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The notion of braid is refined in algebraic and geometric settings. And the group structure of
braid is given by generators and relations. In addition, the special subgroups of braid groups
are introduced by their generators and relations.

The fundamental group of configuration space is presented by its fiber structure with some
theorems. And we show that the fundamental group of configuration space has a structure
of braid group. Finally, an isomorphism between a structure of braid group and braid group
is indicated.
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CHAPTER 1

INTRODUCTION

1.1 Summary of the Literature

In the early part of the 20th century, using ordinary braids or plaits, found everywhere
around us, as models, Emil Artin, a mathematician born in Germany, began a study
[1],[2] that eventually developed into what is now known as braid theory.

As might be expected, the original ruminations were to some extent intuitive, based on
the physical, tractable nature of braids and plaits.

But, over the course of the 20th century, braid theory has gradually been prospected,
refined and polished, to use a goldmining analogy.

Braid theory is, now, recognized as one of the basic theories in mathematics and is of
benefit in such branches as topology and algebraic geometry. Also, it is of profound
use in other areas of the sciences - physics, statistical mechanics, chemistry and
biology.

1.2 The Aim of the Thesis

The purpose of this master thesis to provide a connection between braids and
fundamental groups.

The notion of braid is explained with its algebraic and geometrical properties.
Especially, with the help of Reidemeister-Schreier method, algebraic properties of
braid are refined for special subgroups.

The word problem is introduced to obtain the invariant subgroup of braid groups
which is provided the connection between braid groups and fundamental groups.

Again, for our aim, configuration space is given with its fundamental group and
structure of fiber bundle.

1.3 Hypothesis

Braid groups and fundamental group of configuration spaces are refined in algebraic



and geometrical settings.



CHAPTER 2

BRAIDS

We start, in chapter 2, with the fundamental concepts, most notably the braid groups
and pure braids.

2.1 Introduction

We introduce the definition of braid which follows directly from Artin’s work (Artin

[1]).

2.1.1 Basic Definition

Definition 2.1 Let D be a unit cube, so D= {(x, y,z)|0 <x,y,z< 1} . On the top face of

cube place n points, 4,,4,,...,4,, and, similarly, place n points on the bottom face,
B,,B,,...,B, . In Figure 2.1, we have drawn such a configuration, but the cube has been

placed in perspective.
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Figure 2.1 The unit cube

Now, join n points A4,4,,..,4, with B,B,,..,B, by means of n polygonal
segments/arcs d,,d,,...,d, (Strictly speaking, the segments should be polygonal, but,

in order to make diagrams that we will draw to easier to view, we shall draw these arcs
as smooth curves.). However, the arcs can be attached in such a way that the following

three conditions hold:
1) d,,d,,...,d, are mutually disjoint.
2) Each d, connects some 4; to some B,, where j and k may or may not to be
equal, d, is not permitted to connect 4; and 4, (or B, to B,).
3) Each plane E_, such that z =5 and 0<s <1(in other words parallel to the xy-

plane), intersects each arc d, at one and only one point, Figure 2.2 (a) (In

Figure 2.2(b), we give an example in which this condition does not hold ).
LA B { L
5 Q/
(_ -
(a)

)

Figure 2.2 An example of a 3-braid



Such a configuration of » arcs d,,d,,...,d, is called » -braid, or braid with » strings. As

might be expected, d, is called a string.

Example 2.2 The braid in Figure 2.2(a) is a 3-braid. Other examples of braids are given

in Figure 2.3.
e —9(“9—— XX
~ s )
= 23
=N AN
1-braid 2-braid 4-braid
(a) (b) (c)

Figure 2.3 Some example of braids

Let us denote the set of all »n -braid by B, . With example 2.2, we can see that 1-braid,

2-braid, ..., n -braid are mutually different braids. But we may refine the question, how
many different braids are there for each »n ? In order to answer this question; we have
to know when two braids are equivalent or not. So we present braids in geometric

settings to understand the notion of equivalence.

Now, we shall extend D to R*x [ for the next sections.

2.2 Braids and Braid Diagrams

In this section we explain the braid groups in geometric terms. From now on, we

denote by I the closed interval [0,1] in the set of real numbers R . By a topological
interval, we mean a topological space homeomorphic to I=[O,1]. (For this section

(Kassel and Turaev [3]))

2.2.1 Geometric Braids

Definition 2.3 A geometric braid onn >1 strings (n—bmid) is a set hcR*x/
formed by » disjoint topological intervals called the strings of such that the projection

R*x]—1 maps each string homeomorphically onto / and



bN(R*x{0})={(4,.0,0),(4,,0.0).....(4,,0,0)} (2.1)
bN(R* x{1})={(B,.0.1).(B,,0.1),...(B,.0,1)} (2.2)

It is obvious that every string of 5 meets each plane R’ x{t} with ¢ € I in exactly one
point and connects a point (4,0,0) to a point (s(4,),0,1), where s(4,)
€{B,,B,,...,B,} called the underlying permutation of 5.

The Figure 2.4 is an example of geometric braid. Here x and y are the coordinates in

R? and ¢ € [ . The underlying of permutation of this braid (B, B,,B,,B,)

Figure 2.4 An example of a 4-braid

We introduce the concept of isotopy belongs to geometric braids.

Two geometric braids b and b onn strings are isotopic, if b can be continuously
deformed into b in the class of braids. More formally, b and b are isotopic if there is
a continuous map F:bxI —R*xI such that for each s e I the map F b >R*xI
sending xeb to F(x,s) is an embedding whose image is a geometric braid on n
strings, F, =id, :b—b, and E(b)zb' . Each F, automatically maps every endpoint

b to itself. Both the map F and the family of geometric braids {E(b)} are called

sel

an isotopy of b = F,(b) into b = F,(b).



It is obvious that the relation of isotopy is an equivalence relation on the class of
geometric braids on n strings. The corresponding equivalence classes are called braids

onn strings.

2.2.2 Braid Diagrams

To specify a geometric braid, one can draw its projection to Rx{O}xI along the
second coordinate and indicate with string goes “under” the other one at each
crossingpoint. To avoid local complications, we shall apply this procedure exclusively to

those geometric braids whose projections to Rx{O}xI have only double transversal

crossings. These considerations lead to a notion of a braid diagram.

A braid diagram on n strands is a set D Rx/ split as a union of n topological

intervals called the strands of D such that the following three conditions are met:

(i) The projection Rx /7 — I maps each strand homeomorphically onto /.

(ii) Every point of {4,,4,,...,4,}x{0} or {B,B,,...,B,}x{1} is the endpoint of
a unigue strand.

(iii) Every point of Rx/ belongs to at most two strands. At each intersection

point of two strands, these strands meet transversely, and one of them is

distinguished and said to be undergoing, the other strand being overgoing.

Note that three strands of a braid diagram D never meet in one point. An
intersection point of two strands of D is called a double point or a crossing of D . The

transversality condition in (iii) means that in a neighborhood of a crossing, D looks, up

to homoemorphism, like the set {(x,y)|xy=0} in R®. Condition (iii) and the
compactness of the strands easily imply that the number of crossings of D is finite.

In the figures, the strand going under a crossing is graphically represented by a line
broken near the crossing; the strand going over a crossing is represented by a

continued line. An example of a braid diagram is given in Figure 2.5. Here the top



horizontal line represents Rx{O}, the bottom horizontal line represents Rx{l}. In

the sequal we shall sometimes draw and sometimes omit these lines in the figures.

N\
>

/

-

Figure 2.5 An example of a braid diagram on four strands

We now decribe the relationship between braids and braid diagrams. Each braid
diagram D presents an isotopy class of geometric braids as follows. Using the obvious
identification Rx/=Rx{0}x/ , we can assume that D lies on Rx{0}x/cR*x[.
In a small neighborhood of every crossing of D we slightly push the undergoing strand
into Rx(0,00)x/ by increasing the secondcoordinate while keeping the first and third

coordinates. This transforms D into a geometric braid on 7 strings. Its isotopy class is

a well-defined braid presented by D . This braid is denoted by ﬂ(D). For instance, the

braid diagram in Figure 2.5 presents the braid drawn in Figure 2.4.

It is easy to see that any braid [ can be presented by a braid diagram. To obtain a
diagram of [, pick a geometric braid b that represents £ and is generic with respect
to the projection along the second coordinate. This means thatthe projection of b to

Rx{o}xl may have only double transversal crossings. At each crossing point of this

projection choose the undergoing strand to be the one that comes from a subarc of b

with larger second coordinate. The projection of b to Rx{O}xI =Rx[ thus yields a

braid diagram, D, and it is clear that S(D)= /.

Two braid diagrams Dand D on n strands are said to be isotopic if thereis a

continuous map F:DxI—>RxI such that for each selthe set



D =F(Dxs)cRxI is a braid diagram on » strands, D, =D, and D, =D . ltis
understood that F maps the crossings of D to the crossingsof D . for all se/
preserving the under/overgoing data. The family of braid diagrams {DS}SE[ is called an

isotopy of D, =Dinto D, =D . An example of an isotopy is given in Figure 2.6. It is

obvious that if Dis isotopicto D',then (D)= ,B(D').

A AR AR

Figure 2.6 An example of isotopy of braid diagrams

2.2.3 Reidemeister Moves on Braid Diagrams

The transformations of braid diagrams Q,, 2, shown in Figures 2.7 and 2.8, as well as

the inverse transformations le,le (obtained by reversing the arrows in Figures 2.7

and 2.8), are called Reidemeister moves. The moves affect only the position of a
diagram in a disc inside Rx/ and leave the remaining part of the diagram unchanged.

The move €2, involves two strands and creates two additional crossings ( there are

two types of €2, -moves, as shown in Figure 2.7 ).

The move Q; involves three strands and preserves the number of crossings. All these

transformations of braid diagrams preserve the corresponding braidsup to isotopy.

/ \

¢ ot ¥

A /

Figure 2.7 Reidemeister moves (2)




YIRS
\\ N

Figure2.8 Reidemeister moves (3)

We say that two braid diagrams D, D" are R—equivalent if D can be transformed into

D' by a finite sequence of isotopies and Reidemeister moves Qfl, Qfl. It is obvious

thatif D, D are R—equivalent , then ﬂ(D):ﬂ(D') :

The following theorem asserts the converse.

Theorem 2.4 Two braid diagrams present isotopic geometric braids if and only if these

diagrams R —equivalent .

Proof The keypoint of Theorem 2.4 is that the diagrams of isotopic geometric braids

are R—equivalent . The proof of the theorem goes in four steps.

Step 1 We introduce some notation used in the next steps. Consider ageometric braid
bcR*xI on n strings. For i=1,...,n, denote the i th string of b, that is, the string
adjacent to the point (4,,0,0), by b. Each plane R’ x{s} with ¢ € I meets b, in one
point, denoted by b, (7). In particular, we have 5,(0)=(4,,0,0).

Let p be the Euclidean metric on R’. Given a real number &>0, the cylinder
&—neighborhood of b, consists of all points (x,/)eR’x/ such that
p((x,t),bi (t)) < &. This neighborhood meets each plane R’ x{t} c R’x/ along the

open disc of radius ¢ centered at b, (7).

For distinct i, j € {l,...n} , the function t—)p(bi(t),bj(t)) is a continuous function
on I with positive values. Since [ is compact, this function has a minimum value.

Set

10



b] -1 min min p(b, (¢).b,(¢))>0 (2.3)

2 I<i<j<n tel

It is clear that the cylinder |b|—neighb0rhoods of the strings of b are pairwise disjoint.

(In fact,

b| is the maximal real number with this property.)

