# T.C. YILDIZ TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE

## THE CONNECTION BETWEEN BRAIDS AND THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

#### **MAHMUT KUDEYT**

MSc THESIS
DEPARTMENT OF MATHEMATICS
MATHEMATICS PROGRAM

ADVISOR PROF. DR. AYŞE KARA

# T.C. YILDIZ TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE

## THE CONNECTION BETWEEN BRAIDS AND THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

#### **MAHMUT KUDEYT**

MSc THESIS
DEPARTMENT OF MATHEMATICS
MATHEMATICS PROGRAM

ADVISOR PROF. DR. AYŞE KARA

#### T.C.

# YILDIZ TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE

# THE CONNECTION BETWEEN BRAIDS AND THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

Thesis, which was prepared by Mahmut KUDEYT, has been accepted by the following jury on 07.07.2011 as MSc THESIS at Yıldız Technical University Department of Mathematics.

| Advisor                        |  |
|--------------------------------|--|
| Prof. Dr. Ayşe KARA            |  |
| Yıldız Technical University    |  |
|                                |  |
|                                |  |
| Jury Members                   |  |
| Prof. Dr. Ayşe KARA            |  |
| Yıldız Technical University    |  |
|                                |  |
| Assoc. Prof. Dr. Fatma ÖZDEMİR |  |
| İstanbul Technical University  |  |
|                                |  |
| Assoc. Prof. Dr.Fatih TAŞÇI    |  |
| İstanbul Technical University  |  |

#### **ACKNOWLEDGEMENTS**

I would like to express my deepest gratitude to my advisor Ayşe KARA, my second co-advisor Marcel BÖKSTEDT, who gave me the opportunity to come to Aarhus University (Denmark) and study with him, for their great assistance to my point of view in the area of mathematics and in life. Specially, I would like to thank to Prof. Marcel. Though the topic in this thesis was strange for me, Prof. Marcel made everything much easier for me. He didn't hesitate to explain any details that I learned for my thesis subject. Although I finished my thesis with Marcel BÖKSTEDT, all of them expended great efforts in my background of mathematics. And they also encouraged me during my study. I am grateful to them for all their contributions in my life.

Finally, I am thankful to my family for their confidence in me throughout my life.

May, 2011

Mahmut KUDEYT

### **CONTENTS**

|                         |                                                              | Pages      |
|-------------------------|--------------------------------------------------------------|------------|
| NOTATION                |                                                              | <b>v</b> i |
| LIST OF FIGURE          | S                                                            | vii        |
| ABSTRACT                |                                                              | viii       |
| ÖZET                    |                                                              | ix         |
| CHAPTER 1               |                                                              |            |
| INTRODUCTION            | V                                                            | 1          |
| 1.2 Th                  | ummary of the Literaturehe Aim of the Thesisypothesis        | 1          |
| CHAPTER 2               |                                                              |            |
| BRAIDS                  |                                                              | 3          |
| 2.1 In<br>2.2.1         | itroduction<br>Basic Definition                              |            |
| 2.2 Br<br>2.2.1         | raids and Braid Diagrams                                     | 5          |
| 2.2.2<br>2.2.2<br>2.2.3 | Braid Diagrams                                               | 7          |
| CHAPTER 3               |                                                              |            |
| THE GROUP OF            | BRAIDS                                                       | 19         |
|                         | ne Group of Braids<br>Presentation for Braid Group           |            |
| 3.2.1                   | Projection to the Symmetric Group                            | 33         |
| 3.2.2<br>3.3 V          | Definition of Pure Braids<br>Vord Problem                    |            |
| 3.3.1<br>3.3.2          | Word Problem for the Braid Group  A Solution Of Word Problem | 34<br>39   |

|         | 3.3.3 | A Presentation for the Pure n-braid Group | 47 |
|---------|-------|-------------------------------------------|----|
| CHAPTER | 8 4   |                                           |    |
| THE FUN | DAMEN | ITAL GROUP OF CONFIGURATION SPACE         | 63 |
| 4       | .1 Co | nfiguration Space                         | 63 |
| CHAPTER | 8 5   |                                           |    |
| CONCLU  | SIONS |                                           | 73 |
| REFEREN | ICES  |                                           | 74 |
| CV      |       |                                           | 75 |

### **NOTATION**

| D                                                           | Unit Cube                                     |
|-------------------------------------------------------------|-----------------------------------------------|
| $d_{_i}$                                                    | i th string of n-braid in unit cube           |
| $B_n$                                                       | n-braid group                                 |
| I                                                           | Closed interval $[0,1]$                       |
| $b_{i}$                                                     | i th string of n-braid                        |
| D                                                           | Braid Diagrams                                |
| $\Omega_2^{\pm 1}$                                          | Reidemeister move 2                           |
| $\Omega_3^{\pm 1}$                                          | Reidemeister move 3                           |
| Δ                                                           | Delta move                                    |
| $\rho$                                                      | Euclidean metric                              |
| $\mathbf{B}_n$                                              | n-braid group under equivalence relation      |
| $\sigma_{_i}$                                               | Generator for braid group (i th)              |
| F                                                           | Free group                                    |
| $G_n$                                                       | Symmetric group                               |
| $P_n$                                                       | Pure braid group                              |
| $T_1$                                                       | Tietze transformation ( inserting )           |
| $T_2$                                                       | Tietze transformation ( deleting )            |
| $\mathbf{A}_n$                                              | Free subgroup of n-braid group                |
| $\mathbf{H}_{n}$                                            | The special subgroup of $B_n$                 |
| $M_{i}$                                                     | The right coset presentation                  |
| $F_{m,n}M$                                                  | The configuration space                       |
| $R^2$                                                       | Two dimensional Euclidean space               |
| $\pi_1 B_{0,n} R^2$                                         | Artin braid group with fundamental group      |
| $\pi_{\scriptscriptstyle 1} F_{\scriptscriptstyle 0,n} R^2$ | Artin pure braid group with fundamental group |
| $\sum_{n}$                                                  | Symmetric group                               |
|                                                             |                                               |

### **LIST OF FIGURES**

|             |                                                                   | Pages |
|-------------|-------------------------------------------------------------------|-------|
| Figure 2.1  | The unit cube                                                     | 4     |
| Figure 2.2  | An example of a 3-braid                                           | 4     |
| Figure 2.3  | Some example of braids                                            | 5     |
| Figure 2.4  | An example of a 4-braid                                           | 6     |
| Figure 2.5  | An example of a braid diagram on four strands                     | 8     |
| Figure 2.6  | An example of isotopy of braid diagrams                           | 9     |
| Figure 2.7  | Reidemeister moves (2)                                            | 9     |
| Figure 2.8  | Reidemeister moves (3)                                            | 10    |
| Figure 2.9  | A polygonal braid                                                 | 12    |
| -           | Delta move                                                        |       |
| Figure 2.11 | Presentations of some braids (for generators)                     | 17    |
| Figure 3.1  | Comparison of two braids on two strings                           | 19    |
| Figure 3.2  | The product of two braids on three strings                        | 20    |
| Figure 3.3  | The proof of associative of braids                                | 21    |
| Figure 3.4  | Trivial braid                                                     | 22    |
| Figure 3.5  | The generators of braid groups                                    | 23    |
| Figure 3.6  | The inverse of generators of braid groups                         | 23    |
| Figure 3.7  | Indication of generators on braids                                | 24    |
| Figure 3.8  | Proof of second relation of braid groups on the example           | 25    |
| Figure 3.9  | Proof of first relation of braid groups on the example            | 25    |
| Figure 3.10 | Delta move on 5-braid                                             | 28    |
| Figure 3.11 | The position of strings in the delta move                         | 29    |
| Figure 3.12 | Subdiving for delta moves                                         | 30    |
| Figure 3.13 | The positions of strings in delta move (case 1)                   | 30    |
| Figure 3.14 | The positions of strings with one crossing in delta move (case 2) | 31    |
| Figure 3.15 | An example of construction of combed braid                        | 35    |
| Figure 3.16 | An example of process of word problem's solution                  | 38    |
|             | The conclusion of word problem for the example                    |       |
| Figure 3.18 | A combed braid                                                    | 40    |
| _           | The process of delta moves to obtain new braid                    |       |
| Figure 3.20 | The process of delta moves to obtain new braid                    | 41    |
| Figure 3.21 | A generator of pure braid group                                   | 49    |
|             |                                                                   |       |

### THE CONNECTION BETWEEN BRAIDS AND THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

Mahmut KUDEYT

Department of Mathematics
M.Sc. Thesis

Advisor: Prof. Dr. Ayşe KARA

The notion of braid is refined in algebraic and geometric settings. And the group structure of braid is given by generators and relations. In addition, the special subgroups of braid groups are introduced by their generators and relations.

The fundamental group of configuration space is presented by its fiber structure with some theorems. And we show that the fundamental group of configuration space has a structure of braid group. Finally, an isomorphism between a structure of braid group and braid group is indicated.

### ÖRGÜLER İLE DÜZENLENMİŞ UZAYIN TEMEL GRUPLARI ARASINDAKİ İLİŞKİ

Mahmut KUDEYT

Matematik Anabilim Dalı Yüksek Lisans Tezi

Tez Danışmanı: Prof. Dr. Ayşe KARA

Örgü kavramı cebirsel ve geometriksel açıdan incelenmiş olup örgünün grup yapısı, üreteçleri ve bağıntıları ile beraber verilmiştir. Ayrıca bu grubun özel alt grupları, üreteçleri ve bağıntıları ile verilmiştir.

Düzenlenmiş (Configuration) uzayın temel grubu, fiber yapısı ile beraber teoremlerle açıklanmış ve örgü grup yapısına sahip olduğu gösterilip, örgü grup ile bu yapının arasında bir izomorfizma bulunmuştur.

#### INTRODUCTION

#### 1.1 Summary of the Literature

In the early part of the 20th century, using ordinary braids or plaits, found everywhere around us, as models, Emil Artin, a mathematician born in Germany, began a study [1],[2] that eventually developed into what is now known as braid theory.

As might be expected, the original ruminations were to some extent intuitive, based on the physical, tractable nature of braids and plaits.

But, over the course of the 20th century, braid theory has gradually been prospected, refined and polished, to use a goldmining analogy.

Braid theory is, now, recognized as one of the basic theories in mathematics and is of benefit in such branches as topology and algebraic geometry. Also, it is of profound use in other areas of the sciences - physics, statistical mechanics, chemistry and biology.

#### 1.2 The Aim of the Thesis

The purpose of this master thesis to provide a connection between braids and fundamental groups.

The notion of braid is explained with its algebraic and geometrical properties. Especially, with the help of Reidemeister-Schreier method, algebraic properties of braid are refined for special subgroups.

The word problem is introduced to obtain the invariant subgroup of braid groups which is provided the connection between braid groups and fundamental groups.

Again, for our aim, configuration space is given with its fundamental group and structure of fiber bundle.

#### 1.3 Hypothesis

Braid groups and fundamental group of configuration spaces are refined in algebraic

and geometrical settings.

#### **BRAIDS**

We start, in chapter 2, with the fundamental concepts, most notably the braid groups and pure braids.

#### 2.1 Introduction

We introduce the definition of braid which follows directly from Artin's work (Artin [1]).

#### 2.1.1 Basic Definition

**Definition 2.1** Let D be a unit cube, so  $D = \{(x,y,z) | 0 \le x,y,z \le 1\}$ . On the top face of cube place n points,  $A_1,A_2,...,A_n$ , and, similarly, place n points on the bottom face,  $B_1,B_2,...,B_n$ . In Figure 2.1, we have drawn such a configuration, but the cube has been placed in perspective.

For convenience, let us set 
$$A_1 = \left(\frac{1}{2}, \frac{1}{n+1}, 1\right)$$
,  $A_2 = \left(\frac{1}{2}, \frac{2}{n+1}, 1\right)$ , ...,  $A_n = \left(\frac{1}{2}, \frac{n}{n+1}, 1\right)$  and also  $B_1 = \left(\frac{1}{2}, \frac{1}{n+1}, 0\right)$ ,  $B_2 = \left(\frac{1}{2}, \frac{2}{n+1}, 0\right)$ ,...,  $B_n = \left(\frac{1}{2}, \frac{n}{n+1}, 0\right)$ .

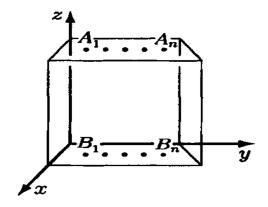


Figure 2.1 The unit cube

Now, join n points  $A_1,A_2,...,A_n$  with  $B_1,B_2,...,B_n$  by means of n polygonal segments/arcs  $d_1,d_2,...,d_n$  (Strictly speaking, the segments should be polygonal, but, in order to make diagrams that we will draw to easier to view, we shall draw these arcs as smooth curves.). However, the arcs can be attached in such a way that the following three conditions hold:

- 1)  $d_1, d_2, ..., d_n$  are mutually disjoint.
- 2) Each  $d_i$  connects some  $A_j$  to some  $B_k$ , where j and k may or may not to be equal,  $d_i$  is not permitted to connect  $A_j$  and  $A_k$  (or  $B_j$  to  $B_k$ ).
- 3) Each plane  $E_s$ , such that z=s and  $0 \le s \le 1$  (in other words parallel to the xy-plane), intersects each arc  $d_i$  at one and only one point, Figure 2.2 (a) (In Figure 2.2(b), we give an example in which this condition does not hold ).

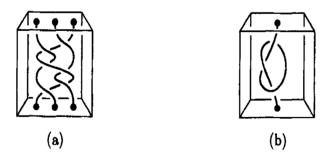


Figure 2.2 An example of a 3-braid

Such a configuration of n arcs  $d_1, d_2, ..., d_n$  is called n -braid, or braid with n strings. As might be expected,  $d_i$  is called a string.

**Example 2.2** The braid in Figure 2.2(a) is a 3-braid. Other examples of braids are given in Figure 2.3.

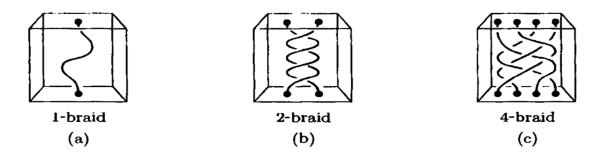


Figure 2.3 Some example of braids

Let us denote the set of all n-braid by  $B_n$ . With example 2.2, we can see that 1-braid, 2-braid, ..., n-braid are mutually different braids. But we may refine the question, how many different braids are there for each n? In order to answer this question; we have to know when two braids are equivalent or not. So we present braids in geometric settings to understand the notion of equivalence.

Now, we shall extend D to  $\mathbb{R}^2 \times I$  for the next sections.

#### 2.2 Braids and Braid Diagrams

In this section we explain the braid groups in geometric terms. From now on, we denote by I the closed interval [0,1] in the set of real numbers  $\mathbb{R}$ . By a topological interval, we mean a topological space homeomorphic to I=[0,1]. (For this section (Kassel and Turaev [3]))

#### 2.2.1 Geometric Braids

**Definition 2.3** A geometric braid on  $n \ge 1$  strings  $\left(n - braid\right)$  is a set  $b \subset \mathbb{R}^2 \times I$  formed by n disjoint topological intervals called the strings of such that the projection  $\mathbb{R}^2 \times I \to I$  maps each string homeomorphically onto I and

$$b \cap (\mathbb{R}^2 \times \{0\}) = \{(A_1, 0, 0), (A_2, 0, 0), \dots, (A_n, 0, 0)\}$$
 (2.1)

$$b \cap (\mathbb{R}^2 \times \{1\}) = \{(B_1, 0, 1), (B_2, 0, 1), ..., (B_n, 0, 1)\}$$
(2.2)

It is obvious that every string of b meets each plane  $\mathbb{R}^2 \times \{t\}$  with  $t \in I$  in exactly one point and connects a point  $\left(A_i,0,0\right)$  to a point  $\left(s(A_i),0,1\right)$ , where  $s\left(A_i\right) \in \{B_1,B_2,...,B_n\}$  called the underlying permutation of b.

The Figure 2.4 is an example of geometric braid. Here x and y are the coordinates in  $\mathbb{R}^2$  and  $t \in I$ . The underlying of permutation of this braid  $\left(B_1, B_3, B_2, B_4\right)$ 

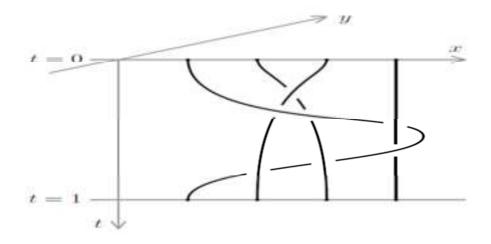


Figure 2.4 An example of a 4-braid

We introduce the concept of isotopy belongs to geometric braids.

Two geometric braids b and  $b^{'}$  on n strings are isotopic, if b can be continuously deformed into  $b^{'}$  in the class of braids. More formally, b and  $b^{'}$  are isotopic if there is a continuous map  $F:b\times I\to\mathbb{R}^2\times I$  such that for each  $s\in I$  the map  $F_s:b\to\mathbb{R}^2\times I$  sending  $x\in b$  to F(x,s) is an embedding whose image is a geometric braid on n strings,  $F_0=id_b:b\to b$ , and  $F_1(b)=b^{'}$ . Each  $F_s$  automatically maps every endpoint b to itself. Both the map F and the family of geometric braids  $\left\{F_s(b)\right\}_{s\in I}$  are called an isotopy of  $b=F_0(b)$  into  $b^{'}=F_1(b)$ .

It is obvious that the relation of isotopy is an equivalence relation on the class of geometric braids on n strings. The corresponding equivalence classes are called braids on n strings.

#### 2.2.2 Braid Diagrams

To specify a geometric braid, one can draw its projection to  $\mathbb{R} \times \{0\} \times I$  along the second coordinate and indicate with string goes "under" the other one at each crossingpoint. To avoid local complications, we shall apply this procedure exclusively to those geometric braids whose projections to  $\mathbb{R} \times \{0\} \times I$  have only double transversal crossings. These considerations lead to a notion of a braid diagram.

A braid diagram on n strands is a set  $D \subset \mathbb{R} \times I$  split as a union of n topological intervals called the strands of D such that the following three conditions are met:

- (i) The projection  $\mathbb{R} \times I \to I$  maps each strand homeomorphically onto I.
- (ii) Every point of  $\{A_1,A_2,...,A_n\} \times \{0\}$  or  $\{B_1,B_2,...,B_n\} \times \{1\}$  is the endpoint of a unique strand.
- (iii) Every point of  $\mathbb{R} \times I$  belongs to at most two strands. At each intersection point of two strands, these strands meet transversely, and one of them is distinguished and said to be undergoing, the other strand being overgoing.

Note that three strands of a braid diagram D never meet in one point. An intersection point of two strands of D is called a double point or a crossing of D. The transversality condition in (iii) means that in a neighborhood of a crossing, D looks, up to homoemorphism, like the set  $\{(x,y)|xy=0\}$  in  $\mathbb{R}^2$ . Condition (iii) and the compactness of the strands easily imply that the number of crossings of D is finite.

In the figures, the strand going under a crossing is graphically represented by a line broken near the crossing; the strand going over a crossing is represented by a continued line. An example of a braid diagram is given in Figure 2.5. Here the top horizontal line represents  $\mathbb{R} \times \{0\}$ , the bottom horizontal line represents  $\mathbb{R} \times \{1\}$ . In the sequal we shall sometimes draw and sometimes omit these lines in the figures.

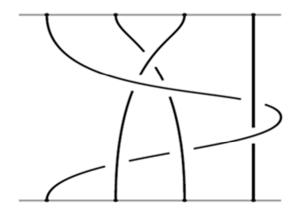


Figure 2.5 An example of a braid diagram on four strands

We now decribe the relationship between braids and braid diagrams. Each braid diagram D presents an isotopy class of geometric braids as follows. Using the obvious identification  $\mathbb{R} \times I = \mathbb{R} \times \{0\} \times I$ , we can assume that D lies on  $\mathbb{R} \times \{0\} \times I \subset \mathbb{R}^2 \times I$ . In a small neighborhood of every crossing of D we slightly push the undergoing strand into  $\mathbb{R} \times (0,\infty) \times I$  by increasing the secondcoordinate while keeping the first and third coordinates. This transforms D into a geometric braid on n strings. Its isotopy class is a well-defined braid presented by D. This braid is denoted by  $\beta(D)$ . For instance, the braid diagram in Figure 2.5 presents the braid drawn in Figure 2.4.

It is easy to see that any braid  $\beta$  can be presented by a braid diagram. To obtain a diagram of  $\beta$ , pick a geometric braid b that represents  $\beta$  and is generic with respect to the projection along the second coordinate. This means thatthe projection of b to  $\mathbb{R} \times \{0\} \times I$  may have only double transversal crossings. At each crossing point of this projection choose the undergoing strand to be the one that comes from a subarc of b with larger second coordinate. The projection of b to  $\mathbb{R} \times \{0\} \times I = \mathbb{R} \times I$  thus yields a braid diagram, D, and it is clear that  $\beta(D) = \beta$ .

