
 

 

T.C. 
YILDIZ TECHNICAL UNIVERSITY 

INSTITUTE OF SCIENCE 
 
 

THE CONNECTION BETWEEN BRAIDS AND  

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE 

 

 

MAHMUT KUDEYT 

MSc THESIS 
DEPARTMENT OF MATHEMATICS 

MATHEMATICS PROGRAM 

ADVISOR 
PROF. DR. AYŞE KARA 

 

İSTANBUL, 2011 
 



 

 

T.C. 
YILDIZ TECHNICAL UNIVERSITY 

INSTITUTE OF SCIENCE 
 
 

THE CONNECTION BETWEEN BRAIDS AND  

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE 

 

 

MAHMUT KUDEYT 

MSc THESIS 
DEPARTMENT OF MATHEMATICS 

MATHEMATICS PROGRAM 

ADVISOR 
PROF. DR. AYŞE KARA 

 

İSTANBUL, 2011 
 



T.C. 

YILDIZ TECHNICAL UNIVERSITY 

INSTITUTE OF SCIENCE 

 

THE CONNECTION BETWEEN BRAIDS AND 

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE 

 

Thesis, which was prepared by Mahmut KUDEYT, has been accepted by the following jury on 

07.07.2011 as MSc THESIS at Yıldız Technical University Department of Mathematics. 

 

Advisor 

Prof. Dr. Ayşe KARA 

Yıldız Technical University 

 

 

Jury Members 

Prof. Dr. Ayşe KARA 

Yıldız Technical University                                                         _____________________ 

 

Assoc. Prof. Dr. Fatma ÖZDEMİR    

İstanbul Technical University                                                    _____________________ 

 

Assoc. Prof. Dr.Fatih TAŞÇI 

İstanbul Technical University                                                     _____________________ 



ACKNOWLEDGEMENTS 

 

 

I would like to express my deepest gratitude to my advisor Ayşe KARA, my second co-advisor 

Marcel BÖKSTEDT, who gave me the opportunity to come to Aarhus University (Denmark) 

and study with him, for their great assistance to my point of view in the area of mathematics 

and in life. Specially, I would like to thank to Prof. Marcel. Though the topic in this thesis was 

strange for me, Prof. Marcel made everything much easier for me. He didn’t hesitate to 

explain any details that I learned for my thesis subject. Although I finished my thesis with 

Marcel BÖKSTEDT, all of them expended great efforts in my background of mathematics. 

And they also encouraged me during my study. I am grateful to them for all their 

contributions in my life. 

 

Finally, I am thankful to my family for their confidence in me throughout my life. 

 

May, 2011 

 

Mahmut KUDEYT 

 

 

 

 

 

 

 

 

 

 

 



CONTENTS  

  Pages 

NOTATION ........................................................................................................................ vi 

LIST OF FIGURES .............................................................................................................. vii 

ABSTRACT ....................................................................................................................... viii 

ÖZET…………. ..................................................................................................................... ix 

          CHAPTER 1 

INTRODUCTION ................................................................................................................. 1 

1.1 Summary of the Literature .......................................................................... 1 

1.2 The Aim of the Thesis .................................................................................. 1 

1.3 Hypothesis ................................................................................................... 2 

          CHAPTER 2 

BRAIDS ............................................................................................................................... 3 

2.1 Introduction ................................................................................................ 3 

2.2.1 Basic Definition .................................................................................... 3 

2.2 Braids and Braid Diagrams .......................................................................... 5 

2.2.1 Geometric Braids ................................................................................. 5 

2.2.2 Braid Diagrams ..................................................................................... 7 

2.2.3 Reidemeister Moves on Braid Diagrams ............................................. 9 

          CHAPTER 3 

THE GROUP OF BRAIDS ................................................................................................... 19 

3.1 The Group of Braids .................................................................................. 19 

3.2 A Presentation for Braid Group ................................................................ 22 

3.2.1 Projection to the Symmetric Group .................................................. 33 

3.2.2 Definition of Pure Braids.................................................................... 34 

3.3  Word Problem .......................................................................................... 34 

3.3.1 Word Problem for the Braid Group ................................................... 34 

3.3.2 A Solution Of Word Problem ............................................................. 39 



3.3.3 A Presentation for the Pure n-braid Group ....................................... 47 

          CHAPTER 4 

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE ............................................. 63 

4.1 Configuration Space .................................................................................. 63 

          CHAPTER 5 

CONCLUSIONS ................................................................................................................. 73 

REFERENCES .................................................................................................................... 74 

CV .................................................................................................................................... 75 

 

 



vi 

 

NOTATION 

 

 

D  Unit Cube 

i
d                 i th string of n-braid in unit cube         

n
B               n-braid group         

I                 Closed interval [0,1]  

i
b                  i th string of n-braid    

D                Braid Diagrams 
1

2

±Ω              Reidemeister move 2 

1

3

±Ω              Reidemeister move 3 

∆                 Delta move 

ρ                Euclidean metric       

B
n

              n-braid group under equivalence relation 

i
σ                Generator for braid group (i th) 
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n
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n
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A

              
Free subgroup of n-braid group                   

n
H               The special subgroup of B

n
  

i
M               The right coset presentation  

,m n
F M         The configuration space  

2
R               Two dimensional Euclidean space       

 
2

1 0,n
B Rπ

    
Artin braid group with fundamental group  

2

1 0,n
F Rπ      Artin pure braid group with fundamental group 

n∑           Symmetric group 
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Düzenlenmiş (Configuration) uzayın temel grubu, fiber yapısı ile beraber teoremlerle 

açıklanmış ve örgü grup yapısına sahip olduğu gösterilip, örgü grup ile bu yapının arasında bir 

izomorfizma bulunmuştur. 
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       CHAPTER 1 

INTRODUCTION 

1.1 Summary of the Literature 

In the early part of the 20th century, using ordinary braids or plaits, found everywhere 

around us, as models, Emil Artin, a mathematician born in Germany, began a study 

[1],[2] that eventually developed into what is now known as braid theory.  

As might be expected, the original ruminations were to some extent intuitive, based on 

the physical, tractable nature of braids and plaits. 

But, over the course of the 20th century, braid theory has gradually been prospected, 

refined and polished, to use a goldmining analogy.  

Braid theory is, now, recognized as one of the basic theories in mathematics and is of 

benefit in such branches as topology and algebraic geometry. Also, it is of profound 

use in other areas of the sciences - physics, statistical mechanics, chemistry and 

biology. 

1.2 The Aim of the Thesis 

The purpose of this master thesis to provide a connection between braids and 

fundamental groups.  

The notion of braid is explained with its algebraic and geometrical properties. 

Especially, with the help of Reidemeister-Schreier method, algebraic properties of 

braid are refined for special subgroups. 

The word problem is introduced to obtain the invariant subgroup of braid groups 

which is provided the connection between braid groups and fundamental groups. 

Again, for our aim, configuration space is given with its fundamental group and 

structure of fiber bundle.   

1.3 Hypothesis 

Braid groups and fundamental group of configuration spaces are refined in algebraic  
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and geometrical settings. 
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CHAPTER 2 

BRAIDS 

We start, in chapter 2, with the fundamental concepts, most notably the braid groups 

and pure braids. 

2.1 Introduction 

We introduce the definition of braid which follows directly from Artin’s work (Artin 

[1]). 

2.1.1 Basic Definition 

Definition 2.1 Let D  be a unit cube, so ( ){ }D , , 0 , , 1x y z x y z= ≤ ≤ . On the top face of 

cube place n  points, 1 2, ,..., nA A A , and, similarly,  place n  points on the bottom face, 

1 2, ,..., nB B B . In Figure 2.1, we have drawn such a configuration, but the cube has been 

placed in perspective. 

For convenience, let us set 1

1 1
, ,1

2 1
A

n

 =  + 
, 2

1 2
, ,1

2 1
A

n

 =  + 
, … ,

1
, ,1

2 1
n

n
A

n

 =  + 
 

and also 1

1 1
, ,0

2 1
B

n

 =  + 
, 2

1 2
, ,0

2 1
B

n

 =  + 
,…, 

1
, ,0

2 1
n

n
B

n

 =  + 
. 
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Figure 2.1 The unit cube 

 

Now, join n  points 1 2, ,..., nA A A  with 1 2, ,..., nB B B  by means of n  polygonal 

segments/arcs 1 2, ,..., nd d d  (Strictly speaking, the segments should be polygonal, but, 

in order to make diagrams that we will draw to easier to view, we shall draw these arcs 

as smooth curves.). However, the arcs can be attached in such a way that the following 

three conditions hold: 

1) 1 2, ,..., nd d d  are mutually disjoint. 

2) Each id  connects some jA  to some kB , where j  and k  may or may not to be 

equal, id  is not permitted to connect jA  and kA (or jB  to kB ) . 

3) Each plane sE , such that z s=  and 0 1s≤ ≤ (in other words parallel to the xy-

plane), intersects each arc id  at one and only one point, Figure 2.2 (a) (In 

Figure 2.2(b), we give an example in which this condition does not hold ). 

 

Figure 2.2 An example of a 3-braid 
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Such a configuration of n  arcs 1 2, ,..., nd d d  is called n -braid, or braid with n  strings. As 

might be expected, id  is called a string. 

Example 2.2 The braid in Figure 2.2(a) is a 3-braid. Other examples of braids are given 

in Figure 2.3. 

 

Figure 2.3 Some example of braids 

Let us denote the set of all n -braid by nB . With example 2.2, we can see that 1-braid, 

2-braid, … , n -braid are mutually different braids. But we may refine the question, how 

many different braids are there for each n ? In order to answer this question; we have 

to know when two braids are equivalent or not. So we present braids in geometric 

settings to understand the notion of equivalence. 

Now, we shall extend D  to 2 I×ℝ  for the next sections. 

2.2 Braids and Braid Diagrams 

In this section we explain the braid groups in geometric terms. From now on, we 

denote by I  the closed interval [0,1]
 in the set of real numbers ℝ . By a topological 

interval, we mean a topological space homeomorphic to [ ]0,1I = . (For this section 

(Kassel and Turaev [3])) 

2.2.1 Geometric Braids 

Definition 2.3 A geometric braid on 1n ≥  strings ( )n braid−  is a set 
2b I⊂ ×ℝ  

formed by n  disjoint topological intervals called the strings of such that the projection 

2 I I× →ℝ  maps each string homeomorphically onto I  and 
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{ }( ) ( ) ( ) ( ){ }2

1 20 ,0,0 , ,0,0 ,..., ,0,0nb A A A× =∩ ℝ                             (2.1) 

{ }( ) ( ) ( ) ( ){ }2

1 21 ,0,1 , , 0,1 ,..., , 0,1nb B B B× =∩ ℝ                            (2.2) 

It is obvious that every string of b  meets each plane { }2 t×ℝ  with t I∈  in exactly one 

point and connects a point ( ), 0,0iA  to a point ( )( ),0,1is A , where ( )is A

{ }1 2, ,..., nB B B∈  called the underlying permutation of b . 

The Figure 2.4 is an example of geometric braid. Here x and y are the coordinates in 

2ℝ  and t I∈ . The underlying of permutation of this braid ( )1 3 2 4, , ,B B B B  

 

Figure 2.4 An example of a 4-braid  

We introduce the concept of isotopy belongs to geometric braids. 

Two geometric braids b and 
'b  on n strings are isotopic, if b  can be continuously 

deformed into 
'b   in the class of braids. More formally, b and 

'b  are isotopic if there is 

a continuous map 
2:F b I I× → ×ℝ  such that for each s I∈  the map 

2:sF b I→ ×ℝ   

sending x b∈  to ( , )F x s  is an embedding whose image is a geometric braid on n 

strings, 0 :bF id b b= → , and 
'

1( )F b b=
 
. Each sF  automatically maps every endpoint 

b  to itself. Both the map F  and the family of geometric braids { }( )s s I
F b

∈
 are called 

an isotopy of 0 ( )b F b=  into 
'

1( )b F b= . 
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It is obvious that the relation of isotopy is an equivalence relation on the class of 

geometric braids on n strings. The corresponding equivalence classes are called braids 

on n strings. 

2.2.2 Braid Diagrams 

To specify a geometric braid, one can draw its projection to { }0 I× ×ℝ
 
along the 

second coordinate and indicate with string goes “under” the other one at each 

crossingpoint. To avoid local complications, we shall apply this procedure exclusively to 

those geometric braids whose projections to { }0 I× ×ℝ  have only double transversal 

crossings. These considerations lead to a notion of a braid diagram. 

A braid diagram on n strands is a set D I⊂ ×ℝ  split as a union of n topological 

intervals called the strands of D  such that the following three conditions are met:  

 

(i) The projection  I I× →ℝ  maps each strand homeomorphically onto I . 

(ii) Every point of { } { } { } { }1 2 1 2, ,..., 0  or , ,..., 1n nA A A B B B× ×  is the endpoint of 

a unique strand. 

(iii) Every point of I×ℝ  belongs to at most two strands. At each intersection 

point of two strands, these strands meet transversely, and one of them is 

distinguished and said to be undergoing, the other strand being overgoing. 

 

Note that three strands of a braid diagram D  never meet in one point.  An 

intersection point of two strands of D  is called a double point or a crossing of D . The 

transversality condition in (iii) means that in a neighborhood of a crossing, D  looks, up 

to homoemorphism, like the set ( ){ }, 0x y xy = in 
2.ℝ  Condition (iii)  and the 

compactness of the strands easily imply that the number of crossings of D  is finite. 

In the figures, the strand going under a crossing is graphically represented by a line 

broken near the crossing; the strand going over a crossing is represented by a 

continued line. An example of a braid diagram is given in Figure 2.5. Here the top 
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horizontal line represents { }0×ℝ , the bottom horizontal line represents { }1×ℝ . In 

the sequal we shall sometimes draw and sometimes omit these lines in the figures.  

 

Figure  2.5 An example of a braid diagram on four strands 

We now decribe the relationship between braids and braid diagrams. Each braid 

diagram D  presents an isotopy class of geometric braids as follows. Using the obvious 

identification { }0I I× = × ×ℝ ℝ  , we can assume that  D  lies on { } 20 I I× × ⊂ ×ℝ ℝ . 

In a small neighborhood of every crossing of D  we slightly push the undergoing strand 

into ( )0, I× ∞ ×ℝ
 
by increasing the secondcoordinate while keeping the first and third 

coordinates. This transforms D  into a geometric braid on n strings. Its isotopy class is 

a well-defined braid presented by D . This braid is denoted by ( )Dβ . For instance, the 

braid diagram in Figure 2.5 presents the braid drawn in Figure 2.4. 

It is easy to see that any braid β  can be presented by a braid diagram. To obtain a 

diagram of β , pick a geometric braid b  that represents β  and is generic with respect 

to the projection along the second coordinate. This means thatthe projection of b  to 

{ }0 I× ×ℝ may have only double transversal crossings. At each crossing point of this 

projection choose the undergoing strand to be the one that comes from a subarc of b 

with larger second coordinate. The projection of b to { }0 I I× × = ×ℝ ℝ
 
thus yields a 

braid diagram, D , and it is clear that ( )Dβ β= . 

Two braid diagrams D and 'D on n  strands are said to be isotopic if thereis a 

continuous map :F D I I× → ×ℝ  such that for each s I∈ the set
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( )sD F D s I= × ⊂ ×ℝ
 
is a braid diagram on n  strands, 0D D= , and 

'

1D D= . It is 

understood that F maps the crossings of D  to the crossingsof sD  
for all s I∈

preserving the under/overgoing data. The family of braid diagrams { }s s I
D

∈  
is called an 

isotopy of 0D D= into 
'

1D D= . An example of an isotopy is given in Figure 2.6. It is 

obvious that if D is isotopic to 'D ,then ( ) ( )'D Dβ β= . 

