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ABSTRACT

Nuclear Physics in Neutron Stars: Study of
Superfluidity in Hypernuclei and Constraining the

Nuclear Equation of State

Haşim Zahid Güven

Department of Physics

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Kutsal Bozkurt

Co-advisor: Prof. Dr. Elias Khan

In this thesis, we first investigated the effect of Λ pairing on the ground state

properties of hypernuclei within the Hartree-Fock-Bogoliubov formalism. The SLy5

Skyrme functional is used in the NN channel, while for NΛ channel we employ three

functionals fitted from microscopic Brueckner-Hartree-Fock calculations: DF-NSC89,

DF-NSC97a and DF-NSC97f. These functionals reproduce the sequence of single-Λ

experimental binding energies from light to heavy hypernuclei. For the ΛΛ channel,

we used the empirical prescription EmpC, calibrated to 1 MeV on the experimental

bond energy in 6HeΛΛ. Based on this density-functional approach, several nuclei have

been studied with nucleon closed-shells and Λ open-shells. A ΛΛ pairing interaction

is introduced, which magnitude is calibrated to be consistent with the maximum BCS

predictions for the Λ pairing gap in hypernuclear matter. In this way, we provide an

upper bound for the prediction of the Λ pairing gap and its effects in hypernuclei.

We have shown that the effects of the ΛΛ pairing depends on hypernuclei. The

condensation energy is predicted to be about 3 MeV as a maximum value, yielding

small corrections on density distributions and shell structure. Generally, we found

that ΛΛ pairing could be active if the energy gap between shells is smaller than

3 MeV. Under this condition, Λ pairing could impact densities and binding energies.

Since only a weak spin-orbit interaction is expected in the Λ channel, Λ states are

highly degenerated and usually levels are distant by more than 3 MeV in energy. In

summary, it is shown that the Λ-related pairing effect can usually be neglected in

xvi



most of hypernuclei, except for hypernuclei which have a single particle gap lower

than 3 MeV around the Fermi level. In addition, conditions on both Fermi energies

and orbital angular momenta are expected to quench the nucleon-Λ pairing for most

of hypernuclei.

The second part of the thesis is devoted to equation of states in neutron stars.

We confronted the tidal deformability values extracted from the gravitational event

GW170817 to nuclear physics constraints within a semi-agnostic approach for the

dense matter equation of state. We used Bayesian statistics to combine together

low density nuclear physics data, such as the ab-initio predictions based on χEFT

interactions or the isoscalar giant monopole resonance, and astrophysical constraints

from neutron stars, such as the maximum mass of neutron stars or the probability

density function of the tidal deformability Λ̃ obtained from the GW170817 event.

The posteriors probability distribution functions are marginalized over several nuclear

empirical parameters (Lsym, Ksym, Qsat and Qsym), as well as over observational

quantities such as the 1.4M� radius R1.4 and the pressure at twice the saturation

density P(2nsat). The correlations between Lsym and Ksym and between Ksat and Qsat

are also further analyzed. It is found that there is a marked tension between the

gravitational wave observational data and the nuclear physics inputs for the Lsym and

R1.4 marginal probability distributions. This could be a hint for nucleons to more

exotic particles phase transition inside of the core of neutron stars. We also conclude

that increasing the accuracy on the determination of tidal deformability from the

gravitational wave, as well as Mc from the isoscalar giant monopole resonance, will

lead to a better determination of Ksat and Qsat.

Keywords: Neutron Stars, Hypernuclei, Equation of State, Gravitational Wave,

Nuclear Structure, Superfluidity

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

Nötron Yıldızlarında Nükleer Fizik: Hiperçekirdeklerde
Süperakışkanlık Çalışması ve Nükleer Durum

Denkleminin Kısıtlanması

Haşim Zahid Güven

Fizik Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Kutsal Bozkurt

Eş-Danı̧sman: Prof. Dr. Elias Khan

Bu tezde öncelikle Λ çiftleniminin hiperçekirdeklerin taban durum özelliklerine etkisi

Hartree-Fock-Bogoliubov yaklaşımı ile incelenmi̧stir. NN kanalı için SLy5 Skyrme tipi

kuvvet fonksiyoneli ve N Λ kanalı için Brueckner-Hartree-Fock hesaplamalarından

elde edilmi̧s 3 tip kuvvet seti kullanılmı̧stır: DF-NSC89, DF-NSC97a ve DF-NSC97f.

Bu fonksiyoneller hafiften ağıra, bütün tek-Λ’lı hiperçekirdeklerin deneysel bağlanma

enerjilerini yüksek doğrulukta yeniden üretmektedir. ΛΛ kanalı için, 6HeΛΛ
hiperçekirdeğinin deneysel bağ enerjisi olan 1 MeV değerini hesaplayan ampirik

EmpC kuvvet seti kullanılmı̧stır. Yoğunluk fonksiyonel yaklaşımı ile, kapalı ve

açık kabuk pek çok hiperçekirdek bu tez içerisinde hesaplanmı̧stır. Açık kabuk

hiperçekirdekler için ΛΛ çiftlenim etkileşimi hipernükleer madde hesaplarındaki

BCS yaklaşımına dayanılarak tanımlanmı̧stır. Böylece hiperçekirdeklerdeki çiftlenim

enerjisinin üst limiti ve çiftlenim etkileşmesinin hiperçekirdeklerin taban durum

özelliklerine etkisi hesaplanmı̧stır. Bu çalı̧sma sonucunda ΛΛ çiftlenim etkileşmesinin

hiperçekirdekten hiperçekirdeğe deği̧smesi ile beraber, çiftlenim etkisinden kaynaklı

yoğuşma enerjisinin maksimum 3 MeV olduğu hesaplanmı̧stır. Ayrıca çiftlenim

etkileşmesinin, nükleon ya da hiperon yoğunluk dağılımlarına ve kabuk yapısına

sadece küçük düzeltmeler yaptığı ortaya çıkarılmı̧stır. Genellikle boş-dolu kabuklar

arasındaki enerji farkı 3 MeV değerinden düşükse çiftlenim etkisinin ortaya çıktığı

ve bu durumda hiperçekirdeğin yoğunluk dağılımlarını ve bağlanma enerjilerini

deği̧stirdiği ortaya çıkarılmı̧stır. Ancak hiperçekirdeklerde spin-yörünge etkileşmesi
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çok küçük olduğu ve ihmal edildiğinden ötürü kabuklar arasındaki enerji farkı

çoğunlukla 3 MeV değerinden fazladır. Dolayısı ile Λ çiftlenim etkisinin pek

çok hiperçekirdek için ihmal edilebilir olduğu görülmüştür. Buna ek olarak

nükleon-Λ çiftleniminin, Fermi enerjileri ve kabukların açısal momentumu arasındaki

farklardan ötürü çoğunlukla sönümlendiği gösterilmi̧stir. Tezin ikinci kısmı nötron

yıldızlarının durum denkleminin incelenmesine ayrılmı̧stır. Bu amaçla GW170817

kütle-çekim dalgası kaynaklı gel-git deformasyonu verilerini kullanarak, nükleer

durum denklemleri hesaplanmı̧stır. Böylece nükleer fizikten elde edilen sınırlar ile

kütle-çekim dalgasının tanımladığı sınırlar karşılaştırılarak, nükleer fizik ile gözlemsel

kütle-çekim dalgasının i̧saret ettiği verileri arasındaki fark tartı̧sılmı̧stır. Durum

denklemleri, yarı-agnostik yaklaşım kullanılarak oluşturulmuş, Bayesian istatistik

kullanılarak nötron yıldızının durum denklemi, nükleer fizikten bilinen ve astrofiziksel

gözlemlerden elde edilen veriler ile sınırlandırılmı̧stır. Ab-initio χEFT kullanılarak

oluşturulan nükleer fizik verisi ve izoskalar dev monopol rezonansı nükleer fizik

kaynaklı sınırlayıcılar olarak kullanılmı̧stır. Nötron yıldızlarının maksimum kütlesi

ve kütle çekim dalgası kaynaklı gel-git deformasyonu Λ̃ ise astrofizik kaynaklı

sınırlayıcılar olarak kullanılmı̧stır. Bunun sonucu olarak posterior olasılık dağılım

fonksiyonları nükleer ampirik parametreler üzerinden marjinalize edilerek (Lsym,

Ksym, Qsat and Qsym), her bir nükleer ampirik parametrenin olasılık dağılımları

hesaplanmı̧stır. Bununla beraber kanonik nötron yıldızı kütlesi ( 1.4M�) için yarı

çap dağılımı R1.4 ve nükleer doyum yoğunluğunun 2 katında varolan basınç P(2nsat)
gibi gözlemsel verilerde bu tez içerisinde ayrıca hesaplanmı̧stır. Ayrıca Lsym-Ksym ve

Ksat-Qsat nükleer ampirik parametreleri arasındaki korelasyonlar da bu tez içerisinde

gösterilmi̧stir. Bütün bunların akabinde nükleer fizik verileri ile kütle çekim dalgası

verileri arasında özellikle Lsym ve R1.4 için çok büyük uyumsuzluklar gözlemlenmi̧stir.

Bu uyumsuzluk nötron yıldızı çekirdeğinde, maddenin daha egzotik bir haline doğru

faz deği̧simine i̧saret edebilir. Ayrıca kütle-çekim dalgasının ve dev izoskaler monopol

rezonans kaynaklı Mc değerinin ölçümsel doğruluğunun arttırılması, Ksat ve Qsat

parametrelerinin daha iyi belirlenmesinde rol oynayacağı sonucuna vardık.

Anahtar Kelimeler: Nötron Yıldızları, Hiperçekirdekler, Durum Denklemi,

Kütle-Çekim Dalgası, Nükleer Yapı, Süperakı̧skanlık
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FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Literature Review

One of the most important quests of nuclear physics is the finding an universal

interaction for the whole baryon family. In order to pursue this quest, more than

4000 scattering experiments have been performed until now [1]. The scattering data

tightly constrains our models of the nucleon–nucleon interaction. However, while

these experiments for finite nuclei probe a range of densities around saturation density

of nuclear matter (nsat ≈ 0.16 fm−3, ρsat ≈ 2.7×1014 g/cm3) and heavy-ion collisions

explore a wider domain of densities with small isospin asymmetries, neutron stars

(NSs) are the only system (for now) which explores the equilibrium properties of

dense matter at densities well above saturation density and isospin asymmetries close

to pure neutron matter [2]. NS physics addresses thus one of the most fundamental

questions in nuclear physics which is the understanding of the nuclear interaction

in dense medium as a function of the density and the isospin asymmetry. They are

excellent systems where the high density behavior of the nuclear equation of state

(EoS) can potentially be determined. Although there are considerable astrophysical

observations, a lot of uncertainties related to the structure of NS still exist.

Let us first give some information about the structure of NS. The outermost surface

of the NS contains a very thin atmosphere of only a few centimeters thick that is

composed of H, but may also contain heavier elements such as He and C [3]. The

detected electromagnetic radiation may be used to constrain critical parameters of

the neutron star. For instance black-body emission from the stellar surface at given

temperature provides a determination of the stellar radius from the Stefan-Boltzmann

law. Unfortunately there are lots of uncertainties to determine exact values of radii

(see Sec. 4.1 for details). Just below the atmosphere, the 1 km thick envelope

(which also named crust) behave as a blanket between the cold atmosphere (with

T = 106 K) and hot core (with T = 108 K) [3, 4]. The crust density varies from

10−3ρsat to 0.5ρsat [3]. It consists of electrons, free neutrons, and neutron-rich atomic

nuclei. However, free neutrons start to appear where the density higher than the
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neutronization density (ρND = 4 × 1011 g/cm3). This region usually named inner

crust. As the density grows, the fraction of free neutrons increase [3]. Besides,

free neutrons and neutron rich-nuclei can also be in a superfluid state depending on

temperature which has a significant impact on cooling scenarios of NSs [4, 5]. At

a density larger than 0.5ρsat, the finite-nuclear phase disappears and a new state of

matter is formed [3]. This section of NS is called "core" which is responsible for all the

mass of NS and approximately 95% of its total radius. Besides, its density could even

reach up to 10ρsat [6]. However, this reality comes with its own problems since the

behavior of the EoS for densities ρ ≥ ρsat is not accurately known from experiments

of nuclear physics and also their extrapolations to 2 − 10ρsat are not solely reliable.

For convenience, a general nomenclature is created which is named "outer core" for

densities 0.5ρsat < ρ ≤ 2ρsat and "inner core" for densities ρ ≥ 2ρsat [3]. The EoS

of NS for outer core can be investigated by using nucleonic models derived from

the nuclear physics experiments since these experiments represent the knowledge

around the saturation density. In this case, NS can be considered as nuclear matter

consisting of neutrons and protons, as well as a gas of electrons and muons at β

equilibrium [2, 3, 7, 8]: This is the traditional description of the NS. However for

densities ρ ≥ 2ρsat, the EoS of NS is completely unknown. Therefore, three main

hypothesis are proposed to explain the inner core of NS:

• Phase transition to hypernuclear matter: Appearance of hyperons on some onset

density (typically ρ > 2ρsat), specifically Σ− and Λ hyperons [9–13].