For any pair of geometric braids b, b on n strings and anyi=1,...,n the function
t—>p(bl.(t),bi'(t)) is a continuous function on I with nonnegative values. Since [ is

compact, this function has a maximum value. Set

p(b,b'):maxmaxp(b[(t),bj (t))ZO (2.4)

I<ism  tel

The function ;) satisfies the axioms of a metric: ,;)(b,b'):,b(b',b);,;)(b,b'):o if and
only if b=b; for any geometric braids, b,b,b" on n strings, we have

,;)(b,b") < ,;)(b,b')+/~)(b',b"). The latter follows from the fact that for somei=1,...,n

and te/,

<p(b,(1).5,(t))*+p(b,(¢).5',(t)) (2.5)

Note also that
b <[]+ p(6.5) (2.6)

Indeed, for some ¢ € I and certain distinct i, j €1,....,n

11



1

=205, )
< %(;O(b,. (1),b (z))+,5(b,f ()b, (I))+;o(b;. (1).b, (t))j
g%(/;(b,b')+2‘b"+/;(b',b))

“[e|+p(5.0)

(2.7)

Step 2 A geometric braid is polygonal if all its strings are formed by consecutive
(linear) segments; see Figure 2.9. Any geometric braid b on n strings can be

approximated by polygonal braids as follows. Pick an integer N >2 and an index

. k-1
i=L,..,n.For k=1,..,N, consider the segment in R* x I with endpoints b, (Tj and

k
b”(ﬁ]' The union of these N segments is a brokenline, biN, with endpoints

b (0)=b,(0)=(4,,0,0)and " (1) =b,(1). For sufficiently large N, this broken line
lies in the cylinder |b|—neighb0rhoods of b. Therefore for sufficiently large N, the
broken lines bfv,...,b,iv are disjoint and form a polygonal braid, bN, approximating b .

Moreover, for any real number ¢ > 0 and all sufficiently large N, we have;o(b,bN ) <&

. For instance, Figure 2.6 shows a polygonal approximation of the braid in Figure 2.4.

Figure 2.9 A polygonal braid

12



We now reformulate the notion of isotopy of braids in the polygonal setting. To this

end, we introduce so-called A —moves on polygonal braids. Let A, B , C be three

points in R*x/ such that the third coordinate of Ais strictly smaller than the third

coordinate of B and the latter is strictly smaller than the third coordinate of C. The
move A(ABC) applies to a polygonal braid bcR*xI whenever this braid meets the

triangle ABC precisely along the segment AC . (By the triangle ABC, we mean the

linear 2-simplex with vertices 4, B , C.) Under this assumption, the move A(4BC)

on b replaces AC cbby ABUBC, keeping the rest of b intact; see Figure 2.10,

where the triangle ABCis shaded. The inverse move (A(ABC))f1 applies to a

polygonal braid meeting the triangle ABC precisely along ABUBC . This move

replaces ABU BC by AC . The moves A(ABC) and (A(ABC))_1 are called A —moves

Figure 2.10 Delta move

It is obvious that polygonal braids related by a A —moves are isotopic. We establish a

converse assertion.

Claim 2.5 If polygonal braids b, b are isotopic, then b can be transformed into b by a
finite sequence of A —moves .

Proof We first verify this claim under the assumption b(b,b') < |b|/10 . Assumethat the
ith string b is formed by K=>lconsecutive segments with vertices
4,=(i,0,0),4,...4, e R*xI. We write b =A4A..A. Similarly, assume that

b,=B,B..B, with L>1 and B,,B,..,B,eR*xI. Note that 4,=B, and

13



4, =B, e R*x{1}. Subdividing &, b into smaller segments, we can ensure that
K =L, the points Aj,Bj have the same third coordinate for all j=0,1,...,K, and the

Euclidean length of the segments 4.4..,, B.B.., is smaller than |b|/10forj =0,1,..

JEjHL g+
., K —1. The assumption ,;)(b,b')<|b|/10 implies that each horizontal segment 4B,

has Iength<|b|/10. The move (A(A()AlAz))f1 transforms b, = 4 4,...A, into the string

AyA,.. Ay =BA,..A,. The move A(B,BA,)transforms the latter in the string

-1
B,B/A,...A,. Continuing by induction and applying the moves(A(B‘A Aﬂz)) ,

JEj+L
A(Bij+1Aj+2) for j=0,1,..,K—2, we transform & into b. The conditions on the
lengths imply that all the intermediate strings as well as the triangles B.4. A

JgH T2

BB, A

.B,,,4,,, determiningthese moves lie in the cylinder |b|—neighb0rh00ds of b; they

are therefore disjoint from the cylinder |b|—neighb0rh00ds of the other strings of b.
We apply these transformations for i=1L..,n and obtain thus a sequence of
A — moves transforming b into b .

Consider now an arbitrary pair of isotopic polygonal braids b,b.LletF:bxI >R*xI

be an isotopy transforming b= F,(b) into b = F,(b) (the braids F (b)with 0 <s<1

may be nonpolygonal). The continuity of F implies that the function |/
(s,s’)—),;(Fq(b),Fs,(b))is continuous. This function is equal to 0 on the diagonal

s=s of I xI . These facts and the inequality (2.6) imply that the function 7 - R,

s = |F,(b)| is continuous. Since |F,(b)|> 0 for all s, there is a real number &> 0 such

that |Fs(b)| > ¢ for all s e . The continuity of the function (s,s') —>,1~)(Fs(b),Fs‘ (b))
now implies that for a sufficiently large integer Nand all k=12,...,N,

P(Fy iy (B),Fyy () < £/10 (2.8)
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Let us approximate each braid F;,(b) by a polygonal braid p, such that

p(Fk/N(b),pk) <&/10.For p,, p,,wetake b, b, respectively. By (2.6),
|22 [Fy B)| - p(Fyy (B, p, ) > 92/10 (2.9)
At the same time,

b(pk—lapk ) < b(pk—lﬁFik_l)/N(b))

4P (Fyy (B), Fyy (8))+ p( Fyy (b), p, ) < 38/10

(2.10)

Therefore p(pk_l,pk)£|pk|/2 for k=1,...,N . By the previous paragraph, p, , can be
transformed into p, by a sequence of A—moves. Composing these transformations

b=p,—>p,—>..—>p,=b , we obtain a required transformationb—>b . This

completes the proof of Claim 2.5.

]

Step 3 A polygonal braid is generic if its projection to RxI:Rx{O}xI along the
second coordinate has only double transversal crossings. Slightly deforming the
vertices of a polygonal braid » (keeping 0b ), we can approximate this braid by a
generic polygonal braid. Moreover, if b, b are generic polygonal braids related by a

sequence of A—moves, then slightly deforming the vertices of the intermediate
polygonal braids, we can ensure that these polygonal braids are also generic. Note the

following corollary of this argument and Claim 2.5 .

Claim 2.6 If generic polygonal braids b, b are isotopic, then b can be transformed into

b by a finite sequence of A —moves such that all the intermediate polygonal braids are

generic.

To present generic polygonal braids, we can apply the technique of braid dagrams. The
diagrams of generic polygonal braids are the braid diagrams, whose strands are

formed by consecutive straight segments. Without loss of generality, we can always

15



assume that the vertices of these segments do notcoincide with the crossing points of

the diagrams.

Claim 2.7 The diagrams of two generic polygonal braids related by a A —move are
R-equivalent.

Proof Consider a A —move A(ABC) on a generic polygonal braid 5 producing a
generic polygonal braid b. Pick points A, C inside the segments AB, BC,
respectively. Pick a point D inside the segment AC such that the third coordinate of

D lies strictly between the third coordinates of 4 and C. Applying to b the moves

A(AA'D), A(DC'C), we transform the segment AC into the broken line A4 DCC.

C ! S :
Further applying the moves (A(ADC )) and A(A BC ), we obtain b. This shows
that the move A(ABC) can be replaced by a sequence of four A —moves along smaller

triangles (one should choose the points 4, C, D so that the intermediate polygonal

braids are generic). This expansion of the move A(ABC) can be iterated. In this way,

subdividing the triangle ABCinto smaller triangles and expanding A —moves as
compositions of A —moves along the smaller triangles, we can reduce ourselves to the
case in which the projection of ABC to R x /[ meets the rest of the diagram of 5 either

along a segment or along two segments with one crossing point.

Consider the first case. If both endpoints of the segment in question lie on ABU BC,

then the diagram of b is transformed under A(ABC) by Q, . If one endpoint of the

segment lies on AC and the other one lies on ABUBC, then the diagram is

transformed by an isotopy.

If the projection of ABC to Rx/ meets the rest of the diagram along two segments
having one crossing, then we can similarly distinguish several subcases. Subdividing if
necessary the triangle ABC into smaller triangles and expanding our A —move as a
composition of A—moves along the smaller triangles, we can reduce ourselves to the
case in which the move preserves the part of the diagram lying outside a small disk in

R x I and changes the diagram inside this disk via one of the following six formulas:

16



d'did o didd;,d'did < d;dd;, dd;d < didd; (2.11)
d-d;d- d;d d;,d'd;d” & d;dd;, ddid < didd, (2.12)

Here d," and d; are the braid diagrams on three strands shown in Figure 2.11; for the

definition of the product of braid diagrams, see Figure 2.4. It remains to prove that for

each of them, the diagrams on the left-hand and right-hand sides are R-equivalent. The
transformation d,'d,d; <> d;dd; is just Q,. For the other five transformations, the

R-equivalence is established by the following sequences of moves:

w= (d;d;d; — % s gdididid — s dyd d d dT — s dsd ) :

y= (d;d;d; — % s dodididid;, —"—>d d d;d d; —2—>d;d d; )

p=(d;dsd; —2> d;dyd; dyd; ———d;d; d;dy d; — > d;did; ),
did;d- —2sd*d;d d;di —~—>d'd d;d di —2—>d;d d;,

ddid —2>d-d;d'd;d;, —2 >d d'd!d d; —2>d;d"d;.

This completes the proof of Claim 2.7.

Mo/ N/

Figure 2.11 Presentations of some braids (for generators)

Step 4 We can now complete the proof of Theorem 2.4. It is obvious that

R—equivalent braid diagrams present isotopic braids. To prove the converse, consider
two braid diagrams D,, D, presenting isotopic braids. For i=1,2, straightening D,

near its crossing points and approximating the rest of D, by broken lines as at Step 2,

17



we obtain a diagram, D', of a generic polygonal braid, b,. If the approximation is close

enough, then D'is isotopic to D.,.

Then the braids b, b, are isotopic. Claim 2.6 implies that 5, can be transformed into
b, by a finite sequence of A—moves in the class of generic polygonal braids. Claim 2.7
implies that the diagrams Dl' , D; are R-equivalent. Therefore the diagrams D,, D, are

R —equivalent .
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CHAPTER 3

THE GROUP OF BRAIDS

3.1 The Group of Braids

As showing above, we understand the notion of isotopy of briads. Now, to try and

figure out how we may attempt to show that B, for each » has an infinite number of
n -braids, we know B, = {1} is trivial group and let us to look at the simplest non-trivial

case, namely n=2. Every 2-braid is equivalent to one of two types of braid, an
example of the 2 types is shown in Figure 3.1 where the left-hand figure has 3 twists,

while the right-hand figure has 4 twists. We will see later that if p and q are the

number of twist of two braids, ﬂp and y, ,respectively, then p,q >1 and p #q these

braids are not eqivalent. So if we can prove this, then it follows that B, has an infinite

number of distinct braids.