Two braid diagrams D and D on n strands are said to be *isotopic* if thereis a continuous map  $F: D \times I \to \mathbb{R} \times I$  such that for each  $s \in I$  the set

 $D_s = F(D \times s) \subset \mathbb{R} \times I$  is a braid diagram on n strands,  $D_0 = D$ , and  $D_1 = D'$ . It is understood that F maps the crossings of D to the crossingsof  $D_s$  for all  $s \in I$  preserving the under/overgoing data. The family of braid diagrams  $\{D_s\}_{s \in I}$  is called an isotopy of  $D_0 = D$  into  $D_1 = D'$ . An example of an isotopy is given in Figure 2.6. It is obvious that if D is isotopic to D', then  $\beta(D) = \beta(D')$ .

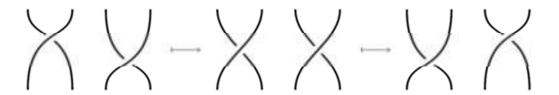


Figure 2.6 An example of isotopy of braid diagrams

#### 2.2.3 Reidemeister Moves on Braid Diagrams

The transformations of braid diagrams  $\Omega_2$ ,  $\Omega_3$  shown in Figures 2.7 and 2.8, as well as the inverse transformations  $\Omega_2^{-1}$ ,  $\Omega_3^{-1}$  (obtained by reversing the arrows in Figures 2.7 and 2.8), are called Reidemeister moves. The moves affect only the position of a diagram in a disc inside  $\mathbb{R} \times I$  and leave the remaining part of the diagram unchanged. The move  $\Omega_2$  involves two strands and creates two additional crossings ( there are two types of  $\Omega_2$ -moves, as shown in Figure 2.7).

The move  $\Omega_3$  involves three strands and preserves the number of crossings. All these transformations of braid diagrams preserve the corresponding braidsup to isotopy.



Figure 2.7 Reidemeister moves (2)

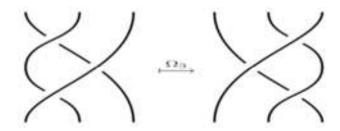


Figure 2.8 Reidemeister moves (3)

We say that two braid diagrams D,  $D^{'}$  are  $\mathbb{R}$ -equivalent if D can be transformed into  $D^{'}$  by a finite sequence of isotopies and Reidemeister moves  $\Omega_{2}^{\pm 1}$ ,  $\Omega_{3}^{\pm 1}$ . It is obvious that if D,  $D^{'}$  are  $\mathbb{R}$ -equivalent, then  $\beta(D) = \beta(D^{'})$ .

The following theorem asserts the converse.

**Theorem 2.4** Two braid diagrams present isotopic geometric braids if and only if these diagrams  $\mathbb{R}$  – *equivalent* .

**Proof** The keypoint of Theorem 2.4 is that the diagrams of isotopic geometric braids are  $\mathbb{R}$ -equivalent. The proof of the theorem goes in four steps.

**Step 1** We introduce some notation used in the next steps. Consider ageometric braid  $b \subset \mathbb{R}^2 \times I$  on n strings. For i=1,...,n, denote the i th string of b, that is, the string adjacent to the point  $(A_i,0,0)$ , by  $b_i$ . Each plane  $\mathbb{R}^2 \times \{t\}$  with  $t \in I$  meets  $b_i$  in one point, denoted by  $b_i(t)$ . In particular, we have  $b_i(0) = (A_i,0,0)$ .

Let ho be the Euclidean metric on  $\mathbb{R}^3$ . Given a real number  $\varepsilon>0$ , the *cylinder*  $\varepsilon-neighborhood$  of  $b_i$  consists of all points  $(x,t)\in\mathbb{R}^2\times I$  such that  $\rho\big((x,t),b_i(t)\big)<\varepsilon$ . This neighborhood meets each plane  $\mathbb{R}^2\times\{t\}\subset\mathbb{R}^2\times I$  along the open disc of radius  $\varepsilon$  centered at  $b_i(t)$ .

For distinct  $i,j\in\{1,...,n\}$  , the function  $t\to\rho\big(b_i(t),b_j(t)\big)$  is a continuous function on I with positive values. Since I is compact, this function has a minimum value.

Set

$$|b| = \frac{1}{2} \min_{1 \le i < j \le n} \min_{t \in I} \rho(b_i(t), b_j(t)) > 0$$
 (2.3)

It is clear that the cylinder |b| – neighborhoods of the strings of b are pairwise disjoint. (In fact, |b| is the maximal real number with this property.)

For any pair of geometric braids b, b on n strings and any i=1,...,n the function  $t \to \rho \left(b_i(t),b_i'(t)\right)$  is a continuous function on I with nonnegative values. Since I is compact, this function has a maximum value. Set

$$\tilde{\rho}(b,b') = \max_{1 \le i \le n} \max_{t \in I} \rho(b_i(t),b_j(t)) \ge 0$$
(2.4)

The function  $\tilde{\rho}$  satisfies the axioms of a metric:  $\tilde{\rho}(b,b') = \tilde{\rho}(b',b)$ ;  $\tilde{\rho}(b,b') = 0$  if and only if b = b'; for any geometric braids, b,b',b'' on n strings, we have  $\tilde{\rho}(b,b'') < \tilde{\rho}(b,b'') + \tilde{\rho}(b',b'')$ . The latter follows from the fact that for some i=1,...,n and  $t \in I$ ,

$$\widetilde{\rho}(b,b'') = \widetilde{\rho}(b_i(t),b'_i(t))$$

$$\leq \widetilde{\rho}(b_i(t),b'_i(t)) + \widetilde{\rho}(b'_i(t),b''_i(t))$$

$$\leq \widetilde{\rho}(b,b') + \widetilde{\rho}(b',b'')$$
(2.5)

Note also that

$$|b| \le |b'| + \tilde{\rho}(b,b') \tag{2.6}$$

Indeed, for some  $t \in I$  and certain distinct  $i, j \in 1,...,n$ 

$$|b| = \frac{1}{2} \rho \left(b_{i}(t), b_{j}(t)\right)$$

$$\leq \frac{1}{2} \left(\tilde{\rho}\left(b_{i}(t), b_{i}'(t)\right) + \tilde{\rho}\left(b_{i}'(t), b_{j}'(t)\right) + \tilde{\rho}\left(b_{j}'(t), b_{j}(t)\right)\right)$$

$$\leq \frac{1}{2} \left(\tilde{\rho}\left(b, b'\right) + 2|b'| + \tilde{\rho}\left(b', b\right)\right)$$

$$= |b'| + \tilde{\rho}\left(b, b'\right)$$

$$(2.7)$$

Step 2 A geometric braid is polygonal if all its strings are formed by consecutive (linear) segments; see Figure 2.9. Any geometric braid b on n strings can be approximated by polygonal braids as follows. Pick an integer  $N \geq 2$  and an index i=1,...,n. For k=1,...,N, consider the segment in  $\mathbb{R}^2 \times I$  with endpoints  $b_i\left(\frac{k-1}{N}\right)$  and  $b_i\left(\frac{k}{N}\right)$ . The union of these N segments is a brokenline,  $b_i^N$ , with endpoints  $b_i^N(0)=b_i(0)=(A_i,0,0)$  and  $b_i^N(1)=b_i(1)$ . For sufficiently large N, this broken line lies in the cylinder |b|-neighborhoods of  $b_i$ . Therefore for sufficiently large N, the broken lines  $b_1^N,...,b_n^N$  are disjoint and form a polygonal braid,  $b^N$ , approximating b. Moreover, for any real number  $\varepsilon>0$  and all sufficiently large N, we have  $\rho(b,b^N)<\varepsilon$ . For instance, Figure 2.6 shows a polygonal approximation of the braid in Figure 2.4.

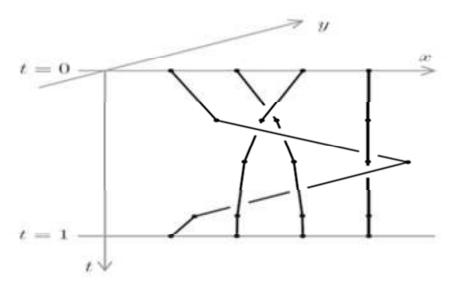


Figure 2.9 A polygonal braid

We now reformulate the notion of isotopy of braids in the polygonal setting. To this end, we introduce so-called  $\Delta-moves$  on polygonal braids. Let A, B, C be three points in  $\mathbb{R}^2 \times I$  such that the third coordinate of A is strictly smaller than the third coordinate of B and the latter is strictly smaller than the third coordinate of C. The move  $\Delta(ABC)$  applies to a polygonal braid  $b \subset \mathbb{R}^2 \times I$  whenever this braid meets the triangle ABC precisely along the segment AC. (By the triangle ABC, we mean the linear 2-simplex with vertices A, B, C.) Under this assumption, the move  $\Delta(ABC)$  on b replaces  $AC \subset b$  by  $AB \cup BC$ , keeping the rest of b intact; see Figure 2.10, where the triangle ABC is shaded. The inverse move  $\left(\Delta(ABC)\right)^{-1}$  applies to a polygonal braid meeting the triangle ABC precisely along  $AB \cup BC$ . This move replaces  $AB \cup BC$  by AC. The moves  $\Delta(ABC)$  and  $\left(\Delta(ABC)\right)^{-1}$  are called  $\Delta-moves$ 

.

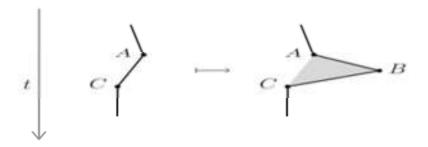


Figure 2.10 Delta move

It is obvious that polygonal braids related by a  $\Delta-moves$  are isotopic. We establish a converse assertion.

**Claim 2.5** If polygonal braids b, b are isotopic, then b can be transformed into b by a finite sequence of  $\Delta$  – moves.

**Proof** We first verify this claim under the assumption  $\tilde{\rho}(b,b') < |b|/10$ . Assumethat the i th string  $b_i$  is formed by  $K \ge 1$  consecutive segments with vertices  $A_0 = (i,0,0), A_1,...,A_K \in \mathbb{R}^2 \times I$ . We write  $b_i = A_0A_1...A_K$ . Similarly, assume that  $b_i' = B_0B_1...B_L$  with  $L \ge 1$  and  $B_0,B_1,...,B_L \in \mathbb{R}^2 \times I$ . Note that  $A_0 = B_0$  and

 $A_K=B_L\in\mathbb{R}^2 imes\{1\}$ . Subdividing  $b_i$ ,  $b_i^\prime$  into smaller segments, we can ensure that K=L, the points  $A_j,B_j$  have the same third coordinate for all j=0,1,...,K, and the Euclidean length of the segments  $A_jA_{j+1},B_jB_{j+1}$  is smaller than |b|/10 for  $j=0,1,\ldots$ , K-1. The assumption  $\tilde{\rho}(b,b^\prime) < |b|/10$  implies that each horizontal segment  $A_jB_j$  has length <|b|/10. The move  $\left(\Delta(A_0A_1A_2)\right)^{-1}$  transforms  $b_i=A_0A_1...A_K$  into the string  $A_0A_2...A_K=B_0A_2...A_K$ . The move  $\Delta(B_0B_1A_2)$  transforms the latter in the string  $B_0B_1A_2...A_K$ . Continuing by induction and applying the moves  $\left(\Delta(B_jA_{j+1}A_{j+2})\right)^{-1}$ ,  $\Delta(B_jB_{j+1}A_{j+2})$  for j=0,1,...,K-2, we transform  $b_i$  into  $b_i^\prime$ . The conditions on the lengths imply that all the intermediate strings as well as the triangles  $B_jA_{j+1}A_{j+2}$ ,  $B_jB_{j+1}A_{j+2}$  determining these moves lie in the cylinder |b|-neighborhoods of  $b_i$ ; they are therefore disjoint from the cylinder |b|-neighborhoods of the other strings of b. We apply these transformations for i=1,...,n and obtain thus a sequence of  $\Delta-moves$  transforming b into  $b^\prime$ .

Consider now an arbitrary pair of isotopic polygonal braids b, b. Let  $F:b\times I\to\mathbb{R}^2\times I$  be an isotopy transforming  $b=F_0(b)$  into  $b^{'}=F_1(b)$  (the braids  $F_s(b)$  with 0< s< 1 may be nonpolygonal). The continuity of F implies that the function  $I(s,s^{'})\to \tilde{\rho}\left(F_s(b),F_{s^{'}}(b)\right)$  is continuous. This function is equal to 0 on the diagonal  $s=s^{'}$  of  $I\times I$ . These facts and the inequality (2.6) imply that the function  $I\to\mathbb{R}$ ,  $s\to |F_s(b)|$  is continuous. Since  $|F_s(b)|>0$  for all s, there is a real number  $\varepsilon>0$  such that  $|F_s(b)|>\varepsilon$  for all  $s\in I$ . The continuity of the function  $(s,s^{'})\to \tilde{\rho}\left(F_s(b),F_{s^{'}}(b)\right)$  now implies that for a sufficiently large integer N and all k=1,2,...,N,

$$\tilde{\rho}\left(F_{(k-1)/N}(b), F_{k/N}(b)\right) < \varepsilon/10 \tag{2.8}$$

Let us approximate each braid  $F_{k/N}(b)$  by a polygonal braid  $p_k$  such that  $\tilde{\rho}\left(F_{k/N}(b),p_k\right)<arepsilon/10$ . For  $p_0$ ,  $p_N$ , we take b, b, respectively. By (2.6),

$$|p_k| \ge |F_{k/N}(b)| - \tilde{\rho}(F_{k/N}(b), p_k) > 9\varepsilon/10$$
 (2.9)

At the same time,

$$\tilde{\rho}(p_{k-1}, p_k) \leq \tilde{\rho}(p_{k-1}, F_{(k-1)/N}(b)) + \tilde{\rho}(F_{(k-1)/N}(b), F_{k/N}(b)) + \tilde{\rho}(F_{k/N}(b), p_k) < 3\varepsilon/10$$
(2.10)

Therefore  $\rho(p_{k-1},p_k) \leq |p_k|/2$  for k=1,...,N. By the previous paragraph,  $p_{k-1}$  can be transformed into  $p_k$  by a sequence of  $\Delta-moves$ . Composing these transformations  $b=p_0\to p_1\to...\to p_N=b^{'}$ , we obtain a required transformation  $b\to b^{'}$ . This completes the proof of Claim 2.5.

**Step 3** A polygonal braid is *generic* if its projection to  $\mathbb{R} \times I = \mathbb{R} \times \{0\} \times I$  along the second coordinate has only double transversal crossings. Slightly deforming the vertices of a polygonal braid b (keeping  $\partial b$ ), we can approximate this braid by a generic polygonal braid. Moreover, if b, b are generic polygonal braids related by a sequence of  $\Delta - moves$ , then slightly deforming the vertices of the intermediate polygonal braids, we can ensure that these polygonal braids are also generic. Note the following corollary of this argument and Claim 2.5.

**Claim 2.6** If generic polygonal braids b, b are isotopic, then b can be transformed into b by a finite sequence of  $\Delta$  – moves such that all the intermediate polygonal braids are generic.

To present generic polygonal braids, we can apply the technique of braid dagrams. The diagrams of generic polygonal braids are the braid diagrams, whose strands are formed by consecutive straight segments. Without loss of generality, we can always

assume that the vertices of these segments do notcoincide with the crossing points of the diagrams.

**Claim 2.7** The diagrams of two generic polygonal braids related by a  $\Delta-move$  are R-equivalent.

Proof Consider a  $\Delta-move$   $\Delta(ABC)$  on a generic polygonal braid b producing a generic polygonal braid b. Pick points A, C inside the segments AB, BC, respectively. Pick a point D inside the segment AC such that the third coordinate of D lies strictly between the third coordinates of A and C. Applying to b the moves  $\Delta(AA'D)$ ,  $\Delta(DC'C)$ , we transform the segment AC into the broken line AA'DC'C. Further applying the moves  $\left(\Delta(A'DC')\right)^{-1}$  and  $\Delta(A'BC')$ , we obtain b. This shows that the move  $\Delta(ABC)$  can be replaced by a sequence of four  $\Delta-moves$  along smaller triangles (one should choose the points A, C, D so that the intermediate polygonal braids are generic). This expansion of the move  $\Delta(ABC)$  can be iterated. In this way, subdividing the triangle ABC into smaller triangles and expanding  $\Delta-moves$  as compositions of  $\Delta-moves$  along the smaller triangles, we can reduce ourselves to the case in which the projection of ABC to  $\mathbb{R} \times I$  meets the rest of the diagram of b either along a segment or along two segments with one crossing point.

Consider the first case. If both endpoints of the segment in question lie on  $AB \cup BC$ , then the diagram of b is transformed under  $\Delta(ABC)$  by  $\Omega_2$ . If one endpoint of the segment lies on AC and the other one lies on  $AB \cup BC$ , then the diagram is transformed by an isotopy.

If the projection of ABC to  $\mathbb{R} \times I$  meets the rest of the diagram along two segments having one crossing, then we can similarly distinguish several subcases. Subdividing if necessary the triangle ABC into smaller triangles and expanding our  $\Delta-move$  as a composition of  $\Delta-moves$  along the smaller triangles, we can reduce ourselves to the case in which the move preserves the part of the diagram lying outside a small disk in  $\mathbb{R} \times I$  and changes the diagram inside this disk via one of the following six formulas:

$$d_1^+ d_2^+ d_1^+ \leftrightarrow d_2^+ d_1^+ d_2^+, d_1^+ d_2^+ d_1^- \leftrightarrow d_2^- d_1^+ d_2^+, \quad d_1^- d_2^- d_1^+ \leftrightarrow d_2^+ d_1^- d_2^-$$
(2.11)

$$d_1^- d_2^- d_1^- \leftrightarrow d_2^- d_1^- d_2^-, d_1^+ d_2^- d_1^- \leftrightarrow d_2^- d_1^- d_2^+, d_1^- d_2^+ d_1^+ \leftrightarrow d_2^+ d_1^+ d_2^-$$
(2.12)

Here  $d_1^\pm$  and  $d_2^\pm$  are the braid diagrams on three strands shown in Figure 2.11; for the definition of the product of braid diagrams, see Figure 2.4. It remains to prove that for each of them, the diagrams on the left-hand and right-hand sides are R-equivalent. The transformation  $d_1^+d_2^+d_1^+ \leftrightarrow d_2^+d_1^+d_2^+$  is just  $\Omega_3$ . For the other five transformations, the R-equivalence is established by the following sequences of moves:

$$\begin{split} w = & \left( d_1^+ d_2^+ d_1^- \xrightarrow{\Omega_2} \to d_2^- d_2^+ d_1^+ d_2^+ d_1^- \xrightarrow{\Omega_3^{-1}} \to d_2^- d_1^+ d_2^+ d_1^+ d_1^- \xrightarrow{\Omega_2^{-1}} \to d_2^- d_1^+ d_2^+ \right), \\ \gamma = & \left( d_1^- d_2^- d_1^+ \xrightarrow{\Omega_2} \to d_1^- d_2^- d_1^+ d_2^+ d_2^- \xrightarrow{w^{-1}} \to d_1^- d_1^+ d_2^+ d_1^- d_2^- \xrightarrow{\Omega_2^{-1}} \to d_2^+ d_1^- d_2^- \right), \\ \mu = & \left( d_1^- d_2^- d_1^- \xrightarrow{\Omega_2} \to d_2^- d_2^+ d_1^- d_2^- d_1^- \xrightarrow{\gamma^{-1}} \to d_2^- d_1^- d_2^- d_1^+ d_1^- \xrightarrow{\Omega_2^{-1}} \to d_2^- d_1^- d_2^- \right), \\ d_1^+ d_2^- d_1^- \xrightarrow{\Omega_2} \to d_1^+ d_2^- d_1^- d_2^- d_2^+ \xrightarrow{\mu^{-1}} \to d_1^+ d_1^- d_2^- d_1^- d_2^+ \xrightarrow{\Omega_2^{-1}} \to d_2^- d_1^- d_2^+, \\ d_1^- d_2^+ d_1^+ \xrightarrow{\Omega_2} \to d_1^- d_2^+ d_1^+ d_2^+ d_2^- \xrightarrow{\Omega_3^{-1}} \to d_1^- d_1^+ d_2^+ d_1^+ d_2^- \xrightarrow{\Omega_2^{-1}} \to d_2^+ d_1^+ d_2^-. \end{split}$$

This completes the proof of Claim 2.7.

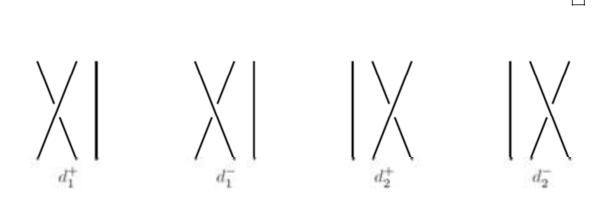


Figure 2.11 Presentations of some braids (for generators)

**Step 4** We can now complete the proof of Theorem 2.4. It is obvious that R-equivalent braid diagrams present isotopic braids. To prove the converse, consider two braid diagrams  $D_1$ ,  $D_2$  presenting isotopic braids. For i=1,2, straightening  $D_i$  near its crossing points and approximating the rest of  $D_i$  by broken lines as at Step 2,

we obtain a diagram,  $D_i^{'}$ , of a generic polygonal braid,  $b_i$ . If the approximation is close enough, then  $D_i^{'}$  is isotopic to  $D_i$ .

