different 

kinds of holes can not be distinguished. Homology theory gives a rigorous method for 

defining and categorizing holes in a topological space. 

1.2 Objective of the Thesis 

Different types of homology theories have been introduced for calculating homology 

groups of topological spaces. The objective of this thesis to study the types of homology 

theories and and  apply this theory to some topological spaces. 

 

1.3 Hypothesis 

Although there are different types of homology theories, these theories coincide for a 

topological space. It will be shown that the homology groups calculated with different 

homology theories give the same result for a topological space. 
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CHAPTER 2 

SIMPLICIAL HOMOLOGY 

The first aim of this chapter is to define ∆ -complex structure. Although such spaces 

may seem special, most of the spaces that we studied in topology admit this structure. 

2.1    Simplices and ∆ -complexes 

Definition 2.1 (Affine Independence) A set {vo, …, vn} of vectors in      is affinely 

independent if one of the followings satisfied: 

• The set of vectors {v1 − v0, …, vn − v0} is linearly independent. 

• If    ai     such that         
    and then aj = 0    0 ≤ j ≤ n.   

Definition 2.2 (Simplex) Let {v0,…,vn}, vi 2    be an ordered (n+1)-tuple of affinely 

independent vectors in      . The n-simplex spanned by {v0,.,vn} is defined to be the 

topological space            {     
 
    :    

 
     ,     }.   

The coefficients ai are called the barycentric coordinates on [v0,…,vn]. If we delete one 

of the n+1 vertices of an n-simplex [v0,...,vn],  then remaining n vertices span an (n-1)-

simplex called a face of [v0,…,vn]. 

Thus a zero simplex [v0] is a point, a 1-simplex [v0, v1] is an edge, a 2-simplex [v0,v1,v2] 

is a triangle... Note that it is important to follow the ordering of a simplex, ‘n-simplex’ 

will mean ‘n-simplex with an ordering of its vertices’. 

Definition 2.3 (Subsimplex) Any subset {   
 , . . . ,    

  of {vi}, with ordering given by 

the restriction of the ordering (v0,…, vn) is a (k − 1)-dimensional  simplex 

[   
,...,    

  called subsimplex of [v0,…, vn].   

We would like to build a space X by taking simplices and gluing them. The problem is 

to determine which simplices glue to which others. The proper way to construct this is 
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to think of each n-simplex of X as the image of a continuous map f:  Δ 
n
 → X  of the 

standard n-simplex Δ 
n
  to X. 

Definition 2.4 Let X be a topological space. A ∆-complex structure on X consists of the 

followings: 

• Decomposition into simplices: A finite collection S = {Δ i} of simplices with 

continuous maps σ:  Δ i → X, injective on the interior of σ such that: 

– ⋃ iσ(Δ i) = X 

– Each x   X lies in the image of the interior of one simplex. 

• Closure under taking faces: If σ:  Δ  → X is an element of S, then the 

restriction of σ to any subsimplex τ of Δ  is also an element of S.   

The ∆-complex structure on  X  is seem to be a triangulation of X. The following 

figures are the ∆-complex structure of torus and Klein bottle, respectively: 

Figure 2.1 ∆ -complex structure of  torus and Klein bottle 

2.2 Constructions 

The aim of this section is to attach to any ∆-complex X and any integer i ≥ 0 a finitely 

generated abelian groups Hi(X), called the ith homology group of X. 

Definition 2.5 (Simplicial n-chain) Fix a ∆-complex X.    n ≥ 0, the group of 

(simplicial) n-chains of X, denoted Cn(X) is the free abelian group on the set of n-

simplices of X.   

Since X has finitely many simplices, each Cn(X) is finitely generated. The group 

operation in Cn(X) is written as addition. Thus if {σi} denotes the set of all n-simplices 

of X, then any element c   Cn(X) can be written uniquely as a formal finite sum            

c =        with ai    . 
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Definition 2.6 For a general ∆-complex X, we define the boundary homomorphism ∂n : 

Cn(X) → Cn − 1(X)  on any n-simplex σ : [v0, …, vn] → X  via 

∂nσ :=       
   

 
                       

(2.1) 

where the hat symbol ^ over vi indicates that this vertex is deleted from the sequence 

v0, …, vn.   

