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ABSTRACT

COMPARISON OF HIGH RESOLUTION METHODS FOR
BURGERS EQUATION

Veli COLAK
Department of Matematics
MSc. Thesis
Adviser: Assoc. Prof. Dr. Samet Yiicel KADIOGLU

Solving hyperbolic partial differential equations is extremely important for many
engineering applications. These equations can be solved by analytical methods or
numerical methods. Finding analytical solutions is difficult mostly impossible due to
highly nonlinear nature of these equation types. On the other hand, solving hyperbolic
equations numerically is relatively easy and therefore often prefered technique. Among
the numerical techniques, high resolution finite volume methods have been effectively
and robustly used for decades. Their high accuracy and stability features are most
desirable.

In this thesis, we provide literature review for certain type of high resolution methods
and introduce head on comparison study of these high resolution methods. To compare
the methods, we first solve scalar linear one-way wave equation. This gives us the
opportunity to perform some theoretical analysis. Finally, we apply the methods to the
Burgers equation. This equation is nonlinear and it can be mimic the nonlinear behavior
s of the systems of the nonlinear hyperbolic equations. For instance, the Burgers
equationcan accommodate shock compression or rarefaction-depression waves.
Therefore, by solving the Burgers equation with different methods, we gain a lot of
insights about the stability, accuracy and thus the suitibility of the certain high
resolution methods.

Key words: High resolution method, finite volume method, hyperbolic partial
differential equations, Burgers equation
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OZET

YUKSEK COZUNURLUK YONTEMLERININ BURGERS
DENKLEMI UZERINDE KARSILASTIRILMASI

Veli COLAK

Matematik Anabilim Dali
Yiiksek Lisans Tezi

Tez Danismant: Dog. Dr. Samet Yiicel KADIOGLU

Hiperbolik kismi tiirevli diferansiyel denklemlerin ¢6ziimii bir ¢ok miihendislik
uygulamalari i¢in ¢ok biiyilk 6neme sahiptir. Bu denklemler analitik ya da niimerik
yontemler kullanilarak ¢oziilebilir. Analitik yontemler ile ¢6zmek denklemlerin
nonlineer dogasindan dolayr ¢ogu zaman zordur, hatta bazi denklemlerin analitik
¢oziimli olmadigindan dolayr imkansizdir. Analitik yontemlere kiyasla hiperbolik
denklemleri niimerik yontemler ile ¢6zmek daha kolaydir ve ¢cogunlukla tercih edilen
yontemdir. Numerik yontemler arasonda yiiksek ¢oziiniirliik sonlu hacimler yontemi
etkili ve saglam bir sekilde onyillardir kullanilmaktadir. Bu denklemlerin ¢ok etkili bir
sekilde kullanilmasinin sebebi, yiiksek dogruluk ve kararliliga sahip olmalaridir.

Bu tezde, belirledigimiz yiiksek ¢oziiniirliik metotlar ile ilgili genis bir literatiir taramasi
verecegiz ve daha sonra bu metotlar karsilastiracagiz. Karsilastirma yapmak i¢in once
skaler, lineer uzaysal olarak tek degiskenli dalga denklemini kullanacagiz. Bu denklem
bize metotlarin teorik analizlerini yapma firsat1 verecek. Daha sonra yontemleri Burgers
denklemine uygulayacagiz. Bu denklemin 06zelligi nonlineer olmasi ve nonlinear
hiperbolik denklem sistemlerinin 6zelliklerini tasimasidir. Ornegin, Burgers denklemi
sok yogunlagsma dalgasini veya seyreltme dalgasini bilinyesinde tasir. Bundan dolayi,
Burgers denklemini farkli metotlarla ¢ozerek, bu metotlarin kararliligi, dogrulugu ve
dolayisiyla uygunlugu hakkinda fikir sahibi olacagiz.

Anahtar Kelimeler: Yiiksek ¢oziiniirlik metotlarr, sonlu hacim metodu, hiperbolik
kismi tiirevli diferansiyel denklemler, Burgers denklemi

YILDIZ TEKNIiK UNiVERSITESI FEN BILIMLERI ENSTITUSU
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Hyperbolic equations are one of the most significant equations class in partial
differential equations. The study of gas dynamics, optics, geophysics, acoustics and
many other fields involves solving hyperbolic partial differential equations, such as
Euler equations. Solving these kinds of equation is challenging because their solution
often contains shock or contact discontinuities. Accurately solving shock or contact
phenomena can be extremely important in many engineering applications. Solutions
mostly performed as numerical techniques, due to the highly nonlinear nature of
equations set. To test the validity and reliability of these techniques, one usually
considers simpler models such as scalar linear and nonlinear wave equations (one-way
wave equation and Burgers equation [1]). Considering simple linear wave equation
models can provide some theoretical insights such as stability and convergence analysis.
On the other hand, the Burgers equation possesses the fundamental characteristics of the
nonlinear hyperbolic systems in the sense that it can accommodate shock
discontinuities. Most often, if a numerical method fails to solve the Burgers equation
accurately and stably, then it also fails for other hyperbolic partial differential equation

models.

Hyperbolic partial differential equations often can be interpreted as the physical
conservation laws equations which model conservation of mass, energy and momentum
[2]. Writing hyperbolic equations in conservation laws format is significant from the
numerical methods perspective, because as it will be given with details that a numerical
technique derived from conservation laws can be more stable, more accurate as well as

better physics capturing.



Most of the numerical methods are not suitable for solving hyperbolic conservation
laws. For example, one of the most popular numerical methods, finite difference
method, can fail dramatically for these kinds of equations, since they rely on the
differencing spatial derivatives and this should be avoided when solving shocks, etc.
Thus, one has to consider specific numerical methods such as discontinuous Galerkin or
finite volume methods when dealing with discontinuous phenomena. Finite volume
methods are widely used and proven robust; therefore they will be our preferred method

in this thesis.

The main idea behind the finite volume method is that it divides the spatial domain into
grid cells and tries to approximate the average value of function (representing the
conserved quantity) over each of these grid cells. Then for each time step, it updates the
average amount of quantity according to the calculated fluxes that enter and leave from
the cell edges/faces. Godunov is one of the pioneers who accurately and stably
calculated discontinuous solutions by introducing the fundamental principles of finite
volume method. In 1959, Godunov developed a new approach to this problem [3]. He
gave an algorithm that consists of 3 steps. First step is to reconstruct a piecewise
polynomial function according to the cell average in place of the initial data for each
cell, second step is to evolve the hyperbolic equation to find the state of the function for
next time step, and the last step is to average the function for each interval to find the
new cell value. This approach has become one of the fundamental approaches for the

construction of finite volume methods [1], [4].

Although Godunov’s approach is fundamental, it is first-order accurate and it introduces
numerical diffusion. After Godunov’s method, in 1960, Peter Lax and Burton Wendroff
developed a second-order method that based on the Taylor series expansion and central
difference approximation [5]. A similar method to Lax-Wendroff was built by Fromm
in 1968 [6] and by Warming and Beam in 1975 [7]. Although these methods have
second-order accuracy for smooth region, they produce spurious oscillations around

discontinuities.

Researches have been continued to tackle with the oscillation problems of second-order
methods and various new shock-capturing methods have been developed. These
methods generally called as high resolution methods [8]. Bram van Leer introduced the
slope-limiter notion and improved the available numerical methods in a series of papers
[9], [10], [11], [12], [13]. He reconsidered the oscillatory methods by introducing slope

2



notion that ultimately helped to eliminate oscillations. In particular, he introduced van
Leer slope-limiter method [10] and MC slope-limiter method [12]. These are excellent
methods compared to the classical second-order accurate methods in a way that they kill
the numerical oscillations of the methods around discontinuity. In 1985, Roe
contributed a new remarkable scheme called as superbee slope-limiter method [14].
Later, Sweby has found a new approach named as flux limiter [15]. Like slope limiter
concept, flux limiter concept also enabled high resolution methods to be rewritten in a

new and understandable way. This situation evoked a lot of new methods [1].

While new methods were discovered, there have also been studies that compared them.
In [15], Sweby compared methods including superbee and van Leer, but he just
investigated that whether the methods was satisfying the TVD condition or not. Another
comparative study was done by Farthing and Miller [16]. They worked some high
resolution methods in terms of order of accuracy and time efficiency. They used several
test cases, but all of them consisted of the linear equations. Yang and Przekwas did a
very nice study that classed with a lot of advanced shock-capturing methods [8]. They
used the Burgers equation as a test problem with two different initial conditions. There
are also many other comparative study for varied methods in term of different aspects of
methods [17], [18], [19], [20].

1.2 Objective of the Thesis

In this thesis, we provide a comparative study of high resolution methods for the

Burgers equation. In particular, we compare

e Upwind method,

e Lax-Wendroff method,

e Beam-Warming method,

e Fromm’s method

e Minmod slope-limiter method,
e Superbee slope-limiter method,
e Van leer slope-limiter method,

e MC slope-limiter method

and show the advantages and drawbacks of these methods. We apply these numerical

schemes to linear wave equation first to demonstrate the basic features. However,



applying the methods to the Burgers equation, we also show the true strength and
weakness of the methods.

1.3 Hypothesis

We will give the basic necessary theoretical information in chapter 2, e.g. stability,
consistency and convergence. In chapter 3, we will introduce finite volume method and
other necessary concepts for high resolution methods. For the next chapter, we will
describe the numerical methods clearly and apply these methods to the one-way wave
equation. We will compare the methods in this chapter for scalar linear hyperbolic
partial differential equations. We will try to explore the basic feature of the methods. In
chapter 5, we apply the methods, given in chapter 4, to the Burgers equation and give
the results in graphical forms and compare the methods to understand the behavior of
the methods for nonlinear hyperbolic conservation laws equations. In the last chapter,
we will summarize the results. We will use the FORTRAN as a programming language
and MATLAB for figures.



CHAPTER 2

SOME THEORETICAL BASIS

Partial differential equations are large area of study. The tool to solve these equations
includes components in the areas of mathematics, computers and physical applications.
These three aspects of problem cannot be separated each other. When solving a
problem, one cannot consider application aspect without the others. Sometimes, the
mathematical aspect of a hyperbolic partial differential equation can be developed
without taking application and computing into account, but experiences demonstrate
that this way of studying does not generally yield useful consequences [21]. Therefore
we first give some theoretical knowledge, after that we convert analytical hyperbolic
problems to numerical problems via high resolution methods, and lastly we give results
of application of methods to the problems.

In this chapter, we will see the definition of convergence, consistency and stability. For
user of numerical methods, it is essential to understand what type of convergence their
methods have and what are the assumptions to get this convergence. There is a
relationship along the convergence, consistency and stability. The Lax Theorem says
roughly that if the scheme is stable and consistent than it is convergent [21]. This
theorem is very useful because it is easier to prove consistency and stability than to

prove convergence.

2.1 Convergence

In one space dimension, a homogeneous first-order constant-coefficient linear

hyperbolic partial differential equation in x and t has the form
V, (X, t)+cv, (x,t) =0, (2.1)

and the initial condition is



v(Xx,0)= f(x). (2.2)

Here v represents the unknown function and it depends on time as well as one spatial
variable. This function may be velocity, pressure, density etc. In the notation, subscript

x and t denote the partial derivatives with respect to space and time respectively.

We will try to solve this problem numerically. For this purpose, we should reduce
problem to a discrete problem. To accomplish this, we can use the following

approximation,

n+l n

v, (NAL, iAX) ~ 2 AIUi . (2.3)

Here we assume the expression u; denote the approximate solution to v at the point

X=IAX and t=nAt, n corresponds to time step and i to the spatial mesh point.

Furthermore, At and Ax are grid steps with respect to time and space, respectively.

Using (2.3) in (2.1) we get

[ TP e - S Y o (2.4)

And then the initial condition in (2.2) becomes
u’ = f (kAX), i is from —oo to oo. (2.5)

The idea behind any finite difference scheme is to approximate the solution of
differential equation. Now, let investigate how good scheme (2.4)-(2.5) is for
approximating the solution to problem (2.1)-(2.2). To achieve this, firstly, let us look
how well difference equation (2.4) approximates partial differential equation (2.1). To

examine this, we will use Taylor series expansion.