Then the braids  $b_1$ ,  $b_2$  are isotopic. Claim 2.6 implies that  $b_1$  can be transformed into  $b_2$  by a finite sequence of  $\Delta-moves$  in the class of generic polygonal braids. Claim 2.7 implies that the diagrams  $D_1^{'}$ ,  $D_2^{'}$  are R-equivalent. Therefore the diagrams  $D_1$ ,  $D_2$  are R-equivalent .

#### THE GROUP OF BRAIDS

#### 3.1 The Group of Braids

As showing above, we understand the notion of isotopy of briads. Now, to try and figure out how we may attempt to show that  $B_n$  for each n has an infinite number of n-braids, we know  $B_1 = \{1\}$  is trivial group and let us to look at the simplest non-trivial case, namely n=2. Every 2-braid is equivalent to one of two types of braid, an example of the 2 types is shown in Figure 3.1 where the left-hand figure has 3 twists, while the right-hand figure has 4 twists. We will see later that if p and q are the number of twist of two braids,  $\beta_p$  and  $\gamma_q$ , respectively, then  $p,q\geq 1$  and  $p\neq q$  these braids are not eqivalent. So if we can prove this, then it follows that  $B_2$  has an infinite number of distinct braids.

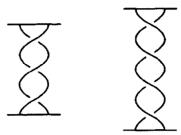


Figure 3.1 Comparison of two braids on two strings

We would like to introduce the concept of the braid groups. The braid group is also sometimes called Artin's braid group.

Now, we define the product of n-braid.

**Definition3.1** Given two n-braid  $b_1, b_2 \subset \mathbb{R}^2 \times I$ , we define their product  $b_1b_2$  to be set of poins  $(x,y,t) \in \mathbb{R}^2 \times I$  such that  $(x,y,2t) \in b_1$  if  $0 \le t \le 1/2$  and  $(x,y,2t-1) \in b_2$  if  $1/2 \le t \le 1$ . If we think the product with figures, we shall see how it figures out in Figure 3.2.

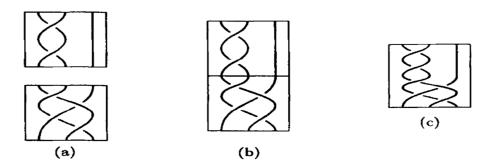


Figure 3.2 The product of two braids on three strings

**Proposition 3.2** If  $b_1, b_2$  are isotopic to n-braids  $b_1', b_2'$ , respectively, then  $b_1b_2$  is isotopic to  $b_1'b_2'$ .

**Proof**  $b_1 \sim b_1^{'}$  and  $b_2 \sim b_2^{'}$ . From the definition of isotopy,  $b_1$  can be transformed into  $b_1^{'}$  by finite sequence of Reidemeister moves or  $\Delta-moves$ . Similarly,  $b_2$  can be transformed into  $b_2^{'}$  by finite sequence of Reidemeister moves or  $\Delta-moves$ . Let  $m,k \geq 0$  be integers.

$$b_1 = (b_1)_0 \to (b_1)_1 \to \dots \to (b_1)_m = b_1'$$
 (3.1)

 $b_1b_2 = (b_1)_0 b_2 \rightarrow (b_1)_1 b_2 \rightarrow \dots \rightarrow (b_1)_m b_2 = b_1b_2$ , so we obtain that  $b_1b_2 \sim b_1b_2$ .

$$b_2 = (b_2)_0 \to (b_2)_1 \to \dots \to (b_2)_k = b_2'$$
 (3.2)

 $b_1^{'}b_2 = b_1^{'}(b_2)_0 \rightarrow b_1^{'}(b_2)_1 \rightarrow \dots \rightarrow b_1^{'}(b_2)_k = b_1^{'}b_2^{'}, \quad \text{so we also obtain} \quad b_1^{'}b_2 \sim b_1^{'}b_2^{'}.$  Therefore we combine two results;  $b_1b_2\left(\sim b_1^{'}b_2\right) \sim b_1^{'}b_2^{'}.$ 

**Proposition 3.3** The product of braids is associative, that is,

$$(b_1b_2)b_3 \sim b_1(b_2b_3)$$
 (3.3)

**Proof** In the Figure 3.3 (a)-(c), we give diagrams to prove above statement. Diagram (a) shows each n-braid,  $b_1$ ,  $b_2$ ,  $b_3$ , respectively. Diagram (b) indicates  $(b_1b_2)b_3$  and diagram (c) indicates  $b_1(b_2b_3)$ . So, we can see that the product of braids is associative.

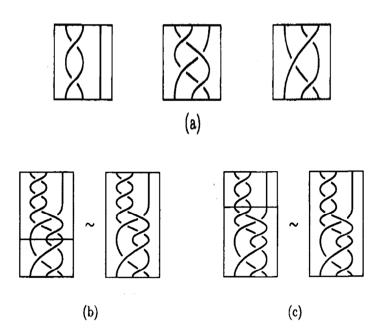


Figure 3.3 The proof of associative of braids

**Proposition 3.4** The product of braids has a natural element. We shall denote this element by  $\mathbf{1}_{\scriptscriptstyle n}$  .

**Proof** Let  $\mathbf{1}_n$  be the n-braid shown in figure. We see that this braid connects  $A_j$  to  $B_j$ .

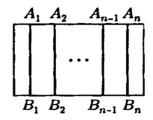


Figure 3.4 Trivial braid

And  $l_n$  obviously satisfies this relations:

$$b(1_n) \sim b$$
 and  $(1_n)b \sim b$  (3.4)

**Proposition 3.5** For each n-braid b, there exists a n-braid  $\overline{b}$  such that  $b\overline{b}\sim 1_n$  and  $\overline{b}b\sim 1_n$ .

Such a n-braid is called the inverse of b and denoted by  $b^{-1}$ .

With the product operation and properties, we all have the necessary requirements for  $B_n$  to be a group.

If  $\beta \in B_n$  be a n-braid, its equivalence classes is denoted by  $[\beta]$ .

**Theorem3.6** The set of equivalence class of n-braids  $B_n$ , forms a group. This group is usually called n-braid group or Artin's n-braid group.

**Proof** The product is given by Definition 3.1; associavity as a consequence of Proposition 3.2, the identity element is  $1_n$  (Proposition 3.3) and the inverse element of  $[\beta]$ , denoted by  $[\beta^{-1}]$  (Proposition 3.4).

#### 3.2A Presentation For Braid Group

In this section we define the generators of  $\mathbf{B}_n$  and obtain a group presentation for  $\mathbf{B}_n$ .

We begin with defining the generators of  $\,{\bf B}_n\,$  and answer this question, " how do this generators generate  $\,{\bf B}_n\,$  ?

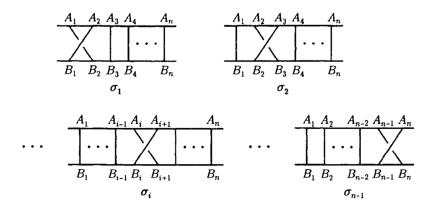


Figure 3.5 The generators of braid groups

As in Figure 3.5 we shall denote these (n-1) braids by  $\,\sigma_{\!_{1}},\sigma_{\!_{2}},....,\sigma_{\!_{n-1}}\,$  .

The second set of (n-1) braids may be formed by interchanging the overcrossing and undercrossing information for each of n-braids of Figure 3.5. Thus, this set of n-braids is exactly the set of the inverse of each element in the first set. Therefore, we shall denote these by  $\sigma_{_{1}}^{^{-1}}, \sigma_{_{2}}^{^{-1}}, ...., \sigma_{_{n-1}}^{^{-1}}$ , see also Figure 3.6.

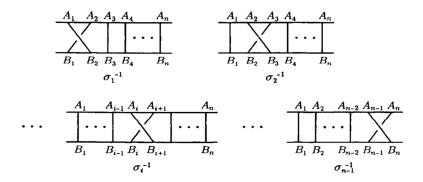


Figure 3.6 The inverse of generators of braid groups

**Proposition3.7** Any n-braid  $\beta$  (in  $B_n$ ) can be written as a product of elements from the set  $\left\{\sigma_i^\pm\right\}$  with i=1,2,...,n-1, e.i,

$$\beta = \sigma_{i_1}^{\varepsilon_1} \sigma_{i_2}^{\varepsilon_2} \dots \sigma_{i_k}^{\varepsilon_k} \tag{3.5}$$

where each  $\mathcal{E}_i$  is either + or –and  $i_1,...,i_k \in \{1,2,...,n-1\}$ .

**Proof** Let the Figure 3.7(a) be the braid projection of  $\beta$  (in  $B_n$ ) denoted by D. We may partition this braid diagram by means of level planes such that two consecutive level planes only two strings are braided with preserving overgoing and undergoing datas as an example.

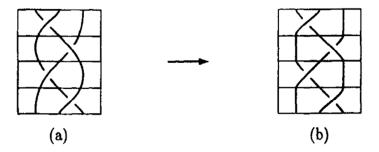


Figure 3.7 Indication of generators on braids

This diagram can be approximated by polygonal braid and each section of Figure 3.7(b) shows an element of  $\{\sigma_i^{\pm}\}$  with i=1,2,...,n-1. So we obtain proof of proposition.

To find a presentation for  $B_n$ , we must also find a set of defining relations. For this reason, we use induction with begining  $B_3$ .

To obtain general relation, we must show that this equation  $\sigma_1\sigma_2\sigma_1=\sigma_2\sigma_1\sigma_2$  is true. If we draw each equation's figure, we see that this eqution's figures are polygonal approximation of Reidemeister move  $\Omega_3$ . Therefore they are in the same equivalence classes. So they present same element.

Actually the relation  $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$  still holds in  $B_n$  for any  $n \ge 4$ .

Similarly, we have to show that

$$\sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3 \tag{3.6}$$

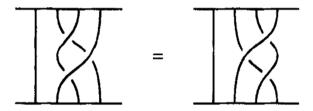


Figure 3.8 Proof of second relation of braid groups on the example

We can see from their figures that first strings are constant, therefore we again use  $\Omega_3$  and we obtain the proof.

Continuing this process, we see that in  $B_n$  for n > 2 the following relations hold,

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{for all } i = 1, \dots, n-2$$
 (3.7)

Consider, in  $B_4$  the product  $\sigma_1\sigma_3$ , Figure 3.9(a) , we show using elementary moves that this product is equal to  $\sigma_3\sigma_1$ , see Figure 3.9 (a)-(c)

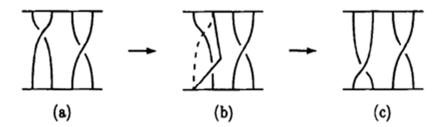


Figure 3.9 Proof of first relation of braid groups on the example

If we generalize this, we can easily see the following relations:

$$\sigma_i \sigma_i = \sigma_i \sigma_i \tag{3.8}$$

for all i, j = 1,...,n-1 with  $|i-j| \ge 2$ .

**Theorem 3.8** For any  $n \ge 1$  the n-braid group  $B_n$  has the following presentation;

$$\mathbf{B}_{n} = \left\langle \sigma_{1}, \sigma_{2}, ...., \sigma_{n-1} \middle| \begin{matrix} \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \text{ for all } i = 1, ..., n-2 \\ \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} \text{ for all } i, j = 1, ..., n-1 \text{ with } |i-j| \geq 2. \end{matrix} \right\rangle.$$

**Proof** For proof, we have to find an isomorphism between a free group (G) and  $B_n$ . Let us begin with defining abstractly, in terms of a presentation, the following group G,

$$G = \left\langle x_1, x_2, \dots, x_{n-1} \middle| \begin{array}{l} x_i x_{i+1} x_i = x_{i+1} x_i x_{i+1} \text{ for all } i = 1, \dots, n-2 \\ x_i x_j = x_j x_i \text{ for all } i, j = 1, \dots, n-1 \text{ with } |i-j| \ge 2. \end{array} \right\rangle$$

Now, we need to establish that G and  $B_n$  are isomorphic as groups. That is to say, the natural correspondence  $x_i \to \sigma_i$ , for i = 1, 2, ..., n-1, is a group isomorphism.

Firstly, let us define a mapping  $\varphi: G \to \mathbf{B}_n$  as follows, let  $W = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_k}^{\varepsilon_k}$  be an arbitrary element of G, then set

$$\varphi(W) = \varphi\left(x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_k}^{\varepsilon_k}\right) = \left[\sigma_{i_1}^{\varepsilon_1} \sigma_{i_2}^{\varepsilon_2} \dots \sigma_{i_k}^{\varepsilon_k}\right] \in \mathbf{B}_n \tag{3.9}$$

Now, our aim is to show that the mapping  $\varphi$  is a group isomorphism between G and  $B_n$ . For this purpose, we use the following theorem.

#### Theorem3.9 Let

$$G = \langle x_1, x_2, ..., x_n | R_1 = 1, R_2 = 1, ..., R_m = 1 \rangle$$
 (3.10)

where  $R_j=x_{j_1}^{arepsilon_1}x_{j_2}^{arepsilon_2}...x_{j_k}^{arepsilon_k}$ , with  $1\leq j_1,j_2,...,j_k\leq n$  and  $arepsilon_i=\pm 1$ . Further, let  $\mathbf H$  be an arbitrary group and f a mapping from  $\mathbf F\left\langle x_1,x_2,....,x_n
ight
angle$  to  $\mathbf H$  defined by

$$f\left(x_{i}\right) = W_{i} \tag{3.11}$$

for i = 1, 2, ..., n.

If, for j = 1, 2, ..., m,

$$f(R_{j}) = f(x_{j_{1}})^{\varepsilon_{1}} f(x_{j_{2}})^{\varepsilon_{2}} ... f(x_{j_{k}})^{\varepsilon_{k}}$$

$$= W_{j_{1}}^{\varepsilon_{1}} W_{j_{2}}^{\varepsilon_{2}} ... W_{j_{k}}^{\varepsilon_{k}} = 1$$
(3.12)

in  ${\bf H}$  , then f defines a homomorphism  $\hat{f}:G \to {\bf H}$  with

$$\hat{f}\left(x_{\lambda_{1}}^{\eta_{1}}x_{\lambda_{2}}^{\eta_{2}}...x_{\lambda_{l}}^{\eta_{l}}\right) = \hat{f}\left(x_{\lambda_{1}}\right)^{\eta_{1}} \hat{f}\left(x_{\lambda_{2}}\right)^{\eta_{2}}...\hat{f}\left(x_{\lambda_{l}}\right)^{\eta_{l}}$$
(3.13)

By theorem 3.9, it is sufficient to show that  $\varphi$  maps defining relations of G to the identity element in  $\mathbf{B}_n$ . This is quite easy to show, for

$$\varphi\left(x_{k}x_{l}x_{k}^{-1}x_{l}^{-1}\right) = \left\lceil \sigma_{k}\sigma_{l}\sigma_{k}^{-1}\sigma_{l}^{-1}\right\rceil = \left\lceil 1_{n}\right\rceil \text{ for } |k-l| \ge 2$$
(3.14)

$$\varphi(x_{i}x_{i+1}x_{i}x_{i+1}^{-1}x_{i}^{-1}x_{i+1}^{-1}) = \left[\sigma_{i}\sigma_{i+1}\sigma_{i}\sigma_{i}^{-1}\sigma_{i+1}^{-1}\right] = \left[1_{n}\right]$$
(3.15)

To complete proof, we need to show that the homomorphism  $\, \varphi \,$  is onto and one-to-one.

Firstly, let us show that  $\varphi$  is onto. Suppose  $\beta$  is an arbitrary element of  $B_n$  . By proposition 3.7,  $\beta$  can be written as

$$\beta = \sigma_{i_1}^{\varepsilon_1} \sigma_{i_2}^{\varepsilon_2} \dots \sigma_{i_k}^{\varepsilon_k} \tag{3.16}$$

where  $1 \leq i_1, i_2, ..., i_k \leq n-1$  and  $\mathcal{E}_i = \pm 1$ . Now, consider the element  $W = x_{i_1}^{e_1} x_{i_2}^{e_2} ... x_{i_k}^{e_k}$  in G , by definition,

$$\varphi(W) = \varphi\left(x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_k}^{\varepsilon_k}\right) = \left[\sigma_{i_1}^{\varepsilon_1} \sigma_{i_2}^{\varepsilon_2} \dots \sigma_{i_k}^{\varepsilon_k}\right] = \left[\beta\right]$$
(3.17)

Hence,  $\varphi$  is onto.

Suppose, now, in G there exist elements g and g' such that  $\varphi(g) = \varphi(g')$ . We may write  $g = x_{i_1}^{e_1} x_{i_2}^{e_2} \dots x_{i_k}^{e_k}$  and  $g' = x_{j_1}^{\eta_1} x_{j_2}^{\eta_2} \dots x_{j_l}^{\eta_l}$ , and let  $\beta = \sigma_{i_1}^{e_1} \sigma_{i_2}^{e_2} \dots \sigma_{i_k}^{e_k}$  and  $\beta' = \sigma_{j_1}^{\eta_1} \sigma_{j_2}^{\eta_2} \dots \sigma_{j_k}^{\eta_k}$ .

Since by assumption  $\varphi(g) = \varphi(g')$ , we must also have  $\beta \sim \beta'$ . Hence we need to show either that g = g' as elements of G, or equivalently  $W = x_{j_1}^{\varepsilon_1} x_{j_2}^{\varepsilon_2} ... x_{j_k}^{\varepsilon_k}$  and  $W' = x_{j_1}^{\eta_1} x_{j_2}^{\eta_2} ... x_{j_l}^{\eta_l}$  thought of as words in free group  $\mathbf{F}(x_1, x_2, ...., x_{n-1})$  can be connected by a finite sequence as follows,

$$W = W_1 \to W_2 \to \dots \to W_r = W' \tag{3.18}$$

where for i=1,2,...,r-1,  $W_{i+1}$  is obtained from  $W_i$  by either insertion or deleting of a conjugate of one of the relation of G. If we denote the set of all relations of G by

R then we can say that  $W \underset{R}{\sim} W'$ .

We know from our previous work that since  $eta \sim eta'$  we can construct a finite sequence

$$\beta = \beta_1 \to \beta_2 \to \dots \to \beta_s = \beta' \tag{3.19}$$

We will show that it is possible to construct of type in (3.18) from (3.19).

With this mind, suppose that  $X_i$ , for i=1,2,...,s-1, is a word in G whose image under  $\varphi$  in  $\beta_i$  in (3.19). In particular, let us set  $X_1=W$  and  $X_s=W'$ . Then, if we can show that  $X_i$  is equivalent to  $X_{i+1}$  relative to R, for i=1,2,...,s-1, will be able to construct exactly the finite sequence we require, namely,

$$W = X_1 \to X_2 \to \dots \to X_s = W' \tag{3.20}$$

and hence  $W_{\stackrel{\sim}{R}}W'$  .

Clearly, it is sufficient to look at only part of the sequence in (3.20),  $\beta_i \to \beta_{i+1}$  say. This, im turn, allows us to simply notation to  $\beta \to \beta'$ .

Now,  $\beta'$  is obtained from  $\beta$  by applying a solitary elementary move. By definition of an elementary move, we replace an edge AB by the edges  $AC \cup CB$  in the triangle  $\Delta ACB$  see in Figure 3.10. Also, by definition, the image of  $\Delta ACB$  is also triangle.

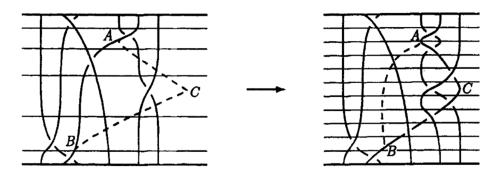


Figure 3.10 Delta move on 5-braid

It is easy to see from Figure 3.10 that the effect on  $\beta'$  of an elementery move is to introduce the straight lines (arcs) AC and CB. In general, AC and CB will produce new intersections with other strings in  $\beta'$ .

Since  $\beta = \sigma_{i_1}^{\varepsilon_i} \sigma_{i_2}^{\varepsilon_2} \dots \sigma_{i_k}^{\varepsilon_k}$ , we can partition  $\beta$  by k-1 level lines into k rectangles in each of which there is exactly one crossing of the form  $\sigma_{i_s}^{\varepsilon_s}$ . However, the introduction of  $\Delta ACB$  will require that we add several level lines to take into account the extra intersections caused by AC and CB.

An important point to note is that, even though we add these extra intersections and hence level lines, when a string enters, say, over (under) an edge of  $\Delta ABC$  then this string will always exit over (under) some edge of  $\Delta ABC$ , see Figure 3.11.

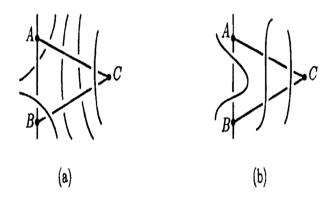
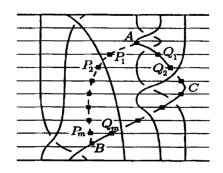


Figure 3.11 The position of strings in the delta move

Now, let  $P_1, P_2, ..., P_m$  and  $Q_1, Q_2, ..., Q_m$  be the points of intersection of the level lines with AB and  $AC \cup CB$ , respectively, see Figure 3.10. Next, for each i=1,2,...,m create a new point  $P_i'$  on AB just above  $P_i$ . Clearly, we can construct  $P_i'$  in such a way that the narrow triangle  $\Delta P_i' Q_i P_i$  does not contain any of the crossing in  $\beta$  or  $\beta'$ , see Figure 3.12.