 

Figure  2.6 An example of isotopy of braid diagrams 

2.2.3 Reidemeister Moves on Braid Diagrams 

The transformations of braid diagrams 2Ω , 3Ω  shown in Figures 2.7 and 2.8, as well as 

the inverse transformations 
1

2

−Ω ,
1

3

−Ω  (obtained by reversing the arrows in Figures 2.7 

and 2.8), are called Reidemeister moves. The moves affect only the position of a 

diagram in a disc inside I×ℝ  and leave the remaining part of the diagram unchanged. 

The move 2Ω  involves two strands and creates two additional crossings ( there are 

two types of 2Ω -moves, as shown in Figure 2.7 ). 

The move 3Ω  involves three strands and preserves the number of crossings. All these 

transformations of braid diagrams preserve the corresponding braidsup to isotopy. 

 

Figure 2.7 Reidemeister moves (2) 
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Figure2.8 Reidemeister moves (3) 

We say that two braid diagrams D ,
'D  are equivalent−ℝ if D can be transformed into 

'D  by a finite sequence of isotopies and Reidemeister moves 
1

2

±Ω , 
1

3

±Ω . It is obvious 

that if D ,
'D  are equivalent−ℝ , then ( ) ( )'D Dβ β=  . 

The following theorem asserts the converse. 

Theorem 2.4 Two braid diagrams present isotopic geometric braids if and only if these 

diagrams equivalent−ℝ . 

Proof The keypoint of Theorem 2.4 is that the diagrams of isotopic geometric braids 

are equivalent−ℝ . The proof of the theorem goes in four steps. 

Step 1 We introduce some notation used in the next steps. Consider ageometric braid 

2b I⊂ ×ℝ  on n strings. For 1,...,i n= , denote the i th string of b , that is, the string 

adjacent to the point ( ), 0,0iA , by ib . Each plane { }2 t×ℝ
 
with t I∈ meets ib  

in one 

point, denoted by ( )ib t . In particular, we have ( ) ( )0 ,0,0i ib A= . 

Let ρ  be the Euclidean metric on 3ℝ . Given a real number 0ε > , the cylinder 

neighborhoodε − of ib  
consists of all points ( ) 2,x t I∈ ×ℝ

 
such that 

( ) ( )( ), , ix t b tρ ε< . This neighborhood meets each plane { }2 2t I× ⊂ ×ℝ ℝ
 
along the 

open disc of radius ε centered at ( )ib t . 

For distinct { }, 1,...,i j n∈  , the function ( ) ( )( ),i jt b t b tρ→
 
is a continuous function 

on I  with positive values. Since I  is compact, this function has a minimum value.  

Set 
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( ) ( )( )
1

1
min min , 0

2
i j

i j n t I
b b t b tρ

≤ < ≤ ∈
= >                         (2.3) 

It is clear that the cylinder b neighborhoods− of the strings of b are pairwise disjoint. 

(In fact, b
 
is the maximal real number with this property.) 

For any pair of geometric braids b , 
'b  on n  strings and any 1,...,i n=  the function 

( ) ( )( )',
i i

t b t b tρ→  is a continuous function on I with nonnegative values. Since I  is 

compact, this function has a maximum value. Set 

( ) ( ) ( )( )'

1
, max max , 0i j

i n t I
b b b t b tρ ρ

≤ ≤ ∈
= ≥

∼

                          (2.4) 

The function ρ
∼

 satisfies the axioms of a metric: ( ) ( )' ', ,b b b bρ ρ=
∼ ∼

; ( )', 0b bρ =
∼

 
if and 

only if 
'b b= ; for any geometric braids, 

' '', ,b b b  on n strings, we have

( ) ( ) ( )'' ' ' '', , , .b b b b b bρ ρ ρ< +
∼ ∼ ∼

 
The latter follows from the fact that for some 1,...,i n=

and t I∈ , 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )

'' ''

' ' ''

' ' ''

, ,

             , + ,

             , + ,

i i

i i i i

b b b t b t

b t b t b t b t

b b b b

ρ ρ

ρ ρ

ρ ρ

=

≤

≤

∼ ∼

∼ ∼

∼ ∼

                          (2.5) 

Note also that 

( )' ' ,b b b bρ≤ +
∼

                                   (2.6) 

Indeed, for some t I∈  and certain distinct , 1,...,i j n∈  
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( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

( )

' ' ' '

' ' '

' '

1
,

2

1
   , , ,

2

1
   , 2 ,

2

    = ,

i j

i i i j j j

b b t b t

b t b t b t b t b t b t

b b b b b

b b b

ρ

ρ ρ ρ

ρ ρ

ρ

=

 ≤ + + 
 

 ≤ + + 
 

+

∼ ∼ ∼

∼ ∼

∼

                          (2.7) 

Step 2  A geometric braid is polygonal if all its strings are formed by consecutive 

(linear) segments; see Figure 2.9. Any geometric braid b on n strings can be 

approximated by polygonal braids as follows. Pick an integer 2� ≥  and an index

1,...,i n= . For 1,...,k �= , consider the segment in 2 I×ℝ with endpoints 
1

i

k
b

�

− 
 
 

and

i

k
b

�

 
 
 

. The union of these � segments is a brokenline, 
�

ib , with endpoints 

( ) ( )(0) 0 ,0,0�

i i ib b A= = and ( )(1) 1�

i ib b= . For sufficiently large � , this broken line 

lies in the cylinder b neighborhoods− of ib .  Therefore for sufficiently large � , the 

broken lines 1 ,...,� �

nb b
 
are disjoint and form a polygonal braid, 

�b , approximating b . 

Moreover, for any real number 0ε > and all sufficiently large � , we have ( ),
�

b bρ ε<
∼

. For instance, Figure 2.6 shows a polygonal approximation of the braid in Figure 2.4. 

 

Figure  2.9 A polygonal braid 
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We now reformulate the notion of isotopy of braids in the polygonal setting. To this 

end, we introduce so-called moves∆ −  on polygonal braids. Let A , B  , C  be three 

points in 2 I×ℝ  such that the third coordinate of A is strictly smaller than the third 

coordinate ofB and the latter is strictly smaller than the third coordinate of C . The 

move ( )ABC∆  applies to a polygonal braid 
2b I⊂ ×ℝ  whenever this braid meets the 

triangle ABC  precisely along the segment AC . (By the triangle ABC , we mean the 

linear 2-simplex with vertices A , B  , C .) Under this assumption, the move ( )ABC∆  

on b  replaces AC b⊂ by AB BC∪ , keeping the rest of b intact; see Figure 2.10, 

where the triangle ABC is shaded. The inverse move ( )( ) 1

ABC
−

∆  applies to a 

polygonal braid meeting the triangle ABC precisely along AB BC∪ . This move 

replaces AB BC∪ by AC . The moves ( )ABC∆  and ( )( ) 1

ABC
−

∆  are called moves∆ −

. 

 

Figure  2.10 Delta move 

It is obvious that polygonal braids related by a moves∆ − are isotopic. We establish a 

converse assertion. 

Claim 2.5 If polygonal braids b , 
'b  are isotopic, then b  can be transformed into 

'b  by a 

finite sequence of moves∆ − . 

Proof We first verify this claim under the assumption ( )', 10b b bρ <
∼

. Assumethat the 

i th string ib  
is formed by 1K ≥ consecutive segments with vertices

( ) 2

0 1,0,0 , ,..., KA i A A I= ∈ ×ℝ . We write 0 1...i Kb A A A= . Similarly, assume that 

'

0 1...i Lb B B B=
 

with 1L ≥  and 
2

0 1, ,..., LB B B I∈ ×ℝ . Note that 0 0A B=
 

and 



 

 

14 

 

{ }2 1K LA B= ∈ ×ℝ . Subdividing ib , 
'

ib  
into smaller segments, we can ensure that 

K L= , the points ,j jA B
 
have the same third coordinate for all 0,1,...,j K= , and the 

Euclidean length of the segments 1j jA A + , 1j jB B +   is smaller than 10b for j = 0, 1, . .  

.,K −1. The assumption ( )', 10b b bρ <
∼

 
implies that each horizontal segment j jA B

 

has length 10b< . The move ( )( ) 1

0 1 2A A A
−

∆
 
transforms 0 1...i Kb A A A=

 
into the string

0 2 0 2... ...K KA A A B A A= . The move ( )0 1 2B B A∆ transforms the latter in the string

0 1 2... KB B A A . Continuing by induction and applying the moves ( )( ) 1

1 2j j jB A A
−

+ +∆ ,  

( )1 2j j j
B B A+ +∆

 
for 0,1,..., 2j K= − , we transform ib  

into 
'

ib . The conditions on the 

lengths imply that all the intermediate strings as well as the triangles 1 2j j jB A A+ + ,

1 2j j jB B A+ +  
determiningthese moves lie in the cylinder b neighborhoods− of ib ; they 

are therefore disjoint from the cylinder b neighborhoods−
 
of the other strings of b. 

We apply these transformations for 1,...,i n=
 and obtain thus a sequence of 

moves∆ − transforming b into 
'b . 

Consider now an arbitrary pair of isotopic polygonal braids b ,
'b . Let

2:F b I I× → ×ℝ

be an isotopy transforming 0 ( )b F b=
 
into 

'

1( )b F b=
 
(the braids ( )sF b with 0 < s <1 

may be nonpolygonal). The continuity of F  implies that the function I 

( ) ( )'

', ( ), ( )s s
s s F b F bρ→

∼

is continuous. This function is equal to 0 on the diagonal 

's s= of I I× . These facts and the inequality (2.6) imply that the function I → ℝ , 

( )ss F b→
 
 is continuous. Since ( ) 0sF b >  for all s , there is a real number 0ε > such 

that ( )sF b ε>
 
for all s I∈ . The continuity of the function ( ) ( )'

', ( ), ( )s s
s s F b F bρ→

∼

now implies that for a sufficiently large integer � and all 1,2,...,k �= , 

( )( )1
( ), ( ) 10k �k �

F b F bρ ε− <
∼

                              (2.8) 
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Let us approximate each braid ( )k �F b
 

by a polygonal braid kp  
such that

( )( ), 10k � kF b pρ ε<
∼

. For 0p , �p , we take b , 
'b , respectively. By (2.6), 

( )( ) ( ), 9 10k k � k � kp F b F b pρ ε≥ − >
∼

                                                                             (2.9) 

At the same time, 

( ) ( )( )
( )( ) ( )

1 1 1

1

, , ( )

                      + ( ), ( ) ( ), 3 10 

k k k k �

k � k � kk �

p p p F b

F b F b F b p

ρ ρ

ρ ρ ε

− − −

−

≤

+ <

∼ ∼

∼ ∼
                          (2.10) 

Therefore ( )1, 2k k kp p pρ − ≤
∼

for 1,...,  .k �=
 
By the previous paragraph, 1kp −  

can be 

transformed into kp  
by a sequence of moves∆ − . Composing these transformations 

'

0 1 ... =  ,�b p p p b= → → →  we obtain a required transformation
'b b→ . This 

completes the proof of Claim 2.5. 

 

Step 3 A polygonal braid is generic if its projection to { }0I I× = × ×ℝ ℝ along the 

second coordinate has only double transversal crossings. Slightly deforming the 

vertices of a polygonal braid b  (keeping b∂ ), we can approximate this braid by a 

generic polygonal braid. Moreover, if 
',  b b are generic polygonal braids related by a 

sequence of moves∆ − , then slightly deforming the vertices of the intermediate 

polygonal braids, we can ensure that these polygonal braids are also generic. Note the 

following corollary of this argument and Claim 2.5 . 

Claim 2.6 If generic polygonal braids 
',  b b are isotopic, then b  can be transformed into 

'b  by a finite sequence of moves∆ −  such that all the intermediate polygonal braids are 

generic. 

To present generic polygonal braids, we can apply the technique of braid dagrams. The 

diagrams of generic polygonal braids are the braid diagrams, whose strands are 

formed by consecutive straight segments. Without loss of generality, we can always 
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assume that the vertices of these segments do notcoincide with the crossing points of 

the diagrams. 

Claim 2.7 The diagrams of two generic polygonal braids related by a move∆ −  are  

R-equivalent. 

Proof Consider a move∆ −  ( )ABC∆
 
on a generic polygonal braid b  producing a 

generic polygonal braid 
'b . Pick points 'A , 

'C  inside the segments AB , BC , 

respectively. Pick a point D  inside the segment  AC  such that the third coordinate of 

D  lies strictly between the third coordinates of 'A and 
'C . Applying to b the moves 

( )'AAD∆ , ( )'DCC∆ , we transform the segment AC into the broken line 
' 'AADCC . 

Further applying the moves ( )( ) 1
' 'ADC

−
∆  and  ( )' 'ABC∆ , we obtain 

'b . This shows 

that the move ( )ABC∆
 
can be replaced by a sequence of four moves∆ − along smaller 

triangles (one should choose the points 'A , 
'C , D so that the intermediate polygonal 

braids are generic). This expansion of the move ( )ABC∆  can be iterated. In this way, 

subdividing the triangle ABC into smaller triangles and expanding moves∆ − as 

compositions of moves∆ − along the smaller triangles, we can reduce ourselves to the 

case in which the projection of ABC  to I×ℝ meets the rest of the diagram of b either 

along a segment or along two segments with one crossing point. 

Consider the first case. If both endpoints of the segment in question lie on AB BC∪ , 

then the diagram of b is transformed under ( )ABC∆  by 2Ω . If one endpoint of the 

segment lies on AC and the other one lies on AB BC∪ , then the diagram is 

transformed by an isotopy. 

If the projection of ABC to I×ℝ meets the rest of the diagram along two segments 

having one crossing, then we can similarly distinguish several subcases. Subdividing if 

necessary the triangle ABC  into smaller triangles and expanding our move∆ −  as a 

composition of moves∆ −  along the smaller triangles, we can reduce ourselves to the 

case in which the move preserves the part of the diagram lying outside a small disk in 

I×ℝ  and changes the diagram inside this disk via one of the following six formulas: 
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   1 2 1 2 1 2d d d d d d+ + + + + +↔ , 1 2 1 2 1 2d d d d d d+ + − − + +↔ , 1 2 1 2 1 2d d d d d d− − + + − −↔                            (2.11) 

    1 2 1 2 1 2d d d d d d− − − − − −↔ , 1 2 1 2 1 2d d d d d d+ − − − − +↔ , 1 2 1 2 1 2d d d d d d− + + + + −↔                      (2.12) 

Here 1d
±

and 2d
±

 are the braid diagrams on three strands shown in Figure 2.11; for the 

definition of the product of braid diagrams, see Figure 2.4. It remains to prove that for 

each of them, the diagrams on the left-hand and right-hand sides are R-equivalent. The 

transformation 1 2 1 2 1 2d d d d d d+ + + + + +↔  is just 3Ω . For the other five transformations, the 

R-equivalence is established by the following sequences of moves: 

( )
( )

1 1
32 2

11
2 2

11
2 2

1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

1 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2

1 2 1 2 2 1 2 1 2 1 2 1 1 2

,

,w

w d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d dγ

γ

µ

− −

−−

−−

ΩΩ Ω+ + − − + + + − − + + + − − + +

Ω Ω− − + − − + + − − + + − − + − −

Ω Ω− − − − + − − − − − − + −

= → → →

= → → →

= → → →( )
11

2 2

1 1
32 2

1 2

1 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2

1 2 1 1 2 1 2 2 1 1 2 1 2 2 1 2

,

        ,

       .

d d

d d d d d d d d d d d d d d d d

d d d d d d d d d d d d d d d d

µ −−

− −

− − −

Ω Ω+ − − + − − − + + − − − + − − +

ΩΩ Ω− + + − + + + − − + + + − + + −

→ → →

→ → →

 

This completes the proof of Claim 2.7.  

