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ABSTRACT

TYPES OF HOMOLOGY AND SOME APPLICATIONS
ON MANIFOLDS

Merve KAHRAMAN ARIMAN

Department of Mathematics
MSc. Thesis

Adviser: Prof. Dr. Ayse KARA HANSEN

Homology classes were first defined by Henri Poincare in his famous paper Analysis
Situs. After Poincare, the development of combinatorial methods for the theory of
simplicial complexes, simplicial homology, etc. was one of the most important
expansions in topology. Continuous problems about spaces can be converted into
combinatorial problems and can be solved by computers by aid of this theory.

In this thesis, simplicial, singular and cellular homology theories have been studied.
Since it is more applicable and basic version of all, simplicial homology theory will be
introduced at first.

Key Words: Homology classes, simplicial complexes, simplicial homology, cellular
homology, singular homology

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES



OZET

BENZESIM TURLERI VE KATMANLI UZAYLARDA
BAZI UYGULAMALARI

Merve KARAMAN ARIMAN

Matematik Anabilim Dali
Yiiksek Lisans Tezi

Tez Danigmani: Prof. Dr. Ayse KARA HANSEN

Homoloji smiflar ilk olarak Henri Paincare'in iinlii makalesi Analysis Situs icerisinde
tanimlanmstir. Poincare'den sonra Simpleksler Kompleksi ve Simpleksler Benzesimi
icin gelistirilen islemler metodlar topoloji alaninda atilan en 6nemli adimlardan
olmustur. Bu gelismenin yadimi ile ¢6ziim uzayr sonsuz biiyiikliikte olan problemler,
bilgsayarlar tarafindan da kolayca coziilebilen islemsel metodlara dayali problemlere
doniistiiriilebilir.

Bu tez igerisinde; simpleks benzesimi, tekil benzesim ve hiicresel benzesim teorileri
incelenmis ve bu teorilerin faydalari ve birbirine istiinliikleri detayli bir sekilde
irdelenmistir. Okuyucunun kolay takip edebilmesi amaci ile de tez, bu teorilerden en
ilkeli olan basit¢il benzesim ile baslayacaktir.

Anahtar Kelimeler: Homoloji siniflari, simpleksler kompleksi, simpleksler benzesimi,
hiicresel benzesim, tekil benzesim
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Homology theory is a general procedure to associate a sequence of abelian groups to a
topological space. For a topological space, it is much easier to calculate the homology

groups instead of some other invariants.
The motivation while defining homology theory is to distinguish shapes by their holes.

In a topological space, the holes always can not be defined obviously or the different
kinds of holes can not be distinguished. Homology theory gives a rigorous method for

defining and categorizing holes in a topological space.

1.2 Objective of the Thesis

Different types of homology theories have been introduced for calculating homology
groups of topological spaces. The objective of this thesis to study the types of homology

theories and and apply this theory to some topological spaces.

1.3 Hypothesis

Although there are different types of homology theories, these theories coincide for a
topological space. It will be shown that the homology groups calculated with different

homology theories give the same result for a topological space.



CHAPTER 2

SIMPLICIAL HOMOLOGY

The first aim of this chapter is to define A -complex structure. Although such spaces

may seem special, most of the spaces that we studied in topology admit this structure.

2.1 Simplices and A -complexes

Definition 2.1 (Affine Independence) A set {Vo, ..., Vo} of vectors in R"*1 is affinely

independent if one of the followings satisfied:
* The set of vectors {vi — Vo, ..., vqa — Vo} is linearly independent.
«If3 a € Rsuchthat YL a;vi=0andthengg=0v 0<j<n. m

Definition 2.2 (Simplex) Let {vo,...,vn}, Vi € R" be an ordered (n+1)-tuple of affinely
independent vectors in R™*1 . The n-simplex spanned by {vo,.,v,} is defined to be the
topological space [vy, ..., vp] = {D{Loaivi : Xitoa; =1,3; = 0}. m

The coefficients a; are called the barycentric coordinates on [vy,...,vy]. If we delete one

of the n+1 vertices of an n-simplex [vo,...,v4], then remaining n vertices span an (n-1)-

simplex called a face of [vy,...,vq].

Thus a zero simplex [vo] is a point, a 1-simplex [vo, v1] is an edge, a 2-simplex [vo,v1,v2]
is a triangle... Note that it is important to follow the ordering of a simplex, ‘n-simplex’

will mean ‘n-simplex with an ordering of its vertices’.
Definition 2.3 (Subsimplex) Any subset {v;, , ..., v; } of {vi}, with ordering given by
the restriction of the ordering (vo,..., Vo) is a (k — 1)-dimensional simplex

[vi, - vy, ] called subsimplex of [vo,..., vo]. m

We would like to build a space X by taking simplices and gluing them. The problem is

to determine which simplices glue to which others. The proper way to construct this is



to think of each n-simplex of X as the image of a continuous map f: A" — X of the
standard n-simplex A" to X.