• Phase transition to quark matter: Deconfined light u and d quarks and strange

s quarks, and a small admixture of electrons (or not) could form a true ground

state of matter which is also called strange matter hypothesis [14]. However, it

is a debated issue and there can be a two different scenarios leading to either

the whole star could be quark matter which is also called as a quark star or the

quark phase transition could occur only at a sufficiently high density [15–18].
In the case of quark phase transition, building core of NS by using quarks results

in significantly small radii compared to the traditional ones [15–18] except

for the quarkyonic model, which describes the transition to quark matter as a

crossover [19].

• Pion condensation: The appearance of a boson condensate of pion-like

excitations with a strong renormalization and mixing of nucleon states [20–

22]. This hypothesis is considered as the least likely, since the effect of

pion condensation on EoS is predicted to be negligible from nuclear matter

calculations [21].
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1.2 Objective of the Thesis

Considering the first hypothesis, at large densities, a substantial population of

hyperons are expected because the Fermi energy of neutrons becomes of the order

of their rest mass, leading to an increase of the hyperon fraction, but it also reduces

the degeneracy pressure inside the NS, leading to soft NS EoS at high densities, causing

a problem to reach maximum observed NS mass: 2M� [23, 24] where M� is the

solar mass. This problem could be alleviated by adding the hypothetical repulsive

interaction using some vector mesons, specifically the φ meson (see Ref. [15] for

details.) Therefore, extracting the hyperon interaction inside the nuclear medium

from hypernuclear experiments has an utmost importance. Besides, for the case of

multi-strange hypernuclei, there could be superfluidity (or in simple terms: pairing)

which can affect the interpretation of the experiments related to multi-strange

hypernuclei. However, the Λ pairing channel in hypernuclei is completely unknown.

Besides, the pairing interaction in the strange sector could have an important effect

on the cooling curves of neutron stars. Therefore, the first part of the thesis is devoted

to the investigation of the Λ pairing channel on hypernuclei.

The advent of first detection of gravitational waves from a binary NS merger

(GW170817) by the LIGO-Virgo collaboration [25, 26], opens a new era for nuclear

astrophysics since it provides an additional observable related to the EoS of NS,

among which the Tidal deformability (Λ̃) [27–29]. Considering this "new" observable,

the second part of the thesis is devoted to constrain the nuclear EoS. To do this,

nuclear EoSs generated by using observational data such as the maximum mass

(2M� see Refs. [23, 24] for details) and Λ̃ from the gravitational wave event of

GW170817 [25, 26, 30, 31] as well as predictions from nuclear physics such as

Chiral Effective Field Theory (χEFT) [32] and Isoscalar Giant Monopole Resonance

(ISGMR) [33, 34] are confronted to each other.

1.3 Hypothesis

In Chap. 2, the theoretical foundations of mean field approximation (with

Hartree-Fock-Bogoliubov or Bogoliubov-de Gennes equations) for hypernuclei are

explained [35, 36]. We considered hypernuclei with proton and neutron closed

shells, e.g. 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb, since semi-magicity often guarantees that

nuclei remain at, or close to, sphericity. In Chap. 3, both nucleon-Λ and Λ-Λ pairing

channel are investigated and their effect on the ground state properties such as binding

energies, single particle spectrums and particle densities are calculated on 40 – S
– SΛCa,

132 – S
– SΛSn and 208 – S

– SΛPb hypernuclei.
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In Chap. 4, the theoretical fundamentals of meta-model [37],
Tolman-Oppenheimer-Volkoff (TOV) [38, 39] and Pulsation equations [27–29]
are given. In order to connect observational data with theoretical predictions of

nuclear physics, a brief overview on Bayesian statistics is also given [40]. Finally

with the power of Bayesian statistics, the building of the posterior probability from

the likelihood one, which includes all constraints, and from the prior on the model

parameters, are detailed. In Chap. 5, the analysis of the posterior probabilities is

undertaken for the following empirical parameters: Lsym, Ksym, Qsat and Qsym as well

as for the radius of 1.4M� , R1.4, and the pressure at 2nsat, P(2nsat). We then analyze

origins of the correlation between the Lsym-Ksym and Ksat-Qsat parameters. Finally,

their implications on nuclear and NS physics are discussed in detail.
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2
PAIRING IN HYPERNUCLEI: THEORETICAL

FOUNDATIONS

2.1 A Strange System: Hypernucleus and Hypernuclei

A hypernucleus is an extra-ordinary nucleus including ordinary nucleons with one

(or more) strange baryons (hyperons). It was first detected from hyper-fragments

exposed to cosmic rays [41] in 1952. One year after, a new quantum number,

"strangeness", was introduced [42, 43]. The reason why it is called "strangeness"

is that, these systems are bound with the time-scale of strong interaction (10−23 s)

but decay only with the weak interaction (which time-scale is 10−10 s) inside of

the nuclear medium. Therefore, hypernuclei can be investigated with a many-body

framework typically used in nuclear physics. Within the last 40 years, modern particle

accelerators and electronic instrumentation have increased the rate and breadth of

the experimental investigation of strangeness in nuclei (especially, the Japan Proton

Accelerator Research Complex in Japan and the proton antiproton detector array

at GSI Facility for Antiproton and Ion Research [44–47]). As often, the theoretical

interest has closely followed the experimental development.

A hyperon is characterized by its strangeness number S which is S = −1 for Λ, Σ+,

Σ−, Σ0 and S = −2 for Ξ−, Ξ0. The strangeness of a hypernucleus is determined

by the strangeness number of the hyperon if the hypernucleus contains only one

hyperon. However, some hypernuclei can contain more than one hyperon, forming

a multi-strangeness hypernucleus where the strangeness of the system is defined by

the total number of each hyperon.

Although in principle, any hyperon could bound with an ordinary nucleus to form

a hypernucleus, there is indeed a specific attention for the Λ since the mass

(mΛ = 1115.683 ± 0.006 MeV/c2) is the lightest one compared to other hyperons

(mΣ+ = 1189.370 ± 0.070 MeV/c2, mΣ0 = 1192.642 ± 0.024 MeV/c2, mΣ− =
1197.449± 0.030 MeV/c2, mΞ− = 1321.710± 0.070 MeV/c2 and mΞ0 = 1314.860±
0.200 MeV/c2) [48]. It is therefore easier to produce Λ than other hyperons. Another
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reason for choosing Λ is that since other hyperons (Σ+, Σ−, Σ0, Ξ− and Ξ0) decay to Λ

inside the nuclear medium, observing Λ hypernuclei is the easiest way to understand

hyperon-nucleon interaction at first order [49]. As a consequence, there are sufficient

experimental data related to single-Λ hypernuclei, from 5
Λ
He to 208

Λ
Pb, which are

relevant to understand the Λ-nucleon interaction, at least at very low density. Λ

separation energies and single particle structures of these hypernuclei is now fairly

known [50, 51]. However, for Σ hypernuclei, it is generally assumed that the bound

Σ hypernuclear system does not exist except for 4
Σ
He [52, 53]. The Σ+ separation

energy for 4
Σ
He was measured to be 3.2 MeV [52] (for comparison: 2.39 MeV for

4
Λ
He [50, 51]). Besides, Ref. [53] shows that 4

Σ
He has not any excited state. In the

−S ≥ 2, the situation is slightly better than the Σ case. There are few experimental

data about double-Λ hypernuclei due to their low production rates of kaons, with some

observed hypernuclei such as 6
ΛΛ

He or 10
ΛΛ

Be, allowing to extract of the bond energy

which is strongly related to Λ-Λ interaction [45, 46, 54, 55]. The famous "NAGARA"

event allows to determine the bond energy of 6
ΛΛ

He to be 0.6-1 MeV [45, 46, 54, 55].
Another case for −S = 2 is the Ξ hypernucleus. Unfortunately, there is only one event

reported related to Ξ hypernucleus, "KISO" event for 15
Ξ−

C [56] where Ξ− separation

energies allow to conclude either BΞ− = 4.38± 0.25 MeV or BΞ− = 1.11± 0.25 MeV

(see Ref. [1] for details). However, if one considers the coulomb interaction which is

predicted to be 3 MeV for 15
Ξ−

C [1], Ξ-nucleon interaction could be either attractive or

repulsive. All in all, due to the large experimental uncertainty on Σ and Ξ hypernuclei

measurements, in the present work, we consider the case of Λ hypernuclei.

Let us now discuss about the theoretical description of hypernuclei. Λ hypernuclei

have often been considered as the best system to investigate the nature of

hyper-nuclear interactions in the baryon octet [51, 57]. Despite the numerous

theoretical works about hypernuclei physics within various frameworks, such as

relativistic mean field [58–61], G-matrix combined with Skyrme-Hartree-Fock for

finite-nuclei [62–65], generalized liquid drop model [66], as well as more recently

quantum Monte-Carlo approach [67, 68], there are still open questions concerning

the understanding of multi-strange nuclei and the hypernuclear equation of state. In

general the main difficulties for theoretical approaches is the very scarce amount of

experimental data, as explained in the previous paragraph. Constraints on the hyperon

interactions are therefore still weak. As an example, the NNΛ interaction is still subject

of debate [67, 68]. Most of the recent theoretical approaches predict binding energies

and single particle energies of single-Λ systems such as 5
Λ
He, 9

Λ
Be, 13

Λ
C, 209

Λ
Pb in good

agreement with the experimental data [58, 59]. In the present work, for instance,

we consider density functional approaches where the nucleon sector is treated with

Skyrme interaction and the NΛ channel is based on G-matrix calculations starting from
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various bare interactions such as NSC89, NSC97a–f (Nijmegen Soft Core Potentials)

or ESC08 (Extendend Soft Core Potentials) [63, 65]. The older DF-NSC89 functional

can reproduce with a good accuracy the experimental single particle energies of Λ

hyperon for light hypernuclei such as 5
Λ
He or 13

Λ
C, but for heavier hypernuclei like 41

Λ
Ca

or 209
Λ
Pb, DF-NSC97a–f and DF-ESC08 are better [63, 65]. It should be noted that this

discrepancy between the interactions can be removed with adequate fitting such as

adding new terms in the energy functional for the single Λ hypernuclei (see Ref. [63]
for details).

However, there are still many open questions related to hypernuclei. The first one

deals with the strength of the ΛΛ force. In general, the experimental bond energy

of multi-strange systems, such as 6
ΛΛ

He or 10
ΛΛ

Be, are not reproduced by the usual

density functionals [61]: the DF-NSC89 and DF-NSC97f forces predict bond energies

ranging from −0.34 MeV ( 10
ΛΛ

Be) to −0.12 MeV (210
ΛΛ

Pb) while the DF-NSC97a, which

has strong ΛΛ interaction, predicts bond energies from 0.37 MeV ( 10
ΛΛ

Be) to 0.01

MeV (210
ΛΛ

Pb) [65]. It should be noted that more recent density functionals, e.g.

the one derived from the ESC08 potential, do not better to reproduce the bond

energy (−0.57 MeV for ESC08 in 6
ΛΛ

He [65]). In order to improve the description

of the ΛΛ force, an empirical correction for DF-NSC89 and DF-NSC97a–f in the

ΛΛ channel has been proposed and fitted to the bond energies of 6
ΛΛ

He (which is

∼ 0.6-1 MeV [45, 46, 54, 55]) and named EmpC (see Ref. [69] for details). Note that

similar issues exist with relativistic approaches for hypernuclei and it was recently

proposed than the fit of the bond energy shall enter directly in the definition of the

Lagrangian [12]. Therefore we shall use DF-NSC89+EmpC, DF-NSC97a+EmpC and

DF-NSC97f+EmpC potentials, due to the compatible results of ΛΛ channel.

Besides, a well-known issue is indeed the so-called hyperon puzzle in neutron stars [9–

13, 15]. It refers to the difficulty for many approaches to reach the largest observed

mass of neutron stars, of about 1.9− 2.0M� [23, 70] when considering the softening

induced by the onset of hyperons in the nuclear matter. The possible solutions may

be that the hyperon interaction turns strongly repulsive in dense matter, counter

balancing the softening of the phase transition to hypernuclear matter [9–13, 15], or

quark phase appears before the hypernuclear matter [16–19]. A detailed discussion

about the phase transition considering hyperons (or a quark phase) on neutron stars

is given in Sec. 4.2.

There is however a question which has not been addressed yet and may modify our

understanding of the ΛΛ channel in finite hypernuclei: are Λ particles paired, and

how much Λ pairing impacts the ground state properties of hypernuclei (density

distributions, binding energies, etc.)? It should be noted that although there is
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currently no microscopic calculation in hypernuclei including Λ pairing, the pairing

gap in hypernuclear matter has been calculated within the Bardeen–Cooper–Schrieffer

(BCS) approximation [71–75]. The present work aims to provide a first investigation

to the Λ pairing in finite hypernuclei by considering a rather optimistic scenario for

the strength of ΛΛ pairing.