 

 

Figure  2.11 Presentations of some braids (for generators) 

Step 4 We can now complete the proof of Theorem 2.4. It is obvious that 

R equivalent−
 
braid diagrams present isotopic braids. To prove the converse, consider 

two braid diagrams 1D , 2D  presenting isotopic braids. For 1,2,i =  straightening iD

near its crossing points and approximating the rest of iD  
by broken lines as at Step 2, 
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we obtain a diagram, 
'

i
D , of a generic polygonal braid, ib . If the approximation is close 

enough, then 
'

i
D is isotopic to .iD  

Then the braids 1b , 2b  are isotopic. Claim 2.6 implies that 1b  can be transformed into 

2b  by a finite sequence of moves∆ −  in the class of generic polygonal braids. Claim 2.7 

implies that the diagrams 
1

'D ,
2

'D
 
are R-equivalent. Therefore the diagrams 1D , 2D  are 

R equivalent− .  
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CHAPTER 3 

THE GROUP OF BRAIDS 

3.1 The Group of Braids 

As showing above, we understand the notion of isotopy of briads. Now, to try and 

figure out how we may attempt to show that nB  
for each n  has an infinite number of 

n -braids, we know { }1 1B = is trivial group and let us to look at the simplest non-trivial 

case, namely 2n = . Every 2-braid is equivalent to one of two types of braid, an 

example of the 2 types is shown in Figure 3.1 where the left-hand figure has 3 twists, 

while the right-hand figure has 4 twists. We will see later that if p and q are the 

number of twist of two braids, pβ  and qγ ,respectively, then , 1p q ≥  and p q≠  these 

braids are not eqivalent. So if we can prove this, then it follows that 2B  
has an infinite 

number of distinct braids. 

 

Figure 3.1 Comparison of two braids on two strings 

We would like to introduce the concept of the braid groups. The braid group is also 

sometimes called Artin's braid group. 



 

 

20 

 

Now, we define the product of n-braid. 

 

Definition3.1 Given two n-braid
2

1 2,b b I⊂ ×ℝ , we define their product 1 2bb  to be set 

of poins 
2( , , )x y t I∈ ×ℝ  such that 1( , , 2 )x y t b∈  if 0 1 2t≤ ≤   and 2( , ,2 1)x y t b− ∈  if 

1 2 1t≤ ≤ . If we think the product with figures, we shall see how it figures out in 

Figure 3.2. 

 

Figure  3.2 The product of two braids on three strings 

Proposition 3.2 If 1b , 2b  
are isotopic to n-braids

'

1b ,
'

2b , respectively, then 1 2bb  is isotopic 

to 
' '

1 2b b . 

Proof 
1

'

1b b∼ and 
2

'

2b b∼ . From the definition of isotopy, 1b  can be transformed into 
1

'b  

by finite sequence of Reidemeister moves or moves∆ − . Similarly, 2b  
can be 

transformed into 
2

'b   by finite sequence of Reidemeister moves or moves∆ −  . Let  

m,k 0≥  be integers. 

( ) ( ) ( ) '

1 1 1 1 10 1
....

m
b b b b b= → → → =                               (3.1) 

( ) ( ) ( ) '

1 2 1 2 1 2 1 2 1 20 1
...

m
b b b b b b b b b b= → → → = , so we obtain that 

'

1 2 1 2bb b b∼ . 

( ) ( ) ( ) '

2 2 2 2 20 1
....

k
b b b b b= → → → =         (3.2) 

( ) ( ) ( )
1 1 1 1 2

' ' ' ' ' '

1 2 2 2 20 1
...

k
b b b b b b b b b b= → → → = , so we also obtain 

1 2

' ' '

1 2b b b b∼ . 

Therefore we combine two results; ( )
1 2

' ' '

1 2 1 2bb b b b b∼ ∼ . 
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Proposition 3.3  The product of braids is associative, that is, 

( ) ( )1 2 3 1 2 3b b b b b b∼                                                           (3.3) 

Proof  In the Figure 3.3 (a)-(c), we give diagrams to prove above statement. Diagram 

(a) shows each n-braid, 1b , 2b , 3b , respectively. Diagram (b) indicates ( )1 2 3b b b  and 

diagram (c) indicates ( )1 2 3b b b . So, we can see that the product of braids is associative. 

 

 

 

Figure  3.3 The proof of associative of braids 

 

Proposition 3.4 The product of braids has a natural element. We shall denote this 

element by 1n . 

Proof  Let 1n  be the n-braid shown in figure. We see that this braid connects  jA  to 

jB . 
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Figure 3.4 Trivial braid 

 

And 1n  obviously satifies this relations: 

( ) ( )1  and 1n nb b b b∼ ∼                                                 (3.4) 

 

Proposition 3.5 For each n-braid b , there exists a n-braid b  such that 1nbb ∼  and 

1nbb ∼ . 

Such a n-braid is called the inverse of b and denoted by 
1b− . 

With the product operation and properties, we all have the necessary 

requirements for nB   to be a group. 

If nBβ ∈  be a n-braid, its equivalence classes is denoted by [ ]β . 

Theorem3.6 The set of equivalence class of n-braids Bn , forms a group. This group is 

usually called n-braid group or Artin’s n-braid group. 

Proof The product is given by Definition 3.1; associavity as a consequence of 

Proposition 3.2, the identity element is 1n  (Proposition 3.3) and the inverse element of 

[ ]β , denoted by 
1β −    (Proposition 3.4).   

 

3.2A Presentation For Braid Group 

In this section we define the generators of Bn  and obtain a group presentation for 

B .n  
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We begin with defining the generators of Bn  and answer this question, “ how do this 

generators generate Bn ? 

  

 

Figure 3.5 The generators of braid groups 

As in Figure 3.5 we shall denote these (n-1) braids by 1 2 1, ,...., nσ σ σ −  . 

The second set of (n-1) braids may be formed by interchanging the overcrossing and 

undercrossing information for each of n-braids of Figure 3.5. Thus, this set of n-braids 

is exactly the set of the inverse of each element in the first set. Therefore, we shall 

denote these by 
1 2 1

1 1 1, ,....,
n

σ σ σ
−

− − −
, see also Figure 3.6.  

 

Figure 3.6 The inverse of generators of braid groups 

Proposition3.7 Any n-braid β  (in Bn ) can be written as a product of elements  from the 

set { }iσ ±
 
with 1,2,..., 1i n= − , e.i,   

1 2

1 2
... k

ki i i

εε εβ σ σ σ=                                                              (3.5) 
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where each jε is either + or −and { }1,..., 1, 2,..., 1 .ki i n∈ −  

 

Proof  Let the Figure 3.7(a) be the braid projection of  β (in Bn ) denoted by D . We may 

partition this braid diagram by means of level planes such that two consecutive level planes 

only two strings are braided with preserving overgoing and undergoing datas as an example. 

 

Figure3.7 Indication of generators on braids 

This diagram can be approximated by polygonal braid and each section of Figure 3.7(b) 

shows an element of  { }iσ ±  with 1,2,..., 1.i n= −  So we obtain proof of proposition. 

To find a presentation for Bn , we must also find a set of defining relations. For this reason, we 

use induction with begining 3B . 

To obtain general relation, we must show that this equation 1 2 1 2 1 2σ σ σ σ σ σ=  is true. If 

we draw each equation’s figure, we see that this eqution’s figures are polygonal 

approximation of Reidemeister move 3Ω . Therefore they are in the same equivalence 

classes. So they present same element. 

Actually the relation 1 2 1 2 1 2σ σ σ σ σ σ=  still holds in Bn  for any 4n ≥ . 

 Similarly, we have to show that  

2 3 2 3 2 3σ σ σ σ σ σ=                                                            (3.6) 
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Figure  3.8 Proof of second relation of braid groups on the example 

We can see from their figures that first strings are constant, therefore we again use 

3Ω  and we obtain the proof. 

Continuing this process, we see that in Bn  for n > 2 the following relations hold, 

1 1 1i i i i i iσ σ σ σ σ σ+ + +=   for all 1,..., 2i n= −                                (3.7) 

Consider, in 4B  the product 1 3σ σ , Figure 3.9(a) , we show using elementary moves 

that this product is equal to 3 1σ σ , see Figure 3.9 (a)-(c) 

 

Figure3.9 Proof of first relation of braid groups on the example 

If we generalize this, we can easily see the following relations: 

i j j iσ σ σ σ=                               (3.8)
 

for all , 1,..., 1i j n= −  with 2i j− ≥ . 

 

Theorem 3.8 For any 1n ≥  the n-braid group Bn  has the following presentation; 

1 1 1

1 2 1

  for all 1,..., 2
B , ,....,

 for all , 1,..., 1 with 2.

i i i i i i

n n

i j j i

i n

i j n i j

σ σ σ σ σ σ
σ σ σ

σ σ σ σ
+ + +

−

= = −
=

= = − − ≥
. 
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Proof For proof, we have to find an isomorphism between a free group (G) and Bn . 

Let us begin with defining abstractly, in terms of a presentation, the following group G,  

1 1 1

1 2 1

  for all 1,..., 2
, ,....,

 for all , 1,..., 1 with 2.

i i i i i i

n

i j j i

x x x x x x i n
G x x x

x x x x i j n i j

+ + +

−

= = −
=

= = − − ≥
 

Now, we need to establish that G and Bn  are isomorphic as groups. That is to say, the 

natural correspondence i ix σ→ , for 1,2,..., 1i n= − , is a group isomorphism. 

Firstly, let us define a mapping  : BnGϕ →  as follows, let 1 2

1 2
... k

ki i iW x x x
εε ε=  be an 

arbitrary element of G, then set  

( ) ( )1 2 1 2

1 2 1 2
. .. . . . Bk k

k ki i i i i i n
W x x x

ε εε ε ε εϕ ϕ σ σ σ = = ∈                                (3.9) 

Now, our aim is to show that the mapping ϕ  is a group isomorphism between G and Bn . For 

this purpose, we use the following theorem. 

Theorem3.9 Let  

1 2 1 2
, ,....,  1, 1,..., 1

n m
G x x x R R R= = = =                               (3.10) 

where 1 2

1 2
... k

kj j j jR x x x
εε ε= , with  1 21 , ,..., kj j j n≤ ≤   and 1iε = ± . Further,  let H  be an 

arbitrary group and f  a mapping from 1 2, ,...., nx x xF  to H  defined by  

( )i if x W=                                                           (3.11) 

for 1,2,...,i n= . 

If, for 1,2,..., ,j m=  

( ) ( ) ( ) ( )1 2

1 2

1 2

1 2

...

           ... 1

k

k

k

k

j j j j

j j j

f R f x f x f x

W W W

εε ε

εε ε

=

= =
                               (3.12) 

inH , then f  defines a homomorphism 
^

:f G→ H  with 
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( ) ( ) ( ) ( )1 2
1 2

1 2 1 2

^ ^ ^ ^

... ...
l

l

l l
f x x x f x f x f x

ηη ηηη η
λ λ λ λ λ λ=                               (3.13) 

By theorem 3.9, it is sufficient to show that ϕmaps defining relations of G  to the 

identity element in Bn . This is quite easy to show, for  

( ) [ ]1 1 1 1 1
k l k l k l k l n
x x x xϕ σ σ σ σ− − − − = =   for 2k l− ≥                               (3.14) 

( ) [ ]1 1 1 1 1 1

1 1 1 1 1 1
1

i i i i i i i i i i i i n
x x x x x xϕ σ σ σ σ σ σ− − − − − −

+ + + + + + = =                                (3.15) 

To complete proof, we need to show that the homomorphism ϕ  is onto and one-to-

one. 

Firstly, let us show that ϕ  is onto. Suppose β  is an arbitrary element of Bn . By 

proposition 3.7, β  can be written as  

1 2

1 2
... k

ki i i

εε εβ σ σ σ=                                                       (3.16) 

where 1 21 , ,..., 1ki i i n≤ ≤ −  and 1iε = ± . Now, consider the element 1 2

1 2
... k

ki i iW x x x
εε ε=  in 

G , by definition,  

( ) ( ) [ ]1 2 1 2

1 2 1 2
. .. . . .k k

k ki i i i i i
W x x x

ε εε ε ε εϕ ϕ σ σ σ β = = =                               (3.17) 

Hence, ϕ  is onto. 

Suppose, now, in G  there exist elements g and g′  such that ( ) ( )g gϕ ϕ ′= . We may 

write 1 2

1 2
... k

ki i ig x x x
εε ε=  and 1 2

1 2
... l

lj j jg x x x
ηη η′ = , and let 1 2

1 2
. . . k

ki i i

εε εβ σ σ σ=  and 

1 2

1 2
. . . k

kj j j

ηη ηβ σ σ σ′ = . 

Since by assumption ( ) ( )g gϕ ϕ ′= , we must also have β β ′∼ . Hence we need to 

show either that g g′=  as elements of G , or equivalently 1 2

1 2
... k

kj j jW x x x
εε ε=  and 

1 2

1 2
... l

lj j jW x x x
ηη η′ =

 
thought of as words in free group ( )1 2 1, ,...., nx x x −F  can be connected 

by a finite sequence as follows, 

1 2 ... rW W W W W ′= → → → =                                      (3.18) 
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where for 1,2,..., 1i r= − , 1iW +  is obtained from iW  by either insertion or deleting of  a 

conjugate of one of the relation of G . If we denote the set of all relations of  G  by  

R then we can say that 
R

W W′∼ . 

We know from our previous work that since β β ′∼  we can construct a finite 

sequence  

1 2 ... sβ β β β β ′= → → → =                                          (3.19) 

We will show that it is possible to construct of type in (3.18) from (3.19). 

With this mind, suppose that iX , for 1,2,..., 1i s= − , is a word in G whose image 

under ϕ  in iβ  in (3.19). In particular, let us set 1X W= and sX W ′= . Then, if we can 

show that iX  is equivalent to 1iX +  relative to R , for 1,2,..., 1i s= − , will be able to 

construct exactly the finite sequence we require, namely, 

1 2 ... sW X X X W ′= → → → =                                     (3.20) 

and hence 
R

W W′∼ . 

Clearly, it is sufficient to look at only part of the sequence in (3.20), 1i iβ β +→  say. This, 

im turn, allows us to simply notation to β β′→ .   

Now, β′  is obtained from β  by applying a solitary elementary move. By definition of 

an elementary move, we replace an edge AB  by the edges AC CB∪ in the triangle 

ACB∆  see in Figure 3.10. Also, by definition, the image of  ACB∆  is also triangle. 

 

Figure 3.10 Delta move on 5-braid 
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It is easy to see from Figure 3.10 that the effect on β′  of an elementery move is to 

introduce the straight lines (arcs) AC  and CB . In general, AC  and CB  will produce 

new intersections with other strings in β′ . 

Since 1 2

1 2
. . . k

ki i i

εε εβ σ σ σ= , we can partition β  by k-1 level lines into k rectangles in each 

of which there is exactly one crossing of the form s

si

εσ . However, the introduction of 

ACB∆  will require that we add several level lines to take into account the extra 

intersections caused by AC  and CB . 