Definition 2.4 Let X be a topological space. A A-complex structure on X consists of the

followings:

+ Decomposition into simplices: A finite collection S = {A;} of simplices with

continuous maps o: A — X, injective on the interior of ¢ such that:

— Uio(Aj) =X

— Each x € Xlies in the image of the interior of one simplex.

» Closure under taking faces: If o: A — X is an element of S, then the

restriction of ¢ to any subsimplex t of A is also an element of S. =

The A-complex structure on X is seem to be a triangulation of X. The following

figures are the A-complex structure of torus and Klein bottle, respectively:

Figure 2.1 A -complex structure of torus and Klein bottle

2.2 Constructions

The aim of this section is to attach to any A-complex X and any integer i > 0 a finitely

generated abelian groups Hi(X), called the i"" homology group of X.

Definition 2.5 (Simplicial n-chain) Fix a A-complex X. ¥ n>0, the group of
(simplicial) n-chains of X, denoted C,(X) is the free abelian group on the set of n-

simplices of X. m

Since X has finitely many simplices, each C,(X) is finitely generated. The group
operation in C,(X) is written as addition. Thus if {c;} denotes the set of all n-simplices
of X, then any element ¢ € C,(X) can be written uniquely as a formal finite sum

Cc= Ziai()'i with a; € Z.



Definition 2.6 For a general A-complex X, we define the boundary homomorphism 06, :

Cn(X) = C,-1(X) onany n-simplex ¢ : [vo, ..., Vn] — X via

anc = 2?:0(_1)1 Gl[Vo,...,\/ll\, ...,Vn+1] (21)

where the hat symbol ” over v; indicates that this vertex is deleted from the sequence

VO, ...,Vn. ]

Note that the signs are inserted to take orientations into account, so that all the faces of a

simplex are oriented as shown below;

: +
- — —

d[vo, v1] = [v1] — [vo] (2.2)
0[vo, V1, V2] = [v1, V2] — [V, V2] + [vo, v4] (2.3)

Thus the idea of the equation (2.1) is that ‘the boundary of a simplex [V, ..., Vq] is the

sum of all of its faces, oriented properly’.

Proposition 2.7 Let X be any A-complex. For any n > 1 the homomorphism &, o 0y +1

: Cre1(X) — Cp—1(X) is the zero homomorphism. m
Proof We have 9,,1(0) = Xi(=1)'0 |vy,...7 ...vnsa]
Oh o On+1(0) = Xjci(D'(=1)6[y,..00 vnea] T 2ici (DI (D201, 00 vnaa]

where in the second term it is (— 1) " because there are only j-1 vertices before vj as

j > 1 and v; was removed. Switching i and j in the second sum, we have that the two



sums cancel as on one side we have (- 1)'*) and on the other (- 1)’ "1~ 1= - (- 1)'".
Therefore 6,0 0h+1=0.

At this point, given any finite A-complex X, we have a sequence of homomorphisms of
finitely generated abelian groups:
On On—1 03 04 do
o X - i X)) — ..o X)) CeX)> 0
where n = maxdim(o) for o a simplex in X and 6,1 0 6, =0V n.

Definition 2.8 A chain complex (of abelian groups) is a collection of abelian groups C,

and homomorphisms 0Jy: Ch(X) — C,-1(X) satisfying Sno0h+1=0. m

Since a chain complex consists of abelian groups and homomorphisms between them, it
is natural to consider kernels and images. Define Z,: = Ker(c,:C, — C,-1) and
Bn: IM(Gn +1: Ch+1 — Cp). Elements of Z, are called ‘cycles’ and elements of B, are

called ‘boundaries’. The equation &, © 0 +1 = 0 means that Imo, +1 € Kero,.

Definition 2.9 (Homologous) Two cycles representing the same homology class are

said to be homologous. m

Definition 2.10 (Homology of Chain Complex) V i > 0, the i"" homology group of the
chain complex C is defined by H;(C): = Z,(C) / By(C). m

Then we define the simplicial homology Hi(X) of a A -complex X to be the homology
of the simplicial chain complex of X:

Hi(X) = Hi(C(X))

Thus the route while seeking the homology group is:

| Space X| | Triangulation of X | | Chain Complex| «|Hi(X)

Note that; since elements of Z, are called n-cycles, and elements of B, are called
boundaries, then the homology group H, = Z, / B, measures how many n-cycles are not
boundaries. In other words, H, measures the number of nontrivial n-dimensional holes
in X.

The following proposition shows that Ho(X) in fact gives the number of path

components of X.

Proposition 2.11 Let X be a A-complex with path components Xj,...,Xk. Then
Ho(X) = Z*.