Note that the signs are inserted to take orientations into account, so that all the faces of a 

simplex are oriented as shown below; 

 

   

 

                                                                                                                  (2.2) 

 

 

                                       (2.3) 

 

Thus the idea of the equation (2.1) is that ‘the boundary of a simplex [v0, …, vn] is the 

sum of all of its faces, oriented properly’. 

Proposition 2.7  Let X be any ∆-complex. For any n ≥ 1 the homomorphism  ∂n ∘ ∂n + 1 

: Cn+ 1(X) → Cn − 1(X) is the zero homomorphism.   

Proof  We have                                      

∂n ∘ ∂n + 1 ( ) =                                    +                                       

where in the second term it is ( − 1)
j − 1

  because there are only j-1 vertices before vj as   

j > i and vi was removed. Switching i and j in the second sum, we have that the two 
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sums cancel as on one side we have ( − 1)i + j  and on the other ( − 1)i + j − 1 =  − ( − 1)i +j.  

Therefore ∂n ∘ ∂n + 1 = 0.    

At this point, given any finite ∆-complex X, we have a sequence of  homomorphisms of 

finitely generated abelian groups: 

                 …       
  
          

    
     

  
       

  
       

  
    

where n = maxdim( ) for   a simplex in X and ∂n-1 ∘ ∂n = 0   n. 

Definition 2.8 A chain complex (of abelian groups) is a collection of abelian groups Cn 

and homomorphisms  ∂n: Cn(X) → Cn − 1(X) satisfying  ∂n ∘ ∂n + 1 = 0.   

Since a chain complex consists of abelian groups and homomorphisms between them, it 

is natural to consider kernels and images. Define Zn:  = Ker(∂n: Cn → Cn − 1) and 

Bn: Im(∂n + 1: Cn + 1 → Cn). Elements of Zn are called ‘cycles’ and elements of Bn are 

called ‘boundaries’. The equation ∂n ∘ ∂n + 1 = 0 means that Im∂n + 1 ⊂ Ker∂n. 

Definition 2.9 (Homologous) Two cycles representing the same homology class are 

said to be homologous.   

Definition 2.10 (Homology of Chain Complex)    i ≥ 0, the i
th

 homology group of the 

chain complex C is defined by Hi(C):  = Zn(C) / Bn(C).   

Then we define the simplicial homology Hi(X) of a Δ -complex  X  to be the homology 

of the simplicial chain complex of X: 

Hi(X) := Hi(C(X)) 

Thus the route while seeking the homology group is: 

                        Space X    Triangulation of X      Chain Complex    Hi(X) 

Note that; since elements of Zn are called n-cycles, and elements of Bn are called 

boundaries, then the homology group Hn = Zn / Bn measures how many n-cycles are not 

boundaries. In other words, Hn measures the number of nontrivial n-dimensional holes 

in  X. 

The following proposition shows that H0(X) in fact gives the number of path 

components of X. 

Proposition 2.11 Let X be a ∆-complex with path components X1, …, Xk. Then 

H0(X) ≃  k
. 
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Proof  Omitted. [1] 

2.3 Computations 

Example 2.12 The simplicial homology group of S
1
. 

Firstly, consider the triangulation of S
1
: 

 

Figure 2.2 Triangulation of S
1 

The simplicial complex contains three 0-simplices v1, v2, v3 and three 1-simplices [v0, 

v1],[v1,v2], [v2,v0]. Then 

                 

                 

      ≃            

                           

                                                      

                     

                                                

        =                                    

                        

                                                  ≃    

                     

Since                      

Thus                       ≃         . 
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        =                                    

          

          

          

These equations imply           . 

        {                                              } = 

    

Thus                       ≃             ≃     

Also                      

In this case, it is important to notice          ≃   as it shows the 1-dimensional hole in 

the middle of the triangle. This is precisely what makes cycles not boundaries there is a 

hole in the middle so we cannot write the cycles as the boundary of something.   

Example 2.13 The simplicial homology of torus. 