An important point to note is that, even though we add these extra intersections and 

hence level lines, when a string enters, say, over (under) an edge of ABC∆  then this 

string will always exit over (under) some edge of ABC∆ , see Figure 3.11. 

 

Figure 3.11 The position of strings in the delta move 

Now, let 1 2, ,..., mP P P  and 1 2, ,..., mQ Q Q  be the points of intersection of the level lines 

with AB  and AC CB∪ , respectively, see Figure 3.10. Next, for each 1,2,...,i m=  

create a new point iP′  on AB  just above iP . Clearly, we can construct iP′  in such a 

way that the narrow triangle i i iP Q P′∆  does not contain any of the crossing in β  or β′ , 

see Figure 3.12. 
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Figure 3.12 Subdiving for delta moves 

The above construction, in fact, is nothing more than the creation of a series of 

elementary moves and what may be termed moves∆ − . 

We continue this process of appliying moves∆ − until we reach m m iP Q QB′ ∪ . We 

replace this last polygonal segment by mP B′ , this is just an move∆− , see Figure 3.12. 

The above process yields the following sequence between β′  and β , 

0 1 1... m mβ γ γ γ γ β+′ = → → → → = , 

where 1i iγ γ +→ , for 1,2,..., 1i m= − , is the replacement of 1i i i iP Q QQ +′ ∪  by 

1 1 1i i i iP P P Q+ + +
′ ′ ′∪ . While,  0 1γ γ→  and  1m mγ γ +→  are moves∆ − . 

To next step is to find words 1 2 1, ,..., ,m mX X X X +  in G  such that ( )i iXϕ γ= . To find 

these words, we need to find an expression for each of the iγ  in the terms of product 

1

iσ
± . Essentially, there are two cases to consider. 

Case 1 

 

Figure 3.13 The positions of strings in delta move (case 1) 
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In Figure 3.13, if the bold face string enters quadrangle 1 1i i i iP QQ P+ +
′ ′  under (or over) a 

given edge, then it exists the same quadrangle under ( or over) some edge. It is clear 

for Figure 3.13 that iγ  and 1iγ + are of exactly the same form, namely 

1 1 1

1 1...i i j j l i iγ γ σ σ σ γ γ± ± ±
+ +

′ ′′= =                                       (3.21) 

So, in this case, iX  and 1iX +  are the same word, i.e., 

1 1 1

1 1...i i i j j l iX X X x x x X± ± ±
+ +

′ ′′= =                                   (3.22) 

where iX ′  and iX ′′  are words that correspond to iγ ′  and iγ ′′  respectively. 

On the other hand, if the string enters 1 1i i i iP QQ P+ +
′ ′  over (or under) i iP Q′  say, and it 

exits from the same edge i iP Q′ , then it is easy to see that iγ  and 1iγ +  are of exactly 

the same form 

Case 2  

 

Figure 3.14 The positions of strings with one crossing in delta move (case 2) 

The same remark as under Figure 3.13 applies to Figure 3.14.  

1 1 1 1 1

1 2 1 1 1... ...i i j j p p p p q p i

λ µ νγ γ σ σ σ σ σ σ σ σ γ± ± ± ± ±
+ − − + −

′ ′′=                               (3.23) 

where λ ,µ  and ν  are either +1 or -1, but ifλ µ≠  then ν µ= . 

 On the other hand,  

1 1 1 1 1

1 1 2 1 1... ...i i p j j p p p p q i

ν µ λγ γ σ σ σ σ σ σ σ σ γ± ± ± ± ±
+ + − − +

′ ′′=                               (3.24) 
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It is important that the sign of , ,λ µ ν  is observed carefully. 

Therefore,  

1 1 1 1 1

1 2 1 1 1
... ...i i j j p p p p q p iX X x x x x x x x x Xλ µ ν± ± ± ± ±
+ − − + −

′ ′′=                               (3.25) 

and 

1 1 1 1 1

1 1 2 1 1... ...i i p j j p p p p q iX X x x x x x x x x Xν µ λ± ± ± ± ±
+ + − − +

′ ′′=                               (3.26) 

 

But in G, since 
1 1

2,...,p j px x xν ± ±
−⇌ and 

1 1

1 1,...,p p qx x xν ± ±
− +⇌ , we have that  

^
1 1 1 1 1

1 2 1 1 1... ...i i i j j p p p p p q i
R

X X X x x x x x x x x Xλ µ ν± ± ± ± ±
+ − − − +

′ ′′=∼                             (3.27) 

Similarly,  

^
1 1 1 1 1

1 1 1 2 1 1... ...i i i j j p p p p p q i
R

X X X x x x x x x x x Xν µ λ± ± ± ± ±
+ + + − − +

′ ′′=∼                          (3.28) 

From the relations of G, we know that 1 1 1p p p p p px x x x x xλ µ ν ν µ λ
− − −=

 
where λ ,µ  and ν  are 

either +1 or -1, but ifλ µ≠  then ν µ= . Thus, 1i i
R

X X +∼ . Hence, we can say that 

0 1m
W X X W+ ′= =∼ . 

Therefore, ϕ  is one-to-one, so the proof of theorem is complete. 

 

 

Now we indicate homomorphism to extend our view with symmetric group (Kassel and 

Turaev [3]). 

Given a homomorphism  f  from nB  to a groupG , the elements ( ){ }
1,..., 1i i i n

s f σ
= −

=  of 

G satisfy the braid relations 

i j j is s s s=                                                               (3.29) 
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for all , 1,..., 1i j n= −  with 2i j− ≥  , and  

1 1 1i i i i i is s s s s s+ + +=                                                      (3.30) 

for 1,..., 2i n= − . Then, there is a converse relation which is given by the following 

lemma. 

Lemma 3.10 If 1 2 1, ,..., ns s s −  
are elements of a group satisfying the braid relations, then 

there is a unique group homomorphism : nf B G→  such that ( )i is f σ=
 

for all 

1,..., 1i n= − . 

Proof Let nF  be a free group generated by the set { }1 2 1, ,...., nσ σ σ − . There is a unique 

group homomorphism : nf F G→  such that ( )i if sσ =  for all 1,..., 1i n= − . This 

homomorphism induces group homomorphism : nf B G→  provided 
1 '( . ) 1f r r− = , 

equivalently, provided 
1 '( ) ( )f r f r− =  for all braid relations 1 'r r− = . To verify the first 

braid relation, we have  

( ) ( ) ( ) ( ) ( ) ( )i j i j i j j i j i j if f f s s s s f f fσ σ σ σ σ σ σ σ= = = = = . 

To verify the second braid relation, we similarly have 

1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )i i i i i i i i i i i i i i if s s s s s s f f f fσ σ σ σ σ σ σ σ σ+ + + + + + + += = = = . 

 

We introduce new relation between nG   which is symmetric group, and nB  . This relation 

provides us how to imagine the generators iσ  . 

3.2.1 Projection to the symmetric group 

We apply the previous lemma to the symmetric group nG =G . An element of nG  is a 

permutation of the set  { }1, 2,...,n . Consider the simple transpositionswhere is

permutes i and 1i + and leaves allthe other elements of { }1, 2,...,n fixed. It is an easy 
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exercise to verify that the simple transpositions satisfy the braid relations. By Lemma 

2.9, there is a unique group homomorphism : n nBπ →G such that ( )i is π σ=  for all

1,..., 1i n= − . This homomorphism is surjective because, as is well known, the simple 

transpositions generate nG . 

3.2.2Definition of pure braids 

 

The kernel of the natural projection : n nBπ →G is called the pure braid group and is 

denoted by nP : 

( ): .n n nP Ker Bπ= →G  

Pure braid group has some generators and relations. Before we indicate these, in the 

next section, we try to find a practical method that allow us to determine if a n-braid is 

equivalent to another n-braid or not. This sort of determination problem is called the 

word problem for group, in this case the braid group. We use the pure braid to solve 

problem.  

3.3 Word Problem  

We mentioned the notion of equivalence of n-braids in first chapter. Now, we 

introduce practical method to determine that whether two n-braids are equivalent or 

not [4].  

3.3.1 Word Problem For The Braid Group 

Definition 3.11 (Word problem forthe braid group): Given any two braids, 1β  and 2β  

say, find a method that will allow us to decide if or not 1 2β β= . 

It easy to see that we can modify this to say, find a method that will allow us to decide 

if or not 1β = (since if 1 2β β=  then 
2

1

1 1β β − = ). 

For this aim of this section is to introduce the various steps that make up the 

algeorithm. 
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(I) First Step- Is the braid in the question a pure braid or not? 

The reason why we ask this question is because the trivial braid 1 is a pure braid. 

Therefore, if we can show that a given n-braid β  is not pure braid then, immediately, 

we can say that β  cannot be 1. Hence, the algorithm terminates. 

So, how can we determine whether or not β  is pure braid? The answer is quite 

simple, all we need to consider is its braid permutation, ( )( )nπ β ∈G , defined above. 

For if ( ) ( )1π β =  then β  is a pure braid, however if ( ) ( )1π β ≠  then β  is not a pure 

braid.  

On determining the braid permutation, if β  is a pure braid then we need to proceed 

to step (II). 

(II) Second Step – The braid in question is a pure braid.   

Since β  is a pure n-braid, from the definition, we know each string of the braid, id  for

1,2,...,i n= , starts at the point iA  and terminates at iB . So, let us remove last string, 

nd , and replace it by a straight line joining nA  to nB , Figure 3.21(b), and denote the 

resultant n-braid by γ . 

 

Figure 3.15 An example of construction of combed braid 

Now, we may form another n-braid α  by taking the product of β  and 
1γ − , i.e, 

1α βγ −= . By construction, if we remove the final string of α then the resultant (n-1)-

braid, 
'α  say, is equivalent to trivial braid. Hence, we may think of 

'α  as just n-1 

parallel lines. Therefore,α , itself, may be thought of as a n-braid in which the first n-1 
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strings are parallel and the last string links with these parallel lines. Such a braid is said 

to be a combed braid, Figure 3.15(c).  

Let us set 1α α=  and 1γ γ= , so 1 1β α γ= , and let us shift our attention to 1γ . Since the 

final string of 1γ  is a straight line, to apply the above process to 1γ  we must start with 

the  (n-1)th string. Let us denote by 2γ  the n-braid obtained from 1γ  by removing the 

(n-1)th string and replacing it by straight line. Working through the above process, we 

shall obtain a combed braid 2α , but in this case the first (n-2) strings and the nth string 

are parallel and the (n-1)th string links with only the first (n-2) parallel strings. Thus, 

the process yields 1 2 2γ α γ= . 

By repeating the above process, finally, we shall arrive at a decomposition of β  in the 

form 

1 2 1... nβ α α α −=                                                            (3.31) 

where each n-braid iα  is a combined braid, and in 1nα −  every string except the second 

string is a straight line and second string links only with the first string. 

Proposition3.12 Let β  be a pure n-braid. Then, β  is the trivial braid if and only if each 

of the iα  in the decomposition given in (3.31) is trivial briad. 

Proof If each iα  is the trivial braid then clearly β  is also the trivial braid. 

Conversely, let us suppose that β  is the trivial braid. In addition, let iξ  be the (n-i)-

braid obtained from β  by removing its last i strings. By construction, 0ξ  is β , 1nξ −  is 

the 1-braid and nξ  is empty. Obviously, since β  is the trivial braid, each of the iξ , for 

0,1,2,..., 1i n= − , is also trivial braid. 

Similarly, let us define 
,j iα  as the (n-i)-braid obtained from 

jα  by removing the last i 

strings. Now, by construction, 
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0 1 2 1

1 1,1 2,1 1,1

2 1,2 2,2 1,2

2 1, 2 2, 2 1, 2

... ,

       ... ,

       ... ,

       

      ... ,

n

n

n

n n n n n

β ξ α α α

ξ α α α

ξ α α α

ξ α α α

−

−

−

− − − − −

= =

=

=

=

⋮

                              (3.32) 

where 
1,1α  is the trivial (n-1)-braid, 

1,2α , 
2,2α  are trivial (n-2)-braids, and, in general, 

1, 2, ,, ,..., ,i i i iα α α  for ,1,2,..., 2i n= − , are all trivial (n-i)-braids. 

Now , 
1, 2 2, 1 2, 2, ,...,n n n nα α α− − − − are all trivial 2-braids and 1nα −  is n-braid obtained from 2-

braid 
1, 2n nα − −  by adding n-2 parallel straight line strings. Therefore, the triviality of 

2 1, 2n n nξ α− − −=  implies that 1nα −  is the trivial n-braid. Hence, 

1 2 2... nβ α α α −= . 

By the very same reasoning as above, we can say that 
3 2, 3n n nξ α− − −= , and hence 2nα −  is 

the trivial braid. So, continıing in this way, we will eventually show that each iα  is 

indeed the trivial braid. 

 

(III) Third Step- Determine if or not each iα  is the trivial braid? 

It is well known that the word problem is solvable for free group which is the following 

theorem. So, if we can show that each iα  is an element of a free group, we can 

determine if or not each iα  is trivial braid. However, the arguments to prove contains 

some terms and notations, and we postpone these to the next section. 

Clearly, this third step is the final step of the algorithm. Hence, the steps allow us to 

completely solve the Word problem for Bn . 

Theorem 3.13 The Word problem for a group is solvable. 

Proof Let F be a free group of rank n generated by 1 2, ,..., nx x x . An element  
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1 2

1 2
... m

mi i ig x x x
εε ε=                               (3.33) 

of F is equal empty word, 1, if and only if we can eleminate each j

ji
x
ε

 by a serious of 1T  

(inserting) and 2
T (deleting) transformations. That is to say, we can only cancel 

products within g of the form 
1

iix x
−

 and 
1

i ix x− . If we cannot such cancelations, then g 

is never equal to the empty word. 

Therefore, to solve word problem for an arbitrary word, g, of a free group, F, we 

need only check if 
1

iix x
−

 or 
1

i ix x−  exist within g. Such a straight-forward method can be 

deemed reasonably practical, so the word problem may be said to be solvable for a 

free group. 

Now, we give an example to understand this steps. 

Example 3.14  Let us consider the pure 4-braid 

2 2 2

2 1 1 1

3 1 3 2 1 3 1 3 1 2 1 3β σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ− − − −=                          (3.34) 

Already shown in Figure 3.15(a). From Figure 3.15(a) and (b) , it is easy to see that 

1

2

1 2 2 1γ σ σ σ σ σ= . While, in Figure 3.16 we show by a sequence of diagrams that 
1βγ −  

is combined braid in Figure 3.15(c), and so  

( )( )( )
2 1 2 2 1

1 1 2 1 1 1 2 2

1 3 3 3 3 3 2 2 3α βγ σ σ σ σ σ σ σ σ σ σ σ σ σ− − − − − − −= =             (3.35) 

 

Figure 3.16 An example of process of word problem’s solution 
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Now, let us turn our attention to γ . By replacing the third string of γ  by a straight line, 

we obtain 
1

2

2γ σ= . Therefore, 

1 1

1

1 2 2 1 1

2 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 2 1

1 2

2 1 1 2 1 1 2 2    

                                                                         

α γγ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

→ →

− − − −

−

= = = =

= =

��	 ��	

                              (3.36)                   

and finally 3 2α γ= . Hence, wemay write β  as, see also Figure 3.17, 

1 2 3β αα α=                                                         (3.37) 

 

Figure 3.17 The conclusion of word problem for the example 

3.3.2 A Solution of Word Problem  

Our aim in this section to show that combed braids are elements of a free group. Then, 

since the word problem is solvable for a free group, this allow us to solve the word 

problem for Bn .  To this end, let us define nA
 
to be set of those combed braids for 

which the removal of last string results in the trivial (n-1)-braid. 

