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ABSTRACT 

COMPARISON OF HIGH RESOLUTION METHODS FOR 

BURGERS EQUATION 

 

Veli ÇOLAK 

Department of Matematics 

MSc. Thesis 

Adviser: Assoc. Prof. Dr. Samet Yücel KADIOĞLU 

 

Solving hyperbolic partial differential equations is extremely important for many 

engineering applications. These equations can be solved by analytical methods or 

numerical methods. Finding analytical solutions is difficult mostly impossible due to 

highly nonlinear nature of these equation types. On the other hand, solving hyperbolic 

equations numerically is relatively easy and therefore often prefered technique. Among 

the numerical techniques, high resolution finite volume methods have been effectively 

and robustly used for decades. Their high accuracy and stability features are most 

desirable. 

In this thesis, we provide literature review for certain type of high resolution methods 

and introduce head on comparison study of these high resolution methods. To compare 

the methods, we first solve scalar linear one-way wave equation. This gives us the 

opportunity to perform some theoretical analysis. Finally, we apply the methods to the 

Burgers equation. This equation is nonlinear and it can be mimic the nonlinear behavior 

s of the systems of the nonlinear hyperbolic equations. For instance, the Burgers 

equationcan accommodate shock compression or rarefaction-depression waves. 

Therefore, by solving the Burgers equation with different methods, we gain a lot of 

insights about the stability, accuracy and thus the suitibility of the certain high 

resolution methods.   

Key words: High resolution method, finite volume method, hyperbolic partial 

differential equations, Burgers equation 

YILDIZ TECHNICAL UNIVERSITY  

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 
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ÖZET 

 

YÜKSEK ÇÖZÜNÜRLÜK YÖNTEMLERİNİN BURGERS 

DENKLEMİ ÜZERİNDE KARŞILAŞTIRILMASI 

 

Veli ÇOLAK 

 

Matematik Anabilim Dalı 

Yüksek Lisans Tezi 

 

Tez Danışmanı: Doç. Dr. Samet Yücel KADIOĞLU 

 

Hiperbolik kısmi türevli diferansiyel denklemlerin çözümü bir çok mühendislik 

uygulamaları için çok büyük öneme sahiptir. Bu denklemler analitik ya da nümerik 

yöntemler kullanılarak çözülebilir. Analitik yöntemler ile çözmek denklemlerin 

nonlineer doğasından dolayı çoğu zaman zordur, hatta bazı denklemlerin analitik 

çözümü olmadığından dolayı imkansızdır. Analitik yöntemlere kıyasla hiperbolik 

denklemleri nümerik yöntemler ile çözmek daha kolaydır ve çoğunlukla tercih edilen 

yöntemdir. Numerik yöntemler arasonda yüksek çözünürlük sonlu hacimler yöntemi 

etkili ve sağlam bir şekilde onyıllardır kullanılmaktadır. Bu denklemlerin çok etkili bir 

şekilde kullanılmasının sebebi, yüksek doğruluk ve kararlılığa sahip olmalarıdır. 

Bu tezde, belirlediğimiz yüksek çözünürlük metotlar ile ilgili geniş bir literatür taraması 

vereceğiz ve daha sonra bu metotları karşılaştıracağız. Karşılaştırma yapmak için önce 

skaler, lineer uzaysal olarak tek değişkenli dalga denklemini kullanacağız. Bu denklem 

bize metotların teorik analizlerini yapma fırsatı verecek. Daha sonra yöntemleri Burgers 

denklemine uygulayacağız. Bu denklemin özelliği nonlineer olması ve nonlinear 

hiperbolik denklem sistemlerinin özelliklerini taşımasıdır. Örneğin, Burgers denklemi 

şok yoğunlaşma dalgasını veya seyreltme dalgasını bünyesinde taşır. Bundan dolayı, 

Burgers denklemini farklı metotlarla çözerek, bu metotların kararlılığı, doğruluğu ve 

dolayısıyla uygunluğu hakkında  fikir sahibi olacağız.    

Anahtar Kelimeler: Yüksek çözünürlük metotları, sonlu hacim metodu, hiperbolik 

kısmi türevli diferansiyel denklemler, Burgers denklemi   

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
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CHAPTER 1 

INTRODUCTION 

 Literature Review 1.1

Hyperbolic equations are one of the most significant equations class in partial 

differential equations. The study of gas dynamics, optics, geophysics, acoustics and 

many other fields involves solving hyperbolic partial differential equations, such as 

Euler equations. Solving these kinds of equation is challenging because their solution 

often contains shock or contact discontinuities. Accurately solving shock or contact 

phenomena can be extremely important in many engineering applications. Solutions 

mostly performed as numerical techniques, due to the highly nonlinear nature of 

equations set. To test the validity and reliability of these techniques, one usually 

considers simpler models such as scalar linear and nonlinear wave equations (one-way 

wave equation and Burgers equation [1]). Considering simple linear wave equation 

models can provide some theoretical insights such as stability and convergence analysis. 

On the other hand, the Burgers equation possesses the fundamental characteristics of the 

nonlinear hyperbolic systems in the sense that it can accommodate shock 

discontinuities. Most often, if a numerical method fails to solve the Burgers equation 

accurately and stably, then it also fails for other hyperbolic partial differential equation 

models.   

Hyperbolic partial differential equations often can be interpreted as the physical 

conservation laws equations which model conservation of mass, energy and momentum 

[2]. Writing hyperbolic equations in conservation laws format is significant from the 

numerical methods perspective, because as it will be given with details that a numerical 

technique derived from conservation laws can be more stable, more accurate as well as 

better physics capturing. 
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Most of the numerical methods are not suitable for solving hyperbolic conservation 

laws. For example, one of the most popular numerical methods, finite difference 

method, can fail dramatically for these kinds of equations, since they rely on the 

differencing spatial derivatives and this should be avoided when solving shocks, etc. 

Thus, one has to consider specific numerical methods such as discontinuous Galerkin or 

finite volume methods when dealing with discontinuous phenomena. Finite volume 

methods are widely used and proven robust; therefore they will be our preferred method 

in this thesis.    

The main idea behind the finite volume method is that it divides the spatial domain into 

grid cells and tries to approximate the average value of function (representing the 

conserved quantity) over each of these grid cells. Then for each time step, it updates the 

average amount of quantity according to the calculated fluxes that enter and leave from 

the cell edges/faces. Godunov is one of the pioneers who accurately and stably 

calculated discontinuous solutions by introducing the fundamental principles of finite 

volume method. In 1959, Godunov developed a new approach to this problem [3]. He 

gave an algorithm that consists of 3 steps. First step is to reconstruct a piecewise 

polynomial function according to the cell average in place of the initial data for each 

cell, second step is to evolve the hyperbolic equation to find the state of the function for 

next time step, and the last step is to average the function for each interval to find the 

new cell value. This approach has become one of the fundamental approaches for the 

construction of finite volume methods [1], [4]. 

Although Godunov’s approach is fundamental, it is first-order accurate and it introduces 

numerical diffusion. After Godunov’s method, in 1960, Peter Lax and Burton Wendroff 

developed a second-order method that based on the Taylor series expansion and central 

difference approximation [5]. A similar method to Lax-Wendroff was built by Fromm 

in 1968 [6] and by Warming and Beam in 1975 [7]. Although these methods have 

second-order accuracy for smooth region, they produce spurious oscillations around 

discontinuities.  

Researches have been continued to tackle with the oscillation problems of second-order 

methods and various new shock-capturing methods have been developed. These 

methods generally called as high resolution methods [8]. Bram van Leer introduced the 

slope-limiter notion and improved the available numerical methods in a series of papers 

[9], [10], [11], [12], [13]. He reconsidered the oscillatory methods by introducing slope 
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notion that ultimately helped to eliminate oscillations. In particular, he introduced van 

Leer slope-limiter method [10] and MC slope-limiter method [12]. These are excellent 

methods compared to the classical second-order accurate methods in a way that they kill 

the numerical oscillations of the methods around discontinuity. In 1985, Roe 

contributed a new remarkable scheme called as superbee slope-limiter method [14]. 

Later, Sweby has found a new approach named as flux limiter [15]. Like slope limiter 

concept, flux limiter concept also enabled high resolution methods to be rewritten in a 

new and understandable way. This situation evoked a lot of new methods [1]. 

While new methods were discovered, there have also been studies that compared them. 

In [15], Sweby compared methods including superbee and van Leer, but he just 

investigated that whether the methods was satisfying the TVD condition or not. Another 

comparative study was done by Farthing and Miller [16]. They worked some high 

resolution methods in terms of order of accuracy and time efficiency. They used several 

test cases, but all of them consisted of the linear equations. Yang and Przekwas did a 

very nice study that classed with a lot of advanced shock-capturing methods [8]. They 

used the Burgers equation as a test problem with two different initial conditions. There 

are also many other comparative study for varied methods in term of different aspects of 

methods [17], [18], [19], [20].             

 Objective of the Thesis 1.2

In this thesis, we provide a comparative study of high resolution methods for the 

Burgers equation. In particular, we compare 

 Upwind method, 

 Lax-Wendroff method, 

 Beam-Warming method, 

 Fromm’s method 

 Minmod slope-limiter method, 

 Superbee slope-limiter method, 

 Van leer slope-limiter method, 

 MC slope-limiter method 

and show the advantages and drawbacks of these methods. We apply these numerical 

schemes to linear wave equation first to demonstrate the basic features. However, 
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applying the methods to the Burgers equation, we also show the true strength and 

weakness of the methods.   

 Hypothesis 1.3

We will give the basic necessary theoretical information in chapter 2, e.g. stability, 

consistency and convergence. In chapter 3, we will introduce finite volume method and 

other necessary concepts for high resolution methods. For the next chapter, we will 

describe the numerical methods clearly and apply these methods to the one-way wave 

equation. We will compare the methods in this chapter for scalar linear hyperbolic 

partial differential equations. We will try to explore the basic feature of the methods. In 

chapter 5, we apply the methods, given in chapter 4, to the Burgers equation and give 

the results in graphical forms and compare the methods to understand the behavior of 

the methods for nonlinear hyperbolic conservation laws equations. In the last chapter, 

we will summarize the results. We will use the FORTRAN as a programming language 

and MATLAB for figures. 
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CHAPTER 2 

SOME THEORETICAL BASIS 

Partial differential equations are large area of study. The tool to solve these equations 

includes components in the areas of mathematics, computers and physical applications. 

These three aspects of problem cannot be separated each other. When solving a 

problem, one cannot consider application aspect without the others. Sometimes, the 

mathematical aspect of a hyperbolic partial differential equation can be developed 

without taking application and computing into account, but experiences demonstrate 

that this way of studying does not generally yield useful consequences [21]. Therefore 

we first give some theoretical knowledge, after that we convert analytical hyperbolic 

problems to numerical problems via high resolution methods, and lastly we give results 

of application of methods to the problems. 

 In this chapter, we will see the definition of convergence, consistency and stability. For 

user of numerical methods, it is essential to understand what type of convergence their 

methods have and what are the assumptions to get this convergence. There is a 

relationship along the convergence, consistency and stability.  The Lax Theorem says 

roughly that if the scheme is stable and consistent than it is convergent [21]. This 

theorem is very useful because it is easier to prove consistency and stability than to 

prove convergence. 

 Convergence 2.1

In one space dimension, a homogeneous first-order constant-coefficient linear 

hyperbolic partial differential equation in x and t has the form 

( , ) ( , ) 0t xv x t cv x t  ,   (2.1) 

and the initial condition is 
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( ,0) ( )v x f x .   (2.2) 

Here v represents the unknown function and it depends on time as well as one spatial 

variable. This function may be velocity, pressure, density etc. In the notation, subscript 

x and t denote the partial derivatives with respect to space and time respectively. 

We will try to solve this problem numerically. For this purpose, we should reduce 

problem to a discrete problem. To accomplish this, we can use the following 

approximation, 

1

( , )
n n

i i
t

u u
v n t i x

t

 
  


.   (2.3) 

Here we assume the expression 
n

iu  denote the approximate solution to v at the point 

x i x   and t n t  , n corresponds to time step and i to the spatial mesh point. 

Furthermore, t  and x  are grid steps with respect to time and space, respectively. 

Using (2.3) in (2.1) we get 

1

1 0
n n n n

i i i iu u u u
c

t x



 
 

 
.   (2.4) 

And then the initial condition in (2.2) becomes 

0 ( )iu f k x  , i is from   to  .   (2.5)      

The idea behind any finite difference scheme is to approximate the solution of 

differential equation. Now, let investigate how good scheme (2.4)-(2.5) is for 

approximating the solution to problem (2.1)-(2.2). To achieve this, firstly, let us look 

how well difference equation (2.4) approximates partial differential equation (2.1). To 

examine this, we will use Taylor series expansion. 

 

1

2 2

2

(i , (n 1) ) v(i , n ) (i , n )
1!

i , n ...
2!

n

i

v t
v v x t x t x t

t

v t
x t

t

  
         



 
   


,  (2.6) 

So 

1 2

2
( , ) ( , ) ...