Proof Omitted. [1]

2.3 Computations
Example 2.12 The simplicial homology group of S*.

Firstly, consider the triangulation of S:

Y

V). V1

Figure 2.2 Triangulation of S*
The simplicial complex contains three 0-simplices vy, vy, v3 and three 1-simplices [vo
V1],[V1V2], [V2,Vo]. Then
Ce(SH=ZDZ P Z
CSH=ZDZDZ
C,(SY) =~ 0forn>1
Z,(SY) ={ceCy(SY): 0,c =0}

ceCi(SH) = c=my < vpvy > +my < vy,v, > +my < vy, v,

> where m;, m,, m3; € Z
dic = my((vy) — (vo)) + my({vy) — (vq)) + mz({vo) — (v2))
=(mz — my )(vo) + (my — my)(vy) + (m; — m3){v,)
dic=0>=> m;=m,=my
Z,(SHY ={n(< vy,vy > +< v,v, > +< V,,Vvy>)n€ Z} = 7
B,(S!) = Im(3,: C, - Cy)
Since C,(SY) = 0; B,(SY) = 0.
Thus H,(SY) = Z,(SY)/B,(SY) = Z/{0} = Z.
6



Zo(SY) = {ceCo(S") : doc =0}

ceCo(SY) > c=n; < vy > +n, < vy > +n3 < v, > whereng,n,,n; € Z
ZoSH=ZDIDT

Bo(SY) =Im(d;: C; — Cy)

ceCi(SYH) > c=my < vpvy > +my < vy, v, > 4+mg < vy, v

> where m;,m,,m; € Z
d1¢ = my({vy) — (vo)) + my({vz) — (v1)) + mz({vo) — (v2))
=(m3 — my){vp) + (m; — my)(v;) + (my — m3)(vy)
n; = mz —my
n, = m; —m,
nz; = m, —m;y
These equations imply n; + n, + n; = 0.
Bo(SY) ={n; < vy > +n, < v; > +n3 < v, > wheren; + n, + n; = 0} =
ZDZ
Thus Ho(SY) =Zo(SY)/By(SH) ~ZPZPZ /ZDZ =~ 1.
Also H,(S!) =0forn > 2.

In this case, it is important to notice H;(S') = Z as it shows the 1-dimensional hole in
the middle of the triangle. This is precisely what makes cycles not boundaries there is a

hole in the middle so we cannot write the cycles as the boundary of something. m

Example 2.13 The simplicial homology of torus.

Vv b Vv
e
a a
L
»
B
Vv b Vv

Figure 2.3 A -complex structure of torus



The simplicial complex of torus contains one 0-simplex v, three 1-simplices a, b, ¢ and
two 2-simplices U, L. Then;

Co(T) = Z[v]

C.(T) = Z3[a,b, (]

C,(T) = Z?[U, 1]

d,a=0,b= 0,c=v—v=0.Thisimplies Bo(T) = Imad; = 0.

d,U=c—b—a, d,L=b+a—-c= —0d, = By(T)= Z[c—b—a]

Also B,,(T) = {0} foralln > 2.

Zo(T) = Kerdy, = Co(T) = Z[v]

Z,(T) = Kerd,; = C,(T) = Z3[a,b, (]

For finding Z,(T);

m;d,U+m,d,L=0 © my(c—-b—a)+ my(b+a—c)=0
S m; = m,

Z,(T) ={mU+mL:m; € Z} == Z[U+ L]

Also Z,(T) = 0 for alln > 3. Thus;

Ho(T) = Z[v] / {0} = Z[v]

H,(T) = Z3[a,b,c]/ Z[c — b — a] =~ Z?[a,b]

H,(T) = Z[U + L] /{0} ~ Z[U + L]m

Example 2.14 The simplicial homology of Klein bottle.

\" b \"4

Vv b Vv

Figure 2.4 A -complex structure of Klein bottle

8



The simplicial complex of Klein bottle contains one 0-complex v, three 1-simplices a, b,

¢ and two 2-simplices U, L. Then;
Co(K) =Z [v]
Ci(K)=73[a, b, ]
Co(K) =72 [U, L]
d,a=0,b= d,c=v—v=0.Thisimplies B,(K) = Imad; = 0.
0,U=c—b—a, d,L=b—a—-c= -0, = By(K)=Z?[c—b—ab—a—]
Also B,,(K) = {0} foralln > 2.
Zo(K) =Kerdy = Cy(K) = Z[v]
Z,(K) = Kerd; = C;(K) = Z3[a,b, (]
For finding Z, (T);
m;d,U+m,d,L=0 < m(c—-b—a)+ my(b—-a—-c)=0
< c¢(m; + my) + b(m, — m;) + a(-m; — my) =0
S mp+tmy=m;—my =0
S mp=m, =0
Z,(K) = {0}. Thus;
Ho(K) = Z[v] / {0} = Z[v]
H,(K) = Z3[a,b,c]/ Z[c—b—ab—a—c] = Z[a]/Z[2a] X Z[b] = Z /2Z X T
And H, (K) = {0} forn > 2.

Example 2.15 The simplicial homology of the unit disc B2.



/1
//
A
A
) % J
Ab
Ul
VO. - a Vi

Figure 2.5 A -complex structure of unit disc

The simplicial complex of B? contains three 0-simplices, three 1-simplices and one 2-

simplex.