Now, we introduce some technical information about nA . 

Proposition 3.15 The group nA is generated by the following (n-1) elements, see also 

Figure 3.18, 
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( ) ( )
( ) ( )

1 2 2 1

3 2 1

2 1

2 1 1 1

1 1 2 2

2 1 1 1

2 1 2 3 2

2 1

2 1

2

1 1

... ... ,

... ... ,

n n

n n

n n

n n

n n

n n

n n

a

a

a

a

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ

σ

− −

− −

− −

− − −
− −

− − −
− −

−
− −

− −

=

=

=

=

⋮  

 

Figure 3.18 A combed braid 

 

Proof  Let β  be an element of nA . If we assume that β  is not the trivial n-braid, then 

the nth string nd  of β  has k, say, points 1 2, ,..., kp p p with a vertical tangent on the left-

hand side of the curve nd  and k-1 points 1 2 1, ,..., kq q q −  with a vertical tangent on the 

right-side, see Figure 3.19(a). 

Now keeping the points 1 2, ,..., kp p p  fixed, pull the piece of the string at each of the 

points iq  to the right, so that it clears all the strings on the right-hanf side, see Figure 

3.19(b). For clarity, we shall denote by 
'

i
q , respectively, the points with a vertical 

tangent on the right-hand side on the new string. 

 

Figure 3.19 The process of delta moves to obtain new braid 
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What the above process allows us to do is to deform β  into the following form  

1 2... kβ β β β=                                                              (3.38) 

in which for some i  each 
jβ  is of the form 

( ) ( )' ' '
1 2 1 1 2 1

1 2 1 1 1 2 1

2
... ...n n i i i n n

n n i i n nj

ε ε ε ε ε ε εβ σ σ σ σ σ σ σ− − + + − −

− − + + − −
=                          (3.39) 

Where, for 1 1i n≤ ≤ − and 1,..., 1,l i n= + − ',  ,  
ll iε ε ε  are either +1 or -1.  

Therefore, to prove the proposition it sufficies to show that each 
jβ  is a product of ia  

and their inverses. A diagrammatic proof is given in Figure 3.20(a) and (b). In Figure 

3.20(a), firstly, we choose four points a, b, c, d that lie close to each undercrossing 

point from q  to p  and from p  to 
'q . Having established these 4 points, we pull them 

to the right side, Figure 3.20(b). Then, it can be seen that β  is the product of  ia  and 

1

i
a− . 

 

Figure 3.20 The process of delta moves to obtain new braid 

Actually, we know that 1 2 1, ,..., na a a −  generate nA  from proposition 3.15. As we shall 

see, the exact nature of these generators relies on the use of the Reidemeister-

Schreier method [5].  

Proposition 3.16 The elements 1 2 1, ,..., na a a −  defined as in Proposition 3.15, freely 

generate the group nA . In other words, nA  is a free group freely generated by 

1 2 1, ,..., na a a − . 
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The remaining part of this section is devoted to the proof of this proposition. 

Firstly, let us consider a subset, nH  say, of Bn  that consists of all n-braids β  with the 

property ( ) ( )n nπ β = , i.e, the braid permutation, ( )π β  fixes n . This group obviously 

is a subgroup of Bn . Since 1β  and 2β  belong to the same right coset if and only if 

2

1

1 nβ β − ∈H , and so ( ) ( )1 2( ) ( )n nπ β π β= , each right coset nβH  of nH  in Bn  consists 

of n-braids β  with ( ) ( )n kπ β =  for some 1 .k n≤ ≤  Therefore, there are exactly n  

distinct right cosets of nH  in Bn , and hence,  

[ ]B :n n n=H                                                 (3.40) 

In particular, each right coset is represented by 

1 2 1...i n n n iM σ σ σ− − − +=                                       (3.41) 

for 1,2,..., ,i n=  and 1 1.M =  

Definition 3.17 Let G be a group given by 1 2
, ,..., , , ,...

n
G x x x P R Q= , where each ix  

is generator of G and P,R,Q,… are relators for G. And let iM  be right coset 

representative for G, in addition, we may write 

1 2

1 2
... k

ki i i iM x x x
εε ε=                                             (3.42) 

where 1 21 , ,..., ki i i n≤ ≤  and lε = ±  (for our case) and 1 1.M =  The set 

{ }1 2, ,...M M M=  is said to be Schreier system if for each iM  in (2.42) the following 

1k −  consecutive, initial parts of iM , 

3 11 1 2 1 2 1 2

1 1 2 1 2 3 1 2 1
, , ,..., ... k

ki i i i i i i i ix x x x x x x x x
ε εε ε ε ε ε ε ε −

−
                               (3.43) 

also belong to M . 

From definition 3.15, it is clear that { }1 2, ,..., nM M M M=  forms a Schreier system of 

right coset representatives. Now, using this system, we can compute a presentation for 
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nH . Since this process is straight-forward application of the Reidemeister-Schreier 

method. 

First, we shall determine the generators of nH . 

 

Lemma 3.18 The group nH  is generated by  

1 2 2, ,..., nσ σ σ −                               (3.44) 

and for 1,2,..., 1j n= −  by  

( ) ( )2 1 1 1

1 2 1 1 2 1
... ...

j n n j j j n n
a σ σ σ σ σ σ σ− − −

− − + + − −=                               (3.45) 

Having established the nature of the generators for nH , the next step is to find the set 

of defining relations. Once we apply Reidemeister-Schreier method to obtain relations 

with M .  

The first type of relations come from 

( )1 1 1 1
i k l k l i

M Mτ σ σ σ σ− − − =                               (3.46) 

for 1,2,...,i n=  and , 1,2,..., 1k l n= − with 2k l− ≥  and τ  is rewriting function (for the 

Reidemeister-Schreier method). But,  

( ) 1 11 1 1

1 1
1 1 1 1 1 1                                       

i k l k l i i k i k i k l i k l

i k l k i k l k i k l k l i k l k l

M M M M M M

M M M M

τ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ

− −− − −

− −
− − − − − −

= ×

× ×    

(3.47) 

 

Since M  is a Schreier system, the remaining factors are all the identity. The latter re-

arrangement allows us to determine relations. 
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Claim 3.19 

1

k 

           if   or  1

       if    

      if  1 

i

i k i k

i

M n i k n i k

M M n i k

M n i k

σ σ

σ −

 − > − < −

= − =
 − = −                                   

(3.48) 

 

where 1 2 1...i n n n iM σ σ σ− − − +=  and , 1,2,..., 1i k n= − .  

 

Proof:If we look the definition of  iM  and use relation when 2k i− ≥ , then we obtain 

the map.  

From the relation (3.46) and Claim 3.17, we derived these relations of nH :  

(1) i k k iσ σ σ σ= ,                 2,    , 1, 2,..., - 2k i i k n− ≥ =
                                  

(3.49) 

(2) 1

i i k ka aσ σ − = , ,  1k i i≠ +
                                                                                (3.50) 

 

The second and final of relations can be determined from 

( )1 1 1 1

1 1 1
1

i j j j j j j i
M Mτ σ σ σ σ σ σ− − − −

+ + + =
                                   

(3.51) 

for 1,2,...,i n=  and 1,2,..., 2j n= − . 

From the relation (3.51) and claim 3.17, we derived these relations of nH : 

(3) 1 1 1,     1,2,..., 3,i i i i i i i nσ σ σ σ σ σ+ + += = − (                                                        3.52) 

(4) 1

i 1,i i ia aσ σ − +=
                                                                                                   

(3.53) 

(5) 1 1

1 i i+1 1.i i i ia a a aσ σ − −
+ +=

                                                                                      
(3.54) 

Now, we found a presentation for nH  with help of Reidemeister-Schreier method. We 

shall indicate this presentation in the following proposition: 
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Proposition 3.20 The group nH has a presentation of the form  

1 2 2 1 2 1

1 1 1

, ,...., , , ,..., ,   2,    , 1, 2,..., - 2

                                                           1,2,..., 3    

                                       

n n i k k i

i i i i i i

a a a k i i k n

i n

σ σ σ σ σ σ σ

σ σ σ σ σ σ
− −

+ + +

= − ≥ =

= = −
1

i 

1

i 1

1 1

1 i i+1 1

           ,  1

                                               ,

                                               .

i k k

i i i

i i i i

a a k i i

a a

a a a a

σ σ

σ σ

σ σ

−

−
+

− −
+ +

= ≠ +

=

=

 

Now, let F be a free group generated by the 1n −  elements 1 2 1, ,..., .nu u u −  The reason 

for the the introduction F is that we wish to establish a homomorphism from nH   to 

Aut (F) , the group of aumorphism of F. Once we have defined the appropriate 

mapping, we shall use it to show that indeed nA  is a free group generated by 

1 2 1, ,..., na a a − . 

So, let us define a mapping ( ): n Autφ → FH  by, 1,2,..., 2k n= − , 

( ) 1

1

1 1 1

   if  ,  1,  1 1 

:

i i

k k k

k k k k

u u i k k i n

u u

u u u u

φ σ +

−
+ + +

 → ≠ + ≤ ≤ −

→

 →                                                      

3.55) 

and for 1,2,..., 1j n= −  by  

( ) 1:
j i j i j

a u u u uφ −→
                                                                                                               

(3.56) 

where 1,2,..., 1i n= − . 

 

Lemma 3.21 The mapping φ  defined above is a homomorphism from nH  to Aut (F) . 

Proof For the proof of lemma, we shall show the computation for the one of  relations:  

1

i 1i i ia aσ σ − +=
                                                

(3.57) 



 

 

46 

 

( )
( )

( )
( )

1
i 

1
i 

1 1 1

i 1 1

1

1 1 1

1 1 1 1 1 1

i 1 1 1 1 1

1

1 1 1

:       ,

: .

:       ,

: .

i i

i i

a

i i j j i j i i j i

i j i j i

a

i i i i i i i i i i i i i i i i

i j i i i

a u u u u u u u u

a u u u u

a u u u u u u u u u u u u u u

a u u u u

σσ

σσ

φ σ σ

φ

φ σ σ

φ

−

−

− − −
+ +

−
+ + +

− − − − − −
+ + + + +

−
+ + +

→

=

→

→ → →

→ → →

 

( )
( )

1
i 

1

i 1 1

1 1 1

:       ,

:  .

i ia

i i i i i i

i i i

a u u u u

a u u

σσ

φ σ σ

φ

−

−
+ +

+ + +→

→ → →  

 

We are now at the final stage of the proof of Proposotion 3.14. All the information is at 

hand to show that 1 2 1, ,..., na a a −  are free generators. If 2n = , then 1a  generates a free 

group of rank 1, since 
1 1ka ≠  for any 0k ≠ . So we assume that 3n ≥ . 

  

Suppose that 1 2 1, ,..., na a a −  are not free generators for nH  . Then, there exist a non-

trivial relation in nH  in terms of 1 2 1, ,..., na a a − , i.e. , 

( )1 2 1, ,..., 1nW a a a − =                                           
(3.58) 

If we apply the above homomorphism φ  to W, we obtain that 

( ) ( ) ( ) ( ) ( )( )1 2 1 1 2 1 F, ,..., , ,...,n nW a a a W a a a idφ φ φ φ− −= =
        

(3.59) 

Suppose that 

( ) 11 2

1 2 1 1 2 1, ,..., ... n

n nW a a a a a a
εε ε −

− −=
                            

(3.60) 

Then for 1,2,..., 1j n= − , 

( )( ) ( ) ( )1 11 1

1 1 1 1
... ...k k k k

k k k kj i i i j i i i
W u u u u u u u u

ε ε ε εε εφ − −

− −

− −−=
            

(3.61) 

However, since 1 2 1, ,..., nu u u −  are free generators of F, ( ) FW idφ =  implies  
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( ) ( )1 11 1

1 1 1 1
... ...k k k k

k k k kj i i i j i i i
u u u u u u u u

ε ε ε εε ε− −

− −

− −−=
                     

(3.62) 

for  1,2,..., 1j n= − . 

Let us denote 1 1

1 1
...k k

k ki i iu u u
ε ε ε−

−
 by g, then from the above relation, we see that g commutes 

with 
ju  for each 1,2,..., 1j n= − . Hence there exist an integer 

jλ  such that 
j

jg u
λ= , for 

1,2,..., 1.j n= −  

However, the above implies that if j l≠  then 
j l

j lu u
λ λ= . But 1 2 1, ,..., nu u u −  are free 

generators of F. Hence, 0j lλ λ= = . Therefore, g, itself, must be 1. So, by a finite 

number of T1 and/or T2 operations, g collapses down to the empty word. 

Consequently, the relation 1W = must be trivial relation. However, this contradicts our 

orginal assumption that there exists a non-trivial relation in nH  in terms of  

1 2 1, ,..., na a a − . Hence, 1 2 1, ,..., na a a −  form a set of free generators. So, we have finally 

reached the conclusion of the proof of Proposition 3.16. 

 

With the completion of the above proof, we are finally in a position to answer in a 

methodical fashion if or not a given n-braid β  is a trivial n-braid. 

3.3.3 A Presentation For The Pure n-braid Group 

We know that the set of all pure n-braids forms a normal subgroup nP  of Bn  . Since 

( ) ( )kernP π=  is the normal subgroup of Bn  .  

Claim 3.22 The quotient group Bn nP  is isomorfic to the symmetric group nG .  

Proof We know that there is a homomorhism : Bn nπ →G . And ( ) ( )kernP π= . So if 

we can use first isomorphism theorem, we can easily prove the claim. Because this 

claim is the application of this theorem. According to this theorem, there is a 

isomorphism such that ':Bn n nPπ →G . 
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Therefore, it is possible to find a Schreier system of right cosets [5] representatives of 

nP  in Bn . In this section, we use Reidemeister- Schreier method for .nP  But, we use 

induction which based on the presentation nH  to procedure a presentation of nP . 

For this purpose, we shall recall, nH  is the set of all n-braids β  with the property 

( ) nπ β = , that is, those that fix n. Let 1n−H  be subset of nH  consisting of all n-braids 

β  with the property ( ) ( 1) 1n nπ β − = − . Hence every element of 1n−H  fixes both n-1 

and n. It is not too hard to see that 1n−H  is a subgroup of nH . We may define a 

subgroup kH , for 1,2,...,k n= , of 1k+H  that consists of all n-braids that fix k . 

Therefore, kH  consists of all n-braids β  with ( )( )l lπ β =  for , 1,..., .l k k n= +  It is 

easy to see that we have the following sequence of subgroups, 

1 2 1B ...n n n−⊃ ⊃ ⊃ ⊃ ⊃H H H H
                               

(3.63) 

Furthermore, [ ]1 :k k k+ =H H  for 1,2,..., 1k n= −  and 1 2( )=H H  is the pure n-braid 

group nP . 

By choosing a suitable Schreier system, our aim is to use the presentation of nH  as the 

first step in an inductive process that yields a presentation of kH , for 

1, 2,...,2k n n= − − . In fact, a Schreier system of right coset representatives of kH  in 

1k+H  for 1, 2,...,2k n n= − −  is given by ( ){ }, 1, 2,...,
k

i
� i k= , with  

( )
1 2...

k

i k k i� σ σ σ− −=  and 
( ) 1
k

k� =
                              

(3.64) 

We have shown that nH  is generated by 1 2 2, ,..., nσ σ σ −  and the pure n-braids 

1 2 1, ,..., na a a −  . More generally, we define a pure n-braid 
, ,i jA  for 1 i j n≤ < ≤ , as  

( ) ( )2 1 1 1

, 1 2 1 1 2 1
... ...

i j j j i i i j j
A σ σ σ σ σ σ σ− − −

− − + + − −=
                  

(3.65) 
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Figure 3.21 A generator of pure braid group 

By convention, we assume that 
, 1j jA = . In terms of notation, ia  is just 

,i nA . 