2

n n

i iv v v t v
i x n t i x n t

t t t

    
      

  
.  (2.7) 
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We can also write this expression as 

1

( , ) ( )
n n

i iv v v
i x n t O t

t t

  
    

 
,   (2.8) 

where the above equation assumes that the higher order derivatives of v at ( , )i x n t   

are bounded. Here, the notation ( )O t  means that (x) O( x))f    for x D  if there 

exists a constant A such that ( ) ( )f x A x   for all x D  (D is the domain of function 

f ). We say that ( )f x   is of order ( )x . We can conclude from the above expression 

that when we replace 
tv  in the partial differential equation by 

1n n

i iu u

t

 


 we ignore some 

terms of order t . Note that sometimes ignored term (denoted by ( )O t ) can be very 

large. For instance, when solving problems that have sharp changes with respect to 

time, ignored term will be huge. However, in general, for sufficiently small t , 

1n n

i iu u

t

 


 is a nice approximation to 

tv , and we can provide sufficiently small t . 

We can also arrive the following results using the approach in (2.8). 

1 (i , ) ( )
n n

i iv v v
x n t O x

x x

  
    

 
,   (2.9) 

1 (i , ) ( )
n n

i iv v v
x n t O x

x x

 
    

 
,   (2.10) 

 and 

21 1 (i , ) ( )
2

n n

i iv v v
x n t O x

x x

  
    

 
.   (2.11) 

Returning to the equation (2.1), we can write 

1

1(i , ) cv (i , ) ( ) ( )
n n n n

i i i i
t x

v v v v
v x n t x n t c O t O x

t x



 
          

 
.  (2.12) 

Therefore, we see that difference equation (2.4) approximates partial differential 

equation (2.1) to the first order in both t and x . 

Equation (2.12) shows us how good the difference equation approximates the partial 

differential equation. However this does not mean that the solution of difference 

equation will approximate the solution of partial differential equation. Thus, still there is 
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an issue that we must consider. At this stage we can argue that the solution of difference 

scheme will generally approximate the solution of partial differential equation at the 

same order that the approximation of difference scheme to the differential equation. 

We need exactly that the solution of the difference equation can be made to approach 

the solution of the partial differential equation to any desired accuracy. Therefore we 

require convergence of solution of the finite difference equation to the solution of the 

partial differential equation. Now, let consider a partial differential equation, say, 

Lv F . Here F and v are vector-valued functions that define on the whole real line in 

terms of first variable (spatial variable) and initial condition ( ,0) ( )v x f x . Let 
n

iu  be
 

the approximate solution to v . 
n

iu  is defined on a grid with grid steps x  and t , 

satisfies the initial condition 
0 ( )iu f i x  , where i is from  to   . Let v denote the 

analytic solution to initial-value problem. Then the definition of pointwise convergence 

is the following. 

Definition 2.1 A difference scheme 
n n n

i i iL u G  approximating the partial differential 

equation Lv F  is a pointwise convergent scheme if for any  and x t , as 

( ,( 1) )i x n t     converges to ( , )x t , 
n

iu  converges to ( , )v x t   as  and x t   converges to 

0 [21]. 

To clarify the definition, we solve an example. 

Example 2.1 Show that the solution of the different scheme 

1

1(1 )n n n

i i iu cfl u cflu

   ,   (2.13) 

0 ( )iu f i x  ,   (2.14) 

where , 0 1
c t

cfl cfl
x


  


, converges pointwise to the solution of the initial-value 

problem 

0,   ,   0t xv cv x t    ,   (2.15) 

( ,0) ( ),   v x f x x  .   (2.16) 

Solution: Since the problem is initial-value problem on all of , we have to be aware 

of the fact that the i index on 
n

iu span the whole real line. 
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Let ( , )v v x t  denote the exact solution of initial value problem (2.15)-(2.16) and let 
n

iz

denote the difference between the analytic solution and numerical solution at the point 

( , )i x n t   . That is, 

( , )n n

i iz u v i x n t    .   (2.17) 

From (2.8), we know that  

1

( )
n n

i i
t

v v
v O t

t

 
  


.   (2.18) 

Using again the Taylor series expansion, we can get 

1

2 2

2

((i 1) ,n ) v(i , ) (i , )
1!

( , ) ...
2!

n

i

v x
v v x t x n t x n t

x

v x
i x n t

x



 
         



 
   


.  (2.19) 

Therefore, 

1( , ) ( )
n n

i i
x

v v
v i x n t O x

x


    


.   (2.20) 

From (2.15), (2.19) and (2.20) we conclude that 

1

1( ) c ( ) 0
n n n n

i i i iv v v v
O t O x

t x



 
     

 
,   (2.21) 

1 2

1(1 ) ( ) ( )n n n

i i iv cfl v cflv O t O x t

        .  (2.22) 

Then by subtracting equation (2.22) from equation (2.13) we see that 
n

iz  satisfies 

1 2

1(1 ) ( ) ( )n n n

i i iz cfl z z O t O x t

        .   (2.23)  

Because of 0 1cfl  , the coefficients of variable in equation (2.23) are non-negative 

and 

1 2 2

1(1 ) ( ) Z ( )n n n n

i i iz cfl z cfl z K t t x K t t x

            ,  (2.24) 

where K is a constant related with the “big O” term and assumed to be bounded, and 

 supn n

i iZ z . Taking the supremum of 1n

iz   over i, we arrive 

1 2( )n nZ Z K t t x      .   (2.25) 
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Applying (2.25) repeatedly 

1 2 1 2

0 2

( ) 2 ( ) ...

( 1) ( )

n n nZ Z K t t x Z K t t x

Z n K t t x

           

     
.  (2.26) 

Because of 
0 1 20,   ( 1) ( )nZ Z n K t t x       

Thus, 1 1( , ( 1)  and (n+1) ,n n

iu v i x n t Z t t          

1 ( ,( 1) ( 1) ( ) 0  as  , 0n

iu v i x n t n tK t x t x                (2.27) 

which means that for any x and t, as ( ,( 1) ) approaches to ( , )i x n t x t   , 
n

ku  converges 

to ( , )v x t .  

Be aware of the fact that the assumption ( 1)n t t    is needed otherwise the 

term ( 1)n t   can goes to the infinity. Furthermore, the assumption 0 1cfl   in the 

question is necessary. We will see the details later that without this assumption, it may 

not converge. This assumption enables us to bound the time step size .t  In fact, for this 

example /t x c   . One more note for this example is about the remainder of Taylor 

series expansion. We assume that K is bounded. To achieve this the derivative of the 

solution function ( , )v x t  in the remainder term in expansion should be uniformly 

bounded on  0, t . 

 In general, the pointwise convergence is not generally as useful as a more 

uniform sort of convergence and is more complicated to prove. Because of this, we will 

give another definition of convergence which is defined in terms of norm of the 

difference between the solution to the difference equation and solution of partial 

differential equation. For the prerequisite, let denote the sup-norm on the space of all 

bounded sequences, l  , by 

{ } supi i
i

 


 

 .   (2.28) 

Let us define 1 0 1 1 0 1( , , , , )  and ( , , , , )n n n n T n n n n Tu u u v v v  u v . Here n
u  is the vector 

of difference equation solution values 
n

iu , and n
v  is the vector of solution to the partial 

differential equation ( , )v i x n t  . By the way, we have proved in previous example that 
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for t such that ( 1)n t   converges t, 1n
u  converges ( , )v t  where we mean by 

convergence that the sup-norm of 1 1n n u v  approaches zero as , 0t x   . 

Definition 2.2 A difference scheme 
n n n

i i iL u G  approximating the partial differential 

equation Lv F  is a convergent scheme at time t if, as ( 1) ,n t t     

1 1 0n n  u v    (2.29) 

as , 0x t    [21]. 

To demonstrate this definition, let solve an example. 

Example 2.2 Show that the solution of difference equation 

1

1 1 1 1

1
( ) ( )

2 2

n n n n n

i i i i i

cfl
u u u u u

       ,   (2.30) 

 0

iu f i x  .   (2.31) 

(The Lax-Friedrichs scheme) converges in the sup-norm to the solution of the partial 

differential equation 

0t xv cv  ,   (2.32) 

   ,0v x f x    (2.33) 

 for 1 where 
c t

cfl cfl
x


 


. 

Solution: Before showing the solution, we should note that it will be used the sup-norm 

to solve the problem. Let denote the analytic solution to the partial differential equation 

by v and define 
n n n

i i iz u v   and  supn n

i iZ z . We use the definition with the sup-

norm, so 

1 1 1 1 1 1sup supn n n n n n

i i i
i i

u v z Z     


   

    u v .  (2.34) 

From the equation (2.32) and (2.11) we arrive 

 
   

1

1 1
21 1

1

2 0
2

n n n
n ni i i
i i

v v v
v v

c O x O t
t x



 
 

 


     
 

.  (2.35) 
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Note that we replace 
n

iv  with average value 1 1

2

n n

i iv v 
. Then 

       1 2 2

1 1 1 1

1

2 2

n n n n n

i i i i i

c t
v v v v v O t x O t

x



   


        


  (2.36) 

Therefore, 

       1 2 2

1 1 1 1

1 1

2 2

n n n n n

i i i i iz z z cfl z z O t x O t

            .  (2.37) 

Rearranging the equation (2.37), 

       1 2 2

1 1

1 1
1 1

2 2

n n n

i i iz z cfl z cfl O t x O t

          .  (2.38) 

Since the value of cfl is between -1 and 1, and the coefficients of right hand side are 

non-negative, we get 

     1 2 2

1 1

1 1
1 1

2 2

n n n

i i iz z cfl z cfl K t x t

         .  (2.39) 

Taking the supremum over i on the both side of equation yields 

 1 2 2n nZ Z K t x t      .   (2.40) 

Applying (2.40) repeatedly yields 

   

   

1 2 2 1 2 2

0 2 2

2

1 .

n n nZ Z K t x t Z K t x t

Z n K t x t

           

     
.  (2.41) 

Because of 0 0Z  , we conclude using (2.34) that 

   1 1 1 21 0n n nZ n tK x t  


       u v   (2.42) 

as   1  and  , 0n t t t x               

This proves that solution to the difference equation converges in the sup-norm to the 

solution of partial differential equation using the definition 2.2. 

 Norms 2.2

In the definition 2.2, we did not specify the norm because for all norms the definition is 

valid. For solving the example 2.2, we used the sup-norm but for different situations, it 
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may be appropriate to use different norms. In fact, it may happen that a method is 

convergent in one norm but not in another [22]. Therefore we should know also some of 

the other norms. Here, we will mention about the 1-norm, 2-norm, energy norm, and 

sup-norm. 

We already define the sup-norm in (2.28). Note that sup-norm may appropriate for 

continuous solution but for discontinuous solution, it is not a good idea to use sup-norm 

to approximate the solution. While the grid is refined, the pointwise error around a 

discontinuity does not go to zero uniformly which is an unwanted case. Despite of this 

situation, the numerical results may be superbly satisfactory. That is why; sup-norm 

should not be used for the conservation laws. 

1-norm, in general, is the appropriate norm for the conservation laws. For a general 

function  v x , it is defined as follows 

 
1

v v x dx



  .   (2.43) 

This definition is for the continuous case and  v x  is the continuous function. This 

norm is natural since it requires just integrating the function, and form of the 

conservation laws generally allows us to say something about these integrals. For the 

discrete case, we use the following definition, 

n n

i

i

v v




  .   (2.44) 

Continuous case and discrete case of 2-norm is as follows 

 

1
2 2

2
v v x dx





 
  
  
    (2.45) 

2

2

n n

i

i

v v




  .   (2.46) 

2-norm is a suitable norm for linear equation because for linear equations, Fourier 

analysis can be used and Parseval’s relation states that the Fourier transform of  v x has 

the same 2-norm with  v x . This enables to simplify the stability analysis of linear 

methods seriously. Note that here v is a vector in 2l  space which is defined as 
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 
2

2 1 0 1, , , , :
T

i

i

l v v v v






 
   
 

v = .   (2.47) 

Definitions of energy norm for continuous function  v x   and discrete grid function 
n

kv   

are 

 

1
2 2

2
v x v x dx





 
  
  

    (2.48) 

and 

2

2

n n

i

i

v v x




  .   (2.49) 

Energy norm defined above can be considered as more suitable than the 2-norm since it 

retains all of the favorable properties of the 2-norm. Beside this, energy norm enable to 

measure the difference between discretization of functions as x  goes to zero.   

 Consistency 2.3

Even though our final aim is to prove convergence, this is difficult to achieve directly. 

Instead, we begin by examining the local truncation error so that examining the 

consistency and then use the stability of the method to prove the convergence.  

Definition 2.3 The finite difference scheme 
n n n

i i iL u G  is pointwise consistent with the 

partial differential equation Lv F  at point  ,x t  if for any smooth function 

 , ,x t    

   | , n 0n n n

i i iL F L i x t G            (2.50) 

as     , 0 and , 1 ,x t i x n t x t        [21]. 

It should be noticed that in equation (2.12), we were actually prove the pointwise 

consistency of the difference scheme (2.4) to the differential equation (2.1). In equation 

(2.12), we chose    to be the solution, v, to the differential equation. This choice, in 

general, enables the expression in the definition 2.3 to reduce the following form 

0 as , 0n n n

i i iL v G x t     .   (2.51) 
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If we write the different scheme as 

1n n nQ t  u u G    (2.52) 

where 

 1 0 1, , , ,
T

n n n nu u uu ,  1 0 1,G ,G ,G ,
T

n n n

G  

and Q is an operator acting on the suitable space, then we can give a stronger definition 

for consistency as follows. 

