YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BORU İTME YÖNTEMİNDE DİRENÇLER VE DEPLASMANLAR

İnşaat. Yük. Müh. Doğan ÇETİN

FBE İnşaat Mühendisliği Anabilim Dalı Geoteknik Programında Hazırlanan

DOKTORA TEZİ

Tez Savunma Tarihi	: 03 Kasım 2009
Tez Danışmanı	: Prof. Dr. Sönmez YILDIRIM (YTÜ)
Jüri Üyeleri	: Prof. Dr. Kutay ÖZAYDIN(YTÜ)
	: Prof. Dr. Ahmet SAĞLAMER(İTÜ)
	: Prof. Dr. Mete İNCECİK(İTÜ)
	: Doç. Dr. Mehmet BERİLGEN(YTÜ)

İSTANBUL, 2009

İÇİNDEKİLER

		Sayfa
SİMGE I	LİSTESİ	v
KISALT	MA LİSTESİ	vii
ŞEKİL L	İSTESİ	viii
ÇİZELG	E LİSTESİ	xiii
ÖZET		xviii
ABSTRA	АСТ	xix
1.	GİRİŞ	1
2.	BORU İTME YÖNTEMİ	2
2.1	Boru İtmenin Tarihcesi	
2.2	Boru İtmenin Bilesenleri	4
2.2.1	Tiinel Avnası	4
2.2.2	Hat	5
2.2.3	İtme Saftları	5
2.2.3	Kazılan Zeminin Tünelden Cıkarılması	
2.2.1	Yüzev Ekinmanları	6
2.2.3	Boru itme Vönteminin Olumlu Vanları	
2.5	Boru itme Yönteminin Kışıtlamaları	
2.4	Boru İtme İsleminde İtme Kuyyetleri	
2.5	İtmə Kuyyatlarinə Karşı Oluşan Dirənçlar	
2.0	Ciris Dironoi	0 Q
2.0.1	Sürtünma Diranai	
2.0.2	Sürtünme Direnclerine Etki Eden Etkenler	
2.0.3	Zemin Duraylılığı	
2.0.3.1	Kazı Fazlasının Boyutu	
2.0.3.2	Razi Paziasilili Doyutu Bentonit Enjeksiyonu Etkisi	
2.0.3.3	Born Doğrultuşunun Değişmeşi	
2.0.3.4	Durma	
3.	ŞİLE UYGULAMASI	
4.	LABORATUAR DENEYLERİ	
4.1	Atterberg Limitleri	
4.2	UU Denevleri	
4.3	Hidrometre Denevleri	
4.4	Piknometre Denevleri	
5		00
э.	MATEMATIK WUDEL VE GKAFIK ANALIZLERI	

5.1	Matematik Model	
5.2	Zemin Modellemesi ve Grafik Analizleri	
5.2.1	PJ 5-PJ 4 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.2	PJ 5-PJ 6 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.3	PJ 10-PJ 6 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.4	PJ 10-PJ 13 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.5	PJ 14-PJ 13 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.6	PJ 14-PJ 17 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.7	PJ 17-PJ 19 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.8	PJ 19-PJ 21 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.9	PJ 21-PJ 24 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.10	PJ 24-PJ 25 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.11	PJ 25-PJ 27 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.12	PJ 28-PJ 27 Arası Zemin Modellemesi ve Grafik Analizi	
5.2.13	PJ 28-PJ 30 Arası Zemin Modellemesi ve Grafik Analizi	
5.3	α- C _u İlişkişi ile İlgili Değerlendirmeler	
5.4	Grafik Analizleri İle İlgili Değerlendirmeler	
6		65
0.		
6.1	Plaxis Üç Boyutlu Tünel Programı	65
6.2	PJ 28-PJ 27 Arası Üç Boyutlu Sayısal Modelleme	
6.2.1	Elastisite Modülünün Etkisi	
6.3	PJ 14-PJ 13 Arası Üç Boyutlu Sayısal Modelleme	
6.4	PJ 24-PJ 25 Arası Üç Boyutlu Sayısal Modelleme	
6.5	PJ 10-PJ 6 Arası Üç Boyutlu Sayısal Modelleme	
6.6	PJ 10-PJ 13 Arası Üç Boyutlu Sayısal Modelleme	
6.7	PJ 14-PJ 17 Arası Üç Boyutlu Sayısal Modelleme	
6.8	PJ 17-PJ 19 Arası Üç Boyutlu Sayısal Modelleme	
6.9	PJ 19-PJ 21 Arası Üç Boyutlu Sayısal Modelleme	
6.10	PJ 21-PJ 24 Arası Üç Boyutlu Sayısal Modelleme	
6.11	PJ 28-PJ 30 Arası Üç Boyutlu Sayısal Modelleme	
6.12	PJ 5-PJ 4 Arası Üc Boyutlu Sayısal Modelleme	
6.13	PJ 5-PJ 6 Arası Üç Boyutlu Sayısal Modelleme	
6.14	PI 14-PI 17 Arası Bentonit Etkisinin Arastırılması İcin Modelleme	140
615	PI 17-PI 19 Arası Bentonit Etkisinin Arastırılması İçin Modelleme	142
6.16	PI 21-PI 24 Arası Bentonit Etkisinin Araştırılması İçin Modelleme	145
6.17	Üç Boyutlu Sayısal Modelleme Sonrası Değerlendirmeler	
7.	YÜZEY HAREKETLERİ	
7.1	PJ 14-PJ 13 Arası Yüzev Hareketleri	156
7.2	PJ 5-PJ 4 Arası Yüzev Hareketleri	
8	SONUCI AR	168
0.	JOI 10 ÇLI M	
KAYNAI	KLAR	
EKLER		
EK 1 UU	Denevi Gerilme-Sekil Değistirme Grafikleri	
	, <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u> , <u>,</u>	

EK 1.1 PJ 4 Şaftı UU Deneyi	
EK 1.2 PJ 5 Şaftı UU Deneyi	
EK 1.3 PJ 6 Şaftı UU Deneyi	
EK 1.4 PJ 10 Şaftı UU Deneyi	
EK 1.5 PJ 13 Şaftı UU Deneyi	
EK 1.6 PJ 14 Şaftı UU Deneyi	
EK 1.7 PJ 14-PJ 17 Şaftları Arası UU Deneyi	
EK 1.8 PJ 17 Şaftı UU Deneyi	
EK 1.9 PJ 17-PJ 19 Şaftları Arası UU Deneyi	
EK 1.10 PJ 19 Şaftı UU Deneyi	
EK 1.11 PJ 19-PJ 21 Şaftları Arası UU Deneyi	
EK 1.12 PJ 21 Şaftı UU Deneyi	
EK 1.13 PJ 24 Şaftı UU Deneyi	
EK 1.14 PJ 25 Şaftı UU Deneyi	190
EK 1.15 PJ 25-PJ 27 Şaftları Arası UU Deneyi	190
EK 1.16 PJ 27 Şaftı UU Deneyi	191
EK 1.17 PJ 28 Şaftı UU Deneyi	192
EK 1.18 PJ 30 Şaftı UU Deneyi	192
EK 2 Hidrometre Deneyleri	193
EK 2.1 DI / Safti Hidrometre Denevi	103
EK 2.2 PI 5 Safti Hidrometre Denevi	
EK 2.2 I J 5 Şafti Hidrometre Deneyi	194 194
EK 2.4 PI 10 Safti Hidrometre Deneyi	1)+ 105
EK 2.5 PI 13 Safti Hidrometre Denevi	195
EK 2.6 PI 14 Safti Hidrometre Denevi	190
EK 2.7 PI 14-PI 17 Saftlari Arasi Hidrometre Denevi	190
EK 2.8 PI 17 Safti Hidrometre Denevi	1)7
EK 2.9 PI 17-PI 19 Saftları Arası Hidrometre Denevi	190
EK 2.9 19 17 19 19 Şattarı Atası Harometre Deneyi	190
FK 2 11 PI 19-PI 21 Saftları Araşı Hidrometre Denevi	200
EK 2.17 PJ 19 21 Şartıarı Anası Masi Maiometre Deneyi	200
FK 2 13 PI 24 Safti Hidrometre Denevi	200
EK 2.13 PJ 21 Şaftı Hidrometre Deneyi	202
EK 2 15 PI 25-PI 27 Saftları Araşı Hidrometre Denevi	202
EK 2.16 PJ 27 Safti Hidrometre Denevi	203
EK 2 17 PL 28 Safti Hidrometre Denevi	203
EK 2.18 PJ 30 Şaftı Hidrometre Deneyi	
EK 3 Üsküdar Caddesi Boru İtme İşi İş Sonu Projesi	
ÖZGEÇMİŞ	

SİMGE LİSTESİ

С	Boru üstü zemin örtü kalınlığı
C_u	Drenajsız kayma dayanımı
D_e	Boru dış çapı
D_s	Tünel makinesi dış çapı
е	Zeminin boşluk oranı
E'	Zeminin drenajlı elastisite modülü
E_u	Zeminin drenajsız durumda elastisite modülü
F	Sürtünme kuvveti
f_s	Sürtünme direnci
G_s	Zeminin özgül yoğunluğu
K_0	Sükunetteki toprak basıncı katsayısı
L	Uzunluk
LL	Likit limit
ΔL	İki nokta arasındaki itme uzunluğu farkı
Ν	SPT sayisi
PI	Plastik indeks
PL	Plastik limit
P_s	Tünel aynası destek direnci
P_T	İtme kuvveti
ΔP_T	İki nokta arasındaki itme kuvveti farkı
R	Kazı fazlası oranı
R_a	Ortalama yüzey pürüzlülük sayısı
R_p	Giriş direnci
S	Zeminin suya doygunluk oranı
S_u	Drenajsız kayma dayanımı
T_c	Duraylılık sayısı
T_s	Sürşarj yükü olması durumunda duraylılık katsayısı
T_γ	Duraylılık sayısı
W	Zeminin doğal su muhtevası
α	Adezyon katsayısı
З	Şekil değiştirme oranı
γd	Zeminin doygun birim hacim ağırlığı
γ_k	Zeminin kuru birim hacim ağırlığı

- γ_w Suyun birim hacim ağırlığı
- σ_3 UU deneyinde uygulanan hücre basıncı
- σ_v Zemin içinde bir noktadaki düşey gerilme
- $\sigma_{\%50}$ Deviatorik gerilmenin % 50' sine karşılık gelen gerilme
- σ_T Tünel aynası destek gerilmesi
- *v* Poisson oranı

KISALTMA LİSTESİ

PJ	Boru İtme Şaftı
TBM	Tünel Açma Makinesi
UU	Drenajsız Konsalidasyonsuz Üç Eksenli Basınç Deneyi

ŞEKİL LİSTESİ

Şekil 2.1 Boru itme çalışma düzeni	2
Şekil 2.6.3.2 Tünel duraylılığı sayısı T_{γ} ile drenajlı içsel sürtünme açısı arasındaki ilişki 1	1
Şekil 2.6.3.4 Tünel duraylılığı sayısı Ts ile drenajlı içsel sürtünme açısı arasındaki ilişki- sış	ğ
derinlik -şürşarj var12	2
Şekil 2.6.3.5 Kohezyonlu zeminlerde yüzey duraylılık oranı(Atkinson ve Mair den sonra	۱,
1981)	3
Şekil 2.6.3.6 Boru doğrultusunun değişmesi sonucu borular üzerinde oluşan radyal gerilme	e
dağılımı değişimleri(Norris' ten sonra,1992)1	5
Şekil 3.1 Üsküdar caddesi boru itme işi vaziyet planı1	7
Şekil 5.1.1 Boru itme işlemi sırasında oluşan kuvvetlerin tanımı(Pellet-Beaucour, R. Kastner	•,
2002)	3
Şekil 5.2.1.1 PJ 4-PJ 5 şaftları arası zemin modellemesi	4
Şekil 5.2.1.2 PJ 4-PJ 5 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği2	5
Şekil 5.2.2.1 PJ 5-PJ 6 şaftları arası zemin modellemesi2'	7
Şekil 5.2.2.2 PJ 5-PJ 6 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği2	8
Şekil 5.2.3.1 PJ 10-PJ 6 şaftları arası zemin modellemesi	9
Şekil 5.2.3.2 PJ 10-PJ 6 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	0
Şekil 5.2.4.1 PJ 10-PJ 13 şaftları arası zemin modellemesi	1
Şekil 5.2.4.2 PJ 10-PJ 13 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	2
Şekil 5.2.5.1 PJ 14-PJ 13 şaftları arası zemin modellemesi	3
Şekil 5.2.5.2 PJ 14-PJ 13 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	4
Şekil 5.2.6.1 PJ 14- PJ 17 şaftları arası zemin modellemesi	5
Şekil 5.2.5.2 PJ 14-PJ 17 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	б
Şekil 5.2.7.1 PJ 17-19 şaftları arası zemin modellemesi	7
Şekil 5.2.7.2 PJ 17-19 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	9
Şekil 5.2.8.1 PJ 19-21 şaftları arası zemin modellemesi4	1
Şekil 5.2.8.2 PJ 19-21 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği42	2
Şekil 5.2.9.1 PJ 21-24 şaftları arası zemin modellemesi	3
Şekil 5.2.9.2 PJ 21-24 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	4
Şekil 5.2.10.1 PJ 24-PJ 25 arası zemin modellemesi4	5
Şekil 5.2.10.2 PJ 24-PJ 25 şaftaları arası itme kuvvetlerinin aralıkla değişim grafiği4	б
Şekil 5.2.11.1 PJ 25-PJ 27 arası zemin modellemesi4	7
Şekil 5.2.11.2 PJ 25-PJ 27 şaftaları arası itme kuvvetlerinin aralıkla değişim grafiği44	8

Şekil 5.2.12.1 PJ 27-PJ 28 şaftları arası zemin modellemesi	49
Şekil 5.2.12.2 PJ 28-PJ 27 şaftları arası itme kuvvetlerinin aralıkla değişimi	50
Şekil 5.2.13.1 PJ 28-PJ 30 şaftları arası zemin modellemesi	51
Şekil 5.2.13.2 PJ 28-PJ 30 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği	52
Şekil 5.4.1 PJ 14-PJ 17 arası itme kuvvetlerinin aralıkla değişim grafiğinin arıza sor	ırası
değerlendirilmesi	55
Şekil 5.4.2 PJ 17-PJ 19 arası itme kuvvetlerinin aralıkla değişim grafiğinin arıza sor	ırası
değerlendirilmesi	56
Şekil 6.2.1 PJ 27 şaftı gerilme-şekil değiştirme grafiği	67
Şekil 6.2.2 PJ 28 şaftı gerilme-şekil değiştirme grafiği	67
Şekil 6.2.3 PJ 28-PJ 27 arası tünel geometrisi	70
Şekil 6.2.4 PJ 28-PJ 27 arası tünel geometrisi ve kullanılan malzeme isimleri	71
Şekil 6.2.5 PJ 28-PJ 27 arası iki boyutlu sonlu elemanlar ağı	71
Şekil 6.2.6 PJ 28-PJ 27 arası üç boyutlu sonlu elemanlar ağı için z-doğrultusunda dilimler.	72
Şekil 6.2.7 PJ 28-PJ 27 arası üç boyutlu sonlu elemanlar ağı	72
Şekil 6.2.8 PJ 28-PJ 27 arası hesap dilimleri	73
Şekil 6.2.9 PJ 28-PJ 27 arası itme kuvvetlerinin modellenmesi	74
Şekil 6.2.10 PJ 28-PJ 27 arası TBM basıncının modellenmesi	75
Şekil 6.2.11 PJ 28-PJ 27 arası itme kuvvetleri ve TBM basıncının birlikte mod	elde
görünüşü(hesap adımı 2)	75
Şekil 6.2.12 PJ 28-PJ 27 arası TBM basıncının modelde görünüşü	76
Şekil 6.2.13 PJ 28-PJ 27 arası itme kuvvetlerinin modelde görünüşü	76
Şekil 6.2.14 PJ 28-27 arası hesap aşaması 1.adım 1.dilimin kazısının modellenmesi	77
Şekil 6.2.15 PJ 28-PJ 27 arası beton borunun modellenmesi	77
Şekil 6.2.16 PJ 28-PJ 27 arası deforme olmuş üç boyutlu mesh diyagram	78
Şekil 6.2.18 PJ 28-PJ 27 arası I-I kesiti gerilmeler dağılımı	84
Şekil 6.2.19 PJ 28-PJ 27 arası II-II kesiti gerilmeler dağılımı	84
Şekil 6.2.20 PJ 28-PJ 27 arası III-III kesiti gerilmeler dağılımı	85
Şekil 6.3.1 PJ 13 şaftı gerilme-şekil değiştirme grafiği	89
Şekil 6.3.2 PJ 14 şaftı gerilme-şekil değiştirme grafiği	90
Şekil 6.3.3 PJ 14-PJ 13 arası üç boyutlu sonlu elemanlar ağı	92
Şekil 6.3.4 PJ 14-PJ 13 arası hesap dilimleri	92
Şekil 6.3.5 PJ 14-PJ 13 arası deforme olmuş üç boyutlu sonlu elemanlar ağı	95
Şekil 6.3.6 PJ 14-PJ 13 arası tünel formundan alınan kesitler	95
Şekil 6.3.7 PJ 14-PJ 13 arası I-I kesiti gerilme dağılımı	96

Şekil 6.3.8 PJ 14-PJ 13 arası II-II kesiti gerilme dağılımı	96
Şekil 6.3.9 PJ 14-PJ 13 arası III-III kesiti gerilme dağılımı	96
Şekil 6.4.1 PJ 24 şaftı gerilme-şekil değiştirme grafiği	99
Şekil 6.4.2 PJ 25 şaftı gerilme-şekil değiştirme grafiği	100
Şekil 6.4.3 PJ 24-PJ 25 arası için üç boyutlu sonlu elemanlar ağı	102
Şekil 6.4.4 PJ 24-25 arası 0-18 m için hesap dilimleri	102
Şekil 6.4.5 PJ 24-25 arası 0-18 metre İçin I-I kesiti gerilme dağılımları görünüşü	103
Şekil 6.4.6 PJ 24-25 arası 0-18 metre için II-II kesiti gerilme dağılımları görünüşü	103
Şekil 6.4.7 PJ 24-25 arası 0-18 metre için III-III kesiti gerilme dağılımları görünüşü	103
Şekil 6.4.8 PJ 24-25 arası 18-36 m aralığı İçin hesap dilimleri	104
Şekil 6.4.9 PJ 24-25 arası 18-36 metre için I-I kesiti gerilme dağılımları görünüşü	104
Şekil 6.4.10 PJ 24-25 arası 18-36 metre için II-II kesiti gerilme dağılımları görünüşü	105
Şekil 6.4.11 PJ 24-25 arası 18-36 metre için III-III kesiti gerilme dağılımları görünüşü	105
Şekil 6.4.12 PJ 24-25 arası 36-54 m aralığı için hesap dilimleri	106
Şekil 6.4.13 PJ 24-25 için deforme olmuş üç boyutlu sonlu elemanlar ağı	106
Şekil 6.4.14 PJ 24-25 arası 36-54 metre için I-I Kesiti gerilme dağılımları görünüşü	107
Şekil 6.4.15 PJ 24-25 arası 36-54 metre için II-II kesiti gerilme dağılımları görünüşü	107
Şekil 6.4.16 PJ 24-25 arası 36-54 metre için III-III kesiti gerilme dağılımları görünüşü	107
Şekil 6.5.1 PJ 10 şaftı gerilme-şekil değiştirme grafiği	110
Şekil 6.5.2 PJ 10-PJ 6 arası I-I kesiti gerilme dağılımları görünüşü	113
Şekil 6.5.3 PJ 10-PJ 6 arası II-II kesiti gerilme dağılımları görünüşü	113
Şekil 6.5.4 PJ 10-PJ 6 arası III-III kesiti gerilme dağılımları görünüşü	113
Şekil 6.6.1 PJ 10-PJ 13 arası I-I kesiti gerilme dağılımları görünüşü	116
Şekil 6.6.2 PJ 10-PJ 13 arası II-II kesiti gerilme dağılımları görünüşü	116
Şekil 6.6.3 PJ 10-PJ 13 arası III-III kesiti gerilme dağılımları görünüşü	116
Şekil 6.7.1 PJ 14-PJ 17 arası I-I kesiti gerilme dağılımları görünüşü	119
Şekil 6.7.2 PJ 14-PJ 17 arası II-II kesiti gerilme dağılımları görünüşü	119
Şekil 6.7.3 PJ 14-PJ 17 arası III-III kesiti gerilme dağılımları görünüşü	119
Şekil 6.8.1 PJ 19 şaftı gerilme-şekil değiştirme grafiği	120
Şekil 6.8.2 PJ 17-PJ 19 arası I-I kesiti gerilme dağılımları görünüşü	123
Şekil 6.8.3 PJ 17-PJ 19 arası II-II kesiti gerilme dağılımları görünüşü	123
Şekil 6.8.4 PJ 17-PJ 19 arası III-III kesiti gerilme dağılımları görünüşü	123
Şekil 6.9.1 PJ 19-PJ 21 arası I-I kesiti gerilme dağılımları görünüşü	126
Şekil 6.9.2 PJ 19-PJ 21 arası II-II kesiti gerilme dağılımları görünüşü	126
Şekil 6.9.3 PJ 19-PJ 21 arası III-III kesiti gerilme dağılımları görünüşü	126

Şekil 6.10.1 PJ 21-PJ 24 arası I-I kesiti gerilme dağılımları görünüşü	129
Şekil 6.10.2 PJ 21-PJ 24 arası II-II kesiti gerilme dağılımları görünüşü	129
Şekil 6.10.3 PJ 21-PJ 24 arası III-III kesiti gerilme dağılımları görünüşü	129
Şekil 6.11.2 PJ 28-PJ 30 arası I-I kesiti gerilme dağılımları görünüşü	132
Şekil 6.11.3 PJ 28-PJ 30 arası II-II kesiti gerilme dağılımları görünüşü	132
Şekil 6.11.4 PJ 28-PJ 30 arası III-III kesiti gerilme dağılımları görünüşü	132
Şekil 6.12.1 PJ 5 şaftı gerilme-şekil değiştirme grafiği	133
Şekil 6.12.2 PJ 5-PJ 4 arası I-I kesiti gerilme dağılımları görünüşü	134
Şekil 6.12.3 PJ 5-PJ 4 arası II-II kesiti gerilme dağılımları görünüşü	135
Şekil 6.12.4 PJ 5-PJ 4 arası III-III kesiti gerilme dağılımları görünüşü	135
Şekil 6.13.1 PJ 5-PJ 6 arası I-I kesiti gerilme dağılımları görünüşü	137
Şekil 6.13.2 PJ 5-PJ 6 arası II-II kesiti gerilme dağılımları görünüşü	138
Şekil 6.13.3 PJ 5-PJ 6 arası III-III kesiti gerilme dağılımları görünüşü	138
Şekil 6.14.1 PJ 14-PJ 17 arası gerilme değerleri karşılaştırılması	142
Şekil 6.15.1 PJ 17-19 arası gerilme değerleri karşılaştırılması	145
Şekil 6.16.1 PJ 21-24 arası gerilme değerleri karşılaştırılması	147
Şekil 6.17.1 PJ 28-27 şaftları arası ime kuvvetleri grafiği yeni durum için değerlendirmes	si 149
Şekil 6.17.2 PJ 5-4 arası itme kuvvetleri grafiği yeniden değerlendirmesi	152
Şekil 6.17.3 PJ 5-4 arası itme kuvvetleri grafiği yeniden değerlendirmesi	154
Şekil 7.1.1 PJ 14-PJ 13 arası yüzey hareketi ölçüm noktaları	156
Şekil 7.1.2 PJ 14-PJ 13 arası modelleme sonrası yüzey hareketi	158
Şekil 7.1.3 PJ 14-PJ 13 arası modelleme sonrası 3.metre yüzey hareketi	159
Şekil 7.1.4 PJ 14-PJ 13 arası modelleme sonrası 6.metre yüzey hareketi	159
Şekil 7.1.5 PJ 14-PJ 13 arası 18.metre yüzey hareketi	160
Şekil 7.1.6 PJ 14-PJ 13 arası modelleme sonrası 30.metre yüzey hareketi	160
Şekil 7.1.7 PJ 14-PJ 13 arası 39.metre yüzey hareketi	161
Şekil 7.1.8 PJ 14-PJ 13 arası modelleme sonrası 54.metre yüzey hareketi	161
Şekil 7.2.1 PJ 5-4 arası yüzey hareketi ölçüm noktaları	162
Şekil 7.2.2 PJ 5-PJ 4 arası modelleme sonrası yüzey hareketi	164
Şekil 7.2.3 PJ 5-PJ 4 arası modelleme sonrası başlangıç yüzey hareketi	164
Şekil 7.2.4 PJ 5-PJ 4 arası modelleme sonrası 15.metre yüzey hareketi	165
Şekil 7.2.5 PJ 5-PJ 4 arası modelleme sonrası 42.metre yüzey hareketi	165
Şekil 7.2.6 PJ 5-PJ 4 arası modelleme sonrası 54.metre yüzey hareketi	166
Şekil Ek 1.1.1 PJ 4 şaftı UU deneyi gerilme şekil değiştirme grafiği	181
Şekil Ek 1.2.1 PJ 4 şaftı UU deneyi gerilme şekil değiştirme grafiği	182

Şekil Ek 1.3.1 PJ 6 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.4.1 PJ 10 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.5.1 PJ 13 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.6.1 PJ 14 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.7.1 PJ 14-PJ 17 şaftları arası UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.8.1 PJ 17 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.9.1 PJ 17-PJ 19 şaftları arası UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.10.1 PJ 19 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.11.1 PJ 19-PJ 21 şaftları arası UU deneyi gerilme şekil değiştirme grafiğ	ģi 188
Şekil Ek 1.12.1 PJ 21 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.13.1 PJ 24 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.14.1 PJ 25 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.15.1 PJ 25-PJ 27 şaftları arası UU deneyi gerilme şekil değiştirme grafiğ	ģi 191
Şekil Ek 1.16.1 PJ 27 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.17.1 PJ 28 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 1.18.1 PJ 30 şaftı UU deneyi gerilme şekil değiştirme grafiği	
Şekil Ek 2.1.1 PJ 4 şaftı hidrometre deney sonucu	
Şekil Ek 2.2.1 PJ 5 şaftı hidrometre deney sonucu	
Şekil Ek 2.3.1 PJ 6 şaftı hidrometre deney sonucu	
Şekil Ek 2.4.1 PJ 10 şaftı hidrometre deney sonucu	
Şekil Ek 2.5.1 PJ 13 şaftı hidrometre deney sonucu	
Şekil Ek 2.6.1 PJ 14 şaftı hidrometre deney sonucu	
Şekil Ek 2.7.1 PJ 14-PJ 17 şaftları arası hidrometre deney sonucu	
Şekil Ek 2.8.1 PJ 17 şaftı hidrometre deney sonucu	
Şekil Ek 2.9.1 PJ 17-PJ 19 şaftları arası hidrometre deney sonucu	
Şekil Ek 2.10.1 PJ 19 şaftı hidrometre deney sonucu	
Şekil Ek 2.11.1 PJ 19-PJ 21 şaftları arası hidrometre deney sonucu	
Şekil Ek 2.12.1 PJ 21 şaftı hidrometre deney sonucu	
Şekil Ek 2.13.1 PJ 24 şaftı hidrometre deney sonucu	
Şekil Ek 2.14.1 PJ 25 şaftı hidrometre deney sonucu	
Şekil Ek 2.15.1 PJ 25-PJ 27 şaftları arası hidrometre deney sonucu	
Şekil Ek 2.16.1 PJ 27 şaftı hidrometre deney sonucu	
Şekil Ek 2.17.1 PJ 28 şaftı hidrometre deney sonucu	
Şekil Ek 2.18.1 PJ 30 şaftı hidrometre deney sonucu	

ÇİZELGE LİSTESİ

Çizelge 2.6.1 Farklı zeminler için sükunetteki toprak basıncı katsayısı(K ₀)(Thom	son,1993)8
Çizelge 2.6.2 SPT sayılarına göre destek direnci(Thomson,1993)	9
Çizelge 2.6.3 Çeşitli zeminler için sürtünme dirençleri(Craig' den sonra, 19	83 ve Stein
vd.1989)	10
Çizelge 4.1 Zemin örneği alınan yerler	18
Çizelge 4.1.1 Atterberg deney sonuçları	19
Çizelge 4.2.1 UU deney sonuçları	20
Çizelge 4.3.1 Hidrometre deneyleri sonuçları	21
Çizelge 4.4.1 Piknometre deneyleri sonuçları	
Çizelge 5.2.1.1 PJ 4-PJ 5 şaftları arası zemin özellikleri	25
Çizelge 5.2.2.1 PJ 5-PJ 6 şaftları arası zemin özellikleri	
Çizelge 5.2.2.2 PJ 5-PJ 6 arası grafik analizi sonuçları	29
Çizelge 5.2.3.1 PJ 10-PJ 6 şaftları arası zemin özellikleri	
Çizelge 5.2.3.2 PJ 10-PJ 6 arası grafik analizi sonuçları	
Çizelge 5.2.4.1 PJ 10-PJ 13 şaftları arası zemin özellikleri	
Çizelge 5.2.4.2 PJ 10-PJ 13 arası grafik analizi sonuçları	
Çizelge 5.2.5.1 PJ 14-PJ 13 şaftları arası zemin özellikler	
Çizelge 5.2.5.2 PJ 14-PJ 13 arası grafik analizi sonuçları	
Çizelge 5.2.6.1 PJ 14-PJ 17 şaftları arası zemin özellikleri	
Çizelge 5.2.6.2 PJ 14-PJ 17 arası grafik analizi sonuçları	
Çizelge 5.2.7.1 PJ 17-PJ 19 şaftları arası zemin özellikleri	
Çizelge 5.2.7.2 PJ 17-PJ 19 arası grafik analizi sonuçları	40
Çizelge 5.2.8.1 PJ 19-PJ 21 şaftları arası zemin özellikleri	
Çizelge 5.2.8.2 PJ 19-PJ 21 arası grafik analizi sonuçları	43
Çizelge 5.2.9.1 PJ 21-PJ 24 şaftları arası zemin özellikleri	44
Çizelge 5.2.9.2 PJ 21-PJ 24 arası grafik analizi sonuçları	45
Çizelge 5.2.10.1 PJ 24-PJ 25 şaftları arası zemin özellikleri	46
Çizelge 5.2.10.2 PJ 25-PJ 24 arası grafik analizi sonuçları	47
Çizelge 5.2.11.1 PJ 25-PJ 27 şaftları arası zemin özellikleri	
Çizelge 5.2.11.2 PJ 25-PJ 24 arası grafik analizi sonuçları	49
Çizelge 5.2.12.1 PJ 27-PJ 28 şaftları arası zemin özellikleri	
Çizelge 5.2.12.2 PJ 25-PJ 24 arası grafik analizi sonuçları	51
Çizelge 5.2.13.1 PJ 28-PJ 30 şaftları arası zemin özellikleri	

Çizelge 5.2.13.2 PJ 28-PJ 30 arası grafik analizi sonuçları	. 53
Çizelge 5.3.1 α değerlerinin büyükten küçüğe sıralanmış durumu	. 54
Çizelge 5.3.2 α değerinin dağılımlı ortalamasının hesabı	. 54
Çizelge 5.4.1 İtme Aralıklarında ölçülen en büyük itme kuvvetleri	. 57
Çizelge 5.4.2 PJ 21-PJ 24, PJ 17- PJ 19 ve PJ 14-PJ 17 ile PJ 10-PJ 6 ve PJ 10-PJ	13
aralıklarının itme kuvvetleri yönünden karşılaştırılması	. 58
Çizelge 5.4.3 PJ 25-PJ 27 ve PJ 28-PJ 30 ile PJ 5-PJ 4 ve PJ PJ 5-PJ 6 aralıklarının it	tme
kuvvetleri yönünden karşılaştırılması	. 58
Çizelge 5.4.4 Bentonit uygulaması yapılmayan bölümler için hesaplanan gerilme değerleri	. 59
Çizelge 5.4.5 Bentonit uygulaması yapılan bölümler için hesaplanan gerilme değerleri	. 59
Çizelge 5.4.7 PJ 5-PJ 4 ile PJ 25-PJ 27 arası hesaplanan gerilmelerin karşılaştırılması	. 61
Çizelge 5.4.8 PJ 10-PJ 6 ile PJ 17-PJ 19 arası hesaplanan gerilmelerin karşılaştırılması	. 61
Çizelge 5.4.9 PJ 10-PJ 13 ile PJ 17-PJ 19 arası hesaplanan gerilmelerin karşılaştırılması	. 62
Çizelge 5.4.10 PJ 10-PJ 13 ile PJ 14-PJ 17 arası hesaplanan gerilmelerin karşılaştırılması	. 62
Çizelge 5.4.11 Giriş ve sürtünme dirençleri(Marshall,1998)	. 63
Çizelge 5.4.12 Boru itme işleminde bentonit kullanımının etkisi(Pellet-Beaucor, R.Kestr	ner,
2002)	. 64
Çizelge 6.2.1 PJ 28-PJ 27 arası modellemede kullanılan zemin parametreleri	. 69
Çizelge 6.2.2 PJ 28-PJ 27 arası modellemede kullanılan beton özellikleri	. 69
Çizelge 6.2.3 PJ 28-PJ 27 arası hesap adımları	.73
Çizelge 6.2.4 PJ 28-27 arası modellemede uygulanan itme kuvveti gerilmeleri	.74
Çizelge 6.2.5 R=0,23 değeri kullanılarak elde edilen gerilme değerleri	. 79
Çizelge 6.2.6 Analiz ile modelleme sonuçlarının karşılaştırılması	. 80
Çizelge 6.2.7 R=0,40 değeri kullanılarak elde edilen gerilme değerleri	. 81
Çizelge 6.2.8 R=0,60 değeri kullanılarak elde edilen gerilme değerleri	. 82
Çizelge 6.2.9 R=0,80 değeri kullanılarak elde edilen gerilme değerleri	. 83
Çizelge 6.2.10 Bütün R değerleri ile elde edilen gerilme değerlerinin karşılaştırılması	. 83
Çizelge 6.2.1.1 PJ 28-27 arası yeni E değerleri için yapılan modellemede kullanılan zer	nin
parametreleri	. 87
Çizelge 6.2.1.2 PJ 28-27 arası yeni durum için üç kesitin gerilme değerleri	. 88
Çizelge 6.2.1.3 Farklı E değerleri için elde edilen sonuçların karşılaştırılması	. 88
Çizelge 6.3.1 PJ 14-13 arası modellemede kullanılan zemin parametreleri	.91
Çizelge 6.3.2 PJ 14-13 arası modellemede kullanılan beton özellikleri	.91
Çizelge 6.3.3 PJ 14-PJ 13 arası hesap adımları	. 93
Çizelge 6.3.4 PJ 14-PJ 13 arası modellemede uygulanan itme kuvveti gerilmeleri	. 94

Çizelge 6.3.5 PJ 14-PJ 13 arası 0-23 m aralığı gerilmeleri	97
Çizelge 6.3.6 PJ 14-PJ 13 arası 24-37 m aralığı gerilmeleri	98
Çizelge 6.3.7 PJ 14-PJ 13 arası 37-59 m aralığı gerilmeleri	98
Çizelge 6.4.1 PJ 24-PJ 25 arası modellemede kullanılan zemin parametreleri	101
Çizelge 6.4.2 PJ 24-PJ 25 arası modellemede kullanılan beton özellikleri	101
Çizelge 6.4.3 PJ 24-25 arası 0-18 m için hesap adımları	102
Çizelge 6.4.4 PJ 24-25 arası 18-36 m için hesap adımları	104
Çizelge 6.4.5 PJ 24-25 arası 36-54 m için hesap adımlar	106
Çizelge 6.4.6 PJ 24-25 arası 0-32 metre aralığı gerilmeleri	108
Çizelge 6.4.7 PJ 24-25 arası33-54 metre aralığı gerilmeleri	109
Çizelge 6.5.1 PJ 10-PJ 6 arası modellemede kullanılan zemin parametreleri	111
Çizelge 6.5.2 PJ 10-PJ 6 arası gerilme değerleri	112
Çizelge 6.6.1 PJ 10-PJ 13 arası modellemede kullanılan zemin parametreleri	114
Çizelge 6.6.2 PJ 10-PJ 13 arası gerilme değerleri	115
Çizelge 6.7.1 PJ 14-PJ 17 arası modellemede kullanılan zemin parametreleri	117
Çizelge 6.7.2 PJ 14-PJ 17 arası gerilme değerleri	118
Çizelge 6.8.1 PJ 17-PJ 19 arası modellemede kullanılan zemin parametreleri	121
Çizelge 6.8.2 PJ 17-PJ 19 arası gerilme değerleri	122
Çizelge 6.9.1 PJ 19-PJ 21 arası modellemede kullanılan zemin parametreleri	124
Çizelge 6.9.2 PJ 19-PJ 21 arası gerilme değerleri	125
Çizelge 6.10.1 PJ 21-PJ 24 arası modellemede kullanılan zemin parametreleri	127
Çizelge 6.10.2 PJ 21-PJ 24 arası gerilme değerleri	128
Çizelge 6.11.1 PJ 28-PJ 30 arası modellemede kullanılan zemin parametreleri	130
Çizelge 6.11.2 PJ 28-PJ 30 arası gerilme değerleri	131
Çizelge 6.12.1 PJ 5-PJ 4 arası modellemede kullanılan zemin parametreleri	134
Çizelge 6.12.2 PJ 5-PJ 4 arası gerilme değerleri	136
Çizelge 6.13.1 PJ 5-PJ 6 arası modellemede kullanılan zemin parametreleri	137
Çizelge 6.13.2 PJ 5-PJ 6 arası gerilme değerleri	139
Çizelge 6.14.1 PJ 14-PJ 17 arası 60 m' lik modellemede kullanılan zemin parametreleri	140
Çizelge 6.14.3 PJ 14-17 arası gerilme değerlerinin karşılaştırılması	142
Çizelge 6.15.1 PJ 14-PJ 17 arası 60 m' lik modellemede kullanılan zemin parametreleri	143
Çizelge 6.15.2 PJ 17-PJ 19 arası 30-60 m arası gerilme değerleri	143
Çizelge 6.15.3 PJ 17-PJ 19 arası gerilme değerlerinin karşılaştırılması	145
Çizelge 6.16.1 PJ 21-PJ 24 arası 30-60 m arası gerilme değerleri	146
Çizelge 6.16.2 PJ 21-PJ 24 arası gerilme değerlerinin karşılaştırılması	147

Çizelge 6.17.2 PJ 28-27 arası gerilmelerin yeni durum için karşılaştırılması	
Çizelge 6.17.3 PJ 14-13 arası gerilmelerin karşılaştırılması	
Çizelge 6.17.4 PJ 24-25 arası gerilmelerin karşılaştırılması	
Çizelge 6.17.5 PJ 10-PJ 6, PJ 10-PJ 13, PJ 14-PJ 17, PJ 17-PJ 19, PJ 19-PJ 21, PJ 2	1-PJ 24,151
PJ 28-PJ 30 arası gerilmelerin karşılaştırılması	
Çizelge 6.17.6 PJ 5-PJ 4 arası gerilmelerin karşılaştırılması	
Çizelge 6.17.7 PJ 5-PJ 4 arası gerilmelerin yeni durum için karşılaştırılması	
Çizelge 6.17.8 PJ 5-PJ 6 arası gerilmelerin karşılaştırılması	
Çizelge 6.17.9 PJ 5-PJ 6 arası gerilmelerin yeni durum için karşılaştırılması	
Çizelge 7.1.1 PJ 14-PJ 13 arası yüzey okuma değerleri	
Çizelge 7.2.1 PJ 5-PJ 4 arası yüzey okuma değerleri	
Çizelge 8.1 Yüzey pürüzlülüğü belirleme sonuçları(Staheli, Frost, İşçimen, 2006)	
Çizelge 8.2 PJ 14-13 arası gerilmelerin karşılaştırılması	
Çizelge 8.3 PJ 24-25 arası gerilmelerin karşılaştırılması	
Çizelge 8.4 PJ 10-PJ 6, PJ 10-PJ 13, PJ 14-PJ 17, PJ 17-PJ 19, PJ 19-PJ 21, PJ 21-F	y J 24, 174
PJ 28-PJ 30 arası gerilmelerin karşılaştırılması	
Çizelge 8.5 PJ 5-PJ 4 arası gerilmelerin karşılaştırılması	
Çizelge 8.6 PJ 5-PJ 6 arası gerilmelerin karşılaştırılması	
Çizelge 8.7 PJ 28-27 arası gerilmelerin karşılaştırılması	
Çizelge 8.8 PJ 28-PJ 27 aralığı için modellemede kullanılan E değerleri	
Çizelge 8.9 Farklı E değerleri için elde edilen sonuçların karşılaştırılması	

ÖNSÖZ

Sunumu yapılan bu çalışma ile Dünya da ve ülkemiz de son yıllar da geniş bir uygulama alanı bulan Boru İtme Teknolojisi incelenmiş ve yöntemin bütün yönleri tartışılarak ayrıntılı bir çalışma ortaya konulmuştur.