)
g &

Figure 3.1 Comparison of two braids on two strings

We would like to introduce the concept of the braid groups. The braid group is also

sometimes called Artin's braid group.
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Now, we define the product of n-braid.

Definition3.1 Given two n-braidb,,b, — IR x I, we define their product hb, to be set
of poins (x,y,t) e R*xI such that (x,y,2t)eb, if 0<¢<1/2 and (x,y,2t-1)eb, if
1/2<¢<1. If we think the product with figures, we shall see how it figures out in

Figure 3.2.

\/% XX
/Q\’/Y/\C\’
X

=9
=

(<)

(2) (b)
Figure 3.2 The product of two braids on three strings

Proposition 3.2 If b, b, are isotopic to n-braids b, , b, , respectively, then bb, is isotopic
to b, b, .
Proof b, ~ bl' and b, ~ b; . From the definition of isotopy, b, can be transformed into b]'

by finite sequence of Reidemeister moves or A—moves Similarly, b, can be

transformed into b; by finite sequence of Reidemeister moves or A —moves . Let

m,k> 0 be integers.

b=(b), > (h), > ..—>(b) =b (3.1)

m

bb, =(b),b, > (b)), b, >...—>(b) b, =bb,, so we obtain that bb, ~b;b,.

0

b,=(b,), > (b)), >...>(b,), =b,  (3.2)

bb,=b (b,), >b (b)), —>..—>b (b), =bb, so we also obtain bb,~bb .

Therefore we combine two results; bb, (~ bl'b2) ~bb. .

[
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Proposition 3.3 The product of braids is associative, that is,
(blbz )bs ~b, (b2b3) (3.3)

Proof In the Figure 3.3 (a)-(c), we give diagrams to prove above statement. Diagram

(a) shows each n-braid, b, b,, b,, respectively. Diagram (b) indicates (blbz)b3 and

diagram (c) indicates b, (b2b3). So, we can see that the product of braids is associative.

C ] s
i
(8

3

£

A

?
2

2

S

(b) (c)

Figure 3.3 The proof of associative of braids

[

Proposition 3.4 The product of braids has a natural element. We shall denote this

element by 1 .
Proof Let 1, be the n-braid shown in figure. We see that this braid connects 4; to

B..

J
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Al AZ An—l An

B, B, B,,B,

Figure 3.4 Trivial braid

And 1, obviously satifies this relations:

b(1,)~band (1,)b~b (3.4)

[

Proposition 3.5 For each n-braid b, there exists a n-braid b such that b5~1n and

bb~1 .

Such a n-braid is called the inverse of b and denoted by b,

With the product operation and properties, we all have the necessary

requirements for B, to be a group.
If B e B, bean-braid, its equivalence classes is denoted by [,B]
Theorem3.6 The set of equivalence class of n-braids B, , forms a group. This group is

usually called n-braid group or Artin’s n-braid group.

Proof The product is given by Definition 3.1; associavity as a consequence of

Proposition 3.2, the identity element is 1, (Proposition 3.3) and the inverse element of

[], denoted by [,6’_1] (Proposition 3.4).

3.2A Presentation For Braid Group
In this section we define the generators of B, and obtain a group presentation for

B,.

n

22



We begin with defining the generators of B, and answer this question, “ how do this

generators generate B, ?

B, B, B,B, B, B, B, By B, B,
(2 Oy
Al Ax’-l Ai Aiﬂ An A AZ An—Z An-l An
\ AN
Bl Br-l Bi Bi-ol Bn Bl Bz Bn-2 Bn-l Bn
g; On-1

Figure 3.5 The generators of braid groups

As in Figure 3.5 we shall denote these (n-1) braids by o,,0,,....,0

n-1 *

The second set of (n-1) braids may be formed by interchanging the overcrossing and
undercrossing information for each of n-braids of Figure 3.5. Thus, this set of n-braids

is exactly the set of the inverse of each element in the first set. Therefore, we shall

denote these by 01_1’02_1"“"0_711 , see also Figure 3.6.

A, A, A, A, A, A A, Ay A, A,
y /
B, B, B; B, B, B, B, B; B, B,
o,! o,!
Al Ai—l A: Aifl An A1 A: An—z An-l An
ya /
B, B, B; B, B, B, B, B,2B.,B,
ot oh

Figure 3.6 The inverse of generators of braid groups

Proposition3.7 Any n-braid £ (in B, ) can be written as a product of elements from the

set {O‘i} with i=1,2,....,n—1, e.j,

i

p=olo;..0 (3.5)
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where each &, is either + or -and i,...,i, €{1,2,...,n—1}.

Proof Let the Figure 3.7(a) be the braid projection of f(in B, ) denoted by D.We may

partition this braid diagram by means of level planes such that two consecutive level planes

only two strings are braided with preserving overgoing and undergoing datas as an example.

K] A

I x) . S
Tz P

(a) (b)

Figure3.7 Indication of generators on braids
This diagram can be approximated by polygonal braid and each section of Figure 3.7(b)
shows an element of {O',.i} with i=1,2,...,n—1. So we obtain proof of proposition.
To find a presentation for Bn , we must also find a set of defining relations. For this reason, we

use induction with begining B, .

To obtain general relation, we must show that this equation 0,0,0, = 0,0,0, is true. If

we draw each equation’s figure, we see that this eqution’s figures are polygonal

approximation of Reidemeister move Q.. Therefore they are in the same equivalence

classes. So they present same element.

Actually the relation 0,0,0, = 0,0,0, stillholds inB, forany n>4.
Similarly, we have to show that

0,0,0, = 0,0,0, (3.6)
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\ B
9 A

Figure 3.8 Proof of second relation of braid groups on the example

We can see from their figures that first strings are constant, therefore we again use

Q. and we obtain the proof.

Continuing this process, we see that in B, for n > 2 the following relations hold,

0.0.0 =0, foralli=1,..,n-2 (3.7)

[l 2 ) i+1

Uio-iJrl

Consider, in B, the product o,0;, Figure 3.9(a) , we show using elementary moves

that this product is equal to 0,0, see Figure 3.9 (a)-(c)

(8) (b) ()

Figure3.9 Proof of first relation of braid groups on the example
If we generalize this, we can easily see the following relations:
0,0, =0,0; (3.8)

forall i,/ =1,..,n—1 with |i— j| 2 2.

Theorem 3.8 For any n > 1 the n-braid group B, has the following presentation;

O.0.,,0. =0.

i+l i+1

O-iO-iJrl

foralli=1,...n—2
c,0,=0,0, foralli,j=1,...,n—1with |i—j|22. '

B, :<01,0'2,....,0n_1
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Proof For proof, we have to find an isomorphism between a free group (G) and B, .

Let us begin with defining abstractly, in terms of a presentation, the following group G,

1

XX 0% = x,%x,, foralli=1,..,n-2
XX, = XX, foralli, j=1,...,n—1with |i—j| >0

G:<x1,x2,....,xnl

Now, we need to establish that G and B, are isomorphic as groups. That is to say, the

natural correspondence x, > o, for i=12,...,n—1, is a group isomorphism.

&)

Firstly, let us define a mapping ¢:G—>B, as follows, let W:xl.f‘xl.jz...x.A be an

I

arbitrary element of G, then set

(3.9)

Now, our aim is to show that the mapping ¢ is a group isomorphism between G and B, . For

this purpose, we use the following theorem.

Theorem3.9 Let

G=(x.%,X,| R =LR, =1,.,R, =1) (3.10)

m

where R, =x7x7..x7", with 1<, j,,...j; <n and & ==%l. Further, let H be an

arbitrary group and f a mapping from F<xl,x2,....,xn> to H defined by
f(x)=W, (3.11)
fori=L2,...,n.

If, for j =1,2,...,m,

&

SR)=1(x,) £ (x) S (x,)"

=WAWE WP =
ARt

Jk

(3.12)

inH, then f defines a homomorphism f:G — H with
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A A A A

Flea )= f ()" 1 (x)" o f (3,)

m

(3.13)

By theorem 3.9, it is sufficient to show that @maps defining relations of G to the

identity element in B, . This is quite easy to show, for
(o(xkx,xk’lx,’l) = [0,{0‘,0',:10',’1] = [ln] for |k—l| =2 (3.14)

(p(xlxmxx X xm) [O‘O‘HIO'O'H]O' O'HI:I [ln] (3.15)

To complete proof, we need to show that the homomorphism ¢ is onto and one-to-
one.
Firstly, let us show that ¢ is onto. Suppose /3 is an arbitrary element of B, . By

proposition 3.7, [ can be written as

p=ooc;..0 (3.16)

I

where 1<i,,i,,....,;y Sn—1 and & =x1. Now, consider the element /' = xx;>...x* in

G , by definition,

go(W) = (o(x;‘xfgz. X ) =[O'[T‘O'?Z. et ] = [ﬂ] (3.17)

b I

Hence, @ is onto.

Suppose, now, in G there exist elements g and g’ such that ¢(g)=¢(g'). We may

write  g=x/x”..x* and g'=x}x?.x7, and let p=o0c]. .0}

I Ji I

and

I _ <~ ~h Tk
ﬂ Gjl O-jz ' GJA '

Since by assumption ¢(g)=¢(g'), we must also have S~ B’. Hence we need to

show either that g=g' as elements of G, or equivalently W = X x ..x%* and

J
W'=x7x"..x7 thought of as words in free group F(x,,X,,....x,,) can be connected

by a finite sequence as follows,

W=W,>W,>..o>W =W (3.18)
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where for i=L2,....,r—1, W, is obtained from W, by either insertion or deleting of a

conjugate of one of the relation of G . If we denote the set of all relations of G by

R then we can say that W;W'.

We know from our previous work that since # ~ ' we can construct a finite

sequence
=B >0 —>.o>p=p0 (3.19)

We will show that it is possible to construct of type in (3.18) from (3.19).

With this mind, suppose that X,, for i=L2,..,5s—1, is a word in G whose image
under @ in B in (3.19). In particular, let us set X, =W and X, =W'. Then, if we can
show that X, is equivalent to X, relative to R, for i=L2,....5—1, will be able to

construct exactly the finite sequence we require, namely,

W=X->X,>..oX =W (3.20)
and hence W;W'.

Clearly, it is sufficient to look at only part of the sequence in (3.20), 5. — ., say. This,

im turn, allows us to simply notationto S — /.

Now, /3 is obtained from /3 by applying a solitary elementary move. By definition of
an elementary move, we replace an edge 4B by the edges ACUCB in the triangle

AACB see in Figure 3.10. Also, by definition, the image of AACB is also triangle.

N L]
\ 23
AL e

~C —_— P\ 2 )C
A r A\ (A
yid LN\

(Bl
VA

Figure 3.10 Delta move on 5-braid
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It is easy to see from Figure 3.10 that the effect on £’ of an elementery move is to
introduce the straight lines (arcs) AC and CB. In general, AC and CB will produce

new intersections with other stringsin f'.

Since f=0/'0...0;*, we can partition 5 by k-1 level lines into k rectangles in each

of which there is exactly one crossing of the form &’ . However, the introduction of

AACB will require that we add several level lines to take into account the extra

intersections caused by 4C and CB.

An important point to note is that, even though we add these extra intersections and
hence level lines, when a string enters, say, over (under) an edge of AABC then this

string will always exit over (under) some edge of AABC, see Figure 3.11.