Definition 2.4 The difference scheme (2.52) is consistent with the partial differential 

equation in a norm   if the solution of the partial differential equation, v, satisfies 

1n n n nQ t t   v v G  ,   (2.53) 

and 

0n     (2.54) 

as , 0x t   , where n
v  denote the vector whose ith component is  ,v i x n t   [21]. 

Note that, when we writing the difference scheme as (2.52) we assume that the scheme 

have only nth and (n+1)st time level and the partial differential equation is first order 

according to t. Furthermore the norm consistency defined in definition 2.4 says that all 

of the components of vector n must converge to zero while the pointwise consistency 

defined in definition 2.3 require that 
n

i  must converge to zero only for some i. Another 

note is that the truncation error stems from both the error due to the approximation of F 

and the approximation of  by n

iL L . In sometimes the error that stems from 

approximation of F can lower the order of the scheme. 

Another definition of consistency which includes the term order of accuracy is the 

following. 

Definition 2.5 The different scheme (2.52) is said to be accurate of order  ,p q  to the 

given partial differential equation if 

   n p qO x O t     [21].   (2.55) 
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Here, we call  or n n   as the truncation error. We use this term before but we did not 

mention about it clearly. To understand the truncation error well, first let look at the 

local truncation error. 

The local truncation error tells us suitability of difference equation to partial differential 

equation locally. That is, how well the difference equation models the partial 

differential equation locally. It is defined by replacing the numerical solution 
n

ku  in the 

difference equation by the analytic solution  ,v x t . Clearly, the analytic solution of 

partial differential equation is an approximate solution for difference equation, and how 

well it is suitable for the difference equation implies that how well the numerical 

solution of the difference equation is appropriate for the partial differential equation. 

Note that the order condition given in definition 2.5 contains a constant, say K, with 

respect to  and x t  . The constant K, in general, depends on t. It is not depend on x 

because n  is the truncation error for all i . To know this issue provides ease. 

Remember that beginning of this chapter we applied the Taylor series expansion to the 

solution of partial differential equation and then we got a remainder term in addition to 

difference scheme. After that, we said the difference scheme approximates the partial 

differential equation to the first order in both t and x . This is also a demonstration of 

consistency in roughly. Now we will show the consistency of the same partial 

differential equation with using the definition 2.4-2.5. 

Example 2.3 Discuss the consistency of the 2-level difference scheme 

1

1 0
n n n n

i i i iu u u u
c

t x



 
 

 
   (2.56) 

with partial differential equation 

0t xv cv  , ,  0x t    .   (2.57) 

Solution: Let denote the solution of partial differential equation by v, and put it into the 

difference equation (2.56). We see after the cancelation that  

1

1 ( ) ( )
n n n n

i i i iv v v v
c O t O x

t x



 
    

 
.   (2.58) 
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Now we will look inside the    O t O x   . In the beginning of the section we just 

write the “big O” notation for equation (2.12) and quit. 

We derived the equation (2.8) by replacing the remainder of the Taylor series expansion 

with the “big O” so we see that  O t  contains a second derivative of  ,v x t  with 

respect to t evaluated for x i x   and some t in a neighborhood of n t , and  O x  

contains a second derivative of  ,v x t  with respect to x evaluated for t n t   and some 

x in an interval around i x . That is, 

   

   
1

1 , ,
2 2

n n n n

i i i i
xx tt

v v v v x t
c v x n t v i x t

t x



   
    

 
.  (2.59) 

If we assume that the second derivative of  ,v x t  with respect to x and t exist and are 

bounded for some interval around the point  ,x t , then the right hand side of the 

equation (2.59) goes to zero when  and x t   go to zero. Therefore, difference scheme 

(2.56) is pointwise consistent with the partial differential equation in (2.57). 

 In order to demonstrate that the difference equation (2.56) is accurate of order 

 1,1 , we will first design the equation according to the form of equation (2.52) and to 

do that we multiply the whole equation by t  and solve for 
1n

iu 
 and derive 

 1

1

n n n n

i i i i

c t
u u u u

x






  


.   (2.60) 

To apply the definition 2.5, let assume again v be the solution of partial differential 

equation (2.57) and then 

  1

1

n n n n n

i i i i it v v cfl v v 

        (2.61) 

            
2

0, , t
2

n n

i t tt i

t
v v i x n t t v i x v


          

                                            
2

0, ,
2

n n

i x xx i

x
cfl v v i x n t x v x n t v

 
        

 
      (2.62) 

After cancelation, we get 
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       
2 2

0 0, , t , ,
2 2

n

i t tt x xx

t c t x
t v i x n t t v i x v i x n t x v x n t

x


   
             

  
  (2.63) 

and then 

       0 0, , t , ,
2 2

n

i t tt x xx

t x
v i x n t v i x cv i x n t v x n t

 
            (2.64) 

where 0 0 and t x  are the points in the neighborhood of  and ni x t   respectively and 

enable the Taylor series expansion to hold. From using equation (2.57), we get 

   0 0, t ,
2 2

n

i tt xx

t x
v i x v x n t

 
    .   (2.65) 

For the last step we should choose the norm. If we assume that  and tt xxv v  are bonded 

on  10, t  for some 1t t , then we can use the sup-norm and conclude that the 

scheme is accurate of order  1,1 . If we assume that  and tt xxv v  satisfy 

 
2

n

tt i
v A





    
    

and 

 
2

n

xx i
v B





    
    

Then we see that the difference equation is accurate order  1,1  again with respect to the 

2-norm. 

Note that we do assumption on the partial derivative  and tt xxv v  that they are bounded 

on  10, t .  

 Stability 2.4

Stability is a necessary condition that must be satisfied by any finite difference method 

if we want the solution of the method to converge to the solution of partial differential 

equation. However, it is not a sufficient condition. We will see the relation between 

them in the next section. The consistency is also a necessary condition but it is easy to 

show that the method is consistent. Moreover most of the methods in literature are 
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consistent, but we cannot say the same for the stability. It is hard to demonstrate that a 

scheme is stable. 

Stable difference scheme has the property that the small error at the beginning of the 

time evaluation cannot grow unboundedly. That is, the error can grow but has limit 

which is the exponential growth. We will also see this in the definition. We will define 

stability for difference scheme of the form 

1u u ,  0n nQ n   ,   (2.66) 

which is a two level different scheme. This type of scheme will be generally used for 

solving initial-value problems, especially homogeneous and linear partial differential 

equations. 

Definition 2.6 The different scheme (2.66) is said to be stable with respect to norm   

if there exist positive constants 0 0 and x t  , and non-negative constants  and K   so 

that 

1 0u un tKe     (2.67) 

for   0 00  where 1 ,  0<  and 0t t n t x x t t            [21]. 

We should be aware of the fact that definition 2.6 is given in terms of unspecified norm 

since this norm may change rely on the condition, and we should remember that the 

definition of consistency and convergence are also given in that form and their norm 

also not specified. Another issue that should be noticed is that the solution of difference 

scheme can rise with time, and is not affected by the increase of time step. 

The definition of stability in (2.67) is for homogeneous equation. A question may come 

in mind that what we will do to prove the convergence of non-homogeneous partial 

differential equation. The answer is that stability of homogeneous equation with the 

consistency is enough to demonstrate that the non-homogeneous difference scheme is 

convergent because all of the effects of the non-homogeneous term will be killed by the 

truncation error, n . 

A remark that should be taken into account is that there are other definitions of stability. 

One common definition in the literature is  

1 0u un K  .   (2.68) 
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The inequality (2.67) in the definition 2.6 is taken over from the inequality (2.68). This 

definition of stability does not allow the exponential increase.  

Clearly, the definition 2.6 is a very stronger one. That is, inequality (2.68) implies the 

inequality (2.67). The definition with the condition (2.68) does not allow the growth, it 

is bounded. Therefore it is hard to hold. Sometimes it may be necessary to use the latter 

definition but most of the case it is enough to satisfy the conditions in the first 

definition. 

It is difficult to demonstrate stability of a scheme directly. Fortunately there are useful 

technics to show the stability, and we will mention about them. However, to understand 

the definition of the stability, we also solve problems with using the definition. For first 

example, we prove the scheme which is used in example 2.1 to prove the convergence, 

so that we can compare the similarity of the steps used to prove convergence and used 

to prove stability. For second example, we will show the stability of the Lax-Friedrichs 

scheme to compare the conditions on  and t x   with the first example.  

Example 2.4 Show that the difference method 

 1

11n n n

i i iu cfl u cflu

      (2.69) 

where 
c t

cfl
x





  is stable with respect to sup-norm. 

Solution: we will follow the same strategy as we did in example 2.1. Of course we do 

not need to use the difference between the analytic and numeric solution. From the 

equation (2.69), we can say that 

 1

11n n n

i i iu cfl u cfl u

   .   (2.70) 

using the triangular inequality. If we assume that 0 1cfl  , then taking the supremum 

over both sides of inequality (2.70) with respect to i, we get 

1u un n

 
 .   (2.71) 

Therefore inequality (2.67) in the definition of stability is satisfied with 

1 and K     

We want to take attention to the assumption 0 1cfl  . This assumption is necessary to 

hold the stability. In this case, we say that the scheme is conditionally stable where the 
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condition is 0 1cfl  . If there is no condition on the relationship between  and t x  , 

we say for this case that the method is unconditionally stable or just say stable. 

Example 2.5 Prove that the difference scheme 

   1

1 1 1 1

1

2 2

n n n n n

i i i i i

cfl
u u u u u

          (2.72) 

is stable with respect to the sup-norm provided that 1 1cfl   . 

Solution: To use the triangle inequality, let first rearrange the equation (2.72). 

   1

1 1

1 1
1 1

2 2

n n n

i i iu cfl u cfl u

     .   (2.73) 

We can see that all of the coefficient of right hand side terms of equation are non-

negative where assuming 1 1cfl   . So, 

   1

1 1

1 1
1 1

2 2

n n n

i i iu cfl u cfl u

     .   (2.74) 

Taking the supremum of both sides with respect to i, we see that 

1n n

k ku u

 
 .   (2.75) 

For 1 and K    , the condition on the definition is satisfied. Therefore the scheme is 

stable for 1 1cfl   . 

 Note that for the example 2.4, we have the condition 0 1cfl  . If we use the 

method (2.69) for an hyperbolic partial differential equation (2.1), then the constant c 

must be positive and t  should be less or equal to x c . Since we can arrange 

 and t x  , we can satisfy the second restriction. However, what if the constant c is 

negative? The answer is that the difference method fails to converge to the given partial 

differential equation. Hence, we cannot apply the scheme to the partial differential 

equation to get the numerical solution. For the example 2.5, the condition 1 1cfl    

says that one can apply the difference method in the equation (2.72) to the hyperbolic 

partial differential equation in (2.1) whatever constant c is positive or negative. We 

must still keep in mind that we should choose t  so that the condition 1 1cfl    is 

satisfied. 
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We have used the term cfl constantly, but we have not mentioned about it. As we 

explained above, the restriction on the ,  and t x c   that is necessary to show stability is 

called the CFL condition and named after Courant, Friedrichs, and Lewy [1].  

 Method to Prove Stability 2.5

To show the convergence, we will use stability but we have seen that to prove the 

stability from the definition is as difficult as to prove the convergence directly. 

Fortunately, there are mathematical concepts to demonstrate the stability and they are 

easy to apply the problem. One of them is the Fourier transform. 

Definition 2.7 The Fourier transform of  ,v x t  is denoted by  ,v w t , w , and 

defined by the integral  

   
1

, ,
2

iwxv w t e v x t dx








   [21].   (2.76) 

A sufficient condition for  ,v x t  to have a Fourier transform is that  ,v x t is absolutely 

integrable on  ,   [23]. 

Consider, for instance, the problem 

0, , 0t xv cv x t       (2.77) 

   ,0 ,v x f x x  .   (2.78) 

Now, taking the Fourier transform of  ,tv x t , 

   
1

( , ) , ,
2 2

iwx iwx

t t x

c
v w t e v x t dx e v x t dx

 

 

 

 

     

            

               , ,
2 2

iwx iwxc ciw
v x t e e v x t dx

 




 




       (2.79) 

             w,ciwv t  .             (2.80)    

We assume that  ,v x t  is sufficiently good at   so that integral in equation (2.79) 

exists and the evaluated term in the same equation is zero. 
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Therefore, we conclude that the partial differential equation is translated to the ordinary 

differential equation in the space of transformed functions by Fourier transform. After 

transformation, we solve the ordinary differential equation and turn back to our usual 

space. To turn back, we will use the Fourier inversion formula. That is, 

   
1

, , t
2

iwxv x t e v w dw






  .   (2.81) 

The very important aspect of Fourier transform for proving stability is the Parseval’s 

Identity which is 

   
2 2

, ,v x t v w t .   (2.82) 

Using this identity, we can use the definition of stability in transformed space and can 

easily demonstrate the stability of any given difference scheme. We will formally give 

the definitions and after that we state a proposition.  

To define the discrete Fourier transform of u , first let define vector u  in 2l  as 

 1 0 1, , , ,
T

u u uu =  ,then 

Definition 2.8 The discrete Fourier transform of 2lu  is the function  2 ,u L     

defined by 

 
1

2

ims

mu s e u







  ,   (2.83) 

for  ,s     [21]. 