Beni doktora öğrencisi olarak kabul edip bu çalışmayı yapmama olanak sağlayan ve çalışmalarım esnasında bana her zaman engin bilgi ve tecrübesiyle yol gösteren değerli tez danışmanım Prof.Dr. Sayın Sönmez YILDIRIM' a teşekkürlerimi sunuyorum. Üç boyutlu modelleme çalışması sırasında gerek Plaxis programının kullanılmasında bana çok büyük kolaylıklar sağlayan aynı zaman da elde edilen sonuçların yorumlanmasında çok değerli katkıları olan Doç.Dr. Sayın Mehmet BERİLGEN' e, laboratuar deneylerinde yardımlarını esirgemeyen Arş.Gör. Sayın Tayfun ŞENGÜL' e, Plaxis programı için zaman zaman ekstra dongle temin ederek çalışmalarımda kolaylık sağlayan değerli Goegrup Yöneticilerine, çalışma sahasında zemin örneği alınmasında, ölçümlerin yapılmasında ve makine kayıtlarının temin edilmesinde büyük emekleri olan değerli mesai arkadaşlarım Kont.Tek. Ali Sait KÖYLÜ ve Harita Kont. Müh. Volkan TÜRKOĞLU' na teşekkürlerimi sunuyorum. Ayrıca tez çalışmam esnasında bana anlayışları ile destek olan çok değerli aileme de teşekkürü bir borç biliyorum.

KASIM 2009

Doğan ÇETİN

Bugüne kadar altyapı tesislerinin kurulumu, onarımı veya yenilenmesi geleneksel açık kazı yöntemiyle yapılmıştır. Teknolojideki ilerlemeler, çalışılacak çevre ile ilgili geoteknik bilgilerin toplanmasındaki gelişmeler, altyapı tesislerinin inşası sırasında geleneksel yöntemler nedeniyle oluşabilecek olumsuzlukları engelleyecek yeni yöntemlerin geliştirilmesi sonucunu doğurmuştur. Bu yeni yöntemin adı kazısız teknolojidir. Nüfusun artması ve değişen hayat tarzları nedeniyle özellikle şehirlerde altyapı sistemlerine olan talep artış eğilimindedir ve şehir alanları çevresel olarak hassas bölgelerdir. İnşa edilecek altyapı(boru hatları) güzergahında otoyollar, binalar, demiryolları, nehirler, dereler, kanallar gibi bir çok engel barındırmaktadır. İşte bu gibi engelleri aşabilmek için son yıllarda Dünyada ve Ülkemizde bir kazısız teknoloji olan Boru İtme Yöntemi önemli bir uygulama alanı kazanmıştır. Bu sistemle yapılması planlanan altyapı tesisleri açık kazıya gerek duyulmadan, hiçbir trafik sorununa, mal ve can emniyetini tehlikeye sokacak durumlara düşülmeden her türlü zemin koşullarında doğru, hızlı ve ekonomik şekilde inşa edilebilmektedir. Bu tez kapsamında Şile İlçesinde boru itme yöntemiyle inşa edilmiş 800 mm çapında 1535 m uzunluğundaki kollektör hattı incelenmiş, araziden makine yardımıyla alınan itme kuvveti kayıtları ile itme kuvveti-uzunluk grafikleri çizilmiştir. Bu grafiklerin analizi sonucunda a adezyon katsayılarının değişimi irdelenmiş ve kohezyonlu zeminlerde kullanılmak üzere sürtünme direncini ve dolayısıyla da karşılaşılacak olası itme kuvveti değerlerinin önceden tahmin etmeye yarayacak bir α değeri önerisi getirilmiştir. İncelenen bu hat Plaxis 3 Boyutlu Tünel programı yardımıyla arazi koşulları göz önüne alınarak modellenmiş ve modelleme sonucu elde edilen gerilme değerleri ile grafik analizleri sonucu elde edilen gerilme değerleri karşılaştırılarak görülen uyum veya uyumsuzluklar tartışılmış ve bu uyum veya uyumsuzluklara üzerinde etkili parametreler belirlenmiştir. Ayrıca itme işlemi üzerinde bentonit enjeksiyonunun etkisi, bentonit kullanılan ve kullanılmayan kısımlarda karşılaşılan itme kuvvetleri ve gerilme değerleri göz önüne alınarak incelenmiştir. İtme işlemi sırasında oluşan durmalar ve bunun itme işlemi üzerindeki etkisi, itme işlemi sırasında meydana gelen yüzey hareketleri bu tez kapsamında irdelenerek Boru İtme Yöntemiyle ilgili çok yönlü bir calışma ortaya konulmuştur.

Anahtar Kelimeler: Boru İtme, Adezyon Katsayısı, Plaxis Üç Boyutlu Tünel Programı, Üç

Boyutlu Modelleme, Yüzey Hareketleri

ABSTRACT

RESISTANCE AND DEPLACEMENT IN PIPEJACKING METHOD

In the past, construction, restoration or renovation of infrastructure facilities have been done by means of traditional open excavation method. Technological advancements, developments in gathering geotechnical information regarding the environment in which we will work have given birth the outcome of developing new methods that shall prevent negativeness that may emerge due to traditional methods during the construction of infrastructure facilities. Name of this process is trencless technology. Especially in cities, demand for infrascructure systems has an increasing tendency because of increasing population and varying lifestyles and city areas are environmentally sensitive living quarters. Routes of infrastructure (pipelines) that shall be consructed have many obstructions such as motorways, buildings, railways, rivers, creeks, canals. Pipe-Jacking Process, a trencless technology to overcome these negativeness and obstructions, has been achieving an important scope of application in our country and world. Infrastructure facilities planned to be cunstructed by the application of this system can be built under every kind of ground conditions in a correct, swift and economic manner, without needing open excavation and thus leading to traffic problems and conditions that may be dangerous for human life and property. Within the context of this thesis; the collector line, constructed in Sile district by pipe-jacking process, that has 1535 meters lenght and 800 millimeters diameter, was examined and jacking force-lenght graphics were prepared by usage of jacking force records obtained from machine. After analysing of these graphics; change of coefficients of α adhesion was researched and, for using at cohesioned grounds a α value was suggested in order to predict friction resistance and accordingly possible jacking force values we may face. First, with the asist of Plaxis 3-Dimensional Tunnel Program, considering land conditions, the examined line was modelled. Then, stress values resulted from this modelling and graphic analyses were compared and observed harmonies or inharmoniousness were discussed. Lastly, parameters that are effective on these harmonies or inharmoniousness were defined. Also, considering jacking forces and stres values observed on parts of bentonit is either used or not, lubrication's effect over jacking action was examined. Within the context of this thesis; stoppages and surface movement occured during the jacking action, effect over jacking action thereof were researched, thus a verstile study regarding pipejacking process was thrown out for consideration.

Key Words: Pipejacking, Adhesion Coefficient, Plaxis 3 D Tunnel Program, 3 D Modelling,

Surface Movements

1. GİRİŞ

Bugüne kadar altyapı tesislerinin kurulumu, onarımı veya yenilenmesi geleneksel açık kazı yöntemiyle yapılmıştır. Geleneksel yöntem, planlanan boru hattı boyunca bir hendek kazılması, borunun uygun bir yatak malzemesi üzerine yerleştirilmesi ve tekrar hendeğin uygun bir dolgu malzemesi ile doldurulması şeklinde olmuştur. Çoğu zaman çalışılan yol için bir başka seçeneğin belirlenmesi, trafik akışının uygun şekilde yönlendirilmesi, kazının yapılması, gerekli ise hendekten suyun dışarı atılması, hendeğin uygun şekilde doldurulması, sıkıştırma yapılması ve yolun eski haline getirilmesi gibi işlemler asıl hedef olan boru hattının teskil edilmesi amacından daha fazla caba isteyen islemlerdir. Birçok durumda bu islemler proje harcamalarının % 70' i kadar bir bedele karşılık gelmektedir. Ayrıca, geleneksel açık kazı yönteminde yeni bir altyapı tesisi yapılırken mevcut diğer altyapı tesislerinin zarar görmesi de çoğu zaman karşılaşılan diğer bir maliyet kalemi olarak karşımıza çıkmaktadır. Teknolojideki ilerlemeler, çalışılacak çevre ile ilgili geoteknik bilgilerin toplanmasındaki gelişmeler, altyapı tesislerinin inşası için yukarıda sayılan olumsuzlukları engelleyecek yeni yöntemlerin geliştirilmesi sonucunu doğurmuştur. Bu yeni yöntemin adı kazısız teknolojidir. Bu yöntemle herhangi bir açık kazı sözkonusu olmadığı gibi açık kazı sonrasında gelişen yüzey bozulmaları ve oturmalar problem olmaktan çıkmaktadır. Nüfusun artması ve değisen hayat tarzları nedeniyle özellikle şehirlerde altyapı sistemlerine olan talep de artış eğilimindedir. Şehir alanları çevresel olarak hassas bölgelerdir ve inşa edilecek altyapı(boru hatları) güzergahında otoyollar, binalar, demiryolları, nehirler, dereler, kanallar gibi bir çok engel barındırmaktadır. İşte bu gibi engelleri aşabilmek için son yıllarda Dünyada ve Ülkemizde kazısız teknoloji önemli bir uygulama alanı kazanmıştır. Bu sistemle yapılması planlanan altyapı tesisleri açık kazıya gerek duyulmadan, hiçbir trafik sorununa, mal ve can emniyetini tehlikeye sokacak durumlara düşülmeden her türlü zemin koşullarında doğru, hızlı ve ekonomik sekilde insa edilebilmektedir. Bu tezde kazısız yöntemlerden boru itme yöntemi ayrıntılı şekilde irdelenmiş, altyapı tesislerinin geçtiği güzergah boyunca yer üstünde ve altında ne gibi etkilere sahip olduğu belirlenmiş ve böylece İstanbul'a gelecek yıllar için yapılacak altyapı çalışmalarına ışık tutacak bir referans çalışma oluşturulmuştur.

2. BORU İTME YÖNTEMİ

Boru itme yöntemi bir itme odasından aynadaki kazıya eş zamanlı olarak boruların pistonlarla itilerek tünelin oluşturulmasını sağlayan yöntemin adıdır. Bu yöntemde kazı, eskiden geleneksel yöntemle yapılırken artık makinelerle yapılmakta ve böylece yeraltı su seviyesinin değişmesi gibi çevrede hasara neden olabilecek değişiklikler önlenmektedir. Bu yöntem yardımı ile alt yapının ve trafiğinin çok yoğun olduğu şehir merkezlerinde trafik akışı kesintiye uğratılmadan çalışmalar yapılabilmektedir.

Makineli sistemde işlem esnasında tünel güzergahında borulara hem kılavuzluk yapan hem de karşılaştığı zemini örseleyerek boruların sürümünü kolaylaştıran bir kesici başlık mevcuttur. Kesici başlık tarafından örselenen ve kesilen zemin yüksek basınçlı vakum pompaları yardımıyla tünel dışına dinlendirme tankına alınmakta ve zeminin tamamen çökelmesi sağlanmaktadır. Çökelen zemin daha sonra çalışma alanından uzaklaştırılmaktadır. Kesici kafa ile boşaltılan zemin yerine durmaksızın giriş şaftından borular itilerek tünel formunun oluşması sağlanmaktadır.

Şekil 2.1 Boru itme çalışma düzeni

Boru itme için kullanılan borular beton, plastik, çelik gibi farklı malzemelerden yapılabilmektedir. Borular işlemin sonuna kadar kendisine uygulanacak yüklere karşı yeterli dayanıma sahip olmalıdır. İşlem sırasında bir boruda meydana gelecek bir olumsuzluk hattın kurulumunun başarısızlığa uğramasına neden olabilir. Uygulamada en çok betonarme borular

kullanılmaktadır. Bunlar kurulan üretim merkezinde üretilmekte ve yeterli kür süresi sonunda kullanılmak üzere sahaya sevk edilmektedir. Boru ek yerleri birbirine geçmeli olarak üretilmekte ve contayla desteklenerek hattın su geçirimsizliği sağlanmaktadır.

2.1 Boru İtmenin Tarihçesi

Boru itme ile ilgili ilk bilgilere 1896-1900 yıllarında ABD de kuzey pasifik Demiryolu Şirketi kayıtlarında rastlanmaktadır. 1906 ile 1918 yılları arasında Kaliforniya' da yürütülen sulama projelerinde Augustus Griffin tarafından demiryolu hatlarının altından geçilmesi gereken bölgeler için demir döküm borular kullanılarak yapılan bir yöntem geliştirilmiştir. 1920'lerin sonlarında beton borular kullanılmaya başlanmıştır. Kullanılan boru çapları 750 mm ile 2400 mm arasında değişmiştir. Kayıtlar yapım yönteminin bugünkü insan kazısı boru itme uygulamalarıyla benzerlik gösterdiğini ortaya koymaktadır. Bu yöntemde kazı esas olarak kazma kürekle yapılmış ve boru hava basmalı bir düzenekle itilmiştir(Loving 1938, Peckworth 1958)

İkinci Dünya Savaşı öncesinde boru itme yöntemi aralarında Almanya, İngiltere ve Japonya'nın da bulunduğu ülkelerde çok kısıtlı uygulama alanı bulmuştur. Kayıtlar ilk beton boru ile itme işleminin 1935' de Nurenburg' ta yapıldığını göstermektedir (Lenz ve Muller 1970). Savaş sonrasında bütün Batı dünyasında zarar gören altyapı sistemlerinin onarımı ve insanların hayat koşullarında görülen değişimler ve gelişmeler boru itme yönteminin gelişmesinde etkili olmuştur. Savaş sonrasında zarar gören birçok altyapı tesisi çok ağır trafik yükü olan yollar ile demiryolu hatlarının altından geçirilmeyi zorunlu kılmış olup yapılacak hatların kazı derinliğinin fazla oluşu açık kazı yöntemini uygulanabilir bir yöntem olmaktan çıkarmıştır(Moss, 1993, Thomson, 1993)

Boru itme yöntemi bu bölgelerde hem güvenli hem de ekonomik çözüm anlamı taşımıştır. Değişik zemin koşulları, farklı ülkelerdeki farklı gereksinimler, makine teknolojisindeki gelişmeler, boru itme yönteminde hep yeniliklerin önünü açmıştır (Thomson, 1993).

1950' lerde araştırmacılar ve sektörde faaliyet gösteren firmalar kendi düzeneklerini geliştirmeye başlamış ve Fransa, Almanya, İngiltere ve İskandinav ülkelerinde yöntem daha sıklıkla kullanılmaya başlanmıştır. (Thomson, 1993).

Almanya' da 1957 yılında ilk boru itme işi yapılmış olup 1970' lere gelindiğinde toplam 200 km' lik bir hat bu yöntemle yapılmıştır(Lenz ve Muller 1970).

İngiltere' de ilk boru itmenin 1930' lu yıllarda bir su firmasınca demir döküm borular

kullanılarak yapıldığını görüyoruz. 1958' de ise günümüz tekniğine yakın ilk iş Glentonda bir demiryolu hattının altından çelik borular kullanılarak yapılmıştır. 1960' tan sonra sektöre birçok firmanın girişiyle rekabet hızlanmış ve teknolojik gelişmelerle de uygulama alanı genişlemiştir(Thomson, 1967).

Japonya' da ilk boru itme işi 600 mm demir döküm borular kullanılarak bir demiryolu hattının altından yapılmıştır. Bundan sonraki on sene boyunca geçişlerde demir döküm veya çelik boruların kullanılması devam etmiştir. Beton boruların kullanımı 1950'lerin sonuna doğru başlamıştır. 1965' te günümüz tekniğinde ilk tam slurry tipi makine kullanılmıştır. Yapılan bilimsel araştırmalar ve teknolojik ilerlemelerle bugün yaygın şekilde kullanılan bir yöntem olmuştur(Kimura,1990).

2.2 Boru İtmenin Bileşenleri

2.2.1 Tünel Aynası

Tünel aynasında, zeminin kazılması ve boşaltımı, zeminin aynada duraylılığı, hattın izlenmesi ve seviyesinin ayarlanması gibi işlemler yapılmaktadır. Bu işlemler basit bir çelik başlık tan özel bir basınç uygulayarak uzaktan işletmeli bilgisayar destekli olmak üzere çok çeşitli tarzlardaki başlıklarla sağlanmaktadır. Aynadaki işlemlerin devamı için en önemli parçalardan biri olan başlık,

- Gerekli net ölçü için dayanıklı kesme kenarlarına sahip olmalıdır.
- Mekanik kazma aygıtı için dayanak olmalıdır.
- Aynanın duraylılığı için gerekli düzeneğe dayanak olmalıdır.
- Seviyenin ve hattın izlenmesi için gerekli aletlere sahip olmalıdır.
- Hattın doğru kurulumu için kılavuz rolü üstlenmelidir.

Kullanılan başlıklar dört ana grupta sınıflandırılabilir. Geleneksel, Sıkıştırılmış Hava Prensibi ile Çalışan, Burgu Tipi ve Basınç Odalı

Geleneksel Başlıklar genellikle tünel aynasına ulaşmaya olanak tanır. Bunlar daha çok kısa geçişlerde ve duraylı zemin koşullarında kullanılırlar. Bununla birlikte bazı değişiklerle başka zemin koşulları için de kullanılabilirler. Kendi arasında el ile yönlendirilen, yarı mekanik, mekanik şeklinde sınıflandırılabilir.

Sıkıştırılmış Hava Prensibi ile Çalışan türlerde hava zeminin veya zemin suyunun duraylılığının sağlanması için kullanılır. Eğer boru itme uygulaması sığ derinliklerde

yapılıyorsa ve örtü kalınlığı yetersiz ise hava zemin içindeki çatlaklarda, var olan bir altyapıda veya granüler zemin seviyelerinde kaybolabilir. Bu durumlarda itme işleminin sağlıkla yürütülmesini engelleyecek olumsuzluklar meydana getirebilir. Bu nedenle bu tip bir başlık çok deneyimli bir personel tarafından idare edilmelidir.

Burgu Tür başlıklar mekanik başlıkların özel bir biçimi olup uzaktan kontrol edilebilirler. Kazı başlığına tutturulmuş bir kesici düzenekle yapılarak kesilen zemin başlık içindeki bir burgu ile tünel aynasından uzaklaştırılmakta ve ilerleme sağlanmaktadır.

Basınç Odalı Türlerde kesici diskin hemen arkasında yeralan bir özel bölüm vardır. Bu bölüm zemin ve zemin suyu için dengeleme basıncı oluşturmak için kullanılabilir. Odanın içi su veya bentonit bulamacıyla doldurulabilir. Aynaya ulaşım sözkonusu değildir. Aynada yürütülen bütün işlemler bilgisayarlı düzenekler yardımıyla tünel dışında bir kontrol biriminden yönetilir. Bu tip başlıklar zemin suyu seviyesi altında kohezyonsuz zeminler gibi olumsuz zemin koşullarında kullanılmak üzere tasarlamıştır. Uygulamada ise bazı değişiklerle her türlü zemin koşulları içinde ve 3500 mm çapa kadar kullanılabilmektedir. Basınç odalı tür başlıklarda en çok bentonit bulamacı kullanılarak basınç sağlanmaktadır. Bu türlerde kazı tam kapalı bir kazıcı disk ile yapılır. Bu disk üzerinde zeminin girişine olanak tanıyan yarıklar mevcuttur. Zeminin duraylılığı bentonit bulamacının bir enjeksiyon pompası yardımıyla belli bir basınçta zemine uygulanması ile sağlanır. Günümüzde geliştirilen bazı kimyasallar bentonit yerine kullanılabilmektedir. Kesici disk,düz yüzeyli, davul ve kubbe şekilli olabilir. Üretilen bazı başlıklar ezme özelliğine sahiptir. Bu özellik yardımıyla kayalar ve taşlar pompa ile uzaklaştırabilecek boyuta indirgenebilirler.

2.2.2 Hat

Hat tasarım aşamasında ve çalışma aşamasında birkaç işlemi yerine getirebilmelidir.

- Tünele doğrultu sağlar
- İtme yüklerinin kayıpsız iletilmesine olanak sağlayacak şekilde seçilmelidir.
- Başlık için bir kılavuzdur
- Süreklilik sağlamalıdır.

2.2.3 İtme Şaftları

Boru itme için kullanılacak şaftların boyutları ve özellikleri aşağıda belirtilen etkenler göz önüne alınarak belirlenir.

• Boru çapı

- Boru hattının uzunluğu
- Kullanılacak kesici kafanın türü
- Kullanılacak pistonların kapasitesi(Giriş Şaftı için)

Ayrıca; şaftlar güvenli şekilde çalışmaya olanak verecek yeterli alanda olmalıdır

2.2.4 Kazılan Zeminin Tünelden Çıkarılması

Kazılan zeminin tünelden çıkarılması boru itme işleminin en önemli faaliyetlerinden biri olarak karşımıza çıkmaktadır. Boru itme işinin hızı ve ekonomisi kazılan zeminin tünel aynasından ve tünel içinden çıkarılması hızıyla doğru orantılıdır. İşin özelliklerine ve büyüklüğüne göre birçok yöntem kullanılmaktadır. Bunlar konveyor veya burgu gibi mekanik basit bir sistemden yüksek kapasiteli emme pompaları veya hava basmalı boşaltım sistemleri de olabilir. Hangi sistemin kullanılacağı zemin koşulları ve itme uzunluğu gibi etkenler göz önüne alınarak belirlenir. Kazılan zeminin çıkarılması dört ana gurupta sınıflandırılabilir. El ile kazı, yarı mekanik kazı, dönel kesme kollu ve tekerlekli ve tüm yüzeyli makineler.

2.2.5 Yüzey Ekipmanları

İtme işleminin sağlıklı bir şekilde yürütülmesi için destek işlemleri yüzeyde yapılır. Bu bölüm;

- Tünel içindeki çamurun temizlendiği ve uzaklaştırıldığı birimler
- Güç birimi
- Bentonit birimi
- Boru sağlama birimi
- Boru depolama

Kontrol birimi gibi birimlerin rahatlıkla yapılabileceği biçimde düzenlenmelidir.

2.3 Boru itme Yönteminin Olumlu Yanları

Boru İtme Yönteminin diğer yöntemlere göre olumlu yanları aşağıda sıralanmaktadır.

1. Geniş bir zemin ve yer altı su seviyesi aralığında çalışma yapmaya olanak sağlar.

2. Kazı derinliğinin artmasına paralel, boru itme yöntemi açık kazı yöntemine göre maliyet açısından daha olumlu bir hale gelmektedir. Özellikle kazı derinliğinin 4 metreyi geçtiği ve güvenli bir kazı için palplanş ile iksa yapılmasının zorunlu olduğu zemin koşullarında boru itme yöntemi açık kazı yöntemine göre daha ekonomik, güvenli ve hızlı bir çözüm oluşturmaktadır.

3. Boru itme yönteminde; aşırı kazının segmentli yönteme göre daha az olması ve kazı ile eş zamanlı olarak borunun sürülmesi sırasında, boru etrafının bentonit enjeksiyonu ile doldurulabilmesi nedeniyle zemindeki oturmalar en aza inmektedir.

4. Sosyal yaşamı ve trafiği, açık kazı yöntemindeki gibi kesintiye uğratmamaktadır.

5. Bu yöntemde sadece boru kesiti kadar kazı yapıldığından açık kazı yöntemindeki kazı malzemesine oranla çok az kazı malzemesi taşınmaktadır.

6. Uzaktan kumanda ve görüntüleme ile imalat yapıldığından iş ve işçi güvenliği açısından açık kazı yöntemine göre çok daha güvenlidir.

7. Geleneksel veya segmentli tünel açma yöntemlerinde kazı sonrasında işletme açısından ikinci bir kaplamaya gerek duyulduğu halde bu yöntemde ikinci kaplamaya gerek olmadığından daha kısa zamanda yapım tamamlanmış olmaktadır

8. Boru itme yönteminde itme basıncına dayanabilmesi için itme boruları 3000 ton' a kadar dayanımda üretildiğinden açık kazı yöntemine göre döşenen borulara göre daha dayanıklı ve uzun ömürlü olmakta ve sızdırmazlık da daha iyi sağlamaktadır.

2.4 Boru itme Yönteminin Kısıtlamaları

1. Bu yöntemle itme güzergahında ani değişiklikler yapılamamaktadır, segmentli sisteme göre çok kısıtlı eğri yapma olanağı bulunmaktadır.

2. Yüksek plastisiteli kil zeminlerde uzun süreli beklemelerde oluşan yüksek çevre sürtünmesinden dolayı sistem bloke olabilmektedir.

3. 90 cm altındaki çaplarda boru itme uzunluğu itme borusunun basınç dayanımına bağlı olarak kısıtlanmaktadır

2.5 Boru İtme İşleminde İtme Kuvvetleri

İtme kuvvetleri, başlığın ilerlemesi aşamasında tünel aynasındaki girme direnci ile boru hattı boyunca itme işlemi boyunca ortaya çıkan sürtünme kuvvetlerinin birleşimidir. Bu kuvvetlerin bir boru itme işleminde tasarım aşamasının sağlıklı bir şekilde olması için doğru olarak tahmin edilmesi önemlidir. Doğru olarak tahmin edilen itme kuvvetleri ile itme düzeneğin doğru seçilmesi, şaftların yerleşimi ve doğru imalatı, itme aralıklarının doğru belirlenmesi, bentonit uygulamasının ne şekilde yapılacağının belirlenmesi sözkonusu olabilir. İtme kuvvetlerinin doğru tahmin edilmesi her geoteknik uygulamada olduğu gibi yapılacak ayrıntılı ve hassas geoteknik inceleme ve araştırmalarla olanaklı olabilir. Tasarım öncesinde hem çalışılan bölgedeki zemin durumu ile ilgili zemin incelemeleri yapılmalı ve tasarımda kullanılacak zemin parametreleri doğru olarak belirlenmeli hem de yüzey altı araştırmaları ile itme işlemi sırasında fiziksel engel teşkil edecek ve itme işleminin sağlıklı bir şekilde yapılmasını etkileyecek mevcut altyapı tesisleri belirlenmeli ve önlem alınmalıdır.

2.6 İtme Kuvvetlerine Karşı Oluşan Dirençler

2.6.1 Giriş Direnci

Giriş direnci kesici kafanın işlem süresince karşılaştığı dirençtir ve kullanılan kesici başlıktaki diskin şekline ve tasarımına göre değişiklik gösterir. Bu direnç temel olarak kesici başlıktaki kesici uçların yerleştirme biçimi, çapları ile doğrudan ilgilidir. Girme direnci toplam itme yüklerinin bir bileşeni olup bugüne kadarki araştırmalarda ayrıntılı şekilde incelenmemiş olup ancak bazı amprik yöntemlerle bu dirençler yaklaşık olarak hesaplanabilmektedir. İdeal olarak makine ile zemin arasındaki değme direnci sükunetteki toprak basıncına eşit olmalıdır. Eğer bu sağlanabilirse yüzey hareketi ve oturma beklenmez. Zemin tarafından uygulanan gerilme yatay toprak basıncı formülüyle yeterli doğrulukta hesaplanabilir. Sükunetteki toprak basıncı katsayılarının itme borular için bazı zeminlerde aldığı değerler Çizelge 2.6.1' de verilmiştir.

ZEMİN TÜRÜ	K ₀
Çakıl	0,7
Sıkı Kum	0,8
Gevşek Kum	0,5
Katı Kil	1-1,5
Yumuşak Kil	0,6-0,8
Silt, Alüvyon	1

Çizelge 2.6.1 Farklı zeminler için sükunetteki toprak basıncı katsayısı(K₀)(Thomson, 1993)

Diğer bir yöntemde SPT, (N)sayılarını kullanarak tahmin yapılabilir.

$$P_s = 1.32 * \pi * D_s * N$$

(2.1)

Bu eşitlikte D_s tünel makinesinin dış çapını, N SPT sayısını göstermektedir.

Bu eşitlik kullanılarak elde edilen P_s değerleri Çizelge 2.6.2' de verilmiştir.

Makine Çapı	SPT (N) SAYILARI			
	5	15	30	50
0.6	12.4	37.3	74.6	298.6
0.9	18.7	56.0	112.0	448.0
1.20	24.9	74.6	149.3	597.2
1.50	31.1	93.3	186.6	746.4
2.40	49.8	149.3	298.6	1194.3

Çizelge 2.6.2 SPT sayılarına göre destek direnci(Thomson,1993)

2.6.2 Sürtünme Direnci

Boru itme için en önemli etmenlerden biri borunun zemin içinde ilerlemesi sırasında doğan sürtünmenin boyutudur. Sürtünme kuvvetlerinin boyutu itme dirençlerinin boyutu ile doğru orantılı olup hem şaftların boyutlandırılmasında hem de itme pistonlarının kapasitelerinin belirlenmesine etki eder. Sürtünme dirençlerinin boyutu boru çapı ve malzemesi, zeminin türü, zeminin su içeriği, itme derinliği ve kullanılan düzeneğin özelliklerine bağlıdır. Ayrıca, kesici kafada kullanılan kalkanın çapı nedeniyle oluşan kazı fazlası, itme işlemi sırasında borularda meydana gelebilecek doğrultu sapmaları, kazı tekniği, çalışma sırasında oluşan durma ve itme işlemi sırasında bentonit veya benzeri bir malzeme enjeksiyonunun kullanılıp kullanılmadığı gibi etkenler de sürtünme dirençlerinin boyutunda etkilidir.

Sürtünme direnci boruların dış yüzeyi boyunca yüzey sürtünmelerinin birleşmesinin sonucu doğmaktadır. İşlem sırasında boru hattı üzerinde etkili sürtünme kuvvetleri üzerinde birçok faktörün etkisi altında olduğundan hesaplanması güç bir kavramdır. İngiltere' de Craig (1983) tarafından verilen ara yüzey sürtünme dirençleri Çizelge 2.6.3' de verilmektedir. Craig bu tabloyu boru itme endüstrisinden elde ettiğini belirtilmektedir. Bu tablodaki değerler ham ekipman değerleri kullanılarak tahmin edildiğinden ve sürtünme dirençlerini hat boyunca sabit kabul ettiğinden ancak gerçekte böyle bir üniformluk olmadığından tasarım için yeterli güvenliğe sahip değildir.

Zemin Tipi	Sürtünme dirençleri(KN/m2)			
	Fransa	İngiltere	Avustralya	Almanya
Kaya		2-3	1	
Sıkı Kil	8-10	5-20	5-7.5	5.3-9.3
Islak Kum		10-15	13	2.2-16.1
Silt	17	5-20		4.9-8.5
Kuru ve sıkı Kum				
Kuru ve gevşek Kum	20-30	25-45		
Dolgu		45' e kadar		
Sıkı Çakıl	50			6.4-2.3

Çizelge 2.6.3 Çeşitli zeminler için sürtünme dirençleri(Craig' den sonra, 1983 ve Stein vd.1989)

Stein ve arkadaşları bu yaklaşımdan yola çıkarak çizelgede verilen değerleri kullanılarak toplam sürtünme kuvvetini hesaplamak için;

$$F = M^* \pi^* D_e^* L \qquad (KN) \tag{2.2}$$

eşitliğini önermişlerdir(Anheuser, 1987). Eşitlikte D_e boru dış çapı, L itme boyu, M ise sürtünme direnci değeri olup Çizelge 2.6.3' ten alınarak eşitlikte yerine konulur ve F, sürtünme kuvveti hesaplanabilir.

2.6.3 Sürtünme Dirençlerine Etki Eden Etkenler

2.6.3.1 Zemin Duraylılığı

Zeminin kendini tutabilme özelliği sürtünme kuvvetinde önemli bir faktördür. İşlem sırasında eğer zemin boru üstüne göçerse, sürtünme kuvvetleri artar ve bu işlemin başarısız olmasına yol açabilir.

Şekil 2.6.3.1 Yüzey duraylılığı hesabı için kullanılan parametreler

Kohezyonsuz zeminlerde tünel kazı aynası destek basıncı

$$\sigma_{\rm T} = \gamma^* D^* T_{\gamma}$$
 olarak verilmiştir.(Davies, 1980, Atkinson ve Mair, 1981) (2.3)

Eşitliğindeki σ_T tünel aynası destek gerilmesi, γ zeminin birim hacim ağırlığı, D boru çapı ve T_{γ} duraylılık katsayısıdır ve Şekil 2.6.3.2' de verilmiş olup sadece zeminin içsel sürtünme açısının bir fonksiyonudur.

Şekil 2.6.3.2 Tünel duraylılığı sayısı T_{γ} ile drenajlı içsel sürtünme açısı arasındaki ilişki Eğer tünel derinliği sığ ve büyük bir sürşarj yükü söz konusu ise destek basıncı

$$\sigma_{\rm T} = \sigma_{\rm s} * T_{\rm s} \tag{2.4}$$

olur. σ_s sürşarj yükünden gelen gerilme, T_s ise duraylılık katsayısı olup Şekil 2.6.3.4' de verilmiştir. Her iki durum da kuru zeminler içindir. Eğer su basıncı etkili ise destek basıncı belirlenirken zeminin su altındaki birim hacim ağırlığı(γ - γ_w) gözönüne alınmalıdır.

Şekil 2.6.3.4 Tünel duraylılığı sayısı Ts ile drenajlı içsel sürtünme açısı arasındaki ilişki- sığ derinlik -şürşarj var

Kohezyonlu zeminlerde destek basıncı;

$$\dot{O}_{T} > \gamma^{*}(C+D/2) - T_{c}^{*}C_{u}$$
 (2.5)

Eşitliği ile tahmin edilebilir. Bu eşitlikte C boru üstü örtü kalınlığı, D boru çapı, C_u drenajsız kayma dayanımıdır.

T_c duraylılık sayısı olup Şekil 2.6.3.5' de verilmiştir.

Şekil 2.6.3.5 Kohezyonlu zeminlerde yüzey duraylılık oranı(Atkinson ve Mair den sonra, 1981)

Boru itmede desteklenmemiş uzunluk P genellikle çok küçük veya sıfırdır. Bu nedenle; P/D= 0 olarak alınır.

2.6.3.2 Kazı Fazlasının Boyutu

Kazı fazlası boru dış yüzeyi ile tünel iç yüzeyi arasındaki boşluktur. Loughborough Üniversitesinde kum zeminde 200 mm borular kullanılarak yapılan deneysel itme işlemleri sonucunda Chapman kazı fazlası boyutu olarak 0 ve 0,14 değerlerini bildirmiştir. Chapman kum zeminler için 0,04 değerinin optimum bir değer olduğunu belirtmiştir. Bu deneysel değer kullanılarak 1 metre çapındaki borular için kazı fazlası değerinin 20 mm olması gerektiği belirtilmiştir(Marshall, 1998)

Rogers ve Yonan(1992) granüler zeminde sürtünme dirençlerinin en aza indirilmesi için kazı fazlasının en az 10 mm düzeyinde olması gerektiğini bildirmişlerdir.

Kazı fazlası oranı

$$R = (D_e - D_p)/D_p$$
 (2.6)

Olarak verilmiştir. De kazılan tünel çapı Dp ise boru dış çapıdır.

R oranının artması kazı fazlasının artması anlamına gelir. R oranının artması ve artan kazı fazlasının bentonit vb. enjeksiyonu ile doldurulması sonucunda boru ile zeminin temasının kesilmesi ve dolayısıyla sürtünme kuvvetlerinin azaltılması sağlanabilir.

2.6.3.3 Bentonit Enjeksiyonu Etkisi

Boru itme işleminde bentonit süspansiyonun kayganlaştırıcı olarak kullanılması sıklıkla uygulanan bir işlemdir. Eğer kullanılan malzeme kazılı zemin yüzeyi ile borunun dış yüzeyi arasındaki boşluğu (kazı fazlası) doldurabiliyorsa verimli olmaktadır. Eğer zeminin boru üstüne göçmesi durumunun sözkonusu olduğu bir zemin türünde çalışılıyorsa, bentonit enjeksiyonu işleminin etkisi bu durumlarda azalmaktadır ve sonucunda itme yüklerinde artışlar görülebilmektedir. Bentonit enjeksiyonunun veya aynı amaçla kullanılan diğer malzemelerin ilk ve önemli etkisi yeterli bir iç basınç sağlayarak kazılı tünel çeperinin duraylılığını sağlamaktır. Aynı zamanda, bu işlem kısa ve uzun vadede olası oturmaların enaza indirilmesi için önemlidir(Marshall, 1998)

Stein ve diğerleri bentonit süspansiyonunun verimliliği üzerinde etkili etkenleri

- a. Bentonitin kalitesi
- b. Süspansiyonun yoğunluğu
- c. Enjeksiyon basıncının ve pompalama hızının kontrolü olarak sıralamıştır.

Bentonit süspansiyonun yoğunluğu ve enjeksiyon basıncının denetimi işlemin başarısı üzerinde etkilidir. Katı kıvamlı süspansiyon ince kıvamlı süspansiyona göre araştırmalar sırasında daha iyi sonuçlar vermiştir. Enjeksiyon basıncının düşük olması düzenli bir akış ve üniform bir dağılış sağlar.

Bentonit enjeksiyonu sonucunda itme yüklerindeki değişim gözönüne değer boyutlardadır. Kastner (1996) killi kumda %25, sıkı kumda %73, Ishibashi (1998) killerde %30-50, kumlarda %20, Coller vd. (1996) siyah volkanik kumlarda %56' ya varan azalmalar olduğunu bildirmişlerdir.

İtme yükleri üzerinde çalışmış yukarıda anılan araştırıcılar bentonit veya benzeri bir malzemenin kullanılması işleminin sürtünme dirençlerinin kabul edilebilir düzeye indirilmesi için yararlı etkilere sahip olduğunu göstermişlerdir. Kullanılan mekanizmaların gelişmesine paralel bentonit ve benzeri malzemeler daha uygun ve verimli bir biçimde kullanılabilmektedir.

2.6.3.4 Boru Doğrultusunun Değişmesi

Boru itme işlemi sırasında kaçınılmaz şekilde amaçlanan doğrultuda bir miktar sapmalar gözlenebilmektedir. Boru hattındaki bu istenmeyen değişimler sonucunda borular üzerinde

etkili radyal gerilmelerin değişmesi nedeniyle itme yüklerinde artışlar görülmektedir(Milligan ve Norris, 1998). Şekil 2.6.3.6' da doğrultuda değişme sonucunda gerilme dağılımlarındaki değişimler gösterilmiştir.

Şekil 2.6.3.6 Boru doğrultusunun değişmesi sonucu borular üzerinde oluşan radyal gerilme dağılımı değişimleri(Norris' ten sonra,1992)

Haslem(1983), O' Reilly ve Rogers(1987) boru hattındaki sapmalar sonucunda eksenel itme kuvvetleri ile radyal gerilmeler arasındaki ilişkiyi bulmak için çalışmışlardır.

Stevens(1989) ve Ripley(1989) sapmış konumdaki boru hattı modelini gözönüne alarak yaptıkları çalışmalar sonucunda boru hattındaki kıvrımlanmaların iç yüzeylerinde eksenel itme yüklerinde artışa paralel büyük radyal gerilme değerleri oluştuğunu bildirmişlerdir.

2.6.3.5 Durma

Boru itme işlemi sırasında yeni bir borunun şafta indirilmesi veya herhangi bir arıza nedeniyle durma sonucunda itme yüklerinde dikkate değer artışlar görülebilir. Eğer bir zemin duraylılığı sağlanamazsa durma ile tekrar çalışmaya başlama arasında geçen sürede zemin borular ve başlık üzerine göçebilir ve sürtünme dirençlerine dolayısıyla itme yüklerinde itme işleminin başarısızlıkla sonuçlanmasına neden olabilecek aşırı artışlar görülebilir.

3. ŞİLE UYGULAMASI

Büyükşehir Belediye Yasasında yapılan değişiklik sonrasında Şile İlçesi ve bağlı köyleri İstanbul Büyükşehir Belediyesi hizmet alanına girmiştir. Bu nedenle bölgenin altyapı eksikliğinin giderilmesi amacıyla İSKİ tarafından çalışmalara başlanmış ve gerek boru itme yöntemiyle gerekse gekeneksel yöntemlerle kollektör ve kanalizasyon hatlarının yapımı planlanmıştır. Tez kapsamında incelenen Şile İlçesi Üsküdar Caddesi Ø800 mm lik boru itme yöntemiyle yapılan kollektör hattı da bu çalışmalar kapsamında yapılmıştır. Şekil 3.1' de yapılan çalışma ile ilgili vaziyet planı gösterilmiştir. Üsküdar caddesinde yapılan iş kapsamında 1535 metre Ø800 mm iç çapında kollektör, 15 adet itme ve çıkış şaftı yapılmıştır. Tez kapsamında incelenen kollektör hattının incelenmesi için öncelikle çalışılan araziden zemin örnekleri alınmış ve bu örnekler üzerinde grafik analizlerinde ve üç boyutlu modelleme de kullanılmak üzere zemin parametreleri belirlenmiştir. Sonrasında boru itme makinasının itme işi devam ederken aldığı ham kayıtlar derlenerek her aralık için İtme kuvveti- Aralık grafikleri çizilmiş ve bu grafikler üzerinde analizler yapılarak itme güzergahı boyunca adhezyon katsayılarının değişimleri incelenerek kohezyonlu zeminlerde kullanılmak üzere bir ortalama adezyon katsayısı önerisi getirilmeye çalışılmıştır. Ayrıca Plaxis 3D Tunnel programı ile arazide yapılan uygulama bilgisayar ortamında üç boyutlu olarak modellenmiş ve modelleme sonucundan elde edilen gerilmeler ile grafik analizleri sonucu elde gerilmeler karşılaştırılmış, karşılaşılan uyum veya uyumsuzluklar ve bunlar üzerindeki etkili parametreler üzerinde değerlendirmeler yapılmıştır.