V™ = v(i A, (n+1)At) = v(i Ax, n At) + % (1Ax,n At) %

, (2.6)
2 2
+a—\2/(iAx,nAt)A—t+...
ot 21
So
vt vt oy . At % .
! L = — (1AX, NAt) + — — (1AX, NAt) +.... 2.7
o 8t( ) 5 atz( ) (2.7)



We can also write this expression as

V_n 1 Vin

At

_ % (iAX, NAL) + O(AL), (2.8)

where the above equation assumes that the higher order derivatives of v at (iAx, nAt)
are bounded. Here, the notation O(At) means that f (x) =O(¢(x)) for xe D if there
exists a constant A such that | f (x)| < A|#(x)| forall xe D (D is the domain of function

f). We say that f(x) is of order ¢(x). We can conclude from the above expression

n+1 n

. - : : u't —u; :
that when we replace v, in the partial differential equation by — X L we ignore some

terms of order At. Note that sometimes ignored term (denoted by O(At)) can be very

large. For instance, when solving problems that have sharp changes with respect to

time, ignored term will be huge. However, in general, for sufficiently small At,

un+1 _un

J o ' is a nice approximation to v,, and we can provide sufficiently small At.

We can also arrive the following results using the approach in (2.8).

Vea =i _ N Ax nat) +O(AX) (2.9)
AX OX

Vs NG Ak nAt) + O(AX) (2.10)
AX OX

and

Vin+1_Vin—1 o . 2

=— (i AX,nAt) + O(AX?) . 2.11

2AX 8x( ) (&) ( )

Returning to the equation (2.1), we can write

n+l n n n

v, (i AX, NAY) + ¢V, (i Ax, nAt) = ¥ A;"i +c"i+lA —Vi L O(At)+O(AX). (2.12)
X

Therefore, we see that difference equation (2.4) approximates partial differential
equation (2.1) to the first order in both Atand Ax.

Equation (2.12) shows us how good the difference equation approximates the partial
differential equation. However this does not mean that the solution of difference

equation will approximate the solution of partial differential equation. Thus, still there is



an issue that we must consider. At this stage we can argue that the solution of difference
scheme will generally approximate the solution of partial differential equation at the

same order that the approximation of difference scheme to the differential equation.

We need exactly that the solution of the difference equation can be made to approach
the solution of the partial differential equation to any desired accuracy. Therefore we
require convergence of solution of the finite difference equation to the solution of the
partial differential equation. Now, let consider a partial differential equation, say,

Lv=F. Here F and v are vector-valued functions that define on the whole real line in

terms of first variable (spatial variable) and initial condition v(x,0) = f(x). Let u' be
the approximate solution to v. u is defined on a grid with grid steps Ax and At,

satisfies the initial condition u’ = f (iAX), where i is from —otooo. Let v denote the

analytic solution to initial-value problem. Then the definition of pointwise convergence

is the following.

Definition 2.1 A difference scheme L'u' =G approximating the partial differential
equation Lv=F is a pointwise convergent scheme if for any xandt, as
(iAx, (n+1)At) convergesto (x,t), U converges to v(x,t) as Ax and At converges to

0[21].
To clarify the definition, we solve an example.

Example 2.1 Show that the solution of the different scheme
u™ = @—cfl)u’ +cflu, (2.13)

u’ = f (iAx), (2.14)

where cfl :C—At, 0 <cfl <1, converges pointwise to the solution of the initial-value

AX
problem
v,+cv, =0, xeR, t>0, (2.15)
v(x,0)=f(x), xeR. (2.16)

Solution: Since the problem is initial-value problem on all of R, we have to be aware

of the fact that the i index on u;" span the whole real line.



Let v=v(x,t) denote the exact solution of initial value problem (2.15)-(2.16) and let z/

denote the difference between the analytic solution and numerical solution at the point
(iAXx,nAt) . That is,

z' =u —V(iAX, nAt). (2.17)

From (2.8), we know that

n+l_ _n
v = = Vi _o(a). (2.18)

Using again the Taylor series expansion, we can get

V', = v((i-1)Ax, n At) = V(i Ax, NAL) —? (i AX, NAY) %
X !

(2.19)
2 2
+ 7Y Giax,naty 2
OX 2!
Therefore,
v, (iAx nat) = V4 o(ax) . (2.20)
AX
From (2.15), (2.19) and (2.20) we conclude that
n+l n n_ "
i Vi _oat)+ciYit, o(ax) =0, (2.21)
AX
v = (L—cfl)v" +cflv], + O(At?) —O(AXAL) . (2.22)
Then by subtracting equation (2.22) from equation (2.13) we see that z;' satisfies
2" =(1—cfl)z" + 2", + O(At*) — O(AXAL). (2.23)

Because of 0<cfl <1, the coefficients of variable in equation (2.23) are non-negative

and

A +cfl

+ K(At? — AtAX) < Z"+ K (At — AtAX), (2.24)

<(1—cfl)

n
Z;

n
Zi—l

where K is a constant related with the “big O” term and assumed to be bounded, and

n+l
i

Z" =sup, { over i, we arrive

n
Zi

}. Taking the supremum of |z

Z" < 7" + K(At? — AtAX). (2.25)



Applying (2.25) repeatedly

Z™ < Z" + K(At? — AtAX) < 2" 4 2K (At? — AtAX) <....

< 7%+ (n+1)K (At? — AtAX) (2.20)
Because of Z° =0, Z"" <(n+1)K(At” — AtAX)

Thus, [u™ —v(iAX, (n +1)At‘ <Z™ and (n+1)At —>t,

U™ —v(iAX, (N+1)At < (N+1)AK (At—AX) -0 as At,Ax—0 (2.27)

which means that for any x and t, as (iAx, (n+1)At) approaches to (x,t), U, converges

to v(x,t).

Be aware of the fact that the assumption (n+1)At —t is needed otherwise the
term (n+1)At can goes to the infinity. Furthermore, the assumption 0 <cfl <1 in the

question is necessary. We will see the details later that without this assumption, it may
not converge. This assumption enables us to bound the time step size At. In fact, for this
example At <Ax/c. One more note for this example is about the remainder of Taylor
series expansion. We assume that K is bounded. To achieve this the derivative of the

solution function v(x,t) in the remainder term in expansion should be uniformly
bounded on Rx[0,t].

In general, the pointwise convergence is not generally as useful as a more
uniform sort of convergence and is more complicated to prove. Because of this, we will
give another definition of convergence which is defined in terms of norm of the

difference between the solution to the difference equation and solution of partial

differential equation. For the prerequisite, let denote the sup-norm on the space of all

bounded sequences, | , by
e, = sup |e]. (2.28)

Let us define u” =(---,u",ug,u’,--)" and v" = (---,v",,vg,v,--)" . Here u" is the vector
of difference equation solution values u;', and v" is the vector of solution to the partial

differential equation v(iAx,nAt). By the way, we have proved in previous example that

10



for t such that (n+1)At converges t, u™ converges v(,t) where we mean by

convergence that the sup-norm of u™* —v"" approaches zero as At,Ax —0.

Definition 2.2 A difference scheme L'u' =G approximating the partial differential

equation Lv=F isaconvergent scheme at time t if, as (n+1)At —t,

n+l  ( n+l

\%

u

0 (2.29)

as Ax,At -0 [21].

To demonstrate this definition, let solve an example.

Example 2.2 Show that the solution of difference equation
u't = % (Uil +Uiy) - C_él (Ul —uly), (2.30)

u = f (iAX). (2.31)

(The Lax-Friedrichs scheme) converges in the sup-norm to the solution of the partial
differential equation

v, +cv, =0, (2.32)

v(x,0)=f(x) (2.33)

for |cfl| <1 where cfl = Z—At.

X

Solution: Before showing the solution, we should note that it will be used the sup-norm

to solve the problem. Let denote the analytic solution to the partial differential equation

by v and define z' =u'—Vv]' and Z" =sup, { z; } We use the definition with the sup-
norm, so
un+l_vn+l — SUp uin+1_vin+l — SUp Zin+l :Zn+l. (234)
From the equation (2.32) and (2.11) we arrive
1
V_n+l _7(\/_n1 +V_r11) . .
i i+ i V. . —V.
2 +oti L 0(Ax?)-0O(At)=0. (2.35)
At 2AX

11



n

. v, 4V
Note that we replace v with average value % Then

0t ) S ) of e () 25
Therefore,
2™ = %(z{‘+l + zi"_l) - % cfl (zi“+l - z{‘_l) +0 (AtAx2 ) +0 (Atz) : (2.37)

Rearranging the equation (2.37),

=L (1—cfl)+ % 2, (1+cfl)+O (AtAx2 ) +0 (Atz) . (2.38)

i 2 i+1

Since the value of cfl is between -1 and 1, and the coefficients of right hand side are

non-negative, we get

1
<=

n+1
i

1
1-cfl)+=
( c)+2

n
Zi—l

(1+cfl)+ K(AtAx2 +At2). (2.39)

z

n
Zi+1

Taking the supremum over i on the both side of equation yields
ZM < Z"+ K (AAX +AL). (2.40)
Applying (2.40) repeatedly yields

zmi<zn +K(AtAx2+At2)£Z”‘1+2K(AtAx2+At2)£---

(2.41)
<Z°+(n+1)K (AtAx2 +At2).
Because of Z° =0, we conclude using (2.34) that
ZM =[u™ —v™| < (n+1)AtK (AX* +At) >0 (2.42)

as (n+1)At—>tand At,Ax—0

This proves that solution to the difference equation converges in the sup-norm to the

solution of partial differential equation using the definition 2.2.

2.2 Norms

In the definition 2.2, we did not specify the norm because for all norms the definition is

valid. For solving the example 2.2, we used the sup-norm but for different situations, it

12



may be appropriate to use different norms. In fact, it may happen that a method is
convergent in one norm but not in another [22]. Therefore we should know also some of
the other norms. Here, we will mention about the 1-norm, 2-norm, energy norm, and

Sup-norm.

We already define the sup-norm in (2.28). Note that sup-norm may appropriate for
continuous solution but for discontinuous solution, it is not a good idea to use sup-norm
to approximate the solution. While the grid is refined, the pointwise error around a
discontinuity does not go to zero uniformly which is an unwanted case. Despite of this
situation, the numerical results may be superbly satisfactory. That is why; sup-norm
should not be used for the conservation laws.

1-norm, in general, is the appropriate norm for the conservation laws. For a general

function v(x), it is defined as follows

ML= (x)fx. (2.43)

This definition is for the continuous case and v(x) is the continuous function. This

norm is natural since it requires just integrating the function, and form of the
conservation laws generally allows us to say something about these integrals. For the

discrete case, we use the following definition,

V= Ml (2.44)
Continuous case and discrete case of 2-norm is as follows
. 2
I, {I v ()| dX} (2.45)
v = S (2.46)

2-norm is a suitable norm for linear equation because for linear equations, Fourier

analysis can be used and Parseval’s relation states that the Fourier transform of v ( X) has
the same 2-norm with v(x). This enables to simplify the stability analysis of linear

methods seriously. Note that here v is a vector in |, space which is defined as

13



1, :{v = (- Vo, Vg Vyy ) i vi|° <oo}. (2.47)

Definitions of energy norm for continuous function v(x) and discrete grid function v,

are
. 2 4
v, ={ij v(x)| dx} (2.48)
and
n o~ n 2
V|, = Z V' AX . (2.49)

I=—00

Energy norm defined above can be considered as more suitable than the 2-norm since it
retains all of the favorable properties of the 2-norm. Beside this, energy norm enable to

measure the difference between discretization of functions as Ax goes to zero.

2.3 Consistency

Even though our final aim is to prove convergence, this is difficult to achieve directly.
Instead, we begin by examining the local truncation error so that examining the

consistency and then use the stability of the method to prove the convergence.

Definition 2.3 The finite difference scheme L'u' =G is pointwise consistent with the

partial differential equation Lv=F at point (x,t) if for any smooth function
¢=4(x1),

(Lg—F)[ -[ Lg(iax,nAt)-G | >0 (2.50)
as AX,At >0 and (iAx, (n+1)At) —(x,t) [21].

It should be noticed that in equation (2.12), we were actually prove the pointwise
consistency of the difference scheme (2.4) to the differential equation (2.1). In equation

(2.12), we chose ¢ to be the solution, v, to the differential equation. This choice, in

general, enables the expression in the definition 2.3 to reduce the following form

L'v' —G" — 0 as Ax,At > 0. (2.51)

14



If we write the different scheme as
u™ =Qu" +AtG" (2.52)
where
n n n n T n n n T
u =(...,uil,u0,ul ’) , G =(...’G71,GO,G1,...)

and Q is an operator acting on the suitable space, then we can give a stronger definition

for consistency as follows.

Definition 2.4 The difference scheme (2.52) is consistent with the partial differential

equation in a norm ||| if the solution of the partial differential equation, v, satisfies

v =QV" + AtG" + Atz", (2.53)
and
" -0 (2.54)

as Ax,At — 0, where v" denote the vector whose ith component is v(iAx, nAt) [21].