Similar to the continuous Fourier transform, there is also an inversion form for the 

discrete Fourier transform. 

Definition 2.9 If 2lu  and u  is the discrete Fourier transform of u , then 

 
1

2

ims

mu e u s ds



 

   [21].   (2.84) 

Thanks to the Parseval’s Identity, when we use the Fourier transform to get u  to prove 

stability, we do not need to translate back to 2l  space. To clear this, let us look at the 

following proposition. 
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Proposition 2.1 If 2lu  and u  is the discrete Fourier transform of u , then 

2 2
u  u    (2.85) 

where the first norm is the 2L  norm on  ,   and the second norm is the 2l  norm 

[21]. Note that 2L  is the space of complex valued and Lebesgue square integrable 

functions defined as 

     
2

2 , : , :L v v x dx





   


 
      

 
   (2.86) 

with the norm 

 
2

2
v v x dx





  .   (2.87) 

We skip the proof of the proposition 2.1. Reader can easily find the proof from any 

book that mentions Fourier transform, like [23]. 

Remember that, in the definition of stability, we require the following condition  

1 (n 1) 0

2 2
u un tKe   .   (2.88) 

From the Parseval’s identity, we know that 

1 1

2 2

n nu u   and 0 0

2 2
,u u  

Thus we can conclude that 

1 (n 1) 0

2 2

n tu Ke u   .   (2.89) 

Therefore, if we are able to find a  and K   that satisfy (2.89), then we can also satisfy 

the inequality (2.88). It means that the scheme is stable.       

 (Note that we can choose any norm for the inequality (2.89), therefore without loss of 

generality we choose the 2l  norm). 

Example 2.6 Discuss the stability of the following difference method 

1

1 0
n n n n

i i i iu u u u
c

t x



 
 

 
,  i  .   (2.90) 
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Solution: Remember that, we analyzed the consistency of this scheme in example 2.3 

and we found that it has been consitent. Now, rearranging terms, we get 

   1

1 11n n n n n n

i i i i i iu u cfl u u cfl u cflu

         (2.91) 

where 
c t

cfl
x





.       

Taking the discrete Fourier transform of both side of the equation (2.91), we have 

 1 11

2

n iks n

k

k

u s e u



  



    

    1

1
1

2

iks n n

k k

k

e cfl u cflu









       

    1

1 1
1

2 2

iks n iks n

k k

k k

cfl e u cfl e u
 

 
 



 

      

      1

1
1

2

n iks n

k

k

cfl u s cfl e u









          (2.92)  

Now, by making change of variable 1m k   we have 

 (m 1) (m 1)

1

1 1 1

2 2 2

iks n i s n is i s n is n

k m m

k m m

e u e u e e u e u s
  

  
    



  

     .  (2.93) 

Therefore, using (2.93) in (2.92) we get 

         1 1 1n n is n n isu s cfl u s e cflu s u s cfl e cfl           

                   1 cos sinnu s cfl cfl s i s      .  (2.94) 

Here, we denote the coefficient of  nu s  in (2.94) as  s  and call it as the symbol of 

difference scheme (2.90). That is, 

      1 cos sins cfl cfl s i s     .   (2.95) 

Notice that, by applying the discrete Fourier transform, we elude the spatial derivative. 

Applying the consequence of (2.94) 1n  times, we have 

        
1

1 01 cos sin
n

nu s cfl cfl s i s u s


       .  (2.96) 

By bounding cfl, if we can achieve 
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    1 cos sin 1cfl cfl s i s    ,   (2.97) 

then we can conclude that (2.89) holds so that the method is stable. 

Now, it turns out to find the restriction on cfl. Let us take the square of (2.95). 

       
2 2 2

1 cos sins cfl cfl s cfl s       

          
2 2 2 2 21 2 1 cos cos sincfl cfl cfl s cfl s cfl s        

                   
2 21 2 1 cos : gcfl cfl cfl cfl s s      .  (2.98) 

Note that, we define the  g s  in (2.98) and it is defined on  ,  . We must determine 

the maximum and minimum value of  g s  to bound its magnitude value with 1. To do 

this, we take the derivative of  g s  with respect to s and set it to zero to find the point 

that have potential to be maximum or minimum. 

     2 1 sing s cfl cfl s   .   (2.99) 

This may maximum or minimum at the points that do the (2.99) zero and the endpoints. 

These are the points ,0and .   

 
2 2 2 2For 0, 1 2 2 2 1s s cfl cfl cfl cfl cfl        ,  (2.100) 

       
2 2 22For , 1 2 1 1 2s s cfl cfl cfl cfl cfl          .  (2.101) 

In order to bound  s  with 1, thus, we must have 

 
2

1 2 1 1 1 2 1 2 2 0 1 0cfl cfl cfl cfl               .  (2.102) 

Therefore, we conclude that the scheme in (2.90) is conditionally stable and the 

condition is 1 0
c t

x


  


. Notice that c have to be negative to satisfy the condition. 

This means that the method does not work for 0.c   

In conclusion, to prove the stability by applying the Fourier transform is easy from 

proving directly from the definition. 
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 The Lax-Richtmyer Equivalence Theorem  2.6

Finally, we come up the Lax Equivalence Theorem that relates the convergence with 

consistency and stability. This is the fundamental theorem in the theory field of the 

finite difference methods. 

Theorem 2.1 A consistent finite difference scheme for a partial differential equation for 

which the initial value problem is well-posed is convergent if and only if it is stable 

[24]. 

This theorem is called Lax-Richtmyer Equivalence Theorem or just Lax Equivalence 

Theorem. 

Generally we want to reach convergence from stability rather than to reach stability 

from convergence. Furthermore, we may ask for order of convergence. For these 

reasons, the following theorem is more useful for us. 

 Theorem 2.2 If a two-level difference scheme 

1n n nQ t   u u G    (2.103) 

is accurate of order  ,p q  to a linear initial-value problem which is well-posed in the 

norm   and it is stable with respect to the norm  , then it is convergent with respect 

to the same norm and same order [21]. 

We require in both definitions that the initial-value problem must be well-posed. An 

initial-value problem can be considered as well-posed if it depends on its initial 

condition while time evolves. We can define it as follow. 

Definition 2.10 The initial-value problem for a first order equation is well-posed if for 

all t, there is a constant K such that the inequality 

   , 0,u t K u      (2.104) 

holds for all initial data  0,u   [21]. 

We will not concern the well-posedness of initial value problem so much when solving 

the problems. One reason for this is that most of the problems satisfy the well-posed 

condition. 
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Up to now, we analyze some methods in terms of stability and consistency. For 

instance, we see that the scheme in (2.56) is accurate of order  1,1  with respect to 2-

norm in example 2.3 and also we see that the same method is stable if  1 0cfl    with 

respect to 2-norm. Then we can conclude from the Theorem 2.2 that the scheme given 

in (2.56) is convergent of order  1,1  with respect to 2-norm. 
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CHAPTER 3 

FINITE VOLUME METHOD 

In previous chapter we mentioned theoretical background for all types of partial 

differential equations and for all numerical methods that used to solve these partial 

differential equations. Since our main concern is about high resolution schemes, we will 

interest in related partial differential equation, namely hyperbolic equations. 

Specifically, we will deal with conservation laws which are a significant part of 

homogeneous hyperbolic equations. 

 Conservation Laws 3.1

The basic example of a conservation law is  

    , , 0t x
v x t f v x t  .    (3.1) 

Here  f v  is the flux function. The quasilinear form of equation (3.1) is 

  0t xv f v v  .  (3.2) 

This equation is hyperbolic if  f v  is real. Notice that the equation (2.1) is a 

conservation law with the flux function  f v cv . This flux function is linear but most 

of the physical problems cause to nonlinear conservation law and so nonlinear flux 

function. That is,  f v  is a nonlinear function of v. 

Conservation laws generally emerge from physical principles. To verify this, let 

consider a problem. Suppose that a liquid is flowing with velocity c through the one- 

dimensional pipe. Notice that the velocity can only change with time t and x. Assume 

also that there is some substance in this fluid and its quantity is so less that does not 
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influence the fluid dynamics. Our problem is to model the density of this substance in 

terms of x and t. Let  ,v x t  denote the density of this material. 

The unit of density is mass per unit volume, usually. We are studying on one-

dimensional pipe so that the only change in space is in the x direction. Therefore, it is 

logical to use mass per length as a unit. That is grams per meter. Now, to determine the 

total mass of this material between the point 1 2 and x x  for some time t, we can use the 

following expression. 

 
2

1

,

x

x

v x t dx    (3.3) 

Note that if the material is conservative that is neither created nor destroyed, then the 

total mass in the section of pipe between 1 2 and x x  can only change due to the fluxes, 

i.e., flow of the substance through the edges of the given section. Now let 

   1 2 and F t F t  be the rates at which the material flows past the fixed points 1 2 and x x , 

respectively. Let unit of this rate be grams per second. We will consider that if  iF t  is 

positive then the material flows to the right and if  iF t  is negative then the material 

flows to the left. Because of the fact that the total mass in the section can vary only due 

to the fluxes at the endpoints with time evolves, we can derive the following. 

     
2

1

1 2,

x

x

d
v x t dx F t F t

dt
  .   (3.4) 

Equation (3.4) is the fundamental integral form of a conservation law and most of the 

methods that we will use are in this form. We can interpret this equation as that the rate 

of chance of total mass can only stem from the fluxes through the endpoints. In equation 

(3.4) we should determine  iF t  in terms of  ,v x t  so that we can get an equation to 

solve for density of substance,  ,v x t . For our problem, the flux at a given point x and 

time t is just the product of the density  ,v x t  and the velocity  ,c x t . We can confirm 

this in terms of unıts. That is the unıt of density is gram per meter and the unit of 

velocity is meter per second. The product of two units gives us gram per second which 

is the unit of flux. Thus we can write 

     flux , , , ,f q x t c x t q x t  .   (3.5) 
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If the velocity is constant with respect to time and space, then we can write 

 flux f q cq  .   (3.6) 

For the case of constant speed, flux at any point can only depend on the density. It does 

not change owing to location of point and time. For such cases we can rewrite the basic 

form of conservation law in (3.4) as 

       
2

1

1 2, , ,

x

x

d
v x t dx f v x t f v x t

dt
  .   (3.7) 

 We can rewrite this as 

    
2

2

1

1

, ,

x
x

x
x

d
v x t dx f v x t

dt
 .   (3.8) 

If the functions  ,  and v x t f  are sufficiently smooth we can write the equation (3.8) as 

    
2 2

1 1

, , .

x x

x x

d
v x t dx f v x t dx

dt x


 

     (3.9) 

If we pick up the terms in a single integral, 

    
2

1

, , 0

x

x

v x t f v x t dx
t x

 
 

  .   (3.10) 

To handle this equality, the integrand of integral in equation (3.10) must be zero. 

Therefore, 

    , , 0v x t f v x t
t x

 
 

 
.   (3.11) 

This is called the differential form of the conservation laws. We will built our schemes 

on this basic form and develop them from this fundamental pattern. As we will see later 

that it is very important for a scheme to be in conservation form because otherwise 

numerical methods most often do not capture the speed of discontinuity. 
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 The Riemann Problem 3.2

The Riemann problem is the initial value problem which has a special initial condition. 

The initial data consist of two constant values  and vl rv  separated by a jump 

discontinuity at the point 0x  . That is, the hyperbolic equation 

   0t x
v f v     (3.12) 

and initial condition 

   0,0v x v x    (3.13) 

where 

 0

      if  0,

      if  0.

l

r

v x
v x

v x


 


      

For the scalar advection equation 0t xv cv  , the solution to the Riemann problem is 

formed by the discontinuity propagating along the characteristic with speed c and the 

solution is 

 
      if  0,

,
      if  0.

l

r

v x ct
v x t

v x ct

 
 

 
   (3.14) 

The Riemann problem is significant structure to build Godunov’s method which is the 

main building block for construction of high resolution methods. We will mention about 

this in chapter 4. 

 Finite Volume Methods 3.3

Finite volume methods are similar to finite difference methods, and finite volume 

methods can be considered as a finite difference approximation to the differential 

equation. However, there are important differences that provide advantages to finite 

volume method. It is the fact that finite volume methods are derived on the basis of the 

integral form of the conservation law. 

For finite volume method, we divide the spatial domain into subintervals and try to 

approximate to the value of integral of v over each of these grid cells. We recalculate 

these values by approximating to the flux throughout the endpoints of each interval. We 

do the same for each time step (Figure 3.1). If we denote the ith interval by 
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 1 2 1 2,i i iC x x   and denote the average value of  , nv i x t   over the iC  at time nt  

by 
n

iu  then we can write the following expression. 

   
1 2

1 2

1 1
, ,

i

i i

x

n

i n n

x C

u v x t dx v x t dx
x x





 
   .   (3.15) 

Although it is not necessary to assume that the grid is uniform, we will accept that the 

grid is uniform for ease. 

 

Figure 3. 1 Updating the cell average with the fluxes throughout the endpoints for finite 

volume method. 