Another question related to multi-strange nuclei deals with the presence of other

strange baryons than Λ, such as Ξ, Σ or Ω. Ξ is the most crucial one because the

Λ + Λ → N + Ξ decay channel (also called Ξ-instability) can make it appear in the

ground state of hypernuclei [69, 76]. The attractive nature of the Ξ potential in

nuclear matter (UΞ = −14 MeV)[77] stabilizes Ξ and both Ξ0 and Ξ− hyperons are

predicted in hypernuclei with a strangeness number −S ≥ 20 − 30 [69]. Besides, a

Λ hyperon can also decay to Σ0, Σ+ and Σ−. However, due to the high Q f ree values

of Σ hyperons (Q f ree
Σ = −80 MeV for Σ and Q f ree

Ξ = −26 MeV for Ξ [69, 76]), the

decay of Λ to Σ±,0 is not favored in finite hypernuclei. Since the presence of Ξ in the

ground state is not expected to enhance the Λ pairing, and since the pairing in the Ξ

channel is even less known that the one in the Λ channel, we shall focus our present

study on the pairing in Λ hypernuclei. We do not expect our conclusions to be strongly

modified by the presence of hyperons other than Λ in finite nuclei.

2.2 Main Principles

In the present work, the ground state properties of single and multi-Λ hypernuclei

are investigated with Hartree-Fock-Bogoliubov (HFB) formalism considering ΛΛ

pairing interactions. On this purpose we neglect the Λ spin-orbit interaction, which

is estimated to be very small [50, 78, 79] and the three body interactions such

as NNΛ [67, 68] is effectively included from the functional approach. We have

considered a zero range pairing force in the ΛΛ channel, opening the possibility

to calculate accurately open-Λ shell hypernuclei. In addition, our calculation are

performed in spherical symmetry since deformation is not expected to greatly increase

pairing correlations. We have considered hypernuclei with proton and neutron closed

shells, e.g. 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb, since semi-magicity often guarantees that

nuclei remain at, or close to, sphericity (see Ref. [80] for the general case of N = Z

hypernuclei). A future study evaluating the effect of deformation on the pairing

correlation for open shell Λ states would however be interesting to confirm our

conclusions.
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2.3 Mean Field Approximation

Considering a non-relativistic system composed of interacting nucleons N=(p,n) and

Λ′s, the total Hamiltonian reads,

ÒH = bTN + bTΛ + ÒHNN + ÒHNΛ + ÒHΛΛ, (2.1)

where bTA are the kinetic energy operators and ÒHAB are the interaction operator terms

acting between A and B species (A, B = N ,Λ).

2.3.1 The Particle-Hole Channel

In the mean field approximation the ground state of the system is the tensor product

|ΨN 〉 ⊗ |ΨΛ〉, where |ΨN 〉 (|ΨΛ〉) is a slater determinant of the nucleon (Λ) states.

The total Hamiltonian (2.1) can be turned into a density functional ε(ρN ,ρΛ), of the

particle densities ρN and ρΛ, as ÒH =
∫

ε(ρN ,ρΛ)d3r. The energy functional ε is often

expressed as [65, 81],

ε(ρN ,ρΛ) =
ħh

2mN
τN +

ħh
2mΛ

τΛ + εNN (ρN )

+εNΛ(ρN ,ρΛ) + εΛΛ(ρΛ), (2.2)

where τN (τΛ) is the nucleonic (Λ) kinetic energy density and εi j are the interaction

terms of the energy density functional describing the NN, NΛ and ΛΛ channels.

In the following, the nucleonic terms will be deduced from the well known SLy5

Skyrme interaction [82] widely used for the description of the structure of finite

nuclei, while the NΛ channel is given by a density functional εNΛ adjusted to

Brueckner-Hartree-Fock (BHF) predictions in uniform matter [65, 81],

εNΛ(ρN ,ρΛ) = − f1(ρN )ρNρΛ + f2(ρN )ρNρ
5/3
Λ . (2.3)

Since the spin-orbit doublets are experimentally undistinguishable [50, 78], the

spin-orbit interaction among Λ particles is also neglected [83]. The following density

functionals are considered for the NΛ channel: DF-NSC89 from Ref. [81], DF-NSC97a

and DF-NSC97f from Ref. [65].

In the ΛΛ channel εΛΛ is adjusted to the experimental bond energy in 6
ΛΛ

He [69] from

Nagara event (see Sec. 2.1 for details) [45, 46, 54, 55]:

εΛΛ(ρΛ) = − f3(ρΛ)ρ
2
Λ
. (2.4)
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Table 2.1 Parameters of the functionals DF-NSC89, DF-NSC97a and DF-NSC97f
considering EmpC prescription for α7 [69]

Functional α1 α2 α3 α4 α5 α6 α7

DF-NSC89

+EmpC
327 1159 1163 335 1102 1660 22.81

DF-NSC97a

+EmpC
423 1899 3795 577 4017 11061 21.12

DF-NSC97f

+EmpC
384 1473 1933 635 1829 4100 33.25

The corresponding empirical approach EmpC for the ΛΛ channel is considered in the

present work (see Ref. [69] for details). The functions f1−3 in Eqs. (2.3, 2.4) are

expressed as,

f1(ρN ) = α1 −α2ρN +α3ρ
2
N , (2.5)

f2(ρN ) = α4 −α5ρN +α6ρ
2
N , (2.6)

f3(ρΛ) = α7 −α8ρΛ +α9ρ
2
Λ
, (2.7)

where α1−7 are constants given in Tab. 2.1. Since we completely don’t know the

high density behavior of hyperon-hyperon interaction, the parameters α8 and α9 are

therefore simply chosen to be 0 (the same approach has been done in Ref. [69]).

In uniform nuclear matter the single particle energies read,

εN (k) =
ħh2k2

2m∗N
+ vmat t.

NN and εΛ(k) =
ħh2k2

2m∗Λ
+ vmat t.

Λ
, (2.8)

where the vmat t.
Λ

decomposes as,

vmat t.
Λ

= vmat t.
NΛ + vmat t.

ΛΛ
. (2.9)

The potentials vmat t.
NN , vmat t.

NΛ and vmat t.
ΛΛ

derive from the energy functionals. Namely,

vmat t.
NN (ρN ,ρΛ) = vSk yrme

N +
∂ εNΛ

∂ ρN
, (2.10)

vmat t.
NΛ (ρΛ) =

∂ εNΛ

∂ ρΛ
, (2.11)

vmat t.
ΛΛ
(ρΛ) =

∂ εΛΛ
∂ ρΛ

. (2.12)
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Table 2.2 The parameters of the Λ-effective mass

Force µ1 µ2 µ3 µ4

DF-NSC89 1.00 1.83 5.33 6.07

DF-NSC97a 0.98 1.72 3.18 0

DF-NSC97f 0.93 2.19 3.89 0

The nucleon effective mass is given from Skyrme interaction [84] and the Λ effective

mass is expressed as a polynomial in the nucleonic density ρN as [81],

m∗
Λ
(ρN )

mΛ
= µ1 −µ2ρN +µ3ρ

2
N −µ4ρ

3
N . (2.13)

The values for the parameters µ1−4 are given in Tab. 2.2.

In hypernuclei, energy densities εN and εΛ are corrected by the effective mass term

before deriving potentials as (see Ref. [69] and therein),

εnucl.
NN (ρN) = εNN(ρN)−

3ħh2

10mN
ρ

5/3
N

�

6π2

gN

�2/3�mN

m∗N
− 1

�

, (2.14)

εnucl.
NΛ (ρN ,ρΛ) = εNΛ(ρN ,ρΛ)−

3ħh2

10mΛ
ρ

5/3
Λ

�

6π2

gΛ

�2/3�mΛ
m∗Λ
− 1

�

, (2.15)

εnucl.
ΛΛ
(ρΛ) = εΛΛ(ρΛ), (2.16)

where εnucl.
NN (ρN) satisfies

∂ εnucl.
NN (ρN)

∂ ρN
= vSk yrme

N . (2.17)

The present functional (SLy5 in the NN channel, DF-NSC in the NΛ channel and

EmpC in the ΛΛ channel) therefore yields an optimal set to perform HF calculations

in hypernuclei (see [69] for details).

2.3.2 Hartree-Fock-Bogoliubov Equations

The Hartree-Fock-Bogoliubov (HFB) framework is well designed for the treatment

of pairing both for strongly and weakly bound systems. In this work, we study

hypernuclei which are magic in neutron and proton and open-shell in Λ. We thus

consider the HFB framework in the ΛΛ channel, and the NN channel is treated within

Hartree-Fock (HF). In addition, because of their magic properties in the nucleon sector,

11



which still contains the majority of particles, we consider spherical symmetry. In the

HFB approach the mean field matrix that characterizes the system is obtained from

the particle and pairing energy densities [36]. Particle and pairing densities can be

expressed as

ρ(rσq, r′σ′q′) =
¬

ψ|a+r′σ′q′arσq|ψ
¶

, (2.18)

ρ̃(rσq, r′σ′q′) = −2σ′
¬

ψ|a+r′−σ′q′arσq|ψ
¶

. (2.19)

where a+r ′σ′q′ and arσq are creation and annihilation operators which affect nucleon

with σ = ±1/2 spin and q isospin from nucleon to hyperon at point r. The variation

of the energy expectation value E =



Φ | Ĥ | Φ
�

, with respect to ρ and ρ̃ under the

conservation of particle numbers, leads to HFB (or Bogoliubov-de Gennes) equations

in coordinate space:

∫

d3r′
∑

σ′

�

h(rσ, r′σ′) h̃(rσ, r′σ′)
h̃(rσ, r′σ′) −h(rσ, r′σ′)

��

ψ1(E, r′σ′)
ψ2(E, r′σ′)

�

=

�

E +λ 0

0 E −λ

��

ψ1(E, rσ)
ψ2(E, rσ)

�

, (2.20)

where the mean field matrix elements (h(rσ, r′σ′) and h̃(rσ, r′σ′)) are obtained by

variation of the expectation value of the energy with respect to the particle and pairing

densities:

h(rσ, r′σ′) =
δε(ρN ,ρΛ,τN ,τΛ)
δρ(rσ, r′σ′)

, (2.21)

h̃(rσ, r′σ′) =
δε(ρN ,ρΛ,τN ,τΛ)
δρ̃(rσ, r′σ′)

. (2.22)

In Eq. (2.20), the diagonal elements of the matrix in the integral correspond to

the particle-hole (Hartree-Fock) field while the non-diagonal elements of the matrix

correspond to particle-particle field which includes contributions of the pairing to the

mean field of the hypernucleus. Recalling Eqs. (2.14, 2.15 and 2.16), one can rewrite

the total energy functional for hypernucleus:

ε(ρN ,ρΛ,τN ,τΛ) =
ħh

2m∗N
τN +

ħh
2m∗Λ

τΛ + ε
nucl.
NN (ρN )

+εnucl.
NΛ (ρN ,ρΛ) + ε

nucl.
ΛΛ
(ρΛ), (2.23)

as it is shown in Eq. (2.21), taking derivatives of Eq. (2.23) leads to the mean field

12



operator for the particle-hole channel (i = N ,Λ):

∫

d3r′
∑

σ′

h(rσ, r′σ′) =
�

−∇
ħh2

2m∗i (r)
∇+ Vi(r)− iWi(r)(∇×σ)

�

, (2.24)

where Wi(r) is the spin-orbit term (WΛ(r) = 0 see Sec. 2.2 for details), VN (r) is the

nucleon potential and VΛ(r) is Λ potential, respectively defined by:

VN (r)≡ vSk yrme
N +

∂ εNΛ

∂ ρN
+
∂

∂ ρN

�

mΛ
m∗Λ(ρN )

�

×
�

τΛ
2mΛ

−
3
5
(3π2)2/3ħh2

2mΛ
ρ

5/3
Λ

�

, (2.25)

VΛ(r)≡
∂ εNΛ

∂ ρΛ
+
∂ εΛΛ
∂ ρΛ

−
�

mΛ
m∗Λ(ρN)

− 1
�

(3π2)2/3ħh2

2mΛ
ρ

2/3
Λ . (2.26)

2.3.3 The Particle-Particle Channel

For the particle-particle channel, due to scarce available information, especially for

the Λ pairing channel, it is convenient to consider a volume type zero range pairing

interaction in the ΛΛ channel as,

VΛpair
= VΛ0

δ(r− r′)δσσ′ , (2.27)

where VΛ0
is the Λ pairing strength.