A//[ A

| T P
\/\ ¥

) (b

Figure 3.11 The position of strings in the delta move
Now, let B,P,...,P, and O,,0,,...,0, be the points of intersection of the level lines
with 4B and ACUCB, respectively, see Figure 3.10. Next, for each i=L2,...m
create a new point P on AB just above P. Clearly, we can construct P in such a

way that the narrow triangle AB’QI.Pi does not contain any of the crossingin S or f,

see Figure 3.12.
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~ ]
/\L A,%
-5 QJ—
R oy
.\ >< JC
B, |
G |

Figure 3.12 Subdiving for delta moves

The above construction, in fact, is nothing more than the creation of a series of

elementary moves and what may be termed A —moves .
We continue this process of appliying A —moves until we reach Pm'Qm UQ.B. We
replace this last polygonal segment by Pm'B , this is just an A—move, see Figure 3.12.

The above process yields the following sequence between ' and [,
ﬂ,:}/(] _>7/1 _>_)7/m _)j/m-#l :ﬁ’

where y, —>y,,, for i=12,..,m-1, is the replacement of P'Q.UQQ, by
PP, UP.Q., . While, y,—>y, and y, —>7,. are A—moves.
To next step is to find words X, X,,..,X,, X, in G such that ¢(X,)=y,. To find

these words, we need to find an expression for each of the y, in the terms of product

o;'. Essentially, there are two cases to consider.

Case 1l

F | Q,
z

rof| LA
19Q;,,

(b)Y’

Figure 3.13 The positions of strings in delta move (case 1)
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In Figure 3.13, if the bold face string enters quadrangle P'Q.Q..,P., under (or over) a

i+l

given edge, then it exists the same quadrangle under ( or over) some edge. It is clear

for Figure 3.13 that y, and y,,, are of exactly the same form, namely

+1 "

I+l __+1
Vi=V,07 0000 Y =V (3.21)
So, in this case, X, and X, are the same word, i.e.,

"

X, =X,

i+1

R T | +1
=X, x; X0 X,

1

(3.22)

where X, and X, are words that correspond to 7, and 7, respectively.

On the other hand, if the string enters P’ Q.0. P, over (or under) P'Q. say, and it

i+1
exits from the same edge P'Q,, then it is easy to see that , and ¥, are of exactly
the same form

Case 2

7 L q

1 | i
fin | ! Qiny fin | ! Qunr
(a) (b)

Figure 3.14 The positions of strings with one crossing in delta move (case 2)

The same remark as under Figure 3.13 applies to Figure 3.14.

R S | +
Y, =7,0,0,,-0,

1 A u__*l +1 __v "
0,,0,0,,,..0, 0,7, (3.23)

where 4, 1 and v are either +1 or -1, but if A # 1 then v = 1.

On the other hand,

L A - R | +1 u A __+l +1_"
Vi1 =0,0,0,0,,..0,,0,,0,0,,.0,7, (3.24)
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It is important that the sign of A, 1,V is observed carefully.

Therefore,
X, =X/ xx x0T X (3.25)
and
X=X/ 0 ) xx o X (3.26)
Butin G, since x, = x7',..,x;,and x| = x,,...,x, , we have that
X, ~ X X/ x5 i ol X (3.27)
Similarly,
X, ;XA = XX x s X (3.28)
From the relations of G, we know that xi_lx;’x; =X, X, lx where A, u and v are

either +1 or -1, but if A# x4 then v=u. Thus, X, X

i+l

Hence, we can say that

W=X,~X,, =W.

m+1

Therefore, @ is one-to-one, so the proof of theorem is complete.

Now we indicate homomorphism to extend our view with symmetric group (Kassel and

Turaev [3]).
Given a homomorphism f from B, to a group G , the elements {sl. :f(ai)},-=1 , of

G satisfy the braid relations

S8, =8.5, (3.29)
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forall 7,/ =1,..,n—1 with |i- j|>2 , and

SiSiaSi = SiaSiSim

(3.30)

for i=1,..,n—2. Then, there is a converse relation which is given by the following

lemma.

Lemma 3.10 If s,,5,,...,5, , are elements of a group satisfying the braid relations, then

there is a unique group homomorphism f:B — G such that s, :f(o;.) for all

Proof Let F be a free group generated by the set {0'1,0'2,....,0'n_1} . There is a unique
group homomorphism 7:Fn — G such that 7(01-):% for all i=1,...,n—1. This
homomorphism induces group homomorphism f:B, —G provided f(+".r)=1,

equivalently, provided 7(1’1) =7(r') for all braid relations ™' = 7. To verify the first

braid relation, we have

floo)=f(c)f(0)=55,=5,;5=f(0)f(0)=f(00).

To verify the second braid relation, we similarly have

f(0,0,,0,)=5:5,,8 =555, =f(0.,)f(0)f(0.)=f(0,00,).

]

We introduce new relation between Gn which is symmetric group, and B, . This relation

provides us how to imagine the generators o; .

3.2.1 Projection to the symmetric group

We apply the previous lemma to the symmetric group G =@, . An element of G, is a
permutation of the set {1,2,...,n} . Consider the simple transpositionswhere s,

permutes i and i +1and leaves allthe other elements of {1, 2,...,n} fixed. It is an easy
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exercise to verify that the simple transpositions satisfy the braid relations. By Lemma

2.9, there is a unique group homomorphism 7z:B, — @, such thats, =7(c;,) for all
i=1,...,n—1. This homomorphism is surjective because, as is well known, the simple

transpositions generate @, .
3.2.2Definition of pure braids
The kernel of the natural projection 7:B, — @ is called the pure braid group and is
denoted by P :
P =Ker(7:B, >@Q,).

Pure braid group has some generators and relations. Before we indicate these, in the
next section, we try to find a practical method that allow us to determine if a n-braid is
equivalent to another n-braid or not. This sort of determination problem is called the
word problem for group, in this case the braid group. We use the pure braid to solve

problem.

3.3 Word Problem

We mentioned the notion of equivalence of n-braids in first chapter. Now, we
introduce practical method to determine that whether two n-braids are equivalent or

not [4].
3.3.1 Word Problem For The Braid Group

Definition 3.11 (Word problem forthe braid group): Given any two braids, £, and £,

say, find a method that will allow us to decide if or not 3 =/, .

It easy to see that we can modify this to say, find a method that will allow us to decide

if or not B=1(since if f =f, then B4 =1).

For this aim of this section is to introduce the various steps that make up the

algeorithm.
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(1 First Step- Is the braid in the question a pure braid or not?
The reason why we ask this question is because the trivial braid 1 is a pure braid.
Therefore, if we can show that a given n-braid £ is not pure braid then, immediately,

we can say that £/ cannot be 1. Hence, the algorithm terminates.

So, how can we determine whether or not [ is pure braid? The answer is quite
simple, all we need to consider is its braid permutation, 7 (£)(€ @, ), defined above.
For if z(B)=(1) then B is a pure braid, however if 7(f)#(1) then f is not a pure
braid.

On determining the braid permutation, if £ is a pure braid then we need to proceed

to step (I1).

(n Second Step — The braid in question is a pure braid.

Since [ is a pure n-braid, from the definition, we know each string of the braid, d, for
i=1,2,...,n, starts at the point 4 and terminates at B,. So, let us remove last string,

d , and replace it by a straight line joining 4, to B

n?’

Figure 3.21(b), and denote the

resultant n-braid by y.

B v _a=py!

F\;) > I

o3 - § B

s A Tl
(©

Figure 3.15 An example of construction of combed braid

Now, we may form another n-braid « by taking the product of £ and 7/‘1, i.e,
a = By'. By construction, if we remove the final string of « then the resultant (n-1)-

braid, a say, is equivalent to trivial braid. Hence, we may think of a as just n-1

parallel lines. Therefore, « , itself, may be thought of as a n-braid in which the first n-1
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strings are parallel and the last string links with these parallel lines. Such a braid is said
to be a combed braid, Figure 3.15(c).

Letusset @ =, and y =y,,so f=q,y,, and let us shift our attention to y,. Since the
final string of y, is a straight line, to apply the above process to y, we must start with
the (n-1)th string. Let us denote by y, the n-braid obtained from y, by removing the

(n-1)th string and replacing it by straight line. Working through the above process, we

shall obtain a combed braid «,, but in this case the first (n-2) strings and the nth string

are parallel and the (n-1)th string links with only the first (n-2) parallel strings. Thus,

the process yields y, =a,7, .

By repeating the above process, finally, we shall arrive at a decomposition of £ in the

form
p=aa,..q (3.31)

where each n-braid «; is a combined braid, and in &, | every string except the second

string is a straight line and second string links only with the first string.
Proposition3.12 Let [ be a pure n-braid. Then, [ is the trivial braid if and only if each
of the «; in the decomposition given in (3.31) is trivial briad.

Proof If each ¢, is the trivial braid then clearly £ is also the trivial braid.

Conversely, let us suppose that £ is the trivial braid. In addition, let & be the (n-i)-
braid obtained from /£ by removing its last i strings. By construction, &, is £, &, | is
the 1-braid and &, is empty. Obviously, since /3 is the trivial braid, each of the & , for

i=0,1,2,...,n—1, is also trivial braid.

Similarly, let us define a;, as the (n-i)-braid obtained from a; by removing the last i

strings. Now, by construction,
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ﬂ = 50 = a1a2"'an—1’

981 =000, ,---Q, 5

& = 0, 5, (3.32)

é:n—Z =0, 20,y 0

where «,, is the trivial (n-1)-braid, «,,, «,, are trivial (n-2)-braids, and, in general,

Q50 sens @y, for i=1,2,..,n =2, are all trivial (n-i)-braids.

NOW , &, », 0, jreeer X are all trivial 2-braids and «,_, is n-braid obtained from 2-

n-2,n-2

braid « by adding n-2 parallel straight line strings. Therefore, the triviality of

n—1,n-2

¢, =a,,,, impliesthat ¢, , is the trivial n-braid. Hence,
B=aa,.a ,.

By the very same reasoning as above, we cansay that §, ; =«, ,, 5, and hence «, , is

the trivial braid. So, continiing in this way, we will eventually show that each ¢, is

indeed the trivial braid.

]

(1)  Third Step- Determine if or not each ¢, is the trivial braid?

It is well known that the word problem is solvable for free group which is the following

theorem. So, if we can show that each «, is an element of a free group, we can
determine if or not each ¢, is trivial braid. However, the arguments to prove contains

some terms and notations, and we postpone these to the next section.

Clearly, this third step is the final step of the algorithm. Hence, the steps allow us to

completely solve the Word problem for B, .

Theorem 3.13 The Word problem for a group is solvable.

Proof Let F be a free group of rank n generated by x,,x,,...,x, . An element
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g= xl.‘]g‘xfgz...x.g'" (3.33)

of Fis equal empty word, 1, if and only if we can eleminate each x;’ by a serious of T,

(inserting) and T, (deleting) transformations. That is to say, we can only cancel
products within g of the form xl.x_‘1 and x_‘lxl.. If we cannot such cancelations, then g

is never equal to the empty word.

Therefore, to solve word problem for an arbitrary word, g, of a free group, F, we

need only check if xl.x_‘1 or x_“xl. exist within g. Such a straight-forward method can be

deemed reasonably practical, so the word problem may be said to be solvable for a

free group.
Now, we give an example to understand this steps.