The integral in (3.15) approximate the value of  ,v x t  at the midpoint of the grid cell 

with the order of  2O x , if  ,v x t  is a smooth function. This situation may not be 

superb, but it enables to use the significant properties of the conservation law in driving 

numerical methods to work with cell averages. In fact, we can guarantee that the 

numerical method is conservative. That is, it imitates the true solution, and this property 

of numerical method is crucial for calculating shock waves accurately. This property of 

numerical methods comes from the fact that 
1

N n

ii
u x


  approximates the integral of 

 ,v x t  over the interval  ,a b  (assume that we have an interval  ,a b  and divide it into 

N subinterval), and if we work with a method that is in conservation form (we will just 

mention it below), then this approximate sum will vary only because of fluxes at the 

endpoints of interval, namely a and b. Therefore, the total value of discrete sum will 

maintain the same, or at least change correctly if we impose the boundary conditions 

agreeably. 

Now applying the integral form of the conservation law (3.4) to the grid cell iC , we get 
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       1 2 1 2, , ,

i

i i

C

d
v x t dx f v x t f v x t

dt
   .  (3.16) 

By using (3.16), we can improve an explicit numerical method. If we know the cell 

averages 
n

iu  at time nt , we can approximate the cell averages 
1n

iu 
 at time 1nt  . 

Integrating the equation in (3.16) from nt  to 1nt   we have 

         
1 1

1 1 2 1 2, , , ,
n n

i i n n

t t

n n i i

C C t t

v x t dx v x t dx f v x t dt f v x t dt
 

        .  (3.17) 

By dividing (3.17) with x  gives 

   1

1 1
, ,

i i

n n

C C

v x t dx v x t dx
x x

 
      

     
1 1

1 2 1 2

1
, ,

n n

n n

t t

i i

t t

f v x t dt f v x t dt
x

 

 

 
  
   

  .  (3.18) 

We can conclude from the above equation that we can update the average value of 

 ,v x t  for next time step from the integral form of conservation law (3.4). We can also 

deduce that we should work on numerical methods which are the following form 

 1

1 2 1 2

n n n n

i i i i

t
u u F F

x



 


  


,   (3.19) 

where 1 2

n

iF  is an approximation to the flux at point 1 2ix  . That is, 

  
1

1 2 1 2

1
,

n

n

t

n

i i

t

F f v x t dt
t



 
  .   (3.20) 

Now to arrive a completely discrete method, we should approximate the above average 

flux in terms of nu . 

We can realize that value of 1 2

n

iF   depends on the approximate values to the average 

value of  ,v x t  on both sides of the point 1 2ix  . Thus, it is logical to estimate the 1 2

n

iF   

from the value of 1

n

iu   and 
n

iu . From this idea, we can write 

 1 2 1,n n n

i i iF G u u  ,   (3.21) 

where G is some numerical flux function. If we insert this term into (3.19), we have 
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    1

1 1, ,n n n n n n

i i i i i i

t
u u G u u G u u

x



 


  


.   (3.22) 

Because we drive the above equation from the equation (3.18), which is the integral 

form of conservation law, and it imitates the property of conservation low, the equation 

in (3.22) is in conservation form. 

At the beginning of this section we said that finite volume method can be considered as 

same with finite difference method. To demonstrate this, if we rearrange the term of 

equation (3.22), we have 

1
1 2 1 2

0

n nn n
i ii i

F Fu u

t x


 

 
 

.   (3.23) 

This is the difference scheme of conservation law   0t xv f v  . 

In equation (3.21), we gave the general form of flux functions. We know that it depends 

on 1

n

iu   and 
n

iu , but what the function G can be is still undetermined. To determine G, 

the first idea that comes in mind may be the simple arithmetic average. That is, 

      1 2 1 1

1
,

2

n n n n n

i i i i iF G u u f u f u     ,   (3.24) 

and inserting this into (3.19), we get 

    1

1 1
2

n n n n

i i i i

t
u u f u f u

x



 


  


.   (3.25) 

Be aware that this method is in conservation form, but it is ordinarily unstable for 

hyperbolic equation. 

An example of finite volume method in conservation form is the classical Lax-

Friedrichs method which has the form 

      1

1 1 1 1

1

2 2

n n n n n

i i i i i

t
u u u f u f u

x



   


   


. (3.26) 

This method looks like unstable method in (3.25), but we replace 
n

iu  by  1 1

1

2

n n

i iu u   

and this change enables method to be stable for a linear hyperbolic equation if the 

necessary condition 1cfl   is fulfilled. 
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Notice that the Lax-Friedrichs method is of the form (3.19) if we define the numerical 

flux as 

      1 2 1 1

1

2 2

n n n n n

i i i i i

x
F f u f u u u

t
  


   


.  (3.27) 

 REA Algorithm 3.4

To solve nonlinear Euler equations of gas dynamics, Godunov suggested an approach 

[3]. This approach is called REA algorithm which is the short writing of reconstruct-

evolve-average. As we said before, this algorithm would be the base for huge amount of 

new algorithms which are modern, high order, improvable etc.  

The algorithm consists of three steps: 

1. Reconstruct a function  ,n

nv x t  which is piecewise polynomial defined for 

each x, from the cell averages 
n

iu . For straightforward situation, one can 

define  ,n

nv x t  as a piecewise constant function that takes the value 
n

iu  for 

the ith interval. That is, 

                ,        for all n n

n i iv x t u x C     (3.28) 

2. Evolve the hyperbolic equation exactly or approximately with this initial data 

to achieve  1,n

nv x t   for the next time step. 

3. Average this piecewise function over each interval to get new cell averages, 

i.e., 

                1

1

1
,

i

n n

i n

C

u v x t dx
x




     (3.29) 

By applying these three steps, we get the value for the next time step ( t  times later). 

To find the values for given time, the algorithm will be repeated. 

To evolve the hyperbolic equation in step 2, we should use the theory of Riemann 

problems introduced in section 3.2 since our initial data consists of piecewise constant 

functions. 

We build a function  ,n

nv x t  from the 
n

iu  in step 1. At first time when Godunov had 

been used the REA algorithm, he has reconstructed  ,n

nv x t  as a simple piecewise 
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Figure 3. 2 Representation of REA algorithm 

constant function. Using such a reconstruction leads to Riemann problem which is easy 

to solve, yet it gives just first-order accuracy. In order to achieve better accuracy, we 

may consider utilize a better reconstruction. That is instead of using piecewise constant 

function, we can use piecewise linear function as an initial data. This way of thinking 

establishes the basis for the Godunov type high resolution schemes that we will mention 

in next chapter.  

Now, it is time to improve a finite volume method which can be easily performed in 

practice, based on the REA algorithm. In step 3, in order to determine the new cell 

average 
1n

iu 
, we should compute the integral of  1,n

nv x t  . Because the function 

 1,n

nv x t   contains a lot of discontinuities, it is hard to implement. However, there is an 

easy way to find the cell averages. Instead of calculating integral, we can determine the 

numerical flux function for each cell and using this, we can easily compute the new cell 

averages. 

Remember that, we define the numerical flux 1 2

n

iF   as an approximation to the time 

average of the flux at 1 2ix   from nt  to 1nt   in (3.20). That is, 

  
1

1 2 1 2

1
,

n

n

t

n

i i

t

F f v x t dt
t



 
  . 

  

   

 

   

reconstruct 

average 
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Normally, the function  1 2 ,iv x t
 changes with t, and we do not know this change of 

the analytic solution exactly. However, if we replace  ,v x t  by the function  ,nv x t  

defined in the REA algorithm using piecewise constant reconstruction, we can calculate 

the integral certainly. Because  1 2 ,iv x t
 is constant over the time interval  1,n nt t  , its 

value is equal to the solution of Riemann problem at centered 1 2ix  .  Then, we define 

1 2

n

iF   as 

   
1

1 2 1 1

1
( , ) ( , )

n

n

t

n Rim n n Rim n n

i i i i i

t

F f v u u dt f v u u
t



   
  . (3.30) 

Here, 
1( , )Rim n n

i iv u u
 represents the solution of Riemann problem at the point 

1 2ix 
. 

Therefore, Godunov’s method for conservation laws has the following way of 

implementation:  

 Solve the Riemann problem at 1 2ix   to obtain 
1( , )Rim n n

i iv u u
. 

 Define the flux 
1 2iF 

 as a function of 
1

n

iu 
 and n

iu .   

 Apply the flux-differencing formula (3.19). 

 

We will generally use this format to state the methods. 
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CHAPTER 4 

HIGH RESOLUTION METHODS 

High resolution methods are built for solving conservation laws equations that have 

discontinuous solutions, such as gas dynamics equations. Von Neumann, Richtmyer and 

Lax have been studied for the numerical solution of partial differential equations. 

Godunov developed their methods greatly and he applied his methods to a lot of 

problems in one-dimensional gas dynamics, in which contact discontinuities and shock 

waves arise [3].  

In this chapter, we will introduce the methods that are used to compare and contrast. In 

section 4.1, we will mention the classical high resolution methods. Although they have 

some problems, as will be mentioned later in this chapter, they give significant 

information to build more efficient methods. For next sections, we will introduce the 

concept of limiter and slope, we will upgrade the reconstruction of the piecewise 

polynomial function in step 1 of the REA algorithm from constant to linear to get more 

adequate methods. After that, we will talk about advanced high resolution methods. 

 We will use the following test problem to evaluate the methods. 

0t xv cv  ,   (4.1) 

 

  2
exp 200 0.3      for 0 0.6

,0 1                                     for 0.6 0.8

0                                     for 0.8 1.0 ,

x x

v x x

x

    



  
  


  (4.2) 

   0, 1,v t v t .   (4.3) 

Clearly, (4.1) is an advection equation. This seems a trivial equation, but it contains the 

core of the hardship encountered in numerical approaches to hyperbolic problems [25]. 

Therefore it is very important to understand the methods properly for the advection 



  

40 

 

equation. The initial condition for (4.1) consists of a smooth pulse named as Gaussian 

hump and a square pulse. We choose such an initial condition because some methods 

are perfect for smooth solution but they fail for the solutions which have discontinuity 

and some other methods are good enough for discontinuous case but they have some 

drawback for the smooth case. The boundary condition in equation (4.3) is periodic. 

Therefore when the front of the solution goes out from the point 1x  , it will come in 

from the point 0x  . 

We carry out the calculations on a uniform grid of 200 intervals, our speed, c, is 1, we 

take the cfl as 0.8. That is, 0.8dt dx  . We study the results at 1.0t   as short time 

evaluation and 5.0t   as a long term evaluation. We use these informations for all the 

methods in this chapter and for the advection equation in (4.1)-(4.3).      

 Classical High Resolution Methods 4.1

4.1.1 The Upwind Method 

In the first half of the twentieth century, difference methods especially worked by von 

Neumann, Richtmyer, and Lax had all been centered methods and symmetric about the 

point where the solution is updated. However for hyperbolic problems, information 

propagates as waves moving along characteristics, so it can be found better numerical 

flux functions. From this idea, upwind method is developed. Courant, Isaacson and 

Rees published a paper in 1952. In their publication, they choose upwind-biased stencil 

which follows from the backward variant of the method of characteristics [26].  

 The idea behind the upwind method is that the information for each characteristic 

variable (we only have one variable for scalar advection equation.) is obtained by 

looking in the direction from which this information should be coming. For the one-way 

wave equation there is only one characteristic, so there is only one speed which goes to 

the right or left. Remember that for the equation in (4.1), if the constant c is positive 

then the wave goes to the right and if c is negative then the wave goes to the left. That is 

why; the upwind method is defined as follows 

 1

1  for 0,n n n n

i i i i

c t
u u u u c

x






   


   (4.4) 

 1

1  for 0n n n n

i i i i

c t
u u u u c

x






   


 [1].   (4.5) 
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We can write the equation (4.4) and (4.5) with together. To do this first lets define 

   max ,0 , min ,0 .c c c c      (4.6) 

Then, 

   1

1 1

n n n n n n

i i i i i i

t
u u c u u c u u

x

  

 


     
 

.  (4.7) 

The difference method (4.7) is first-order accurate for smooth initial data and stable for 

1 1cfl   . When we apply the method to the test problem (4.1)-(4.3), we reach the 

following graphical results. 

  

Figure 4. 1 Upwind method applied to the test problem (4.1)-(4.3) at time t=1.0 
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Figure 4. 2 Upwind method applied to the test problem (4.1)-(4.3) at time t=5.0 

We can conclude from the graphs that it cannot capture the solution well. The numerical 

results of the method have great dissipation that cannot be negligible. The accuracy of 

the method is poor so much, especially time evolves. Even though these drawbacks, the 

upwind method enables to capture shock waves without oscillations. We will see in 

later sections that some methods oscillate around the discontinuity.  

4.1.2 The Lax-Wendroff Method 

Remember that the upwind method in the previous section is only first-order accurate. 

As we saw in the figure 4.1 that its result is so poor, it is more clearly seen in long time 

evaluation (Figure 4.2). Improvement of the upwind method by adding correction terms 

is done and named as Lax-Wendroff method. This method is second-order accurate in 

both space and time where the solution is smooth and stable for 1 1cfl   .  