Note that, when we writing the difference scheme as (2.52) we assume that the scheme
have only nth and (n+1)st time level and the partial differential equation is first order
according to t. Furthermore the norm consistency defined in definition 2.4 says that all

of the components of vector z" must converge to zero while the pointwise consistency
defined in definition 2.3 require that z;' must converge to zero only for some i. Another
note is that the truncation error stems from both the error due to the approximation of F
and the approximation of LbyL'. In sometimes the error that stems from
approximation of F can lower the order of the scheme.

Another definition of consistency which includes the term order of accuracy is the

following.

Definition 2.5 The different scheme (2.52) is said to be accurate of order (p,q) to the

given partial differential equation if

"|=0(Ax")+0O(At?) [21]. (2.55)
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Here, we call |[z"|| or z" as the truncation error. We use this term before but we did not

mention about it clearly. To understand the truncation error well, first let look at the

local truncation error.

The local truncation error tells us suitability of difference equation to partial differential
equation locally. That is, how well the difference equation models the partial

differential equation locally. It is defined by replacing the numerical solution u, in the

difference equation by the analytic solution v(x,t). Clearly, the analytic solution of

partial differential equation is an approximate solution for difference equation, and how
well it is suitable for the difference equation implies that how well the numerical

solution of the difference equation is appropriate for the partial differential equation.

Note that the order condition given in definition 2.5 contains a constant, say K, with
respect to Ax and At. The constant K, in general, depends on t. It is not depend on x

because z" is the truncation error for all i € R . To know this issue provides ease.

Remember that beginning of this chapter we applied the Taylor series expansion to the
solution of partial differential equation and then we got a remainder term in addition to
difference scheme. After that, we said the difference scheme approximates the partial
differential equation to the first order in both Atand Ax. This is also a demonstration of
consistency in roughly. Now we will show the consistency of the same partial

differential equation with using the definition 2.4-2.5.

Example 2.3 Discuss the consistency of the 2-level difference scheme

i i +Cui+l_ -0 (256)
with partial differential equation
V, +cv, =0, o< x<oo, t>0. (2.57)

Solution: Let denote the solution of partial differential equation by v, and put it into the

difference equation (2.56). We see after the cancelation that

- +cV‘*1; L O(At) + O(AX) . (2.58)
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Now we will look inside the O(At)+O(Ax). In the beginning of the section we just

write the “big O” notation for equation (2.12) and quit.

We derived the equation (2.8) by replacing the remainder of the Taylor series expansion

with the “big O” so we see that O(At) contains a second derivative of v(x,t) with
respect to t evaluated for x=iAx and some t in a neighborhood of nAt, and O(Ax)

contains a second derivative of v(x,t) with respect to x evaluated for t =nAt and some

X in an interval around iAx . That is,

n+l n n n
: . Vi, —V, AX . At
i i i+ [ ’ At ﬁx’t — 2.59

If we assume that the second derivative of v(x,t) with respect to x and t exist and are

bounded for some interval around the point (x,t), then the right hand side of the

equation (2.59) goes to zero when Ax and At go to zero. Therefore, difference scheme

(2.56) is pointwise consistent with the partial differential equation in (2.57).

In order to demonstrate that the difference equation (2.56) is accurate of order

(1,1), we will first design the equation according to the form of equation (2.52) and to

do that we multiply the whole equation by At and solve for u™* and derive

n+1 n _C_At

e ). (2.60)

To apply the definition 2.5, let assume again v be the solution of partial differential

equation (2.57) and then
At =v™ — {vi“ —cfl (vi“+1 -V )} (2.61)

2
=V +V, (iAX, NAt) At +v, (iAX, to)%—vi”

2

+cfl [vi" +V, (1A%, NAL) AX+V,, (X, nAt)% —v{‘) (2.62)

After cancelation, we get
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2 2
Atz! =v, (iAx, nAL) At +v, (iAx,to)ATt+CA—At(vX (iAx,nAt)Ax+vXX(x0,nAt)%j (2.63)
X

and then

7 =V, (IAX, NAL) +V, (iAx,to)%JrcvX (IAX, NAt)+Vv,, (X, nAt)% (2.64)

where t;, and x, are the points in the neighborhood of iAx and nAt respectively and

enable the Taylor series expansion to hold. From using equation (2.57), we get

! =vtt(iAx,to)%Jrvxx(xO,nAt)%. (2.65)

For the last step we should choose the norm. If we assume that v, and v,, are bonded
on Rx[0,t;] for some t, >t, then we can use the sup-norm and conclude that the

scheme is accurate of order (1,1). If we assume that v, and v,  satisfy

0

Y[ ] <a<e

—00

and

Y[ )] <B<o

—00

Then we see that the difference equation is accurate order (1, 1) again with respect to the

2-norm.

Note that we do assumption on the partial derivative v, andv,, that they are bounded

on ]Rx[O,ti].

2.4 Stability

Stability is a necessary condition that must be satisfied by any finite difference method
if we want the solution of the method to converge to the solution of partial differential
equation. However, it is not a sufficient condition. We will see the relation between
them in the next section. The consistency is also a necessary condition but it is easy to

show that the method is consistent. Moreover most of the methods in literature are
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consistent, but we cannot say the same for the stability. It is hard to demonstrate that a
scheme is stable.

Stable difference scheme has the property that the small error at the beginning of the
time evaluation cannot grow unboundedly. That is, the error can grow but has limit
which is the exponential growth. We will also see this in the definition. We will define
stability for difference scheme of the form

u™=Qu", n>0, (2.66)

which is a two level different scheme. This type of scheme will be generally used for
solving initial-value problems, especially homogeneous and linear partial differential

equations.

Definition 2.6 The different scheme (2.66) is said to be stable with respect to norm ||
if there exist positive constants AX, and At,, and non-negative constants K and g so

that

n+1

u

<Ke||u’| (2.67)
for 0<t where t =(n+1)At, 0<AX < Ax, and 0 <At <At, [21].

We should be aware of the fact that definition 2.6 is given in terms of unspecified norm
since this norm may change rely on the condition, and we should remember that the
definition of consistency and convergence are also given in that form and their norm
also not specified. Another issue that should be noticed is that the solution of difference

scheme can rise with time, and is not affected by the increase of time step.

The definition of stability in (2.67) is for homogeneous equation. A question may come
in mind that what we will do to prove the convergence of non-homogeneous partial
differential equation. The answer is that stability of homogeneous equation with the
consistency is enough to demonstrate that the non-homogeneous difference scheme is

convergent because all of the effects of the non-homogeneous term will be killed by the

truncation error, 7" .

A remark that should be taken into account is that there are other definitions of stability.

One common definition in the literature is

n+l
u

<K]u°[. (2.68)
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The inequality (2.67) in the definition 2.6 is taken over from the inequality (2.68). This
definition of stability does not allow the exponential increase.

Clearly, the definition 2.6 is a very stronger one. That is, inequality (2.68) implies the
inequality (2.67). The definition with the condition (2.68) does not allow the growth, it
is bounded. Therefore it is hard to hold. Sometimes it may be necessary to use the latter
definition but most of the case it is enough to satisfy the conditions in the first

definition.

It is difficult to demonstrate stability of a scheme directly. Fortunately there are useful
technics to show the stability, and we will mention about them. However, to understand
the definition of the stability, we also solve problems with using the definition. For first
example, we prove the scheme which is used in example 2.1 to prove the convergence,
so that we can compare the similarity of the steps used to prove convergence and used
to prove stability. For second example, we will show the stability of the Lax-Friedrichs

scheme to compare the conditions on At and Ax with the first example.

Example 2.4 Show that the difference method

u™ =(1-cfl)u +cflu’, (2.69)

where cfl = Z—At is stable with respect to sup-norm.
X

Solution: we will follow the same strategy as we did in example 2.1. Of course we do
not need to use the difference between the analytic and numeric solution. From the
equation (2.69), we can say that

ut +cfl

<(1-cfl)

u’

ury- (2.70)

using the triangular inequality. If we assume that 0 <cfl <1, then taking the supremum

over both sides of inequality (2.70) with respect to i, we get

n+1

u

n

=|u

. o (2.71)

Therefore inequality (2.67) in the definition of stability is satisfied with
K=1and g=0.

We want to take attention to the assumption 0 < cfl <1. This assumption is necessary to

hold the stability. In this case, we say that the scheme is conditionally stable where the
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condition is 0 <cfl <1. If there is no condition on the relationship between At and Ax,

we say for this case that the method is unconditionally stable or just say stable.

Example 2.5 Prove that the difference scheme

u't :%(uirl-l _uinl)_c?ﬂ(uirl—l _uinf1) (2.72)

Is stable with respect to the sup-norm provided that —1<cfl <1.

Solution: To use the triangle inequality, let first rearrange the equation (2.72).

i i+l

"t =%(1—cf|)u.n +%(1+ cfl)u?,. (2.73)

We can see that all of the coefficient of right hand side terms of equation are non-

negative where assuming —1<cfl <1. So,

uM < %(1—ch) u', +%(1+ cfl)|u’,|- (2.74)
Taking the supremum of both sides with respect to i, we see that
ut < fug (2.75)

For K =1and =0, the condition on the definition is satisfied. Therefore the scheme is

stable for —1<cfl <1.

Note that for the example 2.4, we have the condition 0<cfl <1. If we use the
method (2.69) for an hyperbolic partial differential equation (2.1), then the constant ¢
must be positive and At should be less or equal to Ax/c. Since we can arrange
At and Ax, we can satisfy the second restriction. However, what if the constant ¢ is
negative? The answer is that the difference method fails to converge to the given partial
differential equation. Hence, we cannot apply the scheme to the partial differential
equation to get the numerical solution. For the example 2.5, the condition —1<cfl <1
says that one can apply the difference method in the equation (2.72) to the hyperbolic
partial differential equation in (2.1) whatever constant ¢ is positive or negative. We

must still keep in mind that we should choose At so that the condition —1<cfl <1 is

satisfied.
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We have used the term cfl constantly, but we have not mentioned about it. As we

explained above, the restriction on the At, Ax and ¢ that is necessary to show stability is

called the CFL condition and named after Courant, Friedrichs, and Lewy [1].

2.5 Method to Prove Stability

To show the convergence, we will use stability but we have seen that to prove the
stability from the definition is as difficult as to prove the convergence directly.
Fortunately, there are mathematical concepts to demonstrate the stability and they are

easy to apply the problem. One of them is the Fourier transform.
Definition 2.7 The Fourier transform of v(x,t) is denoted by V(wt), weR, and

defined by the integral

"y (x,t)dx [21]. (2.76)

=z [
A sufficient condition for v(x,t) to have a Fourier transform is that v(x,t)is absolutely
integrable on (—o0,0) [23].

Consider, for instance, the problem

v,+cv, =0, xeR, t>0 (2.77)
v(x,0)=f(x), xeR, (2.78)

Now, taking the Fourier transform of v, (x,t),

~ _ - IWX — C T —iwx
vt(w,t)_\/gj v (x,t)dx = m:[oe v, (x,t)dx

—00

:—%[v(x,t C'ZW Ie"wx (x.t)x (2.79)
T
= —ciwd (w,t). (2.80)

We assume that v(x,t) is sufficiently good at +oo so that integral in equation (2.79)

exists and the evaluated term in the same equation is zero.
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Therefore, we conclude that the partial differential equation is translated to the ordinary
differential equation in the space of transformed functions by Fourier transform. After
transformation, we solve the ordinary differential equation and turn back to our usual

space. To turn back, we will use the Fourier inversion formula. That is,

" (w, t)dw. (2.81)

v(x,t):%ife

The very important aspect of Fourier transform for proving stability is the Parseval’s

Identity which is
v(x 0}, o), @82)

Using this identity, we can use the definition of stability in transformed space and can
easily demonstrate the stability of any given difference scheme. We will formally give
the definitions and after that we state a proposition.

To define the discrete Fourier transform of u, first let define vector u in |, as
u:(---,u_l,uo,ul,---)T ;then

Definition 2.8 The discrete Fourier transform of uel, is the function GeL,[-7,7]

defined by
l &
a(s)=—=) e ™u_, 2.83
(8)= e (2.83)

for se[-z, 7] [21].

Similar to the continuous Fourier transform, there is also an inversion form for the

discrete Fourier transform.