We now discuss the strength VΛ0
of the Λ pairing interaction. At variance with

the NN pairing interaction, there are not enough experimental data to set the ΛΛ

pairing interaction. We therefore choose to calibrate the ΛΛ pairing interaction to

calculations of Λ pairing gaps in uniform matter, see for instance the recent work

in Ref. [85]. There are several predictions for the Λ pairing gap in uniform matter

which have been employed in cooling models for neutron stars. These predictions

are substantially different for several reasons: they were calibrated on either the

old [71, 72] or the more recent [73, 75] value for the Nagara event [54]; they were

considering non-relativistic [71, 72] or relativistic mean field [73, 75] approaches;

as a consequence, they incorporate different density dependencies of the nucleon

and Λ effective masses; they are based on various Λ interactions which are weakly

constrained. As a result, qualitatively different predictions have been performed in

nuclear matter: the influence of the nucleon density on the Λ pairing gap has been

found opposite between non-relativistic approaches [71, 72] and relativistic ones [73].
Despite these differences, the predictions of the Λ pairing gap at saturation density
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and for kFΛ ≈ 0.8 fm−1 (corresponding to the average Λ density ρsat/5 in hypernuclei)

are rather consistent across the different predictions and reach a maximum at about

0.5-0.8 MeV. For instance, under these conditions the Λ pairing gap is predicted to be

about 0.5 MeV for ρN = ρsat with HS-m2 parameters [73], and 0.5 (0.75) MeV for

NL3 (TM1) parameters with ESC00 Λ force sets [75]. These values are also consistent

with the extrapolations of earlier calculations [71, 72] in hypernuclear matter. Some

interactions predict however lower values. In the following, we will therefore calibrate

our ΛΛ pairing interaction on hypernuclear matter predictions of Ref. [73], which

represents an average prediction for the maximum possible Λ pairing gap.

In addition to the ΛΛ pairing, let us mention the existence of a prediction suggesting

a strong NΛ pairing interaction in nuclear matter [74]. In finite nuclei, large NΛ

pairing gaps may however be quenched by shell effects, due to large single particle

energy differences between the N and Λ states, or mismatch of the associated single

particle wave functions. This will be discussed in more details in the next chapter of

this thesis.

2.3.4 The Calculation of Nuclear Observables

Let us now discuss how to extract ground state properties for any hypernucleus

with HFB framework. Considering Eq. (2.20), one can find energy eigenvalues and

quasi-particle wave functions by solving two coupled differentials equation by using

numerical iterations starting from a trial wave-function. However, we don’t give the

full detail about the numerical solution of HFB equations, we refer to Refs. [35, 36]
for details. After the HFB iteration is converged, the particle and pairing densities can

be expressed as

ρ(rσ, r′σ′) =
∑

En<Ecut

ψ2(En, rσ)ψ∗2(En, r′σ′) (2.28)

ρ̃(rσ, r′σ′) = −
∑

En<Ecut

ψ2(En, rσ)ψ∗1(En, r′σ′), (2.29)

where Ecut is the cutoff energy which simulates the finite range of the interaction for

mean fields. We used a 60 MeV cutoff energy and 15ħh cutoff total angular momentum

for quasi-particles, allowing for a large configuration space for all hypernuclei under

study. The fact that the density matrix ρ(rσ, r′σ′) vanishes for r→∞ or r′→∞ has

an important consequence for the canonical basis of the HFB problem formed by the

eigenfunctions of the density matrix,

∫

d3r′
∑

σ′

ρ(rσ, r′σ′)φn(r
′σ′) = v2

nφn(rσ), (2.30)
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where the v2
n is the occupation probability and φn(rσ) are canonical states which also

represents the wave function of nucleons. We now are ready to introduce pairing field

h̃(rσ, r′σ′) by using Eq. (2.27) in the following way:

h̃(rσ, r′σ′) = VΛpair
= VΛ0

δ(r− r′)δσσ′ . (2.31)

Making the same approach as we did for Eq. (2.30), one can also generate u2
n (while

satisfying v2
n+u2

n = 1 condition). As a result, quasi-particle wave functionsψ1 andψ2

are now proportional to the canonical basis wave functions as,

ψ1(En, rσ) = unφn(En, rσ) (2.32)

ψ2(En, rσ) = vnφn(En, rσ), (2.33)

which are also eigenfunctions of the particle-hole (Hartree-Fock) and particle-particle

(pairing) field:

∫

d3r′
∑

σ′

h(rσ, r′σ′)φn(r
′,σ′) = (εn −λ)φn(r,σ), (2.34)

∫

d3r′
∑

σ′

h̃(rσ, r′σ′)φn(r
′,σ′) = ∆nφn(r,σ). (2.35)

The eigenvalues εn − λ and ∆n represent particle and pairing energies for each

shell respectively where λ is acquired from the HFB iteration is already defined in

Eq. (2.20). Besides, λ can also be interpreted as the Fermi energy of each channel

when the HFB iteration is converged [36].

Finally we shall obtain the total energy of a hypernucleus and also density distribution

of each nucleons and hyperons. The total energy of a hypernucleus Etot can be

calculated by using εn and ∆n as

Etot =
∑

i=N ,Λ

q

(εi −λ)2 +∆2
i . (2.36)

The particle and pairing densities for an each shell is easily calculated by taking the

trace of densities which are already defined in Eq. (2.28):

ρN ,Λ(r) = Tr[ρN ,Λ(rσ, r′σ′)], (2.37)

ρ̃N ,Λ(r) = Tr[ρ̃N ,Λ(rσ, r′σ′)]. (2.38)

In the following chapter, we show the calculated results of single particle spectrums,

densities and binding energies for the selected hypernuclei.
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2.4 Concluding Remarks

In the present chapter, we provided theoretical foundations for calculating ground

state properties of Λ hypernuclei. On this purpose, we first described a density

dependent interaction for NN, NΛ and ΛΛ channels. For NN channel, the SLy5

Skyrme functional is used, while for the NΛ channel we use three functionals fitted

from microscopic Brueckner-Hartree-Fock calculations: DF-NSC89, DF-NSC97a and

DF-NSC97f. These functionals reproduce the sequence of single-Λ experimental

binding energies from light to heavy hypernuclei. For the ΛΛ channel, we used the

empirical prescription EmpC which is calibrated on the experimental bond energy in
6HeΛΛ in which, we excluded the high density behavior of the ΛΛ functional due to the

lack of experimental information. In order to modelling pairing, we consider a zero

range pairing force in the ΛΛ channel, opening the possibility to calculate open-Λ

shell nuclei. We also reviewed the current situation about Λ pairing in hypernuclear

matter sector where, the Λ pairing gap varies between from 0.5 MeV to 0.75 MeV for

the density ρN = ρsat depending on different interactions. All things considered, we

use all these interactions within the Hartree-Fock-Bogoliubov formalism to calculate

ground state properties of Λ hypernuclei. In addition, our calculations are performed

in spherical symmetry since deformation is not expected to increase greatly in the

case of pairing correlations. Therefore, we shall consider hypernuclei with proton

and neutron closed shells, e.g. 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb, since semi-magicity often

guarantees that nuclei remain at, or close to, sphericity.
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3
PAIRING IN HYPERNUCLEI: RESULTS

3.1 An Overview

In the present section, we show predictions for the Λ pairing gap and its impact

on multi-Λ hypernuclei. In order to achieve this quest, we first discuss relative

gaps between N and Λ single particle energies predicted by HF calculation without

the pairing to assert our calculation without NΛ pairing. We then employ

Hartree-Fock-Bogoliubov (HFB) framework including pairing in the ΛΛ channel to

study binding energies and density profiles in multi-Λ hypernuclei.

3.2 Hunting Clues for the Λ Pairing: Results of the Hartree-Fock

Approach

3.2.1 Λ Single Particle Spectrums for Multi-Λ Hypernuclei

Let us first discuss the hypernuclei of interest in this work, without ΛΛ pairing

interaction. On this purpose, we investigate closed shell hypernuclei such as 60
20ΛCa,

172
40ΛSn, 278

70ΛPb shown in Fig. 3.1. These nuclei are triply magic. Due to the absence

of spin-orbit term, the shell structure of hyperon is also expected to be similar to

that of the spherical harmonic oscillator, with magic numbers 2, 8, 20, 40, 70, etc,

and the energy gaps are larger than in ordinary nuclei. While the central potential is

also expected to modify the details of the single particle spectrum, the gross increase

of the single particle gap compared to ordinary nuclei, is mostly due to the absence

of spin-orbit interaction. New magic numbers in the Λ channel is clearly caused by

absence of spin-orbit interaction, increasing the degeneracy of the states as well as the

average energy gaps between single particle states. In order to check this statement,

we have calculated the single particle spectrum for other Skyrme interactions, e.g.

SGII [86], SAMI [87] and SIII [88], and we found the same gross conclusions.

The average single particle gaps between two neighboring orbitals can be estimated

from Fig. 3.1, where the Λ spectrum is shown for 60
20ΛCa, 172

40ΛSn, and 278
70ΛPb hypernuclei
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Figure 3.1 The Λ single particle spectrum 60

20ΛCa (a) and 172
40ΛSn (b) hypernuclei,

calculated with the HF approach
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Figure 3.1 The Λ single particle spectrum of 278

70ΛPb (c) hypernucleus, calculated with
the HF approach (Continued)

and for 3 different density functional in the Λ channel (the Skyrme interaction SLy5

is fixed in the nucleon channel): the average single-particle gap is found to be

generally larger than 4 MeV, except for the gap between the 2s-1d and 3s-2d states,

where it is between 1 and 3 MeV. These smaller energy gaps may be related to the

pseudo-spin symmetry [89, 90], since the 2s-1d and 3s-2d states are pseudo-spin

partners. The small energy gap between these states makes them good candidates

for pairing correlations: These states could largely mix against pairing correlations

when they are close to the Fermi level, represented in dashed lines in Fig. 3.1. For the

selected nuclei in Fig. 3.1, the Fermi level is indeed close to either the 2s-1d or the

3s-2d states in the cases of Ca and Pb hypernuclei, respectively.

The energy spectra predicted by DF-NSC89+EmpC and DF-NSC97f+ EmpC are

mainly identical, while the single particle states predicted by DF-NSC97a+ EmpC

are systematically more bound, since the NΛ potential is deeper for DF-NSC97a+
EmpC compared to the two others functionals [69, 83]. We give a more quantitative

estimation of the single particle energy differences between the predictions of

DF-NSC97a+EmpC and DF-NSC89+EmpC in Tab. 3.1. As expected, the larger the

number of hyperons, the larger the differences. The larger the nucleon density, the
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– SΛSn (b) hypernuclei with the HF approach
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– SΛPb (c) hypernuclei with the HF approach (Continued)

larger the differences as well, since the NΛ potential strongly depends on nucleon

density. Hence, the difference is larger for the deep single particle states than for the

weakly bound ones.

3.2.2 Possibility of the NΛ Pairing Channel

We now discuss the NΛ and ΛΛ pairing channels. These two pairing channels are

expected to compete: a Lambda can be paired either to a nucleon or to another

Lambda. Drawing an analogy with T = 0 and T = 1 pairing channels in ordinary

nuclei, the pairing interaction between two different particles (T = 0) can occur under

the condition of a good matching between their wave functions and also between their

single particle energies. This is the main reason why T = 0 pairing is expected to

appear mainly at (or close to) N=Z nuclei [91, 92].

Let us first focus on the NΛ pairing. A necessary condition for this pairing to occur is

that the neutron or proton Fermi energy is close to the Λ one. The neutron, proton and

Λ Fermi energies are displayed on Fig. 3.2 as function of the strangeness number −S

for the three representative nuclei: 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb. The intersections of
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Table 3.1 Energy difference of each shell between DF-NSC97a+EmpC and
DF-NSC89+EmpC force sets. The detailed spectra are shown in Fig. 3.1

Shell Energy Difference (MeV)
60

20ΛCa 172
40ΛSn 278

70ΛPb

1s 6.00 7.50 8.50

1p 6.00 6.87 7.10

1d 3.32 5.80 6.36

2s 2.59 5.57 6.42

1f - 4.81 6.30

2p - 4.20 5.20

nucleons and Λ Fermi energies occur at −S = 4 (neutrons) and 8 (protons) for 40 – S
– SΛCa,

−S = 10− 16 (proton) and 20− 32 (neutrons) for 132 – S
– SΛSn and for −S = 34− 40 for

both neutrons and protons 208 – S
– SΛPb hypernuclei.

Let us now take typical examples of the nuclei which are located at these crossings.
44
4ΛCa and 48

8ΛCa single-particle levels are shown in Fig. 3.3 and the ones of 244
36ΛPb is

shown in Fig. 3.4. The Λ Fermi level is mainly the 1p state in 44
4ΛCa and 48

8ΛCa, and

there are no p states in the neutron and proton spectrum around the Fermi energy.

The conditions for NΛ pairing are therefore not satisfied for Ca isotopes.

A similar analysis can be made for the Sn isotopes. We also calculated 142
10ΛSn, 152

20ΛSn

and 156
24ΛSn hypernuclei for which the proton or neutron and the Λ levels cross. The

last occupied Λ states is 1d for 142
10ΛSn (resp. 2s for 152

20ΛSn and 1f for 156
24ΛSn) while the

corresponding proton (res. neutron) state is 1g9/2 (resp. 1h11/2). Since the quantum

orbital numbers does not coincide between the nucleons and the Λ states in the cases

where their respective Fermi energies cross, the NΛ pairing is not favored for these Ca

and Sn nuclei.