 

Figure 2.3 ∆ -complex structure of torus 
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The simplicial complex of torus contains one 0-simplex v, three 1-simplices a, b, c and 

two 2-simplices U, L. Then; 

            

                 

               

                  . This implies             . 

                                             

Also                        

                         

                              

For finding        

                                       

            

                                 

Also                      Thus; 

                ≃        

                         ≃            

                 ≃          

Example 2.14 The simplicial homology of Klein bottle. 

 

Figure 2.4 ∆ -complex structure of Klein bottle 
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The simplicial complex of Klein bottle contains one 0-complex v, three 1-simplices a, b, 

c and two 2-simplices U, L. Then; 

C0(K) =   [v] 

C1(K) =    [a, b, c] 

C2(K) =    [U, L] 

                  . This implies             . 

                                                    

Also                        

                         

                              

For finding        

                                       

                                                                                  

                                                             

                                                      

           Thus; 

                ≃        

                               ≃                   ≃            

And                    

Example 2.15 The simplicial homology of the unit disc   . 
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Figure 2.5 ∆ -complex structure of unit disc 

The simplicial complex of    contains three 0-simplices, three 1-simplices and one 2- 

simplex. 

                  

                  

           

∂1a = v1 − v0,  ∂1b = v2 − v1,  ∂1c = v2 − v0 = ∂1a + ∂1b 

This implies B0(  ) =    [v1 − v0, v2 − v1] 

∂2U = a + b – c     B1(  ) =   [a + b − c] 

Bn(  ) = {0}   n ≥ 2. 

Z0(  )) = C0      =   [v0, v1, v2] 

To find Z1(  );  

m1∂1a + m2∂1b + m3∂1c = 0   m1(v1 − v0) + m2(v2 − v1) + m3(v2 − v0) = 0  

                                               m1 + m3 = m1 − m2 = m2 + m3 = 0 

                                               m1 = m2,    m3 = −m1 

Z1(  ) = {m1a + m1b − m1c} =   [a + b − c]. Also Zn(  ) = {0}   n ≥ 2. Thus 

                        [v1 − v0, v2 − v1] ≃     [v1, v0]    [v1 − v0] ≃   [  ] 

           [a + b − c]     [a + b − c] = {0}   
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Example 2.16 The simplicial homology of     for n > 2. 

To find ∆-complex structure for    , let’s take two n-simplices [v0, . . . , vn] and [u0, . . . 

, un] and identify them along their boundaries, i.e.; 

   , . . . ,    , . . . ,   ] ≃    , . . . ,    , . . . ,   ]  0 ≤ i ≤ n 

But for a large n, this process will get complicated. To solve this problem, some other 

homology theories have been introduced.   
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 CHAPTER 3 

SINGULAR HOMOLOGY 

The problem with the simplicial homology is that it is defined only for ∆-complexes. 

Because of this, a new theory called ‘singular homology’ has been introduced and we 

are able to define same calculations for any topological space. 

After defining singular homology, a fancy question arises: Are simplicial and singular 

homology groups coincide? 

At the end of the chapter we will prove that simplicial and singular homology 

groups for ∆-complexes coincide. 

3.1 Construction 

The idea of singular homology is to consider maps from simplices into the topological 

space instead of simplices. 

Definition 3.1  A singular n-simplex on a topological space X is a continuous  map 

σ: Δ 
n
 → X  from the standard n-simplex to X.   

In this definition singular means that map σ need not to be injective, i.e., there may be 

singularities in the image of σ. 

Let Cn(X) be the free abelian gorup on the set of singular n-simplices of X. Elements of 

Cn(X) are called n-chains. We can then define boundary map ∂n: Cn(X) → Cn − 1(X) in a 

similiar fashion: 

∂nσ :=       
   

 
                       

The equation ∂n ∘ ∂n + 1 = 0 holds with the same proof in simplicial homology so we can 

define singular homology group Hn(X) = Ker∂n / Im∂n + 1 
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Proposition 3.2 Let X be a non-empty and path-connected topological space. Then 

H0(X) ≃      

Proof  Since ∂0 = 0;  H0(X) = C0(X) / Im∂1. Let f be a homomorphism s.t.  

f:          

                

Since X is non-empty, f is surjective. Also since X is path-connected Kerf  = Im∂1. 