Şekil 3.1 Üsküdar caddesi boru itme işi vaziyet planı
Üsküdar Caddesi itme çalışmalarının analiz ve modellemesinde kullanılacak zemin özelliklerinin belirlenmesi amacıyla 18 farklı noktadan shelby tüpleri ile zemin örnekleri alınmıştır. Deneylerin sonuçları bu bölümde çizelgeler halinde verilmiş olup ayrıntılı sonuç ve grafikler Ekler Bölümünde verilmiştir. Çizelge 4.1' de zemin örneği alınan noktalar belirtilmiştir

Zemin Örneği Alınan	Alınan Tüp
Yerler	Sayısı
PJ 4 Şaftı	1
PJ 5 Şaftı	1
PJ 6 Şaftı	1
PJ 10 Şaftı	1
PJ 13 Şaftı	1
PJ 14 Şaftı	1
PJ 14-PJ 17 Arası	1
PJ 17 Şaftı	1
PJ 17-PJ 19 Arası	1
PJ 19 Şaftı	1
PJ 19-PJ 21 Arası	1
PJ 21 Şaftı	1
PJ 24 Şaftı	1
PJ 25 Şaftı	1
PJ 25-PJ 27 Arası	1
PJ 27 Şaftı	1
PJ 28 Şaftı	1
PJ 30 Şaftı	1

Çizelge 4.1 Zemin örneği alınan yerler

4.1 Atterberg Limitleri

Araziden alınan örnekler üzerinde yapılan kıvam limitleri deneylerinin sonuçları Çizelge 4.1.1' de verilmiştir.

	Plastik	Doğal Su	Likit	Plastisite
Şaft No	Limit,%	İçeriği,%	Limit,%	İndeksi,%
PJ 4 Şaftı	24	16	35	11
PJ 5 Şaftı	21	16	35	14
PJ 6 Şaftı	21	17	32	11
PJ 10 Şaftı	21	37	28	7
PJ 13 Şaftı	21	37	28	7
PJ 14 Şaftı	21	26	29	8
PJ 14-PJ 17 Arası	23	24	30	7
PJ 17 Şaftı	24	21	33	9
PJ 17-PJ 19 Arası	20	25	28	8
PJ 19 Şaftı	22	27	30	8
PJ 19-PJ 21 Arası	26	28	35	9
PJ 21 Şaftı	22	28	31	9
PJ 24 Şaftı	29	31	39	10
PJ 25 Şaftı	27	28	37	10
PJ 25-PJ 27 Arası	29	24	43	14
PJ 27 Şaftı	25	24	38	13
PJ 28 Şaftı	20	28	31	11
PJ 30 Şaftı	21	28	32	11

Çizelge 4.1.1 Atterberg deney sonuçları

4.2 UU Deneyleri

Araziden alınan zemin örnekleri üzerinde yapılan UU (Konsolidasyonsuz-Drenajsız Üç Eksenli Basınç) Deneyleri sonucu elde edilen drenajsız kayma dayanımı değerleri Çizelge 4.2.1' de verilmiştir.

	Drenajsız Kayma
Şaft No	Dayanımı, C _u (kPa)
PJ 4 Şaftı	91
PJ 5 Şaftı	76
PJ 6 Şaftı	62
PJ 10 Şaftı	60
PJ 13 Şaftı	24
PJ 14 Şaftı	22
PJ 14-PJ 17 Arası	27
PJ 17 Şaftı	50
PJ 17-PJ 19 Arası	40
PJ 19 Şaftı	14
PJ 19-PJ 21 Arası	28
PJ 21 Şaftı	23
PJ 24 Şaftı	25
PJ 25 Şaftı	48
PJ 25-PJ 27 Arası	46
PJ 27 Şaftı	54
PJ 28 Şaftı	25
PJ 30 Şaftı	29

Çizelge 4.2.1 UU deney sonuçları

4.3 Hidrometre Deneyleri

Araziden alınan örnekler üzerinde yapılan hidrometre deneylerinin sonuçları Çizelge 4.3.1' de verilmiştir.

	Kil	Silt
Şaft No	yüzdesi,%	Yüzdesi,%
PJ 4 Şaftı	25	75
PJ 5 Şaftı	31	69
PJ 6 Şaftı	20	80
PJ 10 Şaftı	18	82
PJ 13 Şaftı	23	77
PJ 14 Şaftı	20	80
PJ 14-PJ 17 Arası	25	75
PJ 17 Şaftı	29	71
PJ 17-PJ 19 Arası	19	81
PJ 19 Şaftı	17	83
PJ 19-PJ 21 Arası	20	80
PJ 21 Şaftı	21	79
PJ 24 Şaftı	25	75
PJ 25 Şaftı	18	82
PJ 25-PJ 27 Arası	29	71
PJ 27 Şaftı	29	71
PJ 28 Şaftı	21	79
PJ 30 Şaftı	22	78

Çizelge 4.3.1 Hidrometre deneyleri sonuçları

4.4 Piknometre Deneyleri

Araziden alınan örnekler üzerinde yapılan piknometre deneylerinin sonuçları Çizelge 4.4.1' de verilmiştir.

	Özgül Yoğunluk,
Şaft No	Gs
PJ 4 Şaftı	2,76
PJ 5 Şaftı	2,75
PJ 6 Şaftı	2,77
PJ 10 Şaftı	2,76
PJ 13 Şaftı	2,77
PJ 14 Şaftı	2,76
PJ 14-PJ 17 Arası	2,76
PJ 17 Şaftı	2,75
PJ 17-PJ 19 Arası	2,76
PJ 19 Şaftı	2,76
PJ 19-PJ 21 Arası	2,75
PJ 21 Şaftı	2,77
PJ 24 Şaftı	2,75
PJ 25 Şaftı	2,75
PJ 25-PJ 27 Arası	2,74
PJ 27 Şaftı	2,76
PJ 28 Şaftı	2,75
PJ 30 Şaftı	2,77

Çizelge 4.4.1 Piknometre deneyleri sonuçları

5. MATEMATİK MODEL VE GRAFİK ANALİZLERİ

İtme işlemi sırasında pistonlar tarafından uygulanan itme kuvvetleri kullanılan makine tarafından ölçülmekte ve kaydedilmektedir. Bu değerler kullanılarak itme şaftları arasında itme kuvvetlerinin değişimleri 5.2 bölümünde verilen grafikler şeklinde incelenmiştir. Şekil 5.1.1' de boru itme işlemi sırasında meydana gelen kuvvetler göz önüne alınarak kullanılacak matematik model gösterilmektedir.

5.1 Matematik Model

Grafik analizleri yapılırken kullanılacak matematik model Şekil 5.1.1' de gösterilmektedir.

Şekil 5.1.1 Boru itme işlemi sırasında oluşan kuvvetlerin tanımı(Pellet-Beaucour, R. Kastner, 2002)

Şekil 5.1.1' de F sürtünme kuvveti olup;

$$\mathbf{F} = \int \boldsymbol{\pi}^* \mathbf{D}_{\mathbf{e}} \mathbf{f}_{\mathbf{s}}^* \mathbf{d} \mathbf{l} \tag{5.1}$$

Şeklinde tanımlanabilir. Bu eşitlikte D_e borunun dış çapı, f_s sürtünme direnci ve dl ise birim itme aralığıdır.

Eşitlikten de görüleceği üzere itme kuvvetleri girme direnci ile sürtünme dirençlerinin toplamından oluşmaktadır ve aşağıdaki eşitlikle belirlenebilir.

$$P_{\rm T} = R_{\rm p} + F \tag{5.2}$$

Bu eşitlikte P_T itme kuvveti, R_p giriş direnci, F ise sürtünme kuvvetidir.

Analizler yapılırken giriş direnci grafikte çizilen ilk teğet doğrunun ordinatı kestiği noktadaki değer olarak alınmıştır. Bu değerin itme yükünden çıkarılması sonucu kalan değer sürtünme

kuvvetini vermektedir.

5.2 Zemin Modellemesi ve Grafik Analizleri

5.2.1 PJ 5-PJ 4 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.1.1 PJ 4-PJ 5 şaftları arası zemin modellemesi

PJ 4 ile PJ 5 şaftları arasındaki aralık 113 m dir. Şekil 5.2.2.1' de PJ 4-PJ 5 şaftları arası zemin modellemesi gösterilmiştir. İtme yönü gözönüne alınarak PJ 5 Şaftından PJ 4 Şaftına doğru 56 metre aralık 1 nolu zemin bölümü, PJ 4 Şaftından PJ 5 Şaftına doğru 57 metre aralık 2 nolu zemin bölümü olarak düşünülmüştür. Araziden PJ 4 şaftından ve PJ 5 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda her bölümden alınan zemin örnekleri üzerinde ayrı ayrı zeminin doğal su içeriği, drenajsız kayma dayanımı C_u değerinin belirlenmesi için UU deneyleri, plastisite değerinin belirlenmesi için Kıvam Limitleri Deneyleri, özgül ağırlığının belirlenmesi için piknometre deneyi, kil-silt yüzdesinin saptanması için hidrometre deneyleri yapılarak aşağıda gösterilen tablodaki değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit	Plastisite İndeksi	Kil-Silt Yüzdesi	Zemin Tanımı
				(LL)	(PI)		
1 NOLU BÖLÜM	76	21,70	16	35	11	%31 Kil %69 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	91	21,80	16	35	14	% 25Kil- %75 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.1.1 PJ 4-PJ 5 şaftları arası zemin özellikleri

Şekil 5.2.1.2 PJ 4-PJ 5 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 56 m arasındaki 1 numaralı bölümün zemin özellikleri PJ 5 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 56 metreden sonraki 2 numaralı bölümün zemin özellikleri PJ 4 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir.

$$P_{T} = R_{p} + F \tag{5.2}$$

Eşitliğinde R_p giriş direnci Şekil 5.2.1.2' de A ile B noktası arasında çizilen teğet doğrunun

ordinat eksenini kestiği noktadır. Bu değer ilk doğrunun B noktasındaki itme kuvveti değerinden çıkarılarak yapılan hesaba katılır ve grafiğin geri kalanının analizinde çizilen doğrular arasındaki itme yükü farkları dikkate alınır, böylece (5.2) eşitliği

$$\Delta \mathbf{P}_{\mathrm{T}} = \mathbf{f}_{\mathrm{s}} * \mathbf{A}_{\mathrm{s}} \tag{5.3}$$

$$\Delta \mathbf{P}_{\mathrm{T}} = \mathbf{f}_{\mathrm{s}} * \pi * \mathbf{D}_{\mathrm{e}} * \Delta \mathbf{L}$$
(5.4)

Şekline dönüşür. Bu eşitlikte ΔP_t çizilen doğrular arasındaki itme kuvveti farkı, f_s sürtünme değeri, D_e boru dış çapı olup 1,04 metredir ve ΔL ise çizilen doğrunun başı ile sonu arasındaki itme aralığı farkıdır. Yapılacak tüm grafik analizlerinde hesaplama için (5.4) eşitliği kullanılacaktır.

<u>A ile B Noktası Arası:</u> Bu bölümde itme kuvvetleri 15 metrelik bir aralıkta 28,93 tona çıkmıştır. Giriş direnci olarak grafikte ilk doğrunun ordinatı kestiği noktadaki değerdir ve bu değer ise 13 ton olarak belirlenmiştir. Ton birimindeki itme kuvveti değerleri eşitlik içinde kPa birimine dönüştürülerek kullanılmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

 $(289,30-130) = f_s * \pi * 1,04 * 15$ olur. Buradan da $f_s = 3,25$ kPa olarak bulunur.

$$\mathbf{f}_{\mathrm{s}} = \boldsymbol{\alpha}^* \, \mathbf{C}_{\mathrm{u}} \tag{5.5}$$

Eşitliğinden α değeri bulunur. Bu bölüm zemin modellemesinde grafiğin 1. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 76 kPa bulunmuştur. Bulunan bu değer (5.5) eşitliğinde yerine konularak α =0,04 bulunmuştur.

<u>**C ile D Noktası Arası:**</u> 16 m ile 30 m arası bölüm olup bu bölümde itme kuvvetleri 14 metrelik bir aralıkta 24,38 tondan 161,08 tona çıkmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

 $(1610,8-243,8) = f_s * \pi * 1,04*14$ olur. Buradan da fs= 29,90 kPa olarak bulunur.

Bu bölüm grafiğin 1. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 76 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,39 bulunmuştur.

<u>E ile F Noktası Arası:</u> Bu bölümde itme kuvvetleri 19 metrelik bir aralıkta 157,46 tondan 206,3 tona çıkmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

 $(2063-1574,60) = f_s * \pi * 1,04 * 19$ olur. Buradan da $f_s = 7,87$ kPa olarak bulunur.

Bu bölüm grafiğin 1. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 76 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,11 bulunmuştur.

<u>**G ile H Noktası Arası:</u>** Bu bölümde 56 m ile 79 m arasıdır ve itme kuvvetleri 23 m lik bir aralıkta 200,78 tondan 222,88 tona çıkmıştır.</u>

(5.4) eşitliğinde değerler yerine yazılırsa

 $(2228,80-2007,80) = f_s * \pi * 1,04 * 23$ olur. Buradan da $f_s = 2,94$ kPa olarak bulunur.

Bu bölüm grafiğin 2. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 91 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,03 bulunmuştur.

<u>I ile J Noktası Arası:</u> Bu bölüm 80 m ile 113 m arasıdır ve itme kuvvetleri 33 metrelik bir aralıkta 248,65 tondan 349,70 tona çıkmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

 $(3497-2486,50) = f_s * \pi * 1,04*33$ olur. Buradan da $f_s = 9,40$ kPa olarak bulunur.

Bu bölüm grafiğin 2. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 91 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,10 bulunmuştur.

5.2.2 PJ 5-PJ 6 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.2.1 PJ 5-PJ 6 şaftları arası zemin modellemesi

PJ 5 ile PJ 6 şaftları arasındaki aralık 119 m dir. İtme yönü gözönüne alınarak PJ 5 Şaftından PJ 6 Şaftına doğru 59 m aralık 1 nolu zemin bölümü, PJ 6 Şaftından PJ 5 Şaftına doğru 60 m aralık 2 nolu zemin bölümü olarak düşünülmüştür. Araziden PJ 6 şaftından ve PJ 5 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda çizelge 5.2.2.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	76	21,70	16	35	11	%31 Kil- %69 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	60	21,60	17	32	11	%20 Kil- %80 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.2.1 PJ 5-PJ 6 şaftları arası zemin özellikleri

Şekil 5.2.2.2 PJ 5-PJ 6 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 59 m arasındaki 1 numaralı bölümün zemin özellikleri PJ 5 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 59 metreden sonraki 2 numaralı bölümün zemin özellikleri PJ 6 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	319,80 -110	14	4,58	76	0,06
C-D	1652,40 -253	15	28,6	76	0,38
E-F	2050,60 - 1574,70	13	10,9	76	0,14
G-H	2162,30 -1830	13	7,8	76	0,10
I-J	2531,50 - 1924,30	29	6,4	60	0,11
K-L	3497-2711,20	30	8	60	0,13

Çizelge 5.2.2.2 PJ 5-PJ 6 arası grafik analizi sonuçları

5.2.3 PJ 10-PJ 6 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.3.1 PJ 10-PJ 6 şaftları arası zemin modellemesi

PJ 10 ile PJ 6 şaftları arasındaki aralık 159 m dir. İtme yönü gözönüne alınarak PJ 10 Şaftından PJ 6 Şaftına doğru 79 m aralık 1 nolu zemin bölümü, PJ 6 Şaftından PJ 10 Şaftına doğru 80 m aralık 2 nolu zemin bölümü olarak düşünülmüştür. Araziden PJ 6 şaftından ve PJ 10 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda çizelge 5.2.3.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	60	18,10	37	28	7	%18 Kil- %82 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	62	21,60	17	32	11	%20 Kil- %80 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.3.1 PJ 10-PJ 6 şaftları arası zemin özellikleri

Şekil 5.2.3.2 PJ 10-PJ 6 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 79 m arasındaki 1 numaralı bölümün zemin özellikleri olarak PJ 10 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 79 metreden sonraki 2 numaralı bölümün zemin özellikleri olarak PJ 6 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	795-120	33	6,25	60	0,10
	1172,30-595,50	45	3,90	60	0,07
C-D	1515,30-1172,30	21	5,00	62	0,08
E-F	1891-1716	15	3,60	62	0,06
G-H	3073,30-2024,1	21	15,29	62	0,25
I-J	3393,20-3242,20	8	5,80	62	0,09
K-L	3823-3181,30	11	17,90	62	0,29

Çizelge 5.2.3.2 PJ 10-PJ 6 arası grafik analizi sonuçları

5.2.4 PJ 10-PJ 13 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.4.1 PJ 10-PJ 13 şaftları arası zemin modellemesi

PJ 10 ile PJ 13 şaftları arasındaki aralık 155 m dir. İtme yönü gözönüne alınarak PJ 10 Şaftından PJ 13 Şaftına doğru 77 m aralık 1 nolu zemin bölümü, PJ 13 Şaftından PJ 10 Şaftına doğru 78 m aralık 2 nolu zemin bölümü olarak düşünülmüştür. Araziden PJ 13 şaftından ve PJ 10 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda çizelge 5.2.4.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	60	18,10	37	28	7	%18 Kil- %82 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	24	18,60	37	28	7	%23 Kil- %77 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.4.1 PJ 10-PJ 13 şaftları arası zemin özellikleri

Şekil 5.2.4.2 PJ 10-PJ 13 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 77 m arasındaki 1 numaralı bölümün zemin özellikleri PJ 10 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 77 metreden sonraki 2 numaralı bölümün zemin özellikleri PJ 13 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. Daha önce ayrıntıları ile anlatılan kesime benzer şekilde yapılan PJ 10-PJ 13 şaftları arası grafik analizleri sonuçları Çizelge 5.2.4.2' de gösterilmiştir.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	700-130	30	5,82	60	0,09
C-D	1219,40-692,40	24	6,72	60	0,11
E-F	1644,20-1169,20	21	6,93	60	0,12
	2540,60-1644,20	28	9,80	24	0,41
G-H	3785,20-2433,20	32	12,95	24	0,54
I-J	3868,80-3594,80	15	5,60	24	0,23

Çizelge 5.2.4.2 PJ 10-PJ 13 arası grafik analizi sonuçları

5.2.5 PJ 14-PJ 13 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.5.1 PJ 14-PJ 13 şaftları arası zemin modellemesi

PJ 14 ile PJ 13 şaftları arasındaki aralık 155 metredir. İtme yönü gözönüne alınarak PJ 14 Şaftından PJ 13 Şaftına doğru 30 m aralık 1 numaralı zemin bölümü, PJ 13 Şaftından PJ 14 Şaftına doğru 29 m aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 13 şaftından ve PJ 14 şaftından shelby tüpleri ile H=3,00-3,50 metre derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda çizelge 5.2.5.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	22	19,85	26	29	8	%20 Kil- %80 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	24	18,40	37	28	7	%23 Kil- %77 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.5.1 PJ 14-PJ 13 şaftları arası zemin özellikler

Şekil 5.2.5.2 PJ 14-PJ 13 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 30 metre arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 14 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 31 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 13 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. Daha önce ayrıntıları ile anlatılan kesime benzer şekilde yapılan PJ 14-PJ 13 şaftları arası grafik analizleri sonuçları Çizelge 5.2.5.2' de gösterilmiştir.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	371,70-130	23	3,48	22	0,16
C-D	300-226,90	6	3,73	22	0,17
	418,80-300	7	5,20	24	0,22
E-F	712,80-330,60	21	5,54	24	0,23

Çizelge 5.2.5.2 PJ 14-PJ 13 arası grafik analizi sonuçları

5.2.6 PJ 14-PJ 17 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.6.1 PJ 14- PJ 17 şaftları arası zemin modellemesi

PJ 14 ile PJ 17 şaftları arasındaki aralık 154,70 metredir. PJ 14 Şaftından PJ 17 Şaftına doğru 51,60 metre aralık 1 numaralı zemin bölümü, PJ 17 Şaftından PJ 14 Şaftına doğru 51,60 metre aralık 2 numaralı zemin bölümü ve PJ14 ile PJ 17 şaftlarının ortasındaki 51,50 metre aralık 3 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 14 şaftından, PJ 17 şaftından ve iki şaftın yaklaşık ortasından shelby tüpleri ile zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.6.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	21,5	19,9	26	29	8	%20 Kil- %80 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	27	20,1	24	30	7	%25 Kil- %75 Silt	Düşük Plastisiteli Killi Silt
3 NOLU BÖLÜM	50	20,6	21	33	9	%29 Kil- %71 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.6.1 PJ 14-PJ 17 şaftları arası zemin özellikleri

Şekil 5.2.5.2 PJ 14-PJ 17 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

PJ 14 ile PJ 17 şaftları arası şekilde zemin modellemesinde gösterildiği gibi 3 bölümde analiz edilecektir.

0 ile 51,60 metre arasındaki 1 numaralı bölümün zemin özellikleri PJ 14 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 51,60 metre ile 103,10 metre arasındaki 2 numaralı bölümün zemin özellikleri PJ 14-17 şaftlarının yaklaşık ortasından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 103,10 metreden sonraki 3 numaralı bölümün zemin özellikleri PJ 17 şaftından alınan shelby tüpleri ile zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. Daha önce ayrıntıları ile anlatılan kesime benzer şekilde yapılan PJ 14-PJ 17 şaftları arası grafik analizleri sonuçları Çizelge 5.2.6.2' de gösterilmiştir.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	444-150	31	2,90	22	0,13
CD	591,50-373,30	19,6	3,41	22	0,16
C-D	834,50-700	9,4	4,38	27	0,16
E-F	1356,30-757,40	25	7,34	27	0,27
G-H	1987-1329	2	100,70	27	1,00
LV	1519-1473	3	12,00	27	0,44
1-K	1920-1591	15	6,70	50	0,13
L-M	2019-1720	31	3,00	50	0,06
N-O	2476-1846	4	48,20	50	1,00

Çizelge 5.2.6.2 PJ 14-PJ 17 arası grafik analizi sonuçları

5.2.7 PJ 17-PJ 19 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.7.1 PJ 17-19 şaftları arası zemin modellemesi

PJ 17 ile PJ 19 şaftları arasındaki aralık 150,74 metredir. PJ 17 Şaftından PJ 19 şaftına doğru 50,25 metre aralık 1 numaralı zemin bölümü, PJ 19 Şaftından PJ 17 şaftına doğru 50,25 metre aralık 2 numaralı zemin bölümü ve PJ17 ile PJ 19 şaftlarının ortasındaki 50,24 metre aralık 3 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 17 şaftından, PJ 19 şaftından ve iki şaftın yaklaşık ortasından shelby tüpleri ile zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.7.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	50	20,6	21	33	9	%29 Kil-%71 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	40	19,9	25	28	8	%19 Kil-%81 Silt	Düşük Plastisiteli Killi Silt
3 NOLU BÖLÜM	14	19,7	27	30	8	%17 Kil-%83 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.7.1 PJ 17-PJ 19 şaftları arası zemin özellikleri

ŞİLE Ø 800'LÜK BORU İTME İŞİ PJ17-PJ19 ŞAFTLARI ARASI İTME KUVVETİ DEĞERLERİ

Şekil 5.2.7.2 PJ 17-19 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

PJ 17-19 Şaftları arasındaki bölüm zemin modellemesinde yukarıda gösterildiği gibi 3 kısımda ele alınmıştır. 0 ile 50,25 metre arasındaki 1 numaralı bölümün zemin özellikleri PJ 17 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 50,25 metre ile 100,49 metre arasındaki 2 numaralı bölümün zemin özellikleri PJ 17-19 şaftlarının yaklaşık ortasından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 100,49 metreden sonraki 3 numaralı bölümün zemin özellikleri PJ 19 şaftlarının yaklaşık ortasından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. 100,49 metreden sonraki 3 numaralı bölümün zemin özellikleri PJ 19 şaftından alınan shelby tüpleri ile zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılarak belirlenmiştir. Daha önce ayrıntıları ile anlatılan kesime benzer şekilde yapılan PJ 14-PJ 13 şaftları arası grafik analizleri sonuçları Çizelge 5.2.7.2' de gösterilmiştir.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	330-150	31	1,78	50	0,04
C-D	820-270	53	3,18	40	0,08
E-F	1240-580	4	50,50	40	1,00
G-H	1400-960	7	19,20	14	1,00
I-K	1760-990	33	7,15	14	0,51

Çizelge 5.2.7.2 PJ 17-PJ 19 arası grafik analizi sonuçları

Normalde α değeri 1' den büyük olamayacağı için E ile F ve G ile H için tekrar değerlendirme yapmanın gerekli olduğu düşünülmüş ve arızanın oluşmadığı varsayımından hareketle grafikte E ile F ve G ile H noktaları arasında kesikli çizgi ile gösterilen olası yol çizilmiş ve bu yola göre tekrar bir hesap yapılmıştır. Arıza oluşmasaydı itme kuvvetleri 88 metrede 68 ton iken 117 metrede yaklaşık 99 ton değerine ulaşacaktı. Bu bölüm zemin modellemesine uygun olarak 88 metre ile 100,50 metre ve 100,50 metre ile 117 metre arası olmak üzere iki kısımda incelenecektir. Bu bölümün birinci kısmı 88 metre ile 100,50 metre arası bölümdür ve itme kuvvetleri 12,50 metrelik bir aralıkta 68 tondan 90 tona çıkmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

(900-680)= $f_s * \pi * 1,04 * 12,50$ olur. Buradan da $f_s = 5,39$ kPa olarak bulunur.

Bu bölüm zemin modellemesinde grafiğin 2. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 40 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,13 bulunmuştur.

Bu bölümün ikinci kısmı 100,50 metre ile 117 metre arası bölümdür ve itme kuvvetleri 16,50 metrelik bir aralıkta 90 tondan 99 tona çıkmıştır.

(5.4) eşitliğinde değerler yerine yazılırsa

(990-900)= $f_s * \pi * 1,04*16,5$ olur. Buradan da $f_s = 1,67$ kPa olarak bulunur.

Bu bölüm zemin modellemesinde grafiğin 3. bölümünde kalmaktadır. C_u değeri laboratuardaki deneylerden 14 kPa bulunmuştur. (5.5) eşitliği kullanılarak α =0,12 bulunmuştur.

Arıza halinde E ile F arası ve G ile H arası f_s değerleri sırasıyla 50,50 kPa ve 19,20 kPa olarak hesaplanmıştır. Arıza oluşmadığı varsayımı ile hesaplanan f_s değerleri E ile F arası ve G ile H arası f_s değerleri sırasıyla 5,39 kPa ve 1,67 kPa' dır. Bu gerilme değerleri arasında 10 kat fark olduğu görülmektedir. Bu durumda itme işlemi sırasında bu tür bir zeminde duraklama durumunda gerilmelerin ne boyutlara ulaştığını göstermesi açısından önemlidir.

5.2.8 PJ 19-PJ 21 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.8.1 PJ 19-21 şaftları arası zemin modellemesi

PJ 19 ile PJ 21 şaftları arasındaki aralık 167,00 metredir. PJ 19 şaftından PJ 21 şaftına doğru 56 metre aralık 1 numaralı zemin bölümü, PJ 21 şaftından PJ 19 şaftına doğru 56 metre aralık 2 numaralı zemin bölümü ve PJ19 ile PJ 21 şaftlarının ortasındaki 55 metre aralık 3 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 19 şaftından, PJ 21 şaftından ve iki şaftın yaklaşık ortasından shelby tüpleri ile zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.8.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	14	19,7	27	30	8	%17 Kil- %83 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	23	19,5	28	31	9	%21 Kil- %79 Silt	Düşük Plastisiteli Killi Silt
3 NOLU BÖLÜM	28	19,5	28	35	9	%20 Kil- %80 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.8.1 PJ 19-PJ 21 şaftları arası zemin özellikleri

Şekil 5.2.8.2 PJ 19-21 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

PJ 19-21 şaftları arasındaki bölüm zemin modellemesinde yukarıda gösterildiği gibi 3 kısımda ele alınmıştır. 0 ile 56 metre arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 19 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 56 metre ile 111 metre arasındaki 3 numaralı bölümün zemin parametreleri olarak PJ 19-21 şaftlarının yaklaşık ortasından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda sonucunda elde edilen değerler kullanılmıştır.

kullanılmıştır. 111 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 21 şaftından alınan shelby tüpleri ile zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	552-100	30	4,60	14	0,33
C-D	536-530	3	0,07	14	0,01
	1150-536	22	8,55	28	0,31
ББ	1398-1098	32	2,87	28	0,10
E-F	1636,40-1398	33	2,21	23	0,10
G-H	2998,50-1336,80	20	7,15	23	0,31

Çizelge 5.2.8.2 PJ 19-PJ 21 arası grafik analizi sonuçları

5.2.9 PJ 21-PJ 24 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.9.1 PJ 21-24 şaftları arası zemin modellemesi

PJ 21 ile PJ 24 şaftları arasındaki aralık 155,60 metredir. PJ 21 Şaftından PJ 24 Şaftına doğru 77,80 metre aralık 1 numaralı zemin bölümü, PJ 24 Şaftından PJ 21 Şaftına doğru 77,80 metre aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 21 şaftından ve PJ 24 şaftından shelby tüpleri ile zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.9.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	23	19,5	28	31	9	%21 Kil- %79 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	25	19	31	39	10	%25 Kil- %75 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.9.1 PJ 21-PJ 24 şaftları arası zemin özellikleri

Şekil 5.2.9.2 PJ 21-24 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

PJ 21-24 Şaftları arasındaki bölüm zemin modellemesinde yukarıda gösterildiği gibi 2 kısımda ele alınmıştır. 0 ile 77,80 metre arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 21 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 77,80 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 24 şaftından shelby tüpleri ile alınan zemin örnekleri ile

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	1137-780	37	2,95	23	0,13
C-D	1343-1005	37	2,80	23	0,12
E-F	1375-1163,50	48	1,35	25	0,05
G-H	1405-1289	16	2,20	25	0,09

Çizelge 5.2.9.2 PJ 21-PJ 24 arası grafik analizi sonuçları

5.2.10 PJ 24-PJ 25 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.10.1 PJ 24-PJ 25 arası zemin modellemesi

PJ 24 ile PJ 25 şaftları arasındaki aralık 54 metredir. İtme yönü gözönüne alınarak PJ 24 Şaftından PJ 25 Şaftına doğru 27 metre aralık 1 numaralı zemin bölümü, PJ 25 Şaftından PJ 24 Şaftına doğru 27 metre aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 24 şaftından ve PJ 25 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.10.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	25	19,00	31,0	39,0	10,0	%25 Kil- %75 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	48	19,50	27,0	37,0	10,0	%18 Kil- %82 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.10.1 PJ 24-PJ 25 şaftları arası zemin özellikleri

Şekil 5.2.10.2 PJ 24-PJ 25 şaftaları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 27 m arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 24 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 27 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 25 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	507,40-110	27	4,50	25	0,18
	619-507,40	5	6,90	48	0,14
C-D	676-520,30	13	3,67	48	0,08
E-F	800-631,90	7	7,35	48	0,15

Çizelge 5.2.10.2 PJ 25-PJ 24 arası grafik analizi sonuçları

5.2.11 PJ 25-PJ 27 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.11.1 PJ 25-PJ 27 arası zemin modellemesi

PJ 25 ile PJ 27 Şaftları arasındaki aralık 121 metredir. PJ 25 Şaftından PJ 27 Şaftına doğru 40 m aralık 1 numaralı zemin bölümü, PJ 27 Şaftından PJ 25 Şaftına doğru 40 metre aralık 3 numaralı zemin bölümü ve PJ 25 ile PJ 27 şaftlarının ortasındaki 41 m aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 25 şaftından, PJ 27 şaftından ve iki şaftın yaklaşık ortasından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.11.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	48	19,50	28,0	37,0	9,0	%18 Kil- %82 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	46	19,20	30,0	43,0	14,0	%29 Kil- %71Silt	Düşük Plastisiteli Killi Silt
3 NOLU BÖLÜM	54	20,20	24,0	38,0	13,0	%29 Kil- %71Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.11.1 PJ 25-PJ 27 şaftları arası zemin özellikleri

Şekil 5.2.11.2 PJ 25-PJ 27 şaftaları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 40 metre arasındaki 1 numaralı bölümün zemin parametreleri PJ 25 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 40 metre ile 81 metre arasındaki 2 numaralı bölümün zemin parametreleri PJ 25-27 şaftlarının yaklaşık ortasından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 81 metreden sonraki 3 numaralı bölümün zemin parametreleri PJ 27 şaftından alınan shelby tüpleri ile

zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	423-180	22	3,40	48	0,07
C-D	373-368	19	0,10	48	0,01
C-D	535-373	31	1,60	46	0,03
E-E	573-505	8	2,60	46	0,06
	720-573	20	5,60	54	0,11
G-H	935-691	11	4,15	54	0,08

Çizelge 5.2.11.2 PJ 25-PJ 24 arası grafik analizi sonuçları

5.2.12 PJ 28-PJ 27 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.12.1 PJ 27-PJ 28 şaftları arası zemin modellemesi

PJ 27 ile PJ 28 şaftları arasındaki aralık 24 metredir. İtme yönü gözönüne alınarak PJ 28 Şaftından PJ 27 Şaftına doğru 12 metre aralık 1 numaralı zemin bölümü, PJ 27 Şaftından PJ 28 Şaftına doğru 12 metre aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 27 şaftından ve PJ 28 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.12.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	25	19,50	28,0	31,0	11,0	%21 Kil %79 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	54	20,00	23,0	38,0	13,0	%22 Kil- %78 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.12.1 PJ 27-PJ 28 şaftları arası zemin özellikleri

Şekil 5.2.12.2 PJ 28-PJ 27 şaftları arası itme kuvvetlerinin aralıkla değişimi

0 ile 12 metre arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 27 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 12 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 28 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	a Değeri
A-B	267,60-90	3	18,15	25	0,72
C-D	492,70-380,03	8	4,30	54	0,08
E-F	555-481,50	4	5,60	54	0,10

Çizelge 5.2.12.2 PJ 25-PJ 24 arası grafik analizi sonuçları

5.2.13 PJ 28-PJ 30 Arası Zemin Modellemesi ve Grafik Analizi

Şekil 5.2.13.1 PJ 28-PJ 30 şaftları arası zemin modellemesi

PJ 28 ile PJ 30 şaftları arasındaki aralık 105 metredir. İtme yönü gözönüne alınarak PJ 28 Şaftından PJ 30 Şaftına doğru 52 metre aralık 1 numaralı zemin bölümü, PJ 30 Şaftından PJ 28 Şaftına doğru 53 metre aralık 2 numaralı zemin bölümü olarak düşünülmüştür. Araziden PJ 28 şaftından ve PJ 30 şaftından shelby tüpleri ile H=3,00-3,50 m derinliğinden zemin örnekleri alınmış ve laboratuarda yapılan deneyler sonucunda Çizelge 5.2.12.1' de gösterilen değerlere ulaşılmıştır.

	C _u (KN/m ²)	γ(KN/m ³)	Doğal Su İçeriği, w(%)	Likit Limit (LL)	Plastisite İndeksi (PI)	Kil-Silt Yüzdesi	Zemin Tanımı
1 NOLU BÖLÜM	25	19,50	28	31	11	%21 Kil- %79 Silt	Düşük Plastisiteli Killi Silt
2 NOLU BÖLÜM	29	19,60	28	32	11	%22 Kil- %78 Silt	Düşük Plastisiteli Killi Silt

Çizelge 5.2.13.1 PJ 28-PJ 30 şaftları arası zemin özellikleri

Şekil 5.2.13.2 PJ 28-PJ 30 şaftları arası itme kuvvetlerinin aralıkla değişim grafiği

0 ile 52 metre arasındaki 1 numaralı bölümün zemin parametreleri olarak PJ 28 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır. 52 metreden sonraki 2 numaralı bölümün zemin parametreleri olarak PJ 30 şaftından shelby tüpleri ile alınan zemin örnekleri ile laboratuarda yapılan deneyler sonucunda elde edilen değerler kullanılmıştır.

Kesim	İtme Kuvveti Farkı(KN)	Ara Uzunluğu(m)	f _s (kPa)	C _u (kPa)	α Değeri
A-B	460-150	36	2,63	25	0,11
C-D	500-363	15	2,80	25	0,11
	637,70-500	10	4,20	29	0,14
E-F	1084,90-709,40	23	5,00	29	0,17
G-H	1544,30-1224,60	16	6,10	29	0,21
I-J	1986,50-1544,30	2	67,60	29	1

Çizelge 5.2.13.2 PJ 28-PJ 30 arası grafik analizi sonuçları

5.3 α- Cu İlişkisi ile İlgili Değerlendirmeler

Bütün yapılan analizler sonucunda elde edilen α değerleri C_u değerleri ile eşleştirilerek yatay ve düşey eksen takımında bu iki büyüklüğün ilişkisi araştırılmıştır. Şekil 5.3.1' de α - C_u dağılımları görülmektedir.

Şekil 5.3.1 a- Cu dağılımları

Şekil 5.3.1 incelenirse α dağılımlarının kırmızı çizgilerle gösterilen bant arasında yoğunlaştığı görülmüştür. Bu bant arasında α = 0.15 sayısı altında ve üstünde kalan değerler açısından ortalama bir değer olarak göze çarpmaktadır. Grafiksel olarak belirlenen bu sayının yanında bulunan bütün değerlerin değerleri gözönüne alarak yapılacak istatiksel dağılım hesabı yapılarak daha gerçekçi bir α sayısı elde edilmesi amaçlanmıştır.
	1	1	1	1	1	0,72	0,54	0,51	0,44
0,41	0,39	0,38	0,35	0,31	0,31	0,29	0,25	0,23	0,23
0,23	0,22	0,21	0,2	0,18	0,17	0,17	0,16	0,15	0,15
0,14	0,14	0,14	0,14	0,13	0,13	0,13	0,12	0,12	0,11
0,11	0,11	0,11	0,11	0,11	0,1	0,1	0,1	0,1	0,1
0,1	0,1	0,1	0,1	0,09	0,09	0,09	0,09	0,08	0,08
0,08	0,07	0,06	0,06	0,06	0,06	0,05	0,04	0,04	0,03
0,03	0,01								

Çizelge 5.3.1 α değerlerinin büyükten küçüğe sıralanmış durumu

Çizelge 5.3.1' de α değerlerinin büyükten küçüğe sıralanmış durumu gösterilmiştir. Çizelgede en büyük değer 1 en küçük değer ise 0,01 dir. Buna göre dağılım aralığı=1-0,01=0,99 olur.

Dağılım aralığı 11 e bölünürse her sınıf 0,09 aralıkla oluşur ve toplam aralık sayısı 10 adet olur.

			Orta	
Aralık			Nokta,	
No	Değişim Aralığı, Xa	Frekans, f	X=Xa/2	f*X
1	0,01-0,1	27	0,055	1,485
2	0,11-0,2	22	0,155	3,41
3	0,21-0,3	7	0,255	1,785
4	0,31-0,4	5	0,355	1,775
5	0,41-0,5	2	0,455	0,91
6	0,51-0,6	2	0,555	1,11
7	0,61-0,7	0	0,655	0
8	0,71-0,8	1	0,755	0,755
9	0,81-0,9	0	0,855	0
10	0,91-1	5	0,955	4,775
	TOPLAM	71		16,005

Çizelge 5.3.2 a değerinin dağılımlı ortalamasının hesabı

Çizelge 5.3.2' de gösterilen frekans ile değişim aralığının orta nokta değerinin çarpımları toplamının toplam frekans değerine bölünmesi sonucu α değerlerinin dağılımlı ortalaması bulunmuş olur.

 $\alpha_{\text{ortalama}}=16,005/71$ $\alpha_{\text{ortalama}}=0,225$ bulunur yuvarlama yapılarak $\alpha_{\text{ortalama}}=0,23$ bulunur.

Bulunan bu değer grafik analizlerinde hesaplanan bütün α değerlerini kapsadığı için daha sağlıklı bir ortalama değer olarak alınabilir.

5.4 Grafik Analizleri İle İlgili Değerlendirmeler

İtme işlemi sırasında çeşitli nedenlerle(arıza, boru değişimi vb.) oluşan durma ve sonrasında çalışmaya tekrar başlanıldığında itme kuvvetlerinde dolayısıyla gerilmelerde artışlar görülebilmektedir. PJ 17-PJ 19 arası ve PJ 14-PJ 17 arası bölümlerde oluşan arıza sonrasında yeniden çalışmaya başlanıldığında kaydedilen itme kuvvetleri ve hesaplanan gerilme değerleri durmanın itme işlemi üzerindeki etkisinin anlaşılması için güzel birer örnektir. Şekil 5.4.1' de PJ 14-PJ 17 arası itme kuvvetlerinin aralıkla değişim grafiği sağlıklı bir değerlendirmenin yapılabilmesi için bu bölümde tekrar verilmiştir.