The case of 208 – S
– SΛPb hypernuclei is different. Fig. 3.4 displays the single particle

spectrum for 244
36ΛPb hypernucleus, since the crossing of the nucleon (neutrons and

protons) and Λ Fermi levels occurs at around S = −36 (Fig. 3.3). Fig. 3.4 shows that

the last filled orbits are 3s1/2 for proton, 3p1/2 for neutron and 2p for Λ. Since Pb is

magic in proton, only neutrons and Λ may be paired. We therefore predict that nΛ

pairing may occur for 208 – S
– SΛPb hypernuclei and for Λ between S = −34 and S = −40.

For lower or higher values of S, the mismatching of the single particles orbitals does

not favor nΛ pairing. Since the level density increases with increasing masses, it is

expected the general trend that NΛ pairing may occur more frequently as A increases.

208 – S
– SΛPb is a typical case representing heavy hypernuclei. Since the Ξ-instability is
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expected to occur around −S = 70 [69], we can infer that pairing may occur for about

10% of 208 – S
– SΛPb isotopes. This number may be considered as the maximum percentage

of heavy hypernuclei where NΛ pairing may occur. The amount of hypernuclei where

NΛ pairing is possible is therefore predicted to be small. In the following, we will

avoid the cases where it may occur.

3.3 Investigating Impacts of the ΛΛ Pairing on Hypernuclei: Re-

sults of the Hartree-Fock-Bogoliubov Approach

3.3.1 A Fitting Protocol for the ΛΛ Pairing Strength

We now focus on the ΛΛ pairing and consider the cases of semi-magical hypernuclei,

such as 40 – S
– SΛCa, 132 – S

– SΛSn, and 208 – S
– SΛPb. It should be noted that these nuclei are magic

in both proton and neutron numbers, which helps most of these hypernuclei to resist

against deformation, as in the case of normal hypernuclei. They have however an

open shell in the Λ channels.

The Λ pairing strengths, mean gaps and averaged mean gaps of isotopic chains are

displayed in Tab. 3.2. The fitting procedure for the ΛΛ pairing is the following:

we first remind that the ΛΛ mean-field interaction is calibrated to the ΛΛ bond

energy in 6He (Nagara event; see Sec. 2.3.1 for details). We then consider

open-shell nuclei and calibrate the average Λ-pairing gap to its expectation from

uniform matter calculations. Densities are averaged from r=0.2 fm to 10 fm for each

hypernucleus and each force set using HF results for each isotopes. Fermi momentums

corresponding to these densities are calculated as kFΛ = (
3π2

2 ρΛ)
1/3. The density profile

of hypernuclear matter calculations [73] which has corresponding Fermi momentum

and density fraction allows to extract ΛΛ pairing gap for each hypernuclei for each

force sets. In order to find adequate Λ pairing strength (VΛpair
in Eq. (2.27)), starting

from -50 MeV fm3 to -300MeV fm3, we iterated and determined mean gap values for

each hypernuclei chain in HFB calculation. For each iteration, the mean gap values are

averaged over the isotopic chain until similar values of pairing gaps of hypernuclear

matter calculation are obtained. Namely for the 40 – S
– SΛCa isotopic chain, the average

mean gap was calculated by summing each mean gap of hypernucleus starting from

−S=6 to −S=20 and dividing by the total isotope number. Similarly for the 132 – S
– SΛSn

(208 – S
– SΛPb) isotopes, the average man gap determined between −S=18 (−S=58) to

−S=40 (−S=70) range. The average mean gaps for each isotopes with each force set

is given in Tab. 3.2. A typical 0.5 MeV gap is obtained in all nuclei, leading to a pairing

effect independent of the number of Λ involved.
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Figure 3.5 Difference of binding energies between HF and HFB for 40 – S
– SΛCa (a) and

132 – S
– SΛSn (b) hypernuclei with DF-NSC89+EmpC, DF-NSC97a+EmpC and

DF-NSC97f+EmpC force sets
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3.3.2 The ΛΛ Pairing and Nuclear Binding Energies

The effect ofΛΛ pairing on the binding energy can be estimated from the condensation

energy, defined as Econd = EHF − EHFB. The condensation energy measures the impact

of the pairing effect on the binding energy. Fig. 3.5 displays the condensation energy

for a set of 40 – S
– SΛCa and 132 – S

– SΛSn semi-magical hypernuclei. As in the case of normal

nuclei, the condensation energy evolves as arches, with zero values at closed shells

and maximum values for middle-open shells. The condensation energy can reach

about 3 MeV in mid-open shell hypernuclei for Ca and Sn isotopes. Since the ΛΛ

pairing interaction considered here is calibrated on the maximum prediction for the Λ

gap in uniform matter with respect to Λ force sets, the condensation energy represents

the estimation of the maximum value for the condensation energy generated by ΛΛ

pairing interaction. Besides, the Λ numbers at which condensation energy is zero

signs the occurrence of the shell closure. It is therefore not surprising to recover the

magical numbers 8, 20, 40, as we previously discussed. Strong sub-shell closure occurs

for Λ=34 in Sn isotopes corresponding the filling of the 1f state.

Investigating the effect of ΛΛ pairing on the single particle energies, it turns out to be

weak: states around the Fermi level are shifted by about 100-200 keV at maximum.

The impact of Λ pairing on single particle energies remains therefore rather small.

3.3.3 The ΛΛ Pairing and Nuclear Densities

We now discuss the effect of ΛΛ pairing on both normal and pairing densities. Fig. 3.6

shows normal density profiles for 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb series of hypernuclei. For

the 40 – S
– SΛCa series we consider cases where the NΛ pairing is not expected to occur. As

mentioned above, the 1d and 2s states are almost degenerate, and can largely mix due

to pairing correlations. Namely, before the 1d orbital is completely filled, Λ hyperons

start to fill the 2s state due to the pairing interaction, resulting in a small increase at

the centre of the hypernucleus which corresponds the effect of the s state. Similar

results can be seen on the density profile of 208 – S
– SΛPb hypernucleus: Before the 2d state

is completely filled, Λ hyperons start to fill the 3s state due to the pairing interaction

resulting from the almost degeneracy of the 2d and 3s Λ-states. In the case of 132 – S
– SΛSn,

there is no major difference on density profiles: because of the large gap between 1f

and 2p states, the Λ pairing changes only the total energy of the 132 – S
– SΛSn isotopic chain

in −S=24 to −S=30 zone but does not impact the occupation numbers of 1f and 2p

orbitals.
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Figure 3.6 Normal density profiles with on/off pairing for 40 – S
– SΛCa (a) and 132 – S

– SΛSn (b)
hypernuclei, calculated with the HFB approach
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Figure 3.6 Normal density profiles with on/off pairing for 208 – S
– SΛPb (c) hypernuclei,

calculated with the HFB approach

Fig. 3.7 displays the Λ pairing density for 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb. As mentioned

above, pairing interaction effects result in the partial occupation of Λ hyperons in the s

and d states. The pairing density of 54
14ΛCa hypernucleus peaks at 3 fm due to half-filled

1d orbital. As strangeness number increases, hyperons start to fill the 2s state and the

contribution of the 1d state decreases. For −S=18, Λ hyperons starts to largely fill

the 2s state before the 1d state is completely full, resulting in a pairing density having

non-negligible contributions of both s and d states. Similar result can be seen for the

pairing density of 208 – S
– SΛPb hypernuclei which has 2d-3s coupling. At −S=64, pairing

densities are mainly built from the 2d state but as the strangeness number increases,

the pairing of 2d orbital decreases while pairing density at 3s state increases. However

for 132 – S
– SΛSn hypernuclei, the situation is different. Due to the large energy gap between

2s and 1f states, the pairing interaction does not change the occupation of these states.

For this reason, the pairing density is only built from the 1f orbital and its magnitude

increases when the occupation of the 1f orbital increases until it is half-filled. When the

1f state is more than half-filled, the magnitude of the pairing density starts to decrease.

The spatial distribution of pairing effect in hypernuclei is therefore expected to exhibit

strong variations from one hypernucleus to another, because of the weak spin-orbit
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Figure 3.7 Λ pairing densities for 40 – S
– SΛCa (a) and 132 – S

– SΛSn (b) hypernuclei, calculated
with the HFB approach
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Figure 3.7 Λ pairing densities for 208 – S
– SΛPb (c) hypernuclei, calculated with the HFB
approach

effect, giving rise to well separated sets of states.

3.4 Concluding Remarks

In the present chapter, we first investigated the shell structure of 40 – S
– SΛCa, 132 – S

– SΛSn and
208 – S

– SΛPb hypernuclear chain with using HF approach to discuss the NΛ pairing. It is

seen that since the energy difference between the N and Λ Fermi levels are usually

large (more than 5 MeV) in the considered hypernuclei, the NΛ pairing is quenched

in most of the cases. An exception however is 208 – S
– SΛPb hypernuclear chain. There is

a match between S = −34 and S = −40 for neutron and Λ Fermi energies which

means that neutron-Λ pairing may occur for the related interval. We can infer that

pairing may occur for about 10% of 208 – S
– SΛPb isotopes. Besides, the expected general

trend is that NΛ pairing may occur more frequently as A increases because the level

density increases with increasing masses. However, since the Ξ-instability could limit

the maximum number of Λ around −S = 70, the amount of hypernuclei where NΛ

pairing is possible, is therefore predicted to be small.

We then used the HFB approach on same hypernuclei. A ΛΛ pairing interaction
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is therefore introduced, which magnitude is calibrated to be consistent with the

maximum BCS predictions for the Λ pairing gap in hypernuclear matter. The impact

of ΛΛ pairing on the binding energies, density profiles and single particle energies

have been analyzed for 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb chains. We have shown that the

effects of the ΛΛ pairing depends on hypernuclei. At maximum, the condensation

energy in these chains is about 3 MeV. Density profiles reflect the occurrence of

almost degenerate states in the Λ single particle spectrum, such as for instance the

almost degeneracy between the 1d and 2s states in 40 – S
– SΛCa hypernuclei and 2d and 3s

almost-degeneracy in 276
68ΛPb. The effects of the Λ pairing also depend on the NΛ and

ΛΛ force sets, but we found only a small overall impact. Generally, we found that

ΛΛ pairing could be active if the energy gap between orbitals is smaller than 3 MeV.

Under this condition, Λ pairing could impact densities and binding energies. Since

only a weak spin-orbit interaction is expected in the Λ channel, Λ states are highly

degenerated and usually distant by more than 3 MeV in energy. In conclusion, the

present microscopic approach shows that the Λ-related pairing effect can usually be

neglected in most of hypernuclei, except for hypernuclei which have a single particle

gap lower than 3 MeV around the Fermi level.
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4
NEUTRON STARS: FOUNDATIONS AND CONSTRAINTS

4.1 Prologue: A Dying Star

An ordinary star is at a delicate balance between the gravitation and the pressure

caused by thermonuclear reactions. Since the fusion of light nuclei into ever increasing

heavier elements terminates abruptly with the synthesis of the iron-group elements

(mostly 56Fe) that are characterized by having the largest binding energy per nucleon,

the 56Fe accretion continues at the core of the star as long as it has fuel to support

thermonuclear reaction. Once, 56Fe accretion at the core reaches the Chandrasekhar

limit (1.44M�) or its fuel to ignite thermonuclear reaction is finished, the gravity starts

to win and the collapse begins [93, 94]. If the mass of star is greater than 9M�,

the 56Fe scenario happens and during the collapse, the star goes into the supernovae

phase [94]. However, if it has a smaller mass than 9M�, the out-of-fuel scenario

happens and the star will turn to a red giant [93]. In both cases, the thermonuclear

reaction inside the core is slowed and eventually stopped. Since the thermonuclear

reaction is the only source of pressure to counterbalance the gravity, the gravity starts

to compress the interior of the star. First solid state forces try to stop gravity, however

it is not enough: electrons start to be compressed by gravity while they resist placing at

same quantum state due to their fermionic nature. This is called electron degeneracy

pressure [3].

If the electron degeneracy pressure is large enough to stop the gravity, the dying star

core becomes a white dwarf [3, 7, 8]. This is a typical end for red giants. However,

if the dying star is a supernovae, the degeneracy pressure of the electrons is not large

enough to stop the gravity. Therefore, the electrons start to get close from each other

and their wavelength become of the order of fm, with an increased Fermi momentum

allowing for appearing electrons near or inside of the nucleus at high pressure. This

starts a massive electron capture process:

p+ e− −→ n+ ν (4.1)
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Because of electron capture, there is also a β decay:

n −→ p+ e− + ν̃ (4.2)

Consequently, 56
26Fe turns to 62

28Ni by electron capture process and subsequent β decay

(for instance, 62 56
26Fe nuclei create 56 62

28Ni nuclei with the help of highly energetic

degenerate electrons due to the gravity) then to a heavier neutron rich nucleus 122
39 Y

and it continues to heavier nuclei with an increased neutron fraction [8]:

56
26Fe

Gravity
−→ 62

28Ni
Gravity
−→ 122

39 Y
Gravity
−→ .....

Gravity
=⇒ Nuclear Matter (4.3)

Since the driven force is the work done by the compression due to the gravity,

it continues until the gravity is counterbalanced: nuclear matter could stop the

collapse due to its incompressibility. If then, accelerated particles during collapse

will bounce from the nuclear matter core and create a shockwave which is called

supernovae explosion [94]. Consequently, the matter outside of the core is ejected to

the interstellar medium. The remaining neutron rich, hot and dense nuclear matter

in the core forms an object named Neutron Star.