Thus C0(X) / Im∂1 ≃  , i.e. H0(X) ≃  .   

Proposition 3.3 Let X be a point. Then H0(X) ≃   and Hn(X) = 0 for n > 0.   

Proof  For a singular n-simplex σn; 

             
                                                                                                     (3.1) 

The equation (3.1) is equal to 0 for n even and σn − 1 for n odd (n ≠ 0). Then we have the 

chain complex 

   
≃
   

 
   

≃
   

 
     

where the boundary maps are isomorphisms and trivial maps except at the last  .  Thus 

H0(X) ≃    and Hn(X) = 0 for n > 0.   

Definition 3.4  Reduced homology groups   
     is defined to be the homology groups 

of the chain complex 

       
  
       

  
       

 
       

where f(      ) =     .   

Since f    ; f vanishes on Im   and induces a map          with kernel   
 (X). 

This implies       ≃   
 (X)     Furthermore,       ≃   

 (X) for n>0.   

Definition 3.5 A chain map between two chain complexes Cn(X) and Cn(Y) is a 

collection of homomorphisms {fi} s.t. the following diagram commutes: 
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Figure 3.1 Chain complex diagram 

Proposition 3.6 A chain map between chain complexes induces homomorphism 

between the homology groups of the two complexes.   

Proof  We have to show that fn take cycles to cycles and boundaries to boundaries. 

Since fn: Cn(X) → Cn(Y) implies                     . Thus fn  takes cycles to 

cycles. Also, since                   ; fn takes boundaries to boundaries. Hence  fn 

induces a homomorphism    : Hn(X) → Hn(Y).    

Proposition 3.7  A map f: X → Y induces a chain map from the singular chain complex 

of X to that of Y.   

Proof  If we have a map f: X → Y, a singular simplex σ: Δ 
n
 → X induces a singular 

simplex    (σ) = f ∘ σ: Δ 
n
 → Y  

We have to show that                     . Since                       , we 

have; 

          =          
 

                      =       
 

                       ) =          .   

It is useful to remember some important properties of induced homomorphism: 

 If we have   
 

    
 

    then,  

  ∘            ∘   ∘     ∘   ∘        ∘     (  ) 

Thus   ∘              ∘     (  ) 

 It is also clear that    = id where id denotes the identity  map of a space or a 

group. 

Theorem 3.8 If two maps f, g: X → Y are homotopic, the homomorphism induced in 

homology by f and g are the same, i.e.,       : Hn(X) → Hn(Y).   
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Proof  Omitted.       

Corollary 3.9 If X and Y are homotopy equivalent, then all their homology groups 

coincide.   

Proof  Let X and Y be homotopy equivalent. Then    f: X → Y and g: Y → X s.t. g ∘ 

f ≃ idx and f ∘ g ≃ idy. This implies (g ∘ f) *  = g *  ∘ f *  = id *  = f *  ∘ g *  = (f ∘ g) *  

where id is identity upon the homology groups. Thus g *  and f *  are inverses of each 

other, i.e. isomorphism.    

Definition 3.10 Two chain maps fn: Cn(X) → Cn(Y) and gn: Cn(X) → Cn(Y) are chain 

homotopic if there exist maps hn: Cn(X) → Cn(Y) s.t. f − g = ∂h + h∂.   

This definition says that, given the diagram, 

 

Figure 3.2 Chain complex diagram 

 

hn makes the following diagram commutative 

 

Figure 3.3 Chain complex diagram 
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It is shown in [1] in the proof of theorem (3.8) that ∂P + P∂ = g − f, i.e., P is a chain 

homotopy between the chain maps f and g. This implies the following:  

Proposition 3.11 Two chain-homotopic chain maps induce the same homomorphisms 

in homology.     

3.2 Some Preliminaries About Exact Sequences 

The sequence of homomorphisms 

        
    
       

  
          

is said to be exact if Kerfn = Imfn + 1   n. The inclusion Imfn + 1 ⊂ Kerfn implies            

fn ∘ fn + 1 = 0, so the sequence is a chain complex. Because of these facts, homology 

theory measures how far is a sequence from being exact. 