Base of the Lax-Wendroff method for the advection equation 0t xv cv    is the Taylor 

series expansion. Note that since t xv cv  , then 

      2

tt x xt tx t x xxt x x
v cv cv cv c v c cv c v            .  (4.8) 
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Expanding  , (n 1)v i x t    with respect to time, we get 

     

     
2 3

, (n 1) ,n ,n

1
,n

2

t

t t

v i x t v i x t tv i x t

t v i x t O t

        

     
.  (4.9) 

Using the equality (4.8), we have 
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.  (4.10) 

Using the central difference approximation for the spatial derivative in the equation, we 

reach 
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Rearranging this, we get 
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.  (4.12) 

Therefore we approximate the advection equation 0t xv cv   by the difference method 
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.  (4.13) 

Difference scheme (4.13) is called the Lax-Wendroff method. We can see that it has 3 

stencil points. Numerical solutions of the Lax-Wendroff method in graphical form are 

below.  
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Figure 4. 3 Lax-Wendroff method applied to the test problem (4.1)-(4.3) at time t=1.0 

 

 

Figure 4. 4 Lax-Wendroff method applied to the test problem (4.1)-(4.3) at time t=5.0 
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When we analyze the figures to compare with the upwind method, we see that the 

smooth pulse, namely Gaussian hump, captured much better than the upwind method. In 

terms of square wave, the Lax-Wendroff method also has problem, it cause oscillations 

around discontinuities and these oscillations appear behind of the discontinuities. One 

more note on the Lax-Wendroff method is that it has a phase error. That is, it causes a 

slight shift in the location of the Gaussian hump. This is clearer in figure 4.4.   

4.1.3 The Beam-Warming Method 

In order to reach the Lax-Wendroff method, we use the central difference 

approximation in (4.10) for the spatial derivative. That is why; the method is a centered 

method. Either c is positive or negative, we can use this scheme. However if we know 

that 0c  , than it may be logical to use a one-sided formula to get more correct answer. 

Instead of central difference approximation, if we use 
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  (4.14) 

in the equation (4.10), we have 
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  
  (4.15) 

This method is called as the Beam-Warming method [7]. This method is again second 

order accurate and stable for 0 2cfl  . (Remember that this scheme and stability 

conditions are valid for 0c  , for the case 0c  , it is easy to derive the scheme and its 

stability conditions.) Similar to Lax-Wendroff, this method also has 3 stencil points.  

When we apply the method to the test problem (4.1)-(4.3) we have the following 

graphs. 
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Figure 4. 5 Beam-Warming method applied to the test problem (4.1)-(4.3) at time t=1.0 

 

Figure 4. 6 Beam-Warming method applied to the test problem (4.1)-(4.3) at time t=5.0 
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We can notice that the Beam-Warming method also oscillates around the discontinuities 

like the Lax-Wendroff method. Furthermore it has oscillations at the beginning of the 

graph, especially at time t=5. 

4.1.4 Fromm’s Method 

Another second-order method is the Fromm’s method. It has the following formula [6]. 

   
2

1

1 1 2 1 1 2

1
3 5

4 4
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  
         

  
  (4.16) 

Unlike the Lax-Wendroff and Beam-Warming, the Fromm’s method has four stencil 

points. The results obtaining by the application of Fromm’s method to the test problem 

(4.1)-(4.3) are bellowing. 

 

Figure 4. 7 Fromm’s method applied to the test problem (4.1)-(4.3) at time t=5.0 
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Figure 4. 8 Fromm’s method applied to the test problem (4.1)-(4.3) at time t=5.0 

In terms of steep gradient, Fromm’s method has interesting result. While it has an 

spurious oscillation around discontinuity at time 1.0t  , it vanishes at later time             

( 5.0t  ). Expectedly, the accuracy for the smooth data decreases as time evolves. 

Comparing to the previous two second-order methods, Fromm’s method is quite well in 

terms of oscillations. 

 The characteristic of high resolution schemes is actually choosing the advantages of 

methods and combining them to obtain more sufficient method. For instance, if it is 

possible, we reach second order accuracy, but we do not insist on it if the solution does 

not behave smoothly for some region. To achieve this, let have a look at the REA 

algorithm once more. 

 The REA Algorithm Revisited 4.2

Remember that we gave the REA algorithm in section 3.4. By constructing a constant 

piecewise function  ,nv x t  from the cell average n

iu , we obtain the first order Godunov 

type method, the upwind method, to solve the one way wave equation. To improve the 
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accuracy, we must utilize a better reconstruction for  ,nv x t  then a piecewise constant 

data, namely value of cell average. We can build a piecewise linear function from n

iu  

which has the form 

    1 2 1 2,    for n n n

n i i i i iv x t u x x x x x       ,  (4.17) 

where   

 1 2 1 2

1

2
i i ix x x   .   (4.18) 

is the center of cell iC  and n

i  is the slope on the same grid cell. The features of this 

definition are that its value at the point ix  is equal to the value of cell average, n

iu  and 

the average value of this linear piecewise function  ,nv x t over iC  is equal again to the 

value of cell average, n

iu . The latter property of this reconstruction is very important in 

building up new conservative methods for conservation laws. 

Now using this reconstruction, let build the REA algorithm again for scalar advection 

equation. Without loss of generality, let assume that c in the equation 0t xv cv   is 

positive and also assume that 1c t x    which is necessary to hold the convergence. 

Then reconstruction of the REA algorithm, the upwind method, becomes 
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Rearranging this, we obtain 
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 
.  (4.20) 

Notice that this is the upwind method, but together with a term that relies on the slopes. 

 Limiters       4.3

In order to get rid of the drawbacks of methods that have been mentioned up to now, we 

can use the limiters. Limiters enable us to eliminate phase error, and to dispose of 

oscillations. To understand the concept of limiters, we will begin by analyzing the 

upwind method flux and the Lax-Wendroff flux. For the upwind method in (4.4) 

(remember that we assume 0c  ), we can write the flux as 
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1 2 1

n n

i iF cu  .   (4.21) 

For the Lax-Wendroff method in (4.13), the flux is 

   
2

1 2 1 1
2 2

n n n n n

i i i i i

c c t
F u u u u

x
  


   


.   (4.22) 

If we rewrite the equation (4.22) with arranging the terms, we have 
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Notice that, the flux in (4.23) has the form of the upwind flux with an additional term. 

This term can be considered as the correction term for the upwind method. we should be 

aware that although the correction term in (4.23) resembles a diffusive flux since it 

relies on 
1

n n

i iu u  , it is an anti-diffusive flux because the coefficient is positive when the 

cfl condition is satisfied [1]. By anti-diffusive flux, we mean that it has sharpening 

influence for very diffusive upwind methods. That is why; the Lax-Wendroff method 

has oscillations even for the smooth data. In order to prevent these wiggles we should 

modify the correction term by using some form of limiter. This limiter changes the 

magnitude of correction by taking into account of the behavior of solution. As a result, 

when upgrading methods from first-order to second-order, we can prevent oscillations 

thanks to limiter. 

  Different Slopes 4.4

When we build the REA algorithm with piecewise linear function, the limiting process 

can be considered as the limiting the slope. For the equation (4.20), if we choose the 

slope as zero, this means that we construct the REA algorithm with piecewise constant 

functions and this gives the upwind method. In fact, if we put zero for the slope in 

equation (4.20), we will get the equation (4.4) which is exactly the upwind method. To 

reach a second-order accurate method, we should use nonzero slope, n

i , and this slope 

should approximate the derivative of  ,v x t  over the iC . When we choose 

1

n n
n i i
i

u u

x
  




,   (4.24) 

and put it in the equation (4.20), we have 
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Rearranging the above equation gives  
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which is the Lax-Wendroff method. This means that the Lax-Wendroff is the Godunov 

type method with second-order accuracy.       

Similarly, if we choose the slope as 
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   (4.27) 

and apply it to the equation (4.20), we get 
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Rearranging this yields 
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This is the Beam-Warming method. we can say then, that the Beam-Warming method is 

also Godunov type method. 

These are the natural choice that first comes into mind when we try to approximate the 

 ,xv x t .  Other choices give other methods, but we will not mention about them. 

Now, we will analyze why the second-order Godunov type methods give oscillatory 

approximations to solution near discontinuities, by keeping the REA algorithm in mind. 

Let us consider the Beam-Warming method applied to piecewise constant initial 

condition 

0
1   if ,

0   if .
i

i k
u

i k


 


   (4.30) 

When we calculate the slope according to (4.27), we will get piecewise linear function 

shown in figure 4.9(i). The slope is zero for all values of i except for i k . The 
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constructed function  , nv x t  has an undershoot with a minimum value of -0.5 

regardless of spatial step size. For the next time step, when we compute the average of 

cell 1kC   (Figure 4.9(ii)), the value will be less than 0 for any t  with 0 c t x     and 

this will cause oscillation. Furthermore, since the slope for 1kC   becomes negative it 

triggers the cell 2kC   to became negative also. Therefore oscillation will spread out the 

cells. Also with time, this oscillation will grow. 

 

Figure 4. 9 i) Construction of  ., nv t from cell averages by Beam-Warming slope. ii) 

t time later. iii) New cell averages (dots) and reconstruction of  1., nv t   

We saw that near a discontinuity it does not improve the accuracy to introduce slope 

that mentioned above. Moreover, if we want to prevent nonphysical oscillations we 

should not introduce any nonzero slope for the kth cell because any slope 0n

k   causes 

1

1 0n

ku 

   and so oscillations (note that positive slope is meaningless for this cell). On the 

other hand, if we set the entire slope to 0, then we have just first-order accuracy. This is 

what we do not want where the solution is smooth. In addition to this, constructing 

nonzero slope can enable to prevent solution from smearing out too far and enable 

discontinuity to become sharp effectively. 

i) 

    

ii) 

iii) 
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When choosing our formula for slope n

i , if we take into account that how the solution 

is behaving around the discontinuity then we can get rid of the oscillation, we can 

derive fairly sharp solution to approximate the discontinuity and for smooth solution we 

can get second-order accuracy. For smooth solution, we want to choose something like 

the Beam-Warming slope. Around a discontinuity, to prevent appearance of oscillation, 

we want to limit this slope by using a smaller value in magnitude. Methods building up 

from this opinion are called as slop-limiter methods. 

 Advanced High Resolution Methods 4.5

4.5.1 Minmod Slope-Limiter Method 

We saw in the previous section that the Lax-Wendroff and the Beam-Warming methods 

are the second type Godunov method with downwind slope defined in (4.24) and 

upwind slope defined in (4.27). The minmod slope method is also second type Godunov 

method but it is also slope-limiter methods that is mentioned above. For this method we 

define the slope as follows 
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n n n n

n i i i i
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u u u u

x x
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  
 [9].   (4.31) 

Here, the Minmod function is defined by 

   if    and  0,

min mod(x, y)    if    and  0,
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y y x xy

xy

  


  




  (4.32) 

We can consider the minmod function as follow: if x and y have the same sign, then the 

minmod function returns to the one that is smaller in absolute value. If x and y have 

different sign then it returns to 0. 

The Lax-Wendroff scheme uses always downwind slope and the Beam-Warming 

scheme utilize always upwind slope. On the other hand the minmod slop method 

compares the two slopes and selects the one that is smaller in modulus. If the two values 

have different sign, it choose the zero slope. This is logical since if the two slopes have 

different sign, it means that there is a local minimum or local maximum of solution 

(Remember that for the local minimum or maximum, xv  is zero). 
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When we apply the method to the test problem (4.1)-(4.3), we have following graphical 

results.  

 

Figure 4. 10 Minmod slope-limiter method applied to the test problem (4.1)-(4.3) at 

time 1.0t   

When we compare this graph with the graph of previous methods, we can say that the 

minmod method is really better than the previous ones. The accuracy of minmod 

method is at least as good as the accuracy of previous ones for smooth hump while for 

the square wave; it is perfect in terms of capturing the discontinuity compared to the 

Lax-Wendroff and Beam-Warming. For the long term evaluation, it become worse, but 

it is acceptable and understandable. Note that still there is no unphysical oscillation in 

the numerical solution. 
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Figure 4. 11 minmod slope-limiter method applied to the test problem (4.1)-(4.3) at time 

t=5.0 

4.5.2 Superbee Slope-Limiter Method 

One of the other slope limiter methods, which is also second type of Godunov method, 

is the superbee limiter method. In addition to the minmod method, this method is also 

second order accuracy for smooth solutions. The method is introduced by Roe [14] and 

has the following slope. 

max mod(x, y)n

i  ,   (4.33) 
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.   (4.34) 

We can view this slope as in that way: downwind slope is compared with twice the 

upwind slope in terms of minmod and vice versa. From this process we have two values 

and we select the value that has bigger in magnitude. 
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Results of application of this method to the test problem (4.1)-(4.3) are below. 

 

Figure 4. 12 Superbee slope-limiter method applied to the test problem at time t=1.0 

 

Figure 4. 13 Superbee slope-limiter method applied to the test problem at time t=5.0 



  

57 

 

We can derive from figure 4.12 and figure 4.13 that the superbee slope-limiter method 

is much better compared to the minmod slope-limiter method in terms of amplitude of 

the solution and catching the discontinuity. On the other hand, for the Gaussian hump, it 

gives like a horizontal line where the solution resembles a concave curve. This may be 

problematic especially if the solution has inflection points [1]. 

4.5.3 Van Leer Slope-Limiter Method 

In 1974, Bram van Leer published a paper and he introduced a new method. we will 

give the formulation after the section 4.6. The graphs of van Leer method solution to the 

test problem are the following figures. 