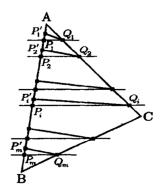


Figure 3.12 Subdiving for delta moves

The above construction, in fact, is nothing more than the creation of a series of elementary moves and what may be termed  $\Delta-moves$ .

We continue this process of appliying  $\Delta-moves$  until we reach  $P_m'Q_m \cup Q_iB$ . We replace this last polygonal segment by  $P_m'B$ , this is just an  $\Delta-move$ , see Figure 3.12.

The above process yields the following sequence between  $\,eta'\,$  and  $\,eta\,$  ,

$$\beta' = \gamma_0 \rightarrow \gamma_1 \rightarrow ... \rightarrow \gamma_m \rightarrow \gamma_{m+1} = \beta$$
,

where  $\gamma_i \to \gamma_{i+1}$ , for i=1,2,...,m-1, is the replacement of  $P_i'Q_i \cup Q_iQ_{i+1}$  by  $P_i'P_{i+1}' \cup P_{i+1}'Q_{i+1}$ . While,  $\gamma_0 \to \gamma_1$  and  $\gamma_m \to \gamma_{m+1}$  are  $\Delta-moves$ .

To next step is to find words  $X_1, X_2, ..., X_m, X_{m+1}$  in G such that  $\varphi(X_i) = \gamma_i$ . To find these words, we need to find an expression for each of the  $\gamma_i$  in the terms of product  $\sigma_i^{\pm 1}$ . Essentially, there are two cases to consider.

#### Case 1

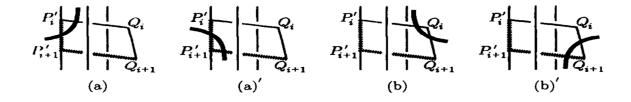


Figure 3.13 The positions of strings in delta move (case 1)

In Figure 3.13, if the bold face string enters quadrangle  $P_i'Q_iQ_{i+1}P_{i+1}'$  under (or over) a given edge, then it exists the same quadrangle under ( or over) some edge. It is clear for Figure 3.13 that  $\gamma_i$  and  $\gamma_{i+1}$  are of exactly the same form, namely

$$\gamma_i = \gamma_i' \sigma_i^{\pm 1} \sigma_{i+1}^{\pm 1} ... \sigma_l^{\pm 1} \gamma_i'' = \gamma_{i+1}$$
 (3.21)

So, in this case,  $X_i$  and  $X_{i+1}$  are the same word, i.e.,

$$X_{i} = X_{i+1} = X_{i}' x_{i}^{\pm 1} x_{i+1}^{\pm 1} ... x_{l}^{\pm 1} X_{i}''$$
(3.22)

where  $X_i^{'}$  and  $X_i^{''}$  are words that correspond to  $\gamma_i^{'}$  and  ${\gamma_i^{''}}$  respectively.

On the other hand, if the string enters  $P_i'Q_iQ_{i+1}P_{i+1}'$  over (or under)  $P_i'Q_i$  say, and it exits from the same edge  $P_i'Q_i$ , then it is easy to see that  $\gamma_i$  and  $\gamma_{i+1}$  are of exactly the same form

#### Case 2

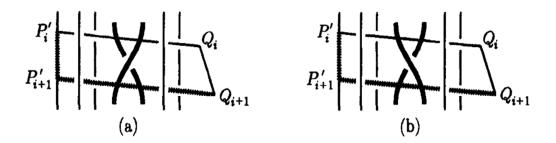


Figure 3.14 The positions of strings with one crossing in delta move (case 2)

The same remark as under Figure 3.13 applies to Figure 3.14.

$$\gamma_{i} = \gamma_{i}' \sigma_{i}^{\pm 1} \sigma_{i+1}^{\pm 1} ... \sigma_{p-2}^{\pm 1} \sigma_{p-1}^{\lambda} \sigma_{p}^{\mu} \sigma_{p+1}^{\pm 1} ... \sigma_{q}^{\pm 1} \sigma_{p-1}^{\nu} \gamma_{i}''$$
(3.23)

where  $\lambda$ ,  $\mu$  and  $\nu$  are either +1 or -1, but if  $\lambda \neq \mu$  then  $\nu = \mu$ .

On the other hand,

$$\gamma_{i+1} = \gamma_i' \sigma_p^{\nu} \sigma_j^{\pm 1} \sigma_{j+1}^{\pm 1} ... \sigma_{p-2}^{\pm 1} \sigma_{p-1}^{\mu} \sigma_p^{\lambda} \sigma_{p+1}^{\pm 1} ... \sigma_q^{\pm 1} \gamma_i''$$
(3.24)

It is important that the sign of  $\lambda, \mu, \nu$  is observed carefully.

Therefore,

$$X_{i} = X_{i}' x_{j}^{\pm 1} x_{j+1}^{\pm 1} ... x_{p-2}^{\pm 1} x_{p-1}^{\lambda} x_{p}^{\lambda} x_{p+1}^{\pm 1} ... x_{q}^{\pm 1} x_{p-1}^{\nu} X_{i}''$$
(3.25)

and

$$X_{i+1} = X_i' x_p^{\nu} x_j^{\pm 1} x_{j+1}^{\pm 1} ... x_{p-2}^{\pm 1} x_{p-1}^{\mu} x_p^{\mu} x_{p+1}^{\pm 1} ... x_q^{\pm 1} X_i''$$
(3.26)

But in *G*, since  $x_p^{\nu} \rightleftharpoons x_j^{\pm 1},...,x_{p-2}^{\pm 1}$  and  $x_{p-1}^{\nu} \rightleftharpoons x_{p+1}^{\pm 1},...,x_q^{\pm 1}$ , we have that

$$X_{i} = X_{i}' x_{j}^{\pm 1} x_{j+1}^{\pm 1} ... x_{p-2}^{\pm 1} x_{p-1}^{\mu} x_{p}^{\mu} x_{p-1}^{\nu} x_{p+1}^{\pm 1} ... x_{q}^{\pm 1} X_{i}''$$
(3.27)

Similarly,

$$X_{i+1} \sim X_{i+1} = X_i' x_j^{\pm 1} x_{j+1}^{\pm 1} ... x_{p-2}^{\pm 1} x_p^{\nu} x_{p-1}^{\mu} x_p^{\lambda} x_{p+1}^{\pm 1} ... x_q^{\pm 1} X_i''$$
(3.28)

From the relations of G, we know that  $x_{p-1}^{\lambda}x_{p}^{\mu}x_{p-1}^{\nu}=x_{p}^{\nu}x_{p-1}^{\mu}x_{p}^{\lambda}$  where  $\lambda$ ,  $\mu$  and  $\nu$  are either +1 or -1, but if  $\lambda\neq\mu$  then  $\nu=\mu$ . Thus,  $X_{i}\underset{R}{\sim}X_{i+1}$ . Hence, we can say that  $W=X_{0}\sim X_{m+1}=W'$ .

Therefore,  $\phi$  is one-to-one, so the proof of theorem is complete.

Now we indicate homomorphism to extend our view with symmetric group (Kassel and Turaev [3]).

Given a homomorphism f from  $B_n$  to a group G , the elements  $\left\{s_i=f\left(\sigma_i\right)\right\}_{i=1,\dots,n-1}$  of G satisfy the braid relations

$$s_i s_j = s_j s_i \tag{3.29}$$

П

for all i, j = 1, ..., n-1 with  $|i-j| \ge 2$  , and

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} (3.30)$$

for i=1,...,n-2. Then, there is a converse relation which is given by the following lemma.

**Lemma 3.10** If  $s_1, s_2, ..., s_{n-1}$  are elements of a group satisfying the braid relations, then there is a unique group homomorphism  $f: B_n \to G$  such that  $s_i = f(\sigma_i)$  for all i = 1, ..., n-1.

**Proof** Let  $F_n$  be a free group generated by the set  $\left\{\sigma_1,\sigma_2,....,\sigma_{n-1}\right\}$ . There is a unique group homomorphism  $\overline{f}:F_n\to G$  such that  $\overline{f}(\sigma_i)=s_i$  for all i=1,...,n-1. This homomorphism induces group homomorphism  $f:B_n\to G$  provided  $\overline{f}(r^{-1}.r')=1$ , equivalently, provided  $\overline{f}(r^{-1})=\overline{f}(r')$  for all braid relations  $r^{-1}=r'$ . To verify the first braid relation, we have

$$\overline{f}(\sigma_i \sigma_j) = \overline{f}(\sigma_i) \overline{f}(\sigma_j) = s_i s_j = s_j s_i = \overline{f}(\sigma_j) \overline{f}(\sigma_i) = \overline{f}(\sigma_j \sigma_i).$$

To verify the second braid relation, we similarly have

$$\overline{f}(\sigma_i \sigma_{i+1} \sigma_i) = s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} = \overline{f}(\sigma_{i+1}) \overline{f}(\sigma_i) \overline{f}(\sigma_{i+1}) = \overline{f}(\sigma_{i+1} \sigma_i \sigma_{i+1}).$$

We introduce new relation between  $\mathfrak{G}_n$  which is symmetric group, and  $B_n$  . This relation provides us how to imagine the generators  $\sigma_i$  .

#### 3.2.1 Projection to the symmetric group

We apply the previous lemma to the symmetric group  $G = \mathfrak{G}_n$ . An element of  $\mathfrak{G}_n$  is a permutation of the set  $\{1,2,...,n\}$ . Consider the simple transpositionswhere  $s_i$  permutes i and i+1 and leaves allthe other elements of  $\{1,2,...,n\}$  fixed. It is an easy

exercise to verify that the simple transpositions satisfy the braid relations. By Lemma 2.9, there is a unique group homomorphism  $\pi: B_n \to \mathbb{G}_n$  such that  $s_i = \pi(\sigma_i)$  for all i=1,...,n-1. This homomorphism is surjective because, as is well known, the simple transpositions generate  $\mathbb{G}_n$ .

### 3.2.2Definition of pure braids

The kernel of the natural projection  $\pi: B_n \to \mathfrak{S}_n$  is called the pure braid group and is denoted by  $P_n$ :

$$P_n = Ker(\pi : B_n \to \mathfrak{G}_n).$$

Pure braid group has some generators and relations. Before we indicate these, in the next section, we try to find a practical method that allow us to determine if a n-braid is equivalent to another n-braid or not. This sort of determination problem is called the word problem for group, in this case the braid group. We use the pure braid to solve problem.

#### 3.3 Word Problem

We mentioned the notion of equivalence of n-braids in first chapter. Now, we introduce practical method to determine that whether two n-braids are equivalent or not [4].

#### 3.3.1 Word Problem For The Braid Group

**Definition 3.11 (Word problem forthe braid group):** Given any two braids,  $\beta_1$  and  $\beta_2$  say, find a method that will allow us to decide if or not  $\beta_1 = \beta_2$ .

It easy to see that we can modify this to say, find a method that will allow us to decide if or not  $\beta = 1$  (since if  $\beta_1 = \beta_2$  then  $\beta_1 \beta_2^{-1} = 1$ ).

For this aim of this section is to introduce the various steps that make up the algeorithm.

### (I) First Step- Is the braid in the question a pure braid or not?

The reason why we ask this question is because the trivial braid 1 is a pure braid. Therefore, if we can show that a given n-braid  $\beta$  is not pure braid then, immediately, we can say that  $\beta$  cannot be 1. Hence, the algorithm terminates.

So, how can we determine whether or not  $\beta$  is pure braid? The answer is quite simple, all we need to consider is its braid permutation,  $\pi(\beta)(\in \mathbb{G}_n)$ , defined above. For if  $\pi(\beta)=(1)$  then  $\beta$  is a pure braid, however if  $\pi(\beta)\neq (1)$  then  $\beta$  is not a pure braid.

On determining the braid permutation, if  $\beta$  is a pure braid then we need to proceed to step (II).

## (II) Second Step – The braid in question is a pure braid.

Since  $\beta$  is a pure n-braid, from the definition, we know each string of the braid,  $d_i$  for i=1,2,...,n, starts at the point  $A_i$  and terminates at  $B_i$ . So, let us remove last string,  $d_n$ , and replace it by a straight line joining  $A_n$  to  $B_n$ , Figure 3.21(b), and denote the resultant n-braid by  $\gamma$ .



Figure 3.15 An example of construction of combed braid

Now, we may form another n-braid  $\alpha$  by taking the product of  $\beta$  and  $\gamma^{-1}$ , i.e,  $\alpha=\beta\gamma^{-1}$ . By construction, if we remove the final string of  $\alpha$  then the resultant (n-1)-braid,  $\alpha$  say, is equivalent to trivial braid. Hence, we may think of  $\alpha$  as just n-1 parallel lines. Therefore,  $\alpha$ , itself, may be thought of as a n-braid in which the first n-1

strings are parallel and the last string links with these parallel lines. Such a braid is said to be a combed braid, Figure 3.15(c).

Let us set  $\alpha=\alpha_1$  and  $\gamma=\gamma_1$ , so  $\beta=\alpha_1\gamma_1$ , and let us shift our attention to  $\gamma_1$ . Since the final string of  $\gamma_1$  is a straight line, to apply the above process to  $\gamma_1$  we must start with the (n-1)th string. Let us denote by  $\gamma_2$  the n-braid obtained from  $\gamma_1$  by removing the (n-1)th string and replacing it by straight line. Working through the above process, we shall obtain a combed braid  $\alpha_2$ , but in this case the first (n-2) strings and the nth string are parallel and the (n-1)th string links with only the first (n-2) parallel strings. Thus, the process yields  $\gamma_1=\alpha_2\gamma_2$ .

By repeating the above process, finally, we shall arrive at a decomposition of eta in the form

$$\beta = \alpha_1 \alpha_2 \dots \alpha_{n-1} \tag{3.31}$$

where each n-braid  $\alpha_i$  is a combined braid, and in  $\alpha_{n-1}$  every string except the second string is a straight line and second string links only with the first string.

**Proposition3.12** Let  $\beta$  be a pure n-braid. Then,  $\beta$  is the trivial braid if and only if each of the  $\alpha_i$  in the decomposition given in (3.31) is trivial briad.

**Proof** If each  $\alpha_i$  is the trivial braid then clearly  $\beta$  is also the trivial braid.

Conversely, let us suppose that  $\beta$  is the trivial braid. In addition, let  $\xi_i$  be the (n-i)-braid obtained from  $\beta$  by removing its last i strings. By construction,  $\xi_0$  is  $\beta$ ,  $\xi_{n-1}$  is the 1-braid and  $\xi_n$  is empty. Obviously, since  $\beta$  is the trivial braid, each of the  $\xi_i$ , for i=0,1,2,...,n-1, is also trivial braid.

Similarly, let us define  $\alpha_{j,i}$  as the (n-i)-braid obtained from  $\alpha_j$  by removing the last i strings. Now, by construction,

$$\beta = \xi_{0} = \alpha_{1}\alpha_{2}...\alpha_{n-1},$$

$$\xi_{1} = \alpha_{1,1}\alpha_{2,1}...\alpha_{n-1,1},$$

$$\xi_{2} = \alpha_{1,2}\alpha_{2,2}...\alpha_{n-1,2},$$

$$\vdots$$

$$\xi_{n-2} = \alpha_{1,n-2}\alpha_{2,n-2}...\alpha_{n-1,n-2},$$
(3.32)

where  $\alpha_{1,1}$  is the trivial (n-1)-braid,  $\alpha_{1,2}$ ,  $\alpha_{2,2}$  are trivial (n-2)-braids, and, in general,  $\alpha_{1,i},\alpha_{2,i},...,\alpha_{i,i}$ , for i=1,2,...,n-2, are all trivial (n-i)-braids.

Now ,  $\alpha_{1,n-2},\alpha_{2,n-1},...,\alpha_{n-2,n-2}$  are all trivial 2-braids and  $\alpha_{n-1}$  is n-braid obtained from 2-braid  $\alpha_{n-1,n-2}$  by adding n-2 parallel straight line strings. Therefore, the triviality of  $\xi_{n-2}=\alpha_{n-1,n-2} \text{ implies that } \alpha_{n-1} \text{ is the trivial n-braid. Hence,}$ 

$$\beta = \alpha_1 \alpha_2 ... \alpha_{n-2}$$
.

By the very same reasoning as above, we can say that  $\xi_{n-3}=\alpha_{n-2,n-3}$ , and hence  $\alpha_{n-2}$  is the trivial braid. So, continuing in this way, we will eventually show that each  $\alpha_i$  is indeed the trivial braid.

# (III) Third Step- Determine if or not each $\alpha_i$ is the trivial braid?

It is well known that the word problem is solvable for free group which is the following theorem. So, if we can show that each  $\alpha_i$  is an element of a free group, we can determine if or not each  $\alpha_i$  is trivial braid. However, the arguments to prove contains some terms and notations, and we postpone these to the next section.

Clearly, this third step is the final step of the algorithm. Hence, the steps allow us to completely solve the Word problem for  $\mathbf{B}_n$ .

**Theorem 3.13** The Word problem for a group is solvable.

**Proof** Let F be a free group of rank n generated by  $x_1, x_2, ..., x_n$ . An element

$$g = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_m}^{\varepsilon_m}$$
 (3.33)

of F is equal empty word, 1, if and only if we can eleminate each  $x_{i_j}^{\epsilon_j}$  by a serious of  $T_1$  (inserting) and  $T_2$  (deleting) transformations. That is to say, we can only cancel products within g of the form  $x_i x_i^{-1}$  and  $x_i^{-1} x_i$ . If we cannot such cancelations, then g is never equal to the empty word.

Therefore, to solve word problem for an arbitrary word, g, of a free group, F, we need only check if  $x_i x_i^{-1}$  or  $x_i^{-1} x_i$  exist within g. Such a straight-forward method can be deemed reasonably practical, so the word problem may be said to be solvable for a free group.

Now, we give an example to understand this steps.

### Example 3.14 Let us consider the pure 4-braid

$$\beta = \sigma_3 \sigma_1 \sigma_2^{-2} \sigma_3 \sigma_2 \sigma_1 \sigma_3 \sigma_1 \sigma_2^{-1} \sigma_3 \sigma_1^{-1} \sigma_2 \sigma_1 \sigma_2^{-1} \sigma_3$$
 (3.34)

Already shown in Figure 3.15(a). From Figure 3.15(a) and (b) , it is easy to see that  $\gamma = \sigma_1 \sigma_2 \sigma_1^2 \sigma_2 \sigma_1$ . While, in Figure 3.16 we show by a sequence of diagrams that  $\beta \gamma^{-1}$  is combined braid in Figure 3.15(c), and so

$$\alpha_{1} = \beta \gamma^{-1} = \left(\sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-2} \sigma_{2}^{-1} \sigma_{3}^{-1}\right) \left(\sigma_{3}^{-1} \sigma_{2}^{-2} \sigma_{3}\right) \left(\sigma_{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{3}\right)$$
(3.35)

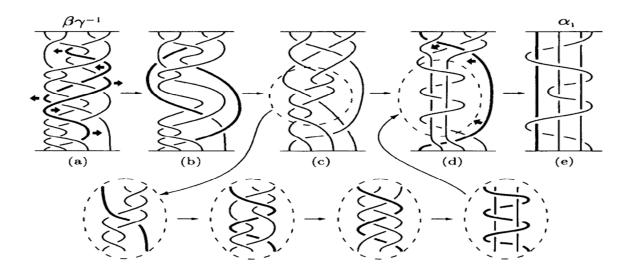


Figure 3.16 An example of process of word problem's solution

Now, let us turn our attention to  $\gamma$ . By replacing the third string of  $\gamma$  by a straight line, we obtain  $\gamma_2 = \sigma_1^2$ . Therefore,

$$\alpha_{2} = \gamma \gamma_{2}^{-1} = \sigma_{1} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{1} \sigma_{1}^{-2} = \overrightarrow{\sigma_{1} \sigma_{2} \sigma_{1}} \sigma_{1} \sigma_{2} \sigma_{1}^{-1} = \sigma_{2} \sigma_{1} \overrightarrow{\sigma_{2} \sigma_{1} \sigma_{2}} \sigma_{1}^{-1}$$

$$= \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1}^{-1} = \sigma_{2} \sigma_{1}^{2} \sigma_{2}$$
(3.36)

and finally  $\, \alpha_{\!\scriptscriptstyle 3} = \! \gamma_{\!\scriptscriptstyle 2} \, .$  Hence, wemay write  $\, eta \,$  as, see also Figure 3.17,

$$\beta = \alpha_1 \alpha_2 \alpha_3 \tag{3.37}$$

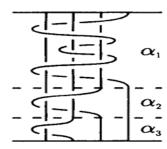


Figure 3.17 The conclusion of word problem for the example

### 3.3.2 A Solution of Word Problem

Our aim in this section to show that combed braids are elements of a free group. Then, since the word problem is solvable for a free group, this allow us to solve the word problem for  $B_n$ . To this end, let us define  $A_n$  to be set of those combed braids for which the removal of last string results in the trivial (n-1)-braid.

Now, we introduce some technical information about  $\mathbf{A}_n$ .