Some properties proven in [1] are listed below: 

     
 

    is exact iff  Kerf = 0. 

  
 

       exact iff  Imf = 0. 

     
 

       is exact iff f is an isomorphism. 

     
 

    
 

       is exact iff f is injective, g is surjective and                 

Ker g = Im f, so g induces an isomorphism C ≃ B / Im f. This exact sequence is 

called short exact sequence. 

 

3.3 Relative Homology 

Let X be any topological space and A   X be any subspace. The ‘relative chain group’ 

of  X relative to A is defined to be Cn(X, A):  = Cn(X) / Cn(A). 

Since the boundary map ∂n: Cn(X) → Cn − 1(X) takes Cn(A) to Cn − 1(A); it induces a 

boundary homomorphism ∂nʹ: Cn(X, A) → Cn − 1(X, A). 

The equation ∂
2
 = 0 implies that (∂ʹ)

2
 = 0. So we have a chain complex. Then the 

relative homology group is defined to be Hn(X, A). 

In this case relative cycles are the elements α   Cn(X) s.t. ∂α   Cn − 1(A), and relative 

boundaries are elements α   Cn(X) s.t. α = ∂β + γ where β   Cn + 1(X) and γ   Cn(A). 
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With these properties, we can think of Hn(X, A) as ‘homology of X modulo A’.  

Now consider the exact sequence 

        
 

       
 

                

where i is the inclusion and j is the quotient map. 

Using this construction, we have the following commutative diagram: 

Figure3.4 Chain complex diagram 

 

Note that this diagram is commutative by the definition of the boundary maps. 

Lemma 3.12 (Zigzag Lemma) Suppose we have the following ‘short exact sequence of 

chain complexes’: 
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Figure 3.5 Zigzag lemma diagram 

where the rows are exact sequences and each column is a complex. Then there is a 

family of  ‘connecting homomorphisms’                    s.t 

 

Figure 3.6 Connecting homomorphism diagram 

So we have the following long exact sequence: 
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Proof  Ommited. [1]  

This theorem implies a long exact sequence of homology groups: 

       
  
      

  
        

  
        

  
             

3.4 The Excision Theorem 

Theorem 3.13 (The Excision Theorem) Let X be a topological space with subspaces A, 

U with U   A   X. Assume that the closure of U is contained in the interior of A. 

Then the inclusion map i: (X − U, A − U) → (X, A) induces an isomorphism               

   : Hn(X − U, A − U) → Hn(X, A)   n ≥ 0.    

This theorem basically says that excising away U from X and A does not change the 

relative homology. 

Proof  Ommited. [1] 

The excision theorem has many applications. The following two theorems will be 

proven with the aid of the excision theorem. 

Theorem 3.14 Let A be an open subset of a topological space X. Then the quotient map 

p: (X, A) → (X / A, A / A) induces an isomorphism 

                      ≃   
       

Proof  Let A be an open subset of X. Since A is open, we can take U = A. Then we 

have the following commutative diagram: 

 

Figure 3.7 Homology group diagram 

The horizontal arrows are isomorphism by the excision theorem since          is the 

map induced by the restriction of  p to X − A, which is a homomorphism,           is 
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an isomorphism. Furthermore, since the diagram is commutative then    is also an 

isomorphism.   

Theorem 3.15 Let U ⊂     
and V ⊂     be open sets. If  U ≃ V then n = m.   

Proof  Let n, m > 1. Take x   U then by excision theorem we have; 

Hi(U, U − x) ≃ Hi(    
,     

 − x ). 

Since     
 − x deformation retracts to S

n − 1
, we have the following long exact sequence  

             … → Hi(   
) → Hi(   

,     
 − x) → Hi − 1(    ) → Hi − 1(   

) → … 

So Hi(   
,     

− x) ≃ Hi − 1(    )   i > 1 except i = n. 

But any homeomorphism f: U → V  induces a homeomorphism h: (U, x) → (V, f(x)) 

which induces an isomorphism 

Hi(   
,     − x) ≃ Hi(   

,     − f(x))     

Thus n = m.    

Now the knowledge that will be useful while finding the homology groups of     
 has 

been completed. 