CB)=ZPZDL

CB)=ZHZ®DL

C,(B2) = Z

01@a=Vi— Vg, O1b=Vo,—Vy, 01C=Vo,—Vg=01a+ 01b

This implies Bo(B?) = Z2 [v1 — Vo, V2 — V1]

oU=a+b-c = By(B)=Z[a+b—c]

Bn(B%) ={0}Vn=>2.

Zy(B?)) = Co (B?) =Z7 [vo, V1, V2]

To find Z(B?);

my01a + my01b + m3dic = 0 & my(vy — Vo) + My(va2 — Vi) + ma(Vo. — Vo) =0
Sm+mz=m—my=my+mz=0
S mi=m; Mmg=-m

Z1(B?) ={mia+mib —mic} =Z [a+b—c]. Also Z,(B?) = {0} V n>2. Thus

Hy(B2) = Z3[vy,vq,Vy] / Z? [V1— Vo, V2 — V1] = Z2 [v1, Vo] / Z [V1 — Vo] = Z [v,]

H,(B?) = Z[a+b—c]/Z[a+b—c]={0} m

10



Example 2.16 The simplicial homology of S™ forn > 2.

To find A-complex structure for S™, let’s take two n-simplices [vo, . . ., Vo] and [uo, . . .

, U] and identify them along their boundaries, i.e.;
[Voy - Voo oy Vil = [ugy - .., 0y ..., uy] 0<i<n

But for a large n, this process will get complicated. To solve this problem, some other

homology theories have been introduced. m

11



CHAPTER 3

SINGULAR HOMOLOGY

The problem with the simplicial homology is that it is defined only for A-complexes.
Because of this, a new theory called ‘singular homology’ has been introduced and we

are able to define same calculations for any topological space.

After defining singular homology, a fancy question arises: Are simplicial and singular

homology groups coincide?
At the end of the chapter we will prove that simplicial and singular homology

groups for A-complexes coincide.

3.1 Construction

The idea of singular homology is to consider maps from simplices into the topological
space instead of simplices.

Definition 3.1 A singular n-simplex on a topological space X is a continuous map
o: A" — X from the standard n-simplex to X. m

In this definition singular means that map o need not to be injective, i.e., there may be

singularities in the image of o.

Let Cn(X) be the free abelian gorup on the set of singular n-simplices of X. Elements of
Cn(X) are called n-chains. We can then define boundary map 0,: Cy(X) — Cp-1(X) ina

similiar fashion:

Ono 1= Zinzo(_l)l Gl[vo,...,\ﬂ\, woVnt1]

The equation &, © 0n +1 = 0 holds with the same proof in simplicial homology so we can

define singular homology group Hn(X) = Kero, / Imoy, +1

12



Proposition 3.2 Let X be a non-empty and path-connected topological space. Then
Ho(X) ~ Z. m

Proof Since dp = 0; Ho(X) = Co(X) / Imos. Let f be a homomorphism s.t.
2injo; = Xin;

Since X is non-empty, f is surjective. Also since X is path-connected Kerf = Imo;.
Thus Co(X) / Imoy = Z,i.e. Hy(X) ~ Z. m

Proposition 3.3 Let X be a point. Then Hy(X) =~ Z and H,(X) = 0 forn > 0. m
Proof For a singular n-simplex o;

d(op) = Zi(_l)i On-1 (3.1)

The equation (3.1) is equal to O for n even and o, -1 for n odd (n # 0). Then we have the

chain complex

75737373750

where the boundary maps are isomorphisms and trivial maps except at the last Z. Thus
Ho(X) = Zand Hy(X) =0forn> 0. m

Definition 3.4 Reduced homology groups H,(X) is defined to be the homology groups

of the chain complex

0, 01 f
w2 X)) > X)» CX)>Z -0
where f(zl n; Gi) = Zi n;. n

Since fa; = 0; f vanishes on Imad; and induces a map Hy(X) —» Z with kernel Hy(X).
This implies Hy (X) = Hy(X) @ Z. Furthermore, H,(X) = H,(X) for n>0. m

Definition 3.5 A chain map between two chain complexes Cn(X) and Cn(Y) is a

collection of homomorphisms {fi} s.t. the following diagram commutes:

13



Je fe1

dy i ) dy_j
| C,(¥) n C, 4(¥) 1

Figure 3.1 Chain complex diagram

Proposition 3.6 A chain map between chain complexes induces homomorphism

between the homology groups of the two complexes. m

Proof We have to show that f, take cycles to cycles and boundaries to boundaries.
Since f,: C(X) — Cr(Y) implies 9, (f, ) = f,(0,a) = 0. Thus f, takes cycles to
cycles. Also, since f,,(d,8) = 9, (f, B); fn takes boundaries to boundaries. Hence fj,

induces a homomorphism f,: Hy(X) — Hq(Y). =

Proposition 3.7 A map f: X — Y induces a chain map from the singular chain complex
of Xtothatof Y. m

Proof If we have a map f: X — Y, a singular simplex 5: A" — X induces a singular
simplexf, (c) =foo: A" =Y
We have to show that f*(an(o)) = 0d,(f.(0)). Since f,(};a;0;) = X;a;f.(o;), we

have;

£,(00(0)) = £.(Zi(—=1)" 0ljvg,tm ovmaa)) = 2= £ (Ol ivgntn oovnra)) = On(£.(0)). ®

It is useful to remember some important properties of induced homomorphism:

e If we have X—f> Y LS Z then,
(geh.(0) = (gefeoo= ge(feo)=(f, o g.)(0)
Thus (g ). (o) = (f. ° g.)(0)
e It is also clear that id,= id where id denotes the identity map of a space or a

group.