**Proposition 3.15** The group  $\mathbf{A}_n$  is generated by the following (n-1) elements, see also Figure 3.18,

$$a_{1} = (\sigma_{n-1}\sigma_{n-2}...\sigma_{2})\sigma_{1}^{2}(\sigma_{2}^{-1}...\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}),$$

$$a_{2} = (\sigma_{n-1}\sigma_{n-2}...\sigma_{3})\sigma_{2}^{2}(\sigma_{3}^{-1}...\sigma_{n-2}^{-1}\sigma_{n-1}^{-1}),$$

$$\vdots$$

$$a_{n-2} = \sigma_{n-1}\sigma_{n-2}^{2}\sigma_{n-1}^{-1}$$

$$a_{n-1} = \sigma_{n-1}^{2}$$

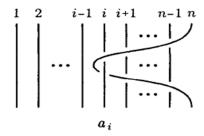


Figure 3.18 A combed braid

**Proof** Let  $\beta$  be an element of  $\mathbf{A}_n$ . If we assume that  $\beta$  is not the trivial n-braid, then the nth string  $d_n$  of  $\beta$  has k, say, points  $p_1, p_2, ..., p_k$  with a vertical tangent on the left-hand side of the curve  $d_n$  and k-1 points  $q_1, q_2, ..., q_{k-1}$  with a vertical tangent on the right-side, see Figure 3.19(a).

Now keeping the points  $p_1, p_2, ..., p_k$  fixed, pull the piece of the string at each of the points  $q_i$  to the right, so that it clears all the strings on the right-hanf side, see Figure 3.19(b). For clarity, we shall denote by  $q_i$ , respectively, the points with a vertical tangent on the right-hand side on the new string.

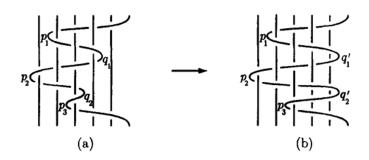


Figure 3.19 The process of delta moves to obtain new braid

What the above process allows us to do is to deform eta into the following form

$$\beta = \beta_1 \beta_2 \dots \beta_k \tag{3.38}$$

in which for some i each  $\beta_j$  is of the form

$$\beta_{j} = \left(\sigma_{n-1}^{\varepsilon_{n-1}}\sigma_{n-2}^{\varepsilon_{n-2}}...\sigma_{i+1}^{\varepsilon_{i+1}}\right)\sigma_{1}^{2\varepsilon_{i}}\left(\sigma_{i+1}^{\varepsilon_{i+1}}...\sigma_{n-2}^{\varepsilon_{n-2}}\sigma_{n-1}^{\varepsilon_{n-1}}\right)$$
(3.39)

Where, for  $1 \le i \le n-1$  and l = i+1,...,n-1,  $\varepsilon_l$ ,  $\varepsilon_l$ ,  $\varepsilon_i$  are either +1 or -1.

Therefore, to prove the proposition it sufficies to show that each  $\beta_j$  is a product of  $a_i$  and their inverses. A diagrammatic proof is given in Figure 3.20(a) and (b). In Figure 3.20(a), firstly, we choose four points a, b, c, d that lie close to each undercrossing point from q to p and from p to q. Having established these 4 points, we pull them to the right side, Figure 3.20(b). Then, it can be seen that  $\beta$  is the product of  $a_i$  and  $a_i^{-1}$ .

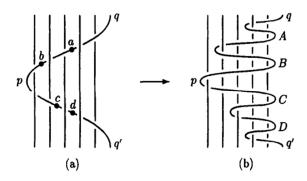


Figure 3.20 The process of delta moves to obtain new braid

Actually, we know that  $a_1, a_2, ..., a_{n-1}$  generate  $\mathbf{A}_n$  from proposition 3.15. As we shall see, the exact nature of these generators relies on the use of the Reidemeister-Schreier method [5].

**Proposition 3.16** The elements  $a_1, a_2, ..., a_{n-1}$  defined as in Proposition 3.15, freely generate the group  $\mathbf{A}_n$ . In other words,  $\mathbf{A}_n$  is a free group freely generated by  $a_1, a_2, ..., a_{n-1}$ .

The remaining part of this section is devoted to the proof of this proposition.

Firstly, let us consider a subset,  $\mathbf{H}_n$  say, of  $\mathbf{B}_n$  that consists of all n-braids  $\boldsymbol{\beta}$  with the property  $\pi(\boldsymbol{\beta})(n) = n$ , i.e, the braid permutation,  $\pi(\boldsymbol{\beta})$  fixes n. This group obviously is a subgroup of  $\mathbf{B}_n$ . Since  $\boldsymbol{\beta}_1$  and  $\boldsymbol{\beta}_2$  belong to the same right coset if and only if  $\boldsymbol{\beta}_1\boldsymbol{\beta}_2^{-1}\in\mathbf{H}_n$ , and so  $\pi(\boldsymbol{\beta}_1)(n)=\pi(\boldsymbol{\beta}_2)(n)$ , each right coset  $\mathbf{H}_n\boldsymbol{\beta}$  of  $\mathbf{H}_n$  in  $\mathbf{B}_n$  consists of n-braids  $\boldsymbol{\beta}$  with  $\pi(\boldsymbol{\beta})(n)=k$  for some  $1\leq k\leq n$ . Therefore, there are exactly n distinct right cosets of  $\mathbf{H}_n$  in  $\mathbf{B}_n$ , and hence,

$$\left[\mathbf{B}_{n}:\mathbf{H}_{n}\right]=n\tag{3.40}$$

In particular, each right coset is represented by

$$M_{i} = \sigma_{n-1}\sigma_{n-2}...\sigma_{n-i+1}$$
 (3.41)

for i = 1, 2, ..., n, and  $M_1 = 1$ .

**Definition 3.17** Let G be a group given by  $G = \langle x_1, x_2, ..., x_n | P, R, Q, ... \rangle$ , where each  $x_i$  is generator of G and P,R,Q,... are relators for G. And let  $M_i$  be right coset representative for G, in addition, we may write

$$M_i = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \dots x_{i_k}^{\varepsilon_k} \tag{3.42}$$

where  $1 \leq i_1, i_2, ..., i_k \leq n$  and  $\mathcal{E}_l = \pm$  (for our case) and  $M_1 = 1$ . The set  $M = \{M_1, M_2, ...\}$  is said to be Schreier system if for each  $M_i$  in (2.42) the following k-1 consecutive, initial parts of  $M_i$ ,

$$x_{i_1}^{\varepsilon_1}, x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2}, x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} x_{i_3}^{\varepsilon_3}, ..., x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} ... x_{i_{k-1}}^{\varepsilon_{k-1}}$$
(3.43)

also belong to M .

From definition 3.15, it is clear that  $M = \{M_1, M_2, ..., M_n\}$  forms a Schreier system of right coset representatives. Now, using this system, we can compute a presentation for

 $\mathbf{H}_n$ . Since this process is straight-forward application of the Reidemeister-Schreier method.

First, we shall determine the generators of  $\mathbf{H}_n$ .

# **Lemma 3.18** The group $\mathbf{H}_n$ is generated by

$$\sigma_1, \sigma_2, \dots, \sigma_{n-2} \tag{3.44}$$

and for j = 1, 2, ..., n-1 by

$$a_{j} = (\sigma_{n-1}\sigma_{n-2}...\sigma_{j+1})\sigma_{j}^{2}(\sigma_{j+1}^{-1}...\sigma_{n-2}^{-1}\sigma_{n-1}^{-1})$$
(3.45)

Having established the nature of the generators for  $\mathbf{H}_n$ , the next step is to find the set of defining relations. Once we apply Reidemeister-Schreier method to obtain relations with M .

The first type of relations come from

$$\tau \left( M_i \sigma_k \sigma_l \sigma_k^{-1} \sigma_l^{-1} M_i^{-1} \right) = 1 \tag{3.46}$$

for i=1,2,...,n and k,l=1,2,...,n-1 with  $|k-l|\geq 2$  and  $\tau$  is rewriting function (for the Reidemeister-Schreier method). But,

$$\tau \left( M_{i} \sigma_{k} \sigma_{l} \sigma_{k}^{-1} \sigma_{l}^{-1} M_{i}^{-1} \right) = M_{i} \sigma_{k} \overline{M_{i} \sigma_{k}}^{-1} \times \overline{M_{i} \sigma_{k}} \sigma_{l} \overline{M_{i} \sigma_{k}} \sigma_{l} \overline{M_{i} \sigma_{k} \sigma_{l}}^{-1} \times \overline{M_{i} \sigma_{k} \sigma_{l} \sigma_{l}^{-1}}^{-1} \times \overline{M_{i} \sigma_{k} \sigma_{l} \sigma_{k}^{-1} \sigma_{l}^{-1}} \overline{M_{i} \sigma_{k} \sigma_{l} \sigma_{k}^{-1} \sigma_{l}^{-1}}^{-1} \times \overline{M_{i} \sigma_{k} \sigma_{l} \sigma_{k}^{-1} \sigma_{l}^{-1}}^{-1} \right) (3.47)$$

Since  $\,M\,$  is a Schreier system, the remaining factors are all the identity. The latter rearrangement allows us to determine relations.

#### **Claim 3.19**

$$\overline{M_i \sigma_k} = \begin{cases}
M_i & \text{if } n - i > k \text{ or } n - i < k - 1 \\
M_i \sigma_k & \text{if } n - i = k \\
M_i \sigma_k^{-1} & \text{if } n - i = k - 1
\end{cases}$$
(3.48)

where  $M_i = \sigma_{n-1}\sigma_{n-2}...\sigma_{n-i+1}$  and i, k = 1, 2, ..., n-1.

**Proof:**If we look the definition of  $M_i$  and use relation when  $|k-i| \ge 2$  , then we obtain the map.

From the relation (3.46) and Claim 3.17, we derived these relations of  $\mathbf{H}_n$ :

**(1)** 
$$\sigma_i \sigma_k = \sigma_k \sigma_i$$
,  $|k - i| \ge 2$ ,  $i, k = 1, 2, ..., n - 2$  (3.49)

(2) 
$$\sigma_i a_k \sigma_i^{-1} = a_k$$
,  $k \neq i$ ,  $i+1$  (3.50)

The second and final of relations can be determined from

$$\tau \left( M_i \sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} M_i^{-1} \right) = 1$$
 (3.51)

for i = 1, 2, ..., n and j = 1, 2, ..., n-2.

From the relation (3.51) and claim 3.17, we derived these relations of  $\mathbf{H}_n$ :

(3) 
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
,  $i = 1, 2, ..., n-3$ , (3.52)

**(4)** 
$$\sigma_i a_i \sigma_i^{-1} = a_{i+1}$$
, (3.53)

(5) 
$$\sigma_i a_{i+1} \sigma_i^{-1} = a_{i+1}^{-1} a_i a_{i+1}$$
. (3.54)

Now, we found a presentation for  $\mathbf{H}_n$  with help of Reidemeister-Schreier method. We shall indicate this presentation in the following proposition:

**Proposition 3.20** The group  $H_n$  has a presentation of the form

$$\langle \sigma_{1}, \sigma_{2}, ...., \sigma_{n-2}, a_{1}, a_{2}, ..., a_{n-1} | \sigma_{i}\sigma_{k} = \sigma_{k}\sigma_{i}, \quad |k-i| \geq 2, \quad i, k = 1, 2, ..., n-2$$

$$\sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} \qquad \qquad i = 1, 2, ..., n-3$$

$$\sigma_{i}a_{k}\sigma_{i}^{-1} = a_{k} \quad k \neq i, \quad i+1$$

$$\sigma_{i}a_{i}\sigma_{i}^{-1} = a_{i+1},$$

$$\sigma_{i}a_{i+1}\sigma_{i}^{-1} = a_{i+1}^{-1} a_{i}a_{i+1} \rangle.$$

Now, let  ${\bf F}$  be a free group generated by the n-1 elements  $u_1,u_2,...,u_{n-1}$ . The reason for the the introduction  ${\bf F}$  is that we wish to establish a homomorphism from  ${\bf H}_n$  to  $Aut\,({\bf F})$ , the group of aumorphism of  ${\bf F}$ . Once we have defined the appropriate mapping, we shall use it to show that indeed  ${\bf A}_n$  is a free group generated by  $a_1,a_2,...,a_{n-1}$ .

So, let us define a mapping  $\phi: \mathbf{H}_n \to Aut(\mathbf{F})$  by, k = 1, 2, ..., n-2,

$$\phi(\sigma_{k}): \begin{cases} u_{i} \to u_{i} & \text{if } i \neq k, \ k+1, \ 1 \leq i \leq n-1 \\ u_{k} \to u_{k+1} \\ u_{k+1} \to u_{k+1}^{-1} u_{k} u_{k+1} \end{cases}$$
3.55)

and for j = 1, 2, ..., n-1 by

$$\phi(a_j): u_i \to u_j^{-1} u_i u_j$$
(3.56)

where i = 1, 2, ..., n-1.

**Lemma 3.21** The mapping  $\phi$  defined above is a homomorphism from  $\mathbf{H}_{_{n}}$  to  $\mathit{Aut}$  (F) .

**Proof** For the proof of lemma, we shall show the computation for the one of relations:

$$\sigma_i a_i \sigma_i^{-1} = a_{i+1} \tag{3.57}$$

$$\phi(\sigma_i a_i \sigma_i^{-1}) : u_j \xrightarrow{\sigma_i^{-1}} u_j \xrightarrow{a_i} u_i^{-1} u_j u_i \xrightarrow{\sigma_i} u_{i+1}^{-1} u_j u_{i+1}, 
\phi(a_{i+1}) : u_j \to u_{i+1}^{-1} u_j u_{i+1}.$$

$$\phi(\sigma_{i}a_{i}\sigma_{i}^{-1}): u_{i} \xrightarrow{\sigma_{i}^{-1}} u_{i+1}u_{i} \xrightarrow{a_{i}} u_{i}u_{i}^{-1}u_{i+1}u_{i}u_{i}^{-1}u_{i+1}u_{i}u_{i}^{-1} = u_{i+1} \xrightarrow{\sigma_{i}} u_{i+1}u_{i}u_{i+1}, 
\phi(a_{i+1}): u_{j} \to u_{i+1}^{-1}u_{i}u_{i+1}.$$

$$\phi(\sigma_i a_i \sigma_i^{-1}) : u_{i+1} \xrightarrow{\sigma_i^{-1}} u_i \xrightarrow{a_i} u_i \xrightarrow{\sigma_i} u_{i+1}, 
\phi(a_{i+1}) : u_{i+1} \to u_{i+1}.$$

We are now at the final stage of the proof of Proposotion 3.14. All the information is at hand to show that  $a_1,a_2,...,a_{n-1}$  are free generators. If n=2, then  $a_1$  generates a free group of rank 1, since  $a_1^k \neq 1$  for any  $k \neq 0$ . So we assume that  $n \geq 3$ .

Suppose that  $a_1,a_2,...,a_{n-1}$  are not free generators for  $\mathbf{H}_n$  . Then, there exist a non-trivial relation in  $\mathbf{H}_n$  in terms of  $a_1,a_2,...,a_{n-1}$ , i.e.,

$$W(a_1, a_2, ..., a_{n-1}) = 1$$
 (3.58)

If we apply the above homomorphism  $\phi$  to W, we obtain that

$$\phi(W)(a_1, a_2, ..., a_{n-1}) = W(\phi(a_1), \phi(a_2), ..., \phi(a_{n-1})) = id_F$$
 (3.59)

Suppose that

$$W(a_1, a_2, ..., a_{n-1}) = a_1^{\varepsilon_1} a_2^{\varepsilon_2} ... a_{n-1}^{\varepsilon_{n-1}}$$
(3.60)

Then for j = 1, 2, ..., n-1,

$$\phi(W)(u_{j}) = (u_{i_{1}}^{-\varepsilon_{1}} ... u_{i_{k-1}}^{-\varepsilon_{k-1}} u_{i_{k}}^{-\varepsilon_{k}}) u_{j} (u_{i_{1}}^{\varepsilon_{1}} ... u_{i_{k-1}}^{\varepsilon_{k-1}} u_{i_{k}}^{\varepsilon_{k}})$$
(3.61)

However, since  $u_1, u_2, ..., u_{n-1}$  are free generators of **F**,  $\phi(W) = id_F$  implies

$$u_{j} = \left(u_{i_{1}}^{-\varepsilon_{1}} ... u_{i_{k-1}}^{-\varepsilon_{k-1}} u_{i_{k}}^{-\varepsilon_{k}}\right) u_{j} \left(u_{i_{1}}^{\varepsilon_{1}} ... u_{i_{k-1}}^{\varepsilon_{k-1}} u_{i_{k}}^{\varepsilon_{k}}\right)$$
(3.62)

for j = 1, 2, ..., n-1.

Let us denote  $u_{i_k}^{\varepsilon_k}u_{i_{k-1}}^{\varepsilon_{k-1}}...u_{i_1}^{\varepsilon_1}$  by g, then from the above relation, we see that g commutes with  $u_j$  for each j=1,2,...,n-1. Hence there exist an integer  $\lambda_j$  such that  $g=u_j^{\lambda_j}$ , for j=1,2,...,n-1.

However, the above implies that if  $j\neq l$  then  $u_j^{\lambda_j}=u_l^{\lambda_l}$ . But  $u_1,u_2,...,u_{n-1}$  are free generators of **F**. Hence,  $\lambda_j=\lambda_l=0$ . Therefore, g, itself, must be 1. So, by a finite number of T1 and/or T2 operations, g collapses down to the empty word. Consequently, the relation W=1 must be trivial relation. However, this contradicts our original assumption that there exists a non-trivial relation in  $\mathbf{H}_n$  in terms of  $a_1,a_2,...,a_{n-1}$ . Hence,  $a_1,a_2,...,a_{n-1}$  form a set of free generators. So, we have finally reached the conclusion of the proof of Proposition 3.16.

With the completion of the above proof, we are finally in a position to answer in a methodical fashion if or not a given n-braid  $\beta$  is a trivial n-braid.

# 3.3.3 A Presentation For The Pure n-braid Group

We know that the set of all pure n-braids forms a normal subgroup  $P_n$  of  $B_n$ . Since  $(P_n) = (\ker \pi)$  is the normal subgroup of  $B_n$ .

**Claim 3.22** The quotient group  $B_{\scriptscriptstyle n}/P_{\scriptscriptstyle n}$  is isomorfic to the symmetric group  $\mathfrak{G}_{\scriptscriptstyle n}$  .

**Proof** We know that there is a homomorhism  $\pi: B_n \to \mathfrak{G}_n$ . And  $(P_n) = (\ker \pi)$ . So if we can use first isomorphism theorem, we can easily prove the claim. Because this claim is the application of this theorem. According to this theorem, there is a isomorphism such that  $\pi': B_n/P_n \to \mathfrak{G}_n$ .

Therefore, it is possible to find a Schreier system of right cosets [5] representatives of  $P_n$  in  $\mathbf{B}_n$ . In this section, we use Reidemeister- Schreier method for  $P_n$ . But, we use induction which based on the presentation  $\mathbf{H}_n$  to procedure a presentation of  $P_n$ .

For this purpose, we shall recall,  $\mathbf{H}_n$  is the set of all n-braids  $\boldsymbol{\beta}$  with the property  $\pi(\boldsymbol{\beta}) = n$ , that is, those that fix n. Let  $\mathbf{H}_{n-1}$  be subset of  $\mathbf{H}_n$  consisting of all n-braids  $\boldsymbol{\beta}$  with the property  $\pi(\boldsymbol{\beta})(n-1) = n-1$ . Hence every element of  $\mathbf{H}_{n-1}$  fixes both n-1 and n. It is not too hard to see that  $\mathbf{H}_{n-1}$  is a subgroup of  $\mathbf{H}_n$ . We may define a subgroup  $\mathbf{H}_k$ , for k=1,2,...,n, of  $\mathbf{H}_{k+1}$  that consists of all n-braids that fix k. Therefore,  $\mathbf{H}_k$  consists of all n-braids  $\boldsymbol{\beta}$  with  $\pi(\boldsymbol{\beta})(l) = l$  for l=k,k+1,...,n. It is easy to see that we have the following sequence of subgroups,

$$\mathbf{B}_{n} \supset \mathbf{H}_{n} \supset \mathbf{H}_{n-1} \supset \dots \supset \mathbf{H}_{2} \supset \mathbf{H}_{1} \tag{3.63}$$

Furthermore,  $[\mathbf{H}_{k+1}:\mathbf{H}_k]=k$  for k=1,2,...,n-1 and  $\mathbf{H}_1(=\mathbf{H}_2)$  is the pure n-braid group  $P_n$ .