Example 3.14 Let us consider the pure 4-braid
B = 0'30'10'2_20'30'20'10'30'10'2_10'30'1_10'20'10'2_10'3 (3.34)

Already shown in Figure 3.15(a). From Figure 3.15(a) and (b) , it is easy to see that
7:0-10-20-]20-20'1. While, in Figure 3.16 we show by a sequence of diagrams that By~

is combined braid in Figure 3.15(c), and so

a, = ﬂ}/’l = (0'30';10'1’20'2’10'3’1)(0'3’10'2’20'3)(0'30'20'120'20'3) (3.35)

Figure 3.16 An example of process of word problem’s solution
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Now, let us turn our attention to y . By replacing the third string of y by a straight line,
we obtain y, =o. Therefore,

- -
— —

o 2 2 _ o -1
a, =Yy, =0,0,0 0,0,0 =0,0,0,0,0,0, =0,0,0,0,0,0

_ -1 _ 2
=0,0,0,0,0,0, =0,0 0, (3.36)

and finally a; =, . Hence, wemay write [ as, see also Figure 3.17,

B=aoa,.a, (3.37)

Figure 3.17 The conclusion of word problem for the example

3.3.2 A Solution of Word Problem

Our aim in this section to show that combed braids are elements of a free group. Then,
since the word problem is solvable for a free group, this allow us to solve the word

problem for B, . To this end, let us define & to be set of those combed braids for

which the removal of last string results in the trivial (n-1)-braid.

Now, we introduce some technical information about & .

Proposition 3.15 The group & is generated by the following (n-1) elements, see also

Figure 3.18,
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2 1
an_z O-n_l O-n—Z O-n—l
_ 2
a,,=0,.
2 i-1 2z 2+1 n-1n

Figure 3.18 A combed braid

Proof Let [ be an element of & . If we assume that 3 is not the trivial n-braid, then
the nth string d, of S hask, say, points p,, p,,..., p, With a vertical tangent on the left-
hand side of the curve d, and k-1 points ¢,,q,,...,q, , with a vertical tangent on the
right-side, see Figure 3.19(a).

Now keeping the points p,, p,,..., p, fixed, pull the piece of the string at each of the
points g, to the right, so that it clears all the strings on the right-hanf side, see Figure
3.19(b). For clarity, we shall denote by q;, respectively, the points with a vertical

tangent on the right-hand side on the new string.

7 1
l i__l__\q‘ | I__I__Pq,’
| oA |
' . q2I
Sl F’IP:\:
(a) (b)

Figure 3.19 The process of delta moves to obtain new braid
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What the above process allows us to do is to deform /3 into the following form

ﬁ = ﬂlﬂz“'ﬁk (3.38)

in which for some i each g, is of the form

B, = (o-g"-l o2 ..o ) 012 i (O'fg‘i:‘ Wty ) (3.39)

n-1 n-2 i+l n=2 n-1

Where, for 1<i<n-land [=i+],...,n—1, &, g;, &, are either +1 or -1.

Therefore, to prove the proposition it sufficies to show that each g, is a product of g,
and their inverses. A diagrammatic proof is given in Figure 3.20(a) and (b). In Figure
3.20(a), firstly, we choose four points a, b, c, d that lie close to each undercrossing
point from ¢ to p and from p to ¢ . Having established these 4 points, we pull them
to the right side, Figure 3.20(b). Then, it can be seen that f is the product of «, and

-1
a .

DY |

]

l
(a) (b)
Figure 3.20 The process of delta moves to obtain new braid

Actually, we know that a,,a,,...,a, , generate & from proposition 3.15. As we shall
see, the exact nature of these generators relies on the use of the Reidemeister-
Schreier method [5].

Proposition 3.16 The elements a,,a,,...,a, , defined as in Proposition 3.15, freely

generate the group & . In other words, &,k is a free group freely generated by

a,,a,,...,a

n-1"*
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The remaining part of this section is devoted to the proof of this proposition.

Firstly, let us consider a subset, H  say, of B, that consists of all n-braids [ with the
property 7(/)(n)=n, i.e, the braid permutation, (/) fixes n . This group obviously
is a subgroup of B, . Since B, and f, belong to the same right coset if and only if
BB el andso z(f)(n)=7z(pB,)(n), eachright coset H B of H, in B, consists
of n-braids £ with ﬁ(,B)(n):k for some 1<k <n. Therefore, there are exactly n

distinct right cosets of H in B, and hence,
[B,:H, ]=n (3.40)

In particular, each right coset is represented by

M =0

i n—1

o

PECRIE

o

n—i+l

(3.41)

fori=1,2,..,n, and M, =1.

Definition 3.17 Let G be a group given by G :<xl,x2,...,xn

P,R,Q,...>, where each x,

is generator of G and P,R,Q,.. are relators for G. And let M, be right coset

representative for G, in addition, we may write

M, =xx"..x* (3.42)

i Vi i

where 1<i,i,,...,i;<n and ¢ =% (for our case) and M, =1. The set
M ={M1,M2,...} is said to be Schreier system if for each M. in (2.42) the following

k —1 consecutive, initial parts of M,

xlff‘ ,xf‘ xliz , xlff‘x.gzxfg3 , ...,)clf‘x‘gz X (3.43)

i b Th i /s
also belongto M .

From definition 3.15, it is clear that M :{MI,MZ,...,MH} forms a Schreier system of

right coset representatives. Now, using this system, we can compute a presentation for
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H . Since this process is straight-forward application of the Reidemeister-Schreier

method.

First, we shall determine the generators of H .

Lemma 3.18 The group H  is generated by

01,0%5..,0, 5 (3.44)
and for j=1,2,...n—1 by
a,= (O',HO'H...O'_ " )0'_12. (O'_;jl...oﬁzo-il) (3.45)

Having established the nature of the generators for H , the next step is to find the set

of defining relations. Once we apply Reidemeister-Schreier method to obtain relations

with M .

The first type of relations come from

T(MinO'IGk_IGI_lM,_l) =1 (3.46)

fori=L2,..,n and k,/=1,2,...,n—1with |k—l|22 and 7 is rewriting function (for the

Reidemeister-Schreier method). But,

1

1

T(MinO'IG;O'I_lM._I ) ~Mo,Mo, xMo.o, Moo,
(3.47)

_ 1
-1 -1 -1 __-1 -1 __-1
xM.0,0,0, M.o,0,0, xM,o,0,0, 0, M.o,0,0, 0,

Since M is a Schreier system, the remaining factors are all the identity. The latter re-

arrangement allows us to determine relations.
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Claim 3.19

M, if n—i>kor n—i<k-1

Mo, =1M,0, if n—i=k
Mo, if n—i=k-1

where M, =0, 0, ,..0, ., and ,k=12,..,n—1.

(3.48)

Proof:If we look the definition of M, and use relation when |k —i|>2, then we obtain

the map.

From the relation (3.46) and Claim 3.17, we derived these relations of H :

(1) o0, =0,0,, k—i|>2, i,k=12,.,n-2

(2) ca0 ' =a,, k#i, i+

The second and final of relations can be determined from

R L e
T(MiO'jO'jHO'jO'jHGj o.M, )—1

fori=L2,..,nand j=12,..,n-2.

From the relation (3.51) and claim 3.17, we derived these relations of H :

(3) 00,0 =0, i=L2,..,n-3,(

i+ 1+lo-i0‘

i+1°

(4) cac ' =a

i+1°

(5) oa,0 ' =a aa

i+l i+l

(3.49)

(3.50)

(3.51)

3.52)
(3.53)

(3.54)

Now, we found a presentation for H, with help of Reidemeister-Schreier method. We

shall indicate this presentation in the following proposition:
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Proposition 3.20 The group H, has a presentation of the form

<c71,0'2,....0' a,,a,,...a, |00, =0,0,, |k—i|22, i,k=12,.,n-2

sY -2

0,0,,,0,=0,,,0,0, i=12,.,n-3

i i+ 00+

-1 _ ..
cao0, =a, k#i, i+l

—1 _
0,40, =d

i+1°

i+l i+l

-1 _ -1
c,a,,0;, =a,, aa >

Now, let F be a free group generated by the n—1 elements u,,u,,...,u, ,. The reason
for the the introduction F is that we wish to establish a homomorphism from H  to

Aut (F) , the group of aumorphism of F. Once we have defined the appropriate

mapping, we shall use it to show that indeed & is a free group generated by

a,,a,,...,a

>%n—-1"

So, let us define a mapping ¢:H, — Aut(F) by, k=12,..,n-2,

u, —u, if ik, k+1, 1<i<n-1
¢(O-k): Uy = Uy, 3.55)

-1
Uy = Uy Uiy,
and for j=1,2,...,n—1 by

. 4
¢(a./)'”i U U,

(3.56)

where i=1,2,...,n—1.

Lemma 3.21 The mapping ¢ defined above is a homomorphism from H  to Aut (F).

Proof For the proof of lemma, we shall show the computation for the one of relations:

caoc '=a (3.57)

[Aat Al i+1
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o,—]

i a; O
-1). -1 -1
¢(Giaio-i )'uj — U, > U U — U Ul
. -1
¢(ai+1 ) U U U

i+1°

-1
h a;

1. -1 -1, -1 -1 _ -l
¢(Giaio-i )'ui % ui ui+lui % uiui ui ui+luiui _ui+1 % ui+1uiui+l’

¢(ai+1 ) u, > u[jluiu

o;

i+l°

-1
i

a; g;
-1\.
¢(O-iaio-i )'ui+1 —> U — U — Uy,

¢(ai+1 ) : ui+1 - ui+1'

O,

]

We are now at the final stage of the proof of Proposotion 3.14. All the information is at

hand to show that a,,a,,...,a, , are free generators. If n=2, then g, generates a free

group of rank 1, since al" #1 forany k£ #0.So we assume that n>3.

Suppose that 4,,a,,...,a, , are not free generators for H . Then, there exist a non-

trivial relation in H, in terms of a,,a,,...,a, ,, i.e.,
W(a,aj,...a, )=1
If we apply the above homomorphism @ to W, we obtain that
P ) (a,05000,) =W (#(a)) .6 (a) s p(a,.)) = id,
Suppose that
W(a,a,,...,a, )=aa;..a;
Thenfor j=12,...,n—1,
S ) ()= (" o u Y (e )

However, since u,,u,,...,u, , are free generators of F, ¢(W) =id, implies
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u.:(u[l_g‘ u_gk"u;gk)uj(ufg' u‘g“ufgk) (3.62)

iy T

for j=1,2,...,n—1.

€1

Let us denote ul.fkul.H uf‘ by g, then from the above relation, we see that g commutes

with u, for each j=1,2,...,n—1. Hence there exist an integer A; such that gzujf , for

j=12,..n-1.

However, the above implies that if j#/ then ujf =uf’. But u,u,,...,u, , are free
generators of F. Hence, /1j =4, =0. Therefore, g, itself, must be 1. So, by a finite

number of T1 and/or T2 operations, g collapses down to the empty word.
Consequently, the relation W =1must be trivial relation. However, this contradicts our

orginal assumption that there exists a non-trivial relation in H  in terms of

a,,q,,...,d Hence, q,,a,,...,a, , form a set of free generators. So, we have finally

n-1°

reached the conclusion of the proof of Proposition 3.16.

]

With the completion of the above proof, we are finally in a position to answer in a

methodical fashion if or not a given n-braid £ is a trivial n-braid.

3.3.3 A Presentation For The Pure n-braid Group
We know that the set of all pure n-braids forms a normal subgroup P, of B, . Since

(P,)=(kerz) is the normal subgroup of B, .
Claim 3.22 The quotient group Bn/Pn is isomorfic to the symmetric group @, .

Proof We know that there is a homomorhism 7:B, -G, . And (P,)=(kerx). So if

we can use first isomorphism theorem, we can easily prove the claim. Because this
claim is the application of this theorem. According to this theorem, there is a

isomorphism such that 7B, /P, -G, .
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Therefore, it is possible to find a Schreier system of right cosets [5] representatives of

P in B, . In this section, we use Reidemeister- Schreier method for P, . But, we use

n

induction which based on the presentation H to procedure a presentation of P, .