Şekil 5.4.1 PJ 14-PJ 17 arası itme kuvvetlerinin aralıkla değişim grafiğinin arıza sonrası değerlendirilmesi

Şekil 5.4.1 incelendiğinde 92 metrede arıza meydana geldiği ve arıza sonrası tekrar çalışma başladığında 92 metrede arıza öncesi itme kuvveti 132 ton iken 94 metrede 198 ton seviyesine tırmanmıştır. PJ 14-PJ 17 arası 92 metrede arıza sonrası gerilmenin 100,70 kPa düzeyine çıktığı ilgili grafik analizinde bulunmuştur. Bentonit işleminin etkisiyle 118. metreden sonra itme kuvvetleri azalmaya başlamış ve 123. metrede 171 ton seviyelerine gerilemiştir. 31 metrelik bölümde arızanın etkisinin devam ettiği Şekil 5.4.1' de görülebilmektedir. Arızanın oluşmadığı varsayımından hareketle Şekil 5.4.1' de gösterilen olası kesikli yol çizilmiştir. Bu aralık için tekrar gerilme hesabı yapılırsa itme kuvvetleri 92 metrede 132,90 ton iken 123 metrede yaklaşık 171,97 ton değerine ulaşacaktı.

$$\Delta \mathbf{P}_{t} = \mathbf{f}_{s} * \pi * \mathbf{D}_{e} * \Delta \mathbf{L}$$
(5.4)

Eşitliğinde yeni değerler yerine yazılırsa

 $(1719,70-1329) = f_s * \pi * 1,04*31$ olur. Buradan da $f_s = 3,86$ kPa olarak bulunur.

Arıza halinde hesaplanan $f_s=100,70$ kPa değeri ile arıza oluşmadığı varsayımı ile hesaplanan $f_s = 3,86$ kPa değeri arasında 25 kattan daha fazla fark olduğu görülmektedir. Bu durumda itme işlemi sırasında bu tür bir zeminde duraklama durumunda gerilmelerin ne boyutlara ulaştığını göstermesi açısından önemli görülmektedir.

Benzer bir değerlendirme de PJ 17-PJ 19 arası için yapılabilir.

ŞİLE Ø 800'LÜK BORU İTME İŞİ PJ17-PJ19 ŞAFTLARI ARASI İTME KUVVETİ DEĞERLERİ

Şekil 5.4.2 PJ 17-PJ 19 arası itme kuvvetlerinin aralıkla değişim grafiğinin arıza sonrası değerlendirilmesi

Şekil 5.4.2 incelendiğinde 97 metrede arıza meydana geldiği ve arıza sonrası yeniden çalışma başladığında 97 metrede arıza öncesi itme kuvveti 68 ton iken 98 metrede 124 ton seviyesine tırmanmıştır. PJ 17-PJ 19 arası 97 metrede arıza sonrası gerilmenin 50,50 kPa düzeyine çıktığı ilgili grafik analizinde bulunmuştur. Bentonit işleminin etkisiyle 115. metreden sonra itme kuvvetleri azalmaya başlamış ve 116. metrede 98 ton seviyelerine gerilemiştir. 19

metrelik bölümde arızanın etkisinin devam ettiği Şekil 5.4.2' de görülebilmektedir. Arızanın oluşmadığı varsayımından hareketle Şekil 5.4..2' de gösterilen olası kesikli yol çizilmiştir. Bu aralık için tekrar gerilme hesabı yapılırsa itme kuvvetleri 97 metrede 68 ton iken 123 metrede yaklaşık 98 ton değerine ulaşacaktı.

$$\Delta \mathbf{P}_{t} = \mathbf{f}_{s} * \pi * \mathbf{D}_{e} * \Delta \mathbf{L}$$
(5.4)

Eşitliğinde yeni değerler yerine yazılırsa

(980-680)= $f_s * \pi * 1,04*19$ olur. Buradan da $f_s = 4,80$ kPa olarak bulunur.

Arıza halinde hesaplanan f_s=50,50 kPa değeri ile arıza oluşmadığı varsayımı ile hesaplanan

 $f_s = 4,80$ kPa değeri arasında 10 kattan daha fazla fark olduğu görülmektedir. Bu durumda itme işlemi sırasında bu tür bir zeminde duraklama durumunda gerilmelerin ne boyutlara ulaştığını göstermesi açısından dikkate değerdir.

Yukarıda yapılan değerlendirmeler sonucunda durma sonrasında çalışmaya başlanıldığında itme kuvvetlerinde kısa aralıklar içinde arızanın süresine bağlı olarak itme kuvvetlerinde %100 oranında, gerilme değerlerinde ise 10-25 kat arasında artışlara neden olabileceğini belirlenmiştir. Bu önemli artışlar itme işleminin verimliği, ekonomisi ve süresi ile ilgili ciddi bir sorundur.

Bentonit kullanılan aralıklar ile kullanılmayanlar arasında ölçülen en büyük itme yükleri açısından karşılaştırma yapabilmek amacıyla Çizelge 5.4.1 hazırlanmıştır.

		Ulaşılan En	
	İtme	Büyük İtme	Betnonit Kullanılıp
Şaft No	Boyu(m)	Kuvveti(Ton)	Kullanılmadığı
PJ 5-PJ 4	113	365	BENTONİTSİZ
PJ 5-PJ 6	119	385	BENTONİTSİZ
PJ 10-PJ 6	159	382	BENTONİTSİZ
PJ 10-PJ 13	155	422	BENTONİTSİZ
PJ 14-PJ 13	59	71	BENTONİTSİZ
PJ 14-PJ 17	154	247	BENTONİTLİ
PJ 17-PJ 19	150	176	BENTONİTLİ
PJ 19-PJ 21	167	300	BENTONİTSİZ
PJ 21-PJ 24	155	142	BENTONİTLİ
PJ 24-PJ 25	54	93	BENTONİTSİZ
PJ 25-PJ 27	121	104	BENTONİTLİ
PJ 28-PJ 30	105	200	BENTONİTLİ

Çizelge 5.4.1 İtme Aralıklarında ölçülen en büyük itme kuvvetleri

Çizelge 5.4.1' de itme şaft uzunlukları, kaydedilen en büyük itme kuvvetleri ve bentonit uygulanıp uygulanmadığı gösterilmiştir.

İtme Aralıkları	Bentonit Kullanılma	Ortalama İtme Yükü(ton)	İtme Yükleri Oranı, %
PJ 21-PJ 24, PJ 17- PJ 19 ve PJ 14-PJ 17	Bentonitli	188	46,8
PJ 10-PJ 6 ve PJ 10-PJ 13	Bentonitsiz	402	

Çizelge 5.4.2 PJ 21-PJ 24, PJ 17- PJ 19 ve PJ 14-PJ 17 ile PJ 10-PJ 6 ve PJ 10-PJ 13 aralıklarının itme kuvvetleri yönünden karşılaştırılması

Çizelge 5.4.3 PJ 25-PJ 27 ve PJ 28-PJ 30 ile PJ 5-PJ 4 ve PJ PJ 5-PJ 6 aralıklarının itme kuvvetleri yönünden karşılaştırılması

İtme Aralıkları	Bentonit Kullanılma	Ortalama İtme Yükü(ton)	İtme Yükleri Oranı, %
РЈ 25-РЈ 27,			
PJ 28-PJ 30	Bentonitli	152	40.5
PJ 5-PJ 4,			40,5
PJ 5-PJ 6	Bentonitsiz	375	

Çizelge 5.4.2 ve Çizelge 5.4.3' de bentonit uygulaması yapılan ve yapılmayan itme aralıklarında ölçülen en büyük itme kuvveti yönünden karşılaştırma yapılmış ve bentonit uygulanan kesimlerde uygulanmayanlara göre ölçülen itme kuvvetlerine göre % 60' lara varan azalmalar meydana geldiği belirlenmiştir.

Başka bir değerlendirme de tezin 5.2 bölümünde yapınla grafik analizleri sonucu elde edilen gerilme değerlerinin bentonit uygulanan ve uygulanmayan bölümlerdeki değerlerine bakılarak yapılabilir. Çizelge 5.4.4' de ve Çizelge 5.4.5' de hesaplanan tüm gerilme değerleri bölümlerine ve itme aralıklarına göre gösterilmiştir

Bontonitsiz	0-15 m Arası Gərilmə(kBa)	16-30 m Arası Corilmo(kPa)	31-50 m Arası Gərilmə(kPa)	56-79 m Arası Gərilmə(kPa)	80-113 m Arası Gərilmə(kPa)	
DI 5 DI 4	2.25	20.00				
PJ 5-PJ 4	3,25	29,90	/,8/	2,94	9,40	
	0-14 m Arası	15-30 m Arası	31-44 m Arası	45-58 m Arası	59-88 m Arası	89-119 m Arası
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)
PJ 5-PJ 6	4,58	28,60	10,90	7,80	6,40	8,00
			101-116 m	117-138 m	139-147 m	148-159 m
	0-33 m Arası	34-79 m Arası	Arası	Arası	Arası	Arası
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)
PJ 10-PJ 6	6,25	3,25-5,00	3,60	15,30	5,80	17,90
				78-106 m	107-139 m	140-155 m
	0-30 m Arası	31-55 m Arası	56-77 m Arası	Arası	Arası	Arası
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa	Gerilme(kPa)	Gerilme(kPa)
PJ 10-PJ 13	5,82	6,72	6,93	9,80	12,95	5,60
	0-23 m Arası	24-30 m Arası	38-59 m Arası			
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)			
PJ 14-PJ 13	3,48	3,73-5,20	5,54			
	, í					
			79-111 m	111-144 m	146-166 m	
	0-56 m Arası	56-78 m Arası	Arası	Arası	Arası	
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	
PJ 19-PJ 21	4,60	8,55	2,87	2,21	7,15	
	0-3 m Arası	4-10 m Arası	12-19 m Arası	20-24 m Arası		
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)		
PJ 27-PJ 28	18,00	8,70	7,10	5,60		

Çizelge 5.4.4 Bentonit uygulaması yapılmayan bölümler için hesaplanan gerilme değerleri

Çizelge 5.4.5 Bentonit uygulaması yapılan bölümler için hesaplanan gerilme değerleri

Bentonitli	0-44 m Arası Gerilme(kPa)	48-52 m Arası Gerilme(kPa)	52-89 m Arası Gerilme(kPa)	92-94 m Arası Gerilme(kPa) ARIZA	100-118 m Arası Gerilme(kPa)	123-154 m Arası Gerilme(kPa)
PJ 14-PJ 17	4,30	2,40	6,30	100,70	12-6,70	3,00
			04.00	102-109 m	117 150	
	0.50	52.05	94-98 m Arasi	Arasi	117-150 m	
	0-52 m Arasi	53-85 m Arasi	Gerilme(kPa)	Gerilme(kPa)	Arası	
Bentonitli	Gerilme(kPa)	Gerilme(kPa)	ARIZA	ARIZA	Gerilme(kPa)	
PJ 17-PJ 19	2,10	2,29	50,50	19,20	7,15	
						103-121 m
			41-72 m Arası	74-82 m Arası	82-102 m Arası	Arası
Bentonitli	0-40 m Arası	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)
PJ 25-PJ 27	3,	40	1,60	2,60	5,60	4,15
	0-36 m Arası	37-52 m Arası	52-62 m Arası	63-86 m Arası	87-103 m Arası	
Bentonitli	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)	
PJ 27-PJ 28	2,63	2,80	4,20	5,00	6,10	

Çizelge 5.4.4 ve Çizelge 5.4.5' den yararlanılarak elde edilen birkaç çizelge yardımıyla bentonit kullanılması ve kullanılmaması durumları için hesaplanan gerilmeler arasında bazı karşılaştırmalar yapılmıştır. Karşılaştırılan iki bölümün karşılaştırma aralıklarının yakın olması için Çizelge 5.4.4 ve Çizelge 5.4.5' deki gerilme aralıkları birleştirilmiş ve birleştirilen kısımlarda gerilmelerin ortalamaları alınarak çizelge düzenlenmiştir. Örneğin Çizelge 5.4.6' da verilen PJ 5-PJ 6 bölümü 45-88 metre aralığı ve bu aralık için hesaplanan gerilme değeri Çizelge 5.4.' de PJ 5-PJ 6 bölümü 45-58 metre ile 59-88 metre aralıklarının birleştirilmesi ve bu aralıklardaki hesaplanan gerilme değerlerinin ortalamalarının alınmasıyla oluşturulmuştur. Karşılaştırmalar için yapılacak diğer çizelgeler içinde aynı şekilde birleştirmeler yapılmıştır.

Çizelge 5.4.6 PJ 5-PJ 6 ile PJ 25-PJ 2'	7 arası hesaplanan	gerilmelerin	karşılaştırılması
---	--------------------	--------------	-------------------

		45-88 m	89-119 m
	0-44 m Arası	Arası	arası
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)
РЈ 5-РЈ 6	14,69	7,10	8,00
		41-82 m	82-121 m
	0-40 m Arası	Arası	Arası
Bentonitli	Gerilme(kPa)	Gerilme(kPa)	Gerilme(kPa)
РЈ 25-РЈ 27	3,40	2,10	4,88
Gerilme Azalma			
(%)	77	70	39

Çizelge 5.4.7' de PJ 5-PJ 4 ile PJ 25-PJ 27 aralıkları için hesaplanan gerilmeler yakın aralıklar oluşturularak karşılaştırılmıştır. Karşılaştırılan iki bölümün karşılaştırma aralıklarının yakın olması için Çizelge 5.4.4 ve Çizelge 5.4.5' deki gerilme aralıkları birleştirilmiş ve birleştirilen kısımlarda gerilmelerin ortalamaları alınarak çizelge düzenlenmiştir

	0-79 m Arası	80-113 m Arası
Bentonitsiz	Gerilme(kPa)	Gerilme(kPa)
РЈ 5-РЈ 4	16,99	9,40
	0-72 m Arası	82-121 m Arası
Bentonitli	Gerilme(kPa)	Gerilme(kPa)
РЈ 25-РЈ 27	2,50	4,88
Gerilme Azalma		
(%)	77	48

Çizelge 5.4.7 PJ 5-PJ 4 ile PJ 25-PJ 27 arası hesaplanan gerilmelerin karşılaştırılması

PJ 17-PJ 19 arası bölümde arızanın meydana geldiği bölüme kadar olan gerilme değerlerini PJ 10-PJ 6 arası bölümün gerilme değerleri ile karşılaştırmak amacıyla Çizelge 5.4.8 düzenlenmiştir.

Çizelge 5.4.8 PJ 10-PJ 6 ile PJ 17-PJ 19 arası hesaplanan gerilmelerin karşılaştırılması

Bentonitsiz	0-79 m Arası Gerilme(kPa)
РЈ 10-РЈ 6	4,83
Bentonitli	0-85 m Arası Gerilme(kPa)
PJ 17-PJ 19	2,20
Gerilme Azalma	
(%)	55

PJ 17-PJ 19 arası bölümde arızanın meydana geldiği bölüme kadar olan gerilme değerlerini PJ 10-PJ 13 arası bölümün gerilme değerleri ile karşılaştırmak amacıyla Çizelge 5.4.9 düzenlenmiştir.

	0-55 m Arası	
Bentonitsiz	Gerilme(kPa)	56-77 m Arası Gerilme(kPa)
РЈ 10-РЈ 13	6,27	6,93
	0-52 m Arası	
Bentonitli	Gerilme(kPa)	53-85 m Arası Gerilme(kPa)
РЈ 17-РЈ 19	2,10	2,29
Gerilme Azalma		
(%)	66,50	63,60

Çizelge 5.4.9 PJ 10-PJ 13 ile PJ 17-PJ 19 arası hesaplanan gerilmelerin karşılaştırılması

Çizelge 5.4.10' da PJ 10-PJ 13 ile PJ 14-PJ 17 aralıkları için hesaplanan gerilmeler yakın aralıklar oluşturularak karşılaştırılmıştır.

	0-55 m Arası	
Bentonitsiz	Gerilme(kPa)	56-77 m Arası Gerilme(kPa)
PJ 10-PJ 13	6,27	6,93
	0-52 m Arası	
Bentonitli	Gerilme(kPa)	52-89 m Arası Gerilme(kPa)
PJ 14-PJ 17	3,35	6,30
Gerilme Azalma		
(%)	46,60	9,00

Çizelge 5.4.10 PJ 10-PJ 13 ile PJ 14-PJ 17 arası hesaplanan gerilmelerin karşılaştırılması

Yapılan bu karşılaştırmalar sonucunda bentonit kullanılması durumunda en az %9 en fazla % 77 oranlarında çevre gerilme değerlerinde azalmalar olduğu görülmüştür. Bu oranlarda bentonit ve benzeri malzemeler kullanılmasının itme işleminin verim ve başarısı üzerinde etkili olduğu görülmektedir. Bentonit kullanılması durumunda gerilmelerde sağlanan düşüşlere paralel olarak daha düşük itme kuvvetleriyle itme sağlanabilecek ve böylelikle ekipmanda aşırı zorlanmalar sonucu meydana gelebilecek arıza, aşınma gibi olumsuzluklarında önüne geçilebilecektir. Çizelge 5.4.11' de Boru İtme Enstitüsü, Northwest Water, Northumbrian Water, Severn Trent Water, Thames Water ve Oxford Üniversitesi gibi kuruluşların desteği ile ABD, Avrupa ve Japonyada çeşitli yerlerde yapılan 9 adet çalışmayla ilgili bilgiler bulunmaktadır

Proje No	Zemin Türü	Ölçülen Giriş Direnci(KN/m)	Notlar	Sürtünme Gerilmesi(kPa)	Craig Limitleri(kPa)
1	Sout Vil	120	Kuru	1,5	5 19
1	Sert Kli	120	Islak	6,2	5-18
2	Ayrışmış Kayaç	950	İlk 40 m	1,5	2-3
3	Londra Kili	300		7,6	5-20
Δ	Sıkı sitli kum/	100-800	Bentonitsiz	4,2	5-20
	Kumlu silt	100-800	Bentonitli	1,7	5 20
	Kum ve		Bentonitsiz	22	
5	Çakıl(Yass Altında)	1200	Bentonitli	2,2	10-15
				3,2	
6	Londra Kili	0		2,2	5-20
				1,5	
	Sıkı sitli		Tamamen	6,7	
7	kum(Yass altında)	592	Bentonitli	11	10-15
0	Sort Vil	325	Bentonitsiz	7,1	5 19
0	Sett KII	328	Bentonitli	0,3-2,2	5-10
		680	Bentonitsiz	4,4	
9	Çok yumuşak kil	746	Bentonitli	2,4	

Çizelge 5.4.11 Giriş ve sürtünme dirençleri(Marshall,1998)

Çizelge incelenirse sert kilde bentonit işlemi sonucunda gerilmelerin 7,1 kPa değerinden 0,3-2,2 kPa değerlerine inmiş ve gerilmelerde %70-95 oranlarında azalmalar sağlanmıştır. Çok yumuşak kilde bentonit işlemi sonucu gerileme değerinin 4,40 kPa değerinden 2,40 kPa değerine indiği ve bunun % 45 gibi bir oranda gerilme azalması anlamına geldiği belirlenmiştir.

Fransa da gerçekleştirilen deneysel çalışmada 9 adet itme boyu 70 metre ile 170 metre

arasında değişen itme çalışması izlenmiştir. Çalışma yapılan yerlerde sıkı kum, siltli kil, marn, çakıl gibi çok çeşitli zemin şartları sözkonusudur. (Pellet-Beaucor, R.Kestner, 2002). Bu 9 adet itme işinde 4 tanesi ile ilgili elde edilen bentonit işlemi sonucu Çizelge 5.4.12' de verilmiştir.

	Montmorency 3	Campaigny	Montmorency 2	Bouliac
Bentonitsiz fnd(kPa)	5,8	5,3	5,2	4,7
Bentonitli fld(kPa)	3,3	2,8	1,9	0,5
Bentonit İşlemi				
Sonucu Gerilme	43	47	64	89
Azalma(%)				
		Marn ve		
Zomin Tiirii	0:141: 1-:1	Çakıl,	Sala Varm	Tomiz Kum
		Kumlu	Siki Kuili	Tennz Kum
		Marn		
Proje Çapı	800 mm	500 mm	800 mm	500 mm

Çizelge 5.4.12 Boru itme işleminde bentonit kullanımının etkisi(Pellet-Beaucor, R.Kestner, 2002)

Çizelge 5.4.12 incelenirse 800 mm çapındaki hatlarda bentonit enjeksiyonu sonucunda gerilmeler de kil zeminde % 43, sıkı kum da ise % 64 oranlarında azalmalar meydana gelmiştir.

Yukarıda söz edilen deneysel çalışmalarda, bentonit işlemi sonucunda elde edilen gerilmelerde, bu tez kapsamında yukarıda söz edilen oranlara yakın değerlerde, azalmalar olduğu görülmüştür. Bütün bu değerlendirmeler göstermiştir ki bentonit işlemi boru itme teknolojisi için önemli bir yere sahiptir ve sağlıklı uygulandığı sürece boru itme işlerinin verimli şekilde yürütülmesi için her zaman önemli bir parametre olacaktır.

6. ÜÇ BOYUTLU MODELLEME

6.1 Plaxis Üç Boyutlu Tünel Programı

Plaxis Üç Boyutlu Tünel Programı, tünellerin ve yer altı yapılarının analizi için geliştirilen üç boyutlu bir programdır. Plaxis programını geliştirmesine Delft Üniversitesi tarafından Hollanda Kamu İşleri ve Su Yönetimi Bakanlığı projesi olarak başlanmıştır. Başlangıçta ilk amaç kolay kullanımlı Hollanda'nın düşük kotlardaki arazilerinde yumuşak zeminler üzerinde yapılan toprak setlerin analizlerinin yapılmasıdır. Ancak; ilerleyen yıllarda Plaxis birçok geoteknik mühendisliği uygulama alanlarında kullanılacak şekilde geliştirilmiştir. Artan geoteknik faaliyetleri nedeniyle Plaxis projesi 1993 yılında şirkete dönüştürülmüş ve 1998' de iki boyutlu ve Windows uyumlu gerilme ve deformasyon analiz programı yayınlanmıştır.

Plaxis Üç Boyutlu Tünel Programı, tünel projelerinin üç boyutlu olarak deformasyon ve duraylılık analizleri için geliştirilmiş bir programdır. Geoteknik uygulamalarında zeminlerin ve kayaçların non-lineer ve anizotropik davranışlarının belirlenmesi için esaslı modeller gereklidir. Zemin modelleri başlı başına bir sorun iken birçok tünel uygulamasında yapıların davranışı ve yapı ile zemin etkileşimi de işin içine girmektedir. Bu program birçok açıdan karmaşık olan bu tarzdaki geoteknik uygulamalarının çözümünde kullanılacak şekilde tasarlanmıştır. Aşağıda programın bazı önemli özellikleri hakkında kısa bilgiler sunulmuştur.

Grafiksel Kesit Tanımı; Zemin seviyeleri, yapı elemanları, yapım aşamaları, yükler ve sınır koşulları Cad uyumlu olarak tanımlanabilmektedir. Bu özellik doğru ve ayrıntılı modellemenin yapılmasına olanak tanır.

Otomatik Mesh Üretimi; Plaxis Üç Boyutlu tünel Programının, otomatik olarak iki boyutlu sonlu elemanlar ağı üretimi özelliği vardır. Bu iki boyutlu sonlu elemanlar ağı özelliğinden üçünü boyutun tanımlanması ile üç boyutlu sonlu elemanlar ağı üretilebilir.

Elemanlar; 15 düğümlü dikdörtgen elemanlar zeminin deformasyon ve gerilmelerinin modellenmesinde kullanılabilmektedir.

Plaka; Özel plaka elemanlar tünel çeperinin, kabukların, dayanma yapıların ve diğer duyarlı yapıların modellemesinde kullanılır. Plakalar tünellerin gerçekçi analizleri için ara yüzeylerle birlikte kullanılması gereklidir.

Ara Yüzeyler; Bu elemanlar yapı ile zemin arasındaki etkileşimin gerçekci modellenebilmesi için gerekli elemanlardır.

Tünel; Plaxis Üç Boyutlu tünel Programı, hem dairesel hem de dairesel olmayan(Yeni Avusturya Yöntemi) tüneller için pratik analiz yöntemleri sunmaktadır. Tünel modellemesi arazideki inşa sürecine uygun olarak aşamalar halinde modellenmekte gerilme, oturma ve deformasyon sonuçları bu modele uygun olarak elde edilebilmektedir.

Mohr-Coulomb Model; Pratik çözümlerden elde edilen birçok zemin parametrelerine dayanan basit ve kullanışlı bir non-lineer modeldir. Bununla birlikte bu model sadece zemin davranışlarının non-lineer özelliklerini kapsamaz. Aynı zamanda bu model gerçekçi tünel ayna basıncının ve ayak temellerde son yüklerin bulunuşunda da kullanılır.

İleri Zemin Modelleri; bu program Mohr-Coulomb modele ek olarak birçok zemin modeli içermektedir. Bir genel ikinci seviye model olarak elastoplastik tip hiperbolik modelde(Hardening Zemin Modeli) bulunmaktadır. Normal konsolide zeminlerde zamana bağlı ve logaritmik sıkışma davranışlarının doğru hesaplanması için bir Creep Model sunmaktadır. Ayrıca; eklemli kayaçların anizotropik davranışlarının analizi için de bir model vardır.

Yapım Aşaması Tanımı; programın en güçlü özelliği gerçekçi kazı ve inşa aşamalarının kesit tanımlaması aşamasında tanımlanan zemin ve yapı bölümlerinin aktif ve pasif hale getirerek, yükleri uygulayarak, zemin suyu seviyesinin değiştirilerek tanımlanabilmesidir.

Sonuçların Sunumu; Sonuçlar hem grafiksel hem de sayısal olarak birlikte veya ayrı ayrı görüntülenebilmektedir. Ayrıca sonuçların diğer yazılımlara aktarılması da olanaklıdır.

Bu tez kapsamında 12 adet açıklık için modelleme yapılmış ve modelleme sonucunda meydana gelen gerilmeler ile sahada itme makinesi kayıtları kullanılarak çizilen grafiklerin analizlerinden elde edilen ortalama gerilmeler karşılaştırılarak bu gerilmeler üzerinde etkili zemin parametreleri belirlenmiştir.

Üç boyutlu modelleme ilk olarak en kısa uzunluktaki hat olan PJ 28 ile PJ 27 arasındaki 24 metrelik bir aralık için yapılmıştır.

6.2 PJ 28-PJ 27 Arası Üç Boyutlu Sayısal Modelleme

Üç boyutlu modelleme için öncelikle 8*6 m lik bir alan seçilerek geometri oluşturulmuştur.

Geometri sonrasında modellemede kullanılacak zemin parametreleri belirlenmiştir. Modelleme için gerekli zemin ve hesap parametreleri elastisite modulü, drenajsız kayma dayanımı, zeminin özgül ağırlığı, poisson oranı, kullanılacak hesap türü ve hesap modelinin seçimidir.

Elastisite modülü araziden alınan zemin örnekleri üzerinde yapılan UU deneyleri sonucunda elde edilen şekil değiştirme-gerilme grafiği kullanılarak belirlenmiştir.

Şekil 6.2.1 PJ 27 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.2.2 PJ 28 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.2.1' de PJ 27 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek deviatorik gerilme değeri σ =100,66 kPa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =50,44 kPa ve bu gerilme

$$E = \sigma/\epsilon \tag{6.1}$$

eşitliği kullanılarak E=1681 kPa elde edilmektedir. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u =1996 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 27 şaftı için E_u =1850 kPa olarak bulunur. Drenajsız analizlerde drenajsız elastisite modülü yerine efektif elastisite modülünün kullanılması daha doğru analiz yapılmasını sağlamaktadır. Aşağıda verilen eşitlikle E['] değeri hesaplanabilir.

$$E = E_u * 2 * (1 + \nu)/3 \tag{6.2}$$

eşitliğinde değerler yerine konulurak E²=1665 kPa bulunur.

Şekil 6.2.2' de PJ 28 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =57,11 kPa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =28,97 kPa ve bu gerilme değerine karşılk gelen birim şekil değiştirme değeri ε =0,0393 değeridir. (6.2.1) eşitliği kullanılarak E_u =737 kPa bulunur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u =966 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 28 şaftı için E_u =850 kPa olarak bulunur.

(6.2) eşitliğinde değerler yerine konulurak $\vec{E} = 765$ kPa bulunur.

PJ 27 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen $G_s=2,76$ değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle doygun varsayarak

$$e=w^* G_s / S \tag{6.3}$$

eşitliği ile boşluk oranı e= 0,66 olarak bulunmuştur. Eşitlikte e boşluk oranı, w doğal su içeriği, G_s özgül yoğunluk ve S ise suya doygunluk oranıdır. Bulunan boşluk oranı değeri

$$\gamma = ((G_s + e^*S)/1 + e)^* \gamma_w$$
(6.4)

eşitliğinde kullanılarak doygun birim hacim ağırlık $\gamma_d=20$ KN/m³ bulunur. Kuru birim hacim ağırlıkta

$$\gamma_{\rm k} = \gamma_{\rm d} / 1 + {\rm w} \tag{6.5}$$

eşitliği kullanılarak 16,3 KN/m³ olarak belirlenmiştir.

PJ 27 şaftı için yukarıda yapılan işlemler PJ 28 şaftı için yinelerek γ_d =19,50 KN/m³ ve

 γ_k =15,20 KN/m³ olarak belirlenmiştir.

Poisson Oranı, v Plaxis programında drenajsız analizlerde maksimum 0,35 değerinde alınabildiğinden 0,35 olarak alınmıştır.

Yukarıda yapılan tüm işlemler sonrasında belirlenen zemin parametreleri Çizelge 6.2.1' de gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma					
	Modülü,	Dayanımı,			Poisson	Drenaj	Zemin
Zemin Adı	E' (kPa)	C _u , (kPa)	$\gamma_{\rm d}({\rm kN/m}^3)$	γ (kN/m ³)	Oranı, v	Durumu	Modeli
	1665	54	20.00	16.20	0.25	Dronoisuz	Mohr-
Siltli Kil(PJ 27)	1005	54	20,00	10,50	0,35	Dienajsiz	Cloumb
Siltli Kil(PI 27	1665	51	20.00	16.20	0.25	Dransiara	Mohr-
R<1)	1003	34	20,00	10,50	0,55	Drenajsiz	Cloumb
	765	25	10.50	15 20	0.25	Dranaiarz	Mohr-
Siltli Kil(PJ 28)	/03	23	19,30	13,20	0,55	Drenajsiz	Cloumb
Siltli Kil(PJ 28	765	25	10.50	15 20	0.25	Dronoiauz	Mohr-
R<1)	/03	23	19,30	15,20	0,55	Dienajsiz	Cloumb

Çizelge 6.2.1 PJ 28-PJ 27 arası modellemede kullanılan zemin parametreleri

Zemin ile yapı(tünel) arasındaki etkileşimde rijitlik gereksinimleri yakındaki diğer zemin elemanlarına göre daha düşüktür. Bu nedenle zemin ile yapı arasında bir indirgemeye gereksinim vardır. Bu indirgeme R_{inter} parametresi kullanılarak yapılır. Programda ki bu R_{inter} parametresi grafik analizleri sonucu bulunan α değerine karşılık gelmektedir.

İlk olarak grafik analizleri sonucu bulunan α =0,23 değeri kullanılarak bir modelleme yapılmış ve modelleme sonucunda elde edilen gerilme değerleri grafik analizleri sonucu hesaplanan gerilme değerleri karşılaştırılmıştır.

Zemin özelliklerinin tanımlanması sonrasında tünel için kullanılacak boruların özellikleri 'BETON' ismiyle girilmiştir ve tünel kazısı için bir 'TBM' tanımlaması yapılmıştır.

Malzeme Adı	Elastisite Modülü, kPa	$\gamma(kN/m^3)$	Poisson Oranı, V	Malzeme Türü	Malzeme Modeli
BETON	3000000	24	0,1	Geçirimsiz	Lineer- Elastik

Çizelge 6.2.2 PJ 28-PJ 27 arası modellemede kullanılan beton özellikleri

Geometri ve malzeme tanımlamasından sonra tünel formunun tanımlaması yapılmıştır. Tünel merkezi arazideki derinliğine uygun olarak yüzeyden 4 metre aşağıda olacak şekilde tanımlanmış ve tünel kalınlığı 12 cm ve yarıçapı ise 52 cm olarak alınmıştır. Hesaplamaların kolaylığı açısından simetriden yararlanılmış ve tünelin yarısı dikkate alınmıştır. Şekil 6.2.3' de tünel geometrisi değerleri görülmektedir.

Şekil 6.2.3 PJ 28-PJ 27 arası tünel geometrisi

Şekil 6.2.4 PJ 28-PJ 27 arası tünel geometrisi ve kullanılan malzeme isimleri

Şekil 6.2.4' de yapılan tüm zemin tanımlamaları, geometri ve tünel formu birlikte görülmektedir.

Tanımlamalar sonrasında iki boyutlu ve üç boyutlu sonlu elemanlar ağı oluşturulabilmektedir. Şekil 6.2.5' de oluşturulan iki boyutlu sonlu elemanlar ağı görülmektedir.

Şekil 6.2.5 PJ 28-PJ 27 arası iki boyutlu sonlu elemanlar ağı

Üç boyutlu sonlu elemanlar ağının oluşturulabilmesi için z doğrultusunda oluşturulacak dilimlerin tanımlaması gerekmektedir. Şekil 6.2.6' de z doğrultusunda oluşturulan dilimler görülmektedir.

3D Mesh generatio	on	
🚝 Add	📮 Insert 🗮 Delete	
Slope in z-direction	n: 🖸 🗢 °	
Plane	Z-coordinate X	
	[m]	1
Rear plane	-24,000	1
Plane G	-21,000 z	$\left\ \right\ $
Plane F	-18,000	4
Plane E	-15,000	
Plane D	-12,000	
Plane C	-9,000	1
Plane B	-6,000	1
Plane A	-3,000	$\ $
Front plane	0,000	l
J	V	
	<u>G</u> enerate <u>C</u> ancel	

Şekil 6.2.6 PJ 28-PJ 27 arası üç boyutlu sonlu elemanlar ağı için z-doğrultusunda dilimler

Oluşturulan bu dilimler sonucunda üç boyutlu sonlu elemanlar ağı Şekil 6.2.7' de görülmektedir.

Şekil 6.2.7 PJ 28-PJ 27 arası üç boyutlu sonlu elemanlar ağı

Oluşturulan 3 D sonlu elemanlar ağının üretilmesi sonrasında hesaplama adımına geçilmiştir. Bu adım için Şekil 6.2.8' da hesaplama dilimleri gösterilmiştir.

Şekilde dilimler uygulamada kullanılan boru boylarına uygun olarak 3 m olarak belirlenmiştir. Aşağıda hesap adımları belirtilmiştir.

Şekil 6.2.8 PJ 28-PJ 27 arası hesap dilimleri

1.Adım	1 ve 2 no'lu dilimlerin TBM ile kazısı
2.Adım	3 no' lu dilimin TBM ile kazısı, 1 no'lu dilimin borusunun itilmesi
3.Adım	4 no' lu dilimin TBM ile kazısı, 2 no'lu dilimin borusunun itilmesi
4.Adım	5 no' lu dilimin TBM ile kazısı, 3 no'lu dilimin borusunun itilmesi
5.Adım	6 no' lu dilimin TBM ile kazısı, 4 no'lu dilimin borusunun itilmesi
6.Adım	7 no' lu dilimin TBM ile kazısı, 5 no'lu dilimin borusunun itilmesi
7.Adım	8 no' lu dilimin TBM ile kazısı, 6 no'lu dilimin borusunun itilmesi
8.Adım	7 no'lu dilimin borusunun itilmesi
9.Adım	8 no'lu dilimin borusunun itilmesi

Çizelge 6.2.3 PJ 28-PJ 27 arası hesap adımları

Yukarıda aşamaları verilen hesaplama kısmında itme kuvvetlerinin, TBM basıncının, kazı ve boru itme kısımların modellenmesi aşağıda şekillerde ve çizelgelerde gösterilmiştir.

Şekil 6.2.9 PJ 28-PJ 27 arası itme kuvvetlerinin modellenmesi

İlk düzlemde tünel kalınlığını örnekleyen taralı alanlara Şekil 6.2.9' de görülen değerin girilmesiyle itme kuvveti modellenmiş olmaktadır.

İtme Kuvvetleri ile çizilen grafikten aşamalara denk gelen bölümdeki itme kuvvetinin boru kesit alanına bölünmesiyle oluşan kPa birimindeki değerler Çizelge 6.2.4' te verilmiştir.

	İtme Kuvveti
AŞAMALAK	Gerilmeleri(kPa)
Aşama 1	160
Aşama 2	386
Aşama 3	350
Aşama 4	555
Aşama 5	520
Aşama 6	500
Aşama 7	725
Aşama 8	730
Aşama 9	800

Çizelge 6.2.4 PJ 28-27 arası modellemede uygulanan itme kuvveti gerilmeleri

Şekil 6.2.10 PJ 28-PJ 27 arası TBM basıncının modellenmesi

TBM basıncı modellenirken tünelin yüzeye en yakın noktası referans noktası olarak gözönüne alınır. P, basınç değeri olarak grafikten elde edilen giriş direncinin tünel dış çapı gözönüne alınarak hesaplanan alana bölünerek bulunan kPa değeri taralı alanların her birine tıklandığında Şekil 6.2.10' de görülen şekilde girildiğinde TBM basıncı modellemesi tamamlanır.

Şekil 6.2.11 PJ 28-PJ 27 arası itme kuvvetleri ve TBM basıncının birlikte modelde görünüşü(hesap adımı 2)

Şekil 6.2.12 PJ 28-PJ 27 arası TBM basıncının modelde görünüşü

Şekil 6.2.13 PJ 28-PJ 27 arası itme kuvvetlerinin modelde görünüşü

Şekil 6.2.14 PJ 28-27 arası hesap aşaması 1.adım 1.dilimin kazısının modellenmesi

Şekil 6.2.14' de A, B, C ve D ile gösterilmiş kısımlardaki zemin parçaları pasif duruma getirilir ve sonrasında TBM ve negatif ara yüzey elemanları Tünel çeperine atanarak kazı modellenmesi tamamlanır.

Şekil 6.2.15 PJ 28-PJ 27 arası beton borunun modellenmesi

Programın 'Malzeme Tanımlaması' bölümünde tanımlanan BETON eleman oklarla gösterilen ve tünelin kaplamasını oluşturan kısımlara atanarak beton borunun modellenmesi yapılmıştır.

Bu hesap adımlarının doğru şekilde tanımlanması sonucunda program tarafından yapılan hesaplama sonuçları ve analizleri aşağıda gösterilmiştir.

Hesaplama sonucunda modellenen üç boyutlu sonlu elemanlar ağının tünel formunun oluşması sonrasındaki deforme olmuş hali Şekil 6.2.16' da gösterilmiştir.

Şekil 6.2.16 PJ 28-PJ 27 arası deforme olmuş üç boyutlu mesh diyagram

Şekilde meydana gelen gerilmelerin yoğun şekilde boru birleşim yerleri ve boruların yaklaşık ortalarında oluştuğu gözlemlenebilmektedir. Gerilmelerin en doğru şekilde analiz edilebilmesi amacıyla 3 ayrı kesit alınarak bu kesitlerdeki gerilmelerin ortalamaları alınarak tünel boyunca ortalama gerilmeler elde edilmiş ve bu gerilmeler daha önceki bölümlerde İtme yükü- Aralık grafiklerinden elde edilen gerilmelerle karşılaştırılmıştır. Aşağıda Şekil 6.2.18' de tünel formunda alınan kesitlerin yerleri gösterilmektedir.

Şekil 6.2.17 PJ 28-PJ 27 arası tünel formunda alınan kesitler

I, II-II, III-III kesitlerinden elde edilen gerilme değerleri aşağıda Çizelge 6.2.5' de verilmiştir.

					Modelleme
					Sonucu
				Üç Kesitin	Bulunan
	I-I Kesiti	II-II Kesiti	III-III Kesiti	Ortalama	Ortalama
z(m)	Gerilmeler(kPa)	Gerilmeler(kPa)	Gerilmeler(kPa)	Gerilmesi(kPa)	Gerilme(kPa)
0	0,27	0,25	0,25	0,26	
1,5	0,26	0,32	0,33	0,31	
3	0,27	0,36	0,49	0,37	
4,5	0,39	0,50	0,65	0,51	
6	0,97	0,91	1,31	1,07	0,86
6,75	0,26	0,30	1,22	0,59	
7,5	1,54	1,68	4,36	2,53	
9	0,92	1,35	2,21	1,49	
9,75	0,33	0,47	0,89	0,56	
10,5	1,79	1,95	3,49	2,41	
12	1,13	1,51	2,23	1,62	
12,75	0,60	0,80	1,54	0,98	
13,5	1,82	2,58	4,02	2,80	
15	1,43	2,02	2,40	1,95	1,83
15,75	0,53	0,69	1,53	0,92	
16,5	2,11	2,58	4,24	2,98	
18	1,44	1,91	2,33	1,89	
18,75	0,51	0,70	1,61	0,94	
19,5	1,92	2,60	4,52	3,01	
21	1,37	1,86	2,11	1,78	
21,75	0,97	1,17	1,85	1,33	2,10
22,5	2,20	2,25	4,37	2,94	
24	0,94	1,35	2,06	1,45	

Çizelge 6.2.5 R=0,23 değeri kullanılarak elde edilen gerilme değerleri

Bölüm No	Aralık	R=0,23	Analiz(Hedef)
	0-9,75 m		
1	Arası Ort.		
	Gerilme(kPa)	0,95	9,4
	10,5-18,75 m		
2	Arası Ort.		
	Gerilme(kPa)	2,01	4,2
	19,5-24 m		
3	Arası Ort.		
	Gerilme(kPa)	2,09	5,6

Çizelge 6.2.6 Analiz ile modelleme sonuçlarının karşılaştırılması

Çizelge 6.26 incelendiğinde α =0,23 değerinin R_{inter} parameteresi alınarak yapılan modeleme sonucunda elde edilen gerilme değerleri ile grafik analizleri sonucu hesaplanan gerilme değerlerinin çok uyumlu olmadığı görülmektedir. Bu bölümde uygulamada bentonit enjesiyonu işlemi uygulanmamıştır. Bu nedenle R=0,23 gibi zemin ile tünel yapısı arasındaki bu indirgemenin bentonitsiz kısımlar için fazla olduğu düşünülmektedir. Bentonit enjeksiyonu yapılmadığında beton boruların pürüzlülüğünün etkisi, zemin ile boru arasındaki etkileşimin fazla olması gibi nedenlerle gerilmelerinde fazla olmasının normal olduğu düşünülmektedir. Bentonit enjeksiyonunun yapılmadığı durum için arazide gerçekleşen duruma en yakın değerleri bulabilmek için R=0.40, R=0,60 ve R=0.80 katsayıları gözönüne alınarak Çizelge 6.2.1 ve Çizelge 6.2.2' de verilen malzeme parametreleri ve hesap modelleri kullanılarak modellemeler yapılmıştır. Yapılan bu modellemelerin sonuçları aşağıda çizelgeler halinde verilmiştir.