We can use { },i nA  to obtain a presentation for 1n−H . In fact, 1n−H  is generated by  

( )( ) ( ) ( )
1

1 1 1
,

n n n

i j i j i jg � � �σ σ σ
−

− − −=
                                 

(3.66) 

and 

( )( ) ( ) ( )
1

1 1 1

, , ,,
n n n

i k n i k n i k ng � A � A � A
−

− − −=
                         

(3.67) 

for , 1,2,..., 1i k n= −  and 1,2,..., 2j n= − . 

To obtain more explicit forms of these generators of these generators, we need the 

following lemma. 

Lemma 3.23 With the i�  as above, 

(1) 

( )1
2 3

2 3

2 3 1

2 3 1

...

...            if   1 or 

              = ...      if  1

...         if    

n

i j n n i j

n n i

n n i i

n n i

�

j i i j

i j

i j

σ σ σ σ σ

σ σ σ

σ σ σ σ

σ σ σ

−
− −

− −

− − −

− − +

=

< − <


− =
 =                                                

(3.68) 

 

(2) 
( ) ( )1 1

,

n n

i k n i
� A �

− −=
                                                                                                     

(3.69) 
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Proof Let 
( )1n

i j�β σ−= , and let us compute ( ) ( 1)nπ β − . If 1 or j i i j< − <  then 

( ) ( 1)n iπ β − = . Hence, 

( ) ( )1 1n n

i j i� �σ− −=
                                              

(3.70) 

The other case in (1), if we use same method which is given for first case, we can easily 

obtain the other results. 

Turning now to (2), since 
,k nA  is a pure n-braid, we have  

( )( ) ( )( )1 1

,
( 1) ( 1)

n n

i j n i
� A n � n iπ π− −− = − =

             
(3.71) 

Now, (2) is a direct consequence of above equation. 

 

Therefore, for 1,2,..., 2j n= −  and 1,2,..., 1i n= − , we obtain that 

( )( ) 11

, 1

     if   1

   if  
,

1        if  -1

 if   

j

jn

i j

j n

j i

i j
g �

i j

A i j

σ

σ
σ −−

−

< −


<
= 

=
 =                                                                                       

(3.72) 

Further, for , 1,2,..., 1i j n= − , 

( )( )
,

1

, 1,

1

1, 1, 1,

  if  j

  if  

  if  i

j n

n

i j n n n

n n j n n n

A i

g � A A i j

A A A j

−
−

−
− − −

 <

= =


<                                                                         

(3.73) 

Therefore, 1n−H  is generated by 1 2 3
, ,...,

n
σ σ σ −  and 

1, 1 2, 1 1, 2, 1,,..., , , ,..., .n n n n n n nA A A A A− − − −  

The next step is to determine the defining relaitons for 1n−H . In fact, there are two 

types of defining relations for  n
H . 
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1 1 1

(1)                 for  , 1, 2,..., - 2
 (I)

(2)    for  1, 2,..., 3

i k k i

i i i i i i

i k n

i n

σ σ σ σ

σ σ σ σ σ σ+ + +

= =


= = −                                                             

(3.74) 

1

, i ,

1

, i 1,

1 1

1, i i+1,n , 1,

(1) =         for  1,2,..., 2,  1,2,..., -1,  k i,i+1    

(II) (2) =        for  1,2,..., 2  

(3)   for  1,2,..., 2  

i k n k n

i i n i n

i i n i n i n

A A i n k n

A A i n

A A A A i n

σ σ

σ σ

σ σ

−

−
+

− −
+ +

 = − = ≠


= −


= = −              

(3.75) 

Now, in order to find some information on the relations for 1n−H , we need to compute 

( ) ( )( )( )11 1n n

i i� R �τ
−

− −
 with 1 1i n≤ ≤ −  for various relations R  in (I)  and (II) . 

 

Proposition 3.24 For 1 2j k n≤ < ≤ −  and 2j k− ≥ , the relation (I )(1)n

1 1 1j k j kR σ σ σ σ− −= =  yields two types of relations. 

(1)    for 1 3 and 2j k k j j k n j kσ σ σ σ= ≤ < ≤ − − ≥  

1

, 1 , 1(2)    for  1 3,  1 2 and , 1p q n p q nA A p n q n q p pσ σ −− −= ≤ ≤ − ≤ ≤ − ≠ +                     (3.76) 

Proof Let us compute 
( ) ( )( )( ) ( ) ( )( )( )1 1

1 1 1 11 1 1
n n n n

i i i j k j k i� R � � �τ τ σ σ σ σ
− −

− − − −− −= =  and find 

relations. 

( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1
1 11 1

1 1 1
1 1 1 1 1 11 1

1
1 11 1 1 1

n n

i j k j k i

n n n n n n

i j i j i j k i j k i j k j i j k j

n n

i j k j k i j k j k

� �

� � � � � �

� �

τ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

−− −− −

− − −
− − − − − −− −

−
− −− − − −

=

= × ×

×
         

(3.77) 

For 1 1i n≤ ≤ − . From the above equation, we find this relations:  
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1

1, 1 1, 1

1 1

(1)                      if  1 1

(2) the trivial relation             if  1 1

(3)       if   

(4)                 if   1,  1

(5) the triv

j k k j

j k n j k n

j k k j

j k i

j k i

A A k i

j i k i

σ σ σ σ

σ σ

σ σ σ σ

−
− − − −

− −

= ≤ < < −

≤ < = −

= =

= < − = +

1

1 , 1 1 , 1

1 1 1 1

ial relation             if   1,  

(6)        if   2

(7)            if   1 2  

k j n k j n

j k k j

j i k i

A A j i k n

i j k n

σ σ

σ σ σ σ

−
− − − −

− − − −

= − >

= = < ≤ −

= + ≤ < ≤ −
                                                   

(3.78) 

And if we generalize above relations, we find two relations are given in proposition 

3.22. 

Now, we introduced general relations with where they derived from. 

(I )(2)n

1 1 1

1 1 1 1j j j j j jσ σ σ σ σ σ− − −
+ + + =                                                                                                  

(3.79) 

1 1 1(1)    for 1 4j j j j j j j nσ σ σ σ σ σ+ + += ≤ < −  

1

, 1 1, 1(2)      for 1 3j j n j j nA A j nσ σ −− + −= ≤ ≤ −
                                                                           

(3.80) 

( ) 1 1

1, 1 1, 1 , 1 1, 1
(3)   for  1 3

j j n j j n j n j n
A A A A j nσ σ − −
+ − + − − + −= ≤ ≤ −  

1 1

, i ,(II )(1)    1n i k n k nA Aσ σ − − =
                                                                                                            

(3.81) 

1

, ,(1)    if  1 3,  ,  1j k n j k nA A j n k j jσ σ − = ≤ ≤ − ≠ +  

, 1 , , , 1(2)   if  1 2j n k n k n j nA A A A k j n− −= ≤ ≤ ≤ −
                                                                          

(3.82) 

1 1 1

, 1 1, , 1, , 1 1, , 1,(3)   if  1 2,  1 1,  j n n n k n n n j n n n k n n nA A A A A A A A j n k n j k− − −
− − − − − −= ≤ ≤ − ≤ ≤ − <  

1 1

, i 1,(II )(2)  1n i i n i nA Aσ σ − −
+ =                                                                                                             

(3.83) 

1

, 1,

1 1

, 1 , , 1 1, , 1,

(1)     for  1, 2,..., 3

(2)   for  1, 2,..., 2

j j n j j n

j n j n j n n n j n n n

A A j n

A A A A A A j n

σ σ − +

− −
− − − −

= = −

= = −
                                                      

(3.84) 

1 1 1

1, i i+1,n , 1,(II )(3)  1n i i n i n i nA A A Aσ σ − − −
+ + =                                                                                          

(3.85) 
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1 1

1, 1, , 1,

1 1 1

, 1 1, , 1 1, , 1, 1, 1,

(1) =   for  1 3 

(2)     for  1, 2,..., 2

j j n j j n j n j n

j n n n j n n n j n n n j n n n

A A A A j n

A A A A A A A A j n

σ σ − −
+ + +

− − −
− − − − − + −

≤ ≤ −

= = −
                              

(3.86) 

Now, we present all generators and relations for 1n−H . 

Proposition 3.25 The group 1n−H  has the following presentation, 

generators:  

1 2 3

1, 1 2, 1 2, 1

1, 2, 1,

, ,..., ,

, ,..., ,

, ,...,

n

n n n n

n n n n

A A A

A A A

σ σ σ −

− − − −

−                                                                                                                    

(3.87) 

relations: 

1

1 1 1

(I)

   (1)  if  1 3 and 2

   (2)  if  1,2,..., 4

n

j k

j j j j j j

j k n j k

j n

σ σ

σ σ σ σ σ σ

−

+ + +

≤ < ≤ − − ≥

= = −

⇌  

1

1

, j ,

1

, 1 j , 1

(II)

   (1) =   if  1 3,  1 1 and , 1

   (2) =   if  1 3,  1 2 and , 1

n

j k n k n

j k n k n

A A j n k n k j j

A A j n k n k j j

σ σ

σ σ

−

−

−
− −

≤ ≤ − ≤ ≤ − ≠ +

≤ ≤ − ≤ ≤ − ≠ +

 

1

1

, j 1,

1

, 1 j 1, 1

(III)

  (1) =   if  1 3

  (2) =    if  1 3

n

j j n j n

j j n j n

A A j n

A A j n

σ σ

σ σ

−

−
+

−
− + −

≤ ≤ −

≤ ≤ −

 

1

1 1

1, j j+1,n , 1,

1 1

1, 1 j j+1,n-1 , 1 1, 1

(IV)

   (1)   if  1 3

   (2)    if  1 3

n

j j n j n j n

j j n j n j n

A A A A j n

A A A A j n

σ σ

σ σ

−

− −
+ +

− −
+ − − + −

= ≤ ≤ −

= ≤ ≤ −

 

1

, 1 ,

(V)

   (1)    if  1 2

n

j n k nA A k j n

−

− ≤ < ≤ −⇌
 

1

1 1

, 1 , , 1 1, , 1,

(VI)

    (1)   if  1, 2,..., 2

n

j n j n j n n n j n n nA A A A A A j n

−

− −
− − − −= = −
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1

1 1 1

, 1 , , 1 1, , 1, , 1,

(VII)

   (1)   if  1, 2,..., 2

n

j n j n j n n n j n n n j n n nA A A A A A A A j n

−

− − −
− − − − −= = −

 

1

1

1, , 1, , 1

(VIII)

   (1)   if  1 2,  1 1 and 

n

n n k n n n j nA A A A j n k n j k

−

−
− − − ≤ ≤ − ≤ ≤ − <⇌

 

From proposition 3.24, we can see that there are two types of relations: one set involving iσ  

and 
,j kA , and the other set involving only 

,j kA . Since nP  does not involve any iσ , the first set 

of relations will eventually disappear. But, the second set of relations can be derived from the 

first set of relations. In addition, the second set of relations does not produce any new type of 

relations. With this in mind, we will give a presentation for nP  in following theorem. 

Theorem 3.26 The pure n-braid group nP  has following presentation, 

generators: ( )2 1 1 1

, 1 2 1 1 2 1
... ...

j k k k j j j k k
A σ σ σ σ σ σ σ− − −

− − + + − −=  for  1 j k n≤ < ≤  

relations:  

, ,( )     if  1   or  1r s i jA A A r s i j n r i j s n≤ < < < ≤ ≤ < < < ≤⇌  

1 1

, , , , , ,( )   if  1r s r j r s s j r j s jB A A A A A A r s j n− −= ≤ < < ≤  

1 1 1

, , , , , , , ,( )   if  1r s s j r s s j r j s j r j s jC A A A A A A A A r s j n− − −= ≤ < < ≤  

1

, , , ,( )   if  1i j s j i j r iD A A A A r s i j n− ≤ < < < ≤⇌  

( )D is equivalent to  

1
' 1 1 1 1 1

, , , , , , , ,
( ) , ,   if  1 .

r i s j r i i j r j s j i j r j
D A A A A A A A A r s i j n

−− − − − −   = ≤ < < < ≤     

Proof Assuming the other relations hold, we shall show, firstly, that relations ( )D  and 

'( )D  are equivalent. 
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( )( ) ( )
( ) ( )




1 1 1

, , , , , , , ,

1 1 1 1 1

, , , , , , , , , , , ,

1 1 1 1 1

, , , , , , , , , , , ,

( )

1

, , , ,

( )

     

     

     

r i i j s j i j r i i j s j i j

r i i j r i r i s j r i r i i j r i i j s j i j

r i s j r i r i i j r i i j s j i j r i i j r i

C

r i s j r i i

D A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A

− − −

− − − − −

− − − − −

−

⇔ =

⇔ =

⇔ =

⇔ = ( )( )( )1 1 1 1 1 1

, , , , , , , , , , , ,

1
1 1 1 1 1

, , , , , , , ,

'

     , ,

     ( )

j r j i j r j i j i j s j i j i j r j i j r j i j

r i s j r i i j r j s j i j r j

A A A A A A A A A A A A

A A A A A A A A

D

− − − − − −

−− − − − −   ⇔ =    

⇔

 

Lemma 3.27 Let us write 
p�  for 

( )k
p� , and set 1,2,..., .p k=  

Case 1, ,r k<  

( )
( ) ( )
( ) ( )

1

, ,

1

, ,

1 1

, , 1, ,

(1)    if  

2    if  

3     if  

p r s p r s

p r s p k s

p r s p k s r s k s

� A � A r p k s

� A � A r p k s

� A � A A A p r k s

τ

τ

τ

−

−

− −
−

= < ≤ <

= = ≤ <

= < < <

 

Case 2, r k= , 

( )1 1

, , 1, ,
(1)  

p r s p k s r s k s
� A � A A Aτ − −

−=  

Case 3, r k> , 

( )1, ,
(1)  

p r s p r s
� A � Aτ − =  

Lemma 3.28 The following commutative relations are consequences of relations 

( ) ( )A D− . 

( )
( )

1

, , , ,

1 1

, , , , , ,

, , ,

(1)    if  1

2    if  1

3    if  1

k s l s k s k j

k j l j k j k s m s k s

r j k j r k

A A A A l k s j n

A A A A A A l m k s j n

A A A r k j n

−

− −

≤ < < < ≤

≤ < < < < ≤

≤ < < ≤

⇌

⇌

⇌
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Proof  

1 1

, , , , , , , ,

1 1 1

, , , , , , , ,

(1)  k j k s l s k s k s l s k s k j

k s k j k s l s k s k j k s l s

A A A A A A A A

A A A A A A A A

− −

− − −

=

⇔ =  


( )

1 1 1

, , , , , , , ,

1

, , , ,

 

 

( )

B

s j k j s j l s s j k j s j l s

s j k j s j l s

A A A A A A A A

A A A A

D

− − −

−

⇔ =

⇔

⇔

⇌

 

 

( )






1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

1

, , ,

2  

 

 

 

k j l j k j k s m s k s k s m s k s k j l j k j

B

l k l j l k k s m s k s k s m s k s l k l j l k

D

l k l j k s m s k s l k l k k s m s k s l j l k

l j k s m s

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A

− − − −

− − − −

− − − −

−

=

⇔ =

⇔ =

⇔ 1

, , , , ,k s k s m s k s l jA A A A−=

 

This holds since 
, ,l j k sA A⇌  and 

, ,l j m sA A⇌ , relation ( )A . 