By choosing a suitable Schreier system, our aim is to use the presentation of  $\mathbf{H}_n$  as the first step in an inductive process that yields a presentation of  $\mathbf{H}_k$ , for k=n-1,n-2,...,2. In fact, a Schreier system of right coset representatives of  $\mathbf{H}_k$  in  $\mathbf{H}_{k+1}$  for k=n-1,n-2,...,2 is given by  $\left\{N_i^{(k)},i=1,2,...,k\right\}$ , with

$$N_i^{(k)} = \sigma_{k-1}\sigma_{k-2}...\sigma_i \text{ and } N_k^{(k)} = 1$$
 (3.64)

We have shown that  $\mathbf{H}_n$  is generated by  $\sigma_1, \sigma_2, ..., \sigma_{n-2}$  and the pure n-braids  $a_1, a_2, ..., a_{n-1}$ . More generally, we define a pure n-braid  $A_{i,j}$ , for  $1 \le i < j \le n$ , as

$$A_{i,j} = \left(\sigma_{j-1}\sigma_{j-2}...\sigma_{i+1}\right)\sigma_i^2\left(\sigma_{i+1}^{-1}...\sigma_{j-2}^{-1}\sigma_{j-1}^{-1}\right)$$
(3.65)

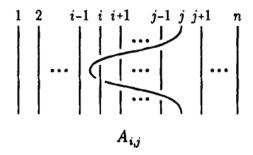


Figure 3.21 A generator of pure braid group

By convention, we assume that  $A_{j,j}=1$  . In terms of notation,  $a_i$  is just  $A_{i,n}$  .

We can use  $\left\{A_{i,n}\right\}$  to obtain a presentation for  $\mathbf{H}_{n-1}$ . In fact,  $\mathbf{H}_{n-1}$  is generated by

$$g(N_i^{(n-1)}, \sigma_j) = N_i^{(n-1)} \sigma_j \overline{N_i^{(n-1)} \sigma_j}^{-1}$$
 (3.66)

and

$$g(N_i^{(n-1)}, A_{k,n}) = N_i^{(n-1)} A_{k,n} \overline{N_i^{(n-1)} A_{k,n}}^{-1}$$
(3.67)

for i, k = 1, 2, ..., n-1 and j = 1, 2, ..., n-2.

To obtain more explicit forms of these generators of these generators, we need the following lemma.

**Lemma 3.23** With the  $N_i$  as above,

$$\overline{N_{i}^{(n-1)}\sigma_{j}} = \overline{\sigma_{n-2}\sigma_{n-3}...\sigma_{i}\sigma_{j}}$$
(1)
$$= \begin{cases}
\sigma_{n-2}\sigma_{n-3}...\sigma_{i} & \text{if } j < i-1 \text{ or } i < j \\
\sigma_{n-2}\sigma_{n-3}...\sigma_{i}\sigma_{i-1} & \text{if } i-1=j \\
\sigma_{n-2}\sigma_{n-3}...\sigma_{i+1} & \text{if } i=j
\end{cases}$$
(3.68)

(2) 
$$\overline{N_i^{(n-1)}A_{k,n}} = N_i^{(n-1)}$$
 (3.69)

**Proof** Let  $\beta = N_i^{(n-1)} \sigma_j$ , and let us compute  $\pi(\beta)(n-1)$ . If j < i-1 or i < j then  $\pi(\beta)(n-1) = i$ . Hence,

$$\overline{N_i^{(n-1)}\sigma_i} = N_i^{(n-1)} \tag{3.70}$$

The other case in (1), if we use same method which is given for first case, we can easily obtain the other results.

Turning now to (2), since  $A_{k,n}$  is a pure n-braid, we have

$$\pi \left( N_i^{(n-1)} A_{j,n} \right) (n-1) = \pi \left( N_i^{(n-1)} \right) (n-1) = i$$
 (3.71)

Now, (2) is a direct consequence of above equation.

Therefore, for j = 1, 2, ..., n-2 and i = 1, 2, ..., n-1, we obtain that

$$g(N_{i}^{(n-1)}, \sigma_{j}) = \begin{cases} \sigma_{j} & \text{if } j < i-1 \\ \sigma_{j-1} & \text{if } i < j \\ 1 & \text{if } i-1=j \\ A_{j,n-1} & \text{if } i=j \end{cases}$$
(3.72)

Further, for i, j = 1, 2, ..., n-1,

$$g(N_{i}^{(n-1)}A_{j,n}) = \begin{cases} A_{j,n} & \text{if } j < i \\ A_{n-1,n} & \text{if } i = j \\ A_{n-1,n}^{-1}A_{j-1,n}A_{n-1,n} & \text{if } i < j \end{cases}$$
(3.73)

Therefore,  $\mathbf{H}_{n-1}$  is generated by  $\sigma_1, \sigma_2, ..., \sigma_{n-3}$  and  $A_{\mathbf{l}, n-1}, ..., A_{n-2, n-1}, A_{\mathbf{l}, n}, A_{2, n}, ..., A_{n-1, n}$ .

The next step is to determine the defining relaitons for  $\mathbf{H}_{n-1}$ . In fact, there are two types of defining relations for  $\mathbf{H}_n$ .

(I) 
$$\begin{cases} (1) \ \sigma_{i}\sigma_{k} = \sigma_{k}\sigma_{i} & \text{for } i, k = 1, 2, ..., n-2 \\ (2) \ \sigma_{i}\sigma_{i+1}\sigma_{i} = \sigma_{i+1}\sigma_{i}\sigma_{i+1} & \text{for } i = 1, 2, ..., n-3 \end{cases}$$
(3.74)

(II) 
$$\begin{cases} (1) \ \sigma_{i} A_{k,n} \sigma_{i}^{-1} = A_{k,n} & \text{for } i = 1, 2, ..., n-2, \ k = 1, 2, ..., n-1, \ k \neq i, i+1 \\ (2) \ \sigma_{i} A_{i,n} \sigma_{i}^{-1} = A_{i+1,n} & \text{for } i = 1, 2, ..., n-2 \\ (3) \ \sigma_{i} A_{i+1,n} \sigma_{i}^{-1} = A_{i+1,n}^{-1} A_{i,n} A_{i+1,n} & \text{for } i = 1, 2, ..., n-2 \end{cases}$$

$$(3.75)$$

Now, in order to find some information on the relations for  $\mathbf{H}_{n-1}$ , we need to compute  $\tau \Big( N_i^{(n-1)} R \Big( N_i^{(n-1)} \Big)^{-1} \Big) \text{ with } 1 \leq i \leq n-1 \text{ for various relations } R \text{ in } (I) \text{ and } (II).$ 

**Proposition 3.24** For  $1 \le j < k \le n-2$  and  $\left|j-k\right| \ge 2$ , the relation  $(I_n)(1)$   $R = \sigma_j \sigma_k \sigma_j^{-1} \sigma_k^{-1} = 1$  yields two types of relations.

(1) 
$$\sigma_i \sigma_k = \sigma_k \sigma_j$$
 for  $1 \le j < k \le n-3$  and  $|j-k| \ge 2$ 

(2) 
$$\sigma_p A_{q,n-1} \sigma_p^{-1} = A_{q,n-1}$$
 for  $1 \le p \le n-3$ ,  $1 \le q \le n-2$  and  $q \ne p, p+1$  (3.76)

 $\begin{aligned} & \textbf{Proof Let us compute} \ \ \tau \bigg( N_i^{(n-1)} R \Big( N_i^{(n-1)} \Big)^{-1} \Big) = \tau \bigg( N_i^{(n-1)} \sigma_j \sigma_k \sigma_j^{-1} \sigma_k^{-1} \Big( N_i^{(n-1)} \Big)^{-1} \Big) = 1 \ \ \text{and find relations}. \end{aligned}$ 

$$\tau \left( N_{i}^{(n-1)} \sigma_{j} \sigma_{k} \sigma_{j}^{-1} \sigma_{k}^{-1} \left( N_{i}^{(n-1)} \right)^{-1} \right) = \\
= N_{i}^{(n-1)} \sigma_{j} \overline{N_{i}^{(n-1)} \sigma_{j}}^{-1} \times \overline{N_{i}^{(n-1)} \sigma_{j}} \sigma_{k} \overline{N_{i}^{(n-1)} \sigma_{j}} \sigma_{k}^{-1} \times \overline{N_{i}^{(n-1)} \sigma_{j}} \sigma_{k} \sigma_{j}^{-1} \overline{N_{i}^{(n-1)} \sigma_{j}} \sigma_{k} \sigma_{j}^{-1} \\
\times \overline{N_{i}^{(n-1)} \sigma_{i} \sigma_{k} \sigma_{i}^{-1}} \sigma_{k}^{-1} \overline{N_{i}^{(n-1)} \sigma_{i} \sigma_{k}} \sigma_{i}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}^{-1} \sigma_{k}$$

For  $1 \le i \le n-1$ . From the above equation, we find this relations:

(1) 
$$\sigma_{j}\sigma_{k} = \sigma_{k}\sigma_{j}$$
 if  $1 \le j < k < i - 1$   
(2) the trivial relation if  $1 \le j < k = i - 1$   
(3)  $\sigma_{j}A_{k-1,n-1}\sigma_{j}^{-1} = A_{k-1,n-1}$  if  $k = i$   
(4)  $\sigma_{j}\sigma_{k-1} = \sigma_{k-1}\sigma_{j}$  if  $j < i - 1, k = i + 1$   
(5) the trivial relation if  $j = i - 1, k > i$   
(6)  $\sigma_{k-1}A_{j,n-1}\sigma_{k-1}^{-1} = A_{j,n-1}$  if  $j = i < k \le n - 2$   
(7)  $\sigma_{i-1}\sigma_{k-1} = \sigma_{k-1}\sigma_{i-1}$  if  $i + 1 \le j < k \le n - 2$ 

And if we generalize above relations, we find two relations are given in proposition 3.22.

Now, we introduced general relations with where they derived from.

$$(I_n)(2) \ \sigma_i \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \sigma_i^{-1} \sigma_{i+1}^{-1} = 1$$
(3.79)

(1) 
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
 for  $1 \le j < n-4$ 

(2) 
$$\sigma_j A_{j,n-1} \sigma_j^{-1} = A_{j+1,n-1}$$
 for  $1 \le j \le n-3$ 

(3) 
$$\sigma_j (A_{j+1,n-1}) \sigma_j^{-1} = A_{j+1,n-1}^{-1} A_{j,n-1} A_{j+1,n-1}$$
 for  $1 \le j \le n-3$ 

$$(II_n)(1) \quad \sigma_i A_{k,n} \sigma_i^{-1} A_{k,n}^{-1} = 1$$
(3.81)

(1) 
$$\sigma_j A_{k,n} \sigma_j^{-1} = A_{k,n}$$
 if  $1 \le j \le n-3$ ,  $k \ne j$ ,  $j+1$ 

(2) 
$$A_{j,n-1}A_{k,n} = A_{k,n}A_{j,n-1}$$
 if  $1 \le k \le j \le n-2$  (3.82)

(3) 
$$A_{j,n-1}A_{n-1,n}^{-1}A_{k,n}A_{n-1,n}A_{j,n-1}^{-1} = A_{n-1,n}^{-1}A_{k,n}A_{n-1,n}$$
 if  $1 \le j \le n-2$ ,  $1 \le k \le n-1$ ,  $j < k$ 

$$(II_n)(2) \sigma_i A_{i,n} \sigma_i^{-1} A_{i+1,n}^{-1} = 1$$
(3.83)

(1) 
$$\sigma_{j}A_{j,n}\sigma_{j}^{-1} = A_{j+1,n}$$
 for  $j = 1, 2, ..., n-3$   
(2)  $A_{j,n-1}A_{j,n}A_{j,n-1}^{-1} = A_{n-1,n}^{-1}A_{j,n}A_{n-1,n}$  for  $j = 1, 2, ..., n-2$ 

$$(II_n)(3) \quad \sigma_i A_{i+1,n} \sigma_i^{-1} A_{i+1,n} A_{i,n}^{-1} A_{i+1,n}^{-1} = 1$$
(3.85)

(1) 
$$\sigma_{j}A_{j+1,n}\sigma_{j}^{-1} = A_{j+1,n}^{-1}A_{j,n}A_{j+1,n}$$
 for  $1 \le j \le n-3$   
(2)  $A_{j,n-1}A_{n-1,n}A_{j,n-1}^{-1} = A_{n-1,n}^{-1}A_{j,n}^{-1}A_{n-1,n}A_{j+1,n}A_{n-1,n}$  for  $j = 1, 2, ..., n-2$ 

Now, we present all generators and relations for  $\mathbf{H}_{n-1}$ .

**Proposition 3.25** The group  $\mathbf{H}_{n-1}$  has the following presentation,

generators:

$$\sigma_{1}, \sigma_{2}, ..., \sigma_{n-3},$$

$$A_{1,n-1}, A_{2,n-1}, ..., A_{n-2,n-1},$$

$$A_{1,n}, A_{2,n}, ..., A_{n-1,n}$$
(3.87)

relations:

 $(I)_{n-1}$ 

(1) 
$$\sigma_i \rightleftharpoons \sigma_k$$
 if  $1 \le j < k \le n-3$  and  $|j-k| \ge 2$ 

(2) 
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
 if  $j = 1, 2, ..., n-4$ 

 $(II)_{n-1}$ 

(1) 
$$\sigma_j A_{k,n} \sigma_j^{-1} = A_{k,n}$$
 if  $1 \le j \le n-3$ ,  $1 \le k \le n-1$  and  $k \ne j, j+1$ 

(2) 
$$\sigma_j A_{k,n-1} \sigma_j^{-1} = A_{k,n-1}$$
 if  $1 \le j \le n-3$ ,  $1 \le k \le n-2$  and  $k \ne j, j+1$ 

 $(III)_{n-1}$ 

(1) 
$$\sigma_j A_{j,n} \sigma_j^{-1} = A_{j+1,n}$$
 if  $1 \le j \le n-3$ 

(2) 
$$\sigma_i A_{i,n-1} \sigma_i^{-1} = A_{i+1,n-1}$$
 if  $1 \le j \le n-3$ 

 $(IV)_{n-1}$ 

(1) 
$$\sigma_i A_{i+1,n} \sigma_i^{-1} = A_{i+1,n}^{-1} A_{i,n} A_{i+1,n}$$
 if  $1 \le j \le n-3$ 

(2) 
$$\sigma_j A_{j+1,n-1} \sigma_j^{-1} = A_{j+1,n-1}^{-1} A_{j,n-1} A_{j+1,n-1}$$
 if  $1 \le j \le n-3$ 

 $(V)_{n-1}$ 

(1) 
$$A_{j,n-1} \rightleftharpoons A_{k,n}$$
 if  $1 \le k < j \le n-2$ 

 $(VI)_{n-1}$ 

(1) 
$$A_{j,n-1}A_{j,n}A_{j,n-1}^{-1} = A_{n-1,n}^{-1}A_{j,n}A_{n-1,n}$$
 if  $j = 1, 2, ..., n-2$ 

$$(VII)_{n-1}$$

$$(1) A_{j,n-1} A_{j,n} A_{j,n-1}^{-1} = A_{n-1,n}^{-1} A_{j,n}^{-1} A_{n-1,n} A_{j,n} A_{n-1,n} \text{ if } j = 1, 2, ..., n-2$$

$$(VIII)_{n-1}$$

(1) 
$$A_{n-1,n}^{-1} A_{k,n} A_{n-1,n} \rightleftharpoons A_{j,n-1}$$
 if  $1 \le j \le n-2$ ,  $1 \le k \le n-1$  and  $j < k$ 

From proposition 3.24, we can see that there are two types of relations: one set involving  $\sigma_i$  and  $A_{j,k}$ , and the other set involving only  $A_{j,k}$ . Since  $P_n$  does not involve any  $\sigma_i$ , the first set of relations will eventually disappear. But, the second set of relations can be derived from the first set of relations. In addition, the second set of relations does not produce any new type of relations. With this in mind, we will give a presentation for  $P_n$  in following theorem.

**Theorem 3.26** The pure n-braid group  $P_n$  has following presentation,

$$\text{generators: } A_{j,k} \left( = \sigma_{k-1} \sigma_{k-2} ... \sigma_{j+1} \sigma_j^2 \sigma_{j+1}^{-1} ... \sigma_{k-2}^{-1} \sigma_{k-1}^{-1} \right) \text{ for } 1 \leq j < k \leq n$$

relations:

(A) 
$$A_{r,s} \rightleftharpoons A_{i,j}$$
 if  $1 \le r < s < i < j \le n$  or  $1 \le r < i < j < s \le n$ 

(B) 
$$A_{r,s}A_{r,j}A_{r,s}^{-1} = A_{s,j}^{-1}A_{r,j}A_{s,j}$$
 if  $1 \le r < s < j \le n$ 

(C) 
$$A_{r,s}A_{s,j}A_{r,s}^{-1} = A_{s,j}^{-1}A_{r,j}^{-1}A_{s,j}A_{r,j}A_{s,j}$$
 if  $1 \le r < s < j \le n$ 

(D) 
$$A_{i,i}^{-1} A_{s,i} A_{i,i} \rightleftharpoons A_{r,i}$$
 if  $1 \le r < s < i < j \le n$ 

(D) is equivalent to

$$(D') A_{r,i} A_{s,j} A_{r,i}^{-1} = \left[ A_{i,j}^{-1}, A_{r,j}^{-1} \right] A_{s,j} \left[ A_{i,j}^{-1}, A_{r,j}^{-1} \right]^{-1} \quad \text{if } 1 \le r < s < i < j \le n.$$

**Proof** Assuming the other relations hold, we shall show, firstly, that relations (D) and (D) are equivalent.

$$(D) \Leftrightarrow A_{r,i}A_{i,j}^{-1}A_{s,j}A_{i,j}A_{r,i}^{-1} = A_{i,j}^{-1}A_{s,j}A_{i,j}$$

$$\Leftrightarrow \left(A_{r,i}A_{i,j}^{-1}A_{r,i}^{-1}\right)\left(A_{r,i}A_{s,j}A_{r,i}^{-1}\right)\left(A_{r,i}A_{i,j}A_{r,i}^{-1}\right) = A_{i,j}^{-1}A_{s,j}A_{i,j}$$

$$\Leftrightarrow A_{r,i}A_{s,j}A_{r,i}^{-1} = \left(A_{r,i}A_{i,j}A_{r,i}^{-1}\right)A_{i,j}^{-1}A_{s,j}A_{i,j}\left(A_{r,i}A_{i,j}^{-1}A_{r,i}^{-1}\right)$$

$$\Leftrightarrow A_{r,i}A_{s,j}A_{r,i}^{-1} = \left(A_{i,j}^{-1}A_{r,j}^{-1}A_{i,j}A_{r,j}A_{i,j}\right)\left(A_{i,j}^{-1}A_{s,j}A_{i,j}\right)\left(A_{i,j}^{-1}A_{r,j}^{-1}A_{i,j}^{-1}A_{r,j}A_{i,j}\right)$$

$$\Leftrightarrow A_{r,i}A_{s,j}A_{r,i}^{-1} = \left[A_{i,j}^{-1},A_{r,j}^{-1}\right]A_{s,j}\left[A_{i,j}^{-1},A_{r,j}^{-1}\right]^{-1}$$

$$\Leftrightarrow (D')$$

**Lemma 3.27** Let us write  $N_p$  for  $N_p^{(k)}$ , and set p=1,2,...,k.

Case 1, r < k,

(1) 
$$\tau(N_p A_{r,s} N_p^{-1}) = A_{r,s}$$
 if  $r$ 

(2) 
$$\tau(N_p A_{r,s} N_p^{-1}) = A_{k,s}$$
 if  $r = p \le k < s$ 

(3) 
$$\tau (N_p A_{r,s} N_p^{-1}) = A_{k,s}^{-1} A_{r-1,s} A_{k,s}$$
 if  $p < r < k < s$ 

Case 2, r = k,

(1) 
$$\tau \left( N_p A_{r,s} N_p^{-1} \right) = A_{k,s}^{-1} A_{r-1,s} A_{k,s}$$

Case 3, r > k,

(1) 
$$\tau (N_p A_{r,s} N_p^{-1}) = A_{r,s}$$

**Lemma 3.28** The following commutative relations are consequences of relations (A)–(D).

(1) 
$$A_{k,s}^{-1} A_{l,s} A_{k,s} \rightleftharpoons A_{k,j}$$
 if  $1 \le l < k < s < j \le n$ 

(2) 
$$A_{k,j}^{-1} A_{k,j} \rightleftharpoons A_{k,s}^{-1} A_{m,s} A_{k,s}$$
 if  $1 \le l < m < k < s < j \le n$ 

(3) 
$$A_{r,j}A_{k,j} \rightleftharpoons A_{r,k}$$
 if  $1 \le r < k < j \le n$ 

#### **Proof**

(1) 
$$A_{k,s}A_{k,s}^{-1}A_{l,s}A_{k,s} = A_{k,s}^{-1}A_{l,s}A_{k,s}A_{k,j}$$
  
 $\Leftrightarrow A_{k,s}A_{k,j}A_{k,s}^{-1} = A_{l,s}A_{k,s}A_{k,j}A_{k,s}^{-1}A_{l,s}A_{l,s}A_{k,j}A_{l,s}^{-1}$ 

$$\begin{array}{c} \text{(2)} \ A_{k,j}^{-1}A_{l,j}A_{k,j}A_{k,s}^{-1}A_{m,s}A_{k,s} = A_{k,s}^{-1}A_{m,s}A_{k,s}A_{k,j}^{-1}A_{l,j}A_{k,j} \\ \stackrel{(B)}{\Leftrightarrow} \ A_{l,k}A_{l,j}A_{l,k}^{-1}\overline{A_{k,s}^{-1}A_{m,s}A_{k,s}} = \overline{A_{k,s}^{-1}A_{m,s}A_{k,s}}A_{l,k}A_{l,j}A_{l,k}^{-1} \\ \stackrel{(D)}{\Leftrightarrow} \ A_{l,k}A_{l,j}A_{k,s}^{-1}A_{m,s}A_{k,s}A_{l,k}^{-1} = A_{l,k}A_{k,s}^{-1}A_{m,s}A_{k,s}A_{l,j}A_{l,k}^{-1} \\ \stackrel{(D)}{\Leftrightarrow} \ A_{l,j}A_{k,s}^{-1}A_{m,s}A_{k,s} = A_{k,s}^{-1}A_{m,s}A_{k,s}A_{l,j} \end{array}$$

This holds since  $A_{l,j} \rightleftharpoons A_{k,s}$  and  $A_{l,j} \rightleftharpoons A_{m,s}$  , relation (A) .

$$\begin{array}{l} \text{(3)} \ A_{r,k}A_{r,j}A_{k,j}A_{r,k}^{-1} = A_{r,j}A_{k,j} \\ \Leftrightarrow \boxed{A_{r,k}A_{r,j}A_{r,k}^{-1} \left\| A_{r,k}A_{k,j}A_{r,k}^{-1} \right\|} = A_{r,j}A_{k,j} \\ \stackrel{\text{(B)}\ (C)}{\Leftrightarrow} A_{k,j}^{-1}A_{r,j}A_{k,j}A_{k,j}^{-1}A_{r,j}^{-1}A_{k,j}A_{r,j}A_{k,j} = A_{r,j}A_{k,j} \\ \Leftrightarrow A_{r,j}A_{k,j} = A_{r,j}A_{k,j} \end{array}$$

We need to look at the relation  $R_p=N_p\left(A_{r,s}A_{i,j}A_{r,s}^{-1}A_{i,j}^{-1}\right)N_p^{-1}=1$ . Then,  $\tau\left(R_p\right)=1$  yields the following relations.