Definition 2.9 If uel, and 0 is the discrete Fourier transform of u, then

u =%ie"‘“a(s)ds [21]. (2.84)

m a\f
Thanks to the Parseval’s Identity, when we use the Fourier transform to get U to prove

stability, we do not need to translate back to |, space. To clear this, let us look at the

following proposition.
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Proposition 2.1 If uel, and 0 is the discrete Fourier transform of u, then
Jatl, =ul, (2.85)

where the first norm is the L, norm on [-z,7z] and the second norm is the |, norm
[21]. Note that L, is the space of complex valued and Lebesgue square integrable
functions defined as

L, [—72',71-] :{v : [—72',72'] —>C: J. ‘v(x)‘2 dx < oo} (2.86)
with the norm

VA

M, = [ [ v(x)[ dx. (2.87)

-

We skip the proof of the proposition 2.1. Reader can easily find the proof from any
book that mentions Fourier transform, like [23].

Remember that, in the definition of stability, we require the following condition

n+l

u

S CAl T (2.88)

From the Parseval’s identity, we know that

~N+1

=|u

n+1

u

and |u’]], =[],
2 2 2 2

Thus we can conclude that

~N+1

u

L CE (2.89)

Therefore, if we are able to find a K and g that satisfy (2.89), then we can also satisfy

the inequality (2.88). It means that the scheme is stable.

(Note that we can choose any norm for the inequality (2.89), therefore without loss of

generality we choose the |, norm).

Example 2.6 Discuss the stability of the following difference method

n

ui+l —u
At AX

n

L-0, —o<i<o. (2.90)
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Solution: Remember that, we analyzed the consistency of this scheme in example 2.3
and we found that it has been consitent. Now, rearranging terms, we get

ur =ul —cfl (uh, —ul') = (1+cfl)u! —cfluy, (2.91)
where cfl :C—At.
AX

Taking the discrete Fourier transform of both side of the equation (2.91), we have

~n+1 z e |ks n+l

@ Z e"ks[ 1+cfl)uy cflukﬂ]

k=—00

=(1+cfl)— z e u) —cfl — z e uy,
ﬂ' k=—00 72' k=—00
=(1+cfl)a"(s)—cfl _;; Z e uy, (2.92)
k —o0

Now, by making change of variable m=k +1 we have

\/;__ﬂ- i e_lksuk+1 Z e—l(m—l)su _e - Z e—l(m—l)s :] _elsan (S) (293)

k=—00 m——oo m_—oo

Therefore, using (2.93) in (2.92) we get
0™ (s) = (L+cfl)d" (s) —e cfld” (s) = 0" (s)[ 1+cfl —ecfl ]

=q" (s)[1+ cfl —cfl (cos(s)+isin(s))}. (2.94)
Here, we denote the coefficient of 0"(s) in (2.94) as p(s) and call it as the symbol of
difference scheme (2.90). That is,
p(s)=1+cfl —cfl(cos(s)+isin(s)). (2.95)

Notice that, by applying the discrete Fourier transform, we elude the spatial derivative.

Applying the consequence of (2.94) n+1 times, we have
0" (s) =[1+cfl —cfl (cos(s) +isin(s)) | 0°(s). (2.96)

By bounding cfl, if we can achieve
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1+ cfl —cfl(cos(s)+isin(s))‘ <1, (2.97)
then we can conclude that (2.89) holds so that the method is stable.
Now, it turns out to find the restriction on cfl. Let us take the square of (2.95).
‘p(s)‘z = (1+cfl —cfl cos(s))2 +(cflsin (s))2
= (1+cfl )" —2(L+cfl)cfl cos(s) +cfl? cos? (s) +cflsin? (s)
= (1+cfl )2 +cfl? — 2cfl (1+cfl)cos(s) :=g(s). (2.98)

Note that, we define the g(s) in (2.98) and it is defined on [—7,z]. We must determine
the maximum and minimum value of g (s) to bound its magnitude value with 1. To do
this, we take the derivative of g (s) with respect to s and set it to zero to find the point
that have potential to be maximum or minimum.

g'(s) = 2cfl (1+cfl)sin(s). (2.99)
This may maximum or minimum at the points that do the (2.99) zero and the endpoints.

These are the points —z,0and 7.

Fors=0, |p(s) =1+ 2cfl +cfl? +cfl> —2cfl - 2cfl® =1, (2.100)
Fors==7, |p(s) =(1+cfl)’ +2cfl (1+cfl )+ cfl? = (1+2cfl)". (2.101)
In order to bound |p(s)| with 1, thus, we must have

(1+2cfl)’ <1 -1<1+2cfl <1 —2<2cfl <0 -1<cfl <0, (2.102)

Therefore, we conclude that the scheme in (2.90) is conditionally stable and the

condition is —1sC—Ats0. Notice that c have to be negative to satisfy the condition.

AX

This means that the method does not work for ¢ > 0.

In conclusion, to prove the stability by applying the Fourier transform is easy from

proving directly from the definition.
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2.6 The Lax-Richtmyer Equivalence Theorem

Finally, we come up the Lax Equivalence Theorem that relates the convergence with
consistency and stability. This is the fundamental theorem in the theory field of the

finite difference methods.

Theorem 2.1 A consistent finite difference scheme for a partial differential equation for
which the initial value problem is well-posed is convergent if and only if it is stable
[24].

This theorem is called Lax-Richtmyer Equivalence Theorem or just Lax Equivalence

Theorem.

Generally we want to reach convergence from stability rather than to reach stability
from convergence. Furthermore, we may ask for order of convergence. For these

reasons, the following theorem is more useful for us.

Theorem 2.2 If a two-level difference scheme
u™ =Qu" + AtG" (2.103)

is accurate of order (p,q) to a linear initial-value problem which is well-posed in the

norm ||| and it is stable with respect to the norm |- |, then it is convergent with respect

to the same norm and same order [21].

We require in both definitions that the initial-value problem must be well-posed. An
initial-value problem can be considered as well-posed if it depends on its initial

condition while time evolves. We can define it as follow.

Definition 2.10 The initial-value problem for a first order equation is well-posed if for

all t, there is a constant K such that the inequality
Ju(e )< Kfu(o.) 2104
holds for all initial data u(0,-) [21].

We will not concern the well-posedness of initial value problem so much when solving
the problems. One reason for this is that most of the problems satisfy the well-posed

condition.
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Up to now, we analyze some methods in terms of stability and consistency. For
instance, we see that the scheme in (2.56) is accurate of order (1,1) with respect to 2-
norm in example 2.3 and also we see that the same method is stable if —1<cfl <0 with
respect to 2-norm. Then we can conclude from the Theorem 2.2 that the scheme given

in (2.56) is convergent of order (1, 1) with respect to 2-norm.
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CHAPTER 3

FINITE VOLUME METHOD

In previous chapter we mentioned theoretical background for all types of partial
differential equations and for all numerical methods that used to solve these partial
differential equations. Since our main concern is about high resolution schemes, we will
interest in related partial differential equation, namely hyperbolic equations.
Specifically, we will deal with conservation laws which are a significant part of
homogeneous hyperbolic equations.

3.1 Conservation Laws

The basic example of a conservation law is

Ve (x,t)+ f (v(x.t)) =0. (3.1)
Here f(v) is the flux function. The quasilinear form of equation (3.1) is

v+ f'(v)v, =0. (3.2)

X

This equation is hyperbolic if f’(v) is real. Notice that the equation (2.1) is a

conservation law with the flux function f (v) =cv. This flux function is linear but most

of the physical problems cause to nonlinear conservation law and so nonlinear flux

function. That is, f (V) is a nonlinear function of v.

Conservation laws generally emerge from physical principles. To verify this, let
consider a problem. Suppose that a liquid is flowing with velocity c¢ through the one-
dimensional pipe. Notice that the velocity can only change with time t and x. Assume

also that there is some substance in this fluid and its quantity is so less that does not
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influence the fluid dynamics. Our problem is to model the density of this substance in

terms of x and t. Let v(x,t) denote the density of this material.

The unit of density is mass per unit volume, usually. We are studying on one-
dimensional pipe so that the only change in space is in the x direction. Therefore, it is

logical to use mass per length as a unit. That is grams per meter. Now, to determine the
total mass of this material between the point x, and x, for some time t, we can use the
following expression.

Xy

Jv(x,t)dx (3.3)
Note that if the material is conservative that is neither created nor destroyed, then the
total mass in the section of pipe between x, and x, can only change due to the fluxes,
i.e., flow of the substance through the edges of the given section. Now let
F.(t) and F, (t) be the rates at which the material flows past the fixed points x, and X, ,

respectively. Let unit of this rate be grams per second. We will consider that if F (t) §

positive then the material flows to the right and if F, (t) is negative then the material

flows to the left. Because of the fact that the total mass in the section can vary only due

to the fluxes at the endpoints with time evolves, we can derive the following.
d
afv(x,t)dx:Fl(t)—Fz(t). (3.4)

Equation (3.4) is the fundamental integral form of a conservation law and most of the
methods that we will use are in this form. We can interpret this equation as that the rate

of chance of total mass can only stem from the fluxes through the endpoints. In equation

(3.4) we should determine F (t) in terms of v(x,t) so that we can get an equation to
solve for density of substance, v(x,t). For our problem, the flux at a given point x and

time t is just the product of the density v(x,t) and the velocity c(x,t). We can confirm

this in terms of units. That is the unit of density is gram per meter and the unit of

velocity is meter per second. The product of two units gives us gram per second which

is the unit of flux. Thus we can write

flux = f (g, x,t)=c(x,t)q(x,t). (3.5)
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If the velocity is constant with respect to time and space, then we can write
flux=f (q)=cq. (3.6)

For the case of constant speed, flux at any point can only depend on the density. It does
not change owing to location of point and time. For such cases we can rewrite the basic

form of conservation law in (3.4) as

d

a_x[v(x,t)dx:f(v(xl,t))—f(v(xz,t)). (3.7)
We can rewrite this as

(3.8)

If the functions v(x,t) and f are sufficiently smooth we can write the equation (3.8) as

d t 0
a;{v(x,t)dx:—;{& f(v(xt))dx. (3.9)
If we pick up the terms in a single integral,

Tgv(x,t)Jr%f(v(x,t))dx:O. (3.10)

X

To handle this equality, the integrand of integral in equation (3.10) must be zero.

Therefore,

0 0

—v(x,t)+— f(v(x,t))=0. 3.11
SV(xt)+ 1 (v(xt)) (311)
This is called the differential form of the conservation laws. We will built our schemes
on this basic form and develop them from this fundamental pattern. As we will see later
that it is very important for a scheme to be in conservation form because otherwise

numerical methods most often do not capture the speed of discontinuity.
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3.2 The Riemann Problem

The Riemann problem is the initial value problem which has a special initial condition.

The initial data consist of two constant values v, andv, separated by a jump

discontinuity at the point x=0. That is, the hyperbolic equation
Vi +(f(v)), =0 (3.12)

and initial condition

v(x,0)=v,(x) (3.13)
where

v if x<O,
VO(X)_{Vr if x>0.

For the scalar advection equation Vv, +cv, =0, the solution to the Riemann problem is

formed by the discontinuity propagating along the characteristic with speed c¢ and the

solution is

v, if x—ct<0,
. (3.14)
\Y; if x—ct>0.

r

v(x,t)={

The Riemann problem is significant structure to build Godunov’s method which is the
main building block for construction of high resolution methods. We will mention about

this in chapter 4.

3.3 Finite Volume Methods

Finite volume methods are similar to finite difference methods, and finite volume
methods can be considered as a finite difference approximation to the differential
equation. However, there are important differences that provide advantages to finite
volume method. It is the fact that finite volume methods are derived on the basis of the

integral form of the conservation law.

For finite volume method, we divide the spatial domain into subintervals and try to
approximate to the value of integral of v over each of these grid cells. We recalculate
these values by approximating to the flux throughout the endpoints of each interval. We

do the same for each time step (Figure 3.1). If we denote the ith interval by
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C :(xi_m,xm) and denote the average value of v(iAx,nAt) over the C; at time t,

by u'' then we can write the following expression.

X +1/2
n

1 1
u; zEXi_[zv(x,tn)dxz&é[iv(x,tn)dx. (3.15)

Although it is not necessary to assume that the grid is uniform, we will accept that the

grid is uniform for ease.

F, 172

H

n n
u', u U,

Figure 3. 1 Updating the cell average with the fluxes throughout the endpoints for finite
volume method.

The integral in (3.15) approximate the value of v(x,t) at the midpoint of the grid cell

with the order of O(sz), if v(x,t) is a smooth function. This situation may not be

superb, but it enables to use the significant properties of the conservation law in driving
numerical methods to work with cell averages. In fact, we can guarantee that the
numerical method is conservative. That is, it imitates the true solution, and this property

of numerical method is crucial for calculating shock waves accurately. This property of

numerical methods comes from the fact that Z.N: ,Ui'Ax approximates the integral of

v(x,t) over the interval [a,b] (assume that we have an interval [a,b] and divide it into

N subinterval), and if we work with a method that is in conservation form (we will just
mention it below), then this approximate sum will vary only because of fluxes at the
endpoints of interval, namely a and b. Therefore, the total value of discrete sum will
maintain the same, or at least change correctly if we impose the boundary conditions

agreeably.