For this purpose, we shall recall, H is the set of all n-braids £ with the property

n

ﬂ(ﬂ) =n, that is, those that fix n. Let H | be subset of H  consisting of all n-braids

S with the property ﬂ(ﬂ)(n—l) =n—1. Hence every element of H _ fixes both n-1

n-1
and n. It is not too hard to see that H , is a subgroup of H . We may define a
subgroup H,, for k=1,2,..,n, of H _, that consists of all n-braids that fix %.
Therefore, H, consists of all n-braids B with 7(f8)(/)=/ for I=kk+1,...,n Itis

easy to see that we have the following sequence of subgroups,

B,oH oH  o>.oH,oH, (3.63)

Furthermore, [H,, :H,|=k for k=12,..,n~1 and H (=H,) is the pure n-braid

group P .

By choosing a suitable Schreier system, our aim is to use the presentation of H  as the
first step in an inductive process that vyields a presentation of H,, for

k=n-1n-2,..,2. In fact, a Schreier system of right coset representatives of H, in

Hy,, for k=n—1Ln-2,.,2 isgivenby {N',i=1,2,...k}, with

NY =05, 0,,..0 and N =1 (3.64)

We have shown that H  is generated by o,,0,,..,0,, and the pure n-braids

a,,a,,....a, | . More generally, we define a pure n-braid 4, ,, for I<i<j<n,as

)O'iz (0:1...0'1 o ) (3.65)
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n

Figure 3.21 A generator of pure braid group
By convention, we assume that 4, ; =1. In terms of notation, g, is just 4, .

We can use {A,. } to obtain a presentation for H . Infact, H , is generated by

N

g(N.("*l),q,) =NV N, (3.66)
and
g (N_(”’l) ’ Ak,n ) = Ni(nil)Ak,n Ni(nil)Ak,n 7 (367)

for ,k=12,..,n—1and j=12,..,n—-2.

To obtain more explicit forms of these generators of these generators, we need the

following lemma.

Lemma 3.23 With the N, as above,

()5 —
Ny o,=0,,0,;..00;

(1) 0, 20, ;..-0; if j<i-lori<j (3.68)
=<0,,0, .00, , 1ifi-1=j
O, ,0, 3.0, if i=j
(2) N4, =N (3.69)
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Proof Let ﬁ=Ni(”_l)Gj, and let us compute z(f)(n—1). If j<i-lori<;j then

7(B)(n—-1)=i.Hence,

N Vo = N (3.70)

i J i

The other case in (1), if we use same method which is given for first case, we can easily

obtain the other results.

Turning now to (2), since 4, , is a pure n-braid, we have
7(N"V4,, =1 =2 (NP (-1 =i (3.71)

Now, (2) is a direct consequence of above equation.

Therefore, for j=1,2,...,n—=2 and i =1,2,...,n—1, we obtain that

(N.('H), )_ o, ifi<j (3.72)
: ’ 1 if i-1=
Aj,n—l lf l=.]
Further, for i, j =1,2,...,n—1,
4, if j<i
g(Ni(nil)Aj,n): Anfl,n lf l:J (373)

A A A ifi<

n—1,n*"j-l,n*"n-l,n

A A

2,n0 0 Ayl

Therefore, H | is generated by o,,0,,...,0, ; and 4 A A

Ln—=12*"*2“"n-2,n-1°“"1,n>

The next step is to determine the defining relaitons for H . In fact, there are two

types of defining relations for H .
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M (1) o,0, =0,0, for i,k=12,....n-2 (3.74)
2)oo, 0 =000, fori=12,.,n-3 '
I 25 +17 i i+
(1) o4 o '=4 for i=12,...,n-2, k=12,...,n-1, k #1,i+1
i“knTi k,n
(ID<(2) O'I.Aj,no'i_l=A7.+1’n for i=1,2,...,n—2 (3.75)
(3) G[AHJ,HO-;] = ‘Aijrll,n Ai,nAHl,n for l: 1’ 2""’” _2

Now, in order to find some information on the relations for H_,, we need to compute

1

-1
r(N.(”‘l)R(NI.(”‘I)) ) with 1<i<n—1 for various relations R in (I) and (II).

Proposition 3.24 For 1<j<k<n-2 and |j—k|22, the relation (I, )(1)

R=0,0,0,'0, =1 yields two types of relations.
(1) o,0,=0,0; forl<j<k<n-3and |j—k|22

(2) 0,4 for 1<p<n-3,1<g<n—-2andg#p,p+1 (3.76)

,1 _
919 p =4

q,n-1

-1 -1
Proof Let us compute T(M("I)R(N("l)) ): z-(]\fi(”l)alaka/flo-,;l (Ni("fl)) ):1 and find

relations.

-1
T Nl.("fl)ajaka;la,zl(Nl.(”’l)) ):
SN ) N g o

xN; Vo,o,N; 'o,0, xN; 'o,00 N; 0,00, (3.77)

1 1

_ N(H)G _N_(H)G _ N
J i

i J

1

(n-1) -1__-1 ar(n-1) -1__-1
xN;" ‘0,00, 0, N;” '0,0,0, 0,

For 1<i<n-1.From the above equation, we find this relations:
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(1) 0,0, =00, if 1<j<k<i-1

(2) the trivial relation if 1<j<k=i-1

3) O_jAk—l,n—lo__;l = Akfl,nfl if k=i

4) 0,0,,=0,,0; if j<i-1, k=i+1 (3.78)
(5) the trivial relation if j=i-1, k>i

6) 0,40, = 4, if j=i<k<n-2

J

(7) 0,,0,,=0,.,0,, if i+1<j<k<n-2

And if we generalize above relations, we find two relations are given in proposition

3.22.
Now, we introduced general relations with where they derived from.

I)2) Jjaﬁlajoﬁlo-;lo’] =1 (3.79)

j+

) o0,,0,=0,,00,, forl<j<n-4

-1
(2) 0,4;,.0, =4

j+ln—-1

for1<;j<n-3 (3.80)

3 o,(4,,. )0, =4, A4, A, forl<j<n-3

J J+Ln=17j,n-1“"j+1,n-1

(Iln )(1) JiAk,nJilA/:,In = 1 (3.81)

1

() o,4,,0, =4, if 1<j<n=3,k#j,j+1

k.n= j

() 4, 4y, =44, if 1<k<j<n-2 (3.82)
)4, A, A4, A=A A A, if 1< j<n=2, 1<k<n-1,j<k

)2 0,404, =1 (3.83)
1) O'jAj’nG;l =4,,, forj=12,.,n-3 (3.84)
() 4,,,A4,, 4" =44 4, forj=12,.,n-2

(IL)3) 04,07 Ay 4,40, =1 (3.85)
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D)o, A,, oc'=47! A 4 for 1<j<n-3

Jj+Ln g JHLn*7j.n " j+1ln
-1 _ g1 -1 . _
(2) Aj,n—lAn—l,nAj,n—l - An—l,nAj,r/Ar/—l,nAj+l,r1Ar1—1,n for J= 1’ 2""’ n 2

Now, we present all generators and relations for H, .

Proposition 3.25 The group H, | has the following presentation,

generators:

01,0-2,...,0,173,
Al,n—l’A
Ay Ay s A

1,n>

A

2,n=12°""2“"p-2 n-1°

n—1l,n

relations:

(I)n—l
() o, =0, if 1<j<k<n-3and |j—k>2

(2)o,0,,0,=0,,0,0,,1f j=12,...n—4

(II)nfl
() 0,4,,0;'=4,, if 1<j<n-3, 1<k<n-landk#j,;j+1

(2) 0,4,,,0,'=4,,, if 1<j<n-3,1<k<n-2andk#j,j+1

(1), _,
() o,4,,0'=4,,, if 1<j<n-3

Joln ) J

(2) 0,4 A’n_laj’l =4

J

g M 1<j<n=3
(IV)n—l
1) 04,07 =4} A A, if 1<j<n-3

Q) oA, o' =4 4, 4

j j+ln-1 “7j,n—1""j+1,n-1

if 1<j<n-3

(V)nfl
A, =4, if1<k<j<n-2

(VI)nfl
WA A A' =4"' A4 A4 if j=1,2,...,n-2

J.n=1°"j,n*"j,n-1 n-1n*"j,n*"n-1n
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(VID)

n-1

(1) Aj,n—lAj,nA;,ln—l = An_—ll,nA;,lnAn—l,nAj,nAn—l,n lf .] = 1’ 2”"’ n— 2
(vi, ,
WA, 4,4, =4, if 1<j<n-2,1<k<n-land;j<k

From proposition 3.24, we can see that there are two types of relations: one set involving o,
and Aj,k , and the other set involving only Aj,k .Since P does not involve any o, the first set

of relations will eventually disappear. But, the second set of relations can be derived from the

first set of relations. In addition, the second set of relations does not produce any new type of

relations. With this in mind, we will give a presentation for P in following theorem.

n

Theorem 3.26 The pure n-braid group P, has following presentation,

. _ 2 __-1
generators: 4, (— 0} 104 20,00 .

..0',;_126,;_11) for 1<j<k<n
relations:

(A) 4,,= 4, if 1<r<s<i<j<n or 1<r<i<j<s<n

(B)A, A, A =A"A A if ISr<s<j<n

rSs T, jir,s

(C)A, A A =A"A4"4 A A if 1<Sr<s<j<n

s s, jir,s s, j o, j s, j g

(DYA A A, = A, if 1Sr<s<i<j<n

LJ s, ) L]

(D)is equivalent to

(D) A A 4t =[40.40]4, [4.4] if1<r<s<i<j<n.

s, ] i

Proof Assuming the other relations hold, we shall show, firstly, that relations (D) and

(D) are equivalent.
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(D)o A A'A A A'=A4"4 A

[ I A B A B B | VA )

& (A4,4,470)(4,4,,40)(4,4,47)) =44, 4,

i B A rit s, j A I A (VN

oA A A :(A ) ,A*)AﬂA A ,(A .AilA*)

ritTs, j I 1408 Sl I Ay V) 1,j°7s,j 70, ] 148 Sl I Ay V)

(€)

A A A :(A.“,ATI,A. A A ,)(A.“,A A .)(A.‘I.A“.A.“A A )

LA L r ) L)L) LSV AR R A Y | L] ) L] L]

oA 4,47 =404 04, [ 4040 ]

rifts, j i i,j°

< (D)
Lemma 3.27 Let us write N, for Nﬁk), andset p=1,2,...,k.
Casel, r<k,

(1) z(N,4,,N,")=4

7,

if r<p<k<s

(2) 7(N,4.N,")=4,, if r=p<k<s

3) ©(NA N')=4'4 A if p<r<k<s
() ( P k.s

VA k,s*Tr-1,s

Case 2, r=k,

1) (N, 4, N, )=4"4, 4

poTr,s ks r=l,s
Case3, r>k,

1) z(N,4..N,")=4,

58

Lemma 3.28 The following commutative relations are consequences of relations

(A)—(D).

() 4 A A =4, if 1SI<k<s<j<n
(2) 4 A4 A, = A4 A, A, if 1SI<m<k<s<j<n

k,s*“ " m,s

(3) 4, ,4,=A4., if 1I<r<k<j<n
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Proof

D Ak,jAk_,lsAl,sAk,s = Ak_,lsAl,sAk,sAk,j

-1 _ 1] 4-1
= Ak,sAk,jAk,s - Al,s Ak,sAk,jAk,s Al,s

(B)

SAA A =4 AA A A
s, Tk, i s T s s, Tk, j s, 4 s
-1

< A4 4, = A4,

< (D)

(2) Ak_f/'Al,jAkajA_lA 4, = 40,4 Ak,sAk_f/'AlajAkaj

k,s* " m,s k,s*"m,s
(B)
N -1 -1 -1 -1
g Al,kAl,jAl,k Ak,sAm,sAk,s = Ak,SAm,SAk,S Al,kAl,jAl,k
(D)
N -1 -1 -1 -1
g Al,kAl,jAk,sAm,sAk,sAl,k = Al,kAk,sAm,sAk,sAl,jAl,k

-1 _ 41

= Al,jAk,sAm,sAk,s - Ak,sAm,sAk,sAl,j

This holds since 4, , = 4, and 4,, = 4, , relation (4).