Theorem 3.8 If two maps f,g: X — Y are homotopic, the homomorphism induced in

homology by f and g are the same, i.e., f, = g,: Hy(X) — Hy(Y). m

14



Proof Omitted. [1] m
Corollary 3.9 If X and Y are homotopy equivalent, then all their homology groups
coincide. m

Proof Let X and Y be homotopy equivalent. Then 3 f: X —» Y and g:Y — X st. go
f=~idy and fog =idy. This implies (gef)x =g~ of+x =idx =fx ogx =(fo Q)=
where id is identity upon the homology groups. Thus g~ and f« are inverses of each

other, i.e. isomorphism. m

Definition 3.10 Two chain maps f,: C,(X) — C(Y) and g,: C,(X) — C,(Y) are chain
homotopic if there exist maps h,: C,(X) — Cy(Y)st.f—g=0oh+ho. m

This definition says that, given the diagram,

(=X

— hrilX) _a" CnlX ) _a" Cr—11X)

— e Crs1lY) 2. CalY) 2. Cpt[¥) ——

Figure 3.2 Chain complex diagram

hn makes the following diagram commutative

d d d

Cn-H(Y) - CH(Y) - n—l(Y) —_— =

Figure 3.3 Chain complex diagram
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It is shown in [1] in the proof of theorem (3.8) that oP + PO = g —f, i.e., P is a chain
homotopy between the chain maps f and g. This implies the following:

Proposition 3.11 Two chain-homotopic chain maps induce the same homomorphisms

in homology. m

3.2 Some Preliminaries About Exact Sequences
The sequence of homomorphisms
fns1 fn

v ™ Appr — Ap 2 Apq oo

is said to be exact if Kerf,=Imf,.1 vn. The inclusion Imf,.; c Kerf, implies
foofhi1 =0, so the sequence is a chain complex. Because of these facts, homology

theory measures how far is a sequence from being exact.

Some properties proven in [1] are listed below:

f
e 0—-> A - Bisexactiff Kerf=0.
f
e A— B — 0exactiff Imf=0.
f
e 0-> A - B - 0isexactiff fisanisomorphism.

f
e 05A—>B3C -0 is exact iff f is injective, g is surjective and
Ker g = Im f, so g induces an isomorphism C = B/ Im f. This exact sequence is

called short exact sequence.

3.3 Relative Homology

Let X be any topological space and A € X be any subspace. The ‘relative chain group’
of X relative to A is defined to be Cy(X, A): = Cy(X) / Cy(A).

Since the boundary map 0n: Cp(X) — Cn-1(X) takes C,(A) to C,-1(A); it induces a
boundary homomorphism 6,": Cy(X, A) — C,-1(X, A).

The equation F=0 implies that (8’)2 = 0. So we have a chain complex. Then the
relative homology group is defined to be H,(X, A).

In this case relative cycles are the elements o € C,(X) s.t. da € C,,-1(A), and relative

boundaries are elements a € C,(X) s.t. a = op +y where p € C,+1(X) and y € C,(A).
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With these properties, we can think of H,(X, A) as ‘homology of X modulo A’.

Now consider the exact sequence

05 Ca(A) > Cy(X) > Ca(X)/Ca(A) = 0
where i is the inclusion and j is the quotient map.

Using this construction, we have the following commutative diagram:

0 ColA) ——— €y (X) —— €y (X)/Cpey(4) ——— 0
H d d

0 Coil4) ——— Guat(X) —= Gt (X)/Cps1(4) ——— 0
H d d

0 Ci(A) ——— Gy (X) — €y (X)/Cor1(4) ——— 0
i d d

Figure3.4 Chain complex diagram

Note that this diagram is commutative by the definition of the boundary maps.

Lemma 3.12 (Zigzag Lemma) Suppose we have the following ‘short exact sequence of

chain complexes’:
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0 Anii
a e 'S
0 Ap ——~ B, ——~ (, 0
dy de dy-
0 Ap | — = B L Cr 1 0
i e 'S

Figure 3.5 Zigzag lemma diagram
where the rows are exact sequences and each column is a complex. Then there is a

family of ‘connecting homomorphisms’ d,: H,(C) - H,_;(A) s.t

- ;
Hr:ll'i:_"'Hr:I:H:;'_'Hr:I:‘-H:
A
Hu(A) =™ H,(B) ——— H,(C)
R
*— H, 4(C)