					Modelleme
					Sonucu
				Üç Kesitin	Bulunan
	I-I Kesiti	II-II Kesiti	III-III Kesiti	Ortalama	Ortalama
z(m)	Gerilmeler(kPa)	Gerilmeler(kPa)	Gerilmeler(kPa)	Gerilmesi(kPa)	Gerilme(kPa)
0	0,18	0,27	0,24	0,23	
1,5	0,25	0,32	0,37	0,31	
3	0,19	0,31	0,40	0,30	
4,5	0,35	0,52	0,75	0,54	
6	0,75	1,32	1,14	1,07	0,92
6,75	0,42	0,63	1,80	0,95	
7,5	1,47	2,01	3,27	2,25	•
9	0,87	1,57	2,05	1,50	
9,75	0,52	1,22	1,61	1,12	
10,5	1,69	2,39	3,61	2,56	
12	0,89	1,57	1,91	1,46	
12,75	1,05	1,40	1,94	1,46	
13,5	2,05	2,85	3,92	2,94	
15	1,23	2,07	1,91	1,74	2,03
15,75	1,02	1,38	1,94	1,45	
16,5	2,14	3,00	4,16	3,10	•
18	1,10	2,31	2,99	2,13	
18,75	1,04	1,38	1,98	1,47	•
19,5	2,13	2,97	3,89	2,99	
21	1,23	2,15	2,08	1,82	
21,75	0,98	1,36	1,96	1,43	2,20
22,5	1,98	2,67	4,15	2,93	
24	1,02	1,57	2,94	1,84	

Çizelge 6.2.7 R=0,40 değeri kullanılarak elde edilen gerilme değerleri

z(m)	I-I Kesiti Gerilmeler(kPa)	II-II Kesiti Gerilmeler(kPa)	III-III Kesiti Gerilmeler(kPa)	Üç Kesitin Ortalama Gerilmesi(kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)
0	0,17	0,22	0,21	0,20	
1,5	0,19	0,26	0,27	0,24	
3	0,18	0,28	0,30	0,26	-
4,5	0,48	0,67	0,77	0,64	•
6	0,57	1,10	1,96	1,21	1,04
6,75	0,84	1,10	2,34	1,43	
7,5	1,62	2,43	3,17	2,41	
9	0,76	1,26	2,31	1,44	
9,75	0,93	1,32	2,41	1,55	
10,5	2,17	2,56	3,27	2,67	
12	0,80	1,49	2,67	1,65	
12,75	1,08	2,35	2,91	2,11	
13,5	2,22	3,03	3,42	2,89	
15	1,03	1,94	2,79	1,92	2,19
15,75	1,06	1,33	2,97	1,79	
16,5	2,21	3,04	3,61	2,95	
18	1,08	2,02	1,58	1,56	
18,75	1,07	2,33	3,02	2,14	
19,5	2,22	3,04	3,68	2,98	
21	1,21	1,84	2,81	1,95	1
21,75	1,05	2,38	3,04	2,16	2,53
22,5	2,57	2,82	4,00	3,13	1
24	1,03	2,49	3,82	2,45	1

Çizelge 6.2.8 R=0,60 değeri kullanılarak elde edilen gerilme değerleri

z(m)	I-I Kesiti Gərilmələri(kPa)	II-II Kesiti Garilmalari(kPa)	III-III Kesiti Gərilmələri(kPa)	Üç Kesitin Ortalama Gərilməsi(kPa)	Modelleme Sonucu Bulunan Ortalama
0	0.17	0.30	0.43		
15	0.21	0.32	0.39	0,30	
3	0.21	0.35	0,58	0.38	
4.5	0.39	1.06	2.10	1.18	
6	0.50	1.22	2.15	1.29	1,53
6,75	0,74	1,53	3,04	1,77	· · · ·
7,5	2,44	4,71	7,60	4,92	
9	0,99	1,98	2,12	1,70	
9,75	0,71	1,93	3,04	1,90	
10,5	2,92	4,11	8,12	5,05	
12	1,83	2,88	3,22	2,64	
12,75	0,97	1,84	2,75	1,85	
13,5	2,86	4,77	6,96	4,86	
15	1,92	3,02	3,06	2,66	3,22
15,75	1,86	1,78	2,94	2,20	
16,5	2,80	4,74	7,88	5,14	
18	1,15	3,14	3,25	2,51	
18,75	1,20	1,76	3,25	2,07	
19,5	3,87	6,73	8,96	6,52	
21	2,00	3,22	3,97	3,06	
21,75	2,10	2,81	3,17	2,69	4,19
22,5	3,18	6,53	9,09	6,27	
24	2,00	2,44	2,85	2,43	

Çizelge 6.2.9 R=0,80 değeri kullanılarak elde edilen gerilme değerleri

Bütün bu modellemeler sonucunda elde edilen değerler aşağıda Çizelge 6.2.10' da grafik analizleri sonucu elde edilen gerilme değerleri ile karşılaştırılmıştır.

	Bölüm					
Aralık	No	R=0,23	R=0,40	R=0,60	R=0,80	Analiz(Hedef)
0-9,75 m						
Arası Ort.						
Gerilme(kPa)	1	0,86	0,92	1,04	1,53	9,40
10,5-18,75 m						
Arası Ort.						
Gerilme(kPa)	2	1,83	2,03	2,19	3,22	4,2
19,5-24 m						
Arası Ort.						
Gerilme(kPa)	3	2,10	2,20	2,53	4,19	5,6

Çizelge 6.2.10 Bütün R değerleri ile elde edilen gerilme değerlerinin karşılaştırılması

Yapılan bu modellemeler sonucunda elde edilen değerler ışığında bentonit uygulanmayan kısımlar için R=0.80 değeri ile yapılan modelleme sonucunda elde edilen gerilme değerleri ile grafik analizleri sonucu elde edilen gerilme değerlerinin diğer katsayıları ile yapılan modellemeler sonucu elde edilen değerlere göre daha iyi sonuç verdiği belirlenmiştir. Bu nedenle bentonit uygulaması yapılmayan kısımlar için yapılacak modellemelerde R=0.80 değeri gözönüne alınarak modelleme yapılmıştır.

Şekil 6.2.18 PJ 28-PJ 27 arası I-I kesiti gerilmeler dağılımı

Şekil 6.2.19 PJ 28-PJ 27 arası II-II kesiti gerilmeler dağılımı

4		 	 	
Ż				

Şekil 6.2.20 PJ 28-PJ 27 arası III-III kesiti gerilmeler dağılımı

6.2.1 Elastisite Modülünün Etkisi

Elastisite Modülü hesabında 6.2 bölümünün giriş kısmında açıklandığı şekliyle UU Deneyi sonucunda elde edilen gerilme grafiği kullanılırsa PJ 27 için UU deneyi sonucu elde edilen Gerilme-Şekil Değiştirme grafiklerinden yararlanılarak Elastisite Modülü 1850 kpa bulunmuştur. Ancak; araziden örnek alımı sırasında her ne kadar örselenme olmamasına özen gösterilse de bir örselenme olması kaçınılmazdır. Bu nedenle kaynaklarda yer alan bazı korelasyonların da gözönüne alınması gerektiği açıktır.

Aşağıda bazı araştırıcılar tarafından verilmiş Eu/Su bağıntıları kullanılarak Eu değerleri tahmin edilmesi anlatılmaktadır.

Hana ve Adams(1968) UU Deneyleri için;

Eu/Su=100-400	(6.2.1)
bağıntısını önermişlerdir.	
Eu/Su=100	(6.2.2)
Kullanılarak Eu=100*54=5400 kPa tahmin edilebilir.	
Jamiolkowski(1974)	
Eu/Su=200-300	(6.2.3)
bağıntısını önermiştir. Bu bağıntıda ;	
Eu/Su=200	(6.2.4)

kullanılarak Eu=200*54=10800 kPa bulunur.

Balasubramaniam ve Brenner(1981), Ladd ve Diğerleri(1977) Simons(1974) tarafından

Eu/Su=40-3000	(6.2.5)
bağıntısını önermişlerdir. Bu bağıntıda	
Eu/Su=150	(6.2.6)
değeri seçilirse Eu=150*54=8100 kPa bulunur.	
Bowles(1979) Eu/Su=250-500	(6.2.7)
bağıntısını önermektedir.	
Bu bağıntıda Eu/Su=250	(6.2.8)
değeri seçilirse Eu=250*54=13500 kPa bulunur.	

Bütün bu korelasyonlar ile bulunan Eu değerleri ile araziden alınan zemin örnekleri üzerinde yapılan UU deneyleri sonucu elde edilen gerilme-şekil değiştirme grafiklerinden elde edilen Eu değerinin ortalaması alınırsa PJ 27 için Eu=7930 kPa olarak alınabilir. Drenajsız analizlerde drenajsız elastisite modülü yerine efektif elastisite modülünün kullanılması daha doğru analiz yapılmasını sağlamaktadır. Aşağıda verilen eşitlikle E['] değeri hesaplanabilir.

$$\vec{E} = E_u * 2 * (1 + v)/3$$
 (6.2)

Eşitliğinde değerler yerine konulurak E = 7137 kPa bulunmuştur.

Benzer şekilde PJ 28 Şaftı için Elastisite Modülü hesabında UU Deneyi sonucunda elde edilen Gerilme-Şekil Değiştirme Grafiklerinden yararlanılarak Elastisite Modülü 850 kpa bulunur. Bu şaft içinde PJ 27 Şaftı için kullanılan korelasyonlar PJ 28 içinde kullanılırsa;

(6.2.2) bağıntısından Eu=100*25=2500 kPa bulunur.

(6.2.4) bağıntısından Eu=200*25=5000 kPa bulunur

(6.2.6) bağıntısından Eu=150*25=3750 kPa bulunur

(6.2.8) bağıntısından Eu=250*25=6250 kPa bulunur

Bütün bu korelasyonlar ile bulunan Eu değerleri ile araziden alınan zemin örnekleri üzerinde yapılan UU deneyleri sonucu elde edilen Gerilme-Şekil Değiştirme grafiklerinden elde edilen Eu değerinin aritmetik ortalaması alınırsa PJ 28 için Eu=3670 kPa olarak alınabilir. Aşağıda verilen eşitlikle E['] değeri hesaplanabilir.

(6.2) eşitliğinde değerler yerine konulurak $\dot{E} = 3303$ kPa bulunur.

Yeni durumda bulunan E değerleri ile yeni durum için yapılacak modellemede kullanılacak parametreler Çizelge 6.2.6' da gösterilmektedir.

		Drenajsız					
	Elastisite	Kayma					
Zemin	Modülü,	Dayanımı,			Poisson	Malzeme	Malzeme
Tanımlaması	kPa	Cu, kPa	$\gamma_d (kN/m^3)$	γ (kN/m ³)	Oranı, v	Türü	Modeli
	7137	54	20.00	16 30	0.35	Drenaisız	Mohr-
Siltli Kil(PJ 27)	/15/	54	20,00	10,50	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 27	7137	54	20.00	16 30	0.35	Dranaisız	Mohr-
R<1)	/15/	54	20,00	10,50	0,35	Dienajsiz	Cloumb
	3303	25	19 50	15 20	0.35	Drenaisız	Mohr-
Siltli Kil(PJ 28)	5505	25	19,50	13,20	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 28	3303	25	10.50	15 20	0.35	Dranaisız	Mohr-
R<1)	5505	23	17,30	13,20	0,55	Dichajsiz	Cloumb
1	1	1		1	1	1	1

Çizelge 6.2.1.1 PJ 28-27 arası yeni E değerleri için yapılan modellemede kullanılan zemin parametreleri

PJ 28-PJ 27 Arasında ilk yapılan modelleme prensiplerine bağlı kalınarak yeni durum için yapılan modelleme sonucunda Çizelge 6.2.1.2' de gösterilen gerilme değerlerine ulaşılmıştır.

					Modelleme
	I I Kogiti		III III Kositi	Üç Kesitin	Sonucu
z(m)	I-I Kesili Garilmələri(kDa)	rilmeleri(kPa) Gerilmeleri(kPa)	Garilmalari(l/Da)	Ortalama	Bulunan
	Oemineten(ki a)	Oemineten(Kr a)	Oerinneleri(ki a)	Gerilmesi(kPa)	Ortalama
					Gerilme(kPa)
0,00	0,30	0,35	0,27	0,31	
1,50	0,26	0,36	0,41	0,34	
3,00	0,34	0,51	0,55	0,47	
4,50	0,80	0,82	1,05	0,89	
6,00	1,18	1,34	2,08	1,53	2,06
6,75	1,55	3,12	3,56	2,74	
7,50	3,91	6,16	6,23	5,43	
9,00	1,83	2,38	2,81	2,34	
9,75	1,74	2,06	3,51	2,44	
10,50	4,44	6,97	8,15	6,52	
12,00	2,37	2,74	3,04	2,72	
12,75	1,82	1,88	3	2,23	
13,50	4,03	7,01	8,99	6,68	
15,00	3,02	3,16	3,84	3,34	3,97
15,75	1,73	1,61	3	2,11	
16,50	4,91	6,40	9,43	6,91	
18,00	3,06	3,21	2,99	3,09	
18,75	1,68	1,67	3,15	2,17	
19,50	4,51	6,75	9,8	7,02	
21,00	3,03	3,27	5,35	3,88	
21,75	1,69	2,66	4,13	2,83	4,67
22,50	3,86	6,91	9,44	6,74	
24,00	1,69	3,20	3,75	2,88	

Çizelge 6.2.1.2 PJ 28-27 arası yeni durum için üç kesitin gerilme değerleri

Çizelge 6.2.1.3 Farklı E değerleri için elde edilen sonuçların karşılaştırılması

		Örnek Alınarak Elde	Korelasyonlarla		
		Edilen E Değerleri	Belirlenen E		Ortalama
	Bölüm	İle Bulunan	Değerleri İle		%
Aralık	No	Gerilme(kPa)	BulunanGerilme(kPa)	% Değişim	Değişim
0-9,75 m					
Arası	1	1,53	2,06	34	
10,5-18,75					22.60
m Arası	2	3,22	3,97	19	22,00
19,5-24 m					
Arası	3	4,19	4,67	11	

Yeni durum sonucunda elde edilen gerilme değerleri ile karşılaştırıldığında ortalamada % 8,6 oranında gerilme değerlerinde artış olduğu görülmektedir. Bu da Elastisite Modülü E değerinin modelleme üzerinde etkisinin % 20 mertebelerinde olduğunu göstermektedir. E' nin etkisinin sınırlı olduğunun belirlenmesi ile diğer bölümler için yapılacak modellemelere UU Deneyleri sonucu elde edilen gerilme-şekil değiştirme grafiklerinden elde edilen değerlerle devam edilmiştir.

6.3 PJ 14-PJ 13 Arası Üç Boyutlu Sayısal Modelleme

Üç boyutlu modelleme için öncelikle 8*6 metrelik bir alan seçilerek geometri oluşturulmuştur. Geometri sonrasında modellemede kullanılacak zemin parametreleri belirlenmiştir. Modelleme için gerekli zemin ve hesap parametreleri elastisite modulü, drenajsız kayma dayanımı, zeminin özgül ağırlığı, poisson oranı, kullanılacak hesap türü ve hesap modelinin seçimidir.

Elastisite modülü araziden alınan zemin örnekleri üzerinde yapılan UU deneyleri sonucunda elde edilen şekil değiştirme-gerilme grafiği kullanılarak belirlenmiştir.

Şekil 6.3.1 PJ 13 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.3.2 PJ 14 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.3.1' de PJ 13 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =46,78 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =23,39 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,022 değeridir.

(6.1) eşitliği kullanılarak E_u =1056 kPa elde edilmektedir. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u =569 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 13 şaftı için E_u =805 kPa olarak bulunur. Drenajsız analizlerde drenajsız elastisite modülü yerine efektif elastisite modülünün kullanılması daha doğru analiz yapılmasını sağlamaktadır. (6.2) eşitliğinde değerler yerine konulurak E[°]=725 kPa bulunur.

Şekil 6.3.2' de PJ 14 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =44,10 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =22 kPa ve bu gerilme değerine karşılk gelen şekil değiştirme değeri ε =0,0335 değeridir. (6.1) eşitliği kullanılarak E_u=1123 kPa bulunur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u=656 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 14 şaftı için E_u=890 kPa olarak bulunur. (6.2) Eşitliğinde değerler yerine konulurak E[']=801 kPa bulunur.

PJ 13 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen $G_s=2,77$ değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle varsayarak (6.3)

eşitliği ile boşluk oranı e= 1,02 olarak bulunmuştur. Bulunan bu boşluk oranı değeri (6.3) eşitliğinde kullanılarak doygun birim hacim ağırlık γ_d =18,40 KN/m³ bulunur. Kuru birim hacim ağırlık (6.4) eşitliği kullanılarak 13,40 KN/m³ olarak belirlenmiştir.

PJ 27 şaftı için yukarıda yapılan işlemler PJ 28 şaftı için tekrarlanarak γ_d =19,85 KN/m³ ve γ_k =15,75 KN/m³ olarak belirlenmiştir. Poisson Oranı, v Plaxis programında drenajsız analizlerde maksimum 0,35 değerinde alınabildiğinden 0,35 olarak alınmıştır.

Bütün bu hesaplamalar sonucunda elde edilen değerler Çizelge 6.3.1' de gösterilmiştir.

7	Elastisite Modülü,	Drenajsız Kayma Dayanımı,	(1)(3)	(1) 1 (3)	Poisson Oranı,	Malzeme	Zemin
Zemin Adi	кРа	C _u , KPa	$\gamma_{\rm d}({\rm KIN}/{\rm m}^{-})$	$\gamma(KN/m^2)$	ν	Iuru	Modeli
Siltli Kil(PJ 14)	801	22	19,85	15,75	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 14 R<1)	801	22	19,85	15,75	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 13)	725	24	18,40	13,40	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 13 R<1)	725	24	18,40	13,40	0,35	Drenajsız	Mohr- Cloumb

Çizelge 6.3.1 PJ 14-13 arası modellemede kullanılan zemin parametreleri

Çizelge 6.3.2 PJ 14-13 arası modellemede kullanılan beton özellikleri

	Elastisite		Poisson		
	Modülü,		Oranı,	Malzeme	Malzeme
Malzeme Adı	kPa	γ (kN/m ³)	ν	Türü	Modeli
DETON	30000000	24	0.1	Gecirimsiz	Lineer-
BETON			- 9		Elastik

Geometri ve malzeme tanımlamasından sonra tünel formunun tanımlaması yapıldı. Tünel merkezi arazideki derinliğine uygun olarak yüzeyden 3,50 m aşağıda olacak şekilde tanımlandı. Tünel kalınlığı 12 cm ve yarıçapı ise 52 cm' dir. PJ 28-PJ 27 arasında detaylı şekilde analatılan modelleme esasları ile bu aralık içinde modelleme yapılmıştır. Hesaplamaların kolaylığı açısından tünelin yarısı dikkate alınarak modellemeye devam edilmiştir. Şekil 6.3.3' de tünel geometrisi değerleri görülebilmektedir.

Oluşturulan bu dilimler sonucunda oluşturulan üç boyutlu sonlu elemanlar ağı Şekil 6.3.3' de görülmektedir

Şekil 6.3.3 PJ 14-PJ 13 arası üç boyutlu sonlu elemanlar ağı

Oluşturulan 3 D sonlu elemanlar ağının oluşturulaması sonrasında hesaplama adımına geçilmiştir. Bu adım için Şekil 6.3.4'de hesaplama dilimleri gösterilmiştir. Şekilde gösterilen hesap dilimleri uygulamada kullanılan boru boylarına uygun olarak 3 metre olarak belirlenmiştir.

Şekil 6.3.4 PJ 14-PJ 13 arası hesap dilimleri

Aşağıda hesap adımları belirtilmiştir.

1.Adım	1 ve 2 no'lu dilimlerin TBM ile kazısı
2.Adım	3 no' lu dilimin TBM ile kazısı, 1 no'lu dilimin borusunun itilmesi
3.Adım	4 no' lu dilimin TBM ile kazısı, 2 no'lu dilimin borusunun itilmesi
4.Adım	5 no' lu dilimin TBM ile kazısı, 3 no'lu dilimin borusunun itilmesi
5.Adım	6 no' lu dilimin TBM ile kazısı, 4 no'lu dilimin borusunun itilmesi
6.Adım	7 no' lu dilimin TBM ile kazısı, 5 no'lu dilimin borusunun itilmesi
7.Adım	8 no' lu dilimin TBM ile kazısı, 6 no'lu dilimin borusunun itilmesi
8.Adım	9 no' lu dilimin TBM ile kazısı, 7 no'lu dilimin borusunun itilmesi
9.Adım	10 no' lu dilimin TBM ile kazısı, 8 no'lu dilimin borusunun itilmesi
10.Adım	11 no' lu dilimin TBM ile kazısı, 9 no'lu dilimin borusunun itilmesi
11.Adım	12 no' lu dilimin TBM ile kazısı, 10 no'lu dilimin borusunun itilmesi
12.Adım	13 no' lu dilimin TBM ile kazısı, 11 no'lu dilimin borusunun itilmesi
13.Adım	14 no' lu dilimin TBM ile kazısı, 12 no'lu dilimin borusunun itilmesi
14.Adım	15 no' lu dilimin TBM ile kazısı, 13 no'lu dilimin borusunun itilmesi
15.Adım	16 no' lu dilimin TBM ile kazısı, 14 no'lu dilimin borusunun itilmesi
16.Adım	17 no' lu dilimin TBM ile kazısı, 15 no'lu dilimin borusunun itilmesi
17.Adım	18 no' lu dilimin TBM ile kazısı, 16 no'lu dilimin borusunun itilmesi
18.Adım	19 no' lu dilimin TBM ile kazısı, 17 no'lu dilimin borusunun itilmesi
19.Adım	20 no' lu dilimin TBM ile kazısı, 18 no'lu dilimin borusunun itilmesi
20.Adım	19 no'lu dilimin borusunun itilmesi
21.Adım	20 no'lu dilimin borusunun itilmesi

Çizelge 6.3.3 PJ 14-PJ 13 arası hesap adımları

İtme Kuvvetleri ile çizilen grafikten aşamalara karşılık gelen bölümdeki itme kuvvetinin boru kesit alanına bölünmesiyle oluşan kPa birimindeki değerler Çizelge 6.3.4' te verilmiştir.

	İtme Kuvveti Gerilmeleri
AŞAMALAR	(kPa)
Aşama 1	235
Aşama 2	290
Aşama 3	315
Aşama 4	305
Aşama 5	300
Aşama 6	315
Aşama 7	415
Aşama 8	327
Aşama 9	335
Aşama 10	350
Aşama 11	555
Aşama 12	555
Aşama 13	490
Aşama 14	610
Aşama 15	705
Aşama 16	775
Aşama 17	725
Aşama 18	820
Aşama 19	1000
Aşama 20	1030
Aşama 21	1035

Çizelge 6.3.4 PJ 14-PJ 13 arası modellemede uygulanan itme kuvveti gerilmeleri

Hesaplama sonucunda modellenen üç boyutlu sonlu elemanlar ağınının tünel formunun oluşması sonrasındaki deforme olmuş hali Şekil 6.3.5' de gösterilmiştir.

Şekil 6.3.5 PJ 14-PJ 13 arası deforme olmuş üç boyutlu sonlu elemanlar ağı

Şekil 6.3.6' da tünel formunda alınan kesitlerin yerleri gösterilmiştir.

Şekil 6.3.6 PJ 14-PJ 13 arası tünel formundan alınan kesitler

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.3.14, Şekil 6.3.15, Şekil 6.3.16' da gösterilmiştir.

Şekil 6.3.7 PJ 14-PJ 13 arası I-I kesiti gerilme dağılımı

Şekil 6.3.8 PJ 14-PJ 13 arası II-II kesiti gerilme dağılımı

Şekil 6.3.9 PJ 14-PJ 13 arası III-III kesiti gerilme dağılımı

I-I, II-II, III-III kesitlerinden elde edilen gerilme değerleri Çizelge 6.3.5, Çizelge 6.3.6, Çizelge 6.3.7'de verilmiştir.

z(m)	I-I Kesiti Gerilmeleri (kPa)	II-II Kesiti Gerilmeleri (kPa)	III-III Kesiti Gerilmeleri (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,33	0,29	0,28	0,30		
1,50	0,48	0,36	0,42	0,42		
3,00	0,39	0,61	0,48	0,49		
4,50	0,78	1,28	1,07	1,04		
6,00	1,46	2,37	2,26	2,03		
6,75	1,35	1,85	3,26	2,15		
7,50	3,25	4,08	5,18	4,17		
9,00	1,89	2,55	2,79	2,41	-	
9,75	1,41	2,08	3,02	2,17		
10,50	3,31	4,58	5,68	4,52		
12,00	2,20	3,10	3,02	2,77	2.76	3 35
12,75	1,39	2,07	2,86	2,11	2,70	5,55
13,50	4,60	4,82	5,63	5,02		
15,00	2,41	3,24	3,98	3,21		
15,75	1,36	2,03	2,76	2,05		
16,50	4,11	4,99	6,35	5,15		
18,00	2,56	3,44	3,79	3,26		
18,75	1,32	1,97	2,67	1,99		
19,50	4,24	4,64	6,63	5,17]	
21,00	2,66	3,33	3,8	3,26		
21,75	1,26	1,88	2,53	1,89]	
22,50	4,34	4,71	6,51	5,19		

Çizelge 6.3.5 PJ 14-PJ 13 arası 0-23 m aralığı gerilmeleri

z(m)	I-I Kesiti Gerilmeleri (kPa)	II-II Kesiti Gerilmeleri (kPa)	III-III Kesiti Gerilmeleri (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
24,00	2,77	3,46	4,23	3,49		
24,75	1,10	1,65	2,2	1,65		
25,50	4,25	5,37	6,54	5,39		
27,00	2,89	3,64	3,86	3,46		
27,75	0,70	1,12	1,52	1,11		
28,50	4,49	5,47	6,57	5,51		
30,00	2,23	3,83	4,55	3,54	2 45	2 72
30,75	1,02	1,04	1,54	1,20	5,45	5,75
31,50	4,39	6,29	7,04	5,91		
33,00	3,04	4,43	4,71	4,06		
33,75	1,41	1,45	1,78	1,55		
34,50	4,71	5,86	6,3	5,62		
36,00	3,40	4,61	4,58	4,20		
36,75	1,47	1,51	1,85	1,61		

Çizelge 6.3.6 PJ 14-PJ 13 arası 24-37 m aralığı gerilmeleri

Çizelge 6.3.7 PJ 14-PJ 13 arası 37-59 m aralığı gerilmeleri

z(m)	I-I Kesiti Gerilmeleri (kPa)	II-II Kesiti Gerilmeleri (kPa)	III-III Kesiti Gerilmeleri (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
37,50	4,90	5,84	6,76	5,83		
39,00	3,46	4,76	4,59	4,27		
39,75	1,51	1,55	1,89	1,65		
40,50	5,04	6,01	6,59	5,88		
42,00	2,76	4,93	4,69	4,13		
42,75	1,03	1,56	1,91	1,50		
43,50	4,43	7,13	7,28	6,28		
45,00	3,55	5,12	5,15	4,61		
45,75	1,05	1,58	1,96	1,53		
46,50	4,43	7,34	6,89	6,22		
48,00	3,65	5,35	4,94	4,65	1 19	5 20
48,75	1,08	1,63	2,04	1,58		5,20
49,50	5,56	7,60	7,13	6,76		
51,00	3,90	5,66	5,11	4,89		
51,75	1,69	1,71	2,22	1,87		
52,50	5,33	7,95	7,49	6,92		
54,00	4,17	6,04	5,34	5,18		
54,75	1,69	1,74	2,63	2,02		
55,50	6,22	7,61	8,11	7,31		
57,00	3,71	4,98	3,98	4,22		
58,00	2,27	3,37	3,21	2,95]	
59.00	6.04	8.86	10.43	8.44		

Gerilme değerlerinin gösterildiği Çizelge 6.3.5, Çizelge 6.3.6, Çizelge 6.3.7 incelenirse modelleme sonucunda ilk 30 m için modelleme sonucunda elde edilen gerilme değerleri ortalama olarak arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.4 PJ 24-PJ 25 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Şaftları arası 54 m olup PJ 14-PJ 13 Şaftlarından ayrı olarak bölümler halinde modellenmiş böylece kullanılan program ile hem bölümler halinde hem de bütün olarak modelleme yapılabileceği görülmüştür.

Üç boyutlu modelleme için öncelikle 8*6 m lik bir alan seçilerek geometri oluşturulmuştur. Geometri sonrasında modellemede kullanılacak zemin parametreleri belirlenmiştir. Modelleme için gerekli zemin ve hesap parametreleri elastisite modulü, drenajsız kayma dayanımı, zeminin özgül ağırlığı, poisson oranı, kullanılacak hesap türü ve hesap modelinin seçimidir.

Elastisite modülü araziden alınan zemin örnekleri üzerinde yapılan UU deneyleri sonucunda elde edilen şekil değiştirme-gerilme grafiği kullanılarak belirlenmiştir.

Şekil 6.4.1 PJ 24 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.4.2 PJ 25 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.4.1' de PJ 24 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =58,54 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =28,92 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,0243 değeridir. (6.1) eşitliği kullanılarak E_u=1190 kPa bulur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u=1534 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 24 şaftı için E_u=1360 kPa olarak bulunur. Drenajsız analizlerde drenajsız elastisite modülü yerine efektif elastisite modülünün kullanılması daha doğru analiz yapılmasını sağlamaktadır. eşitlikle E['] değeri hesaplanabilir. (6.2) eşitliği ile E[']=1224 kPa bulunur.

Şekil 6.4.2' de PJ 25 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =102,33 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =45,38 kPa ve bu gerilme değerine karşılk gelen şekil değiştirme değeri ε =0,039 değeridir. (6.1) eşitliği kullanılarak E_u=1255 kPa bulunur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa E_u=1260 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 14 şaftı için E_u=1260 kPa olarak bulunur. Aşağıda verilen eşitlikle E' değeri hesaplanabilir. (6.2) eşitliği ile E'=1134 kPa bulunur.

PJ 24 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen $G_s=2,75$ değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle doygun varsayarak

100

(6.2) eşitliği ile boşluk oranı e= 0,85 olarak bulunmuştur. Zeminin doğal su içeriği w=% 31 dir. Bulunan bu boşluk oranı değeri (6.3) eşitliğinde kullanılarak doygun birim hacim ağırlık γ_d =19 KN/m³ bulunur. Kuru birim hacim ağırlık (6.4) eşitliği kullanılarak 14,50 KN/m³ olarak belirlenmiştir.

PJ 27 şaftı için yukarıda yapılan hesaplamalar PJ 28 şaftı için tekrarlanarak γ_d =19,50 KN/m³ ve γ_k =15,20 KN/m³ olarak belirlenmiştir. Poisson Oranı, v Plaxis programında drenajsız analizlerde maksimum 0,35 değerinde alınabildiğinden 0,35 olarak alınmıştır.

Bütün bu hesaplamalar sonucunda elde edilen değerler Çizelge 6.4.1' de gösterilmiştir.

	Elastisite Modülü,	Drenajsız Kayma Dayanımı,			Poisson Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m^3})$	$\gamma(kN/m^3)$	ν	Türü	Modeli
Siltli Kil(PJ 24)	1224	25	19	14,5	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 24 R<1)	1224	25	19	14,5	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 25)	1134	48	19,5	15,2	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 25 R<1)	1134	48	19,5	15,2	0,35	Drenajsız	Mohr- Cloumb

Çizelge 6.4.1 PJ 24-PJ 25 arası modellemede kullanılan zemin parametreleri

Çizelge 6.4.2 PJ 24-PJ 25 arası modellemede kullanılan beton özellikleri

Malzeme Adı	Elastisite Modülü, kPa	$\gamma(kN/m^3)$	Poisson Oranı, V	Malzeme Türü	Malzeme Modeli
BETON	30000000	24	0,1	Geçirimsiz	Lineer- Elastik

Bu aralık 0-18 m arası, 18-36 m arası ve 36-54 m arası olmak üzere üç parça halinde modellenmiştir.

Şekil 6.4.3 PJ 24-PJ 25 arası için üç boyutlu sonlu elemanlar ağı

Şekil 6.4.4 PJ 24-25 arası 0-18 m için hesap dilimleri

1.Adım	1 ve 2 no'lu dilimlerin TBM ile kazısı
2.Adım	3 no' lu dilimin TBM ile kazısı, 1 no'lu dilimin borusunun itilmesi
3.Adım	4 no' lu dilimin TBM ile kazısı, 2 no'lu dilimin borusunun itilmesi
4.Adım	5 no' lu dilimin TBM ile kazısı, 3 no'lu dilimin borusunun itilmesi
5.Adım	6 no' lu dilimin TBM ile kazısı, 4 no'lu dilimin borusunun itilmesi
6.Adım	7 no' lu dilimin TBM ile kazısı, 5 no'lu dilimin borusunun itilmesi

Çizelge 6.4.3 PJ 24-25 arası 0-18 m için hesap adımları

Şekil 6.4.5 PJ 24-25 arası 0-18 metre İçin I-I kesiti gerilme dağılımları görünüşü

Şekil 6.4.6 PJ 24-25 arası 0-18 metre için II-II kesiti gerilme dağılımları görünüşü

Şekil 6.4.7 PJ 24-25 arası 0-18 metre için III-III kesiti gerilme dağılımları görünüşü

Şekil 6.4.8 PJ 24-25 arası 18-36 m aralığı İçin hesap dilimleri

|--|

1.Adım	1 no' lu dilimin TBM ile kazısı
2.Adım	1 no' lu dilimin dilimin borusunun itilmesi
3.Adım	2 ve 3 no' lu dilimlerin TBM ile kazısı
4.Adım	4 no' lu dilimin TBM ile kazısı, 2 no'lu dilimin borusunun itilmesi
5.Adım	5 no' lu dilimin TBM ile kazısı, 4 no'lu dilimin borusunun itilmesi
6.Adım	6 no' lu dilimin TBM ile kazısı, 5 no'lu dilimin borusunun itilmesi
7.Adım	7 no' lu dilimin TBM ile kazısı, 6 no'lu dilimin borusunun itilmesi

Şekil 6.4.9 PJ 24-25 arası 18-36 metre için I-I kesiti gerilme dağılımları görünüşü

Şekil 6.4.10 PJ 24-25 arası 18-36 metre için II-II kesiti gerilme dağılımları görünüşü

Şekil 6.4.11 PJ 24-25 arası 18-36 metre için III-III kesiti gerilme dağılımları görünüşü

Şekil 6.4.12 PJ 24-25 arası 36-54 m aralığı için hesap dilimleri

Cizelge	645	PI 24-	25 arası	36-54	m icin	hesan	adımlar
ÇIZCIğu	0.4.5	IJ <u>2</u> 4 -	25 arasi	50-54	ın ıçın	nesap	aummai

1.Adım	1 no' lu dilimin TBM ile kazısı
2.Adım	1 no' lu dilimin dilimin borusunun itilmesi
3.Adım	2 ve 3 no' lu dilimlerin TBM ile kazısı
4.Adım	4 no' lu dilimin TBM ile kazısı, 2 no'lu dilimin borusunun itilmesi
5.Adım	5 no' lu dilimin TBM ile kazısı, 4 no'lu dilimin borusunun itilmesi
6.Adım	6 no' lu dilimin TBM ile kazısı, 5 no'lu dilimin borusunun itilmesi
7.Adım	7 no' lu dilimin TBM ile kazısı, 6 no'lu dilimin borusunun itilmesi

Şekil 6.4.13 PJ 24-25 için deforme olmuş üç boyutlu sonlu elemanlar ağı

<u> </u>				},
	 <u>}</u> -	,	8 1	

Şekil 6.4.14 PJ 24-25 arası 36-54 metre için I-I Kesiti gerilme dağılımları görünüşü

	-	Ļ	-	-	~

Şekil 6.4.15 PJ 24-25 arası 36-54 metre için II-II kesiti gerilme dağılımları görünüşü

Şekil 6.4.16 PJ 24-25 arası 36-54 metre için III-III kesiti gerilme dağılımları görünüşü

z(m)	I-I Kesiti Gerilmeleri (kPa)	II-II Kesiti Gerilmeleri (kPa)	III-III Kesiti Gerilmeleri (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,25	0,31	0,34	0,30		
1,50	0,55	0,58	0,64	0,59		
3,00	0,45	0,57	0,71	0,58		
4,50	2,30	3,15	4,2	3,22		
6,00	1,40	1,85	2,24	1,83		
6,75	2,62	3,74	3,12	3,16		
7,50	4,09	4,38	5,17	4,55		
9,00	2,38	4,42	3,56	3,45		
9,75	2,81	2,86	2,9	2,86		
10,50	5,18	5,35	5,78	5,44		
12,00	2,87	2,94	3,35	3,05		
12,75	2,86	2,89	2,94	2,90		
13,50	5,82	6,13	6,75	6,23		4,97
15,00	3,04	3,67	4,58	3,76		
15,75	2,88	2,91	2,97	2,92		
16,50	6,14	6,48	7,33	6,65	4.15	
18,00	6,49	6,98	7,25	6,91	7,15	
18,75	2,74	2,88	2,97	2,86		
19,50	5,75	6,11	6,78	6,21		
20,25	3,38	4,52	5,21	4,37		
21,00	6,67	8,50	7,86	7,68		
21,75	2,65	2,72	2,96	2,78		
22,50	2,60	3,55	4,21	3,45		
24,00	2,72	4,08	4,78	3,86		
24,75	2,96	4,22	5,06	4,08		
25,50	4,86	5,67	6,42	5,65		
27,00	2,99	5,00	5,15	4,38		
27,75	3,32	4,18	4,68	4,06		
28,50	6,70	8,77	8,34	7,94		
30,00	3,55	5,22	6,14	4,97		
30,75	3,15	3,97	4,27	3,80		
31,50	7,00	8,5	9,11	8,20	1	

Çizelge 6.4.6 PJ 24-25 arası 0-32 metre aralığı gerilmeleri

z(m)	I-I Kesiti Gerilmeleri (kPa)	II-II Kesiti Gerilmeleri (kPa)	III-III Kesiti Gerilmeleri (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
33,00	6,38	7,88	8,43	7,56		
33,75	5,84	7,23	6,75	6,61		
34,50	7,01	8,85	7,96	7,94		
36,00	1,78	1,87	2,41	2,02		
36,75	4,64	7,43	7,27	6,45		
37,50	2,35	3,15	4,11	3,20		
39,00	2,70	3,54	2,33	2,86	178	3,67
39,75	3,71	3,50	4,2	3,80	4,70	
40,50	3,09	3,63	4,12	3,61		
42,00	2,58	5,04	4,86	4,16		
42,75	3,71	4,93	4,24	4,29		
43,50	6,46	8,68	7,65	7,60		
45,00	2,40	3,95	3,71	3,35		
45,75	2,04	3,21	5,07	3,44		
46,50	4,03	8,94	9,55	7,51		
48,00	2,16	7,68	8,72	6,19		
48,75	3,82	4,28	5,14	4,41		
49,50	7,81	11,07	8,78	9,22	7 14	7 35
51,00	4,60	7,00	7,62	6,41	7,14	7,55
51,75	3,73	5,67	6,24	5,21		
52,50	7,94	13,33	10,67	10,65		
54,00	6,04	7,87	8,55	7,49		

Çizelge 6.4.7 PJ 24-25 arası33-54 metre aralığı gerilmeleri

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.4.18, Şekil 6.4.19 ve Şekil 6.4.20' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.4.3 ve 6.4.4 incelenirse modelleme sonucunda elde gerilme değerleri tezin 5.2 bölümünde yapılan grafik analizlerinden hesaplanan arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve yakın değerler aldığı görülmektedir.