П

Case 1, r < k < s

(1) If 
$$p > r$$
 then  $A_{r,s} \rightleftharpoons A_{i,j}$ 

(2) If 
$$p = r$$
 then  $A_{k,s} \rightleftharpoons A_{i,j}$ 

(3) If 
$$i then  $A_{i,j} \rightleftharpoons A_{k,s}^{-1} A_{r-1,s} A_{k,s}$$$

(4) If 
$$i = p$$
 then  $A_{k,j} \rightleftharpoons A_{k,s}^{-1} A_{r-1,s} A_{k,s}$ 

(5) If 
$$p < i$$
 then  $A_{k,j}^{-1} A_{i-1,j} A_{k,j} \rightleftharpoons A_{k,s}^{-1} A_{r-1,s} A_{k,s}$ .

The relations in (1), (2) and (3) are consequences of the relation (A), while the relations (4) and (5) are same as (1) and (2) in Lemma 3.28.

Case 2, r = k

(1) If 
$$i then  $A_{k,s}^{-1} A_{k-1,s} A_{k,s} \rightleftharpoons A_{k,j}^{-1} A_{i-1,j} A_{k,j}$$$

(2) If 
$$p = i$$
 then  $A_{k,s}^{-1} A_{k-1,s} A_{k,s} \rightleftharpoons A_{k,j}$ 

(3) If 
$$p < i$$
 then  $A_{k,s}^{-1} A_{k-1,s} A_{k,s} \rightleftharpoons A_{i,j}$ .

Relation (1) above is just Lemma 3.28(2), relation (2) is Lemma 3.28(1), and Lemma 3.25(2), and (3) is a consequence of (A).

Case 3, i < k < r

(1) If 
$$i < p$$
 then  $A_{r,s} \rightleftharpoons A_{i,j}$ 

(2) If 
$$p = i$$
 then  $A_{r,s} \rightleftharpoons A_{k,j}$ 

(3) If 
$$p < i$$
 then  $A_{r,s} \rightleftharpoons A_{k,j}^{-1} A_{i-1,j} A_{k,j}$ .

These relations are consequences of (A).

Case 4, k = i

$$(1) A_{r,s} \rightleftharpoons A_{i,j}^{-1} A_{i-1,j} A_{i,j}$$

Case 5, k < i

(1) 
$$A_{r,s} \rightleftharpoons A_{i,i}$$

In cases 4 and 5, the relations follow from (A).

In other case r < s < i < j, we can find this relation:

$$A_{r,s} \rightleftharpoons A_{i,j}$$
.

Now let us set  $R_p=N_p\left(A_{r,s}A_{r,j}A_{r,s}^{-1}A_{s,j}^{-1}A_{r,j}^{-1}A_{s,j}\right)N_p^{-1}$ . Then  $\tau\left(R_p\right)=1$  yields the following relations:

Case 1, r < k < s < j

(1) If 
$$r then  $A_{r,s}A_{r,i}A_{r,s}^{-1} = A_{s,i}^{-1}A_{r,i}A_{s,i}$$$

(2) If 
$$p = r$$
 then  $A_{k,s}A_{k,j}A_{k,s}^{-1} = A_{s,j}^{-1}A_{k,j}A_{s,j}$ 

(3) If p < r then

$$A_{k,s}^{-1}A_{r-1,s}A_{k,s}A_{k,j}^{-1}A_{r-1,j}A_{k,j}A_{k,s}^{-1}A_{r-1,s}A_{k,s} = A_{s,j}^{-1}A_{k,j}^{-1}A_{r-1,j}A_{k,j}A_{s,j}.$$

Case 2, r = k

$$(1) A_{k,s}^{-1} A_{k-1,s} A_{k,s} A_{k,j}^{-1} A_{k-1,j} A_{k,j} A_{k,s}^{-1} A_{k-1,s}^{-1} A_{k,s} = A_{s,j}^{-1} A_{k,j}^{-1} A_{k-1,j} A_{k,j} A_{s,j}$$

Case 3, r < k

(1) 
$$A_{r,s}A_{r,j}A_{r,s}^{-1} = A_{s,j}^{-1}A_{r,j}A_{s,j}$$

Therefore, we only need to show that Case 1(3) and Case 2 are consequences of relations (A) – (D).

Case 1(3) For (l =) r - 1 < k < s < j

The proof of Case 2 follows along similar lines to the above proof if instead we set k-1=1.

Now, let us set  $R_p = N_p \left( A_{r,s} A_{s,j} A_{r,s}^{-1} A_{s,j}^{-1} A_{r,j}^{-1} A_{s,j}^{-1} A_{r,j} A_{s,j} \right) N_p^{-1}$  for  $1 \le r < s < j \le n$ . Then  $\tau \left( R_p \right) = 1$  yields the following relations:

Case 1, r < k < s < j

- (1) If r then the relation is unchanged.
- (2) If p = r then change r into k in the original relation.
- (3) If p < r then

$$A_{k,s}^{-1}A_{r-1,s}A_{k,s}A_{s,j}A_{k,s}^{-1}A_{k,s}^{-1}A_{k,s}^{-1} = A_{s,j}^{-1}A_{k,j}^{-1}A_{r-1,j}A_{k,j}A_{s,j}A_{k,j}^{-1}A_{r-1,j}A_{k,j}A_{s,j}$$

Case 2, r = k

$$(1) A_{k,s}^{-1} A_{k-1,s} A_{k,s} A_{s,j} A_{k,s}^{-1} A_{k-1,s}^{-1} A_{k,s} = A_{s,j}^{-1} A_{k,s}^{-1} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k,s}^{-1} A_{k-1,s} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k,s} A_{s,j} A_{k-1,s}^{-1} A_{k-1,s}^{-1} A_{k,s}^{-1} A_{k-1,s}^{-1} $

Case 3, k < r

This is the same as the orginal relation.

Therefore, we need only show that Case 1(3) (and hence Case 2) is a consequence of (A)-(D).

For l = r - 1 < k < s < j,

$$\begin{bmatrix} A_{k,s}^{-1}A_{l,s}A_{k,s} \end{bmatrix} A_{s,j} \begin{bmatrix} A_{k,s}^{-1}A_{l,s}A_{k,s} \end{bmatrix} = A_{s,j}^{-1} \begin{bmatrix} A_{k,j}^{-1}A_{l,j}^{-1}A_{k,j} \end{bmatrix} A_{s,j} \begin{bmatrix} A_{k,j}^{-1}A_{l,j}A_{k,j} \end{bmatrix} A_{s,j}$$

$$\Leftrightarrow A_{l,k}A_{l,s} \begin{bmatrix} A_{l,k}^{-1}A_{s,j} \end{bmatrix} A_{l,k}A_{l,s}^{-1}A_{l,k}^{-1} = \begin{bmatrix} A_{s,j}^{-1}A_{l,k} \end{bmatrix} A_{l,j}^{-1}A_{l,k}^{-1} \begin{bmatrix} A_{s,j}A_{l,k} \end{bmatrix} A_{l,j} \begin{bmatrix} A_{l,k}^{-1}A_{s,j} \end{bmatrix} A_{l,k} A_{l,j} \begin{bmatrix} A_{l,k}^{-1}A_{s,j} \end{bmatrix} A_{l,k} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s} A_{l,s}$$

Finally, let us set  $R_p = N_p \left( A_{i,j}^{-1} A_{s,j} A_{i,j} A_{r,i} A_{i,j}^{-1} A_{s,j}^{-1} A_{i,j} A_{r,i}^{-1} \right) N_p^{-1}$ . For  $1 \le r < s < i < j \le n$ ,  $au \left( R_p \right) = 1$  yields the following relations:

Case 1, s < k < i

(1) If s then the same relation is obtained.

(2) If 
$$s = p$$
 then  $A_{i,j}^{-1} A_{k,j} A_{i,j} \rightleftharpoons A_{r,i}$ .

(3) If 
$$r then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{s-1,j} A_{k,j} A_{i,j} \Longrightarrow A_{r,i}$ .$$

(4) If 
$$p = r$$
 then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{s-1,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}$ .

(5) If 
$$p < r$$
 then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{k,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{k-1,i} A_{k,i}$ .

Case 2, k = s

(1) If 
$$r then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{k-1,j} A_{k,j} A_{i,j} \Longrightarrow A_{r,i}$ .$$

(2) If 
$$p = r$$
 then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{k-1,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}$ .

(3) If 
$$p < r$$
 then  $A_{i,j}^{-1} A_{k,j}^{-1} A_{k-1,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{r-1,i} A_{k,i}$ .

Case 3, r < k < s

(1) If 
$$r < p$$
 then  $A_{i,j}^{-1} A_{s,j} A_{i,j} \rightleftharpoons A_{r,i}$ .

(2) If 
$$p = r$$
 then  $A_{i,j}^{-1} A_{s,j} A_{i,j} \rightleftharpoons A_{k,i}$ .

(3) If 
$$p < r$$
 then  $A_{i,j}^{-1} A_{s,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{r-1,i} A_{k,i}$ .

Case 4, k = r

$$(1) A_{i,j}^{-1} A_{s,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{k-1,i} A_{k,i}.$$

Case 5, k < r

$$(1) A_{i,i}^{-1} A_{s,i} A_{i,i} \rightleftharpoons A_{r,i}.$$

Now, to complete the proof, we need to show that the following relaitons are consequences of (A) – (D) .

(1) 
$$A_{i,j}^{-1} A_{k,j}^{-1} A_{m,j} A_{k,j} A_{i,j} \rightleftharpoons A_{l,i}$$
 if  $l < m < k < i < j$   
(2)  $A_{i,j}^{-1} A_{k,j}^{-1} A_{m,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{l,i} A_{k,i}$  if  $l < m < k < i < j$   
(3)  $A_{i,j}^{-1} A_{k,j}^{-1} A_{m,j} A_{k,j} A_{i,j} \rightleftharpoons A_{k,i}$  if  $m < k < i < j$   
(4)  $A_{i,j}^{-1} A_{s,j} A_{i,j} \rightleftharpoons A_{k,i}^{-1} A_{l,i} A_{k,i}$  if  $l < k < s < i < j$ 

We shall prove separately each of the four parts in the above relations.

### Proof of (1)

$$\begin{array}{c|c} A_{i,j}^{-1} \overline{A_{k,j}^{-1} A_{m,j} A_{k,j}} A_{i,j} A_{l,i} = A_{l,i} A_{i,j}^{-1} \overline{A_{k,j}^{-1} A_{m,j} A_{k,j}} A_{i,j} \\ & \Leftrightarrow \overline{A_{i,j}^{-1} A_{m,k}} A_{m,j} \overline{A_{m,k}^{-1} A_{l,j} A_{l,i}} = \overline{A_{l,i} A_{i,j}^{-1} A_{m,k}} A_{m,j} \overline{A_{m,k}^{-1} A_{k,j}} \\ & \Leftrightarrow A_{m,k} A_{i,j}^{-1} A_{m,j} A_{i,j} A_{l,i} A_{m,k}^{-1} = A_{m,k} A_{l,i} A_{i,j}^{-1} A_{m,j} A_{i,j} A_{m,k}^{-1} \\ & \Leftrightarrow A_{i,j}^{-1} A_{m,j} A_{i,j} \rightleftharpoons A_{l,i} \\ & \Leftrightarrow (D) \end{array}$$

#### Proof of (2)

$$A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j}A_{i,j} \overline{A_{k,i}^{-1}A_{l,i}A_{k,i}} = \overline{A_{k,i}^{-1}A_{l,i}A_{k,i}} A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j}A_{i,j}$$

$$\Leftrightarrow A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j} \overline{A_{k,j}A_{l,k}} A_{l,i}A_{l,k}^{-1} = A_{l,k}A_{l,i} \overline{A_{l,k}^{-1}A_{l,k}^{-1}} A_{k,j}^{-1}A_{k,j}A_{m,j}A_{k,j}A_{i,j}$$

$$\Leftrightarrow A_{i,j}^{-1}\overline{A_{k,j}^{-1}A_{m,j}A_{k,j}} A_{l,k}A_{i,j}A_{l,i}A_{l,k}^{-1} = A_{l,k}A_{l,i}A_{i,j}^{-1}A_{l,k} \overline{A_{l,j}^{-1}A_{m,j}A_{k,j}}A_{i,j}$$

$$\Leftrightarrow \overline{A_{l,k}}A_{i,j}^{-1}\overline{A_{k,j}^{-1}A_{m,j}A_{k,j}} A_{l,j}\overline{A_{l,k}^{-1}}$$

$$\Rightarrow \overline{A_{l,k}}A_{l,i}\overline{A_{i,j}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,j}A_{k,j}}A_{l,j}\overline{A_{l,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1}A_{m,k}}A_{m,j}\overline{A_{m,k}^{-1$$

## Proof of (3)

$$\begin{split} &A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j}\boxed{A_{i,j}A_{k,i}^{-1}} = A_{k,i}^{-1}A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j}A_{i,j}\\ &\Leftrightarrow A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}A_{k,j}A_{k,i}^{-1}\boxed{A_{i,j}^{-1}A_{k,j}^{-1}A_{k,j}}\boxed{A_{k,j}A_{i,j}}\\ &= \boxed{A_{k,i}^{-1}A_{i,j}^{-1}A_{k,j}^{-1}A_{k,j}}A_{m,j}\boxed{A_{k,j}A_{i,j}}\\ &\Leftrightarrow A_{i,j}^{-1}A_{k,j}^{-1}A_{m,j}\boxed{A_{k,j}A_{k,i}^{-1}A_{k,j}}A_{k,i}^{-1}A_{k,j}^{-1}A_{k,j}^{-1}A_{k,j}^{-1}A_{k,j}A_{k,j}A_{m,j}\\ \end{split}$$

# ( By ( B ) and Lemma 3.28(3))

$$\Leftrightarrow A_{m,j}A_{k,i}^{-1} = A_{k,i}^{-1}A_{m,j}$$
$$\Leftrightarrow (A)$$

# Proof of (4)

$$\begin{array}{|c|c|c|} \hline A_{i,j}^{-1}A_{s,j}A_{i,j} \\ \hline A_{k,i}^{-1}A_{k,i}A_{l,i}A_{k,i} & = A_{k,i}^{-1}A_{l,i}A_{k,i} \\ \hline A_{i,j}^{-1}A_{s,j}A_{i,j} \\ \hline \Leftrightarrow A_{k,i}^{-1}A_{i,j}^{-1}A_{s,j}A_{l,i}A_{k,i} & = A_{k,i}^{-1}A_{l,i}A_{i,j}^{-1}A_{s,j}A_{i,j}A_{k,i} \\ \Leftrightarrow A_{i,j}^{-1}A_{s,j}A_{i,j} & \rightleftharpoons A_{l,i} \\ \Leftrightarrow (D) \end{array}$$

This now completes the proof of Theorem 3.25.

# THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

In this chapter, we introduce configuration space to obtain the different view for braid group.

# 4.1 Configuration Space

#### 4.1.1 Definitions

**Definition 4.1** Let M be a manifold of dimension  $\geq 2$ , let  $\prod_{i=1}^n M$  denote the n-fold

product space, and let  $F_{0,n}M$  denote the subspace of  $\prod_{i=1}^n M$ 

$$F_{0,n}M = \left\{ \left( z_1, z_2, ..., z_n \right) \in \prod_{i=1}^n M \, \middle| \, z_i \neq z_j \text{ if } i \neq j \right\}$$
 (4.1)

(We will give the meaning of subscript "0" later.) The fundamental group  $\pi_1 F_{0,n} M$  of the space  $F_{0,n} M$  is the pure braid with n strings of manifold M [9].

**Definition 4.2** Two points z and z' of  $F_{0,n}M$  are said to be equivalent if the coordinates  $\left(z_1,z_2,...,z_n\right)$  of z differ from the coordinates  $\left(z_1',z_2',...,z_n'\right)$  of z' by permutation.

Let  $B_{0,n}M$  denote the identification space of  $F_{0,n}M$  under this equivalence relation.

63

**Definition 4.3** The fundamental group  $\pi_1 B_{0,n} M$  of the space  $B_{0,n} M$  is called the full braid group of M, or simply, the braid group of M.

**Claim 4.4** The natural projection  $p: F_{0,n}M \to B_{0,n}M$  is a regular (normal) covering map.

**Proof** Firstly, we show that p is a covering map.

Let  $z^0=\left(z_1^0,z_2^0,...,z_n^0\right)$  be an element of  $F_{0,n}M$  and  $\overline{z^0}$  (the equivalence class of  $z^0$ ) be element of  $B_{0,n}M$ .

$$\overline{z^{0}} = \left\{ z^{i} \middle| z^{0} \sim z^{i}, z^{i} \in F_{0,n} M \right\}$$
 (4.2)

Now, we can define a metric on  ${\cal F}_{{\bf 0},{\bf n}}M$  such that

$$d: F_{0,n}M \times F_{0,n}M \to R$$

$$d(z^{i}, z^{j}) = ||z^{i} - z^{j}||$$
 (4.3)

If we take the elements of  $\overline{z^0}$  , then there is a positive real number  $\varepsilon>0$  ;

$$\varepsilon \le 2\min_{i,j \in I} d\left(z^{i}, z^{j}\right) \tag{4.4}$$

where I is index set and  $z^i, z^j \in \overline{z^0}$ .

Therefore,  $U_{\varepsilon} = \left\{ z^i \middle| d\left(z^0, z^i\right) < \varepsilon \right\}$  is a neighborhood of  $\overline{z^0}$  .

Hence, we can easily see that,

$$V_{\delta} = \left\{ z^{i} \left| d\left(z^{0}, z^{i}\right) < \delta(\varepsilon) \right\} \right\} \tag{4.5}$$

where  $\;\delta>0\;$  is a real number;  $\;V_{\scriptscriptstyle \delta}\;$  are open sets and

$$p^{-1}(U_{\varepsilon}) = \bigcup_{\delta} V_{\delta} \tag{4.6}$$

So, p is a covering mapping. The equivalence relation shows a deck transformation. With this deck transformation, p is a regular(normal) covering map [6].