Figure 3.6 Connecting homomorphism diagram

So we have the following long exact sequence:

a* .* .* a*
o> Hy (€) S Hy(A) S Hy(B) S HL(C) S .. > Hg(C) > 0 m

18



Proof Ommited. [1]

This theorem implies a long exact sequence of homology groups:
-* -* a* -*
o Hy(A) S H, (0 5 Hy (X A) S Hy 1 (A) S ... = Ho(X,A) = 0

3.4 The Excision Theorem

Theorem 3.13 (The Excision Theorem) Let X be a topological space with subspaces A,
U with U € A € X. Assume that the closure of U is contained in the interior of A.
Then the inclusion map 1:(X—-U,A—-U) — (X,A) induces an isomorphism
i, H{HX—U,A-U) > H(X,A)Vn>0. =

This theorem basically says that excising away U from X and A does not change the
relative homology.

Proof Ommited. [1]

The excision theorem has many applications. The following two theorems will be

proven with the aid of the excision theorem.

Theorem 3.14 Let A be an open subset of a topological space X. Then the quotient map
p: (X, A) — (X/A,A/A) induces an isomorphism

p.:Hi(X,A) » H;(X/A,A/ A) = H,(X / A)

Proof Let A be an open subset of X. Since A is open, we can take U = A. Then we

have the following commutative diagram:
Ho(X A) —— Ho(X —A.A—A) =H,(X —A)
Ps lPlx—ale
(X AL AJA) ——— Hp X JA—AJA ASA)

Figure 3.7 Homology group diagram

The horizontal arrows are isomorphism by the excision theorem since (p|x_a). IS the

map induced by the restriction of p to X — A, which is a homomorphism, (p|x-a). IS
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an isomorphism. Furthermore, since the diagram is commutative then p, is also an

isomorphism. m

Theorem 3.15LetU c R" andV ¢ R™ beopensets. If U =~ Vthenn=m. m

Proof Letn,m > 1. Take X € U then by excision theorem we have;

Hi(U,U — x) = Hi(R" , R" —x).

Since R™ — x deformation retracts to S" ~*, we have the following long exact sequence
.. = Hi(R") — Hi(R", R® —x) — Hi—1(S" 1) — Hi-1(R") — ...

So Hi(R™®, R®—x) ~ H;_1(S* 1) Vi > 1 excepti=n.

But any homeomorphism f:U — V induces a homeomorphism h: (U, x) — (V, f(x))

which induces an isomorphism
Hi(R", R™ — x) =~ H;(R", R" - f(x))
Thusn=m. m

Now the knowledge that will be useful while finding the homology groups of S™ has

been completed.
Example 3.16 Compute the homology groups of S™ (n > 2).

We can think S™ as the quotient of an n-disk by its boundary, i.e., S® = D" /dD".
Since D™ ~ S™~1 we have the following exact sequence;
.. > H;(D") - H;(D",$"™ ) - H;_;(S"™") - H;_; (D) - ---
Since the disk is contractible, all its homology groups vanish. So the above exact
sequence becomes
0 - H;(D",S"™) - H;_4 (") - 0

This implies H; (D, S"~1) = H,_, ( S"~1). We know that F( S°) ~ {% Other‘szg

It follows that H,( S™) =~ {% otherlwzisrel

7 i=n
(DN gn—-1y ~ {. ny ~ ’
Thus H;(D",S"™%) = H;(S™) {0, otherwise
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3.5 Isomorphism of The Simplicial and Singular Homology

Lemma 3.17 (Five Lemma) Suppose the following diagram of abelian groups

commutes where the two rows are exact sequences:

Figure 3.8 Five lemma diagram
If a, B, 0 and ¢ are all isomorphisms then y is also an isomorphism. m
Proof Omitted. [1]

Let fi: Cy,* (X, A) — Cy(X, A) be a homomorphisms defined by sending each n-simplex
A" € C,*(X) of X to its corresponding singular n-simplex given by its characteristic
map o:A"— X. Then fi is a chain map so induces homomorphisms
f.: Ha* (X, A) — Ha(X, A).

Theorem 3.18 The homomorphisms f,: H,* (X, A) — Hq(X, A) are isomorphisms.
Proof « Case 1: X is finite dimensional

Firstly suppose A = @. For X* the k-skeleton of X, we have the following exact

sequence

Then by Zigzag lemma, we have the following commutative diagram;

Hp (X5 X1 — HAX) —— Hp(X) — Hp(xF X5 — H (X

| | | |

H::+]{Xk'xk_lj - HH(X;‘-_l,\-' H}![Xk:l - H:r{Xk-Xk_I] - rr—ll.rX’r‘-_]:|

Figure 3.9 Homology group diagram

Co(X*, X* ™1 is zero for n # k and is free abelian with basis in bijection with the k-
simplices of X when n=k, so we can say the same of H,*(X*,X*%). For the
corresponding singular homology group Ha(X*, X*"1), let us consider the map
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[1:(a%;, 04%;) —» (XX, xk=1) consisting of all characteristic maps A¥ — X. This induces
L1; A%; / LI 0A%; = Xk /XK1,

Then it induces isomorphisms on the singular homology groups. Thus Hq(X*, X*~ 1) is 0
for n # k and free abelian with basis represented by the relative cycles given by the
characteristic maps of the k-simplices of X when n = k. Hence the first and the fourth
vertical maps in the diagram are isomorphisms. By induction on k, we may assume that
the second and the fifth vertical maps are also isomorphisms. Five Lemma implies that
the third vertical map is also an isomorphism. Hence f,: H," (X, A) — Hq(X,A) are

isomorphisms.