Now applying the integral form of the conservation law (3.4) to the grid cell C, , we get
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%Iv(x,t)dx = f (v(xH/z,t))— f (v(xwz,t)) . (3.16)

G

By using (3.16), we can improve an explicit numerical method. If we know the cell

averages U at time t,, we can approximate the cell averages u'" at time t ,

n?

Integrating the equation in (3.16) from t_ to t ., we have

I (x,t,,,)dx jv(x,tn)dx =tnf f (v(xi_m,t))dt —T f (v(xim,t))dt : (3.17)

ci Ci tn tn

By dividing (3.17) with Ax gives

Ny .[ X, n‘Fl (j)( Y .[ dx

_i tnff(\,(xi+]/2,t))(g|t_t]:lf(\/(><i_]/2,t))o|t . (3.18)

tn

We can conclude from the above equation that we can update the average value of

v(x,t) for next time step from the integral form of conservation law (3.4). We can also

deduce that we should work on numerical methods which are the following form

n+l ZXt ( =y

2= Rl ) (3.19)

where F[,, is an approximation to the flux at point x,,, . That is,

tha
Fry, = Alt f (v(xm/z,t))dt . (3.20)

Now to arrive a completely discrete method, we should approximate the above average

flux in terms of u".

We can realize that value of Fiﬂw depends on the approximate values to the average
value of v(x,t) on both sides of the point Xi,yo - Thus, it is logical to estimate the F},,

from the value of u;,, and u;". From this idea, we can write
Rl =G(ul.uls), (321)

where G is some numerical flux function. If we insert this term into (3.19), we have
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U™t =’ —%(G (uhu)-G(uf, uin,l)) : (3.22)

Because we drive the above equation from the equation (3.18), which is the integral
form of conservation law, and it imitates the property of conservation low, the equation

in (3.22) is in conservation form.

At the beginning of this section we said that finite volume method can be considered as
same with finite difference method. To demonstrate this, if we rearrange the term of

equation (3.22), we have

_n+l n F_n _ F_n
Bl SO R S R (3.23)
At AX

This is the difference scheme of conservation law v, + f, (v) =0.

In equation (3.21), we gave the general form of flux functions. We know that it depends

on u

i+1

and u', but what the function G can be is still undetermined. To determine G,

the first idea that comes in mind may be the simple arithmetic average. That is,

n n n 1 n n

T2 =G (U0 )= _(f (ufly)+ f(u; )) (3.24)
and inserting this into (3.19), we get

n+l n At n n
u' =u; _E(f (uM)— f (ui_l)). (3.25)

Be aware that this method is in conservation form, but it is ordinarily unstable for

hyperbolic equation.

An example of finite volume method in conservation form is the classical Lax-
Friedrichs method which has the form

uin+1 = %(uiil _uin—l)_%( f (uin+1)_ f (uin—l))' (3:26)

n
i+1

This method looks like unstable method in (3.25), but we replace u' by %(u +uy,)

and this change enables method to be stable for a linear hyperbolic equation if the

necessary condition cfl <1 is fulfilled.
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Notice that the Lax-Friedrichs method is of the form (3.19) if we define the numerical

flux as

"2 =%(f (ur,)+ 1 (ui"))_ﬁ(ui” —u’,). (3.27)

3.4 REA Algorithm

To solve nonlinear Euler equations of gas dynamics, Godunov suggested an approach
[3]. This approach is called REA algorithm which is the short writing of reconstruct-
evolve-average. As we said before, this algorithm would be the base for huge amount of

new algorithms which are modern, high order, improvable etc.

The algorithm consists of three steps:

1. Reconstruct a function \7”(x,tn) which is piecewise polynomial defined for
each x, from the cell averages u/. For straightforward situation, one can

define V"(x,t,) as a piecewise constant function that takes the value u;' for

the ith interval. That is,

V'(xt,)=u’ forallxeC (3.28)

2. Evolve the hyperbolic equation exactly or approximately with this initial data

to achieve V" (x,t

1N+l

) for the next time step.

3. Average this piecewise function over each interval to get new cell averages,

i.e.,

n+1

u =

1 (o
&Cjiv (x,t,., )dx (3.29)

By applying these three steps, we get the value for the next time step (At times later).
To find the values for given time, the algorithm will be repeated.

To evolve the hyperbolic equation in step 2, we should use the theory of Riemann
problems introduced in section 3.2 since our initial data consists of piecewise constant

functions.

We build a function V"(x,t,) from the u in step 1. At first time when Godunov had

been used the REA algorithm, he has reconstructed V" (x,tn) as a simple piecewise
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Figure 3. 2 Representation of REA algorithm

constant function. Using such a reconstruction leads to Riemann problem which is easy
to solve, yet it gives just first-order accuracy. In order to achieve better accuracy, we
may consider utilize a better reconstruction. That is instead of using piecewise constant
function, we can use piecewise linear function as an initial data. This way of thinking
establishes the basis for the Godunov type high resolution schemes that we will mention

in next chapter.

Now, it is time to improve a finite volume method which can be easily performed in

practice, based on the REA algorithm. In step 3, in order to determine the new cell

average U, we should compute the integral of V"(x,t

1N+l

). Because the function

V(X

) contains a lot of discontinuities, it is hard to implement. However, there is an
easy way to find the cell averages. Instead of calculating integral, we can determine the

numerical flux function for each cell and using this, we can easily compute the new cell

averages.

Remember that, we define the numerical flux F, as an approximation to the time

average of the flux at x,_,, from t, to t ,, in (3.20). That is,

t

Ry, i j F(v(% g20t) it

t

n
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Normally, the function v(xi_m,t) changes with t, and we do not know this change of

the analytic solution exactly. However, if we replace v(x,t) by the function V" (x,t)
defined in the REA algorithm using piecewise constant reconstruction, we can calculate

the integral certainly. Because V(x,,,,t) is constant over the time interval (t,.t,.,), its
value is equal to the solution of Riemann problem at centered X ,,. Then, we define
F'y, as

n+l

Ry =— [ (v, u)) )t = f (v uly,ul). (3.30)

1 t
At
Here, v (u",,u") represents the solution of Riemann problem at the point Xi y/2-

Therefore, Godunov’s method for conservation laws has the following way of

implementation:

> Solve the Riemann problem at x,_,, to obtain v®™(u",u/").

> Define the flux F_,, as a function of u;', and u;'.

» Apply the flux-differencing formula (3.19).

We will generally use this format to state the methods.
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CHAPTER 4

HIGH RESOLUTION METHODS

High resolution methods are built for solving conservation laws equations that have
discontinuous solutions, such as gas dynamics equations. Von Neumann, Richtmyer and
Lax have been studied for the numerical solution of partial differential equations.
Godunov developed their methods greatly and he applied his methods to a lot of
problems in one-dimensional gas dynamics, in which contact discontinuities and shock

waves arise [3].

In this chapter, we will introduce the methods that are used to compare and contrast. In
section 4.1, we will mention the classical high resolution methods. Although they have
some problems, as will be mentioned later in this chapter, they give significant
information to build more efficient methods. For next sections, we will introduce the
concept of limiter and slope, we will upgrade the reconstruction of the piecewise
polynomial function in step 1 of the REA algorithm from constant to linear to get more

adequate methods. After that, we will talk about advanced high resolution methods.

We will use the following test problem to evaluate the methods.

v, +cv, =0, (4.1)

exp(-200(x—0.3)°)  for 0<x<06

v(x,0)=41 for 0.6<x<0.8 4.2)
0 for 0.8<x<1.0,
v(0,t)=v(Lt). (4.3)

Clearly, (4.1) is an advection equation. This seems a trivial equation, but it contains the
core of the hardship encountered in numerical approaches to hyperbolic problems [25].

Therefore it is very important to understand the methods properly for the advection
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equation. The initial condition for (4.1) consists of a smooth pulse named as Gaussian
hump and a square pulse. We choose such an initial condition because some methods
are perfect for smooth solution but they fail for the solutions which have discontinuity
and some other methods are good enough for discontinuous case but they have some
drawback for the smooth case. The boundary condition in equation (4.3) is periodic.
Therefore when the front of the solution goes out from the point x =1, it will come in

from the point x=0.

We carry out the calculations on a uniform grid of 200 intervals, our speed, c, is 1, we
take the cfl as 0.8. That is, dt/dx=0.8. We study the results at t=1.0 as short time

evaluation and t=5.0 as a long term evaluation. We use these informations for all the

methods in this chapter and for the advection equation in (4.1)-(4.3).

4.1 Classical High Resolution Methods

4.1.1 The Upwind Method

In the first half of the twentieth century, difference methods especially worked by von
Neumann, Richtmyer, and Lax had all been centered methods and symmetric about the
point where the solution is updated. However for hyperbolic problems, information
propagates as waves moving along characteristics, so it can be found better numerical
flux functions. From this idea, upwind method is developed. Courant, Isaacson and
Rees published a paper in 1952. In their publication, they choose upwind-biased stencil

which follows from the backward variant of the method of characteristics [26].

The idea behind the upwind method is that the information for each characteristic
variable (we only have one variable for scalar advection equation.) is obtained by
looking in the direction from which this information should be coming. For the one-way
wave equation there is only one characteristic, so there is only one speed which goes to
the right or left. Remember that for the equation in (4.1), if the constant c is positive
then the wave goes to the right and if ¢ is negative then the wave goes to the left. That is

why; the upwind method is defined as follows

uin+1 _ uin _(;_At(uin _uin_l) for ¢ >0, (4.4)
X

ut =uf _Z_At(uinﬂ _Uin) forc <0 [1]. (@9
X
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We can write the equation (4.4) and (4.5) with together. To do this first lets define

¢’ =max(c,0), ¢ =min(c,0). (4.6)
Then,
u't =u —%[c* (u" —uly )+c (un, —uf )] 4.7

The difference method (4.7) is first-order accurate for smooth initial data and stable for
—1<cfl <1. When we apply the method to the test problem (4.1)-(4.3), we reach the

following graphical results.

1.""1‘ T T T T T T T

1.2+ Lpwind .

o -
[k}
=
(1] >
- . |
*
*
+*
. _
%
N2F analytic .
+  numerical
_Dd 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.s 0.9 1

% values

Figure 4. 1 Upwind method applied to the test problem (4.1)-(4.3) at time t=1.0
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Figure 4. 2 Upwind method applied to the test problem (4.1)-(4.3) at time t=5.0

We can conclude from the graphs that it cannot capture the solution well. The numerical
results of the method have great dissipation that cannot be negligible. The accuracy of
the method is poor so much, especially time evolves. Even though these drawbacks, the
upwind method enables to capture shock waves without oscillations. We will see in

later sections that some methods oscillate around the discontinuity.

4.1.2 The Lax-Wendroff Method

Remember that the upwind method in the previous section is only first-order accurate.
As we saw in the figure 4.1 that its result is so poor, it is more clearly seen in long time
evaluation (Figure 4.2). Improvement of the upwind method by adding correction terms
is done and named as Lax-Wendroff method. This method is second-order accurate in
both space and time where the solution is smooth and stable for —1<cfl <1.

Base of the Lax-Wendroff method for the advection equation v, +cv, =0 is the Taylor

series expansion. Note that since v, =—cv,, then
2
Vie = (_CVX )t =0V =—CVy, = _C(Vt )x - _C(_Cvx )x = C V- (4.8)
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Expanding v(iAx, (n+1)At) with respect to time, we get

v(iAx, (n+1)At) =v(iAx, n At)+ Atv, (iAx,n At)

1

, . (4.9)
+5 (a0 v, (1AX,n At)+O(At°)

Using the equality (4.8), we have

v(iAx, (n+1)At) = v(iAx,n At) - Atev, (1Ax,n At)

. - | (4.10)
+§(At) v, (1AX, n At)+O(At%)

Using the central difference approximation for the spatial derivative in the equation, we
reach

v =V —cAt [M +0 (Ax2 )]
2AX

. (4.11)

1 2[ Vi, =2V + V!

+§c2 (At) (T+O(Ax2)j+0(m3)

Rearranging this, we get

i i _m 2 i+1
+O(AL®) + O ( AtAX?)