Example 3.16 Compute the homology groups of     (n > 2). 

We can think      as the quotient of an n-disk by its boundary, i.e.,      ≃       . 

Since    ≃     , we have the following exact sequence; 

                                            

Since the disk is contractible, all its homology groups vanish. So the above exact 

sequence becomes 

                           

This implies             ≃            . We know that   
      ≃  

                      
                  

   

It follows that   
      ≃  

                      
                  

   

Thus             ≃        ≃  
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3.5 Isomorphism of The Simplicial and Singular Homology 

Lemma 3.17 (Five Lemma) Suppose the following diagram of abelian groups 

commutes where the two rows are exact sequences: 

 

Figure 3.8 Five lemma diagram 

If α, β, δ and ε are all isomorphisms then γ is also an isomorphism.   

Proof Omitted. [1] 

Let fi: Cn
Δ 

(X, A) → Cn(X, A) be a homomorphisms defined by sending each n-simplex 

Δ 
n
   Cn

Δ 
(X) of X to its corresponding singular n-simplex given by its characteristic 

map σ: Δ 
n
 → X. Then fi is a chain map so induces homomorphisms 

  : Hn
Δ 

(X, A) → Hn(X, A). 

Theorem 3.18 The homomorphisms   : Hn
Δ 

(X, A) → Hn(X, A) are isomorphisms. 

Proof  • Case 1:  X is finite dimensional 

Firstly suppose A = ∅. For X
k
 the k-skeleton of X, we have the following exact 

sequence 

Hn + 1(X
k
, X

k − 1
) → Hn(X

k − 1
) → Hn(X

k
) →Hn (X

k
, X

k − 1
) → Hn − 1(X

k − 1
) 

Then by Zigzag lemma, we have the following commutative diagram; 

 

Figure 3.9 Homology group diagram 

Cn
Δ 

(X
k
, X

k − 1
) is zero for n ≠ k and is free abelian with basis in bijection with the k-

simplices of X when n = k, so we can say the same of Hn
Δ 

(X
k
, X

k − 1
). For the 

corresponding singular homology group Hn(X
k
, X

k − 1
), let us consider the  map 
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              consisting of all characteristic maps      . This induces 

   
       

   ≃         . 

Then it induces isomorphisms on the singular homology groups. Thus Hn(X
k
, X

k − 1
) is 0 

for n ≠ k and free abelian with basis represented by the relative cycles given by the 

characteristic maps of the k-simplices of X when n = k. Hence the first and the fourth 

vertical maps in the diagram are isomorphisms. By induction on k, we may assume that 

the second and the fifth vertical maps are also isomorphisms. Five Lemma implies that 

the third vertical map is also an isomorphism. Hence   : Hn
Δ 

(X, A) → Hn(X, A) are 

isomorphisms. 

Now suppose A ≠ ∅. Then by zigzag lemma, we have the following commutative 

diagram: 

 

Figure 3.10 Homology group diagram 

which has exact rows and the first, second, fourth and fifth vertical maps are 

isomorphisms. Again Five Lemma implies that the third vertical map is also an 

isomorphism. 

• Case 2:  Omitted. [1]   

3.6 Mayer-Vietoris Sequences 

Suppose A and B are two subspaces of X such that X = int(A)   int(B). We then have 

the following commutative diagram: 
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Figure 3.11 Mayer-Vietoris sequence 

where i, j, k, l are inclusions. Then we have the following short exact sequence 

         
        
                

   
            

Then the following diagram is commutative 

 

Figure 3.12 Chain complex diagram 

Note that this diagram is commutative since the horizontal arrows are inclusions. By 

Zigzag Lemma, there exists a long exact sequence: 

       
  
        

        
                

     
         

  
  

     
              

 

Mayer-Vietoris sequence can also be considered for reduced homology: 
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Mayer-Vietoris sequence can be used for computing the homology groups of Klein 

bottle: 

The Klein bottle can be decomposed as the union of two Möbius bands A and B glued 

along their boundary circles. A, B and A   B are homotopy equivalent to circles. Then 

the exact sequence can be written as follows: 

     
  
        

        
                

     
         

  
        

        
          

               

 

         
        
                         

Then; 

   
        
                                   ≃         ≃    

Since                     is injective, we have; 

          i.e,       ≃  . 