The classical braid group of Artin is the braid group is the braid group  $\pi_1 B_{0,n} R^2$ . Artin's geometric definition of  $\pi_1 B_{0,n} R^2$  can be recovered from the definition above as follows:

Choose a base point  $z^0=\left(z_1^0,...,z_n^0\right)\in F_{0,n}R^2$  for  $\pi_1F_{0,n}R^2$  and a point  $\overline{z^0}\in B_{0,n}R^2$  such that  $p\left(z^0\right)=\overline{z^0}$ . Any element in  $\pi_1B_{0,n}R^2=\pi_1\left(B_{0,n}R^2,\overline{z^0}\right)$  is represented by a loop

$$l: I, \{0,1\} \to B_{0,n}R^2, \overline{z^0}$$
 (4.7)

which lifts uniquely to a path

$$l: I, \{0\} \to F_{0,n}R^2, z^0$$
 (4.8)

If  $l(t) = (l_1(t), ..., l_n(t))$ ,  $t \in I$ , then each of the coordinate functions  $l_i$  defines (via its graph) an arc  $\mathcal{P}_i = (l_i(t), t)$  in  $R^2 \times I$ . Since  $l(t) \in F_{0,n}R^2$ , the arcs  $\mathcal{P}_1, ..., \mathcal{P}_n$  are disjoint. Their union  $\mathcal{P} = \mathcal{P}_1 \cup ... \cup \mathcal{P}_n$  is called a geometric braid. The arc is called the ith string. A geometric braid is a representative of a path class in the fundamental group  $\pi_1 B_{0,n} R^2$ . Thus if  $\mathcal{P}$  and  $\mathcal{P}'$  are geometric braids, then  $\mathcal{P} \sim \mathcal{P}'$  (that is, they represent the same element of  $\pi_1 B_{0,n} R^2$ ) if the paths l and l' which define these braids are homotopic relative to base point  $z^0 = (z_1^0, ..., z_n^0)$  in the space  $F_{0,n} R^2$ . Thus we require the existence of a continuous mapping  $\mathcal{F}: I \times I \to F_{0,n} R^2$  with

$$\mathcal{F}(t,0) = (\mathcal{F}_{1}(t,0),...,\mathcal{F}_{n}(t,0)) = (l_{1}(t),...,l_{n}(t)) 
\mathcal{F}(t,1) = (\mathcal{F}_{1}(t,1),...,\mathcal{F}_{n}(t,1)) = (l'_{1}(t),...,l'_{n}(t)) 
\mathcal{F}(0,s) = (\mathcal{F}_{1}(0,s),...,\mathcal{F}_{n}(0,s)) = (z_{1}^{0},...,z_{n}^{0}) 
\mathcal{F}(1,s) = (\mathcal{F}_{1}(1,s),...,\mathcal{F}_{n}(1,s)) = (z_{\mu_{1}}^{0},...,z_{\mu_{n}}^{0})$$
(4.9)

where  $(\mu_1,...,\mu_n)$  is a permutation of array (1,...,n). The homotopy  $\mathscr{T}$  defines a continous a sequence of geometric braids  $\mathcal{P}(s) = \mathcal{P}_1(s) \cup ... \cup \mathcal{P}_n(s)$ ,  $s \in I$ , where  $\mathcal{P}_i(s) = (\mathscr{T}_i(t,s),t)$ , such that  $\mathcal{P}(0) = \mathcal{P}$  and  $\mathcal{P}(1) = \mathcal{P}'$ .

**Definition 4.5** Let  $Q_m = \{q_1,...,q_m\}$  be a set of fixed distinguished points of M. The configuration space  $F_{m,n}M$  is the space of  $F_{0,n}\left(M-Q_m\right)$ .

Note that the topological type of  $F_{m,n}M$  does not depend on the choice of the particular points  $Q_m$ , since one may always find an isotopy of M which deforms any one such point set  $Q_m$  into any other  $Q_m$ . Note that  $F_{m,1}M=M-Q_m$ .

We are interested in the relationship between the configuration spaces  ${\cal F}_{{\scriptscriptstyle m,n}}M$  and  ${\cal F}_{{\scriptscriptstyle 0,n}}M$  .

The key observation is the following theorem:

Theorem 4.6 (Fadell and Nuewirth [7]) Let  $\pi: F_{m,n}M \to F_{m,r}M$  be defined by

$$\pi(z_1, ..., z_n) = (z_1, ..., z_r), 1 \le r < n$$
 (4.10)

Then  $\pi$  exhibits  $F_{m,n}M$  as a locally trivial fibre space over the base space  $F_{m,r}M$  , with fibre  $F_{m+r,n-r}M$  .

**Proof** First consider, for some base point  $\left(z_1^0,...,z_r^0\right)$  in  $F_{m,r}M$  the fibre  $\pi^{-1}\left(z_1^0,...,z_r^0\right)$ 

$$\pi^{-1}\left(z_{1}^{0},...,z_{r}^{0}\right) = \left\{\left(z_{1}^{0},...,z_{r}^{0},y_{r+1},...,y_{n}\right), \text{ where} \right.$$

$$\left.z_{1}^{0},...,z_{r}^{0},y_{r+1},...,y_{n}\right. \text{ are distinct and in } M-Q_{m}\right\}$$

If we select  $Q_{m+r}$  equal to  $Q_m \cup \{z_1^0,...,z_r^0\}$  , then

 $F_{m+r,n-r}M = \{(y_{r+1},...,y_n), \text{ where } y_{r+1},...,y_n \text{ are distinct and in } M - Q_{m+r} \},$ 

and there is an obvious homeomorphism

$$h: F_{m+r,n-r}M \to \pi^{-1}(z_1^0,...,z_r^0)$$

defined by

$$h(y_{r+1},...,y_n) = (z_1^0,...,z_r^0,y_{r+1},...,y_n)$$

The proof of the local triviality of  $\pi$  will be carried out, for notational and descriptive convenience, only in the case of r=1. For the other cases [3]. Fix for consideration, therefore, a point  $x_0 \in M - Q_m = F_{m,1}M = F_{m,r}M$ . Add another point  $q_{m+1}$  to the set  $Q_m$  to form  $Q_{m+1}$  and pick a homeomorphism  $\alpha:M\to M$ , fixed on  $Q_m$ , such that  $\alpha(q_{m+1})=x_0$ . Let U denote a neighborhood of  $x_0$  in  $M-Q_m$  which is homeomorphic to an open ball, let  $\overline{U}$  denote the closure of U. Define a map  $\theta:U\times\overline{U}\to\overline{U}$  with the following properties. Setting  $\theta_z(y)=\theta(z,y)$  we require:

- (i)  $\theta_z: \overline{U} \to \overline{U}$  is a homeomorphism which fixes  $\partial \overline{U}$ .
- (ii)  $\theta_z(z) = x_0$ .

By (i),  $\theta$  can be extended to  $\theta: U \times M \to M$  be defining  $\theta(z,y) = y$  for  $y \notin U$ . The required local product representation

$$U \times F_{m+1,n-1} M \xrightarrow{\phi} \pi^{-1} (U)$$

is given by

$$\phi(z, z_2, ..., z_n) = (z, \theta_z^{-1} \alpha(z_2), ..., \theta_z^{-1} \alpha(z_n)).$$

$$\phi^{-1}(z, z_2, ..., z_n) = (z, \alpha^{-1}\theta_z(z_2), ..., \alpha^{-1}\theta_z(z_n)).$$

**Proposition 4.7** If  $\pi_2(M-Q_m)=\pi_3(M-Q_m)=0$  for each  $m\geq 0$  , then  $\pi_2F_{0,n}M=0$  .

**Proof** The exact homotopy sequence of the fibration  $\pi: F_{m,n}M \to F_{m,1}M = M - Q_m$  of theorem 4.6 gives an exact sequence

$$\dots \to \underbrace{\pi_3 \left( M - Q_m \right)}_0 \to \pi_2 F_{m+1,n-1} M \to \pi_2 F_{m,n} M \to \underbrace{\pi_2 \left( M - Q_m \right)}_0 \to \dots$$

Since  $\pi_2 \left( M - Q_m \right) = \pi_3 \left( M - Q_m \right) = 0$ , it follows that  $\pi_2 F_{m+1,n-1} M$  and  $\pi_2 F_{m,n} M$  are isomorphic.

By induction,

$$\pi_{2}F_{m+2,n-2}M \to \pi_{2}F_{m,n}M \to \pi_{2}F_{m,2}M$$

$$\pi_{2}F_{m+3,n-3}M \to \pi_{2}F_{m,n}M \to \pi_{2}F_{m,3}M$$

$$\vdots$$

$$\pi_{2}F_{m+n-1,1}M \to \pi_{2}F_{m,n}M \to \pi_{2}F_{m,n-1}M$$
(4.11)

and if we take as m=0, we obtain that,

$$\pi_2 F_{n-1} M \to \pi_2 F_{0n} M \to \pi_2 F_{0n-1} M$$
 (4.12)

$$\pi_2 F_{0,n} M \approx \pi_2 F_{n-1,1} M = \pi_2 F_{0,n-1} M = 0$$
 (4.13)

П

**Theorem 4.8** If  $\pi_2(M-Q_m)=\pi_3(M-Q_m)=\pi_0(M-Q_m)=1$  for every  $m\geq 0$ , then the following sequence of the groups and homomorphism is exact:

$$1 \to \pi_1 \left( F_{n-1,1} M, z_1^0 \right) \xrightarrow{j_*} \pi_1 \left( F_{0,n} M, \left( z_1^0, ..., z_n^0 \right) \right) \xrightarrow{\pi_*} \pi_1 \left( F_{0,n-1} M, \left( z_1^0, ..., z_{n-1}^0 \right) \right) \to 1$$
 (4.14)

where  $\pi_*$  and  $j_*$  are the homomorhism induced by the mapping  $\pi$  and j .

**Proof** 

$$\begin{split} & \dots \to \underbrace{\pi_{3}\left(M - Q_{m}, z_{1}^{0}\right)}_{1} \to \pi_{2}\left(F_{m+1, n-1}M, \left(z_{1}^{0}, ..., z_{n-1}^{0}\right)\right) \to \pi_{2}\left(F_{m, n}M, z^{0}\right) \to \underbrace{\pi_{2}\left(M - Q_{m}, z_{1}^{0}\right)}_{1} \\ & \to \pi_{1}\left(F_{m+1, n-1}M, \left(z_{1}^{0}, ..., z_{n-1}^{0}\right)\right) \to \pi_{1}\left(F_{m, n}M, z^{0}\right) \to \pi_{1}\left(M - Q_{m}, z_{1}^{0}\right) \\ & \to \underbrace{\pi_{0}\left(F_{m+1, n-1}M, \left(z_{1}^{0}, ..., z_{n-1}^{0}\right)\right) \to \pi_{0}\left(F_{m, n}M, z^{0}\right) \to \underbrace{\pi_{0}\left(M - Q_{m}, z_{1}^{0}\right)}_{1} \end{split}$$

By induction, we obtain that

$$1 \to \pi_1 \left( F_{n-1,1} M, z_1^0 \right) \xrightarrow{j_*} \pi_1 \left( F_{0,n} M, \left( z_1^0, ..., z_n^0 \right) \right) \xrightarrow{\pi_*} \pi_1 \left( F_{0,n-1} M, \left( z_1^0, ..., z_{n-1}^0 \right) \right) \to 1$$
 (4.15)

**Theorem 4.9 ( Artin [1] )** The group  $\pi_1 B_{0,n} R^2$  admits a presentation with generators  $\sigma_1, \sigma_2, ...., \sigma_{n-1}$  and defining relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 for all  $i, j = 1, ..., n-1$  with  $|i-j| \ge 2$  (4.16)

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for all } i = 1, ..., n-2$$

$$\tag{4.17}$$

**Proof (Fadell and Van Buskirk [8])** We introduced  $B_n$  with generators and relations in chapter 2. Until we established the isomorphism between  $B_n$  and  $\pi_1B_{0,n}R^2$ , we will use the symbols  $\overline{\sigma}_1,\overline{\sigma}_2,...,\overline{\sigma}_{n-1}$  for elements of  $\pi_1B_{0,n}R^2$  with  $\iota\colon B_n\to\pi_1B_{0,n}R^2$  defined by  $\iota(\sigma_i)=\overline{\sigma}_i$ ,  $1\leq i\leq n-1$ . We now give a definition for  $\overline{\sigma}_i$ . Recall the covering projection  $p\colon F_{0,n}R^2\to B_{0,n}R^2$ . Choose the point  $p((1,0),(2,0),...,(n,0))=\overline{z^0}$  as base point for the group  $\pi_1B_{0,n}R^2$ . Lift loops based at p((1,0),(2,0),...,(n,0)) in  $B_{0,n}R^2$  to paths in  $F_{0,n}R^2$  with initial point  $p((1,0),(2,0),...,(n,0))=\overline{z^0}$ . Then the generator  $\overline{\sigma}_i\in\pi_1B_{0,n}R^2$  is represented by by the path l(t) in  $F_{0,n}R^2$  given by

$$l(t) = ((1,0),(2,0),...,(i-1,0),l_i(t),l_{i+1}(t),(i+2,0),...,(n,0))$$
(4.18)

where  $l_i(t) = (i+t, -\sqrt{t-t^2})$  and  $l_{i+1}(t) = (i+1-t, \sqrt{t-t^2})$ . That is,  $l_i(t)$  is constant on all but the ith and i+1 st strings and interchanges those two in a nice way.

The proof of theorem 3.9 will be by induction on n, and will exploit the relationship between  $\pi_1 B_{0,n} R^2$  and  $\pi_1 F_{0,n} R^2$ . Let

$$\overline{v}: \pi_1\left(B_{0,n}R^2, \overline{z^0}\right) \to \sum_n$$

be defined as follows: Let  $\overline{\alpha} \in \pi_1 B_{0,n} R^2$  be represented by a loop

$$\overline{\alpha}: (I, \{0,1\}) \rightarrow (B_{0,n}R^2, \overline{z^0})$$

and let  $\alpha=(\alpha_1,...,\alpha_n):(I,\{0\})\to (F_{0,n}R^2,z^0)$  be the unique lift of  $\overline{\alpha}$  . Define

$$(\alpha) = \begin{pmatrix} \alpha_1(0), \dots, \alpha_n(0) \\ \alpha_1(1), \dots, \alpha_n(1) \end{pmatrix} \in \sum_n$$

The kernel of the homomorphism  $\bar{v}$  is the pure braid group,  $\pi_1 F_{0,n} R^2$ . Corresponding to the homomorphism  $\bar{v}$  is the homomorphism (we mentioned in chapter 2.)

$$v: B_n \to G_n$$

from the n-braid group  $\,{\bf B}_{\scriptscriptstyle n}\,$  to the symmetric group  $\,{\bf G}_{\scriptscriptstyle n}\,$  on n letters defined by:

$$v(\sigma_i) = (i, i+1)$$
  $1 \le i \le n-1$ . (4.19)

And we know that  $P_n = \ker v$ .

**Lemma 4.10** The homomorphism  $\iota: \mathbf{B}_n \to \pi_1 B_{0,n} R^2$  is an isomorphism onto if  $\iota|_{P_n}$  is an isomorphism onto  $\pi_1 F_{0,n} R^2$ .

**Proof of Lemma 4.10** The homomorphism v is clearly surjective, since the transpositions  $\left\{v\left(\sigma_i\right) \mid 1 \leq i \leq n-1\right\}$  generate  $\mathfrak{S}_n$ . Hence we have a commutative diagram;

$$1 \to P_n \to B_n \xrightarrow{v} \mathbb{G}_n \to 1$$

$$\downarrow^{l_n=l} \downarrow^{l} \qquad \downarrow^{l}$$

$$1 \to \pi_1 F_{0,n} R^2 \to \pi_1 B_{0,n} R^2 \xrightarrow{\bar{v}} \sum_{n} \to 1$$

with exact rows.  $\iota$  is an isomorphism with five lemma [5].

Now, we must show that  $\iota|_{P_n}$  is an isomorphism onto  $\pi_1 F_{0,n} R^2$ . For this purpose, we introduced a representation for a subgroup  $\mathbf{H}_n$  in  $\mathbf{B}_n$ . With the help of the Reidemeister-Schreier method,  $\mathbf{H}_n$  is exhibited as the semi-direct product of  $\mathbf{A}_n$  (which is an invariant free group generated by free generators  $A_{1,n}, A_{2,n}, ..., A_{n-1,n}$  [10]) and  $\mathbf{B}_{n-1}$ . And we presented a representation for  $P_n$ . Now, we refine  $P_n$  and find a relation between  $P_n$  and  $\pi_1 F_{0,n} R^2$ .

П

The group  $P_{n-1}$  can be regarded as the subgroup of  $P_n$  which is generated by  $\left\{A_{i,j},\ 1\leq i< j\leq n-1\right\}$ . Note that a natural homomorphism  $\eta:P_n\to P_{n-1}$  may be defined by the rule  $\eta\left(A_{i,j}\right)=A_{i,j}$  if  $1\leq i< j\leq n-1$ , while  $\eta\left(A_{i,n}\right)=1$ ,  $1\leq i< n$ . Thus  $\ker\eta=\mathbf{A}_n$ .

Corresponding to the homomorphism  $\eta:P_n\to P_{n-1}$ , we have the homomorphism  $\pi_*:\pi_1F_{0,n}R^2\to\pi_1F_{0,n-1}R^2$  of theorem 4.8. By theorem 4.8 we also know that  $\ker\pi_*=\pi_1F_{n-1,1}R^2=\pi_1\left(R^2-Q_{n-1}\right)$ , which is a free group of rank n-1.

It is easy to see that the following diagram is commutative:

$$1 \to \mathbf{A}_{n} \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow 1$$

$$\downarrow^{\iota_{n}|\mathbf{A}_{n}} \qquad \downarrow^{\iota_{n}} \qquad \downarrow^{\iota_{n-1}}$$

$$1 \to \pi_1 F_{n-1,1} R^2 \to \pi_1 F_{0,n} R^2 \xrightarrow{\pi_*} \pi_1 F_{0,n-1} R^2 \to 1$$

with exact rows. In the bottom row, the base point for  $\pi_1F_{0,n}R^2$  is  $\left(z_1^0,...,z_n^0\right)$ , so that  $z_n^0$  is the base point for  $\pi_1F_{n-1,1}R^2=\pi_1\left(R^2-z_1^0\bigcup...\bigcup z_{n-1}^0\right)$ . Now, we may identify the image  $\iota_n\left(A_{j,n}\right)$  of the generator  $A_{j,n}$  of  $\mathbf{A}_n$  as being represented by a loop based at  $z_n^0$  which encircles the point  $z_j^0$  once and separates it from  $z_1^0,...,z_{j-1}^0,z_{j+1}^0,...,z_{n-1}^0$ . Clearly the image set  $\left\{\iota_n\left(A_{j,n}\right),\ 1\leq j< n\right\}$  is a free basis for the free group  $\pi_1F_{n-1,1}R^2$ . And we know that  $\mathbf{A}_n$  is a free group, hence  $\iota_n|\mathbf{A}_n$  is an isomorphism onto. Now observe that  $P_1=1$  and  $\pi_1F_{0,1}R^2=1$ . Therefore  $\iota_1$  is an isomorphism. Assume inductively therefore that  $\iota_{n-1}$  is an isomorphism. Then, since  $\iota_n|\mathbf{A}_n$  is an isomorphism for each n,  $\iota_n$  is an isomorphism by five lemma [5]. This completes the proof of Therorem 4.9.

### **CONCLUSIONS**

In this master thesis, we focused on two groups: Braid groups and the fundamental group of configuration space. Firstly, we introduced braids with their algebraic and geometric defitinitions. And we refined generators and relations of  $B_n$  and we defined an operation for braids. Therefore, we obtained a group presentation for  $B_n$ . After that, we must show that when are two n-braids equivalent? For this purpose, we used word problem with solution. We applied Reidemeister-Schreier method to obtain generators and relations for subgroups of braid groups. With the help of these relations and generators and some properties of free groups, we presented an invariant free subgroup  $\mathbf{A}_n$  of  $\mathbf{B}_n$ . In addition, we introduced pure braid  $P_n$ .

Secondly, we gave information about configuration spaces. And we defined the fundamental group of configuration spaces. Especially, we indicated relations between Artin braid groups and the fundamental group of configuration space on  $\mathbb{R}^2$ . Consequently, we obtained an isomorphism between them.

- [1] Artin, E., (1947). Theory of Braids, Ann. of Math. (2) 48: 101–126.
- [2] Artin, E., (1947). Braids and Permutations. Ann. of Math. (2) 48: 643-649.
- [3] Kassel, C., and Turaev V., (2008). Braid Groups, First Edition, Springer Science +Business Media, New York.
- [4] Murasugi, K., and Kurpita B., (1999). A Study of Braids, First Edition, Kluwer Academic Publisher, Dordrecht.
- [5] Magnus, W., Karrass, A., and Solitar, D. (1976). Combinatorial Group Theory, Second Edition, Dover Publications, New York.
- [6] Hatcher, A., (2002). Algebraic Topology, First Edition, Cambridge University Press, Cambridge.
- [7] Fadell, E., and Neuwirth, L. (1962). Configuration Spaces, Math. Scand. 10: 111-118.
- [8] Fadell E. , and Van Buskirk , J. (1962). The Braid Groups of  $E^2$  and  $S^2$  , Duke Math. Journal 29 No. 2: 231-242
- [9] Birman, J.S., (1975). Braids, Links, and Mapping Class Groups, First Edition, Princeton University Press, New Jersey.
- [10] Chow, W. L., (1948). On the Algebraic Braid Group, Ann. of Math. 49: 654-658.
- [11] Artin, E., (1925). Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4: 47–72.
- [12] Birman, J.S., (1969). Mapping Class of Groups and Their Relationship to Braid Groups, Comm. Pure Appl. Math. 22: 213-238.

# **PERSONAL INFORMATION**

Name Surname : Mahmut KUDEYT

Date and Place of Birth : 25.11.1984 / İzmir

Foreign Languages : English, Danish

E-mail : kudeyt@yahoo.com

# **EDUCATION**

| Degree      | Area        | School/University         | Year of Grad. |
|-------------|-------------|---------------------------|---------------|
| M.Sc        | Mathematics | Yıldız Tec. University    | 2011          |
| Bachelor    | Mathematics | Yıldız Tec. University    | 2008          |
| High School | Science     | Muğla Dalaman High School | 2004          |

# ABROAD EXPERIENCE

| Year | School/University           | Mission / Aim |
|------|-----------------------------|---------------|
| 2011 | Aarhus University (Denmark) | M.Sc Thesis   |