At 1 LAY,
vit=y, - (Vi+1_vi—l)+_cz(&j (V 2 +Vi_l)- (4.12)

Therefore we approximate the advection equation Vv, +cv, =0 by the difference method

2
uin+1 _ uin _;_i::((uinu _uinl)+%02 (%j (uin+l — 2Uin -I—Uirll). (413)

Difference scheme (4.13) is called the Lax-Wendroff method. We can see that it has 3

stencil points. Numerical solutions of the Lax-Wendroff method in graphical form are

below.
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Figure 4. 3 Lax-Wendroff method applied to the test problem (4.1)-(4.3) at time t=1.0
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Figure 4. 4 Lax-Wendroff method applied to the test problem (4.1)-(4.3) at time t=5.0
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When we analyze the figures to compare with the upwind method, we see that the
smooth pulse, namely Gaussian hump, captured much better than the upwind method. In
terms of square wave, the Lax-Wendroff method also has problem, it cause oscillations
around discontinuities and these oscillations appear behind of the discontinuities. One
more note on the Lax-Wendroff method is that it has a phase error. That is, it causes a
slight shift in the location of the Gaussian hump. This is clearer in figure 4.4.

4.1.3 The Beam-Warming Method

In order to reach the Lax-Wendroff method, we use the central difference
approximation in (4.10) for the spatial derivative. That is why; the method is a centered
method. Either c is positive or negative, we can use this scheme. However if we know
that ¢ >0, than it may be logical to use a one-sided formula to get more correct answer.

Instead of central difference approximation, if we use

v, (1A, nAt) = Zi(&/i“ —4v, +Vv], ) +0 (Ax2 )

M (4.14)
v, (1AX, NAt) = v =2y, +Vv, )+ O(AX).
xx( ) (AX)Z ( 1 2) ( )
in the equation (4.10), we have
w_n _LCAt e ey LAY e
u™t =y —EE(BUi —4ui_l+ui_2)+§(§j (ui —2ui_l+ui_2). (4.15)

This method is called as the Beam-Warming method [7]. This method is again second

order accurate and stable for 0<cfl <2. (Remember that this scheme and stability

conditions are valid for ¢ >0, for the case c<0, it is easy to derive the scheme and its

stability conditions.) Similar to Lax-Wendroff, this method also has 3 stencil points.

When we apply the method to the test problem (4.1)-(4.3) we have the following
graphs.
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Figure 4. 5 Beam-Warming method applied to the test problem (4.1)-(4.3) at time t=1.0
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Figure 4. 6 Beam-Warming method applied to the test problem (4.1)-(4.3) at time t=5.0
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We can notice that the Beam-Warming method also oscillates around the discontinuities
like the Lax-Wendroff method. Furthermore it has oscillations at the beginning of the

graph, especially at time t=5.

41.4 Fromm’s Method

Another second-order method is the Fromm’s method. It has the following formula [6].

2
n+l _ ,/n CAt n n n n 1( cAt n n n n
U~ =u = AAX (ui+1 +3U;" —Su;, +ui2)_Z( AX (ui+l_ui Uiy +Ui72) (4.16)
Unlike the Lax-Wendroff and Beam-Warming, the Fromm’s method has four stencil

points. The results obtaining by the application of Fromm’s method to the test problem
(4.1)-(4.3) are bellowing.
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Figure 4. 7 Fromm’s method applied to the test problem (4.1)-(4.3) at time t=5.0
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Figure 4. 8 Fromm’s method applied to the test problem (4.1)-(4.3) at time t=5.0

In terms of steep gradient, Fromm’s method has interesting result. While it has an
spurious oscillation around discontinuity at time t=1.0, it vanishes at later time
(t=5.0). Expectedly, the accuracy for the smooth data decreases as time evolves.
Comparing to the previous two second-order methods, Fromm’s method is quite well in

terms of oscillations.

The characteristic of high resolution schemes is actually choosing the advantages of
methods and combining them to obtain more sufficient method. For instance, if it is
possible, we reach second order accuracy, but we do not insist on it if the solution does
not behave smoothly for some region. To achieve this, let have a look at the REA

algorithm once more.

4.2 The REA Algorithm Revisited

Remember that we gave the REA algorithm in section 3.4. By constructing a constant

piecewise function V" (x,t) from the cell average u.', we obtain the first order Godunov

type method, the upwind method, to solve the one way wave equation. To improve the
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accuracy, we must utilize a better reconstruction for v" (x,t) then a piecewise constant

data, namely value of cell average. We can build a piecewise linear function from u;

which has the form

V(X t)=ul+07 (x=X) forx_, <X<X,p,, (4.17)
where

1
X, = E(Xi‘w + xm/z) : (4.18)

is the center of cell C, and o7 is the slope on the same grid cell. The features of this
definition are that its value at the point X; is equal to the value of cell average,u' and
the average value of this linear piecewise function V" (x,t) over C, is equal again to the

value of cell average, u'. The latter property of this reconstruction is very important in
building up new conservative methods for conservation laws.

Now using this reconstruction, let build the REA algorithm again for scalar advection
equation. Without loss of generality, let assume that c in the equation v, +cv, =0 is

positive and also assume that cAt/Ax <1 which is necessary to hold the convergence.

Then reconstruction of the REA algorithm, the upwind method, becomes
u™ =l u" —chtai" _cat u’ —chtai“ —|u, +£(AX—CAt)Gi"_1 : (4.19)
2 AX 2 2

Rearranging this, we obtain

n+ n At n n 1 cAt n n
u™ =u; —CA—X(Ui _ui—l)_ECA_X(AX_CAt)(O_i ~ol,). (4.20)

Notice that this is the upwind method, but together with a term that relies on the slopes.

4.3 Limiters

In order to get rid of the drawbacks of methods that have been mentioned up to now, we
can use the limiters. Limiters enable us to eliminate phase error, and to dispose of
oscillations. To understand the concept of limiters, we will begin by analyzing the
upwind method flux and the Lax-Wendroff flux. For the upwind method in (4.4)

(remember that we assume ¢ > 0), we can write the flux as
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F"  =cu".. (4.21)

i-1/2 — i-1

For the Lax-Wendroff method in (4.13), the flux is

2 =%(Ua”-1+ui”)‘_A_(“i” —ui”_l). (4.22)

If we rewrite the equation (4.22) with arranging the terms, we have

n n C CAL n n
Ry, =cul, +§(1—E](ui -uf,). (4.23)

Notice that, the flux in (4.23) has the form of the upwind flux with an additional term.
This term can be considered as the correction term for the upwind method. we should be

aware that although the correction term in (4.23) resembles a diffusive flux since it

relies on u' —u/',, it is an anti-diffusive flux because the coefficient is positive when the

cfl condition is satisfied [1]. By anti-diffusive flux, we mean that it has sharpening
influence for very diffusive upwind methods. That is why; the Lax-Wendroff method
has oscillations even for the smooth data. In order to prevent these wiggles we should
modify the correction term by using some form of limiter. This limiter changes the
magnitude of correction by taking into account of the behavior of solution. As a result,
when upgrading methods from first-order to second-order, we can prevent oscillations

thanks to limiter.

4.4 Different Slopes

When we build the REA algorithm with piecewise linear function, the limiting process
can be considered as the limiting the slope. For the equation (4.20), if we choose the
slope as zero, this means that we construct the REA algorithm with piecewise constant
functions and this gives the upwind method. In fact, if we put zero for the slope in

equation (4.20), we will get the equation (4.4) which is exactly the upwind method. To

reach a second-order accurate method, we should use nonzero slope, o', and this slope

should approximate the derivative of v(x,t) over the C;. When we choose
o =i (4.24)

and put it in the equation (4.20), we have
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A 1cA u', —u' u'-u’
= un S8 (g —up ) -2 S (ax )| Bt Tt | (4.25)
AX 2 AX AX AX

Rearranging the above equation gives

2
oS a3 S -2 o) w29

which is the Lax-Wendroff method. This means that the Lax-Wendroff is the Godunov

type method with second-order accuracy.

Similarly, if we choose the slope as

,ooul—ul,
o, =— ' 4.27
= (427)
and apply it to the equation (4.20), we get
ut=up —C—At(ui” —ui"_l)—EC—At(Ax—cAt) B & = S (4.28)
AX 2 AX AX AX
Rearranging this yields
1 cAt 1(cAtY
u™ =u"—==—(3u"-4u", +u", )+ =| =— | (u"=2u", +u",). 4.29
i i 2 AX ( i i-1 |—2) 2[ AX j ( i i-1 |—2) ( )

This is the Beam-Warming method. we can say then, that the Beam-Warming method is
also Godunov type method.
These are the natural choice that first comes into mind when we try to approximate the

v, (x,t). Other choices give other methods, but we will not mention about them.

Now, we will analyze why the second-order Godunov type methods give oscillatory
approximations to solution near discontinuities, by keeping the REA algorithm in mind.
Let us consider the Beam-Warming method applied to piecewise constant initial

condition
o Jbifi<k, (430)
" lo ifixk. '

When we calculate the slope according to (4.27), we will get piecewise linear function

shown in figure 4.9(i). The slope is zero for all values of i except for i=k. The
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constructed function V(x,t,) has an undershoot with a minimum value of -0.5

regardless of spatial step size. For the next time step, when we compute the average of

cell C,,, (Figure 4.9(ii)), the value will be less than O for any At with 0 <cAt<Ax and
this will cause oscillation. Furthermore, since the slope for C,., becomes negative it

triggers the cell C,,, to became negative also. Therefore oscillation will spread out the

cells. Also with time, this oscillation will grow.

o
[ ]
[ ]

n n n n n n+l n+l n+l n+l n+l
Up o Upy Uy Upyy Up, Up_y Upy Up  Upy Upyo

~

n+l n+l n+l n+l n+l
ey ] Ly ey Ueog

i)

Figure 4. 9 i) Construction of \7(.,tn)from cell averages by Beam-Warming slope. ii)

At time later. iii) New cell averages (dots) and reconstruction 0f\7(.,tn+l)

We saw that near a discontinuity it does not improve the accuracy to introduce slope
that mentioned above. Moreover, if we want to prevent nonphysical oscillations we
should not introduce any nonzero slope for the kth cell because any slope o, <0 causes

n+l

u,;; <0 and so oscillations (note that positive slope is meaningless for this cell). On the

other hand, if we set the entire slope to 0, then we have just first-order accuracy. This is
what we do not want where the solution is smooth. In addition to this, constructing
nonzero slope can enable to prevent solution from smearing out too far and enable

discontinuity to become sharp effectively.
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When choosing our formula for slope o', if we take into account that how the solution

is behaving around the discontinuity then we can get rid of the oscillation, we can
derive fairly sharp solution to approximate the discontinuity and for smooth solution we
can get second-order accuracy. For smooth solution, we want to choose something like
the Beam-Warming slope. Around a discontinuity, to prevent appearance of oscillation,
we want to limit this slope by using a smaller value in magnitude. Methods building up
from this opinion are called as slop-limiter methods.

4.5 Advanced High Resolution Methods

45.1 Minmod Slope-Limiter Method

We saw in the previous section that the Lax-Wendroff and the Beam-Warming methods
are the second type Godunov method with downwind slope defined in (4.24) and
upwind slope defined in (4.27). The minmod slope method is also second type Godunov
method but it is also slope-limiter methods that is mentioned above. For this method we

define the slope as follows

. u'—u’
ol =min mod( — i1
X

uirlrl_uin
A j[9]- (4.31)

Here, the Minmod function is defined by

x if |x|<|y| and xy >0,
minmod(x,y) =<y if |y|<|x and xy>0, (4.32)
0 if xy<O.

We can consider the minmod function as follow: if x and y have the same sign, then the
minmod function returns to the one that is smaller in absolute value. If x and y have

different sign then it returns to 0.