Now consider the exact sequence 

         
        
                

     
            

The map (  , -  ):     →          sends 1 to (2, − 2) since the boundary circle of a 

möbius band wraps twice around the central circle. We can write every element in        

        as a(1, − 1) + b(1, 0) for a, b     , with exactly the elements of the form a   2  

and b = 0. Then 

Im(  , -  ) =  Ker(  +   )  = 2  (1, − 1) 

Thus       ≃       2  (1, − 1) ≃             (1, 0)   2  (1, − 1) ≃          . 
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CHAPTER 4 

CELLULAR HOMOLOGY 

Cellular homology is a very efficient tool for computing the homology groups of 

topological spaces which are CW-complexes based on cell complex decompositions and 

degree calculations. 

4.1 Degree 

Let f:      →     be a continuous map. Then it induces a homomorphism    :        

       . Since         ≃  , for any homomorphism         a unique d      such 

that ϕ(z) = dz   z     . 

Definition 4.1 The degree of f is defined to be the unique integer such that    

(z) = (degf)z   z   Hn(   ) .   

Some properties of degree are listed below: 

• Since     = 1; deg1 = 1. 

• If  f  is not surjective then degf = 0. 

• If  f ≃ g  then      =    . This implies degf = degg. 

• Since         =        ;  degfg = degf. degg 

4.2 CW Complexes 

An orientable  surface ∑ g of genus g can be constructed from a polygon with 4g sides 

by identifying the edges. The 4g edges of the polygon is the union of 2g circles. These 

circles intersect in a single point. The interior of a polygon can be thought as an open 

disk attached to the circles. This open disk is called a 2-cell. The union of the circles can 

be obtained by attaching open arcs. These arcs are called 1-cells. 



26 

 

Thus if we want to build up a surface, take a point attach 1-cells to this point, then 

attach a 2-cell. 

This process can be generalized as follows: 

• Take a discrete set X
0
. X

0
 is called the 0-skeleton of X. Points of X

0
 are called 0-cells. 

• Inductively, suppose the (n − 1)-skeleton X
n − 1

 is defined for n > 1. Suppose we have 

a collection of n-disks {  
 : α   I} and ϕα:    

  → X
n − 1

 is a continuous map   α. X
n
, 

the n-skeleton of X is then defined as follows: 

           
         

where   is defined by x   ϕα (x)   α     

Let X =    
   . The space X is called a ‘CW complex’ and ϕα(∂  

 ) are called ‘n-

cells’. This process says that    is obtained from      by adding n-cells. The maps ϕα 

are called ‘attaching maps’. 

Some examples of CW complexes are given below: 

• A 1-dimensional CW complex is called a graph. 

• The CW-complex structure of S
n
 for n > 0 consists of one 0-cell e

0
 and one n-cell e

n
 

where the attaching map is the constant map ϕ:  S
n-1

  → {v} 

• The CW complex structure of the genus g surface ∑ g consists of one vertex, 2g-edges 

a1, b1, …, ag, bg with the obvious attaching maps and one 2-cell D
2
 with attaching map 

ϕ: ∂D
2
 → (⋃ ai, ⋃ bi) defined by dividing the circle ∂D

2
 in 4g segments and mapping 

them onto the edges a1b1a1
 − 1

b1
 − 1

…agbgag
 − 1

bg
 − 1

 . 

4.3 Cellular Homology 

Lemma 4.2 Let X be a CW complex. Then; 

• Hk(X
n
,  X

n-1
) is zero for k ≠ n and is a free abelian group when n = k, with basis 

in bijection with the n-cells of X. 

• Hk(X
n
) = 0 for k > n. If X is finite dimensional then Hk(X) = 0 for k > dimX. 

• The inclusion i:  X
n
 → X induces isomorphism   : Hk(X

n
) → Hk(X) if k < n.   