6.5 PJ 10-PJ 6 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 10-PJ 6 Arası bölümde modelleme yapılmıştır. PJ 10-PJ 6 Arası 159 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

Şekil 6.5.1 PJ 10 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.5.1' de PJ 10 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =127 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =64,20 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,0119 değeridir. (6.1) eşitliği kullanılarak E_u=5400 kPa bulur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa en yüksek gerilme değeri σ =114,80 kpa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =56,55 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,0164 değeridir. (6.1) eşitliği kullanılarak E_u=3451 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 10 şaftı için E_u=4425 kPa olarak bulunur. (6.2) eşitliği ile E[']=3983 kPa bulunur.

PJ 10 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen $G_s=2,76$ değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle doygun varsayarak (6.2) eşitliği ile boşluk oranı e= 1,02 olarak bulunmuştur. Bulunan bu boşluk oranı değeri (6.3) eşitliğinde kullanılarak doygun birim hacim ağırlık $\gamma_d=18,35$ KN/m³ bulunur. Kuru

birim hacim ağırlık (6.4) eşitliği kullanılarak $\gamma_k = 13,40 \text{ KN/m}^3$ olarak belirlenmiştir.

Yukarıda hesaplanan tüm zemin parametreleri Çizelge 6.5.1' de gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	γ (kN/m ³)	$\gamma k(kN/m^3)$	ν	Türü	Modeli
	2083	60	18 35	13.40	0.35	Dropoisiz	Mohr-
Siltli Kil(PJ 10)	3903	00	18,55	13,40	0,35	Dienajsiz	Cloumb
Siltli Kil(PJ 10	2082	60	18 35	13.40	0.35	Dronoisiz	Mohr-
R<1)	3703	00	16,55	13,40	0,55	Dienajsiz	Cloumb

Çizelge 6.5.1 PJ 10-PJ 6 arası modellemede kullanılan zemin parametreleri

Programa bu zemin parametreleri kullanarak yaptırılan hesaplama sonucunda Çizelge 6.5.2' de gösterilen gerilme değerlerine ulaşılmıştır.

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,15	0,21	0,26	0,21		
1,50	0,19	0,26	0,27	0,24		
3,00	0,27	1,39	1,44	1,03		
4,50	1,59	1,69	1,55	1,61		
6,00	0,49	1,55	1,52	1,19		
6,75	3,23	4,89	6,02	4,71		
7,50	3,92	6,52	8,43	6,29		
9,00	3,91	5,10	6,61	5,21		
9,75	2,50	4,17	5,98	4,22		
10,50	2,49	5,10	7,71	5,10		5,63
12,00	2,43	3,00	5,89	3,77		
12,75	3,51	4,19	4,73	4,14		
13,50	3,62	6,38	8,28	6,09		
15,00	2,42	3,41	3,94	3,26		
15,75	3,51	4,19	5,6	4,43	4,04	
16,50	2,70	4,77	8,81	5,43		
18,00	2,74	3,58	4,29	3,54		
18,75	2,52	4,20	4,8	3,84		
19,50	2,84	4,90	8,16	5,30		
21,00	2,29	4,16	7,55	4,67		
21,75	2,54	4,30	5,08	3,97		
22,50	2,81	4,99	7,16	4,99		
24,00	1,32	3,14	6,5	3,65		
24,75	1,57	2,28	5,17	3,01		
25,50	2,70	5,05	7,74	5,16		
27,00	1,38	3,97	3,74	3,03		
27,75	1,61	2,33	4,12	2,69		
28,50	4,35	6,00	7,24	5,86		
30,00	8,88	10,04	12,23	10,38		

Çizelge 6.5.2 PJ 10-PJ 6 arası gerilme değerleri

Şekil 6.5.2 PJ 10-PJ 6 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.5.3 PJ 10-PJ 6 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.5.4 PJ 10-PJ 6 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.5.2, Şekil 6.5.3, Şekil 6.5.4' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.5.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 4,04 kPa ve 5.2 bölümünde yapılan analiz ile elde edilen değer 5,63 kPa' dır. Modelleme sonucunda elde edilen Çizelge 6.5.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.6 PJ 10-PJ 13 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 10-PJ 13 Arası bölümde modelleme yapılmıştır. PJ 10-PJ 13 Arası 155 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

6.5 bölümünde PJ 10 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.6.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m^3})$	$\gamma k(kN/m^3)$	ν	Türü	Modeli
	2082	60	19.25	12.40	0.25	Dronoiauz	Mohr-
Siltli Kil(PJ 10)	3903	00	16,55	15,40	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 10	2002	60	10.25	12.40	0.25	Dranaiar	Mohr-
R<1)	3783	00	10,33	15,40	0,55	Dienajsiz	Cloumb

Çizelge 6.6.1 PJ 10-PJ 13 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,55	0,65	0,8	0,67		
1,50	0,64	0,65	0,78	0,69		
3,00	0,80	0,76	0,86	0,81		
4,50	1,45	1,56	1,43	1,48		
6,00	1,95	2,71	2,56	2,41		
6,75	1,86	2,17	3,44	2,49		
7,50	2,49	3,34	4,72	3,52		
9,00	1,85	2,50	5,33	3,23		
9,75	2,01	3,58	4,01	3,20		
10,50	3,86	4,06	8,12	5,35		
12,00	2,66	3,12	4,79	3,52		
12,75	3,02	3,50	3,96	3,49		5,8
13,50	4,48	5,27	8,43	6,06		
15,00	1,74	3,13	4,2	3,02		
15,75	3,03	3,51	5,87	4,14	3,90	
16,50	4,37	6,08	7,2	5,88		
18,00	1,86	3,24	4,91	3,34		
18,75	2,04	3,52	3,96	3,17		
19,50	4,49	5,28	8,74	6,17		
21,00	1,82	3,08	4,15	3,02		
21,75	2,06	3,55	4,94	3,52		
22,50	4,38	5,36	8,92	6,22		
24,00	1,94	5,30	5,48	4,24		
24,75	2,11	3,61	5,18	3,63	-	
25,50	4,43	5,34	8,47	6,08		
27,00	2,02	3,42	5,85	3,76		
27,75	2,14	2,65	5,25	3,35		
28,50	5,38	7,96	8,99	7,44		
30,00	7,80	9,27	10,31	9,13		

Çizelge 6.6.2 PJ 10-PJ 13 arası gerilme değerleri

Şekil 6.6.1 PJ 10-PJ 13 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.6.2 PJ 10-PJ 13 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.6.3 PJ 10-PJ 13 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.6.1, Şekil 6.6.2, Şekil 6.6.3' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.6.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 3.90 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 5,80 kPa dır. Modelleme sonucunda elde edilen Çizelge 6.6.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.7 PJ 14-PJ 17 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 Arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 14-PJ 17 Arası bölümde modelleme yapılmıştır. PJ 14-PJ 17 Arası 155 metrelik bir aralığa sahiptir. Modelleme yapılırken kullanılan bilgisayar programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

6.3 bölümünde PJ 14 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.7.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	γ (kN/m ³)	$\gamma k(kN/m^3)$	ν	Türü	Modeli
	801	22	10.85	15 75	0.35	Dranaisız	Mohr-
Siltli Kil(PJ 14)	801	22	19,05	15,75	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 14	201	22	10.95	15 75	0.25	Dropoiouz	Mohr-
R<1)	001		19,83	13,75	0,55	Dienajsiz	Cloumb

Çizelge 6.7.1 PJ 14-PJ 17 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0.00	0.40	0.55	1.05	(KPa)	Germine(Kr a)	
1.50	0,40	0,53	1,03	0,07		
3.00	0,39	0,55	1,08	0.85		
4 50	2 27	3 73	3 29	3.10		
6.00	2.67	4.14	4.8	3,87		
6.75	1 55	2.52	2.62	2.23		
7.50	3.95	6.3	6.47	5.57		
8.25	1.55	1.63	2.07	1.75		
9,00	3,81	5,67	6,68	5.39		
9,75	1.15	2,56	2.27	1.99		
10,50	4,05	7,48	7,26	6,26		
11,25	1,62	1,79	2,09	1,83		
12,00	4,10	6,55	6,79	5,81		
12,75	1,87	2,11	1,86	1,95		
13,50	3,08	5,99	6,82	5,30		2.00
14,25	1,94	2,05	2,00	2,00		
15,00	3,20	6,55	7,35	5,70		
15,75	1,66	1,85	1,47	1,66	2.69	
16,50	4,29	7,55	7,34	6,39	5,08	2,00
17,25	2,02	2,21	1,86	2,03		
18,00	3,74	6,35	7,42	5,84		
18,75	1,64	1,72	1,44	1,60		
19,50	3,49	6,27	7,04	5,60		
20,25	2,11	2,35	1,96	2,14		
21,00	3,22	7,87	8,19	6,43		
21,75	1,54	1,61	1,47	1,54		
22,50	3,57	6,42	7,69	5,89		
23,25	2,13	2,38	1,98	2,16		
24,00	3,38	7,50	8,74	6,54		
24,75	1,44	1,61	1,50	1,52		
25,50	3,86	6,14	8,08	6,03		
26,25	2,22	2,45	2,08	2,25		
27,00	3,08	6,19	8,19	5,82		
27,75	1,74	1,83	1,57	1,71		
28,50	3,27	6,40	7,69	5,79		
30.00	3.29	7.86	8.69	6.61		

Çizelge 6.7.2 PJ 14-PJ 17 arası gerilme değerleri

1		 						
Ż		R , 1	R , 2	R , 2	R , 2	R , 1	R , A	

Şekil 6.7.1 PJ 14-PJ 17 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.7.2 PJ 14-PJ 17 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.7.3 PJ 14-PJ 17 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.7.1, Şekil 6.7.2, Şekil 6.7.3' te gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.7.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 3,68 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 2,88 kPa dır. Modelleme sonucunda elde edilen Çizelge 6.7.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.8 PJ 17-PJ 19 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 17-PJ 19 Arası bölümde modelleme yapılmıştır. PJ 17-PJ 19 Arası 150 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

Şekil 6.8.1 PJ 19 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.8.1' de PJ 19 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =24,23 kPa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =12,06 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,055 değeridir.

(6.1) eşitliği kullanılarak $E_u=219$ kPa bulur. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa en yüksek gerilme değeri $\sigma=32,65$ kpa' dır. Bu değerin

yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}=16,07$ kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri $\varepsilon=0,034$ değeridir. (6.1) eşitliği kullanılarak E=467 kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 10 şaftı için E_u=340 kPa olarak bulunur. (6.2) eşitliği ile E[']=306 kPa bulunur.

PJ 19 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen $G_s=2,76$ değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle doygun varsayarak (6.2) eşitliği ile boşluk oranı e= 0,74 olarak bulunmuştur. Bulunan bu boşluk oranı değeri (6.3) eşitliğinde kullanılarak doygun birim hacim ağırlık $\gamma_d=19,70$ KN/m³ bulunur. Kuru birim hacim ağırlık (6.4) eşitliği kullanılarak $\gamma_k=15,50$ KN/m³ olarak belirlenmiştir.

Yukarıda hesaplanan tüm zemin parametreleri Çizelge 6.8.1' de gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m}^3)$	γ (kN/m ³)	ν	Türü	Modeli
	306	1.4	10 7	15 50	0.35	Dranaisız	Mohr-
Siltli Kil(PJ 19)	500	14	19,7	15,50	0,33	Dienajsiz	Cloumb
Siltli Kil(PJ 19	306	14	10 7	15 50	0.35	Dronaisiz	Mohr-
R<1)	300	14	19,7	15,50	0,33	Dienajsiz	Cloumb

Çizelge 6.8.1 PJ 17-PJ 19 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,54	0,47	0,72	0,58		
1,50	0,61	0,48	0,62	0,57		
3,00	0,80	0,59	0,77	0,72		
4,50	1,88	1,47	1,63	1,66		
6,00	1,60	2,21	2,13	1,98		
6,75	2,49	3,07	3,57	3,04		
7,50	2,61	4,5	5,03	4,05		
8,25	0,96	1,05	1,33	1,11		
9,00	1,55	1,62	2,44	1,87		
9,75	2,09	2,95	4,14	3,06		
10,50	2,45	3,81	4,17	3,48		
11,25	1,11	1,24	1,58	1,31		
12,00	1,83	2,15	2,95	2,31		
12,75	1,98	2,88	4,36	3,07		
13,50	2,75	4,37	4,91	4,01		
14,25	1,07	1,18	1,52	1,26		
15,00	2,24	2,16	3,23	2,54		
15,75	2,04	2,87	4,33	3,08	2 57	1.74
16,50	2,82	4,44	5,33	4,20	2,37	1,74
17,25	1,06	1,17	1,39	1,21		
18,00	2,46	2,15	3,83	2,81		
18,75	2,04	2,88	4,12	3,01		
19,50	2,65	4,55	5,01	4,07		
20,25	1,05	1,16	1,46	1,22		
21,00	2,57	2,56	3,87	3,00		
21,75	2,06	2,92	4,16	3,05		
22,50	3,22	4,63	5,59	4,48		
23,25	1,03	1,10	1,13	1,09		
24,00	2,73	2,62	3,44	2,93		
24,75	2,04	2,93	4,49	3,15		
25,50	3,39	4,07	5,12	4,19		
26,25	0,83	0,90	1,07	0,93		
27,00	2,78	2,38	2,32	2,49		
27,75	2,19	3,04	4,63	3,29		
28,50	3,41	4,83	4,26	4,17		
30.00	3.44	2.61	4.06	3.37		

Çizelge 6.8.2 PJ 17-PJ 19 arası gerilme değerleri

Şekil 6.8.2 PJ 17-PJ 19 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.8.3 PJ 17-PJ 19 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.8.4 PJ 17-PJ 19 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.8.2, Şekil 6.8.3, Şekil 6.8.4' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.8.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 2,57 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 1,74 kPa' dır. Modelleme sonucunda elde edilen Çizelge 6.8.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.9 PJ 19-PJ 21 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 19-PJ 21 Arası bölümde modelleme yapılmıştır. PJ 19-PJ 21 Arası 167 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

6.8 bölümünde PJ 19 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.9.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m}^3)$	$\gamma_k (kN/m^3)$	ν	Türü	Modeli
	306	14	10 7	15 50		Dranaisız	Mohr-
Siltli Kil(PJ 19)	500	14	19,7	15,50	Dienajsiz		Cloumb
Siltli Kil(PJ 19	206	14	10.7	15 50	0.25	Dropoistz	Mohr-
R<1)	300	14	19,7	15,50	0,55	Dienajsiz	Cloumb

Çizelge 6.9.1 PJ 19-PJ 21 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,19	0,35	0,51	0,35		
1,50	0,31	0,33	0,42	0,35		
3,00	0,28	0,38	0,62	0,43		
4,50	0,93	1,46	1,81	1,40		
6,00	1,52	3,38	3,82	2,91		
6,75	1,25	2,93	3,8	2,66		
7,50	3,48	6,94	7,66	6,03		
9,00	3,04	4,66	4,92	4,21		
9,75	1,98	2,06	2,32	2,12		
10,50	4,03	6,84	7,75	6,21		
12,00	3,55	4,96	5,37	4,63		
12,75	1,15	1,87	2,08	1,70		
13,50	4,33	7,66	7,91	6,63		
15,00	3,29	6,63	5,54	5,15		
15,75	1,13	1,87	1,99	1,66	4,06	4,60
16,50	4,50	7,10	8,18	6,59		
18,00	3,98	5,61	6,51	5,37		
18,75	1,13	1,73	1,97	1,61		
19,50	4,25	6,84	7,67	6,25		
21,00	4,09	5,76	7,66	5,84		
21,75	1,00	1,67	1,97	1,55		
22,50	4,69	6,79	7,82	6,43		
24,00	4,71	5,88	7,25	5,95		
24,75	1,30	1,75	1,99	1,68		
25,50	4,75	8,97	8,48	7,40		
27,00	4,73	7,90	8,84	7,16		
27,75	1,52	1,74	2,04	1,77		
28,50	4,77	8,12	9,13	7,34		
30,00	4,94	5,62	8,24	6,27		

Çizelge 6.9.2 PJ 19-PJ 21 arası gerilme değerleri

Şekil 6.9.1 PJ 19-PJ 21 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.9.2 PJ 19-PJ 21 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.9.3 PJ 19-PJ 21 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.9.1, Şekil 6.9.2, Şekil 6.9.3' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.9.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 4,06 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 4,60 kPa dır. Modelleme sonucunda elde edilen Çizelge 6.9.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.10 PJ 21-PJ 24 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 21-PJ 24 Arası bölümde modelleme yapılmıştır. PJ 21-PJ 24 Arası 155 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

6.4 bölümünde PJ 24 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.10.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m}^3)$	$\gamma(kN/m^3)$	ν	Türü	Modeli
	1224	25	19.00	14 50	0.35	Drenaisız	Mohr-
Siltli Kil(PJ 24)	1224	23	17,00	14,50	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 24	1224	25	10.00	14 50	0.35	Dropoistz	Mohr-
R<1)	1224	23	19,00	14,30	0,55	Dienajsiz	Cloumb

Çizelge 6.10.1 PJ 21-PJ 24 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme	Analizlerden Hesaplanan Ortalama Gerilme(kPa)	
0,00	0,26	0,56	0,39	0,40			
1,50	0,31	0,39	0,51	0,40			
3,00	0,31	0,61	0,53	0,48	•		
4,50	0,51	1,18	1,14	0,94			
6,00	1,07	2,57	1,73	1,79			
6,75	0,95	1,94	3,31	2,07			
7,50	2,65	4,2	5,18	5,01			
9,00	1,43	3,41	3,05	3,63			
9,75	0,93	2,23	2,95	2,04			
10,50	2,64	4,70	4,76	5,03			
12,00	1,61	3,39	2,88	2,63			
12,75	0,92	2,24	2,84	2,00			
13,50	2,66	4,94	5,13	4,24			
15,00	1,69	3,54	4,38	3,20			
15,75	0,92	2,24	2,81	1,99	3,02	3,22	
16,50	2,41	5,10	5,67	4,39			
18,00	1,87	4,75	5,56	4,06			
18,75	0,93	2,24	2,8	1,99			
19,50	1,90	5,22	5,36	4,16			
21,00	1,78	4,91	3,69	3,46			
21,75	0,94	2,25	2,81	2,00			
22,50	1,36	5,30	5,55	4,07			
24,00	2,04	4,27	3,15	3,15			
24,75	0,95	2,31	2,84	2,03			
25,50	3,34	5,47	6,37	5,06			
27,00	1,81	5,08	3,18	3,36			
27,75	0,96	2,55	3,92	2,48			
28,50	2,25	6,35	5,22	5,45			
30,00	4,81	6,58	6,8	6,06	1		

Çizelge 6.10.2 PJ 21-PJ 24 arası gerilme değerleri

Şekil 6.10.1 PJ 21-PJ 24 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.10.2 PJ 21-PJ 24 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.10.3 PJ 21-PJ 24 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.10.1, Şekil

6.10.2, Şekil 6.10.3' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.10.2 incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 3,02 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 3,22 kPa dır. Modelleme sonucunda elde edilen Çizelge 6.10.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.11 PJ 28-PJ 30 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 28-PJ 30 Arası bölümde modelleme yapılmıştır. PJ 28-PJ 30 Arası 105 metrelik bir aralığa sahiptir. Ancak; modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır. 6.2 bölümünde PJ 28 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.10.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_{\rm d}({\rm kN/m}^3)$	$\gamma k(kN/m^3)$	ν	Türü	Modeli
	765	25	19.50	15 20	0.35	Drenaisız	Mohr-
Siltli Kil(PJ 28)	705	23	19,50	13,20	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 28	765	25	19.50	15.20	0.35	Drenaisız	Mohr-
R<1)	705	23	17,50	13,20	0,55	Dicitajsiz	Cloumb
		1		1			

Çizelge 6.11.1 PJ 28-PJ 30 arası modellemede kullanılan zemin parametreleri

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
0,00	0,31	0,55	0,8	0,55		
1,50	0,32	0,52	0,72	0,52		
3,00	0,37	0,53	0,7	0,53		
4,50	1,67	1,85	2,03	1,85		
6,00	1,89	2,45	3,02	2,45		
6,75	1,85	1,84	3,14	2,28		
7,50	3,58	4,81	8,04	5,48		
8,25	0,43	0,79	1,31	0,84		
9,00	3,11	5,09	7,32	5,17		
9,75	1,83	2,03	4,21	2,69		
10,50	3,91	6,13	9,37	6,47		
11,25	0,41	0,88	1,2	0,83		
12,00	3,21	5,50	9,03	5,91		
12,75	1,81	1,97	4,37	2,72		
13,50	4,49	6,58	9,44	6,84		2.50
14,25	0,50	0,92	1,13	0,85		
15,00	3,84	5,68	7,91	5,81		
15,75	1,81	2,77	3,45	2,68	2 72	
16,50	4,66	6,04	9,21	6,64	5,75	5,59
17,25	0,52	0,95	1,12	0,86		
18,00	3,66	5,55	9,04	6,08		
18,75	1,83	1,96	3,52	2,44		
19,50	4,57	7,00	9,52	7,03		
20,25	0,55	0,99	1,1	0,88		
21,00	3,58	6,35	9,88	6,60		
21,75	1,85	1,99	5,65	3,16		
22,50	4,40	7,14	9,87	7,14		
23,25	0,58	1,04	1,08	0,90		
24,00	3,85	6,30	8,76	6,30		
24,75	1,90	1,93	4,69	2,84		
25,50	5,03	5,74	9,56	6,78		
26,25	0,62	1,14	1,06	0,94		
27,00	3,93	4,89	8,88	5,90		
27,75	2,12	1,92	4,89	2,98		
28,50	5,24	6,18	6,18 8,97 6,80			
30.00	3.91	5.14	7.8	5.62		

Çizelge 6.11.2 PJ 28-PJ 30 arası gerilme değerleri

Şekil 6.11.2 PJ 28-PJ 30 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.11.3 PJ 28-PJ 30 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.11.4 PJ 28-PJ 30 arası III-III kesiti gerilme dağılımları görünüşü

Modelleme sonucunda I-I, II-II, III-III kesitlerinin gerilme durumları Şekil 6.11.2, Şekil 6.11.3, Şekil 6.11.4' de gösterilmiştir. Gerilme değerlerinin gösterildiği Çizelge 6.11.2

incelenirse modelleme sonucunda ilk 30 m için elde edilen ortama gerilme değeri 3,73 kPa ve 5.2 bölümünde yapılan analiz kriterleri ile elde edilen değer 3,59 kPa dır. Modelleme sonucunda elde edilen Çizelge 6.11.2' de verilen gerilme değerleri arazi değerleri ile karşılaştırıldığında arasında büyük bir fark bulunmadığı ve uyumlu olduğu görülmektedir.

6.12 PJ 5-PJ 4 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 5-PJ 4 arası bölümde modelleme yapılmıştır. PJ 5-PJ 4 Arası 113 metrelik bir aralığa sahiptir. Modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

Şekil 6.12.1 PJ 5 şaftı gerilme-şekil değiştirme grafiği

Şekil 6.12.1' de PJ 5 şaftı için gerilme-şekil değiştirme grafiği verilmiştir. Bu grafikte 40 kPa hücre basıncı altında yapılan deney için en yüksek gerilme değeri σ =151,27 kPa' dır. Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}$ =75,45 kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri ε =0,0294 değeridir.

(6.1) eşitliği kullanılarak $E_u=2566$ kPa elde edilmektedir. Aynı işlem 80 kPa hücre basıncı altında yapılan deney sonucu içinde uygulanırsa en yüksek gerilme değeri $\sigma=190,43$ kpa' dır.

Bu değerin yaklaşık % 50 sine karşılık gelen gerilme $\sigma_{\%50}=95,30$ kPa ve bu gerilme değerine karşılık gelen şekil değiştirme değeri $\varepsilon=0,0625$ değeridir. (6.1) eşitliği kullanılarak $E_u=1512$ kPa bulunur. Bu iki değerin ortalaması alınırsa PJ 5 şaftı için $E_u=2040$ kPa olarak bulunur. (6.2) eşitliği ile E[']=1836 kPa bulunur.

PJ 5 şaftı için zeminin birim hacim ağırlığı piknometre deneyi sonucunda elde edilen G_s=2,75 değeri kullanılarak bulunmuştur. Zemin örneklerini suya tümüyle doygun varsayarak(6.3) eşitliği ile boşluk oranı e= 0,44 olarak bulunmuştur. Bulunan bu boşluk oranı değeri (6.3) eşitliğinde kullanılarak doygun birim hacim ağırlık γ_d =21,70 KN/m³ bulunur. Kuru birim hacim ağırlık (6.4) eşitliği kullanılarak γ_k =18,75 KN/m³ olarak belirlenmiştir.

Yukarıda hesaplanan tüm zemin parametreleri Çizelge 6.12.1' de gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma(kN/m^3)$	$\gamma k(kN/m^3)$	ν	Türü	Modeli
	1836	76	21.70	18 75	0.35	Drenaisız	Mohr-
Siltli Kil(PJ 5)	1050	70	21,70	10,75	0,55	Dienajsiz	Cloumb
Siltli Kil(PJ 5	1836	76	21.70	18 75	0.35	Drenaisız	Mohr-
R<1)	1050	70	21,70	10,75	0,55	Dienajsiz	Cloumb

Çizelge 6.12.1 PJ 5-PJ 4 arası modellemede kullanılan zemin parametreleri

Şekil 6.12.2 PJ 5-PJ 4 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.12.3 PJ 5-PJ 4 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.12.4 PJ 5-PJ 4 arası III-III kesiti gerilme dağılımları görünüşü

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)	
0,00	0,21	0,23	0,29	0,24			
1,50	0,18	0,32	0,26	0,25			
3,00	0,27	0,57	0,44	0,43			
4,50	0,55	1,46	1,13	1,05			
6,00	1,00	1,47	1,28	1,25			
6,75	1,47	1,88	3,27	2,21			
7,50	2,12	3,66	5,94	3,91	2.17	3 25	
9,00	1,21	2,23	2,25	1,90	2,17	5,25	
9,75	1,49	2,2	3,01	2,23			
10,50	2,52	4,38	6,3	4,40			
12,00	1,22	3,79	2,46	2,49	-		
12,75	1,50	2,23	3,12	2,28			
13,50	2,70	4,75	7,44	4,96			
15,00	1,10	4,09	3,34	2,84			
15,75	1,51	2,24	3,11	2,29			
16,50	2,79	4,98	7,00	4,92			
18,00	1,19	4,29	3,37	2,95			
18,75	1,52	2,25	3,12	2,30			
19,50	2,99	5,13	6,68	4,93			
21,00	1,25	4,44	3,72	3,14			
21,75	1,95	2,28	3,03	2,42			
22,50	3,05	5,24	6,93	5,07	3,63	29,9	
24,00	1,45	4,12	3,52	3,03			
24,75	2,12	2,32	3,21	2,55			
25,50	2,00	5,31	6,88	4,73			
27,00	1,72	4,22	3,42	3,12			
27,75	1,58	2,9	3,27	2,58	7		
28,50	2,93	5,29	7,63	5,28			
30,00	5,05	12,69	8,31	8,68			

Çizelge 6.12.2 PJ 5-PJ 4 arası gerilme değerleri

Çizelge 6.12.2' de 0 ile 15 metre aralığında modelleme sonucu elde edilen gerilme ile grafik analizlerinden elde edilen gerilmelerin birbirine nispeten yakın olduğu görülmektedir. Ancak; 15 metre ile 30 metre arasındaki gerilmelerde bir uyumsuzluk olduğu, gerilmeler arasında 8 kattan daha fazla bir fark olduğu görülmektedir.

6.13 PJ 5-PJ 6 Arası Üç Boyutlu Sayısal Modelleme

PJ 24-PJ 25 Arası, PJ 28-PJ 27 arası ve PJ 14-PJ 13 Arası modellemelerde ayrıntılı olarak anlatılan modelleme prensiplerine bağlı kalınarak PJ 5-PJ 6 arası bölümde modelleme yapılmıştır. PJ 5-PJ 4 Arası 113 metrelik bir aralığa sahiptir. Modelleme yapılırken kullanılan programın kapasitesi dikkate alınarak bütün aralık değil dış çapın 30 katı kadar bir aralık (30 metre) dikkate alınarak modelleme yapılmıştır.

6.12 bölümünde PJ 5 şaftının zemin parametrelerinin nasıl bulunduğu anlatıldığından burada tekrar edilmeyecektir. Çizelge 6.13.1' de modellemede kullanılan zemin parametreleri gösterilmiştir.

		Drenajsız					
	Elastisite	Kayma			Poisson		
	Modülü,	Dayanımı,			Oranı,	Malzeme	Zemin
Zemin Adı	kPa	C _u , kPa	$\gamma_d (kN/m^3)$	$\gamma(kN/m^3)$	ν	Türü	Modeli
	2010	76	21.70	18 75	0.35	Drenais17	Mohr-
Siltli Kil(PJ 5)	2010	70	21,70	10,75	0,55	Dicitajsiz	Cloumb
Siltli Kil(PJ 5	2010	76	21.70	19 75	0.25	Dropointz	Mohr-
R<1)	2010	70	21,70	10,75	0,55	Dienajsiz	Cloumb

Çizelge 6.13.1 PJ 5-PJ 6 arası modellemede kullanılan zemin parametreleri

Şekil 6.13.1 PJ 5-PJ 6 arası I-I kesiti gerilme dağılımları görünüşü

Şekil 6.13.2 PJ 5-PJ 6 arası II-II kesiti gerilme dağılımları görünüşü

Şekil 6.13.3 PJ 5-PJ 6 arası III-III kesiti gerilme dağılımları görünüşü

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)	
0,00	0,10	0,15	0,18	0,14			
1,50	0,17	0,23	0,19	0,20			
3,00	0,32	0,37	0,42	0,37			
4,50	0,64	1,29	1	0,98			
6,00	0,45	1,23	1,46	1,05			
6,75	1,21	1,6	2,48	1,76			
7,50	1,76	3,1	5,3	3,39	176	1 58	
9,00	0,59	1,94	2,45	1,66	1,70	4,50	
9,75	1,22	1,82	2,25	1,76			
10,50	2,18	3,7	5,27	3,72			
12,00	0,78	2,41	2,48	1,89			
12,75	1,23	1,84	2,22	1,76			
13,50	2,31	3,98	5,01	3,77			
15,00	1,14	2,49	2,89	2,17			
15,75	1,24	1,85	2,22	1,77			
16,50	2,78	4,16	5,36	4,10			
18,00	1,12	2,59	2,81	2,17			
18,75	1,25	1,86	2,24	1,78			
19,50	2,41	4,27	5,86	4,18			
21,00	1,23	2,57	3,07	2,29			
21,75	1,27	1,89	2,59	1,92			
22,50	2,50	4,35	6,04	4,30	2,98	28,6	
24,00	1,36	2,64	3,13	2,38			
24,75	1,29	1,94	2,28	1,84			
25,50	2,36	4,41	6,51	4,43			
27,00	1,30	2,85	3,09	2,41			
27,75	1,31	1,96	2,4	1,89			
28,50	2,53	4,38	5,69	4,20			
30,00	7,74	10,07	6,22	8,01			

Çizelge 6.13.2 PJ 5-PJ 6 arası gerilme değerleri

Çizelge 6.12.2' de 0 ile 15 metre aralığında modelleme sonucu elde edilen gerilme ile grafik analizlerinden elde edilen gerilmelerin birbirine nispeten yakın olduğu görülmektedir. Ancak; 15 metre ile 30 metre arasındaki gerilmelerde bir uyumsuzluk olduğu, gerilmeler arasında 10 kata yakın bir fark olduğu görülmektedir.

Şu ana kadar yapılan modellemelerde kısa itme aralıklarında ve uzun itme aralıklarının genellikle ilk 30 metrelerinde bentonit işlemi uygulanmadığından bentonit işlemi etkisi modellemelere yansıtılamamıştır. Bu etkinin araştırılması için ilk 30 metreden sonra bentonit işlemi uygulanan PJ 14-PJ 17 arası, PJ 17-PJ 19 arası ve PJ 21-PJ 24 arası bölümlerin ilk 60

metrelerine kadar modelleme yapılarak bentonit işleminin gerilmeler üzerindeki etkisi araştırılmıştır.

6.14 PJ 14-PJ 17 Arası Bentonit Etkisinin Araştırılması İçin Modelleme

Bu modellemede kullanılan zemin parametreleri Çizelge 6.14.1' de verilmiştir.

		Drenajsız					
	Elastisite	Kayma Davanımı			Poisson	Dranai	Zomin
Zemin Adı	\vec{E} (kPa)	C_u , (kPa)	$\gamma_{\rm d}({\rm kN/m}^3)$	$\gamma(kN/m^3)$	Oranı, v	Durumu	Modeli
Siltli Kil(PJ 14)	801	22	19,85	15,75	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 14 R<1)	801	22	19,85	15,75	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 14- 17)	915	50	20,75	17,15	0,35	Drenajsız	Mohr- Cloumb
Siltli Kil(PJ 14- 17 R<1)	915	50	20,75	17,15	0,35	Drenajsız	Mohr- Cloumb

Çizelge 6.14.1 PJ 14-PJ 17 arası 60 m' lik modellemede kullanılan zemin parametreleri

PJ 14-PJ 17 arası bölümde ilk 30 metrelik kısım 6.7 bölümünde incelendiğinden gerilme analizi yapılırken 30 metre ile 60 metre arası dikkate alınmış ve Çizelge 6.14.2 bu bölüm için modelleme sonucu elde edilen gerilemeler verilmiştir. Bu bölümde bentonit etkisinin yansıtılabilmesi amacıyla R_{inter} katsayısı olarak 0,23 sayısı kullanılmıştır.

Çizelge 6.14.2' de PJ 14-PJ 17 arası I-I, II-II ve III-III kesitleri için 30-60 m arası modelleme sonucu elde edilen gerilme değerleri verilmiştir.

	1	1	1		1
	I-I	II-II	III-III	Üç Kesitin	Modelleme
	Kesiti	Kesiti	Kesiti	Ortalama	Sonucu
z(m)	Gerilmeler	Gerilmeler	Gerilmeler	Gerilmesi	Bulunan
	(kPa)	(kPa)	(kPa)	(kPa)	Ortalama
31.5	3.13	4.17	4.56	3.95	Gernne(kra)
31,5	1.03	0.37	1.23	0.88	
32,23	1,05	2.54	3.11	2.40	
33 75	0.52	0.50	0.57	2,40	
34.5	0,32	2.00	3 21	2.81	
35.25	0.74	0.85	0.07	2,01	
35,25	3.47	0,85	4 75	4.15	
36 75	0.46	4,24	4,75	4,13	
30,75	0,40	4.86	5 35	4.81	
37,5	4,23	4,80	3,33	4,81	
30,23	0,45	5.21	1,03	5.08	
20.75	4,40	3,21	3,30	3,08	
39,73	0,13	0,38	0,38	0,00	-
40,5	4,30	4,89	3,43	4,93	-
41,23	0,01	0,93	1,12	0,89	
42	4,01	5,55	5,78	5,51	
42,75	0,25	0,45	0,62	0,44	
43,5	4,54	5,17	5,43	5,05	
44,25	0,64	0,59	0,71	0,65	
45	4,63	5,39	5,79	5,27	2.44
45,75	0,18	0,40	0,56	0,00	3,44
46,5	4,58	5,23	5,89	5,23	
47,25	0,72	1,15	1,23	1,03	-
48	4,93	4,75	5,34	5,01	
48,75	0,25	0,49	0,53	0,42	
49,5	4,04	5,36	5,78	5,06	
50,25	0,77	0,90	1,08	0,92	
51	4,86	5,81	6,02	5,56	
51,75	0,46	1,45	1,43	1,11	
52,5	5,00	6,04	6,43	5,83	-
53,25	1,19	1,55	1,72	1,48	-
54	5,18	6,57	6,88	6,21	
54,75	0,45	0,98	1,15	0,86	-
55,5	5,03	6,13	6,71	5,96	
56,25	0,98	1,67	1,89	1,51	
57	4,97	6,10	6,95	6,01	
57,75	0,63	0,92	1,21	0,92	
58,5	5,00	6,31	6,67	5,99	
59,25	0,96	1,42	1,76	1,38	
60	4,09	6,92	7,04	6,02	

Çizelge 6.14.2 PJ 14-PJ 17 arası 30-60 m arası gerilme değerleri

	Bölüm		
Aralık	No	Modelleme	Arazi
0-30 m			
Arası	1	3,06	2,88
30-60 m			
Arası	2	3,44	3,89

Çizelge 6.14.3 PJ 14-17 arası gerilme değerlerinin karşılaştırılması

Şekil 6.14.1 PJ 14-PJ 17 arası gerilme değerleri karşılaştırılması

Çizelge 6.14.3 ve Şekil 6.14.1 incelendiğinde daha önceden değerlendirmesi yapılmış 30 metrelik kısımın yanında 30 metre ile 60 metre arasındaki kısımda da modelleme ile elde edilen gerilmeler ile arazi kayıtları ile oluşturulan grafiklerin analizi sonucu elde edilen gerilme değerlerinin biribirine yakın ve uyumlu olduğu görülmektedir.

6.15 PJ 17-PJ 19 Arası Bentonit Etkisinin Araştırılması İçin Modelleme

Bu modellemede kullanılan zemin parametreleri Çizelge 6.15.1' de verilmiştir.

		Drenajsız					
	Elastisite	Kayma					
	Modülü,	Dayanımı,			Poisson	Drenaj	Zemin
Zemin Adı	E' (kPa)	C _u , (kPa)	$\gamma_{\rm d}(kN/m^3)$	$\gamma(kN/m^3)$	Oranı, v	Durumu	Modeli
	306	14	10.70	15 50	0.35	Dranaisız	Mohr-
Siltli Kil(PJ 19)	300	17	19,70	15,50	0,35	Dienajsiz	Cloumb
Siltli Kil(PJ 19	306	14	10.70	15 50	0.35	Dranaisız	Mohr-
R<1)	500	14	19,70	15,50	0,55	Drenajsiz	Cloumb
Siltli Kil(PJ 17-	702	40	20.00	16.00	0.35	Drenaisız	Mohr-
19)	192	40	20,00	10,00	0,35	Dienajsiz	Cloumb
Siltli Kil(PJ 17-	702	40	20.00	16.00	0.35	Dropoistz	Mohr-
19 R<1)	192	40	20,00	10,00	0,35	Dienajsiz	Cloumb

Çizelge 6.15.1 PJ 14-PJ 17 arası 60 m' lik modellemede kullanılan zemin parametreleri

PJ 17-PJ 19 arası bölümde ilk 30 metrelik kısım 6.8 bölümünde incelendiğinden gerilme analizi yapılırken 30 metre ile 60 metre arası dikkate alınmış ve Çizelge 6.15.2 bu bölüm için modelleme sonucu elde edilen gerilemeler verilmiştir. Bu bölümde bentonit etkisinin yansıtılabilmesi amacıyla R_{inter} katsayısı olarak 0,23 sayısı kullanılmıştır.

Çizelge 6.15.2' de PJ 17-PJ 19 arası I-I, II-II ve III-III kesitleri için 30-60 m arası modelleme sonucu elde edilen gerilme değerleri verilmiştir.

z(m)	I-I Kesiti Gerilmeler (kPa)	II-II Kesiti Gerilmeler (kPa)	III-III Kesiti Gerilmeler (kPa)	Üç Kesitin Ortalama Gerilmesi (kPa)	Modelleme Sonucu Bulunan Ortalama Gerilme(kPa)	Analizlerden Hesaplanan Ortalama Gerilme(kPa)
30	1 31	3 78	4.44	4.17		
20.75	4,51	3,70	4,44	4,17	-	
31.5	2.97	1,39	1,72	3.07		
32.25	1.82	0.63	1,05	1 33		
33	2 54	4 36	4 55	3.82		
33 75	0.45	1,30	2 05	1 42		
34.5	2 30	4 35	4 78	3.81		
35.25	0.70	1,35	1 78	1 28		
36	3.96	3 66	4 08	3 90	-	
36.75	1.16	2.09	2.87	2.04	-	
37.5	4.56	3.46	3.94	3.99		
38.25	0.85	1.99	2.14	1.66		
39	4.57	4.65	5.21	4.81		
39.75	0.63	1.35	2.01	1.33		
40.5	4.95	3.99	5.08	4.67		
41,25	0,84	1,86	1,96	1,55		
42	5,25	5,16	5,56	5,32		
42,75	0,66	1,31	1,75	1,24		
43,5	4,81	4,19	4,45	4,49		
44,25	1,01	1,82	2,16	1,66		
45	4,57	4,62	4,9	4,70	3,41	3,39
45,75	0,64	1,28	1,55	1,16		
46,5	4,76	3,74	3,98	4,16		
47,25	0,81	1,78	2,21	1,60		
48	4,61	4,42	4,98	4,67		
48,75	0,47	1,07	1,51	1,02		
49,5	4,66	3,77	4,21	4,21		
50,25	0,51	1,06	1,79	1,12		
51	3,97	4,21	4,88	4,35		
51,75	0,93	4,11	4,71	3,25		
52,5	5,23	9,31	9,21	7,92		
53,25	1,18	2,78	1,78	1,91		
54	3,90	7,89	10,55	7,45		
54,75	0,15	1,59	1,21	0,98		
55,5	3,92	9,12	8,87	7,31		
56,25	1,01	3,41	2,98	2,47		
57	3,74	7,50	9,87	7,04		
57,75	0,71	1,67	1,77	1,38		
58,5	3,78	6,99	8,65	6,47		
59,25	0,91	3,38	2,24	2,18		
60	5.34	6.50	8.5	6.78		

		Modelleme	
		Sonucu	Analizlerden
		Bulunan	Hesaplanan
Bölüm		Ortalama	Ortalama
No	Aralık	Gerilme(kPa)	Gerilme(kPa)
	0-30 m		
1	Arası	2,57	1,78
	30-60 m		
2	Arası	3,41	3,39

Çizelge 6.15.3 PJ 17-PJ 19 arası gerilme değerlerinin karşılaştırılması

Şekil 6.15.1 PJ 17-19 arası gerilme değerleri karşılaştırılması

Çizelge 6.15.3 ve Şekil 6.15.1 incelendiğinde daha önceden değerlendirmesi yapılmış 30 metrelik kısımın yanında 30 metre ile 60 metre arasındaki kısımda da modelleme ile elde edilen gerilmeler ile arazi kayıtları ile oluşturulan grafiklerin analizi sonucu elde edilen gerilme değerlerinin biribirine yakın ve uyumlu olduğu görülmektedir.