The Lax-Wendroff scheme uses always downwind slope and the Beam-Warming
scheme utilize always upwind slope. On the other hand the minmod slop method
compares the two slopes and selects the one that is smaller in modulus. If the two values
have different sign, it choose the zero slope. This is logical since if the two slopes have

different sign, it means that there is a local minimum or local maximum of solution

(Remember that for the local minimum or maximum, V, is zero).
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When we apply the method to the test problem (4.1)-(4.3), we have following graphical

results.
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Figure 4. 10 Minmod slope-limiter method applied to the test problem (4.1)-(4.3) at
time t=1.0
When we compare this graph with the graph of previous methods, we can say that the
minmod method is really better than the previous ones. The accuracy of minmod
method is at least as good as the accuracy of previous ones for smooth hump while for
the square wave; it is perfect in terms of capturing the discontinuity compared to the
Lax-Wendroff and Beam-Warming. For the long term evaluation, it become worse, but
it is acceptable and understandable. Note that still there is no unphysical oscillation in

the numerical solution.
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Figure 4. 11 minmod slope-limiter method applied to the test problem (4.1)-(4.3) at time
t=5.0

4.5.2 Superbee Slope-Limiter Method

One of the other slope limiter methods, which is also second type of Godunov method,
is the superbee limiter method. In addition to the minmod method, this method is also
second order accuracy for smooth solutions. The method is introduced by Roe [14] and
has the following slope.

o' =maxmod(X,y), (4.33)

where

X = min mod[[u‘”_ui j,Z(u‘ _Ui_lD
AX AX

y = min mod(Z(u‘”_u‘ J,(u‘ _UHD
AX AX

We can view this slope as in that way: downwind slope is compared with twice the

(4.34)

upwind slope in terms of minmod and vice versa. From this process we have two values

and we select the value that has bigger in magnitude.
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Results of application of this method to the test problem (4.1)-(4.3) are below.
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Figure 4. 12 Superbee slope-limiter method applied to the test problem at time t=1.0
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Figure 4. 13 Superbee slope-limiter method applied to the test problem at time t=5.0
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We can derive from figure 4.12 and figure 4.13 that the superbee slope-limiter method
Is much better compared to the minmod slope-limiter method in terms of amplitude of
the solution and catching the discontinuity. On the other hand, for the Gaussian hump, it
gives like a horizontal line where the solution resembles a concave curve. This may be

problematic especially if the solution has inflection points [1].

4.5.3 Van Leer Slope-Limiter Method

In 1974, Bram van Leer published a paper and he introduced a new method. we will
give the formulation after the section 4.6. The graphs of van Leer method solution to the

test problem are the following figures.
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Figure 4. 14 Van Leer method applied to (4.1)-(4.3) at time t=1.0

In figure 4.14, we see that van Leer method captures the solution as well as superbee
method. However, for long term evaluation (figure 4.15), accuracy of van Leer method
decreases much compared to superbee method.
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Figure 4. 15 Van Leer method applied to (4.1)-(4.3) at time t=5.0

45.4 MC Slope-Limiter Method

The MC slope-limiter which is short name of monotonized central-difference limiter
and introduced by van Leer [12] has the following slope:

o" = min mod Ui “Uiyg | of B =W ) oF U 2l ) (4.35)
2AX AX AX

We can interpret this slope as comparing the three values, the central difference, two

times the upwind slope and twice the downwind slope, along each other and taking the
one that minimum in absolute value if the three values have the same sign. Otherwise,

slope becomes zero. Applying of the method to the test problem (4.1)-(4.3), we have the
following graphs.
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Figure 4. 16 MC slope-limiter method applied to the test problem at time t=1.0
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Figure 4. 17 MC slope-limiter method applied to the test problem at time t=5.0
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MC slope-limiter method has the similar graph with the superbee slope-limiter method.
Contrary to similarity, it has also diversities some of which are good and some of others
are bad. The disadvantage of MC compared to superbee is that, it is less sharp around
the discontinuity. On the other hand, as the advantage of MC, it resolves the default of

superbee which is becoming squared off at the top of the smooth hump.

4.6 Flux-Differencing Form of Methods

The methods we have seen up to now can be also written in the form of flux-
differencing defined in (3.19). Writing in such a form enables us to conclude that the
methods are in conservation laws form. We can do this issue by algebraically
manipulating the equation (4.20) to find the flux function or by computing the flux at
the interface using the piecewise linear reconstruction. Both ways will give the same

flux function. For the advection equation with ¢ >0, we have

Fry, =culy +%c(Ax—cAt)a"_1 [1]. (4.36)

Using this function in the flux-differencing formula (3.19), we have

um™ =y” —Z—At(ui” —ui"l)—%%t(Ax—cAt)(ai” —ai”,l). (4.37)

Notice that this is the same with the equation (4.20) expectedly. If we write the flux

function for positive and negative c, we get

cu’, +%c(Ax—cAt)a{‘1 ifc>0

=

2 = (4.38)

cu’ —%c(Ax+cAt)ai” ifc<0

Here, we write the flux function with slope, o' for the cell C,. However, writing the
methods in terms of flux function, it is more logical to correlate our approximation to

v, (x,t) with the cell interface at x;

iy, rather than the cell C; because we define the

flux E"

.1, at the cell edge x

i 12+ I we define the jump between two successive cells as

AUy, =U7 —uly, (4.39)

and if we divide this difference by Ax, then we attain an approximation to vx(x,t).

Therefore we can rewrite the flux in (4.36) as
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n a1 CAt) .,
Fi—ZI/Z = Cui_l + Ec(l_gjé‘i_ﬂz . (440)

Here, &

'y, 1S the function of Au;',,. (Notice that this flux formula is for ¢ >0, for the

negative c, it can be rewritten easily.)

Now, for &'y, =Au,,, (4.40) gives the Lax-Wendroff flux function and so the Lax-

Wendroff method. Since this is the basic selection for &7,,, we can say that the Lax-

Wendroff method is the fundamental second-order method depended on piecewise

linear reconstruction. Furthermore, some other choices of 57,, give the other methods

some of which are our methods that we have mentioned. Therefore, we can consider the

slope-limiter methods as also flux-limiter methods.

Table 4. 1 Flux-limiter function of the methods [1]

Name of Method Flux-Limiter Function

Upwind $(6)=0

Lax-Wendroff ¢(9) =1

Beam-Warming ¢(9) =0

Fromm $(0)=(1+6)/2

Minmod slope-limiter $(0) =minmod(l, 6)

Superbee slope-limiter ¢(9) = max(0, min(1, 26), min(2, 0))
MC slope-limiter #(0) =max(0,min((1+6)/2,2,26))
van Leer #(0)=(6+])/(1+0)

If we define o,, as

5&1/2 = ¢(0|r11/2 ) Auin—l/z ' (4.41)
where
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AU, L, /AU, if €>0

Olyp=1 /Ml 10620 (4.42)
AU, AU, if c<0

then for ¢(0) =0 we have

oy, =0=> R, =cul,. (4.43)

This is the flux of upwind method for positive c. Similarly, if we choose ¢(0):1, we

have
n n n n 1 CAt

which is the Lax-Wendroff flux function for ¢>0. Table 4.1 demonstrates which
choice of flux-limiter function corresponds to which methods that we have discussed so

far.

We can write conservation form of the methods for negative and positive speed as
follows.

u™=u —E(A*AuI "t A Auwz)

At
e <

o IEi+1/2 - lfi—l/Z) J (4'45)

where A"Au;',, is the net effect of right going waves and A"Au;,, is the net effect of

left going waves. That is,

A'AUl, =C" (ui” —uiil) , (4.46)
and
A AUy, =c (U, —ul). (4.47)

Furthermore, we define F_,, and F_,, as

CAt|) .,
I:|+]/2 |C|[1_ AX J@H/Z’ (448)
~ 1 CAt|) .,
FFJ/Z = E|C|(1— E jé‘ll/Z . (449)
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CHAPTER 5

APPLICATIONS TO BURGERS EQUATION

In previous chapter, we introduced the methods and evaluated them for advection
equation which is linear and has scalar coefficient. For this chapter we will use the
Burgers equation, which is nonlinear hyperbolic partial differential equation, as a test

problem. We will give the result of methods in the graphical form.

5.1 Burgers Equation

There are two different versions of Burgers equation; one of them is the

nonhomogeneous and nonlinear parabolic partial differential equation written as
V, +W, =gV, , (5.1)
where ¢ >0 and constant. This equation is generally called the viscid Burgers equation,

since in fluid dynamics e&v,, corresponds to viscosity. The other equation is the

homogenous and nonlinear hyperbolic partial differential equation and it can be stated

as
vV, +w, =0, (5.2)

This is usually considered as the inviscid Burgers equation. (5.2) can also be written in

the scalar conservation law form.

v+ f(v) =0, (5.3)
1,
where f(v)=§v .

The equation in (5.1) comes out usually as a simplification of a more sophisticated
model. Thus, it is generally considered as a toy model. By saying toy model, we mean

that it is a tool that is use to make clear some of the inside behavior of the general
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problem. We can give the Navier Stokes equation for such a general problem as an
example [27]. Moreover, Burgers equation models directly physical phenomena; one of
them is the traffic flow [1], [27]. In numerical partial differential equation, it is also

important due to the fact that its solution may contain discontinuities.

Note that there is a relationship between (5.1) and (5.2). When we take the limit of (5.1)
as £ —0, we reach the equation (5.2). This approach is correct in the mathematical
sense and also important for finding the approximate solution of inviscid Burgers

equation. Be aware that the equation (5.2) has no analytic solution.

When we write the numerical methods for the Burgers equation, we will use the
equation in (4.45). That is,

u_n+1 - uin _&(A*‘Auin_:vz + A’Auinﬂ/z ) —%( ﬁ

i AX i+y2 Fi—1/2) : (5-4)

There are a few differences between scalar linear equation and nonlinear equation to

write the equation in (5.4). First of all, for advection equation, the flux function is

f (v)=cv. On the other hand, the flux function for Burgers equation is f (v)=v?/2.

Another difference is that for advection equation the characteristic speed is constant, but
for Burgers equation it changes in time. We will define speed as follows.

i = {(ff ((z))— F(U))/u —Uis iil; tlJJll g l:ii [1]. (5.5)
Then A"Au',, and AAu,, become

ATAUY ), =57 ,AU7 ), (5.6)
and

AAUY, =S50, (5.7)

As we can guess, s, =max(0,s.,,) (and s, =min(0,s,_y,)). If we put this into

(5.6) and do necessary calculations, we get

e f(ui”)— f (uif ) if u'>u’
ATAY ), _{0 1 fur < ui“jl : (5.8)
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There is an important detail when defining fluctuations A"Au’,, and A"Au,,. If

f'(u_) <0< f'(u,) then fluctuations become

A+Auir11/2 _ {f (Ui )_ f (Vs) |-f u:- >u; ’ (59)
0 if u'<u’,

and

AfAUin_]/z :{f (Vs)_ f (Ui_l) |f u; >u_, . (5.10)
0 if u'<u’,

Here v, is called stagnation point (or sonic point) and it is the value of v for which
U, <V, <u; and f'(v,)=0. This modification for fluctuations is necessary due to

entropy condition [1].

Now, we set F_, as follows.
.1 At i
Fiy. = E‘SiJ/Z‘(l_&‘Sil/Z‘jé}l/Z ' (5.11)

Remember that &;';,, and other related concepts are defined in section 4.6. However, for

the completeness of chapter we will give them again. o, is defined as
Syo = p(ly2 ) AU, (5.12)

where

(5.13)

on AL'Iin—l—l/Z/Auin_l/z if c>0
ha Auin—J/z/AUin_]/z if c>0

We calculate the results of numerical methods for Burgers equation according to the
table 5.1.
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Table 5. 1 Flux-limiter function of the methods (revisited)

Name of Method

Flux-Limiter Function

Upwind ¢(9) =0
Lax-Wendroff $(0)=1
Beam-Warming ¢(9) =0

Fromm

§(0)=(1+0),2

Minmod slope-limiter

#(6)=minmod(1, 6)

Superbee slope-limiter

#(6) = max(0, min(1, 26), min(2, 9))

MC slope-limiter

#(0) =max(0,min((1+6)/2,2,26))

van Leer

#(0)=(0+0])/(1+0)

5.2  Numerical Results of the Methods

We will use the following equation, initial condition and boundary condition to test the

methods.

v+ f(v), =0,

min(0,(x—1.5)(x-2.5)) if x<25

(x0)={ TG,

v(0,t)=v(5,t).

if x>25’

Graph of the initial data is shown in figure 5.1.
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Figure 5. 1 Graph of the initial data in the equation (5.15)

For 3.0<x<3.5 the characteristic speed decreases with x thus, top of the pulse moves
faster than the below region of the pulse. This causes formation of shock. In the same

way, a left-going shock also forms. At the end, the initial data becomes an N-wave. We

will do our calculation on 40 uniform grids and we set dt =0.4dx so that |ch| <0.1. We

will give the results at time t =2.0 which is just after the formation of shock and at time
t =12.0 which is the long-term evaluation. Note that because inviscid Burgers equation
has no analytical solution, we use MC slope-limiter method with a 2000 grid points to
draw the analytical solution for graphs. This is the way that most of the scientist use

when drawing analytical solution.

Our numerical results are produced based on a general time loop that internally uses a
specific high resolution method. Below we outline the basic structure of the algorithm.
We note that we used fortran 95 to program the schemes that used in this study. Please

refer to Appendix for the fortran code.

5.2.1 Algorithm of Methods for Burgers Equation

Step 1: Set cfl, 4x, At and t_final .

Step 2: Store x values between the initial and endpoint of given interval with step size
AX.