4.2 Neutron Stars: General Properties

Neutron stars (NS) are one of the most interesting objects in universe. They have

a typical mass M = 1 − 2M�, where M� = 2 × 1033 g is the solar mass, and a radii

R= 10−14 km [2, 3, 7, 8]. Their place on stellar evolution between white dwarfs and

black holes, makes them a very charming object to understand the exotic phases of

matter. While experiments in finite nuclei probe densities around saturation density

of nuclear matter (nsat ≈ 0.16fm−3, ρsat ≈ 2.7× 1014 g/cm3) and heavy-ion collisions

explore a wider domain of densities with small isospin asymmetries, NSs are the solely

system to explore the equilibrium properties of dense matter at densities well above

saturation density, and with large isospin asymmetries (Note that instead of Ch. 2 and

Ch. 3, we used n for the particle density and ρ for the matter density.) [2].

From the astrophysical side, the observation of NSs allows to set limits on the

maximum mass which also affects the maximum density of stable baryonic matter.

The maximum mass of neutron stars, which is yet not well-determined, fixes the

mass boundary between NSs and black holes, which give clues on the understanding

of supernova core-collapse mechanism [94] as well as of the fate of NS mergers

as kilonovae [95]. The observed masses vary from 1.174(4)M� [6, 70] to about

2M� [6, 23] and the centroid value is 1.4 M� [6]. The well established upper

mass limits are: 1.908(16)M� for PSR J1614-2230 [24] and 2.01(4)M� for PSR
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Figure 4.1 Observed NS masses from Ref. [6]
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J0348+0432 [23]. Nowadays, widely accepted observed maximum mass of NS is

(M obs
max = 2.01(4)M�) [23]. Recently, two new observations have raised up the upper

limit to Mmax = 2.14+0.10
−0.09M� from Shapiro delay (which is an observable when a stellar

object passes behind its companion during the orbital motion, creates a small delay

in pulse arrival times induced by the curvature of space-time in the vicinity of the

companion star) associated to the MSP J0740+6620 [96] and Mmax = 2.27+0.17
−0.15M�

from magnesium lines associated to the "redback" PSR J2215+5135 [97].

Unlike mass, radii observations from NS thermal emission or X-ray burst is not very

accurate [6, 98–103]. A clear understanding of the composition of the atmosphere,

the magnetic field, the NS spinning as well as the density of the interstellar medium is

however necessary to get reliable estimation of the NS radius [6]. Model dependence

is also an important source of uncertainties since it was shown that it can shift radii

up to 2 km [102]. Eventually, the predicted radii from the X-ray observations for

M = 1.4M� is in the 9.8 − 11 km range. However, it could also be as small as

R1.4 = 8.9+1.7
−1.0 km from Ref. [102] or as large as R1.4 = 12+0.66

−0.45 km from Refs. [98, 99].
In a recent work, a semi-agnostic meta-model identical to ours was directly injected

in the analysis of the thermal emission from 7 qLMXB [103]. The constant radius

approximation of Ref. [104] was also performed with the new data, providing a

radius of about RNS ≈ 11.06 ± 0.4 km. Injecting constraints from nuclear physics

and neglecting possible phase transitions in dense matter, the radius of a 1.4M� NS

is predicted to be R1.4 ≈ 12.4± 0.4 km. The observation of a NS with a lower radius

would clearly indicate a softening of the EoS induced by new degrees of freedom which

are not contained in our nuclear physics meta-modeling.

Now let us start to give some technical details. Since NS are formed from the balance

between pressure and gravity, it is fundamental to define a term named as equation of

state (EoS). This "EoS" represents the dependence of the pressure P on mass density ρ

(associated energy density ε = ρc2) and on temperature T of matter where ρ is source

of gravity, and P is governed by the interactions between the particles. Approximately

1 minute after the explosion, NS reaches a thermal equilibrium between the core and

the crust in which its core temperature is around 0.03−0.12 MeV [105]. Temperature

T therefore can be neglected on EoS at first order. The model dependency comes

from P(ρ) and the related interactions. Therefore, theoretical predictions of models

and interactions from nuclear physics cannot accurately constrain observational

measurements. More precisely, the extrapolations to ρ = 2 − 10ρsat is still under

discussion since the behavior of EoS for ρ ≥ ρsat is not known from nuclear

experiments. Therefore, more precise observations are needed to understand the high

density behavior of the EoS.
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Another debated topic about the high density behavior of NS EoS is the phase

transition. For densities above ρ ∼ 3ρsat , new degrees of freedom could appear,

such as pion condensation [20–22], hyperonization [9–13, 15] or phase transition

to quark matter [16–19]. In general the occurrence of new degrees of freedom tends

to soften the EoS, and thus reduce the radius, except in the case of the quarkyonic

model, which describe the transition to quark matter as a crossover [19]. However,

the softening is smaller at second order phase transition such as hyperonization and

pion condensation compared to first order one such as quark matter. In addition,

it is also possible to consider pion condensation as a first order phase transition,

which dramatically softens the NS EoS (see Ref. [20] for details). A recent article

(Ref. [22]) discuss a possibility for pion condensation in nuclear medium by extracting

Landau-Migdal parameter from Gamow-Teller transitions of 132Sn to 132Sb. However,

the effect of pion condensation on EoS is predicted to be negligible from nuclear matter

calculations due to the low energy gap of superconductivity [21]. Therefore, other

kind of phase transitions are subject of debate: Hyperonization and quark matter. At

large densities, a substantial population of hyperons are expected because the Fermi

energy of neutrons becomes of the order of their rest mass, leading to an increase

of the hyperon fraction, but it also reduces the degeneracy pressure inside the NS,

leading to soft NS EoS at high densities. The softening of the EoS also reduces the

maximum mass, and therefore the observation constraint for M obs
max could be crucial for

the EoS selection. This is often referred as the hyperonization issue [9–11, 13]. On the

other hand, phase transition to deconfined quark matter could also soften the NS EoS

without breaking down the M obs
max constrain, if the speed of sound in dense quark matter

is fixed to a large value (above the conformal limit of C2
s,∞ = 1/3 [106]) [107–109].

4.3 A New Constraint: GW170817

As reviewed in previous discussion, the precision of observational mass/radii

measurements is not enough to determine NS EoS, while nuclear experiments are only

constraining the densities around saturation densities (ρsat = 2.7×1014 g/cm3) which

is far from the densities of NSs (ρ = 3−10 ρsat). Therefore, the extrapolation of these

models are indeed inside the observational margins but not enough for an accurate

definition of interior structure. However, there is an additional constraint which is

directly connected to the interior structure of NS: Tidal deformability [27–29]. During

the in-spiral, two NS in a binary emit gravitational wave while dancing with each

other and during that process, each of them is deformed due to the tidal gravitational

field created by their companion. The emitted gravitational wave can be understood

as a composition of two different parts: The orbital motion of each individual mass

and the quadrupole response of the tidal gravitational field. The quadrupole part is
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important since it includes geometry/distribution of mass (energy) inside the NSs. In

other words it is directly connected to the NS EoS. This kind of effect is characterized

by the tidal deformability (Λ̃) which will be detailed in Sec. 4.7.

In 2017, the first gravitational waves (GW) from a binary NS merger (GW170817)

have been detected by the LIGO-Virgo collaboration [25, 26], providing an estimation

of the NS tidal deformability Λ̃. The tidal deformability is similar to the measure of

compactness of star [25], and together with a measure of the mass, is can be used

to extract the NS radius [109]. The tidal deformability extracted from GW170817

is 70 < Λ̃ < 720 at 90% confidence level from Ref. [26], and 70 < Λ̃ < 500

from Ref. [30]. Moreover the Λ̃ probability distribution function (PDF) exhibit an

interesting structure, doubly peaked in Ref. [26] (with a large and a small peak) and

only single peaked in Ref. [30].

After the detection, the GW170817 signal has been confronted to various nuclear

models of EoS, going from the most agnostic ones, such as piece-wise polytropes [110–

113] and sound speed EoS [108, 109], semi-agnostic approaches where matter

composition is known, Taylor-Expended EoS [108, 109, 114–116]) or more traditional

approaches based on nuclear interactions or Lagrangian, such as Skyrme-Type

Functional [115, 117–120], and Relativistic Mean Field [115, 117, 121–123]. In

Refs. [121, 122], based on Relativistic Mean Field modeling, the authors concluded

that the nuclear empirical parameters Ls ym is independent from the radius at 1.4M�
and that most of the explored EoSs are inside the tidal deformability limit (Λ̃ <

720). In Refs [118] and [120], 5 and 28 Skyrme Type Functionals were analyzed

predicting NS radii to be 11.8 ≤ R1.4 ≤ 12.8 km from Ref. [118] (R1.4 = 11.6± 1 km

from Ref. [120]) and the tidal deformability for canonic NS mass (1.4M�) 308 <

Λ1.4 < 583, respectively. Additionally, it is suggested that the nuclear isoscalar giant

monopole resonance (ISGMR) could constrain the compactness of NS [120]. This

result is important since we also use ISGMR to constrain NS EoS. In Refs. [111, 112],
polytropes were used to calculate NS EoS leading to 12 ≤ R1.4 ≤ 13.7 km for the

canonical 1.4M� NS radius. Similar results are found using both Relativistic Mean

Field and Skyrme Type Functionals [114, 115, 117] , as well as Taylor-Expended

EoS [114, 115]. Contrary to Ref. [121], Taylor-Expended EoS from Ref [115]
showed that the tidal deformability has a specific impact on both the slope of the

incompressibility at the saturation density M0 and Lsym (see Eq. 4.4). Recently,

GW170817 has been reanalysed based on an agnostic approach and including a

constraint on the maximal mass of NS [124]. This analysis concluded that the NS

radius shall be R∼ 11± 1 km.

In addition to the GW signal, the GW170817 binary NS merger have produced an
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observed electromagnetic signal (AT2017gfo) and a gamma-ray burst (GRB170817A).

These additional signals are influenced by the properties of the in-spiral NS, and

could potentially also help the characterization of the tidal deformability. A recent

multi-messenger Bayesian analysis have been performed based on the present

knowledge and modeling of the EM and GRB signals [31]. This analysis has

considerably reduced the Bayesian probability corresponding to Λ̃ ≤ 300, which

incidentally reinforce the probability for Λ̃ ≥ 300 [31]. While one should expect

improved modeling of the electromagnetic and gamma-ray burst emission before

rising strong conclusions, this analysis illustrates how a global understanding of the

transient event could shed light on the estimation of the tidal deformability.

4.4 Main Principles

Until now we provided observational and theoretical data about NSs, which also

describes the starting point and framework of our work. Therefore, it is worth to

mention about the principle of this work before explaining theoretical foundations.

As we discussed above, the most common description of the NS is a giant nuclear

system which contains neutrons and protons, as well as a gas of electrons and muons

at the β equilibrium [2]. If we assume this description is true, it opens a possibility

to define high density region of nuclear EoS from the NS observations. Hence, since

we aim at exploring the limits of nucleonic hypothesis for the composition of the core

of NS, we currently did not include phase transition at high density. All in all, the NS

EoS should satisfy following conditions:

• The EoS should have compatible results at finite nuclear properties and its

implications should feasible to the nuclear physics without model dependency.

• The EoS should satisfy to the NS observations in terms of maximum observed

NS mass and tidal deformability.

• The EoS should naturally satisfy causality and stability conditions at all

densities [125].

4.5 A Semi-Agnostic Approach: The Meta-Model

4.5.1 Meta-Model: Introduction

We consider an semi-agnostic approach which is mainly parameterized in terms of

nuclear empirical parameters (describing EoS fundamental properties such as the

nuclear incompressibility) and can thus be easily related to experimental knowledge
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from nuclear physics. At variance to fully agnostic approaches such as piece-wise

polytropes [110–113] or sound speed model [108, 109], the present meta-model can

predict proton, electron and muons ratios as function of the density. These ratios

are controlled by the density dependence of the symmetry energy, and therefore the

meta-model establishes correlations between particle ratios and nuclear empirical

parameters. It allows to follow the β equilibrium and any path out-of-equilibrium,

such as the ones encountered in supernovae core collapse [37]. Hence, it can

reproduce the EoSs based on any nuclear interactions such as Skyrme-Type Functional

or Relativistic Mean Field by choosing a unique empirical parameter set. Thanks to the

meta-model, the problem reduces to find empirical parameters rather than working

either on interaction or framework.