Now suppose A # @. Then by zigzag lemma, we have the following commutative

diagram:
H2(A) H(X) HA(X,A) HY ((A) HY ((X)
Hy(A) H“f:X:l HH[X'AJ — {1y Iffj‘) — H, I[X:J

Figure 3.10 Homology group diagram

which has exact rows and the first, second, fourth and fifth vertical maps are
isomorphisms. Again Five Lemma implies that the third vertical map is also an

isomorphism.

* Case 2: Omitted. [1] m

3.6 Mayer-Vietoris Sequences

Suppose A and B are two subspaces of X such that X = int(A) U int(B). We then have

the following commutative diagram:

22



Figure 3.11 Mayer-Vietoris sequence

where i, J, k, | are inclusions. Then we have the following short exact sequence

(.*;_-*) k+1
0 — Cy(ANB) =55 €, (A) @ Cu(B) — C,(A+B) — 0

Then the following diagram is commutative

0O— C.rr+1[-4|'_'|-8_} - - C.rr—l[:Aj%’ u+1'r\'5',\-I - - C:::+](A+B) — 0
0O—— CH[:AF]B;I - - CJJ[A);’CJJ[B] - - C}a(A+B] — 0

0 ——— G 1(ANB) —— G, 1(A)®Cy1(B) —— C1(A+B) ——— 0

Figure 3.12 Chain complex diagram

Note that this diagram is commutative since the horizontal arrows are inclusions. By

Zigzag Lemma, there exists a long exact sequence:

a* (i*:_j*) k*+1* a* k*+1*
Hp+1(X) > Ho(ANB) — Hp(A) @ Hp(B) — Hy(X) > .. — Hy(X) — 0 m

Mayer-Vietoris sequence can also be considered for reduced homology:
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(* ]*) * *~ k* *~

n+1(X)—>H(AﬂB) (A)@H(B)—)H(X)—) .— Hy(X) — 0

Mayer-Vietoris sequence can be used for computing the homology groups of Klein
bottle:

The Klein bottle can be decomposed as the union of two Mdbius bands A and B glued
along their boundary circles. A, B and A n B are homotopy equivalent to circles. Then

the exact sequence can be written as follows:

Hy (10 S Hy(A N B) S5 H, (A) @ Hy(B) =5 Hy (K) S Ho(A N B) =23 Ho (A)

@ Ho(B) — Ho(K) — 0

0 — Ho(A N B) =23 Hy(A) @ Ho(B) — Ho(K) — 0

Then;

0—>Z(—_]32@2—>H0(K)—>0 = HK) =ZBZ/Z=T
Since H; (A n B) — H;(A) & H;(B) is injective, we have;

0 — H,(K) — 0i.e, H,(K) = 0.

Now consider the exact sequence

('*;_.*) k* 1*
0 — Hy (AN B) =5 H,(A) @ H,(B) —5 H,(K) — 0

The map (i,,-j.): Z — Z @ Z sends 1 to (2,—2) since the boundary circle of a
mobius band wraps twice around the central circle. We can write every element in
Z @ Zasa(l,—1)+Db(1,0) fora, b € Z, with exactly the elements of the form a € 2Z
and b = 0. Then

Im(i., -j.) = Ker(k,+1,) =2Z (1,—-1)

ThusHy(K) =~ ZDZ/2Z(1,-1) = Z(1, - 1) ® Z(1,0) /2Z(1,- 1) =~ Z D Z,.
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CHAPTER 4

CELLULAR HOMOLOGY

Cellular homology is a very efficient tool for computing the homology groups of
topological spaces which are CW-complexes based on cell complex decompositions and

degree calculations.

4.1 Degree

Let f: S™ — S™ be a continuous map. Then it induces a homomorphism f,:H,(S™) -
H,(S™). Since H,(S™) = Z, for any homomorphism ¢:Z — Z a unique d € Z such
that o(z) =dzVz € Z.

Definition 4.1 The degree of f is defined to be the unique integer such that f,
(z) = (degf)zVz € Hy(S™) . m

Some properties of degree are listed below:

. Since 1, =1;degl = 1.

. If f is not surjective then degf = 0.

. If f=~ g then f, = g, . This implies degf = degg.

. Since (fg), =f, g. ; degfg = degf. degg

4.2 CW Complexes

An orientable surface ) ¢ of genus g can be constructed from a polygon with 4g sides
by identifying the edges. The 4g edges of the polygon is the union of 2g circles. These
circles intersect in a single point. The interior of a polygon can be thought as an open
disk attached to the circles. This open disk is called a 2-cell. The union of the circles can

be obtained by attaching open arcs. These arcs are called 1-cells.
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Thus if we want to build up a surface, take a point attach 1-cells to this point, then
attach a 2-cell.