67



Step 3: For t =0, store the cell average value for each grid cell from the initial data.
Step 4: Set the boundary condition.
Step 5: Do calculation below for each grid cell.

Calculate

¢(0) for right and left endpoints of grid cell according to the used method.

Flux for right and left endpoints of grid cell.
Fluctuation for right and left endpoints of grid cell.
Calculate the new cell value from the finite volume scheme
Step 6: Transfer the data to another variable and increase the time up to At.

Step 7: Repeat step 5 and step 6 until time becomes equal to t _ final .

Step 8: Store the cell to plot the numerical results.

5.2.2 Results of Methods for t=2.0

In this section we will give the results of all methods for time t =2.0 and will discuss

the results.
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5.2.2.1 Graphs for Classical Methods
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Figure 5. 2 Upwind method at time t=2.0
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In figure 5.2, the upwind method gives dissipative result, particularly near the local
minimum and local maximum points. This result is similar to the conclusion obtained
by the advection equation. In figure 5.3, except for the extreme points, the Lax-
Wendroff method gives good result; it captures the solution well compare to the upwind
method. The Beam-Warming method gives the similar result with the Lax-Wendroff
method for the smooth regions, but it is relatively well around the extreme points (figure
5.4). Compared to the Beam-Warming method, we can say that Fromm’s method is
more adequate in terms of capturing the amplitude of the wave. Overall, we can

conclude that Fromm’s method is the best in classical methods for t =2.0.

5.2.2.2 Graphs for Advanced Methods
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Figure 5. 6 Minmod method at time t=2.0
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Figure 5. 7 Superbee method at time t=2.0
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Figure 5. 8 MC method at time t=2.0
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Figure 5. 9 Van Leer method at time t=2.0

Result of minmod method in figure 5.6 is similar to the Beam-Warming method, but it
is relatively dissipative especially near discontinuities. For t=2.0, superbee method
(figure 5.7) is better than both MC method (figure 5.8) and van Leer method (figure 5.9)
in terms of the approximating the amplitude of the wave and capturing the steep

gradient. In terms of amplitude, MC is better than van Leer.

5.2.3 Results of Methods at t =12.0

Most of the time, results at t =12.0 is more important than the results at t = 2.0 because
they tell us the long behavior of the methods. As we will see in this section although

some methods seem good for t =2.0, its accuracy has deteriorated more than expected.

5.2.3.1 Graphs for Classical Methods
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Figure 5. 10 Upwind method at time t =12.0
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Figure 5. 12 Beam-Warming method at time t =12.0
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Figure 5. 13 Fromm method at time t =12.0
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When we analyze the graphs for t=12.0, upwind method (figure 5.10) get worse to
catching the solution even for smooth data. Lax-Wendroff method demonstrates its
oscillatory characteristic much clearly (figure 5.11). Its result is unacceptable. In figure
5.12, surprisingly Beam-Warming method gives a nice solution though its oscillatory
feature. It is also good to approximating the local minimum and local maximum. We
see in figure 5.13 that, although Fromm’s method is acceptable for smooth region, it
tends to oscillate around discontinuity. This may cause problems in time. We can
conclude that for long term evaluation, Beam-Warming method is the most satisfactory

along the classical high resolution methods.

5.2.3.2 Graphs for Advanced Methods
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Figure 5. 14 Minmod method at time t =12.0
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Figure 5. 17 Van Leer method at time t =12.0

Even though its dissipative nature relative to advanced shock capturing method,
minmod method in figure 5.14 is acceptable according to amplitude of the wave.
Superbee (figure 5.15), MC (figure 5.16) and van Leer (figure 5.17) methods are quite
similar to each other when we look at the results roughly. On the other hand, when we
analyze deeply, we see that superbee method has a little bit deviation for smooth data.
Furthermore, van Leer method is worse than the other two, in terms of accuracy near
discontinuity. We can derive from these graphs that MC method is the best along the

eight methods for long-term evaluation.
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CHAPTER 6

RESULTS AND DISCUSSION

In this thesis, we have compared well-known high resolution methods in terms of their
accuracy and stability for smooth and discontinuous problems. In this thesis, we have
first given a discussion about some theoretical background. Then, we have provided

more detailed discussions regarding the numerical methods.

We have discussed finite volume methods, conservation law, Riemann problems which
are necessary tools to understand the high resolution methods clearly. Then, we have
described the high resolution schemes with their important features and mathematical
theory. We have applied above mentioned high resolution methods to a scalar, linear
one-way wave equation. This has given us the opportunity to perform some theoretical
analysis such as accuracy and stability. Then, we have applied the high resolution
methods to the Burgers Equation. By solving this equation with different methods, we
have gained a lot of insights about the stability accuracy and therefore the suitability of

used high resolution methods for nonlinear hyperbolic partial differential equations.

In our conclusion, advanced high resolution methods have provided reasonable results
for both smooth and discontinuous problems. Among the advanced high resolution
schemes, MC slope-limiter method has been shown to be superior to the others. This
thesis can be considered as an initial step towards understanding the fundamentals of
high resolution methods. We wish have deeper understanding and explore further about
these special group of numerical methods, with the aim of possible original

contributions.
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APPENDIX

FORTRAN CODE FOR BURGERS EQUATION

program HRMforBurgersEquation

implicit none

integer::i,mt

integer, parameter :: M = 40, ng=2

double precision xedge(0: M), xcell(0 : M-1)
double precision Uext(0-ng : M-1+ng)

double precision Uold(0-ng : M-1+ng)

double precision Unew(0-ng : M-1+ng)

double precision:: t_final, time, dt, xa, xb, dx, cfl,a
double precision A_plus, A_minus

double precision w_imh, w_iph

double precision s_minus_imh,s_minus_iph,s_plus_imh,s_plus_iph
double precision s_imh,s_iph

double precision wtilda_imh, wtilda_iph

double precision f_imh, f_iph

double precision minmod

double precision teta_imbh, teta_iph

double precision fiteta_imh, fiteta_iph

double precision, parameter:: ep=0.001d0
character*2:: label = 'AA'

Iset mt value for methods that you want to use
I 1 for upwind; 2 for I-w; 3 for b-w; 4 for fromm; 5 for minmod
I 6 for superbee; 7 for MC; 8 for van leer

mt=1

cfl = 0.4d0

t_final = 12.0d0

time = 0.0d0

xa =0.0d0 ; xb = 5.0d0

dx = (xb - xa)/M

dt= cfl * dx

doi=0,M-1
xedge(i) = xa + i*dx
xcell(i) = xa + (i+1./2.)*dx

enddo

xedge(M) = xa + M*dx
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doi=0, M-1
uext(i) = dmax1(0.0d0, (xcell(i)-2.5d0) * (3.5d0-xcell(i)) )
enddo

do i= 0, int(M/2)-1
uext(i)=-uext(M-1-i)
enddo

do i=0, M-1
uold(i)=uext(i)
enddo

Uold(-2) = Uold(M-2)
Uold(-1) = Uold(M-1)
Uold(M) = Uold(0)

Uold(M+1) = Uold(1)

do while (time <=t _final)
time = time + dt
doi=0,M-1

s_imh = 0.5d0*(Uold(i) + Uold(i-1))
s_iph = 0.5d0*(Uold(i+1) + Uold(i ))

s_minus_imh = dmin1(0.d0, s_imh)
s_minus_iph = dmin1(0.d0, s_iph)

s_plus_imh = dmax1(0.d0, s_imh)
s plus_iph =dmin1(0.dO, s_iph)

w_imh = Uold(i)-Uold(i-1)
w_iph = Uold(i+1)-Uold(i)

if( (Uold(i-1).LT.0.d0) .AND. (Uold(i).GT.0.d0) ) then
A _plus =0.5d0 * ( Uold(i)**2)

else
A plus =s_plus_imh *w_imh

endif

if( (Uold(i).LT.0.d0) .AND. (Uold(i+1).GT.0.d0) ) then
A_minus = -0.5d0 * (Uold(i)**2)

else
A_minus =s_minus_iph*w_iph

endif

methodtype: select case (mt)
case (1) !'upwind
label ='Up’
teta_imh = 0.0d0
teta_iph = 0.0d0
fiteta_imh = 0.0d0
fiteta_iph = 0.0d0
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wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case (2) 'LW
label = 'LW'
teta_imh = 1.0d0
teta_iph = 1.0d0
fiteta_imh = 1.0d0
fiteta_iph = 1.0d0

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case (3) !'BW
label = 'BW'
call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,
Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))

fiteta_imh =teta_imh
fiteta_iph = teta_iph

if (w_imh ==0.0d0) then
wtilda_imh = fiteta_imh*ep
else
wtilda_imh = fiteta_imh*w_imh
endif

if (w_iph == 0.0d0) then
wtilda_iph = fiteta_iph*ep
else
wtilda_iph = fiteta_iph*w_iph
endif

case (4) ! Fromm
label ='FR’
call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,
Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))

fiteta_imh = 0.5d0*( 1.0d0 + teta_imh)
fiteta_iph = 0.5d0*( 1.0d0 + teta_iph)

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case (5) !'minmod
label = 'MM'
call BWHfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,
Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))

fiteta_imh = minmod(1.0d0 ,teta_imh )
fiteta_iph = minmod(1.0d0 ,teta_iph)

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph
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case (6) !superbee

label ='SB'
call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,
& Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))
fiteta_imh = dmax1(0.0d0 ,dmin1(1.0d0,2*teta_imh),
& dmin1(2.0d0,teta_imh))
fiteta_iph = dmax1(0.0d0 ,dmin1(1.0d0,2*teta_iph),
& dmin1(2.0d0,teta_iph) )

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case (7) 'MC

label ='MC'

call BWfi (teta_imbh, teta_iph, w_imh,w_iph, s_imh,s_iph,
& Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))

fiteta_imh = dmax1(0.0d0 ,dmin1((1.0d0+teta_imh)/2.0d0 ,
& 2.0d0, 2*teta_imh ) )

fiteta_iph = dmax1(0.0d0 ,dmin1((1.0d0+teta_iph)/2.0d0 ,
& 2.0d0, 2*teta_iph) )

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case (8) Ivan Leer

label ='VL'
call BWfi (teta_imbh, teta_iph, w_imh,w_iph, s_imh,s_iph,
& Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2))

fiteta_imh= (teta_imh+dabs(teta_imh))/(1 + dabs(teta_imh))
fiteta_iph= (teta_iph+dabs(teta_iph))/(1 + dabs(teta_iph))

wtilda_imh = fiteta_imh*w_imh
wtilda_iph = fiteta_iph*w_iph

case default
print*, "wrong case"

end select methodtype

f_imh = 0.5d0*dabs(s_imh)*(1.d0 - (dt/dx)*dabs(s_imh))

& *wtilda_imh
f_iph = 0.5d0*dabs(s_iph)*(1.dO - (dt/dx)*dabs(s_iph))
& *wtilda_iph

Unew(i) = Uold(i) - (dt/dx) * (A_plus + A_minus)
& -(dt/dx)*(f_iph - f_imh)
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enddo

Unew(-1) = Unew(M-1)
Unew(M) = Unew(0)

Unew(-2) = Unew(M-2)
Unew(M+1) = Unew(1)

Uold = Unew
enddo
do i=0, M-1

open(13,file = 't12'//label//'.txt")
write(13,*) xcell(i), Unew(i) !,dabs(Uext(i)- Unew(i))

enddo
close(13)
END

subroutine BWfi (teta_imbh, teta_iph, w_imh,w_iph,s_imh,s_iph
& ,Um2,Um1,Uo,Up1,Up2)

double precision teta_imh,teta_iph,s_imh,s_iph
double precision w_imh,w_iph ,Um2,Um1,Uo,Up1,Up2
double precision, parameter:: ep=0.001d0

if(w_imh == 0.0d0) then
if (s_imh .GT. 0.0d0) then
teta_imh = (Um1-Um2)/ep
else
teta_imh = (Up1-Uo)/ep
endif

else
if (s_imh .GT. 0.0d0) then
teta_imh = (Um1-Um2)/w_imh
else
teta_imh = (Up1-Uo)/w_imh
endif
endif

if(w_iph == 0.0d0) then
if (s_iph .GT. 0.0d0) then
teta_iph = (Uo-Um1l)/ep
else
teta_iph = (Up2-Upl)/ep
endif

else
if (s_iph .GT. 0.0d0) then
teta_iph = (Uo-Um1)/w_iph
else
teta_iph = (Up2-Upl)/w_iph
endif
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endif

end subroutine

double precision FUNCTION minmod(a,b)
double precision,intent(in)::a,b
double precision ¢

if (a*b>0) then
if (dabs(a)<dabs(b)) then
c=a
else
c=b
endif
else
c=0
endif
minmod=c
end
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