Lets us explain how the meta-model can potentially include all EoSs from nuclear

physics. To do so, one should perform a link between experimental nuclear

observables and theory, which can be done by nuclear empirical parameters. The

link between NS matter and nuclear experiments can be performed through the

nuclear empirical parameters, directly connected to the properties of the EoS. These

parameters are defined as the Taylor coefficients of the binding energy density for

symmetric matter (SM) esat and for the symmetry energy esym,

esat(n0) = Esat +
1
2

Ksat x
2 +

1
3!

Qsat x
3

+
1
4!

Zsat x
4 +O(x5), (4.4)

es ym(n0) = Esym + Lsym x +
1
2

Ksym x2 +
1
3!

Qsym x3

+
1
4!

Zsym x4 +O(x5). (4.5)

where the Taylor expansion parameter is x = (n0 − nsat)/(3nsat) [126], n0 being

the isoscalar density for protons and neutrons, n0 = nn + np. In the equation

above, Esat is the saturation energy, Ksat is the incompressibility modulus, Qsat is the

skewness parameter, Esym is the symmetry energy, Lsym is the slope of the symmetry

energy, Ksym is the curvature of the symmetry energy sometimes called the symmetry

incompressibility and Qsym is the third derivative of the symmetry energy. Besides, the

parameter Zsat (Zsym) is the fourth derivative of saturation (symmetry) energy which

is completely unknown. Assuming that these two quantities (esat and es ym) are the

leading ones, the binding energy in isospin asymmetric matter (AM) can be expressed

as,

e(n0, n1) = esat(n0) +
�

n1

n0

�2

esym(n0), (4.6)

where the isovector density is defined as n1 = nn − np. Note that Eq. (4.6) neglects
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the small contribution beyond the quadratic terms in isospin asymmetry.

4.5.2 Enhanced Fermi Gas Calculation

Let us now turn to the meta-model. As it is well known, neutrons and protons can be

considered as independent particles in Fermi Gas (FG) approximation. Since the FG

can be considered only kinetic contribution of particles, one could make an extension

by including interactions. Let us start to explain the FG model, before meta-modeling.

The kinetic energy of FG can be expressed as:

Tn =
< P2 >

2Mn
=
�

3
5

� P2
F

2Mn
, (4.7)

where Mn is the mass of nucleons (n =n for neutrons or p for protons), P and PF are

the momentum and the Fermi momentum respectively. In the case of AM, the total

kinetic energy can be written as

T (p, n, Tp, Tn) = pTp + nTn. (4.8)

Here Tp (Tn) is the kinetic energy for proton (neutron) and p (n) is proton (neutron)

number. However, one needs to relate p (n) to n0 and n1. This can be done by

np =
p
Ω

, (4.9)

nn =
n
Ω

, (4.10)

where Ω is the total volume. Since the volume is unchangeably large in the nuclear

matter concept, we do not use energy but rather energy density as a measurable

quantity. We then define the kinetic energy density instead kinetic energy:

t FG∗(np, nn, Tp, Tn)≡
T (p, n, Tp, Tn)

Ω
= npTp + nnTn. (4.11)

On the other hand, the neutron and proton densities, nn and np, can be defined as

nn/p =
1

3π2
k3

Fn/p
, (4.12)

in terms of the Fermi momentum kFn/p
. Using Eq. (4.12) to Eq. (4.11) in terms of n0

and n1, one can obtain to kinetic energy density for isospin asymmetry as

t FG∗(n0, n1) =
t FG

sat

2

� n0

nsat

�2/3
f1(δ) (4.13)
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where t FG
sat = 3ħh2/(10m)(3π2/2)2/3n2/3

sat is the kinetic energy per nucleons in SM and

at saturation, m is nucleonic mass taken identical for neutrons and protons (m =
(mn + mp)/2 = 938.919 MeV/c2), giving t FG

sat = 22.1 MeV. The function f1(δ) is

defined as

f1(δ)≡ (1+δ)5/3 + (1−δ)5/3, (4.14)

where, δ = (n1/n0) is called isospin asymmetry parameter. The two boundaries δ = 0

and 1 correspond to SM and to neutron matter (NM), respectively, while any value of

δ between -1 and 1 defines AM.

Let us focus on look the Landau effective mass. The effective mass is a useful concept

used to characterize the propagation of quasiparticles inside a strongly interacting

medium, such as nuclei or nuclear matter. It reflects the nonlocality in space and

time of the quasiparticle self-energy. The nonlocality in space, also called the Landau

effective mass, is related to the momentum dependence of the nuclear interaction.

The Landau effective mass depends on the isoscalar and isovector densities and can

be different for neutrons and protons. The Landau effective mass can also be different

for SM and AM: m∗n = m∗p for SM whereas in AM, the neutron and proton Landau

effective mass can be different. Therefore the isospin splitting of the Landau effective

mass can then be generally expressed as

∆m∗(n0, n1) = m∗n(n0, n1)−m∗p(n0, n1). (4.15)

Two quantities (m∗n(n0, n1) and m∗p(n0, n1)) can be written as an expansion for SM at

saturation m∗sat and the isospin splitting taken for n0 = n1 = nsat in NM, ∆m∗sat. The

momentum dependence of the nuclear interaction gives rise to the concept of effective

mass: An average effect of the in-medium nuclear interaction is to modify the inertial

mass of the nucleons. Thereafter the Landau effective mass can be parameterized

according to isospin asymmetry in the following way;

m
m∗
τ
(n0, n1)

= 1+ (κsat +τ3κsymδ)
n0

nsat
(4.16)

where τ3 = 1 for neutrons and −1 for protons (τ is proton and neutron), and the

parameters κsat and κsym are a function of m∗sat and ∆m∗sat. In the framework of the

meta-model, we use m∗sat and ∆m∗sat as inputs as well as the empirical parameters

defined in Eq. (4.4) (the connection to empirical parameters will be shown explicitly

in this section). In Eq. 4.16, both κsat and κsym can be rewritten from m∗sat and ∆m∗sat
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at n= nsat:

κsat =
m

m∗sat

− 1 = κs, in SM (δ = 0),

κsym =
1
2

�

m
m∗n
−

m
m∗p

�

= κs − κv, in NM (δ = 1). (4.17)

Thereafter, one can write m from m∗p(n0, n1) and m∗n(n0, n1) at n0 = n1 = nsat with

the help of Eq. (4.16) to the Eq. (4.13), the new expression for the kinetic energy in

nuclear matter appears which includes effective mass parameters:

t FG∗(n0, n1) =
t FG

sat

2

�

n0

nsat

�2/3��

1+κsat
n0

nsat

�

f1(δ)

+κsym
n0

nsat
f2(δ)

�

, (4.18)

where the new function f2 is defined as

f2(δ)≡ δ(1+δ)5/3 −δ(1−δ)5/3. (4.19)

4.5.3 Meta-Eos: Linking Nuclear EoS Parameters to the Model

In this work, we consider the metamodeling ELFc introduced in Ref. [37]. In this

metamodeling, the energy per particle is defined as

e(n0, n1) = t FG∗(n0, n1) + v(n0, n1). (4.20)

The first term is the kinetic energy density as presented in Eq. (4.18) and the second

term is the interaction potential which can be expressed as

v(n0, n1) =
N
∑

a≥0

1
a!
(csat

a + cs ym
a δ2)x aua(x), (4.21)

where ua(x) = 1− (−3x)N+1−aexp(−bn0/nsat) and b is fixed to be b = 10ln2 ≈ 6.93.

The function ua(x) and the parameter b are fitted according to the high density

behavior of nuclear EoSs which is generated from various models [37].

Fixing parameters κsat and κsym, the coefficients csat
a and cs ym

a are directly related

to the empirical parameters through the following one-to-one correspondences by
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comparing Eq. (4.20) and Eq. (4.4),

csat
a=0 = Esat − t FG

sat (1+ κsat),

csat
a=1 = −t FG

sat (2+ 5κsat),

csat
a=2 = Ksat − 2t FG

sat (−1+ 5κsat),

csat
a=3 = Qsat − 2t FG

sat (4− 5κsat),

csat
a=4 = Zsat − 8t FG

sat (−7+ 5κsat), (4.22)

and

cs ym
a=0 = Esym −

5
9

t FG
sat [1+ (κsat + 3κsym)],

cs ym
a=1 = Lsym −

5
9

t FG
sat [2+ 5(κsat + 3κsym)],

cs ym
a=2 = Ksym −

10
9

t FG
sat [−1+ 5(κsat + 3κsym)],

cs ym
a=3 = Qsym −

10
9

t FG
sat [4− 5(κsat + 3κsym)],

cs ym
a=4 = Zsym −

40
9

t FG
sat [−7+ 5(κsat + 3κsym)]. (4.23)

The one-to-one correspondence between the meta-model coefficients csat
a , cs ym

a and

the empirical parameters directly bridges the analysis of the impact of the empirical

parameters on the properties of the equation of state to the predictions of NS

properties. To summarise, we got 10 empirical parameters from the Taylor expansion

(Esat, nsat, Ksat, Qsat, Zsat, Esym, Lsym, Ksym, Qsym, and Zsym) and 2 parameters from

Landau effective mass (m∗sat and ∆m∗sat) which are inputs of the metamodel.

4.5.4 The Condition of β Equilibrium

Let us now discuss about the β equilibrium. Until here, we discussed how to calculate

EoS if isovector (n0) and isoscalar (n1) densities are known. In case of NSs, these

densities are determined from the β equilibrium condition: As discussed in Sec. 4.1,

dying star core becomes neutron rich nuclear matter with electron capture processes.

However, 1 minute after the supernovae explosion, NSs begin to reach thermal

equilibrium where electron capture process and β decay occur at a same rate. At this

point particle fraction will no longer change and the EoS will become stabilized [105].
Therefore, NS EoS can be investigated as β equilibrium nuclear matter. Given a proton

fraction xp = np/n0, charge neutrality condition immediately imposes xp = xe where

xe is the electron fraction and we also have pFe
= pFp

for Fermi momentums. The

impact of the β equilibrium condition can easily be calculated by minimizing the total
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energy of the system:

ε(np, nn) = e(np, nn) + Eelec +
np

n0
mpc2 +

nn

n0
mnc2, (4.24)

where mp (mn) are the rest mass of proton (neutron), e(np, nn) the energy density

from the meta-model and Eelec the electron energy density which can be written from

the ultra-relativistic limit:

Eelec = c(p2
Fe
+m2

e c2)1/2, (4.25)

where pFe
is the Fermi momentum, c speed of light and me the rest mass of electron.

One then can calculate each particle fraction by minimizing the total energy (see

Ref. [127] for details):
dε(np, nn)

d xp
= 0. (4.26)

The advantage of the meta-model is that it is analytical, fast computed, very flexible

and can reproduce most of existing nucleonic EoS. Moreover, it keeps information

concerning matter composition, such as the neutron/proton ratio, the fraction of

electrons and muons. It is therefore optimal for extensive statistical analyses which

require the set-up of a large number of EoS samples. In the next sections, we briefly

detail how the NS properties such as masses, radii and tidal deformabilities can be

related to the nuclear equation of state assuming general relativity (TOV and pulsation

equation) [3, 27–29, 38, 39].

4.6 Building a Neutron Star: Tollman-Oppenheimer-Volkoff Equa-

tions

According to Birkhoff’s theorem the Schwarzschild solution is the most general

description outside a nonrotating, spherically symmetric star [8]. Although, the

Schwarzschild solution works well outside spherical objects, one need to define

a more general metric to describe energy and pressure profiles inside the NS.

Starting time-independent form of the Schwarzschild solution, ds2 = gµνd xµd xν =
−e2Φ(r)c2d t2 + e2λ(r)dr2 + r2(dθ 2 + sin2θdφ2), where the potential Φ(r) and the

function λ(r) only depend on r (the function λ being fixed to e−2λ = 1−2Gm/(c2r)),
the Einstein equation produce the necessary relations to describe the hydrostatic

equilibrium in the NS. Let us first write the Einstein equation as:

Gµν ≡ Rµν −
1
2

Rgµν =
8πG

c4
Tµν, (4.27)
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where G is the gravitational constant and c the speed of light in the vacuum. The

general approach for solving Einstein equation is equalling the left hand side (Einstein

Tensor) and the right hand side (energy-momentum tensor). The energy-momentum

tensor can be written as

Tµν = (ρ + P)uµuν + P gµν, (4.28)

where P the pressure and ρ the mass-energy density containing contributions from

the nucleon rest mass (mN ) and from the total energy per particles (e): ρc2 =
(mN c2 + e)n0. Besides one can obtain diagonal components of 4-velocity by using

−c2 = gµνu
µuν. Equalling the left hand side and the right hand side the Gt t =

8πG
c4 Tt t

component of Eq. (4.27):
dm(r)

dr
= 4πr2ρ(r), (4.29)

where m(r) the enclosed mass at radius r.