This process can be generalized as follows:
« Take a discrete set X°. X% is called the 0-skeleton of X. Points of X° are called 0-cells.

« Inductively, suppose the (n — 1)-skeleton X" ! is defined for n > 1. Suppose we have
a collection of n-disks {D": a € I} and ¢,: dD™, — X" ' is a continuous map V a. X",

the n-skeleton of X is then defined as follows:
XM= [Xn_l ]_[ocEI Dnot]/"’

where ~ is defined by X ~ ¢ (X) Va € L.

Let X = [[,50X™. The space X is called a ‘CW complex’ and ¢,(6D",) are called ‘n-
cells’. This process says that X" is obtained from X"~ by adding n-cells. The maps ¢,

are called ‘attaching maps’.
Some examples of CW complexes are given below:
* A 1-dimensional CW complex is called a graph.

« The CW-complex structure of S" for n > 0 consists of one 0-cell e and one n-cell €"

where the attaching map is the constant map ¢: S™* — {v}

» The CW complex structure of the genus g surface ) 4 consists of one vertex, 2g-edges
a1, by, ..., ag, by with the obvious attaching maps and one 2-cell D? with attaching map
®:8D* — (U a;, U by) defined by dividing the circle dD? in 4g segments and mapping

them onto the edges aibsa; by ~*...aghgay oy ' .

4.3 Cellular Homology
Lemma 4.2 Let X be a CW complex. Then;

. H (X", X™) is zero for k # n and is a free abelian group when n = k, with basis

in bijection with the n-cells of X.
. Hk(X") = 0 for k > n. If X is finite dimensional then Hx(X) = 0 for k > dimX.
. The inclusion i: X" — X induces isomorphism i,: Hi(X") — Hy(X) ifk <n. m

Proof Ommited. [1]
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Let X be a CW-complex. By above lemma, there is a long exact sequence
corresponding to the pairs (X*1,X5), (X X*7 b, (X*"1,Xx*"?), ... which form the

following commutative diagram:

0 H,(x")
H}; (X“ ]
an +1 / M&H .l'.ﬂ
Hy (X" x") Hy(x" X" ') —— H, ((x* . x* %
a Jn—1
n '\_\\
Hu—l [X"_lj

Figure 4.1 Homology group diagram

where d; = ji-10;, they allow us to consider the horizontal sequence. Thus the
composition didi—; = 0 which implies that the horizontal sequence infact a chain

complex.

n+1

d dn
L — Hn+1(Xn+1,Xn) — Hﬂ(xn,xn—l) - Hn_l(Xn_l,Xn_z) —_

is called the ‘cellular chain complex’ of X. The elements of H,(X",X""!) can be
thought as linear combinations of n-cells of X. The homology groups of this cellular

chain complex is called ‘cellular homology groups’ of X, and denoted by H,“"(X).

Theorem 4.3 H,“"(X) = Hy(X) Vn. m
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Proof By the above diagram Hp(X) = Hn(X") / Imd, 1. Since the sequence is exact, j,
Is injective. Therefore IM(Gn +1) = IM(nOn +1) = IM(dn +1) and
Hn(X™) = Im(jn) = Ker(dy). Since j, -1 is injective; Ker(6,) = Ker(dy). Thus

Ha(X™) / Im(6, + 1) = Ker(d,) / Im(d + 1).

The right hand side is the cellular homology and H,(X) = H,(X") / Im(Gy+1). Thus
Ha(X) = H'"Y(X) vn. m

Some important facts given in [1] are listed below:
« If X is a CW complex with no n-cells then H,(X) = 0.
« If X isa CW complex with k n-cells, then H,(X) is generated by at most k elements.

« If X is a CW complex having no two of its cells in adjacent dimensions, then Hn(X) is
free abelian with basis in one-to-one correspondence with th n-cells of X. This is
because the cellular boundary maps d, are automatically zero in this case.

Example 4.4 The closed orientable genus g surface X, has CW structure consisting of

one 0-cell, 2g 1-cell and one 2-cell attached by [ai,b1],..., [ag, bg]. Then the cellular

chain complex can be constructed as follows:
d d
0 >Z-S7837 —0
Since there is one 0-cell, d; must be 0. Also since a; or b; appears with its inverses, d; is

0. Since d; and d, are zero, the homology groups are in one-to-one correspondence with

the cellular chain groups.

Thus Ho(Zg) = Z, Hy(Zg) = Z28, Hy(Z,) = Z.
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CHAPTER 5

RESULTS AND DISCUSSION

Through out this thesis, simplicial, singular and cellular homology theories have been
studied. It is seen that classification of the topological spaces can be easily made
according to their holes with the aid of this theory. The homology groups of some
manifolds have been calculated. As a result, it is shown that all these theories agree.
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