 

( )




1

, , , , , ,

1 1

, , , , , , , ,

( )  ( )  

1 1 1

, , , , , , , , , ,

, , , ,

3  

 

 

r k r j k j r k r j k j

r k r j r k r k k j r k r j k j

B C

k j r j k j k j r j k j r j k j r j k j

r j k j r j k j

A A A A A A

A A A A A A A A

A A A A A A A A A A

A A A A

−

− −

− − −

=

⇔ =

⇔ =

⇔ =

 

 

 

We need to look at the relation ( )1 1 1

, , , ,
1.

p p r s i j r s i j p
R � A A A A �− − −= =  Then, ( ) 1

p
Rτ =  

yields the following relations. 

Case 1, r k s< <  
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( )
( )
( )
( )
( )

, ,

, ,

1

, , 1, ,

1

, , 1, ,

1 1

, 1, , , 1, ,

1  If    then  

2  If    then  

3  If    then  

4  If    then  

5  If    then  .

r s i j

k s i j

i j k s r s k s

k j k s r s k s

k j i j k j k s r s k s

p r A A

p r A A

i p r A A A A

i p A A A A

p i A A A A A A

−
−

−
−

− −
− −

>

=

< <

=

<

⇌

⇌

⇌

⇌

⇌

 

The relations in (1), (2) and (3) are consequences of the relation ( )A , while the 

relations (4) and (5) are same as (1) and (2) in Lemma 3.28. 

Case 2, r k=  

( )
( )
( )

1 1

, 1, , , 1, ,

1

, 1, , ,

1

, 1, , ,

1  If    then  

2  If    then  

3  If    then  .

k s k s k s k j i j k j

k s k s k s k j

k s k s k s i j

i p r A A A A A A

p i A A A A

p i A A A A

− −
− −

−
−

−
−

< <

=

<

⇌

⇌

⇌

 

Relation (1) above is just Lemma 3.28(2), relation (2) is Lemma 3.28(1), and Lemma 

3.25(2), and (3) is a consequence of ( )A . 

Case 3, i k r< <  

( )
( )
( )

, ,

, ,

1

, , 1, ,

1  If  i   then  

2  If    then  

3  If    then  .

r s i j

r s k j

r s k j i j k j

p A A

p i A A

p i A A A A−
−

<

=

<

⇌

⇌

⇌

 

These relations are consequences of ( )A . 

Case 4, k i=  

( ) 1

, , 1, ,1  r s i j i j i jA A A A−
−⇌  

Case 5, k i<  

( ) , ,1  r s i jA A⇌  

In cases 4 and 5, the relations follow from ( )A . 

In other case r s i j< < < , we can find this relation:  
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, ,r s i jA A⇌ . 

Now let us set ( )1 1 1 1

, , , , , ,p p r s r j r s s j r j s j p
R � A A A A A A �− − − −= . Then ( ) 1

p
Rτ =  yields the 

following relations: 

Case 1, r k s j< < <  

( )
( )
( )

1 1

, , , , , ,

1 1

, , , , , ,

1 1 1 1 1 1

, 1, , , 1, , , 1, , , , 1, , ,

1  If    then  

2  If    then   

3  If    then   

.

r s r j r s s j r j s j

k s k j k s s j k j s j

k s r s k s k j r j k j k s r s k s s j k j r j k j s j

r p k A A A A A A

p r A A A A A A

p r

A A A A A A A A A A A A A A

− −

− −

− − − − − −
− − − −

< ≤ =

= =

<

=
 

Case 2, r k=  

1 1 1 1 1 1

, 1, , , 1, , , 1, , , , 1, , ,(1) k s k s k s k j k j k j k s k s k s s j k j k j k j s jA A A A A A A A A A A A A A− − − − − −
− − − −=  

Case 3, r k<  

1 1

, , , , , ,(1) r s r j r s s j r j s jA A A A A A− −=  

Therefore, we only need to show that Case 1(3) and Case 2 are consequences of 

relations ( ) ( )A D− . 

Case 1(3) For ( )l = 1r k s j− < < <  







1 1 1 1 1 1

, , , , , , , , , , , , , ,

( )

1 1 1 1 1 1

, , , , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , ,

,

 k s l s k s k j l j k j k s l s k s s j k j l j k j s j

B

l k l s l k l k l j l k l k l s l k s j l k l j l k s j

A

l k l s l j l s l k l k s j l j s j l k

l

A A A A A A A A A A A A A A

A A A A A A A A A A A A A A

A A A A A A A A A A

A

− − − − − −

− − − − − −

− − − −

=

⇔ =

⇔ =

⇔ 1 1

, , , , ,

( )

s l j l s s j l j s jA A A A A

B

− −=

⇔

 

The proof of Case 2 follows along similar lines to the above proof if instead we set k-

1=l. 
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Now, let us set ( )1 1 1 1 1

, , , , , , , ,p p r s s j r s s j r j s j r j s j p
R � A A A A A A A A �− − − − −=  for 1 r s j n≤ < < ≤ . Then 

( ) 1
p

Rτ =  yields the following relations: 

Case 1, r k s j< < <  

( )1  If   r p k< ≤ then the relation is unchanged. 

( )2  If   p r= then change r  into  k  in the orginal relation. 

( )3  If   p r< then  

1 1 1 1 1 1 1

, 1, , , , 1, , , , 1, , , , 1, , , .k s r s k s s j k s r s k s s j k j r j k j s j k j r j k j s jA A A A A A A A A A A A A A A A− − − − − − −
− − − −=  

Case 2, r k=  

( ) 1 1 1 1 1 1 1

, 1, , , , 1, , , , 1, , , , 1, , ,1 k s k s k s s j k s k s k s s j k s k s k s s j k s k s k s s jA A A A A A A A A A A A A A A A− − − − − − −
− − − −=  

Case 3, k r<  

This is the same as the orginal relation. 

Therefore, we need only show that Case 1(3) (and hence Case 2) is a consequence of 

( ) ( )A D− . 

For l = 1r k s j− < < < , 







1 1 1 1 1 1

, , , , , , , , , , , , , , , ,

( )

1 1 1 1 1 1 1

, , , , , , , , , , , , , , , ,

( )

1 1

, , , , , , ,

 

 

k s l s k s s j k s l s k s s j k j l j k j s j k j l j k j s j

B

l k l s l k s j l k l s l k s j l k l j l k s j l k l j l k s j

A

l k l s s j l s l k l k s j

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

A A A A A A A

− − − − − −

− − − − − − −

− − −

=

⇔ =

⇔ = 1 1 1

, , , , ,

1 1 1

, , , , , , , ,

( )

l j s j l j s j l k

l s s j l s s j l j s j l j s j

A A A A A

A A A A A A A A

C

− −

− − −⇔ =

⇔

 

Finally, let us set ( )1 1 1 1 1

, , , , , , , ,p p i j s j i j r i i j s j i j r i p
R � A A A A A A A A �− − − − −= . For 1 r s i j n≤ < < < ≤ , 

( ) 1
p

Rτ =  yields the following relations: 
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Case 1, s k i< <  

(1) If  s p k< <  then the same relation is obtained. 

1

, , , ,(2) If    then  .i j k j i j r is p A A A A−= ⇌  

1 1

, , 1, , , ,(3) If    then  .i j k j s j k j i j r ir p s A A A A A A− −
−< < ⇌  

1 1

, , 1, , , ,(4) If    then  .i j k j s j k j i j k ip r A A A A A A− −
−= ⇌  

1 1 1

, , 1, , , , 1, ,(5) If    then  .i j k j s j k j i j k i r i k ip r A A A A A A A A− − −
− −< ⇌  

Case 2, k s=  

1 1

, , 1, , , ,(1) If    then  .i j k j k j k j i j r ir p s A A A A A A− −
−< < ⇌  

1 1

, , 1, , , ,(2) If    then  .i j k j k j k j i j k ip r A A A A A A− −
−= ⇌  

1 1 1

, , 1, , , , 1, ,(3) If    then  .i j k j k j k j i j k i r i k ip r A A A A A A A A− − −
− −< ⇌  

Case 3, r k s< <  

1

, , , ,(1) If    then  .i j s j i j r ir p A A A A−< ⇌  

1

, , , ,(2) If    then  .i j s j i j k ip r A A A A−= ⇌  

1 1

, , , , 1, ,(3) If    then  .i j s j i j k i r i k ip r A A A A A A− −
−< ⇌  

Case 4, k r=  

1 1

, , , , 1, ,(1) i j s j i j k i k i k iA A A A A A− −
−⇌ . 

Case 5, k r<  

1

, , , ,(1) .i j s j i j r iA A A A− ⇌  
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Now, to complete the proof, we need to show that the following relaitons are 

consequences of ( ) ( )A D− . 

1 1

, , , , , ,

1 1 1

, , , , , , , ,

1 1

, , , , , ,

1 1

, , , , , ,

(1)     if  

(2)    if  

(3)    if  

(4)    if  

i j k j m j k j i j l i

i j k j m j k j i j k i l i k i

i j k j m j k j i j k i

i j s j i j k i l i k i

A A A A A A l m k i j

A A A A A A A A l m k i j

A A A A A A m k i j

A A A A A A l k

− −

− − −

− −

− −

< < < <

< < < <

< < <

< <

⇌

⇌

⇌

⇌ s i j< <
                                             

(3.88) 

We shall prove separately each of the four parts in the above relations. 

Proof of (1) 







1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

1

, , , ,

 

 

i j k j m j k j i j l i l i i j k j m j k j i j

B

i j m k m j m k i j l i l i i j m k m j m k i j

A

m k i j m j i j l i m k m k l i i j m j i j m k

i j m j i j l

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A

− − − −

− − − −

− − − −

−

=

⇔ =

⇔ =

⇔ ⇌

( ) 

i

D⇔

 

Proof of (2) 




1 1 1 1 1 1

, , , , , , , , , , , , , , , ,

( )

1 1 1 1 1 1

, , , , , , , , , , , , , , , , 

i j k j m j k j i j k i l i k i k i l i k i i j k j m j k j i j

B

i j k j m j k j i j l k l i l k l k l i l k i j k j m j k j i j

A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A

− − − − − −

− − − − − −

=

⇔ =

 







( )

1 1 1 1 1 1

, , , , , , , , , , , , , , , ,

( )  ( )

1 1 1

, , , , , , , ,

1 1 1

, , , , , , , ,

 

 

        

A

i j k j m j k j l k i j l i l k l k l i i j l k k j m j k j i j

D A

l k i j k j m j k j i j l i l k

l k l i i j k j m j k j i j l k

A A A A A A A A A A A A A A A A

A A A A A A A A

A A A A A A A A

− − − − − −

− − −

− − −

⇔ =

⇔

=

 







( )

1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

 

 

( ) 

B

i j m k m j m k i j l i l i i j m k m j m k i j

A

m k i j m j i j l i m k m k l i i j m j i j m k

A A A A A A A A A A A A

A A A A A A A A A A A A

D

− − − −

− − − −

⇔ =

⇔ =

⇔
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Proof of (3)  




1 1 1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1 1

, , , , , , , , , ,

1 1 1

, , , , , ,

1 1 1 1 1 1

, , , , , , , , ,

 

   

i j k j m j k j i j k i k i i j k j m j k j i j

C

i j k j m j k j k i i j k j i j k j i j

k i i j k j m j k j i j

i j k j m j k j k i k i k j k i i j

A A A A A A A A A A A A

A A A A A A A A A A

A A A A A A

A A A A A A A A A

− − − − − −

− − − − −

− − −

− − − − − −

=

⇔

=

⇔ = 1 1

, , ,k j k i m jA A A− −

 

( By ( B ) and Lemma 3.28(3)) 

( )

1 1

, , , ,m j k i k i m j
A A A A

A

− −⇔ =

⇔
 

Proof of (4) 




1 1 1 1

, , , , , , , , , , , ,

( )

1 1 1 1

, , , , , , , , , , , ,

1

, , , ,

 

( )

i j s j i j k i l i k i k i l i k i i j s j i j

D

k i i j s j i j l i k i k i l i i j s j i j k i

i j s j i j l i

A A A A A A A A A A A A

A A A A A A A A A A A A

A A A A

D

− − − −

− − − −

−

=

⇔ =

⇔

⇔

⇌

 

This now completes the proof of Theorem 3.25. 
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CHAPTER 4 

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE 

In this chapter, we introduce configuration space to obtain the different view for braid 

group.  

4.1 Configuration Space 

4.1.1 Definitions 

Definition 4.1 Let M be a manifold of dimension 2≥ , let 
1

n

i

M
=
∏  denote the n-fold 

product space, and let 
0,nF M  denote the subspace of 

1

n

i

M
=
∏  

( )0, 1 2

1

, ,...,  if  
n

n n i j

i

F M z z z M z z i j
=

 
= ∈ ≠ ≠ 
 

∏
                             

(4.1) 

(We will give the meaning of subscript “0” later.) The fundamental group 
1 0,nF Mπ  of 

the space 
0,nF M  is the pure braid with n strings of manifold M [9]. 

Definition 4.2 Two points z  and 'z  of 
0,nF M  are said to be equivalent if the 

coordinates ( )1 2, ,..., nz z z  of z  differ from the coordinates ( )' ' '

1 2
, , ...,

n
z z z  of 'z  by 

permutation. 

  

Let 
0,nB M  denote the identification space of 

0,nF M  under this equivalence relation. 
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Definition 4.3 The fundamental group 
1 0,nB Mπ  of the space 

0,nB M  is called the full 

braid group of M , or simply, the braid group of M . 

Claim 4.4 The natural projection 
0, 0,: n np F M B M→  is a regular (normal) covering 

map. 

Proof Firstly, we show that p is a covering map. 

Let ( )0 0 0 0

1 2
, ,...,

n
z z z z=  be an element of 

0,nF M and 
0z (the equivalence class of 0z ) be 

element of 
0, .nB M  

{ }0 0

0,
,i i i

n
z z z z z F M= ∈∼

                                         
(4.2) 

Now, we can define a metric on 
0,nF M such that 

0, 0,: n nd F M F M R× →  

( , )i j i jd z z z z= −
                                                    

(4.3) 

 If we take the elements of 
0z , then there is a positive real number 0ε > ; 

( )
,

2min ,i j

i j I
d z zε

∈
≤

                                                    
(4.4) 

where I is index set and 0,i jz z z∈ . 

Therefore,  ( ){ }0,i iU z d z zε ε= <  is a neighborhood of 
0z . 

Hence, we can easily see that, 

( ) ( ){ }0,i iV z d z zδ δ ε= <
                                     

(4.5) 

where  0δ >  is a real number; Vδ  are open sets and  

( )1p U Vε δ
δ

− =∪
                                                        

(4.6) 



 

 

65 

 

So, p is a covering mapping. The equivalence relation shows a deck transfomation. 

With this deck transformation, p is a regular(normal) covering map [6]. 

 

The classical braid group of Artin is the braid group is the braid group 
2

1 0,nB Rπ  .  