(3) 4,44, 4,47, = A A,

k,j
-1 -1 _
= Ar,kA,,,jAr,k A,,,kAk,jAr,k —A,,,jAk’j
(B) (C)
PN -1 -1 -1
= Ak,jAr’jAk,jAk’jAr,j Ak’jAr,jAk,j = A,,jAk’j

& 4, 4,=4 4,

We need to look at the relation R, :Np(Ar’SAi,_/A;A;;)N: =1. Then, T(Rp)zl

yields the following relations.

Casel, r<k<s
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(1) If p>r then 4, =4,
(2) If p=r then 4, = 4,
(3) If i<p<r then 4, = A4 , A,
(
(

)
)

4)If i=p then 4, , = A4 A,
)

ks r—l,s

5)If p<i then 44 A =414 A, .

ks r—l,s

The relations in (1), (2) and (3) are consequences of the relation (A), while the

relations (4) and (5) are same as (1) and (2) in Lemma 3.28.

Case 2, r=k

() If i<p<r then 4 A, A <= A A A,

8 k—1,s k,j i-1,j
(2) If p=i then A A, | A <A,
(3) If p<i then 4,4, , A, =4,

Relation (1) above is just Lemma 3.28(2), relation (2) is Lemma 3.28(1), and Lemma

3.25(2), and (3) is a consequence of (A).
Case3,i<k<r

(1) If i<p then 4., =4,
(2) If p=i then 4, , =4,
(3)If p<i then 4, = A A4 4, .

These relations are consequences of (A).
Cased, k=i
N gl
(1) Ar,s A Ai,in—l,in,j

Case 5, k <i

(1) Ar,s \ﬁ A

i,j

In cases 4 and 5, the relations follow from (A).

In other case r < s <i< j, we can find this relation:
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A — A4

7,8 i,j°

Now let us set R, =N, (4,4, A'A'4'4 )N, Then z(R,)=1 vyields the

[ e e I R Y N P

following relations:

Casel, r<k<s<j

(1) If r<p<k then A A A =A"A A
(2) If p=r then A, A, A =44 A,
(3) If p<r then

Ao A A AA A ATA A=A AA A A

ks Tr—1,s Sk, -1, ks Tr—1,s kT r=1,""k,j s, )"
Case 2, r==k

0 Al;lsAk—l,sAk,sAl;,ljAk—l,jAk,jAl;,lsAI;—ll,sAk,s = A;;AI;IJ'AI(—I,]‘A A

k,j 7 s.J
Case3, r<k

A A A'=4"4 A

rs o j s LIV R N |

Therefore, we only need to show that Case 1(3) and Case 2 are consequences of

relations (4)—(D).

Case 1(3) For (/=) r—1<k<s<j

AJ;ISAz,sAk,s A;Z,le Ak,j Aki,lsAilAk,s =4 A/:,le Ak,jA

1,j 1,s s, 1, 5,J
’(_f;)
= Al,kAl,sAI_J:A[,kAl,jAl_JiAl,kAl_,slAl_,llf = As_,;Al,k Al,j A[:;AS j
(4)

——
S Ay A A AA = A A A A A
N Al,sAl,jAl;: = A;,;Al,jAs,j

< (B)

The proof of Case 2 follows along similar lines to the above proof if instead we set k-

1=l.
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Now, let us set R, :NP(A, A A4 A A" A A )N[j1 for 1<r<s<j<n. Then

L R A R B A Y A 2 R Y )

T(Rp) =1 yields the following relations:

Casel, r<k<s<j

(1) If < p<k then the relation is unchanged.
(2) If p=r then change r into k in the orginal relation.
(3) If p<r then

Ao A A A ATAT A = AA AT A A AA A A,

ks =15k, s s, j ks r-1s k=1, s, k-1, ks
Case2, r=k
(1) Ak_,iAk—l,sAk,sAs,jAk_,iAk_—ll,sAk,s = As_,lek_,‘ls'Ak_—ll,xAk,sAx,jAk_,iAk—l,sAk,sAs,j
Case3, k<r

This is the same as the orginal relation.

Therefore, we need only show that Case 1(3) (and hence Case 2) is a consequence of

(A)—(D).

For [=r—-1<k<s<j,

-1 -1 _ 41 -1 4-1 -1
Ak,sAl,sAk,s As,j Ak,sAl,sAk,s - Av,j Ak,jAl,jAk,j Av,j Ak,jAl,jAk,j As,j
(B)
- ] 14l 3 1 - 0
At Al,kAl,s Al,kAs,j Al,kAl,sAl,k = As,jAl,k Al,jAl,k As,jAl,k Al,j Al,kAS]
(4)

i
& A A A ALA =A,,kA;j.A".A A A A

1,s%7s,j [ e Y el Y

S A A A=A A7 A A A

1,s%7s,] Lj s, j )" s,

& (0)

Finally, let us set R, =N, (414, A A A A4 AN, For 1<r<s<i<j<n,

L0, L T L s, L

z'(Rp) =1 yields the following relations:
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Casel, s<k<i

(1) If s < p <k then the same relation is obtained.

(2)If s=p then 4 A4, A =4,

>J LJ

B)If r<p<s then A A A, A A =A..

VY e W e N e

(4)If p=r then 4~

1
o]

ALA A A=A,

k,j =1, Tk, i1

(5)If p<r then A4 A | A A =474 A,

e W e W e N e N kit Tr=1,i

Case2, k=s

() If r<p<s then Al.j;A,;l].AkflﬁjA A4, =4,

k,j i j

(2)If p=r then A A A _ A A =4,

k,j <0

G)If p<r then A A A A A = A A A,

IV ARV

Case3, r<k<s

() If r<p then 44 A = A ..

iL,j s, j L

(2)If p=r then A7 A A, = A,

LSV AR RV A Y

() If p<r then A" A A, = A A _ A,

i,j s, j N, kit r-1,i
Cased, k=r

() A A, A = A A A,

1,] S,] 1,]
Case5, k<r
Q)] A4 A = 4, ;.

LJ 8, J T LJ
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Now, to complete the proof, we need to show that the following relaitons are

consequences of (4)—(D).

(1) A4 A, A A =4, if l<m<k<i<j

Tk m i,j

(2) A A, A, A A = AA A, f I<m<k<i<j

Jkj Tm, Tk, L

() A A A, A A=A, if m<k<i<j

k,j<m,j

@) A4 A, =404, 4, if I<k<s<i<j

RNV

(3.88)

We shall prove separately each of the four parts in the above relations.

Proof of (1)

A4 4, 4

B)

A A, =4, A7 404, A

LT | Tk Tm, Tk L

—~

A'A A AL A A |=|A A4 |4 |4 A

6 ok [ m Tm kL L LT mok [ m | T Tm kL

0}

(4)
——
& A A4, A AA =4 A AT A A

i, m, j N, ) 1,550, j "m0, Tmk

S A4 A,,4,= A,

L Tm, L

< (D)

Proof of (2)

ATAT A, A A ADA A = A0, A AT A AL A A,

U 29 U i % b 9 ) I % el Y B % k,i* i i, Tk, m, Tk, L

(B)
& A4, A A AN AT = A AN ATAT A, A A

k,j<m,j k,j m, j kL

()
=
1 . 1] 4
A\ A A Ay (s A A = A A A A A A A A

A4 A4, 4 4404

k,j m,j

=[4, 4,474 4, A |4 4]

Lit5a, j| “ Tk, j m,j i,]

A4 A4 |4 A A |=|4 44 |4 |4 4

i,j  mk [“Tm,j mk i, j i Li“5, ) "mk [“Tm,j m,k i, j

0}

(4)
——
<A, A4, A A A=A A4 A4 A A

L, Tm, L L Lk L, j im0 T m ok

< (D)
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Proof of (3)

A AA, A VA A = ADAT AT A, A A

i,j Tk, m, j
(€)
0 1| 4-1 4-1

o A4 A, A ANATA A A A4

i,k j Tm, ik, ATk, L

] I P e g V R 7 g

ki, Tk, m,j| Tk, j L

-1 4-1 -1 -1 -1 _ -1 4-1 -1
A A A, A A A A A = A A AGA,

k,j* m,j

(By (B )and Lemma 3.28(3))

= Am,jAl:' = Ak_jAm,]
<=(4)

Proof of (4)

AA A Ak_,i‘Al,iAk,i = Ak_,i‘Al,iAk,i Aij_;Av,in,j

L) 8] L)

(D)

—
C>A/: AA A, A A= Ak_j.AlJ.A.‘l.A A A,

LJ S, ] L] L] S, ) L)

S A A A, = A,

L] 8, ) )

< (D)

This now completes the proof of Theorem 3.25.
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CHAPTER 4

THE FUNDAMENTAL GROUP OF CONFIGURATION SPACE

In this chapter, we introduce configuration space to obtain the different view for braid

group.

4.1 Configuration Space

4.1.1 Definitions

Definition 4.1 Let M be a manifold of dimension >2, let HM denote the n-fold

i=1

product space, and let F;, M denote the subspace of HM

i=1
FO’nM:{(zl,zz,...,zn)eﬁM‘zi #2Z, if ii]} (4.1)
i=1

(We will give the meaning of subscript “0” later.) The fundamental group =, F, ,M of

the space F , M is the pure braid with n strings of manifold M [9].

Definition 4.2 Two points z and z of F, M are said to be equivalent if the

coordinates (z,z,,...,z,) of z differ from the coordinates (zi,z'z,...,z,;) of z by

permutation.

Let B, ,M denote the identification space of F ,M under this equivalence relation.
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Definition 4.3 The fundamental group 7,8, ,M of the space B M is called the full

braid group of M , or simply, the braid group of M .

Claim 4.4 The natural projection p:F ,M — B, ,M is a regular (normal) covering
map.

Proof Firstly, we show that p is a covering map.

Let z° =(zlo,z§,...,zg) be an element of F, M and z’ (the equivalence class of z°) be
element of B, M.

2’ = {zi ‘zo ~z',7 e FO,nM} (4.2)
Now, we can define a metricon F, M such that

0,n

d:F

0,n

MxF, M —R
d(z',z") = Hzi -z’ H (4.3)
If we take the elements of z’ | then there is a positive real number & >0;

gSZnﬂnd(zi,zj) (4.4)

i,jel
where | is index set and z',z/ € z° .
Therefore, U, ={zi ‘d(zo,zi) < 8} is a neighborhood of z°

Hence, we can easily see that,
v, :{Zi ‘d(zo’z") < 5(5)} (4.5)
where 0 >0 isareal number; V are open sets and

p(U,)=Urs (4.6)
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So, p is a covering mapping. The equivalence relation shows a deck transfomation.

With this deck transformation, p is a regular(normal) covering map [6].

]

The classical braid group of Artin is the braid group is the braid group 7rlBO,nR2 .