6.16 PJ 21-PJ 24 Arası Bentonit Etkisinin Araştırılması İçin Modelleme

Bu bölümün modellemesinde 6.10 bölümünde verilen Çizelge 6.10.1' de verilen zemin parametreleri kullanılmıştır.

Çizelge 6.16.1' de PJ 21-PJ 24 arası I-I, II-II ve III-III kesitleri için 30-60 m arası modelleme sonucu elde edilen gerilme değerleri verilmiştir.

	1	-	-		
	I_I	II_II	ттт ттт	Ü. Kasitin	Modelleme
	1-1	11-11	111-111	Uç Kesitili	Sonucu
	Kesiti	Kesiti	Kesiti	Ortalama	D
Z(m)	Gerilmeler	Gerilmeler	Gerilmeler	Gerilmesi	Bulunan
			$(1 \mathbf{D})$	$(1 \mathbf{D})$	Ortalama
	(kPa)	(kPa)	(kPa)	(kPa)	Gerilme(kPa)
30	2 71	2 49	2.56	2 59	
30.5	0.33	0.45	0.56	0.45	
31	2 55	2 76	5 74	3.68	
31.5	0.97	0.33	1.86	1.05	
32	0.81	2 01	1,55	1,05	
32.5	0.27	0.62	0.25	0.38	
33	0.50	0.83	1.08	0.80	
34	0.53	0.64	0.84	0.67	
34.5	0.41	0.42	0.47	0.43	
35	1.07	0.42	1.53	1.01	
35.5	0.64	0.76	0.69	0.70	
36	3.12	3.41	4.95	3.83	
36.5	0.51	0.31	0.67	0.50	
37	2.79	2.92	3.81	3.17	
37.5	1.47	0.51	2.43	1.47	
38	2.17	2.33	2.88	2.46	
38.5	0.82	1.40	1.76	1.33	
39	2.87	3.40	3.55	3.27	
40	2.72	3.87	3.65	3,41	
40.5	1 48	0.48	1 41	1.12	
41	2.05	2.50	2.65	2.40	
41.5	0.80	1 41	1 57	1 26	
42	2.92	3.86	3 65	3 48	
43	1.78	3.42	3.44	2.88	
43.5	1.50	0.48	0.78	0.92	
44	2.01	2.58	2.21	2.27	
44.5	0.79	1.41	1.62	1.28	
45	2.90	3.93	3.99	3.61	
46	2.81	3.47	3.33	3.20	2,02
46.5	1.50	0.48	1.21	1.06	
47	1.74	2.63	2.78	2.38	
47.5	0.79	1.42	1.34	1.18	
48	2.82	3.97	4.01	3.60	
48.5	0.37	0.44	0.52	0.44	
49	2,71	3,50	3,45	3,22	
49,5	1,51	0,49	0,87	0,95	
50	2,04	2,65	2,78	2,49	
50,5	0,79	1,43	1,65	1,29	
51	2,74	3,99	3,21	3,31	
51,5	0,36	0,35	0,54	0,42	
52	3,12	3,52	4,44	3,69	
52,5	1,51	1,48	1,65	1,55	
53	2,28	2,67	2,77	2,57	
53,5	0,78	1,44	1,38	1,20	
54	2,81	4,00	4,89	3,90	
54,5	0,36	0,45	0,41	0,41	
55	2,65	3,54	3,73	3,31	
55,5	1,52	2,69	2,45	2,22	
56	2,09	1,46	1,33	1,63	
56,5	0,78	0,65	0,87	0,77	
57	2,73	4,02	4,25	3,67	
58	2,95	3,55	4,02	3,51	
58,5	1,53	0,52	1,45	1,17	
59	2,32	2,70	3,66	2,89	
59,5	0,77	1,49	1,54	1,27	
60	2.02	4.62	4.53	3.72	

Çizelge 6.16.1 PJ 21-PJ 24 arası 30-60 m arası gerilme değerleri

		Modelleme	
		Sonucu	Analizlerden
		Bulunan	Hesaplanan
		Ortalama	Ortalama
Bölüm No	Aralık	Gerilme(kPa)	Gerilme(kPa)
	0-30 m		
1	Arası	3,02	3,22
	30-60 m		
2	Arası	2,02	1,93

Çizelge 6.16.2 PJ 21-PJ 24 arası gerilme değerlerinin karşılaştırılması

Şekil 6.16.1 PJ 21-24 arası gerilme değerleri karşılaştırılması

Çizelge 6.15.3 ve Şekil 6.15.1 incelendiğinde daha önceden değerlendirmesi yapılmış 30 metrelik kısımın yanında 30 metre ile 60 metre arasındaki kısımda da modelleme ile elde edilen gerilmeler ile arazi kayıtları ile oluşturulan grafiklerin analizi sonucu elde edilen gerilme değerlerinin biribirine yakın ve uyumlu olduğu görülmektedir.

6.17 Üç Boyutlu Sayısal Modelleme Sonrası Değerlendirmeler

Plaxis analizlerinde kullanılan kuvvetler bir dinamik deney niteliğinde olan boru itme sisteminde ölçülen kuvvetler olduğu için bir statik denge çözümü anlamına gelen Plaxis çözümlerinin boru zemin ilişkisindeki kayma gerilmelerini tam olarak tahmin etmesi kuramsal olarak beklenmemelidir. Ancak; elde edilen sonuçların bentonitli ve bentonitsiz

uygulamalar sonucunda beton-zemin ilişkisinde doğması beklenen kayma gerilmelerine yakın olması Plaxis çözümleriyle de doğruya yakın çözümler elde edilebileceğini ortaya koymaktadır. Aşağıda modelleme sonrası elde edilen gerilme değerleri ile grafik analizleri sonucu elde edilen gerilme değerlerinin karşılaştırılması ve karşılaştırma sonrası görülen uyum veya uyumsuzluklar ile ilgili değerlendirmeler yapılmıştır.

PJ 28-PJ 27 Arası modelleme ve grafik analizleri sonucu elde edilen gerilmeler Çizelge 6.17.1' de birlikte verilmiştir.

	Aralık(m)				
	0-10 m	10,50-18,75	19,50-24 m		
	Arası	m Arası	Arası		
PJ 28-PJ 27 Arası					
Modelleme Sonucu Elde	1,94	3,57	4,43		
Edilen Gerilme(kPa)					
PJ 28-PJ 27 Arası					
Grafik Analizi Sonucu	0.84	4 20	5 60		
Elde Edilen	9,04	4,20	5,00		
Gerilme(kPa)					

Çizelge 6.17.1 PJ 28-27 arası gerilmelerin karşılaştırılması

Grafik analizleri sonucunda bulunan değerler ile modelleme sonucunda elde edilen değerler karşılaştırıldığında hesap ile modelleme değerlerinin birbirine olduğu görülmektedir. 0 ile 10 m arasında ki bölümde itme kuvvetleri grafiğinin giriş değerlerine bakılırsa diğer grafiklerde pek rastlanmayan aşırı kuvvet artışı görülmektedir. Örneğin PJ 24-25 Şaftları arası grafikte ilk 10 metrede ulaşılan itme kuvveti 24 ton, PJ 25-27 arasında ilk 10 metrede 28 ton, PJ 14-17 arasında ilk 10 metrede 23 ton, PJ 17-19 arasında ilk 10 metrede 12 ton iken PJ 28-27 arasında itme kuvvetleri ilk 3 metrede 26 ton 10 metre de ise 41 ton seviyelerine çıktığı görülmektedir. Doğal olarak da kısa aralıkta bu seviyede verilen itme kuvveti nedeniyle elde edilen gerilme değerinin de o oranda yüksek çıkması beklenmelidir.

Şekil 6.17.1 PJ 28-27 şaftları arası ime kuvvetleri grafiği yeni durum için değerlendirmesi

Şekil 6.17.1' de A ile B noktaları arasında grafiğin B noktası sonrasındaki grafiğin doğal akışına uyan kesikli çizgilerle gösterilen sanal durumda 10 m' de itme kuvvetinin 28 ton civarında ve oluşacak gerilmenin de 5,80 kPa değerinde olacağı görülmektedir. Görüldüğü gibi bu değer modelleme sonucundaki değere daha yakın bir değerdir. Bu aradaki itme işleminin makine kayıtları incelendiğinde itme kuvvetlerinde aşırı artışa neden olabilecek herhangi bir uzun süreli durma veya arıza kaydına rastlanmamaktadır. İtme işlemi 18.04.2007 tarihinde başlamış ve 20.04.2007 tarihinde sona ermiştir. Bu aşırı değerlerin yerel olarak zemin içinde karşılaşılan bloklar ya da operatör hatası sonucunda itme pistonlarına verilen fazla yüklerden kaynaklanmış olabileceği söylenebilir. İtme kayıtlarının incelenmesiyle itme işleminin 8 metresinin iki günde diğer 16 metresinin ise bir günde itildiği görülmektedir. 24 metrenin ilk 12 metresinin drenajsız kayma dayanımın ikinci 12 metreye göre 2 kat fazla olmasına karşılık ilk 8 metredeki itme işleminin fazlalığı yerel bir zemin zorluğu ile karşılaşılmış olduğu görüşünü desteklemektedir. Bu yeni değerlendirme sonucunda gerilme değerleri Çizelge 6.17.2' de verildiği gibi oluşmaktadır.

	Aralık(m)			
	0-10	m	10,50-18,75	19,50-24 m
	Arası		m Arası	Arası
PJ 28-PJ 27 Arası				
Modelleme Sonucu Elde	1,94		3,57	4,43
Edilen Gerilme(kPa)				
PJ 28-PJ 27 Arası				
Grafik Analizi Sonucu	5.80		4 20	5 60
Elde Edilen	5,80		4,20	5,00
Gerilme(kPa)				

Çizelge 6.17.2 PJ 28-27 arası gerilmelerin yeni durum için karşılaştırılması

Bu yeni değerlendirme sonucu Çizelge 6.17.2' de görüldüğü gibi ilk 10 metrelik kısımda da ilk duruma göre daha yakın değerler sözkonusu olmasına karşın yine de değerler arasında farklılığın bulunduğu görülmektedir. Bu farklılığın modellenen tüm aralıklar da itme aralığının ilk 6 m' sinde genel bir durum olarak karşımıza çıkan ve gerilmelerin çok düşük seviye de kalması ile ilgili olduğu değerlendirilmektedir.

PJ 14-PJ 13 Arası modelleme ve grafik analizleri sonucu elde edilen gerilmeler Çizelge 6.17.3' de verilmiştir.

	Aralık(m)			
	0-22,50 m	24-36,75 m	37,50-59 m	
	Arası	Arası	Arası	
PJ 14-PJ 13 Arası				
Modelleme Sonucu Elde	2,76	3,45	4,49	
Edilen Gerilme(kPa)				
PJ 14-PJ 13 Arası				
Grafik Analizi Sonucu	2 25	3 73	5 20	
Elde Edilen	5,55	5,75	5,20	
Gerilme(kPa)				

Çizelge 6.17.3 PJ 14-13 arası gerilmelerin karşılaştırılması

PJ 24-PJ 25 Arası modelleme ve grafik analizleri sonucu elde edilen gerilmeler Çizelge 6.17.4' de verilmiştir.

	Aralık(m)		
	0-31,50 m	33-45,75 m	46,50-54 m
	Arası	Arası	Arası
PJ 24-PJ 25 Arası			
Modelleme Sonucu Elde	4,15	4,78	7,14
Edilen Gerilme(kPa)			
PJ 24-PJ 25 Arası			
Grafik Analizi Sonucu	4.07	2 67	7 25
Elde Edilen	4,97	3,07	7,55
Gerilme(kPa)			

Çizelge 6.17.4 PJ 24-25 arası gerilmelerin karşılaştırılması

PJ 10-PJ 6, PJ 10-PJ 13, PJ 14-PJ 17, PJ 17-PJ 19, PJ 19-PJ 21, PJ 21-PJ 24, PJ 28-PJ 30 Şaftları arası bölümler için modelleme sonucu elde edilen gerilmeler ile grafik analizleri sonucu elde edilen gerilmeler Çizelge 6.17.5' de gösterilmiştir.

Çizelge 6.17.5 PJ 10-PJ 6, PJ 10-PJ 13, PJ 14-PJ 17, PJ 17-PJ 19, PJ 19-PJ 21, PJ 21-PJ 24,

	Modelleme sonucu	Grafik Analizi Sonucu	
SAFT NO	Elde Edilen	Elde Edilen	
ş,	Gerilme(kPa)	Gerilme(kPa)	
PJ 10-PJ 6	4.04	5.62	
Arası	4,04	5,63	
PJ 10-PJ 13	3.00	5.80	
Arası	5,90	5,80	
PJ 14-PJ 17	3.68	2.88	
Arası	5,00	2,00	
PJ 17-PJ 19	2 57	1 74	
Arası	2,57	1,74	
PJ 19-PJ 21	4.06	4 60	
Arası	+,00	4,00	
PJ 21-PJ 24	3.02	3 22	
Arası	5,02	5,22	
PJ 28-PJ 30	3 73	3 59	
Arası	5,15	5,59	

PJ 28-PJ 30 arası gerilmelerin karşılaştırılması

PJ 5-PJ 4 arası modelleme ve grafik analizleri sonucu elde edilen gerilmeler Çizelge 6.17.6' da verilmiştir.

	Aralık(m)	
	0-15 m	15-30 m
	Arası	Arası
PJ 5-PJ 4 Arası		
Modelleme Sonucu Elde	2,17	3,63
Edilen Gerilme(kPa)		
PJ 5-PJ 4 Arası Grafik		
Analizi Sonucu Elde	3,25	29,90
Edilen Gerilme(kPa)		

Çizelge 6.17.6 PJ 5-PJ 4 arası gerilmelerin karşılaştırılması

Çizelge 8.17' de 0 ile 15 metre aralığında modelleme sonucu elde edilen gerilme ile grafik analizlerinden elde edilen gerilmelerin birbirine göre yakın olduğu görülmektedir. Ancak; 15 metre ile 30 metre arasındaki gerilmelerde bir uyumsuzluk olduğu, gerilmeler arasında 8 kattan daha fazla bir fark olduğu görülmektedir. Şu ana kadar incelenen bütün aralıklarda bu şekilde bir uyumsuzluğa rastlamadığı için bu aralığa ait grafiğin tekrar incelemesinin gerekli olduğu düşünülerek aşağıdaki değerlendirmeler yapılmıştır.

Şekil 6.17.2 PJ 5-4 arası itme kuvvetleri grafiği yeniden değerlendirmesi

Şekil 6.17.2' deki grafik incelenirse 15 metre ile 75 metre arası bölümde itme yüklerinde grafiğin doğal eğimine aykırı bir durumun olduğu görülebilmektedir. Bu durumun bu aralıkta bentonit enjeksiyonu yapılmadığından dolayı olmadığı aynı şekilde bentonit kullanılmayan PJ 10-PJ 6 Arası ve PJ 10-PJ 13 Arası grafiklere bakılırsa anlaşılacaktır. PJ 10-PJ 6 Arası grafikte PJ 5-PJ 4 te ulaşılan itme yüküne ulaşılmış ama PJ 10-PJ 6 Arasında oldukça düzgün

bir artış sözkonusudur. Benzer şekilde yine bentonit kullanılmayan PJ 10-PJ 13 Arası grafikte de yine oldukça düzgün bir artış sözkonusudur. Bu değerlendirmeler bizi bu aşırılığın bentonit kullanılmamasından kaynaklanmadığı sonucuna götürmektedir. Şekil 6.17.2' te kesikli çizgi ile sanal bir durum oluşturulursa bunun PJ 10-PJ 6 Arası ve PJ 10-PJ 13 Arası grafiklere uyumlu olacağı ve bu şekilde yeniden gerilme hesabı yapılırsa yeni durum için 30 metrede itme yükü 50 ton civarında olacaktı ve bu değer kullanılarak ilk 30 metre için gerilme değerleri Çizelge 6.17.7' de verilen şekilde oluşması beklenecektir.

	Aralık(m)
	0-30 m Arası
PJ 5-PJ 4 Arası	
Modelleme Sonucu Elde	3,05
Edilen Gerilme(kPa)	
PJ 5-PJ 4 Arası Grafik	
Analizi Sonucu Elde	3,78
Edilen Gerilme(kPa)	

Çizelge 6.17.7 PJ 5-PJ 4 arası gerilmelerin yeni durum için karşılaştırılması

Çizelge 6.17.7' de yeni durum için yapılan hesap sonucu elde edilen gerilmelerden görüldüğü gibi sanal durum sonucu elde edilen gerilme ile modelleme sonucu elde edilen gerilme değeri oldukça yakındır. Bu da o bölge için eldeki bilgilerle tanımlamayan bir yerel durumun sözkonusu olduğu görüşünü desteklemektedir.

	germielern	ı kaişmaştırını
	Aralık(m)	
	0-15 m 15-30 m	
	Arası	Arası
PJ 5-PJ 4 Arası		
Modelleme Sonucu Elde	1,76	4,78
Edilen Gerilme(kPa)		
PJ 5-PJ 4 Arası Grafik		
Analizi Sonucu Elde	4,58	28,60
Edilen Gerilme(kPa)		

Çizelge 6.17.8 PJ 5-PJ 6 arası gerilmelerin karşılaştırılması

Çizelge 6.17.8' de 0 ile 15 metre aralığında modelleme sonucu elde edilen gerilme ile grafik analizlerinden elde edilen gerilmelerin birbirine göre yakın olduğu görülmektedir. Ancak; 15 metre ile 30 metre arasındaki gerilmelerde bir uyumsuzluk olduğu, gerilmeler arasında 10 kata yakın bir fark olduğu görülmektedir. Şu ana kadar incelenen bütün aralıklarda bu şekilde

bir uyumsuzluğa rastlamadığı için bu aralığa ait grafiğin tekrar incelemesinin gerekli olduğu düşünülerek aşağıdaki değerlendirmeler yapılmıştır.

Şekil 6.17.3 PJ 5-4 arası itme kuvvetleri grafiği yeniden değerlendirmesi

Şekil 6.17.3' deki grafik incelenirse 15 metre ile 65 metre arası bölümde itme yüklerinde grafiğin doğal eğimine aykırı bir durumun olduğu görülebilmektedir. Bu durumun bu aralıkta bentonit enjeksiyonu yapılmadığından dolayı olmadığı aynı şekilde bentonit kullanılmayan PJ 10-PJ 6 Arası ve PJ 10-PJ 13 Arası grafiklere bakılırsa anlaşılacaktır. PJ 5-PJ 6 Arası İtme İşleminin 20 metre civarlarından başlamak üzere mevcut bir yağmursuyu menfezinin üstünden geçtiğinden mevcut menfezin üstünün dolgu olması çok büyük bir olasılıktır. Bu dolguda bulunacak olası bloklar Şekil 6.17.3' deki 15 metre ile 65 metre arasındaki aşırı itme yüklerinin nedeni olabileceği düşünülmektedir. Şekil 6.17.3' de kesikli çizgi ile sanal bir durum oluşturulursa bunun PJ 10-PJ 6 Arası ve PJ 10-PJ 13 Arası grafiklere uyumlu olacağı ve bu şekilde yeniden gerilme hesabı yapılırsa yeni durum için 30 metrede itme yükü 60 ton civarında olacaktı ve bu değer kullanılarak ilk 30 metre için gerilme değerleri Çizelge 6.17.9' da verilen şekilde oluşacağı söylenebilir.

	Aralık(m)		
	0-30 m Arası		
PJ 5-PJ 4 Arası			
Modelleme Sonucu Elde	2,49		
Edilen Gerilme(kPa)			
PJ 5-PJ 4 Arası Grafik			
Analizi Sonucu Elde	4,80		
Edilen Gerilme(kPa)			

Çizelge 6.17.9 PJ 5-PJ 6 arası gerilmelerin yeni durum için karşılaştırılması

Çizelge 6.17.9' da yeni durum için yapılan hesap sonucu elde edilen gerilmelerden görüldüğü gibi yeni durum için elde edilen gerilme ile modelleme sonucu elde edilen gerilme ilk duruma göre daha yakın değer almıştır.

Bütün bu gerilme değerlendirmelerinin ışığında PJ 28-27, PJ 5-PJ 4 ve PJ 5-PJ 6 itme aralıklarında grafik analizleri sonucunda elde edilen gerilme değerleri ile modelleme sonucu elde edilen değerlerinde bazı kesimler için uyumsuzluklar gözlenmiştir. Belirtilen itme aralıklarındaki bu uyumsuzlukların itme işlemi sırasında ani zemin değişimleri, operatör hatası sonucu uygulanan fazla itme kuvvetleri, kayıtlara geçmeyen arıza vb. gibi sebeblerle ortaya çıktığı söylenebilir. Gerilme karşılaştırmaları açısından uyumsuzluk gösteren kesimin uzunluğu toplam 40 metre olup toplam modellenen 500 metre uzunluğa oranı % 10 gibi küçük bir orana karşılık gelmektedir. Uyumsuzluk gösteren kesimler dışında kalan kesimlerde modelleme sonucu elde edilen gerilmeler ile grafik analizleri sonucu elde edilen gerilme değerlerinin değerlendirme yapılan aralıklarda birbirine yakın değerler aldığı ve uyumlu olduğu belirlenmiştir.

7. YÜZEY HAREKETLERİ

7.1 PJ 14-PJ 13 Arası Yüzey Hareketleri

İtme çalışmaları sırasında yüzeyde meydana gelen hareketlerin belirlenmesi amacıyla PJ 14-PJ 13 ve PJ 5-PJ 4 arasında yüzeyde noktalar belirlenmiş ve bu noktalarda itme çalışması öncesinde ve sonrasında okumalar yapılarak meydana gelen hareket izlemeye çalışılmıştır. Şekil 7.1.1' de PJ 14-PJ 13 Arası İtme için yüzey okumaları yapılan noktalar gösterilmiştir.

Şekil 7.1.1 PJ 14-PJ 13 arası yüzey hareketi ölçüm noktaları

Şekil 7.1.1' deki noktalar itme aksı ve bu aksın sağı ve solunda ikişer metre ara ile belirlenen noktalardan oluşmaktadır. Her üçlü nokta arasındaki aralık 10 metredir. Bu noktaların okuma değerleri Çizelge 7.1.1' de gösterilmiştir. İtme öncesinde ve itme sonrasında total station aletleri yardımıyla çizelgedeki okumalar yapılmıştır.

Nokta No	x	Y	İtme Öncesi Okumalar	İtme Sonrası Okumalar		
				1	2	3
40	4558198,581	465599,005	4,019	4,018	4,018	4,017
41	4558198,586	465601,207	4,019	4,017	4,017	4,016
42	4558198,586	465603,005	4,023	4,022	4,021	4,021
43	4558208,581	465600,069	4,010	4,010	4,008	4,008
44	4558208,581	465602,091	4,011	4,011	4,009	4,008
45	4558208,581	465604,069	4,010	4,009	4,009	4,009
46	4558218,563	465600,935	4,003	4,000	4,000	4,000
47	4558218,563	465602,973	3,999	3,997	3,997	3,997
48	4558218,563	465604,935	3,999	3,997	3,996	3,996
49	4558228,599	465601,819	3,992	3,991	3,991	3,991
50	4558228,599	465603,861	3,994	3,992	3,992	3,992
51	4558228,599	465605,819	3,989	3,987	3,985	3,985
52	4558238,581	465602,703	3,980	3,978	3,976	3,976
53	4558238,581	465604,743	3,979	3,978	3,976	3,976
54	4558238,581	465606,703	3,980	3,978	3,978	3,978
55	4558248,581	465603,641	3,970	3,968	3,968	3,968
56	4558248,581	465605,627	3,972	3,969	3,969	3,969
57	4558248,581	465607,641	3,969	3,967	3,967	3,966
58	4558258,581	465604,507	3,951	3,950	3,949	3,949
59	4558258,581	465606,511	3,950	3,949	3,948	3,947
60	4558258,581	465608,507	3,952	3,950	3,950	3,950

Çizelge 7.1.1 PJ 14-PJ 13 arası yüzey okuma değerleri

Çizelge 7.1.1 incelendiğinde yapılan okumalar sonucunda kayda değer bir hareket oluşmadığı

ve mm seviyesinde değerler oluştuğu gözlemlenmiştir. Örneğin 41 numaralı noktanın itme öncesi okuması 4.023 iken itme sonrası okuması 4021 dir. Görüldüğü gibi 2 mm' lik bir hareket sözkonusudur. 59 numaralı noktada itme öncesi okuma 3.950 iken itme sonrası okuma 3.947 olmuştur ve 3 mm' lik bir hareket ölçülmüştür. Bu mm seviyesindeki değerlerinde arazi ölçümleri sırasında okuma aletlerinin hassaslığı veya okuma jalonunu tutan kişinin çok az düzeydeki hareketiyle değişebileceği öngörüsüyle hiçbir hareket oluşmadığı söylenebilir.

Şekil 7.1.2' de modelleme sonrası yüzeye yakın bir yerden alınan kesitin yüzey herketi görülmektedir. Şekil 7.1.3, Şekil 7.1.4, Şekil 7.1.5, Şekil 7.1.6, Şekil 7.1.7, Şekil 7.1.8' de bazı aralıklar için modelleme sonucunda elde edilen sonuçlarda aşağıda şekiller halinde verilmiştir.

Şekil 7.1.2 PJ 14-PJ 13 arası modelleme sonrası yüzey hareketi

Aşağıda verilen şekillerde yatay eksen birimi metre düşey eksen ölçüsü ise mm' dir.

Şekil 7.1.3 PJ 14-PJ 13 arası modelleme sonrası 3.metre yüzey hareketi

Şekil 7.1.4 PJ 14-PJ 13 arası modelleme sonrası 6.metre yüzey hareketi

Şekil 7.1.5 PJ 14-PJ 13 arası 18.metre yüzey hareketi

Şekil 7.1.6 PJ 14-PJ 13 arası modelleme sonrası 30.metre yüzey hareketi

160

Şekil 7.1.7 PJ 14-PJ 13 arası 39.metre yüzey hareketi

Şekil 7.1.8 PJ 14-PJ 13 arası modelleme sonrası 54.metre yüzey hareketi

Tüm Şekiller incelendiğinde hareketin başlangıçta oturma şeklinde olduğu ancak; 18.metre sonrasında kabarma şekline dönüştüğü görülmektedir. Ama arazi ölçümlerinde böyle bir hareket gözlenmemiştir. Bu kabarma davranışının modellemenin zemin birimlerinin tanımlanması sırasında zeminlerin başlangıç ve son dilim hariç diğer bütün dilimlerde rijiliğinin azaltılması ile ilgili olduğu rijitliği azaltılan zeminininde kabarma şeklinde bir tepki vereceği öngörülmektedir. Ancak; hareket ister oturma ister kabarma şeklinde gelişsin meydana gelen hareketlerin 2 mm gibi çok küçük mertebelerde olduğu görülmektedir. Bu hareketin ne çalışmanın yapıldığı yolda nede eğer yakında bina varsa binalarda herhangi bir
etki oluşturmayacağı açıktır.

7.2 PJ 5-PJ 4 Arası Yüzey Hareketleri

PJ 14-PJ 13 Arasında yapılan çalışma benzer şekilde PJ 5-PJ 4 Arasında yapılmıştır. Şekil 7.2.1' de PJ 14-PJ 13 Arası İtme için yüzey okumaları yapınlan noktalar gösterilmiştir.

Şekil 7.2.1 PJ 5-4 arası yüzey hareketi ölçüm noktaları

Şekil 7.2.1' deki noktalar itme aksı ve bu aksın sağı ve solunda ikişer metre ara ile belirlenen noktalardan oluşmaktadır. Her üçlü nokta arasındaki aralık 10 metredir. Bu noktaların okuma değerleri Çizelge 7.2.1' de gösterilmiştir. İtme öncesinde ve itme sonrasında total station aletleri yardımıyla çizegedeki okumalar yapılmıştır.

Nokta			İtme Öncesi	İtme Sonrası Okumalar			
No	X	Y	Okumalar	1	2	3	
1	4557653,781	465589,042	5,906	5,906	5,906	5,906	
2	4557653,781	465591,056	5,908	5,906	5,905	5,905	
3	4557653,781	465593,042	5,908	5,908	5,907	5,907	
4	4557663,781	465588,641	5,899	5,898	5,898	5,898	
5	4557663,781	465590,596	5,887	5,885	5,884	5,883	
6	4557663,781	465592,641	5,894	5,895	5,896	5,896	
7	4557673,781	465588,168	5,889	5,889	5,886	5,886	
8	4557673,781	465590,136	5,885	5,884	5,883	5,883	
9	4557673,781	465592,168	5,884	5,885	5,885	5,885	
10	4557683,781	465587,731	5,880	5,879	5,878	5,878	
11	4557683,781	465589,676	5,879	5,877	5,876	5,876	
12	4557683,781	465591,731	5,880	5,878	5,877	5,877	
13	4557693,781	465587,257	5,870	5,868	5,867	5,867	
14	4557693,781	465589,216	5,871	5,869	5,868	5,868	
15	4557693,781	465591,257	5,866	5,864	5,864	5,864	
16	4557703,781	465586,820	5,859	5,857	5,857	5,857	
17	4557703,781	465588,756	5,861	5,859	5,859	5,859	
18	4557703,781	465590,820	5,857	5,855	5,854	5,853	
19	4557713,744	465586,273	5,849	5,845	5,845	5,845	
20	4557713,744	465588,273	5846	5,843	5,841	5,841	
21	4557713,744	465590,273	5,851	5,849	5,849	5,849	
22	4557723,744	465585,836	5,840	5,838	5,838	5,838	
23	4557723,744	465587,838	5,840	5,839	5,838	5,838	
24	4557723,744	465589,836	5,843	5,840	5,840	5,840	
25	4557733,744	465585,399	5,830	5,828	5,826	5,825	
26	4557733,744	465587,387	5,827	5,824	5,824	5,824	
27	4557733,744	465589,399	5,827	5,825	5,825	5,825	
28	4557743,890	465584,962	5,819	5,816	5,815	5,815	
29	4557743,890	465586,912	5,822	5,818	5,817	5,817	
30	4557743,890	465588,962	5,820	5,818	5,818	5,818	
31	4557748,166	465584,965	5,811	5,810	5,810	5,810	
32	4557748,166	465588,465	5,812	5,809	5,809	5,808	
33	4557643,781	465589,516	5,923	5,920	5,920	5,920	
34	4557643,781	465593,516	5,916	5,914	5,914	5,914	
35	4557643,781	465591,516	5,918	5,917	5,917	5,917	

Çizelge 7.2.1 PJ 5-PJ 4 arası yüzey okuma değerleri

Çizelge 7.2.1 incelendiğinde yapılan okumalar sonucunda kayda değer bir hareket oluşmadığı ve mm seviyesinde değerler oluştuğu gözlemlenmiştir. Örneğin 2 numaralı noktanın itme öncesi okuması 5.908 iken itme sonrası okuması 5.905 dir. Görüldüğü gibi 3 mm' lik bir hareket sözkonuudur. 14 numaralı noktada itme öncesi okuma 5.871 iken itme sonrası okuma 5.868 olmuştur ve 3 mm' lik bir herket ölçülmüştür. Bu mm seviyesindeki değerlerinde arazi ölçümleri sırasında okuma aletlerinin hassaslığı veya okuma jalonunu tutan kişinin çok az düzeydeki hareketiyle değişebileceği öngörüsüyle hiçbir hareket oluşmadığı söylenebilir.

Şekil 7.2.2' de modelleme sonrası yüzeye yakın bir yerden alınan kesitin yüzey herketi görülmektedir. Şekil 7.1.3, Şekil 7.1.4, Şekil 7.1.5, Şekil 7.1.6 bazı aralıklar için modelleme sonucunda elde edilen sonuçlarda aşağıda şekiller halinde verilmiştir.

Şekil 7.2.2 PJ 5-PJ 4 arası modelleme sonrası yüzey hareketi

Şekil 7.2.3 PJ 5-PJ 4 arası modelleme sonrası başlangıç yüzey hareketi

Şekil 7.2.4 PJ 5-PJ 4 arası modelleme sonrası 15.metre yüzey hareketi

Şekil 7.2.5 PJ 5-PJ 4 arası modelleme sonrası 42.metre yüzey hareketi

Şekil 7.2.6 PJ 5-PJ 4 arası modelleme sonrası 54.metre yüzey hareketi

Tüm şekiller incelendiğinde hareketin en büyük hareketin 2 mm düzeyinde olduğu görülmektedir. bu da ne çalışmanın yapıldığı yolda nede eğer yakında bina varsa binalarda herhangi bir etki oluşturmayacağı açıktır.

Tüm bu değerlendirmeler sonucunda boru itme yönteminin oturma yönünden geleneksel yöntemlere göre özelliklede şehir içi çalışmalarda herhangi bir risk taşımadığı gerek modelleme sonucu elde edilen sonuçlar gerekse arazide yapılan ölçümler neticesinde söylenebilir.

Aşağıda sözedilen bazı araştırıcılar boru itme yönteminde yüzey hareketleri ile ilgili bazı gözlemler yapmışlardır.

Rogers ve arkadaşları(1989), yumuşak alüvyon zeminde ve 1,2 metre çapında yapılan çalışmada yol kaplaması üzerindeki en büyük hareketin 3-4 mm düzeyinde olduğunu bildirmiştir. Chapman ortalama derinliği 5 metre olan orta katı kilde slurry türü bir makine ile yapılan 600 mm çapındaki kollektör inşaatı işinde gözlenen en büyük hareketin 10 mm düzeyinde olduğunu bildirmiştir. Cowan(1993), Birmingham Uluslararası Havaalanında yol seviyesinin 4 metre aşağısında çok katı kilde bentonit kullanılarak yapılan 1 metre çapındaki boru itme işinde en büyük yüzey oturmasının 3 mm düzeyinde olduğunu bildirmiştir(Marshall, 1998)

Bütün bu araştırıcılar yüzey hareketlerinin tünel çapı ile boru dış çapı arasındaki aşırı kazı miktarının bir sonucu olduğunu düşünmektedirler. Çünkü boru itme işinde tünel aynasında zemine destek veren bir TBM vardır ve yaptığı basınçla zeminde oluşabilecek bir göçme

166

olasılığını engellemektedir. Zeminin hareket edebileceği bölüm tünel çapı ile itilen borunun dış çapı arasındaki boşluktur. Eğer bu boşluk sağlıklı bir bentonit işlemi sonucunda doldurulabilirse zeminin hareket edebileceği bir boşluk kalmamış ve dolayısıyla yüzeyde ve yüzey altındaki zeminde dikkate değer bir hareket oluşmamış olacaktır. Yeraltı su seviyesinin altında yapılan çalışmalarda da tünel aynasındaki TBM kafanın kapalı sistem olması ve zemine devamlı su vermesi nedeniyle tünel aynasından tünel içine doğru herhangi bir su akışı sözkonusu değildir. İtilen boruların geçirimsizlik özelliği nedeniyle tünel çeperlerinden de herhangi bir su akışı sözkonusu değildir. Bütün bu değerlendirmeler gösteriyor ki boru itme teknolojisi ile yapılan tünel işleri şehirlerde geleneksel yöntemler ile yapılan işlerde karşılaşılan zemin hareketleri ve oturma risklerini en aza indirgemektedir.

8. SONUÇLAR

Şile İlçesi Üsküdar Caddesi çalışmaları kapsamında 1535 metrelik bir aralık incelenmiştir. Bu inceleme sonucunda;

1. Bu aralık ta başlangıçta herhangi bir jeolojik bilgi bulunmadığından araziden şaftlar ve şaft aralarından olmak üzere toplam 18 farklı yerden shelby tüpleri ile zemin örnekleri alınmış ve örnekler üzerinde ayrı ayrı Kıvam Limitleri Deneyleri, Hidrometre Deneyleri, UU Deneyleri, Piknometre Deneyleri yapılmıştır. Kıvam limitleri deneyleri sonucunda Casagrande Plastisite kartındaki kriterlere göre bütün itme güzergahı boyunca düşük plastisiteli bir zeminin(ML-CL) varlığı belirlenmiştir.

2. Hidrometre deneyleri sonucunda silt oranının en düşük % 69 en yükseğininde % 83 olduğu bulunmuş olup boru itme için bu yüksek silt oranının bazı olumsuzluklara neden olabileceği belirlenmiştir.(Bu olumsuzluklara sonuçlar bölümünün ilerleyen kısmında değinilecektir.)

3. İncelenen uygulama kapsamında alınan zemin örnekleri üzerinde yapılan UU(Drenajsız-Konsolidasyonsuz Üç Eksenli Basınç) Deneyleri sonucunda drenajsız kayma dayanımı, C_u değerlerinin 14 kPa ile 91 kPa değerleri arasında geniş bir aralığa sahip olduğu belirlenmiştir. Bu geniş aralıkta ki C_u değerlerinin eldeki bol miktardaki itme kayıtları ile elde edilen grafiklerin analizinde kullanılmasıyla geniş bir α katsayısı verisi elde edilmiştir. Elde edilen bu geniş veri, uygulama güzergahı boyunca α katsayılarının değişimlerinin sağlıklı bir şekilde analizine yardımcı olduğu ve sonucunda uygulama için kullanılabilir bir genel adezyon katsayısının belirlenmesinde önemli role sahip olduğu değerlendirilmektedir.

4. Boru itme makinesinin itme işlemi sırasında aldığı yaklaşık 15000 adet itme kuvveti kaydı derlenmiş ve 13 adet varolan aralık için ayrı ayrı grafikler çizilmiş ve bu grafikler üzerinde yapılan analizlerle adezyon katsayılarının itme aralığı boyunca incelemesi yapılmıştır. Grafik analizlerinden elde edilen 71 adet α katsayısı değeri elde edilmiştir. Bu değerler yatay ve düşey bir eksen takımında yatay eksen drenajsız kayma dayanımı, düşey eksen α katsayıları olmak üzere yerleştirilerek dağılımları belirlenmiştir. Bu dağılımlar sonucunda α =0,15 değerinden geçen doğrunun dağılımı eşit olarak kestiği belirlenmiştir. Boru itme yönteminde kohezyonlu zeminler için bu değer ortalama bir değer olarak kabul edilebilecektir. Analizler sonucu bulunan α değerlerinin aritmetik ortalaması alınırsa α =0,23 değeri bulunur. Grafiksel olarak belirlenen değerle aritmetik ortalama alınarak belirlenen değer biribirine yakındır.

Bilindiği üzere boru itme işlemi bir bakıma yatay bir kazık yükleme deneyi gibidir. Kohezyonlu zeminlerde yeralan kazıkların yanlarında doğan direncin tahmininde çok sayıda bulunan yöntemlerden birisi de α yöntemi adı ile bilinmektedir. Çakma ve fore kazıklar için geliştirilen önerilerde çakma kazıklarda α ' nın drenajsız kayma dayanımına bağlı olduğu belirtilirken fore kazıklarda foraj yapımında bentonit kullanılmışsa bunun betonlanma sırasında hapsolunma olasılığına göre farklı α değerleri önerilmektedir, Navfac(1988). Boru itme işlemi fiziksel olarak tümüyle ne çakma kazıkta oluşan koşullara, ne de foraj yapılıp beton dökülen fore kazık koşullarına benzemektedir. Bununla birlikte boru itme işlemi için elde edilen α değerlerini kazıklar için önerilenlerle karşılaştırmak ilginç bulunmuştur. Aşağıda bu konudaki önerilere değinilmektedir.

Das(1990) tarafından verilen adhezyon faktörü α ' nın belirlenmesi için kullanılan eğride C_u=50 kPa değerinde α yaklaşık 0,75 değerini almaktadır. Navfac(1988) kohezyonlu zeminlerde yapılan fore kazıklar için eğer fore kazık kuruda veya bentonitle yer değiştirerek yapılıyorsa α =0,60, bentonitli yapım esnasında bazı yerlerde bentonitin bırakılması olasılığı durumunda α =0,30 alınması önerisini getirmiştir. Reese ve O' Neil(1988) fore kazıklarda C_u< 200 kPa için α =0,55 alınmasını önermişlerdir.

Djoenaidi(1986) zemin mekaniği dalında kullanılan çeşitli zemin parametreleri arasındaki korelasyonları topladığı çalışmasında aşağıda sıralanan ve bazı araştırmacıların çalışmalarına dayanan f_s - C_u ilişkisiyle ilgili bazı eşitliklerden sözetmiştir.