Artin’s geometric definiton of 
2

1 0,nB Rπ  can be recovered from the definition above as 

follows: 

Choose a base point ( )0 0 0 2

1 0,
,...,

n n
z z z F R= ∈  for 

2

1 0,nF Rπ  and a point 
0 2

0,nz B R∈  such 

that ( )0 0
p z z= . Any element in ( )2 2 0

1 0, 1 0, ,n nB R B R zπ π=  is represented by a loop 

{ } 2 0

0,: , 0,1 ,nl I B R z→
                                          

(4.7) 

which lifts uniquely to a path 

{ } 2 0

0,: , 0 ,nl I F R z→
                                          

(4.8) 

If ( ) ( ) ( )( )1 ,..., nl t l t l t= , t I∈ , then each of the coordinate functions il  defines (via its 

graph) an arc ( )( ),i il t t=PPPP  in 2R I× . Since ( ) 2

0,nl t F R∈ , the arcs 1,..., nP PP PP PP P  are disjoint. 

Their union 1 ... n= ∪ ∪P P PP P PP P PP P P   is called a geometric braid. The arc is called the i th string. 

A geometric braid is a representative of a path class in the fundamental group 

2

1 0,nB Rπ . Thus if PPPP  and 'PPPP  are geometric braids, then '∼P PP PP PP P  (that is, they 

represent the same element of  
2

1 0,nB Rπ ) if the paths l  and 
'l  which define these 

braids are homotopic relative to base point ( )0 0 0

1
,...,

n
z z z=  in the space 

2

0,nF R . Thus 

we require the existence of a continuous mapping 
2

0,: nI I F R× →F  with  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

1

1 1

' '

1 1

0 0

1 1

0 0

1

,0 ,0 ,..., ,0 ,...,

,1 ,1 ,..., ,1 ,...,

0, 0, ,..., 0, ,...,

1, 1, ,..., 1, ,...,
n

n n

n n

n n

n

t t t l t l t

t t t l t l t

s s s z z

s s s z zµ µ

= =

= =

= =

= =

F F F

F F F

F F F

F F F
                              

(4.9) 
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where ( )1,..., nµ µ  is a permutation of array ( )1,...,n . The homotopy F  defines a 

continous a sequence of geometric braids ( ) ( ) ( )1 ... ns s s= ∪ ∪P P PP P PP P PP P P , s I∈ , where 

( ) ( )( ), ,i is t s t=PPPP F , such that ( )0 =P PP PP PP P  and ( ) '1 =P PP PP PP P . 

Definition 4.5 Let { }1,...,m mQ q q=  be a set of fixed distinguished points of M . The 

configuration space 
,m nF M  is the space of ( )0,n mF M Q− . 

Note that the topological type of  
,m nF M  does not depend on the choice of the 

particular points mQ , since one may always find an isotopy of M  which deforms any 

one such point set mQ  into any other '

mQ . Note that 
,1m mF M M Q= − . 

We are interested in the relationship between the configuration spaces 
,m nF M  and 

0,nF M . 

The key observation is the following theorem: 

Theorem 4.6 (Fadell and Nuewirth [7]) Let 
, ,: m n m rF M F Mπ →  be defined by  

( ) ( )1 1,..., ,..., ,  1  n rz z z z r nπ = ≤ <
                                     

(4.10) 

Then π  exhibits 
,m nF M  as a locally trivial fibre space over the base space 

,m rF M , with 

fibre 
,m r n rF M+ − . 

Proof First consider, for some base point ( )0 0

1
,...,

r
z z  in  

,m rF M  the fibre ( )1 0 0

1
,...,

r
z zπ −  

( ) ( ){
}

1 0 0 0 0

1 1 1

0 0

1 1

,..., ,..., , ,..., ,  where

                             ,..., , ,...,   are distinct and in 

r r r n

r r n m

z z z z y y

z z y y M Q

π − +

+

=

−
 

If we select m rQ +  equal to { }0 0

1
,...,

m r
Q z z∪ , then  

( ){ }, 1 1,..., ,  where ,...,  are distinct and in  m r n r r n r n m rF M y y y y M Q+ − + + += − , 

and there is an obvious homeomorphism  

( )1 0 0

, 1
: ,...,

m r n r r
h F M z zπ −+ − →  
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defined by 

( ) ( )0 0

1 1 1
,..., ,..., , ,...,

r n r r n
h y y z z y y+ +=  

The proof of the local triviality of π  will be carried out, for notational and descriptive 

convenience, only in the case of 1r = . For the other cases [3]. Fix for consideration, 

therefore, a point 
0 ,1 ,m m m rx M Q F M F M∈ − = = . Add another point 1mq +  to the set mQ  

to form 1mQ +  and pick a homeomorphism :M Mα → , fixed on mQ , such that 

( )1 0mq xα + = . Let U  denote a neighborhood of 0x  in mM Q−  which is homeomorphic 

to an open ball, let U  denote the closure of U . Define a map :U U Uθ × →  with the 

following properties. Setting ( ) ( ),z y z yθ θ=  we require: 

(i) :z U Uθ → is a homeomorphism which fixes U∂ . 

(ii) ( ) 0z z xθ = . 

By (i), θ  can be extended to :U M Mθ × →  be defining ( ),z y yθ =  for y U∉ . The 

required local product representation  

( )1

1

1, 1m nU F M U
φ

φ
π−
−

+ −× ⇌  

is given by  

( ) ( ) ( )( )1 1

2 2
, ,..., , ,..., .

n z z n
z z z z z zφ θ α θ α− −=  

( ) ( ) ( )( )1 1 1

2 2
, ,..., , ,..., .

n z z n
z z z z z zφ α θ α θ− − −=  

    

 

Proposition 4.7 If ( ) ( )2 3 0m mM Q M Qπ π− = − =  for each 0m ≥ , then 
2 0, 0nF Mπ = . 

Proof The exact homotopy sequence of the fibration 
, ,1: m n m mF M F M M Qπ → = −  of 

theorem 4.6 gives an exact sequence  
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( ) ( )3 2 1, 1 2 , 2

0 0

... ...m m n m n mM Q F M F M M Qπ π π π+ −→ − → → → − →
��
�� ���
���

 

Since ( ) ( )2 3 0m mM Q M Qπ π− = − = , it follows that 
2 1, 1m nF Mπ + −  and 

2 ,m nF Mπ  are 

isomorphic. 

 By induction, 

2 2, 2 2 , 2 ,2

2 3, 3 2 , 2 ,3

2 1,1 2 , 2 , 1

m n m n m

m n m n m

m n m n m n

F M F M F M

F M F M F M

F M F M F M

π π π

π π π

π π π

+ −

+ −

+ − −

→ →

→ →

→ →

⋮

                                       

(4.11) 

and if we take as m=0, we obtain that, 

2 1,1 2 0, 2 0, 1n n nF M F M F Mπ π π− −→ →
                                       

(4.12) 

2 0, 2 1,1 2 0, 1 0n n nF M F M F Mπ π π− −≈ = =
                                   

(4.13) 

 

Theorem 4.8 If ( ) ( ) ( )2 3 0 1m m mM Q M Q M Qπ π π− = − = − =  for every 0m ≥ , then the 

following sequence of the groups and homomorphism is exact: 

( ) ( )( ) ( )( )0 0 0 0 0

1 1,1 1 1 0, 1 1 0, 1 1 1
1 , , ,..., , ,..., 1

j

n n n n n
F M z F M z z F M z z

π

π π π
∗ ∗

− − −→ → → →
     

(4.14) 

where π∗  and j∗  are the homomorhism induced by the mapping π  and j . 

 

 

Proof 
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( ) ( )( ) ( ) ( )

( )( ) ( ) ( )
( )( ) ( ) ( )

0 0 0 0 0

3 1 2 1, 1 1 1 2 , 2 1

1 1

0 0 0 0

1 1, 1 1 1 1 , 1 1

0 0 0 0

0 1, 1 1 1 0 , 0 1

11

, , ,..., , ,

, ,..., , ,

, ,..., , ,

m m n n m n m

m n n m n m

m n n m n m

M Q z F M z z F M z M Q z

F M z z F M z M Q z

F M z z F M z M Q z

π π π π

π π π

π π π

+ − −

+ − −

+ − −

→ − → → → −

→ → → −

→ → → −

…
���
��� ���
���

���
��������
�����

 

 By induction, we obtain that 

( ) ( )( ) ( )( )0 0 0 0 0

1 1,1 1 1 0, 1 1 0, 1 1 1
1 , , ,..., , ,..., 1

j

n n n n n
F M z F M z z F M z z

π

π π π
∗ ∗

− − −→ → → →
            

(4.15) 

 

Theorem 4.9 ( Artin [1] ) The group 
2

1 0,nB Rπ  admits a presentation with generators  

1 2 1, ,...., nσ σ σ −  and defining relations: 

 for all , 1,..., 1 with 2i j j i i j n i jσ σ σ σ= = − − ≥
                     

(4.16) 

1 1 1  for all 1,..., 2i i i i i i i nσ σ σ σ σ σ+ + += = −
                             

(4.17) 

Proof (Fadell and Van Buskirk [8]) We introduced Bn  with generators and relations in 

chapter 2. Until we established the isomorphism between Bn  and 
2

1 0,nB Rπ , we will 

use the symbols 1 2 1, , ..., nσ σ σ −  for elements of 
2

1 0,nB Rπ  with 
2

1 0,: Bn nı B Rπ→  defined 

by ( ) iiı σ σ= , 1 1i n≤ ≤ − . We now give a definition for iσ . Recall the covering 

projection 
2 2

0, 0,: n np F R B R→ . Choose the point ( ) ( ) ( )( ) 01,0 , 2,0 ,..., ,0p n z=  as base 

point for the group 
2

1 0,nB Rπ . Lift loops based at ( ) ( ) ( )( )1,0 , 2,0 ,..., ,0p n  in 
2

0,nB R  to 

paths in 
2

0,nF R  with initial point ( ) ( ) ( )( ) 01,0 , 2,0 ,..., ,0p n z= . Then the generator 

2

1 0,i nB Rσ π∈  is represented by by the path ( )l t  in 
2

0,nF R  given by  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11,0 , 2,0 ,..., 1,0 , , , 2,0 ,..., ,0i il t i l t l t i n+= − +
                    

(4.18) 
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where ( ) ( )2,
i
l t i t t t= + − −  and ( ) ( )2

1
1 ,

i
l t i t t t+ = + − − . That is, ( )il t  is constant on 

all but the i th and 1i + st strings and interchanges those two in a nice way. 

The proof of theorem 3.9 will be by induction on n, and will exploit the relationship 

between 
2

1 0,nB Rπ  and 
2

1 0,nF Rπ . Let 

( )2 0

1 0,: ,n n
v B R zπ →∑  

be defined as follows: Let 
2

1 0,nB Rα π∈  be reprensented by a loop  

{ }( ) ( )2 0

0,: , 0,1 ,nI B R zα →  

and let ( ) { }( ) ( )2 0

1 0,
,..., : , 0 ,

n n
I F R zα α α= →  be the unique lift of α . Define  

( )
( ) ( )
( ) ( )

1

1

0 ,..., 0

1 ,..., 1

n

n

n

α α
α

α α

 
= ∈  
 

∑  

The kernel of the homomorphism v  is the pure braid group, 
2

1 0,nF Rπ . Corresponding 

to the homomorphism v  is the homomorphism (we mentioned in chapter 2.) 

: Bn nv →G  

from the n-braid group Bn  to the symmetric group nG  on n letters defined by: 

( ) ( ), 1           1 i n-1.iv i iσ = + ≤ ≤
                          

(4.19) 

And we know that kernP v= . 

Lemma 4.10 The homomorphism 
2

1 0,: B  n nı B Rπ→ is an isomorphism onto if 
nP

ı  is an 

isomorphism onto 
2

1 0,nF Rπ . 
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Proof of Lemma 4.10 The homomorphism  v  is clearly surjective, since the 

transpositions ( ){ }  1 i n-1iv σ ≤ ≤  generate nG . Hence we have a commutative 

diagram; 

1
               

2 2

1 0, 1 0,

1            B                1

                         

1       1

n

Pn

v

n n n

ı ı ı

v

n n n

P

F R B Rπ π

=

→ → →

↓ ↓ ↓

→ → →

→

∑→

 G

 

with exact rows. ı  is an isomorphism with five lemma [5]. 

Now, we must show that 
nP

ı  is an isomorphism onto 
2

1 0,nF Rπ . For this purpose, we 

introduced a representation for a subgroup nH  in Bn .  With the help of the 

Reidemeister-Schreier method, nH  is exhibited as the semi-direct product of nA

(which is an invariant free group generated by free generators 
1, 2, 1,, ,...,n n n nA A A − [10]) 

and 1Bn− . And we presented a representation for nP . Now, we refine nP  and find a 

relation between nP  and 
2

1 0,nF Rπ . 

         

The group 1nP −  can be regarded as the subgroup of nP  which is generated by 

{ },
,  1 1

i j
A i j n≤ < ≤ − . Note that a natural homomorphism 1: n nP Pη −→  may be 

defined by the rule ( ), ,i j i j
A Aη =  if 1 1i j n≤ < ≤ − , while ( ),

1
i n
Aη = , 1 i n≤ < . Thus 

kerη = nA . 

Corresponding to the homomorphism 1: n nP Pη −→ , we have the homomorphism 

2 2

1 0, 1 0, 1: n nF R F Rπ π π∗ −→  of theorem 4.8. By theorem 4.8 we also know that 

( )2 2

1 1,1 1 1
ker

n n
F R R Qπ π π∗ − −= = − , which is a free group of rank n-1.  

It is easy to see that the following diagram is commutative:  
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1

1

2 2 2

1 1,1 1 0, 1 0, 1

1                                 1

                                  

1   1 

n n n n

n n n

ı ı ı

n n n

P P

F R F R F R

η

π

π π π

−

∗

−

− −

→ → →

↓ ↓ ↓

→ → →

→

→

A

A

 

with exact rows. In the bottom row, the base point for 
2

1 0,nF Rπ  is ( )0 0

1
,...,

n
z z , so that 

0

nz  is the base point for ( )2 2 0 0

1 1,1 1 1 1
... .

n n
F R R z zπ π− −= − ∪ ∪ Now, we may identify the 

image ( ),n j n
ı A  of the generator 

,j nA  of nA  as being represented by a loop based at 

0

nz  which encircles the point 
0

jz  once and separates it from 
0 0 0 0

1 1 1 1,..., , ,...,j j nz z z z− + − . 

Clearly the image set ( ){ },
,  1

n j n
ı A j n≤ <  is a free basis for the free group 

2

1 1,1nF Rπ − . 

And we know that nA  is a free group, hence n n
ı A  is an isomorphism onto. Now 

observe that 1 1P = and 
2

1 0,1 1F Rπ = . Therefore 1ı  is an isomorphism. Assume 

inductively therefore that 1nı −  is an isomorphism. Then, since n n
ı A  is an isomorphism 

for each n , nı is an isomorphism by five lemma [5]. This completes the proof of 

Therorem 4.9. 
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CHAPTER 5 

CONCLUSIONS 

In this master thesis, we focused on two groups: Braid groups and the fundamental group of 

configuration space. Firstly, we introduced braids with their algebraic and geometric 

defitinitions. And we refined generators and relations of 
n
B

 
and we defined an operation 

for braids. Therefore, we obtained a group presentation for 
n
B . After that, we must show 

that when are two n-braids equivalent? For this purpose, we used word problem with 

solution. We applied Reidemeister-Schreier method to obtain generators and relations for 

subgroups of braid groups. With the help of these relations and generators and some 

properties of free groups, we presented an invariant free subgroup 
n

A  of B
n

. In addition, 

we introduced pure braid 
n
P . 

Secondly, we gave information about configuration spaces. And we defined the fundamental 

group of configuration spaces. Especially, we indicated relations between Artin braid groups 

and the fundamental group of configuration space on 
2
R . Consequently, we obtained an 

isomorphism between them. 
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