Artin’s geometric definiton of 7,B,,R* can be recovered from the definition above as

follows:

Choose a base point z° =(zlo,...,z,?) e F, ,R* for m,F,,R* and a point z” € B, ,R* such

that p(zo) =z". Any element in 7,B, R* =7, (BoynRz,zo) is represented by a loop

[:1,{0,1} > B, ,R*,Z° (4.7)
which lifts uniquely to a path
[:1,{0} > F, R*,z° (4.8)

If 1(¢)=(1,(¢).--s1,(t)), t € I, then each of the coordinate functions I, defines (via its
graph) anarc 2=(/,(t),t) in R*x1.Since [(t)e F, R*, the arcs ,..., 2 are disjoint.

Their union Z=2U...U7 is called a geometric braid. The arc is called the ith string.

A geometric braid is a representative of a path class in the fundamental group

7B,,R*. Thus if 7 and 2 are geometric braids, then 2~ 72 (that is, they
represent the same element of ﬂlBO’nRz) if the paths / and [ which define these
braids are homotopic relative to base point z’ =(21°,...,ZS) in the space F,,R*. Thus

we require the existence of a continuous mapping 7 : I xI — FO,nR2 with

(4.9)

65



where (u,,...,4,) is a permutation of array (1,...,n). The homotopy # defines a

continous a sequence of geometric braids 2(s)=2(s)U..U2(s), sel, where

P(s)=(§f(t,s),t), such that Z2(0)=/2 and 2(1)=7".

1

Definition 4.5 Let O, ={q,,...q,,} be a set of fixed distinguished points of M . The

configuration space F, ,M is the space of F, (M —Qm).

m,n

Note that the topological type of F, M does not depend on the choice of the

particular points O, , since one may always find an isotopy of M which deforms any

one such point set O, into any other Q. Note that F,

m,1

M=M-0,.
We are interested in the relationship between the configuration spaces F, M and
F, M .

The key observation is the following theorem:

Theorem 4.6 (Fadell and Nuewirth [7]) Let 7: F, M — F, M be defined by
7[(21,.. z )z(zl,...,zr), 1<r<n (4.10)

Then 7 exhibits F, M as a locally trivial fibre space over the base space F, M , with

fibre F M.

m+r,n—r

Proof First consider, for some base point (zlo,...,zf) in F, M thefibre 7~ (zlo,...,zo)

r

-1 0 0 0 0
V4 (z1 yeees 2, ) = {(zl yeesZ, ,y,,H,...,yn), where

0 0 . . .
Z)sesZ) s Vysgseny, are distinct and in M -0, }

If we select O, ., equalto O, U{Zf,...,zf} , then

M ={(¥,,5-¥,), Wherey,, ...y, are distinctand in M -0, . },

m+r,n—r

and there is an obvious homeomorphism

h:F M—)ﬂ_l(zlo,...,zo)

* T m+r,n—r r
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defined by

R(Prirees D) = (200 20 Vygoon 1)

The proof of the local triviality of ~ will be carried out, for notational and descriptive
convenience, only in the case of » =1. For the other cases [3]. Fix for consideration,

therefore, a point x, e M -Q, = F, /M = F, M . Add another point ¢,,,, to theset O,
to form @, ., and pick a homeomorphism «:M — M, fixed on Q,, such that

a(qm+1) =X,.Let U denote a neighborhood of x, in M —Q, which is homeomorphic

to an open ball, let U denote the closure of U . Define a map 0:UxU — U with the

following properties. Setting 6_(y)=6(z,y) we require:
(i) 0, :U—Ulis a homeomorphism which fixes ou .

(ii) 0.(z)=x,.

By (i), & can be extended to §:UxM — M be defining 8(z,y)=y for ygU. The

required local product representation

¢ _
UX F;nJrl,nflMﬁquﬂ- 1 (U)

is given by

ASS
—
N
N
o
N
~
I

(z, a'0.(z,),...a"'0.(z, ))

Proposition 4.7 I 7, (M -Q, )=,(M -0, )=0 foreach m >0, then r,F, M =0.

Proof The exact homotopy sequence of the fibration z:F, M — F,

m,l

M=M-Q, of

theorem 4.6 gives an exact sequence
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o (M-0,)>n,F,, , M—>n,F, M—>r,(M-0,)—>..

- NS ——
0 0

Since 7,(M-Q,)=7,(M-0,)=0, it follows that r,F,.,, M and r,F, M are
isomorphic.
By induction,

72.2Fm+2,n—2M - ﬂZFm,nM - 72.2Fm,2M

nF . M—>F M-—F M
. 27 m+3,n-3 27 m, 27 m3 (411)

m,F

m+n—1,1

M — n,F, M > n,F, M

m,n—1
and if we take as m=0, we obtain that,

b, M —r,F, M-k, M (4.12)
ﬂzFo,nM ~ ﬂ.ZFn—l,lM = 7[2F0,n71M =0 (4.13)

Theorem 4.8 If 7,(M -Q,)=7,(M -0, )=x,(M -0, )=1 for every m >0, then the

following sequence of the groups and homomorphism is exact:

1> 7,(F, M,zf)im1 (FO,ITM,(zf,...,ZS)):ﬂI (B Mo (2),2))) 21 (8.28)

n-1,1

where 7, and j, are the homomorhism induced by the mapping = and ;.

Proof
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..—>7r3(M—Qm,zlo)—>7r2(F

m+1,n—1

M,(zlo,...,zg_l))—wrz (F M,ZO)—>772 (M_Qm’zlo)

m,n

R _
1 1
0 0 0 0
_)77'-1 (Fm+1,n—1M’(Zl ""’Zn—l))_>ﬂ-l (F;n,nM’Z )_)72-1 (M_ m’zl )
0 0 0 0
_)7[0 (Fm+1,n—1M’(Zl ""’Zn—l))_)ﬂO (F;n,nM’Z )_>7Z-0 (M_Qm’zl )
| S

1 1

By induction, we obtain that

1—>7[1(F}HlM,zl(’)i);rl(FO,nM,(zlo,...,zf,’))gﬂl(FO’HM,(ZIO, 20,)) -1 (4.15)

cees Ly

]

Theorem 4.9 ( Artin [1] ) The group 7leo,nR2 admits a presentation with generators

O

1,0

55,0, and defining relations:
o0, =00, foralli,j=1,.,n—1with |i— j|>2 (4.16)

00,0 =0,0,0,, foralli=1,.,n-2 (4.17)

Proof (Fadell and Van Buskirk [8]) We introduced B, with generators and relations in
chapter 2. Until we established the isomorphism between B, and 7,B,,R*, we will
use the symbols 71,072,...,0, for elements of 7,8, R* with 1:B, — 7,B,,R” defined
by l(o;):g;, 1<i<n-1. We now give a definition for o:. Recall the covering
projection p:F, ,R* — B ,R*. Choose the point p((l,O),(2,0),...,(n,0)) —2° as base
point for the group 7,B, R’ . Lift loops based at p((1,0),(2,0),...(n,0)) in B, ,R* to

paths in F, R with initial point p((l,O),(Z,O),...,(n,O)):z_o. Then the generator
o€ mB,,R” is represented by by the path (¢) in F, R’ given by

1(£)=((1,0),(2,0),....(i=1,0),4 ()L, (£),(i + 2,0),...,(n,0)) (4.18)
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where Zi(t):(z'+t,—\/t—t2) and [, (t):(i+1—t, t—tz). That is, [ (¢) is constant on
all but the ith and i +1 st strings and interchanges those two in a nice way.

The proof of theorem 3.9 will be by induction on n, and will exploit the relationship

between 7B, ,R* and 7,F, R’. Let

viz (BO,nRz,z‘)) >y

be defined as follows: Let & € 771Bo,nR2 be reprensented by a loop

a:(1{0.1})—>(B,,R )
and let @ =(a,....,a,):(1,{0}) —>(E)’nR2,z°) be the unique lift of & . Define

1(0),-,(0)

o, (1),.ct, (1) ]Ezn

The kernel of the homomorphism v is the pure braid group, ﬂlFO’nRz. Corresponding

to the homomorphism v is the homomorphism (we mentioned in chapter 2.)
v:B, >Q,
from the n-braid group B, to the symmetric group @, on n letters defined by:
v(o,)=(i,i+1) 1<i<n-l. (4.19)
And we know that P, =kerv.

Lemma 4.10 The homomorphism 1: B, — 7rlBO,nR2 is an isomorphism onto if 7|, is an

isomorphism onto z,F, R>.
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Proof of Lemma 4.10 The homomorphism v is clearly surjective, since the
transpositions {v(ai) lsiSn—l} generate G, . Hence we have a commutative

diagram;

1> P - B - G, > 1

n n

v, v

Pn

1> mF, R*—> 7B, R 3> -1
with exact rows. ; is an isomorphism with five lemma [5].

Now, we must show that |, is an isomorphism onto 7z1FO’nR2. For this purpose, we

introduced a representation for a subgroup H, in B, . With the help of the
Reidemeister-Schreier method, H, is exhibited as the semi-direct product of &,
A

(which is an invariant free group generated by free generators 4, ,,4,,.,....4,_,[10])

1,n°

and B, . And we presented a representation for P . Now, we refine P, and find a

n

relation between P, and 7,F, ,R.

[

The group P_, can be regarded as the subgroup of P which is generated by
{Ai’j, 1Si<j£n—1}. Note that a natural homomorphism 7:P — P , may be
defined by the rule 17(4,,)=4,, if 1<i<;j<n-1, while 7(4,,)=1, 1<i<n. Thus

2y

kermp=4%& .

Corresponding to the homomorphism 7:P — P _,, we have the homomorphism

7, :mF, ,R* > mF,, \R* of theorem 4.8. By theorem 4.8 we also know that

kerz, =mF, R’ =7, (R2 —Q,H), which is a free group of rank n-1.

It is easy to see that the following diagram is commutative:
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n
1—> &, - P - P —1
J/l” ‘A,, \L I \L [

1> 7, F, R > n,F, R —y mF,, R —>I

n—1,1

with exact rows. In the bottom row, the base point for ﬂIE)’nR2 is (zlo,...,z,?) , so that
z) is the base point for 7,F,_ R’ =7, (R2 —z/ U-~-UZS_1)~ Now, we may identify the

image 1, (Aj,n) of the generator 4, of & as being represented by a loop based at

z, which encircles the point z} once and separates it from z,..,z} ,z} ...z,

3L “ Lo Ay

Clearly the image set {ln (Aj,”), I<j< n} is a free basis for the free group 7z1F,H,1R2.

And we know that & is a free group, hence ,|a is an isomorphism onto. Now

observe that FB =1land 7z1FmR2:1. Therefore 1 is an isomorphism. Assume

inductively therefore that 1, _, is an isomorphism. Then, since ,|a  is an isomorphism
for each n , 1 is an isomorphism by five lemma [5]. This completes the proof of

Therorem 4.9.

]
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CHAPTER 5

CONCLUSIONS

In this master thesis, we focused on two groups: Braid groups and the fundamental group of
configuration space. Firstly, we introduced braids with their algebraic and geometric
defitinitions. And we refined generators and relations of B, and we defined an operation
for braids. Therefore, we obtained a group presentation for B, . After that, we must show

that when are two n-braids equivalent? For this purpose, we used word problem with
solution. We applied Reidemeister-Schreier method to obtain generators and relations for
subgroups of braid groups. With the help of these relations and generators and some
properties of free groups, we presented an invariant free subgroup & of B, . In addition,

we introduced pure braid P,.

Secondly, we gave information about configuration spaces. And we defined the fundamental
group of configuration spaces. Especially, we indicated relations between Artin braid groups

and the fundamental group of configuration space on R*. Consequently, we obtained an
isomorphism between them.
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