 

Figure 4. 14 Van Leer method applied to (4.1)-(4.3) at time t=1.0 

In figure 4.14, we see that van Leer method captures the solution as well as superbee 

method. However, for long term evaluation (figure 4.15), accuracy of van Leer method 

decreases much compared to superbee method. 
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Figure 4. 15 Van Leer method applied to (4.1)-(4.3) at time t=5.0 

4.5.4 MC Slope-Limiter Method      

The MC slope-limiter which is short name of monotonized central-difference limiter 

and introduced by van Leer [12] has the following slope: 

1 1 1 1min mod ,2 ,2
2

n n n n n n
n i i i i i i
i

u u u u u u

x x x
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.  (4.35) 

We can interpret this slope as comparing the three values, the central difference, two 

times the upwind slope and twice the downwind slope, along each other and taking the 

one that minimum in absolute value if the three values have the same sign. Otherwise, 

slope becomes zero. Applying of the method to the test problem (4.1)-(4.3), we have the 

following graphs. 
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Figure 4. 16 MC slope-limiter method applied to the test problem at time t=1.0 

 

Figure 4. 17 MC slope-limiter method applied to the test problem at time t=5.0 
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MC slope-limiter method has the similar graph with the superbee slope-limiter method. 

Contrary to similarity, it has also diversities some of which are good and some of others 

are bad. The disadvantage of MC compared to superbee is that, it is less sharp around 

the discontinuity. On the other hand, as the advantage of MC, it resolves the default of 

superbee which is becoming squared off at the top of the smooth hump. 

 Flux-Differencing Form of Methods  4.6

The methods we have seen up to now can be also written in the form of flux-

differencing defined in (3.19). Writing in such a form enables us to conclude that the 

methods are in conservation laws form. We can do this issue by algebraically 

manipulating the equation (4.20) to find the flux function or by computing the flux at 

the interface using the piecewise linear reconstruction. Both ways will give the same 

flux function. For the advection equation with 0c  , we have 
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Using this function in the flux-differencing formula (3.19), we have 
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 
.  (4.37) 

Notice that this is the same with the equation (4.20) expectedly. If we write the flux 

function for positive and negative c, we get 

 

 

1 1

1 2

1
   if 0

2

1
      if 0

2

n n

i i
n

i

n n

i i

cu c x c t c

F

cu c x c t c





 




    

 
     


.   (4.38) 

Here, we write the flux function with slope, n

i  for the cell iC . However, writing the 

methods in terms of flux function, it is more logical to correlate our approximation to 

 ,xv x t  with the cell interface at 1 2ix   rather than the cell iC  because we define the 

flux 1 2

n

iF   at the cell edge 
1 2ix 

. If we define the jump between two successive cells as 

1 2 1

n n n

i i iu u u    ,   (4.39) 

and if we divide this difference by x , then we attain an approximation to  ,xv x t . 

Therefore we can rewrite the flux in (4.36) as 
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1 2 1 1 2

1
1

2

n n n

i i i

c t
F cu c

x
  

 
   

 
.   (4.40) 

Here, 1 2

n

i   is the function of 1 2

n

iu  . (Notice that this flux formula is for 0c  , for the 

negative c, it can be rewritten easily.) 

Now, for 1 2 1 2

n n

i iu    , (4.40) gives the Lax-Wendroff flux function and so the Lax-

Wendroff method. Since this is the basic selection for 1 2

n

i  , we can say that the Lax-

Wendroff method is the fundamental second-order method depended on piecewise 

linear reconstruction. Furthermore, some other choices of 1 2

n

i   give the other methods 

some of which are our methods that we have mentioned. Therefore, we can consider the 

slope-limiter methods as also flux-limiter methods. 

Table 4. 1 Flux-limiter function of the methods [1] 

Name of Method Flux-Limiter Function 

Upwind   0    

Lax-Wendroff   1    

Beam-Warming      

Fromm    1 2     

Minmod slope-limiter   min mod(1, )    

Superbee slope-limiter   max(0,min(1,2 ),min(2, ))     

MC slope-limiter     max 0,min (1 ) 2,2,2      

van Leer      1        

 

If we define 1 2

n

i   as 

 1 2 1 2 1 2

n n n

i i iu      ,   (4.41) 

where 
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1 1 2 1 2

1 2

1 2 1 2

   if  0

     if  0

n n

i in

i n n

i i

u u c

u u c


  



 

  
 

  

,   (4.42) 

then for   0    we have 

1 2 1 2 10n n n

i i iF cu      .          (4.43) 

This is the flux of upwind method for positive c. Similarly, if we choose   1   , we 

have 

1 2 1 2 1 2 1 1 2

1
1

2

n n n n n

i i i i i

c t
u F cu c u

x
     

 
       

 
,  (4.44) 

which is the Lax-Wendroff flux function for 0c  . Table 4.1 demonstrates which 

choice of flux-limiter function corresponds to which methods that we have discussed so 

far.  

We can write conservation form of the methods for negative and positive speed as 

follows. 

   1

1 2 1 2 1 2 1 2

n n n n

i i i i i i

t t
u u A u A u F F

x x

  

   

 
      

 
,  (4.45) 

where 1 2

n

iA u

  is the net effect of right going waves and 1 2

n

iA u

  is the net effect of 

left going waves. That is, 

 1 2 1

n n n

i i iA u c u u 

    ,   (4.46) 

and 

 1 2 1

n n n

i i iA u c u u 

    .   (4.47) 

Furthermore, we define 1 2iF   and 1 2iF   as 

1 2 1 2

1
1

2

n

i i

c t
F c

x
 

  
  

 
,   (4.48) 

1 2 1 2

1
1

2

n

i i

c t
F c

x
 

  
  

 
.   (4.49) 
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CHAPTER 5 

APPLICATIONS TO BURGERS EQUATION 

In previous chapter, we introduced the methods and evaluated them for advection 

equation which is linear and has scalar coefficient. For this chapter we will use the 

Burgers equation, which is nonlinear hyperbolic partial differential equation, as a test 

problem. We will give the result of methods in the graphical form. 

 Burgers Equation 5.1

There are two different versions of Burgers equation; one of them is the 

nonhomogeneous and nonlinear parabolic partial differential equation written as 

t x xxv vv v  ,   (5.1) 

where 0   and constant. This equation is generally called the viscid Burgers equation, 

since in fluid dynamics xxv  corresponds to viscosity. The other equation is the 

homogenous and nonlinear hyperbolic partial differential equation and it can be stated 

as 

0t xv vv  .   (5.2) 

This is usually considered as the inviscid Burgers equation. (5.2) can also be written in 

the scalar conservation law form. 

  0t x
v f v  ,   (5.3) 

where   21

2
f v v .  

The equation in (5.1) comes out usually as a simplification of a more sophisticated 

model. Thus, it is generally considered as a toy model. By saying toy model, we mean 

that it is a tool that is use to make clear some of the inside behavior of the general 
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problem. We can give the Navier Stokes equation for such a general problem as an 

example [27]. Moreover, Burgers equation models directly physical phenomena; one of 

them is the traffic flow [1], [27]. In numerical partial differential equation, it is also 

important due to the fact that its solution may contain discontinuities. 

Note that there is a relationship between (5.1) and (5.2). When we take the limit of (5.1) 

as 0  , we reach the equation (5.2). This approach is correct in the mathematical 

sense and also important for finding the approximate solution of inviscid Burgers 

equation. Be aware that the equation (5.2) has no analytic solution. 

When we write the numerical methods for the Burgers equation, we will use the 

equation in (4.45). That is, 

   1

1 2 1 2 1 2 1 2

n n n n

i i i i i i

t t
u u A u A u F F

x x

  

   

 
      

 
.  (5.4) 

There are a few differences between scalar linear equation and nonlinear equation to 

write the equation in (5.4). First of all, for advection equation, the flux function is 

 f v cv . On the other hand, the flux function for Burgers equation is   2 2f v v . 

Another difference is that for advection equation the characteristic speed is constant, but 

for Burgers equation it changes in time. We will define speed as follows. 

 
 

1 1 1

1 2

1

( ) ( ) if  

if  
i i i i i i

i

i i i

f u f u u u u u
s

f u u u
  





  
 

 
 [1]. (5.5) 

Then 1 2

n

iA u

  and 1 2

n

iA u

   become 

1 2 1 2 1 2

n n

i i iA u s u 

     ,   (5.6) 

and 

1 2 1 2 1 2

n n

i i iA u s u 

     .   (5.7) 

As we can guess,  1 2 1 2max 0,i is s

   (and  1 2 1 2min 0,i is s

  ). If we put this into 

(5.6) and do necessary calculations, we get 

   1 1
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   if  

0     if  

n n n n

n i i i i

i n n

i i

f u f u u u
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  





  
  



.  (5.8) 
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There is an important detail when defining fluctuations 1 2

n

iA u

  and 1 2

n

iA u

 . If 

   1 0i if u f u
    then fluctuations become 

    1

1 2

1

   if  

0   if  

n n n

n i s i i

i n n

i i

f u f v u u
A u

u u

 





  
  



,   (5.9) 

and 

   1 1

1 2

1

   if  

0   if  

n n n

n s i i i

i n n

i i

f v f u u u
A u

u u

  





  
  



.   (5.10) 

Here sv  is called stagnation point (or sonic point) and it is the value of v for which 

1i s iu v u    and   0sf v  . This modification for fluctuations is necessary due to 

entropy condition [1]. 

Now, we set 1 2iF   as follows. 

1 2 1 2 1 2 1 2

1
1

2

n

i i i i

t
F s s

x
   

 
  

 
.   (5.11) 

Remember that 1 2

n

i   and other related concepts are defined in section 4.6. However, for 

the completeness of chapter we will give them again. 1 2

n

i   is defined as 

 1 2 1 2 1 2

n n n

i i iu      ,   (5.12) 

where 

1 1 2 1 2

1 2

1 2 1 2

   if  0

     if  0

n n

i in

i n n

i i

u u c

u u c


  



 

  
 

  

.   (5.13) 

We calculate the results of numerical methods for Burgers equation according to the 

table 5.1. 

 

 

 

 



  

66 

 

Table 5. 1 Flux-limiter function of the methods (revisited) 

Name of Method Flux-Limiter Function 

Upwind   0    

Lax-Wendroff   1    

Beam-Warming      

Fromm    1 2     

Minmod slope-limiter   min mod(1, )    

Superbee slope-limiter   max(0,min(1,2 ),min(2, ))     

MC slope-limiter     max 0,min (1 ) 2,2,2      

van Leer      1        

 

 Numerical Results of the Methods 5.2

We will use the following equation, initial condition and boundary condition to test the 

methods. 

  0t x
v f v  ,   (5.14) 

 
 

 
min 0,( 1.5)( 2.5)    if  2.5

,0
5 ,0    if  2.5

x x x
v x

v x x

  
 

  
,  (5.15) 

   0, 5,v t v t .   (5.16) 

Graph of the initial data is shown in figure 5.1. 
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Figure 5. 1 Graph of the initial data in the equation (5.15) 

For 3.0 3.5x   the characteristic speed decreases with x thus, top of the pulse moves 

faster than the below region of the pulse. This causes formation of shock. In the same 

way, a left-going shock also forms. At the end, the initial data becomes an N-wave. We 

will do our calculation on 40 uniform grids and we set 0.4dt dx  so that 0.1cfl  . We 

will give the results at time 2.0t   which is just after the formation of shock and at time 

12.0t   which is the long-term evaluation. Note that because inviscid Burgers equation 

has no analytical solution, we use MC slope-limiter method with a 2000 grid points to 

draw the analytical solution for graphs. This is the way that most of the scientist use 

when drawing analytical solution. 

Our numerical results are produced based on a general time loop that internally uses a 

specific high resolution method. Below we outline the basic structure of the algorithm. 

We note that we used fortran 95 to program the schemes that used in this study. Please 

refer to Appendix for the fortran code. 

5.2.1 Algorithm of Methods for Burgers Equation 

Step 1: Set cfl, Δx, t  and t_final . 

Step 2: Store x values between the initial and endpoint of given interval with step size 

x . 
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Step 3: For 0t  , store the cell average value for each grid cell from the initial data. 

Step 4: Set the boundary condition. 

Step 5: Do calculation below for each grid cell. 

    Calculate 

             for right and left endpoints of grid cell according to the used method. 

         Flux for right and left endpoints of grid cell. 

         Fluctuation for right and left endpoints of grid cell. 

    Calculate the new cell value from the finite volume scheme 

Step 6: Transfer the data to another variable and increase the time up to t . 

Step 7: Repeat step 5 and step 6 until time becomes equal to _t final . 

Step 8: Store the cell to plot the numerical results.         

5.2.2 Results of Methods for 2.0t      

In this section we will give the results of all methods for time 2.0t   and will discuss 

the results. 
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 Graphs for Classical Methods 5.2.2.1

 

Figure 5. 2 Upwind method at time 2.0t   

 

Figure 5. 3 Lax-Wendroff method at time 2.0t   
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Figure 5. 4 Beam-Warming method at time 2.0t   

 

Figure 5. 5 Fromm’s method at time 2.0t   
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In figure 5.2, the upwind method gives dissipative result, particularly near the local 

minimum and local maximum points. This result is similar to the conclusion obtained 

by the advection equation. In figure 5.3, except for the extreme points, the Lax-

Wendroff method gives good result; it captures the solution well compare to the upwind 

method. The Beam-Warming method gives the similar result with the Lax-Wendroff 

method for the smooth regions, but it is relatively well around the extreme points (figure 

5.4). Compared to the Beam-Warming method, we can say that Fromm’s method is 

more adequate in terms of capturing the amplitude of the wave. Overall, we can 

conclude that Fromm’s method is the best in classical methods for 2.0t  . 