Proof Ommited. [1] 
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Let  X be a CW-complex. By above lemma, there is a long exact sequence 

corresponding to the pairs (X
k + 1

, X
k
), (X

k
, X

k − 1
), (X

k − 1
, X

k − 2
), … which form the 

following commutative diagram: 

 

Figure 4.1 Homology group diagram 

where di = ji − 1∂i, they allow us to consider the horizontal sequence. Thus the 

composition didi − 1 = 0 which implies that the horizontal sequence infact a chain 

complex. 

               
    
              

  
                    

is called the ‘cellular chain complex’ of X. The elements of Hn(X
n
, X

n − 1
) can be 

thought as linear combinations of n-cells of X. The homology groups of this cellular 

chain complex is called ‘cellular homology groups’ of X, and denoted by Hn
CW

(X). 

Theorem 4.3  Hn
CW

(X) ≃ Hn(X)    n.   
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Proof  By the above diagram Hn(X) ≃ Hn(X
n
) / Im∂n + 1. Since the sequence is exact, jn 

is injective. Therefore Im(∂n + 1) = Im(jn∂n + 1) = Im(dn + 1) and 

Hn(X
n
) ≃ Im(jn) = Ker(∂n). Since jn − 1 is injective; Ker(∂n) = Ker(dn). Thus 

Hn(X
n
) / Im(∂n + 1) ≃ Ker(dn) / Im(dn + 1).  

The right hand side is the cellular homology and Hn(X) ≃ Hn(X
n
) / Im(∂n + 1). Thus 

Hn(X) ≃ Hn
CW

(X)    n.   

Some important facts given in [1] are listed below: 

 • If X is a CW complex with no n-cells then Hn(X) = 0. 

• If X is a CW complex with k n-cells, then Hn(X) is generated by at most k elements. 

• If X is a CW complex having no two of its cells in adjacent dimensions, then Hn(X) is 

free abelian with basis in one-to-one correspondence with th n-cells of X. This is 

because the cellular boundary maps dn are automatically zero in this case. 

Example 4.4 The closed orientable genus g surface    has CW structure consisting of 

one 0-cell, 2g 1-cell and one 2-cell attached by [a1, b1],…, [ag, bg]. Then the cellular 

chain complex can be constructed as follows: 

   
  
    

  
     

Since there is one 0-cell, d1 must be 0. Also since ai or bi appears with its inverses, d2 is 

0. Since d1 and d2 are zero, the homology groups are in one-to-one correspondence with 

the cellular chain groups. 

Thus         ≃   ,         ≃     ,         ≃   . 
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CHAPTER 5 

RESULTS AND DISCUSSION 

Through out this thesis, simplicial, singular and cellular homology theories have been 

studied. It is seen that classification of  the topological spaces can be easily made 

according to their holes with the aid of this theory. The homology groups of some 

manifolds have been calculated. As a result, it is shown that all these theories agree. 



30 

 

REFERENCES 

[1] Hatcher, A., (2001). Algebraic Topology, Cambridge University Press. 

[2] Dubrovin, B.A., Fomenko, A.T. and Novikov, S.P., (1990). Modern Geometry-

Methods and Applications Part 3. Introduction to Homology Theory, Springer-

Verlag, New York. 

[3] Munkres, J.R, (1984). Elements of Algebraic Topology, Addison-Wesley 

Publishing Company,California.  

[4] Maunder, C. R. F., (1970). Algebraic Topology, London: Van Nostrand 

Reinhold. 

[5] Massey, W.S, (1991). A Basic Course in Algebraic Topology, Springer-Verlag, 

New York . 

 



31 

 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

Name Surname : MERVE KAHRAMAN ARİMAN 

Date of birth and place :18.03.1989 İZMİR 

Foreign Languages :ENGLISH 

E-mail :mkahraman@ku.edu.tr 

 

EDUCATION 

Degree Department University Date of 

Graduation 

Master  

Undergraduate  Mathematics Dokuz Eylül University 2010 

High School Science İzmir Özel Fatih Fen Lisesi 2006 

 

WORK EXPERIENCE  

Year Corporation/Institute Enrollment 

2012  Tümevarım Dershanesi Mathematics Teacher 

2010 Koç University Teaching Assisatant 

2008 Ders Dünyası Etüt Merkezi Mathematics Teacher 

 

 