Cleveland, Drnevich, Gorman ve Hopkins(1974)' den referansla Kentucky siltli kilinde

f_s=1,19*C_u eşitliğini önermiştir.

Brand ve arkadaşları, Brand, Moh ve Winojonagud(1974)' den referansla yumuşak Bangkok kili için $f_s = 0.56 C_u$ veya $f_s = 0.47 C_u$ eşitliğini önermişlerdir.

Cancelli, Guadegnini ve Pelegrini(1982), Kuzey İtalyada Modena alüvyonlu kili için

 $f_s = 1,28 C_u$ eşitliğini önermişlerdir.

Tümay, Acar, Desene ve Yılmaz Louisianada yumuşak kohezyonlu zeminler için $f_s = 0.58 C_u$ eşitliğini önermişlerdir.

Yukarıda sıralanan bütün bu öneriler incelenirse bu çalışma kapsamında yapılan grafik analizleri sonucu elde edilen α =0,15 değerine en yakın değer Navfac tarafından önerilen ve fore kazıklarda foraj kuyusu içinde bentonit kalma olasılığı nedeniyle önerilen α =0,30 değeridir. Daha önce değinildiği üzere itilen borular etrafında uyanan direnç için ne fiziksel yönden ne de gerilme yönünden çakma veya fore kazıklarla tam bir benzerlik bulunmadığı için elde edilen α değerleri kazıklar için önerilenlere oranla oldukça farklı bulunmuştur.

5. Tezin 5.2 bölümündeki analizler sonucunda elde edilen α -Cu dağılımları incelendiğinde elde edilen α değerlerinin drenajsız kayma dayanımından bağımsız bir dağılım gösterdiği değerlendirilmektedir.

6. İtme kuvvetlerinin boyutlarının tahmini sonucunda tasarım aşaması için şaft boyutlarının belirlenmesi, kullanılacak piston kapasitelerinin doğru olarak seçimi, bentonit enjeksiyonunun hangi aralıktan sonra başlamasının uygun olacağı, TBM de kullanılacak uygun kesici kafanın seçilmesi gibi konularda doğru tahminler yürütülebilecektir.

7. X-Y koordinatında elde edilen α -C_u dağılım şekli incelendiğinde aynı zemin bölümü içinde ve aynı C_u değeri için α değerleri çok farklı değerler alabilmektedir. Özellikle itme işleminin son kısımları bunun için güzel bir örnek oluşturmaktadır. Örnek olarak PJ 19-PJ 21 Şaftları arasında 3. zemin bölümünde ve C_u=23 kPa değeri için 111 m ile 144 m arasında α =0,1 iken 144 m ile 167 m arasında aynı zemin koşullarında α =1 olmuştur. Yaklaşık 10 kat kadar farklılık göze çarpmaktadır. Bu sonuçta, zemin şartları aynı olsa da boruların pürüzlülüğünün her boru da çok farklı olmasının etkisinin olabileceği ayrıca; bu şaftlar arasında bentonit kullanılmamasının ve itme aralığının son kısmında sistemin artık aşırı yüklenmesinin etkisi göz ardı edilmemelidir.

8. Boru itme borularının yüzey pürüzlülüğü itme kuvvetleri ve sürtünme gerilmeleri üzerinde etkilidir. Bu etki nedeniyle aynı zemin koşullarında yakın itme aralıklarında birbirinden çok değişik adezyon katsayılarıyla karşılaşabilmekteyiz. Yüzey pürüzlülüğünün her boru için karakterize edilerek zemin ile boru arasındaki etkileşimi daha sağlıklı biçimde anlamak amacıyla sekiz farklı boru üzerinde bir çalışma gerçekleştirilmiştir(Staheli, Frost ve İscimen, 2006). Bu çalışmada polycrete, Hobas boru, yüzeyi pürüzsüzleştirilmiş kil boru(VCP), Permalok çelik boru, yaş döküm beton boru, kuru döküm beton boru ile hobas boru üzerine yapışkanla 60 numara ve 36 numara zımpara kağıdı monte edilerek oluşturulan yapay yüzeyli borular kullanılmıştır. Yüzey pürüzlülüğü otomatik bir alet ile belirlenmiştir. Bu alette 2μm çapındaki safir toplar belirlenen yüzeyde gezdirilerek dikey yönde bu topların hareketi ile her boru için 54 farklı yüzey pürüzlülüği porfili belirlenmiştir. Bu profillerden hareketle ortalama bir profil belirlenmiş ve her boru için bir ortalama pürüzlülük sayısı, R_a sayısı hesaplanmıştır. Bu hesaplamalar sonucunda Çizelge 8.1' de gösterilen sonuçlara ulaşılmıştır.

Parametre	Hobas	Polycrete	Permalok	Yaş Döküm Beton	Kuru Döküm Beton	VCP	60 No Zımpara	36 No Zımpara
Ortalama R _a	6,5	16,9	18,7	24,8	55,1	93,8	60,8	143,2
Standart Sapma	1,2	9,4	8,8	19,5	10,6	12,2	4,1	15,7
% R _a /SSapma	18,3	55,3	47,2	78,5	19,2	13	6,7	11

Çizelge 8.1 Yüzey pürüzlülüğü belirleme sonuçları(Staheli, Frost, İşçimen, 2006)

Çizelge 8.1 incelenirse yaş döküm beton boru üzerindeki standart sapmanın en yüksek olduğu görülmektedir. Bu sonuç uygulamada yaş döküm boruların kullanılması nedeniyle önemlidir. Bu sonuç bir beton borudan diğerine çok farklı yüzeylerin oluşmasının çok yüksek bir olasılık olduğunu görüşünü desteklemektedir. Bu yüzey pürüzlülüğünün her boruda farklılaşması, bir borudan diğerine benzer zemin koşullarında bile farklı itme yükleri ve sürtünme kuvvetleri oluşmasına neden olacak bir durum doğurabilmektedir. Bu durumu azaltmak için boruların dış yüzeyine yapılacak suni sürtünmesiz yüzeylerle bu pürüzlülük problemi ortadan kaldırılarak daha düşük itme yükleri ile daha uzun itme boylarına ulaşılmasının olanaklı olduğu değerlendirilmektedir. Böylelikle boru itme teknolojisine yeni bir perspektif kazandırabileceği öngörülmektedir.

9. Bentonit uygulaması yapılan ve yapılmayan itme aralıklarında ölçülen en büyük itme kuvveti yönünden karşılaştırma yapılmış ve bentonit uygulanan kesimlerde uygulanmayanlara göre ölçülen itme kuvvetlerine göre % 60' lara varan azalmalar meydana geldiği belirlenmiştir.

10. Bentonit uygulaması yapılan ve yapılmayan itme aralıklarında grafik analizleri sonucu elde edilen gerilme değerleri yönünden yapılan karşılaştırmalar sonucunda bentonit kullanılması durumunda % 70' lere varan oranlarında çevre gerilme değerlerinde azalmalar olduğu görülmüştür. Bu oranlarda bentonit ve benzeri malzemeler kullanılmasının itme işleminin verim ve başarısı üzerinde etkili olduğu görülmektedir. Bentonit kullanılması durumunda gerilmelerde sağlanan düşüşlere paralel olarak daha düşük itme kuvvetleriyle itme sağlanabilecek ve böylelikle ekipmanda aşırı zorlanmalar sonucu meydana gelebilecek arıza, aşınma gibi olumsuzluklarında önüne geçilebilecektir.

11. İtme işleminde ara verilmesi(Arıza vb. sebeplerle) itme işlemi açısından olumsuz sonuçlara sebep olabilir. İtme yüklerinde durma sonrası tekrar çalışmaya başlanması ile

birlikte durma öncesinin üstünde değerlere ulaşılması yüksek bir olasılıktır. Bu artışlar uzun bir mesafeden sonra durma öncesi duruma döneceğinden bu aralıkta zeminin olması gerekenden daha rijit bir davranış gösterdiği söylenebilir. Durma sonrasında çalışmaya başlanıldığında itme kuvvetlerinde kısa aralıklar içinde arızanın süresine bağlı olarak itme kuvvetlerinde %100 oranında, gerilme değerlerinde ise 10-25 kat arasında artışlara neden olabileceğini belirlenmiştir.

12. Tez kapsamında incelenen aralıklarda görüldüğü gibi itme kuvvetlerinde arıza nedeniyle durma veya öngörülmeyen fiziki zorluklar neticesinde ani veya itme aralığı boyunca artışlar olabileceğinden boru itme yönteminde gerek şaftların imalatı, gerek boruların üretilmesi sırasında, gerekse TBM kazıcı disklerinin ve itme pistonlarının tasarımında yapılan aşırı kesit seçimlerinin gerekli olduğu ortaya çıkmıştır.

13. İtme aralıklarının, özellikle de olumsuz zemin koşulları için, tasarım aşamasında optimum düzeyde tutulması ile aşırı kesit seçilerinin belli bir oranda tutabilmenin mümkün olabileceği, aksi halde artan itme aralığı sonucunda ağırlaşan bir sistem, ağırlaşan sistem nedeniyle itme makinesinde aşırı zorlanmalar ve bu zorlanmalar sonucu oluşabilcek arızalar sonucu durma meydana geleceği ve böylelikle de sayılan bu olumsuzluklar sonucunda beklenenin çok ötesinde itme yükleriyle karşılaşılabileceği anlaşılmaktadır.

Şile Uygulaması için itme aralıkları incelendiğinde itme aralığının 60 m ve altında olan kısımlarda itme yüklerinin 100 tonun altında kaldığı, ancak; itme aralığının 100 m' den fazla olduğu kısımlarda itme yüklerinin(özellikle bentonit kullanılamayna kısımlar için) 400 ton ve üzerinde gerçekleştiği görülmektedir. Kohezyonlu zeminler de 800 mm çapında bir hat için optimum itme aralığının 60-100 metre arasında seçilmesinin itme işleminin verimi açısından çok önemli bir etken olduğu belirlenmiştir.

14. Laboratuar deneyleri kapsamında yapılan hidrometre deneyleri ile silt yüzdesinin yüksek olduğu belirlenmiştir. Bu yüksek silt yüzdesinin özelliklede bentonit kullanılmayan ve başlıktan zemine sadece su püskürtülen itme aşamalarında zeminin su ile teması sonucunda zeminin duraylılığında olumsuzluklara yol açacağı ve zemin duraylılığın bozulması sonucu zeminin TBM ve borular üzerine göçmesi sonucunda sözü edilen aşırı itme yüklerinin gerçekleşmesinde pay sahibi olabileceği ancak bunun oranının tespitinin güç olduğu söylenebilir. Bentonit kullanılamayan PJ 5-PJ 4 Arası, PJ 5-PJ 6 Arası, PJ 10-PJ 6 Arası ve PJ 10-PJ 13 Arası bölümlerde kaydedilen itme yükleri bu görüşü desteklemektedir.

15. Plaxis Üç Boyutlu Tünel Programı ile PJ 27-PJ 28 Arası(24 m), PJ 25-PJ 24 Arası(54 m)

ve PJ 14-PJ 13 Arası(59 m) bölümlerin tümü ile PJ 5-PJ 4 Arası, PJ 5-PJ 6 Arası, PJ 10-PJ 6 Arası, PJ 10-PJ 13 Arası, PJ 14-PJ 17 Arası, PJ 17-PJ 19 Arası, PJ 19-PJ 21 Arası, PJ 21-PJ 24 Arası, PJ 28-PJ 30 Arası bölümlerin ilk 30 metreleri modellenmiştir. Araziden alınan zemin örneklerinin laboratuarda yapılan deneyleri sonucu oluşturulan zemin modeli, tünel derinliği, örtü kalınlığı ve yapım aşamaları arazide gerçekleştirilen çalışmalara uygun olarak modellenmiş ve Plaxis Üç Boyutlu Tünel Programı ile boru itme yönteminin bilgisayar ortamında bazı ilkeler uygulanarak modellenebileceği gösterilmiştir.

16. Yapılan bu modellemelerde zemin ile boru arasındaki ilişkiyi gösteren R_{inter} parameteresinin doğru seçilmesinin modellemelerde doğru sonuçlar elde edebilmek için çok önemli bir aşama olduğu görülmüştür. Doğru R_{inter} parametresinin bulunması amacıyla 0.23, 0.40, 0.60 ve 0.80 değerleri R_{inter} olarak alınıp modellemeler yapılmış ve sonuçta bentonitsiz olarak itme yapılan bölümler için R_{inter} katsayısının 0.80 değerlerde arazi değerlerine en yakın değerlere ulaşılmıştır. Bentonit uygulanarak itme yapılan kesimler içinse grafik analizlerinden elde edilen istatistiksel ortalama değer olan 0.23 katsayısının R_{inter} parametresi olarak alınıp modelle yapılması sonucunda arazi gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerleri ile modelleme sonucunda elde edilen gerilme değerlerinin karşılaştırılması çizelgeler halinde sunulmuştur.

17. Plaxis analizlerinde kullanılan kuvvetler bir dinamik deney niteliğinde olan boru itme sisteminde ölçülen kuvvetler olduğu için bir statik denge çözümü anlamına gelen Plaxis çözümlerinin boru zemin ilişkisindeki kayma gerilmelerini tam olarak tahmin etmesi kuramsal olarak beklenmemelidir. Ancak; elde edilen sonuçların bentonitli ve bentonitsiz uygulamalar sonucunda beton-zemin ilişkisinde doğması beklenen kayma gerilmelerine yakın olması Plaxis çözümleriyle de doğruya yakın çözümler elde edilebileceğini ortaya koymaktadır. Aşağıda modelleme sonrası elde edilen gerilme değerleri ile grafik analizleri sonucu elde edilen gerilme değerlerinin karşılaştırılması ve karşılaştırma sonrası görülen uyum veya uyumsuzluklar ile ilgili değerlendirmeler yapılmıştır.

	Aralık(m)			
	0-22,50 m	24-36,75 m	37,50-59 m	
	Arası	Arası	Arası	
PJ 14-PJ 13 Arası				
Modelleme Sonucu Elde	2,76	3,45	4,49	
Edilen Gerilme(kPa)				
PJ 14-PJ 13 Arası				
Grafik Analizi Sonucu	2 25	2 72	5 20	
Elde Edilen	5,55	5,75	5,20	
Gerilme(kPa)				

Çizelge 8.2 PJ 14-13 arası gerilmelerin karşılaştırılması

Çizelge 8.3 PJ 24-25 arası gerilmelerin karşılaştırılması

	Aralık(m)			
	0-31,50 m	33-45,75 m	46,50-54 m	
	Arası	Arası	Arası	
PJ 24-PJ 25 Arası				
Modelleme Sonucu Elde	4,15	4,78	7,14	
Edilen Gerilme(kPa)				
PJ 24-PJ 25 Arası				
Grafik Analizi Sonucu	4.07	2 67	7 25	
Elde Edilen	4,97	3,07	7,55	
Gerilme(kPa)				

Çizelge 8.4 PJ 10-PJ 6, PJ 10-PJ 13, PJ 14-PJ 17, PJ 17-PJ 19, PJ 19-PJ 21, PJ 21-PJ 24,

	Modelleme sonucu	Grafik Analizi Sonucu
ŞAFT NO	Elde Edilen	Elde Edilen
	Gerilme(kPa)	Gerilme(kPa)
PJ 10-PJ 6 Arası	4,04	5,63
PJ 10-PJ 13 Arası	3,90	5,80
PJ 14-PJ 17 Arası	3,68	2,88
PJ 17-PJ 19 Arası	2,57	1,74
PJ 19-PJ 21 Arası	4,06	4,60
PJ 21-PJ 24 Arası	3,02	3,22
PJ 28-PJ 30 Arası	3,73	3,59

PJ 28-PJ 30 arası gerilmelerin karşılaştırılması

Çizelge 8.2, Çizelge 8.3 ve Çizelge 8.4 incelenirse grafik analizleri sonucu elde edilen gerilme değerleri ile modelleme sonucu elde edilen gerilme değerlerinin birbirine uyumlu ve yakın olduğu görülmektedir.

	Aralık(m)		
	0-15 m	15-30 m	
	Arası	Arası	
PJ 5-PJ 4 Arası			
Modelleme Sonucu Elde	2,17	3,63	
Edilen Gerilme(kPa)			
PJ 5-PJ 4 Arası Grafik			
Analizi Sonucu Elde	3,25	29,90	
Edilen Gerilme(kPa)			

Çizelge 8.5 PJ 5-PJ 4 arası gerilmelerin karşılaştırılması

Çizelge 8.6 PJ 5-PJ 6 arası gerilmelerin karşılaştırılması

	Aralık(m)	
	0-15 m	15-30 m
	Arası	Arası
PJ 5-PJ 4 Arası		
Modelleme Sonucu Elde	1,76	4,78
Edilen Gerilme(kPa)		
PJ 5-PJ 4 Arası Grafik		
Analizi Sonucu Elde	4,58	28,60
Edilen Gerilme(kPa)		

Cizelge 8.7 PJ 28-27 arası	gerilmelerin k	arşılaştırılması
----------------------------	----------------	------------------

	Aralık(m)			
	0-10 m	10,50-18,75	19,50-24 m	
	Arası	m Arası	Arası	
PJ 28-PJ 27 Arası				
Modelleme Sonucu Elde	1,94	3,57	4,43	
Edilen Gerilme(kPa)				
PJ 28-PJ 27 Arası				
Grafik Analizi Sonucu	0.84	4 20	5 60	
Elde Edilen	2,04	4,20	5,00	
Gerilme(kPa)				

Çizelge 8.5, Çizelge 8.6, Çizelge 8.7 incelenirse bazı kesimlerde karşılşatırılan gerilmeler açısından bazı uyumsuzluklar olduğu görülmektedir. Belirtilen itme aralıklarındaki bu uyumsuzlukların itme işlemi sırasında ani zemin değişimleri, operatör hatası sonucu uygulanan fazla itme kuvvetleri, kayıtlara geçmeyen arıza vb. gibi sebeblerle ortaya çıktığı söylenebilir. Gerilme karşılaştırmaları açısından uyumsuzluk gösteren kesimin uzunluğu toplam 40 metre olup toplam modellenen 500 metre uzunluğa oranı % 10 gibi küçük bir orana karşılık gelmektedir. Uyumsuzluk gösteren kesimler dışında kalan kesimlerde modelleme sonucu elde edilen gerilmeler ile grafik analizleri sonucu elde edilen gerilme değerlerinin değerlendirme yapılan aralıklarda birbirine yakın değerler aldığı ve uyumlu olduğu

belirlenmiştir.

18. Modellenen tüm aralıklar da ilk 6 m için özel bir değerlendirme yapılırsa modelleme ile elde edilen gerilme değerinin analiz sonucunda elde edilen değerin uyumlu olmadığı tespit edilmiştir. Modelleme sonucunda incelenen üç farklı kesitte ilk 6m lik kısmında oluşan gerilmelerin 1 kPa değerinin altında olduğu tespit edilmiştir. Ancak; grafik analizlerinden elde edilen sonuçta ise bu değerin üzerinde gerilme bulunmuştur. Yapılan diğer bütün analizler sonucunda incelenen tüm kesitlerde aynı sonuçla karşılaşılmış ve ilk 6 m' lik kısmın bu bölüm için modelleme sırasında R_{inter} katsayısını 1 olarak alınması sebebiyle neredeyse sürtünmesiz ortam gibi davrandığı anlaşılmıştır. Bu bölümün gerilme analizleri yapılırken ilk dilimin dikkate alınmaması gerektiği değerlendirilmektedir.

19. Modelleme de elde edilen gerilme değerlerinin zeminin Drenajsız Kayma Dayanımı C_u ve Elastisite Modülü E ile ilişkilidir.

	Deney Sonuçları	Korelasyonlar
Zemin	Kullanılarak Elde	Yardımıyla
Bölümü	Edilen Elastisite	Hesaplanan Elastisite
	Modülü(kPa)	Modülü(kPa)
PJ 27	1665	7137
PJ 28	765	3303

Çizelge 8.8 PJ 28-PJ 27 aralığı için modellemede kullanılan E değerleri

Çizelge 8.9 Farklı E değerleri için elde edilen sonuçların karşılaştırılması

		Örnek Alınarak Elde	Korelasyonlarla		
		Edilen E Değerleri	Belirlenen E		Ortalama
	Bölüm	İle Bulunan	Değerleri İle		%
Aralık	No	Gerilme(kPa)	BulunanGerilme(kPa)	% Değişim	Değişim
0-9,75 m					
Arası	1	1,53	2,06	34	
10,5-18,75					22 60
m Arası	2	3,22	3,97	19	22,00
19,5-24 m					
Arası	3	4,19	4,67	11	

E nin etki değerinin genellikle % 20 olduğu belirlenmiş olup bunun yanında drenajsız kayma

dayanımı C_u değerinin, poisson oranı v' nın etkili olduğu, bunların yanında itme işleminin yapıldığı aralığın uzunluğu, bu aralıkta kaydedilen itme yüklerinin boyutları, İtme yüklerinin artışına neden olacak arıza ve durma süreleri, bentonit enjeksiyonun uygulanıp uygulanmadığı, yerel zemin zorlukları gibi etkenlerinde gerilme değerleri üzerinde etkili olduğu söylenebilir.

20. Arazide yapılan yüzey okumaları ve modelleme sonucu elde edilen değerler birlikte değerlendirildiğinde boru itme yönteminde oturma veya kabarmanın 3-4 mm gibi çok düşük değerlerde gerçekleştiği görülmektedir. Bu düzeydeki yüzey hareketi değerlerinin geleneksel tünel açma yöntemleri sonucunda oluşabilecek yüzey hareketleri ve oturmalara göre çok küçük boyutta değerler olduğu söylenebilir. Boru İtme Yönteminde, şehiriçinde altyapı çalışmalarında yüzey hareketleri ve oturmalar açısından oluşabilecek risklerin en düşük düzeyde gerçekleşmesi nedeniyle bu yöntem geleneksel tünel açma yöntemlerine göre önümüzdeki yıllar için şehiriçi altyapı çalışmalarında daha güvenli bir alternatif olarak önemi her geçen gün arttıracaktır.

KAYNAKLAR

Khzaei S., Shimada H., Matsui K. (2004) " Analysis Prediction Of Thrust İn Using Slurry Pipe Jacking Method" Tunnelling and Underground Space Technology

Marshall, M.A.(1998) "Pipe-Jacked Tunneling: Jacking Loads and Ground Movements" Magdalen College, University of Oxford Resarch Project.

Marshall, M.A. and Milligan, G.W.E. (1996) "A case study of an instrumented microtunnel in fine sand". Proc. Int. Conf. on Trenchless Construction. No Dig 96, New Orleans. Nisan 1996.

Marshall, M.A., Milligan, G.W.E. and Mair, R.J. (1996) "Movements and stress changes in London Clay due to the construction of a pipe jack". Geotechnical Aspects of Underground Construction in Soft Ground. R.J. Mair and R.N. Taylor. Eds. Proc. Of Int. Symp., 719-724. Balkema. Rotterdam.

Milligan, G.W.E. and Norris, P. (1996) "Site based research in pipe jacking - objectives, procedures and a case history". Trenchless Technology Research, Tunnelling and Underground Space Technology. Vol. 11. Supplement 1.

Milligan, G.W.E. ve Ripley, K.J. (1989) "Packing materials in jacked pipe joints". Proc. 4th. Int. Conf. on Trenchless Construction, No-Dig '89, Londra.

Milligan, G.W.E. and Norris, P. (1991) "Concrete jacking pipes, the Oxford research project."

Milligan, G.W.E. and Norris, P. (1993) "Oxford research in pipe jacking - research gathers pace." Proc. 2nd Int. Conf. on Pipe Jacking and Microtunnelling. Pipe Jacking Association. Londra.

Milligan, G.W.E. (1993) "Pipe jacking research." World Tunnelling. Cilt.6, No.8: 343-346.

Milligan, G.W.E. (1994) "Tunnels of small diameter using the pipe jacking technique". Spec. Lect. 3. Proc. 3rd Brazilian Symp. on Underground Excavations. Brasilia, 25-40.

Milligan, G.W.E. and Marshall, M.A. (1995) "Ground movements due to construction of pipejacked tunnels". Proc. 11th Eur. Conf. on Soil Mech. and Foundn. Enging. Kopenhag. 3: 191-200.

Milligan, G.W.E. and Marshall, M.A. (1998) "The functions and effects of lubrication in pipe jacking". Tunnels and Metropolises, Arsenio Negro and Argimiro Alvarez Ferreira, Eds., Proc. of the World Tunnel Congress, Sao Paulo, Brezilya. 2: 739-744. Balkema, Rotterdam.

Milligan, G.W.E. and Norris, P. (1998) "Site control of pipe jack alignments". Tunnels and Metropolises, Arsenio Negro and Argimiro Alvarez Ferreira, Eds., Proc. of the World Tunnel Congress, Sao Paulo, Brezilya. 2: 745-750.

Milligan, G.W.E. and Marshall, M.A. (1998(b) "The influence of lubrication on jacking loads from six monitored pipe jacks". No Dig 98, Proc. Int. Conf. on Trenchless Technology, Lausanne. İsviçre

Milligan, G.W.E. and Norris, P. "Pipe soil interaction during pipe jacking". Geotechnical Engineering, proceedings I.C.E. In press.

Norris, P. and Milligan, G.W.E. (1992) "Pipe end load transfer mechanisms during pipe jacking." Proc. Int. Conf. On Trenchless Construction. No-Dig 92. Paris.

Norris, P. and Milligan, G.W.E. (1992) "Frictional resistance of jacked concrete pipes at full scale." Proc. Int. Conf. On Trenchless Construction. No-Dig 92. Paris.

Norris, P. ve Milligan, G.W.E. (1991) "Field instrumentation for monitoring the performance of jacked concrete pipes." FMGM 91, Proc. 3rd Int. Symp. on Field Measurements in Geomechanics. Oslo.

Pellet- Beaucour A.L. ve Kastner R. (2002) "Experimental and Analytical Study Of Friction Forces During Microtunnelling Operations" Tunnelling and Underground Space Technology

Sofimos A.I, Loukos P. ve Chantzakos. Ch. (2004) "Pipe Jacking a Sewer under Athens "National Technical University, Atina

Staheli, K., Frost, D. and İşçimen, M. (2006) "Studies Of Intreface friction between jacking pipe materials and frictional soils and impact on jacking forces ".North American Society for Trenchless Technology, No-Dig '2006, Nashville .

Thomson, J.C (1993), Pipejacking and Microtunneling, Blakie Academic and Professional, London.

EKLER

EK 1 UU Deneyi Gerilme-Şekil Değiştirme Grafikleri

- EK 2 Hidrometre Deney Sonuçları Grafikleri
- EK 3 Üsküdar Caddesi Boru İtme İşi İş Sonu Projesi

EK 1 UU Deneyi Gerilme-Şekil Değiştirme Grafikleri

EK 1.1 PJ 4 Şaftı UU Deneyi

Hücre basıncı belirlenirken ortalama h=3 metre bir örtü kalınlığı alınmış zeminin özgül ağırlığıda ortalama olarak γ =20 KN/m³ alınarak 3 metre derinlikte jeolojik gerilme σ =60 kPa hesplamış sonrasında suküntteki toprak basıncı katsayısı K_o=0,5 alınarak yanal gerilme σ_v = 30 kPa bulunmuştur. Yanal gerilme ve jeolojik gerilmeler toplanıp ortalaması alınırsa uygulanacak ortalama gerilme σ_3 =40 kPa olarak tespit edilmiştir. Bir tüpten iki örnek alınıp iki deney yapıldığından birinci deneyde σ_3 =40 kPa olarak ugulanan hücre basıncı ikinci örnek üzerindeki deney için ilkinin iki katı olan σ_3 =80 kPa değerinde hücre basıncı uygulanmıştır.

PJ 4 şaftı tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 192 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 172 kPa' dır. İki örneğin deney sonuçlarına bakıldığında belli bir değerde ø_u oluştuğu gözlemlenmektedir. Bunun örneklerin suya doygunluk oranlarındaki muhtemel farklılığın etkisi bulunmaktadır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 182 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 4 Şaftı için C_u değeri 91 kPa olarak belirlenmiştir. Şekil Ek 1.1.1' de PJ 4 şaftı UU deneyi gerilme şekil değiştirme grafiği verilmiştir.

Şekil Ek 1.1.1 PJ 4 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.2 PJ 5 Şaftı UU Deneyi

PJ 5 şaftı 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci örneğin % 12'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 148 kPa' dır. 1. tüp ikinci zemin örneğinin % 12' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 156 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 152 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 5 Şaftı için C_u değeri 76 kPa olarak belirlenmiştir. Şekil Ek 1.2.1' de PJ 5 şaftı UU deneyi gerilme şekil değiştirme grafiği verilmiştir.

Şekil Ek 1.2.1 PJ 4 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.3 PJ 6 Şaftı UU Deneyi

PJ 6 şaftı tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 128 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 120 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 124 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 6 Şaftı için C_u değeri 62 kPa olarak belirlenmiştir. Şekil Ek 1.3.1' de PJ 6 şaftı UU deneyi gerilme şekil değiştirme grafiği verilmiştir.

Şekil Ek 1.3.1 PJ 6 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.4 PJ 10 Şaftı UU Deneyi

PJ 10 şaftı tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 128 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 112 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 120 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 10 Şaftı için C_u değeri 60 kPa olarak belirlenmiştir.

Şekil Ek 1.4.1 PJ 10 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.5 PJ 13 Şaftı UU Deneyi

PJ 13 şaftı tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 46 kPa' dır. İkinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 50 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 48 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 13 Şaftı için C_u değeri 24 kPa olarak belirlenmiştir.

Şekil Ek 1.5.1 PJ 13 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.6 PJ 14 Şaftı UU Deneyi

PJ 14 şaftı 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci numunenin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 44 kPa' dır. İkinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 42 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 43 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 14 Şaftı için C_u değeri 22 kPa olarak belirlenmiştir.

Şekil Ek 1.6.1 PJ 14 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.7 PJ 14-PJ 17 Şaftları Arası UU Deneyi

PJ 14-PJ 17 şaftları arasında zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci numunenin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 46 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 62 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 54 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 14-PJ 17 Şaftları arası için C_u değeri 27 kPa olarak belirlenmiştir.

Şekil Ek 1.7.1 PJ 14-PJ 17 şaftları arası UU deneyi gerilme şekil değiştirme grafiği

EK 1.8 PJ 17 Şaftı UU Deneyi

PJ 17 şaftı 1.tüp(ayna) zemin örnekleri dikkate alınarak direnajsız kayma dayanımı belirlenmiştir. 1.tüp ikinci örneğin %15 lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 109 kPa dır. 1. tüp birinci zemin örneğinin %15 lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 91 kPa dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 100 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 17 Şaftı için C_u değeri 50 kPa olarak belirlenmiştir.

Şekil Ek 1.8.1 PJ 17 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.9 PJ 17-PJ 19 Şaftları Arası UU Deneyi

PJ 17-PJ 19 şaftları arasında zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci zemin örneğinin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 71 kPa' dır. 1. tüp ikinci zemin örneğinin %20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 89 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 80 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 17-PJ 19 Şaftları arası için C_u değeri 40 kPa olarak belirlenmiştir.

Şekil Ek 1.9.1 PJ 17-PJ 19 şaftları arası UU deneyi gerilme şekil değiştirme grafiği

EK 1.10 PJ 19 Şaftı UU Deneyi

PJ 19 şaftı zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci zemin örneğinin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 24 kPa' dır. İkinci zemin örneğinin %20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 32 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 28 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 19 Şaftı için C_u değeri 14 kPa olarak belirlenmiştir.

Şekil Ek 1.10.1 PJ 19 şaftı UU deneyi gerilme şekil değiştirme grafiği

187

EK 1.11 PJ 19-PJ 21 Şaftları Arası UU Deneyi

PJ 19-PJ 21 şaftları arası zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci numunenin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 54 kPa' dır. İkinci zemin numunesinin %20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 58 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 56 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 19-PJ 21 Şaftları arası için C_u değeri 28 kPa olarak belirlenmiştir.

Şekil Ek 1.11.1 PJ 19-PJ 21 şaftları arası UU deneyi gerilme şekil değiştirme grafiği

EK 1.12 PJ 21 Şaftı UU Deneyi

PJ 21 şaftı zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci zemin örneğinin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 44 kPa' dır. İkinci zemin örneğinin %20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 48 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 46 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 21 Şaftı için C_u değeri 23 kPa olarak belirlenmiştir.

Şekil Ek 1.12.1 PJ 21 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.13 PJ 24 Şaftı UU Deneyi

PJ 24 şaftı zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci numunenin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 48 kPa' dır. İkinci zemin numunesinin %20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 54 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 51 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 24 Şaftı için drenajsız kayma dayanımı C_u değeri 25 kPa olarak belirlenmiştir.

Şekil Ek 1.13.1 PJ 24 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.14 PJ 25 Şaftı UU Deneyi

PJ 25 şaftı tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 100 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 92 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 96 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 25 Şaftı için C_u değeri 48 kPa olarak belirlenmiştir.

Şekil Ek 1.14.1 PJ 25 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.15 PJ 25-PJ 27 Şaftları Arası UU Deneyi

PJ 25-27 şaftları arası 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 92,5 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 91,5 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 92 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 25-27 Şaftları Arası için C_u değeri 46 kPa olarak belirlenmiştir.

Şekil Ek 1.15.1 PJ 25-PJ 27 şaftları arası UU deneyi gerilme şekil değiştirme grafiği

EK 1.16 PJ 27 Şaftı UU Deneyi

PJ 27 şaftı 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci örneğin % 20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 101 kPa' dır. 1. tüp ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 115 kPa' dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 108 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 27 Şaftı için C_u değeri 54 kPa olarak belirlenmiştir.

Şekil Ek 1.16.1 PJ 27 şaftı UU deneyi gerilme şekil değiştirme grafiği

191

EK 1.17 PJ 28 Şaftı UU Deneyi

PJ 28 şaftı 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci örneğin % 18'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 44 kPa dır. 1. tüp ikinci zemin örneğinin % 18' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 56 kPa dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 50 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 28 Şaftı için C_u değeri 25 kPa olarak belirlenmiştir.

Şekil Ek 1.17.1 PJ 28 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 1.18 PJ 30 Şaftı UU Deneyi

PJ 30 şaftı 1.tüp (ayna) zemin örnekleri dikkate alınarak drenajsız kayma dayanımı belirlenmiştir. Birinci örneğin %20'lik şekil değiştirme oranında kırıldığı buna karşılık o şekil değiştirme yüzdesindeki deviatorik gerilme değeri 55 kPa dır. ikinci zemin örneğinin % 20' lik şekil değiştirme yüzdesinde deviatorik gerilme değeri 61 kPa dır. Bu iki farklı deviatorik gerilmenin ortalaması alınarak drenajsız kayma dayanımı belirlenecektir. İki deviatorik gerilmenin ortalama değeri 58 kPa olarak bulunmuştur. Bu değer kullanılarak PJ 30 Şaftı için C_u değeri 29 kPa olarak tespit edilmiştir.

Şekil Ek 1.18.1 PJ 30 şaftı UU deneyi gerilme şekil değiştirme grafiği

EK 2 Hidrometre Deneyleri

EK 2.1 PJ 4 Şaftı Hidrometre Deneyi

PJ 4 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.1.1' de gösterilmiştir.

Şekil Ek 2.1.1 PJ 4 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 25 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 25' i kil geri kalan % 75' i

ise silttir.

EK 2.2 PJ 5 Şaftı Hidrometre Deneyi

PJ 5 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.2.1' de gösterilmiştir.

Şekil Ek 2.2.1 PJ 5 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 31 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 31' i kil geri kalan % 69' i ise silttir.

EK 2.3 PJ 6 Şaftı Hidrometre Deneyi

PJ 6 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.3.1' de gösterilmiştir.

Şekil Ek 2.3.1 PJ 6 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 20 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 20' si kil geri kalan % 80' i ise silttir.

EK 2.4 PJ 10 Şaftı Hidrometre Deneyi

PJ 10 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.4.1' de gösterilmiştir.

Şekil Ek 2.4.1 PJ 10 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 18 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 18' i kil geri kalan % 82' si ise silttir.

EK 2.5 PJ 13 Şaftı Hidrometre Deneyi

PJ 13 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.5.1' de gösterilmiştir.

Şekil Ek 2.5.1 PJ 13 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 23 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 23' ü kil geri kalan % 77' si ise silttir.

EK 2.6 PJ 14 Şaftı Hidrometre Deneyi

PJ 14 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.6.1' de gösterilmiştir.

Şekil Ek 2.6.1 PJ 14 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 23 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 23' ü kil geri kalan % 77' si ise silttir.

EK 2.7 PJ 14-PJ 17 Şaftları Arası Hidrometre Deneyi

PJ 14-PJ 17 şaftları arasından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.7.1' de gösterilmiştir.

Şekil Ek 2.7.1 PJ 14-PJ 17 şaftları arası hidrometre deney sonucu
Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 25 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 25' i kil geri kalan % 75' i ise silttir.

EK 2.8 PJ 17 Şaftı Hidrometre Deneyi

PJ 17 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.8.1' de gösterilmiştir.

Şekil Ek 2.8.1 PJ 17 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 29 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 29' u kil geri kalan % 71' i ise silttir.

EK 2.9 PJ 17-PJ 19 Şaftları Arası Hidrometre Deneyi

PJ 17-PJ 19 şaftları arasından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.9.1' de gösterilmiştir.

Şekil Ek 2.9.1 PJ 17-PJ 19 şaftları arası hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 19 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 19' u kil geri kalan % 81' i ise silttir.

EK 2.10 PJ 19 Şaftı Hidrometre Deneyi

PJ 19 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.10.1' de gösterilmiştir.

Şekil Ek 2.10.1 PJ 19 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 17 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 17' si kil geri kalan % 83'ü ise silttir.

EK 2.11 PJ 19-PJ 21 Şaftları Arası Hidrometre Deneyi

PJ 19-PJ 21 şaftları arasından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.11.1' de gösterilmiştir.

Şekil Ek 2.11.1 PJ 19-PJ 21 şaftları arası hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 20 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 20' si kil geri kalan % 80'i ise silttir.

EK 2.12 PJ 21 Şaftı Hidrometre Deneyi

PJ 21 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.12.1' de gösterilmiştir.

Şekil Ek 2.12.1 PJ 21 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 21 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 21' i kil geri kalan % 79'u ise silttir.

EK 2.13 PJ 24 Şaftı Hidrometre Deneyi

PJ 24 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.13.1' de gösterilmiştir.

Şekil Ek 2.13.1 PJ 24 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 21 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 25' i kil geri kalan % 75'i ise silttir.

EK 2.14 PJ 25 Şaftı Hidrometre Deneyi

PJ 25 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.14.1' de gösterilmiştir.

Şekil Ek 2.14.1 PJ 25 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 18 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 18' i kil geri kalan % 82' si ise silttir.

EK 2.15 PJ 25-PJ 27 Şaftları Arası Hidrometre Deneyi

PJ 25-PJ 27 şaftları arasından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.15.1' de gösterilmiştir.

Şekil Ek 2.15.1 PJ 25-PJ 27 şaftları arası hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 29 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 29' u kil geri kalan % 71' i ise silttir.

EK 2.16 PJ 27 Şaftı Hidrometre Deneyi

PJ 27 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.16.1' de gösterilmiştir.

Şekil Ek 2.16.1 PJ 27 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 29 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 29' u kil geri kalan % 71' i ise silttir.

EK 2.17 PJ 28 Şaftı Hidrometre Deneyi

PJ 28 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.17.1' de gösterilmiştir.

Şekil Ek 2.17.1 PJ 28 şaftı hidrometre deney sonucu

EK 2.18 PJ 30 Şaftı Hidrometre Deneyi

PJ 30 şaftından alınan zemin örneğin üzerinde (200 nolu elek altı) yapılan hidrometre deneyi sonucu aşağıda Şekil Ek 2.18.1' de gösterilmiştir.

Şekil Ek 2.18.1 PJ 30 şaftı hidrometre deney sonucu

Hidrometre analiz sonucu incelendiğinde 0,002 mm ve daha ince danelerin oranının % 22 olduğu görülmektedir. Yani çökeltme analizi yapılan zeminin % 22' si kil geri kalan % 78' i ise silttir.

EK 3 Üsküdar Caddesi Boru İtme İşi İş Sonu Projesi

ÖZGEÇMİŞ

Doğum tarihi	01.01.1976	
Doğum yeri	Ardahan	
Lise	1989-1992	Şanlıurfa Lisesi
Lisans	1993-1997	Yıldız Üniversitesi Mühendislik Fak. İnşaat Mühendisliği Bölümü
Yüksek Lisans	1998-2001	Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü İnş. Müh. Anabilim Dalı, Geoteknik Programı
Doktora	2004-2009	Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü İnş. Müh. Anabilim Dalı, Geoteknik Programı

Çalıştığı kurumlar

1997-1998	Cevahir Holding
1998-2001	ZETAŞ Zemin Teknolojisi AŞ.
2003-2006	Beyoğlu Belediyesi İmar Müdürlüğü
2006-2009	İSKİ Genel Müdürlüğü Atıksu İnş.Dai.Başkanlığı
2009-Devam	YTÜ Destek Hizmetleri ve Küçük Onarım Şube
	Müdürü