 Graphs for Advanced Methods 5.2.2.2

 

  

Figure 5. 6 Minmod method at time 2.0t   
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Figure 5. 7 Superbee method at time 2.0t   

 

Figure 5. 8 MC method at time 2.0t   
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Figure 5. 9 Van Leer method at time 2.0t   

Result of minmod method in figure 5.6 is similar to the Beam-Warming method, but it 

is relatively dissipative especially near discontinuities. For 2.0t  , superbee method 

(figure 5.7) is better than both MC method (figure 5.8) and van Leer method (figure 5.9) 

in terms of the approximating the amplitude of the wave and capturing the steep 

gradient. In terms of amplitude, MC is better than van Leer. 

5.2.3 Results of Methods at 12.0t   

Most of the time, results at 12.0t   is more important than the results at 2.0t   because 

they tell us the long behavior of the methods. As we will see in this section although 

some methods seem good for 2.0t  , its accuracy has deteriorated more than expected.   

 Graphs for Classical Methods 5.2.3.1
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Figure 5. 10 Upwind method at time 12.0t   

 

Figure 5. 11 Lax-Wendroff method at time 12.0t   
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Figure 5. 12 Beam-Warming method at time 12.0t   

 

Figure 5. 13 Fromm method at time 12.0t   
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When we analyze the graphs for 12.0t  , upwind method (figure 5.10) get worse to 

catching the solution even for smooth data. Lax-Wendroff method demonstrates its 

oscillatory characteristic much clearly (figure 5.11). Its result is unacceptable. In figure 

5.12, surprisingly Beam-Warming method gives a nice solution though its oscillatory 

feature. It is also good to approximating the local minimum and local maximum. We 

see in figure 5.13 that, although Fromm’s method is acceptable for smooth region, it 

tends to oscillate around discontinuity. This may cause problems in time. We can 

conclude that for long term evaluation, Beam-Warming method is the most satisfactory 

along the classical high resolution methods. 

 Graphs for Advanced Methods 5.2.3.2

 

Figure 5. 14 Minmod method at time 12.0t   
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Figure 5. 15 Superbee method at time 12.0t   

 

Figure 5. 16 MC method at time 12.0t   
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Figure 5. 17 Van Leer method at time 12.0t   

 

Even though its dissipative nature relative to advanced shock capturing method, 

minmod method in figure 5.14 is acceptable according to amplitude of the wave. 

Superbee (figure 5.15), MC (figure 5.16) and van Leer (figure 5.17) methods are quite 

similar to each other when we look at the results roughly. On the other hand, when we 

analyze deeply, we see that superbee method has a little bit deviation for smooth data. 

Furthermore, van Leer method is worse than the other two, in terms of accuracy near 

discontinuity. We can derive from these graphs that MC method is the best along the 

eight methods for long-term evaluation. 
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CHAPTER 6 

RESULTS AND DISCUSSION 

In this thesis, we have compared well-known high resolution methods in terms of their 

accuracy and stability for smooth and discontinuous problems. In this thesis, we have 

first given a discussion about some theoretical background. Then, we have provided 

more detailed discussions regarding the numerical methods. 

We have discussed finite volume methods, conservation law, Riemann problems which 

are necessary tools to understand the high resolution methods clearly. Then, we have 

described the high resolution schemes with their important features and mathematical 

theory. We have applied above mentioned high resolution methods to a scalar, linear 

one-way wave equation. This has given us the opportunity to perform some theoretical 

analysis such as accuracy and stability. Then, we have applied the high resolution 

methods to the Burgers Equation. By solving this equation with different methods, we 

have gained a lot of insights about the stability accuracy and therefore the suitability of 

used high resolution methods for nonlinear hyperbolic partial differential equations.   

In our conclusion, advanced high resolution methods have provided reasonable results 

for both smooth and discontinuous problems. Among the advanced high resolution 

schemes, MC slope-limiter method has been shown to be superior to the others. This 

thesis can be considered as an initial step towards understanding the fundamentals of 

high resolution methods. We wish have deeper understanding and explore further about 

these special group of numerical methods, with the aim of possible original 

contributions. 
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APPENDIX 

FORTRAN CODE FOR BURGERS EQUATION 

      program HRMforBurgersEquation 

      implicit none  

      integer::i,mt 

      integer, parameter :: M = 40, ng=2 

      double precision   xedge(0 : M) , xcell(0 : M-1) 

      double precision Uext(0-ng : M-1+ng)  

      double precision Uold(0-ng : M-1+ng) 

      double precision Unew(0-ng : M-1+ng) 

      double precision:: t_final, time, dt, xa, xb, dx, cfl,a 

      double precision A_plus, A_minus 

      double precision w_imh, w_iph 

      double precision s_minus_imh,s_minus_iph,s_plus_imh,s_plus_iph  

      double precision s_imh,s_iph  

      double precision wtilda_imh, wtilda_iph 

      double precision f_imh, f_iph 

      double precision minmod 

      double precision teta_imh, teta_iph 

      double precision fiteta_imh, fiteta_iph 

      double precision, parameter:: ep=0.001d0 

      character*2:: label = 'AA' 

       

      !set mt value for methods that you want to use 

      ! 1 for upwind; 2 for l-w; 3 for b-w; 4 for fromm; 5 for minmod 

      ! 6 for superbee; 7 for MC; 8 for van leer 

       

      mt=1 

       

      cfl = 0.4d0 

      t_final = 12.0d0  

      time = 0.0d0 

      xa = 0.0d0 ; xb = 5.0d0 

      dx = (xb - xa)/M 

      dt =  cfl * dx 

       

      do i = 0, M-1  

          xedge(i) = xa + i*dx 

          xcell(i) = xa + (i+1./2.)*dx 

      enddo 

           

          xedge(M) = xa + M*dx 
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      do i= 0, M-1 

        uext(i) = dmax1(0.0d0, (xcell(i)-2.5d0) * (3.5d0-xcell(i)) ) 

      enddo 

       

      do i= 0, int(M/2)-1 

         uext(i)=-uext(M-1-i) 

      enddo 

       

      do i=0, M-1 

        uold(i)=uext(i) 

      enddo 

       

      Uold(-2) = Uold(M-2) 

      Uold(-1) = Uold(M-1)  

      Uold(M)  = Uold(0) 

      Uold(M+1)  = Uold(1) 

        

        do while (time <= t_final) 

          time = time + dt 

          do i = 0 , M-1 

           

            s_imh = 0.5d0*(Uold(i)   + Uold(i-1)) 

            s_iph = 0.5d0*(Uold(i+1) + Uold(i  )) 

             

            s_minus_imh = dmin1(0.d0, s_imh) 

            s_minus_iph = dmin1(0.d0, s_iph) 

            s_plus_imh  = dmax1(0.d0, s_imh)  

            s_plus_iph  = dmin1(0.d0, s_iph) 

             

            w_imh = Uold(i)-Uold(i-1) 

            w_iph = Uold(i+1)-Uold(i) 

             

            if( (Uold(i-1).LT.0.d0) .AND. (Uold(i).GT.0.d0) ) then 

              A_plus = 0.5d0 * ( Uold(i)**2 ) 

            else   

              A_plus  = s_plus_imh *w_imh  

            endif 

             

            if( (Uold(i).LT.0.d0) .AND. (Uold(i+1).GT.0.d0) ) then 

              A_minus = -0.5d0 * ( Uold(i)**2 ) 

            else   

              A_minus = s_minus_iph*w_iph  

            endif 

             

             

             

            methodtype: select case (mt) 

            case (1)   !upwind 

              label = 'Up' 

              teta_imh = 0.0d0 

              teta_iph = 0.0d0 

              fiteta_imh = 0.0d0 

              fiteta_iph = 0.0d0 
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              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph 

             

            case (2)    !LW 

              label = 'LW' 

              teta_imh = 1.0d0 

              teta_iph = 1.0d0 

              fiteta_imh = 1.0d0 

              fiteta_iph = 1.0d0 

               

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph 

             

            case (3)    !BW 

              label = 'BW' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

               

              fiteta_imh = teta_imh 

              fiteta_iph = teta_iph 

               

              if (w_imh == 0.0d0) then 

                wtilda_imh = fiteta_imh*ep 

              else   

                wtilda_imh = fiteta_imh*w_imh 

              endif 

               

              if (w_iph == 0.0d0) then 

                wtilda_iph = fiteta_iph*ep 

              else   

                wtilda_iph = fiteta_iph*w_iph 

              endif 

               

            case (4)   ! Fromm 

              label = 'FR' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

               

              fiteta_imh = 0.5d0*( 1.0d0 + teta_imh ) 

              fiteta_iph = 0.5d0*( 1.0d0 + teta_iph ) 

               

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph 

             

               

            case (5)    !minmod 

              label = 'MM' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

      

              fiteta_imh = minmod(1.0d0 ,teta_imh ) 

              fiteta_iph = minmod(1.0d0 ,teta_iph ) 

               

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph   
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            case (6)   !superbee 

              label = 'SB' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

               

              fiteta_imh = dmax1(0.0d0 ,dmin1(1.0d0,2*teta_imh), 

     &                                          dmin1(2.0d0,teta_imh ) ) 

              fiteta_iph = dmax1(0.0d0 ,dmin1(1.0d0,2*teta_iph), 

     &                                          dmin1(2.0d0,teta_iph) ) 

      

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph 

               

            case (7)   !MC 

              label = 'MC' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

               

              fiteta_imh = dmax1(0.0d0 ,dmin1((1.0d0+teta_imh)/2.0d0 , 

     &                                         2.0d0, 2*teta_imh ) ) 

              fiteta_iph = dmax1(0.0d0 ,dmin1((1.0d0+teta_iph)/2.0d0 , 

     &                                          2.0d0, 2*teta_iph) ) 

      

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph 

               

            case (8)  !van Leer 

              label = 'VL' 

              call BWfi (teta_imh, teta_iph, w_imh,w_iph, s_imh,s_iph,  

     &                Uold(i-2),Uold(i-1), Uold(i),Uold(i+1),Uold(i+2)) 

                

              fiteta_imh= (teta_imh+dabs(teta_imh))/(1 + dabs(teta_imh)) 

              fiteta_iph= (teta_iph+dabs(teta_iph))/(1 + dabs(teta_iph)) 

               

              wtilda_imh = fiteta_imh*w_imh 

              wtilda_iph = fiteta_iph*w_iph  

             

             

             

            case default 

              print*, "wrong case" 

             

            end select methodtype 

             

             

            f_imh = 0.5d0*dabs(s_imh)*(1.d0 - (dt/dx)*dabs(s_imh)) 

     &                                                     *wtilda_imh 

            f_iph = 0.5d0*dabs(s_iph)*(1.d0 - (dt/dx)*dabs(s_iph)) 

     &                                                     *wtilda_iph 

           

            Unew(i) = Uold(i) - (dt/dx) * (A_plus + A_minus) 

     &                                         -(dt/dx)*(f_iph - f_imh) 
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          enddo 

           

          Unew(-1) = Unew(M-1) 

          Unew(M)  = Unew(0) 

          Unew(-2) = Unew(M-2) 

          Unew(M+1)  = Unew(1) 

           

          Uold = Unew 

        enddo       

       

      do i=0, M-1 

          open(13,file = 't12'//label//'.txt') 

          write(13,*) xcell(i), Unew(i) !,dabs(Uext(i)- Unew(i))  

                                        

      enddo 

      close(13) 

      END    

       

       

       

      subroutine BWfi (teta_imh, teta_iph, w_imh,w_iph,s_imh,s_iph 

     &                                            ,Um2,Um1,Uo,Up1,Up2) 

         

        double precision teta_imh,teta_iph,s_imh,s_iph 

        double precision w_imh,w_iph ,Um2,Um1,Uo,Up1,Up2 

        double precision, parameter:: ep=0.001d0  

         

        if(w_imh == 0.0d0) then 

          if ( s_imh .GT. 0.0d0) then 

            teta_imh = (Um1-Um2)/ep 

          else 

            teta_imh = (Up1-Uo)/ep 

          endif 

           

        else   

          if ( s_imh .GT. 0.0d0) then 

            teta_imh = (Um1-Um2)/w_imh 

          else 

            teta_imh = (Up1-Uo)/w_imh 

          endif 

        endif 

         

        if(w_iph == 0.0d0) then 

          if ( s_iph .GT. 0.0d0) then 

            teta_iph = (Uo-Um1)/ep 

          else 

            teta_iph = (Up2-Up1)/ep 

          endif 

           

        else   

          if ( s_iph .GT. 0.0d0) then 

            teta_iph = (Uo-Um1)/w_iph 

          else 

            teta_iph = (Up2-Up1)/w_iph 

          endif 
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        endif 

         

      end subroutine 

       

       

      double precision FUNCTION minmod(a,b) 

        double precision,intent(in)::a,b  

        double precision c 

         

        if (a*b>0) then 

            if (dabs(a)<dabs(b)) then 

                c=a 

            else 

                c=b 

            endif 

        else 

            c=0 

        endif 

        minmod=c 

      end        
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