From the Gr r =
8πG
c4 Tr r component, one gets

dΦ(r)
dr

=
Gm
c2r2

�

1+
4πPr3

mc2

��

1−
2Gm
rc2

�−1

. (4.30)

However, a differential equation for the pressure is also required This is done by

using conservation of energy, implying that the divergence of the stress-energy tensor

vanishes. Since the system is spherical symmetric, this can be done by using radial

component (µ= r):

0=∇νT rν =
∂ T rν

∂ xν
+ TσνΓ r

σν
+ T rσΓ ν

σν
, (4.31)

eventually leading to

dP(r)
dr

= −ρc2

�

1+
P
ρc2

�

dΦ(r)
dr

. (4.32)

Eqs.(4.29, 4.30 and 4.32) are named as the Tollman-Oppenheimer-Volkoff (TOV)

equations [8, 38, 39]. For convenience we show these equations all together:

dm(r)
dr

= 4πr2ρ(r),

dP(r)
dr

= −ρc2

�

1+
P
ρc2

�

dΦ(r)
dr

,

dΦ(r)
dr

=
Gm
c2r2

�

1+
4πPr3

mc2

��

1−
2Gm
rc2

�−1

. (4.33)
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Eqs. (4.33) are integrated in coordinate space starting from 0 to the radius R, fixing

the boundary conditions m(0) = 0 and P(0) = Pc where Pc(ρ = ρc) is arbitrarily

varied. The pressure P decreases from the center to the surface and the NS radius is

defined as the coordinate for which the condition P(r = R) = 0 is reached. The family

of solutions with unique mass m(R) = M and radii R are generated by varying the

central density ρc.

Since there are three equations for four variables (m, P, ρc2 and Φ) in Eqs. (4.33), one

need another equation to close the system. This additional equation is provided by the

equation of state of dense matter, P(ρc2), which is evaluated at β-equilibrium for the

NS conditions. NSs are formed by a crust and a core whereas in its present form the

meta-model only applies to uniform matter inside the core. Since the crust includes

multiple phases, we did not make an analysis for a crust EoS as well as transition

density nt r . Besides, we expect that the impact of the connection between the crust

and the core is small for our analysis (for more details see Ref. [128]). The core EoS

is matched to the crust EoS with a cubic spline starting from an arbitrary transition

density nt r = 0.1nsat to nsat. Below nt r , we set crust EoS to be SLY for all core EoSs.

SLY is based on the Skyrme nuclear interaction SLy4 [129], which has been applied

for the crust EOS considering a compressible liquid-drop model [130]. In next section

we will discuss how we to GW to our advantage to describe NS EoS.

4.7 Pulsation Equations and Gravitational Wave

4.7.1 Tidal Love Number

As discussed in Sec. 4.1, the observational constraints on the internal structure of NSs

are weak and there is no direct method to measure radii of NS. X-ray observations

requires to have a model for the emission itself, which can be thermal (improved

black-body) or a burst, or generated by a hot spot (or several) located at the surface

of the neutron star. In all these cases, in addition to general relativity, a model for

the emission process is required. The art of the observation is to isolate some neutron

stars for which there is almost no ambiguity in the interpretation of the data, for

instance see Ref. [103] for details. In the latter case, one could still argue that there is

a 1−1.5 km uncertainty coming from systematical uncertainties (model dependence).

While it is not entirely satisfactory, it is comparable with the uncertainty from binary

neutron star mergers. Thus, binary neutron star mergers are presently not much better

in the constrains it provides, but it is a promising new observable which could bring

more accuracy by accumulating more events, and it could be contrasted with other

methods to provide a consistent picture. However, measuring GW from NS in-spiral

can provide additional constraint on the NS EoS. Coalescing binary NSs are one of the
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most important sources for ground-based gravitational wave detectors [131].

One way to utilise GW to describe EoS is to make hydrodynamics simulation of NS-NS

mergers by using several last orbits before the merging [132]. However, trying to

extract EoS information in this way rises several difficulties which complex behavior

requires solving the nonlinear equations of general relativity together with relativistic

hydrodynamics. Moreover, the signal includes unknown quantities such as spins and

angular momentum distribution inside the NS (see Ref. [27] for details). There is

however an easier method to use GW in NS EoS favour. During the early time of

in-spiral, the GW signal is very clean and the influence of tidal effects correspond the

only small correction to waveform’s phase. However, at the late times of merger,

it could corrupt GW signal, or alternatively could give information about the NS

structure. This has been studied by several authors (see Ref. [133] and therein).

The influence of the internal structure of the NS on the gravitational wave phase in

this early regime of the in-spiral is characterized by a single parameter, namely, the

ratio λ of the induced quadrupole to the perturbing tidal field. This ratio λ (or Λ see

Eq. (4.49)) also called tidal deformability, is related to the star’s tidal Love number k2

by

λ=
2k2

3R5
(4.34)

where R the radius of NS [27, 28].

4.7.2 Pulsation Equations

The tidal Love number k2 is an outside solution of linearized perturbation equations

due to an external quadrupolar tidal field. To derive the expression of k2, we

first express the Einstein equation in the effect of a quadrupolar tidal field. We

use derivation from Ref. [134] which uses spherical harmonics in Regge-Wheeler

gauge for the electrical part of the even-parity static pulsation. In the presence of

a quadrupole field, the metric can be described by making first order perturbation to

the Schwarzschild metric:

g(ac)
µν
= gµν + hµν, (4.35)

where hµν is a linearized metric perturbation and gµν is the Schwarzschild metric,

which is ds2 = gµνd xµd xν = −e2Φ(r)c2d t2+ e2λ(r)dr2+ r2(dθ 2+ sin2θdφ2). Using the

Regge-Wheeler gauge condition, hµν becomes

hµν = [−e2Φ(r)H0(r)c
2d t2 + e2λ(r)H2(r)dr2 + r2K(r)(dθ 2 + sin2θdφ2)]Y20, (4.36)

where Y20 is the spherical harmonic. It should be noted that non-diagonal elements

of both gµν and hµν are zero. In order to derive H0(r), H2(r) and K(r) functions, one
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needs to use the linearized version of Einstein equation. Therefore, before finding

metric elements, we first discuss how to derive linearized Einstein equation. Thus is

obtained by taking variations of both side of Einstein equation:

δGµ
ν
=

8πG
c4
δTµ

ν
. (4.37)

The left hand side is:

δGµν = δ[Rµν −
1
2

Rgµν] = δRµν −
1
2
[hµνR+ gµνδR], (4.38)

where δR = gµνδRµν + hµνRµν. It is convenient to use δGµ
ν

instead of δGµν since the

equations are much simpler in this way. The corresponding form of Einstein tensor is

δGµ
ν
= δ(gµβGβν) = hµβGβν + gµβδGβν, (4.39)

where Gβν = Rβν −
1
2Rgβν is the unperturbed Einstein tensor based on the

Schwarzschild metric. The right hand side of linearized Einstein equation is based

on the perturbated energy momentum tensor which can be written as [134],

δTµ
ν
=















δTµ
ν
= δρ, µ= ν= t;

δTµ
ν
= −δP, µ= ν and µ= r,θ ,φ;

δTµ
ν
= 0, µ 6= ν.

(4.40)

Equalling left hand side and right hand side of Eq. (4.37), one can express the variables

H0(r), H2(r) and K(r) in terms of H0(r) = H(r) as

δGθ
θ
−δGφ

φ
= −δP +δP = 0 =⇒ −H2(r) = H0(r) = H(r), (4.41)

δG r
θ
= 0=⇒

dK(r)
dr

= 2H(r)
dΦ(r)

dr
+

dH(r)
dr

, (4.42)

where dΦ(r)/dr is already defined in Eq. (4.33). Besides, there are still variables

coming from the perturbated energy momentum tensor (δP and δρ ). However, it

can be elegantly process by using δρ = csδP where cs ≡ (dP/dρ)−1 is the speed of

sound. Keeping this mind, one can replace δP as

δP = −c4
δGθ

θ
+δGφ

φ

16πG
, (4.43)

using in to

δG t
t −δG r

r =
8πG

c4
δP
�

cs + 1
�

, (4.44)
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leads to the pulsation equation for NS interior;

r
d y(r)

dr
+ y(r)2 + y(r)F(r) +Q(r) = 0, (4.45)

with

F(r) =
1

r − 2Gm/c2

�

r + 4πGr3

P −ρc2

�

, (4.46)

Q(r) =
4πGr3/c2

r − 2Gm/c2

�

5ρ +
9P
c2
+

P +ρc2

ρcs

�

−
4πGr3/c2

r − 2Gm/c2

�

6
4πGr2/c2

�

−
�

2G2r
c4

�

×
�

m+ 4πr3P/c2

r − 2Gm/c2

�2

,

where y(r)≡ RH ′(r)/H(r) and H ′ = dH/dr. However, Eq. (4.45) is only valid inside

of the NS. Outside of the NS, Eq. (4.45) becomes associated Legendre equation with

l = m= 2 for which H(r) is analytically solvable.

4.7.3 An Observable: Tidal Deformability

In order to build a bridge between the pulsation equations and tidal Love number

k2, one can make a multipolar expansion (in the framework of general relativity) for

mass, by only taking leading terms [135]:

−
gt t + 1

2
= −

m
r
−

3Q i j

2r3
nin j + ...+

R0i0 j

2
r2nin j + ... , (4.47)

where Q i j = −λR0i0 j and ~n = (sin(θ )cos(φ), sin(θ )sin(φ), cos(θ )). Using the outside

solution of H(r) (outside version of Eq. (4.45)) and Eq. (4.34), tidal Love number (k2)

can be extracted as:

k2 =
8C5

5
(1− 2C)2[2+ 2C(Y − 1)− Y ]

×
�

2C[6− 3Y + 3C(5Y − 8)]

+4C3[13− 11Y + C(3Y − 2) + 2C2(1+ Y )]

+3(1− 2C)2[2− Y + 2C(Y − 1)]

×ln(1− 2C)
	−1

, (4.48)

where Y = y(R) is the solution of the pulsation equation at the surface of the NS. Note

that Y = y(R) is a continuous quantity which is valid for both inside and outside of the

NS. The pulsation equation is solved once the density and pressure radial profiles are
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defined from the solution of the TOV equations. Despite that the tidal Love number is

proposed as a measurable quantity from GW (see Refs. [27, 28]), nowadays the mostly

used related quantity is dimensionless tidal deformability (which it is still called tidal

deformability) Λ [25, 30, 31]. Similarly to λ, it is defined from the tidal Love number

as

Λ=
2k2

3C5
, (4.49)

where C = (GM)/(c2R) is compactness for the NS of mass M and radius R.

The wave-form extracted from the LIGO-Virgo GW interferometers is in fact impacted

at the fifth-order by the two-NS combined tidal deformability Λ̃, defined from each

individual deformabilities of the NS, Λ1 and Λ2, as

Λ̃=
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 +M2)5
, (4.50)

where (M1, Λ1) and (M2, Λ2) are the masses and tidal deformabilities of the individual

NSs (by convention M1 ≥ M2) [25]. If M1 = M2, this expression becomes Λ̃= Λ1 = Λ2.

However, as discussed below, we shall explore the general case of asymmetric masses

in our study.

4.8 Putting All Together: Bayesian Statistics

The relation between nuclear EoS empirical parameters and the NS properties is

performed within the Bayesian statistical analysis. The core of the Bayesian analysis

lies on Bayes theorem expressing the probability associated to a given model,

represented here by its parameters {ai}, to reproduce a set of data, P({ai} | data)
also called the posterior PDF [40]:

P({ai} | data)' P(data | {ai})× P({ai}), (4.51)

where P(data | {ai}) is the likelihood function determined from the data comparison

between the model and the measurement, and P({ai}) is the prior PDF which

represents our knowledge or bias on the model parameters. Detailed discussions

for the prior P({ai}) and for the likelihood probability P(data | {ai}) are given in

Sec. 4.9.1.
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Table 4.1 The prior parameters (The fixed empirical parameters from group P1 and
P3)

Esat

(MeV)
Esym

(MeV)
nsat

(fm−3) m∗sat/m ∆m∗sat/m
Zsat

(MeV)
Zsym

(MeV)
-15.8 32.0 0.155 0.75 0.1 0 0

The marginal one- and two-parameter probabilities are defined as [40]

P(a j | data) =

� 5
∏

i=1
i 6= j

∫

dai

�

P({ai} | data) , (4.52)

P(a j, ak | data) =

� 5
∏

i=1
i 6= j,k

∫

dai

�

P({ai} | data) . (4.53)

These marginal probabilities represent the one parameter PDF and the two-parameter

correlation matrix, repectively.

4.9 Constraining a Neutron Star

4.9.1 General Framework

In our analysis, we evaluate the NS EOSs for each set of empirical parameters,

which are 12 free parameters in total (10 empirical parameters and two parameters

associated to the Landau effective mass, see Sec.4.5.3 for details). Some of these

parameters are however already well-known from the nuclear physics experiments

and their small uncertainties do not impact the dense matter EoS to a large extend

(see Ref. [128] for details). The 12 free parameters are therefore separated into three

different groups:

(P1) The parameters which are not varied: Esat, Esym, nsat, m∗sat/m and ∆m∗sat/m.

(P2) The less-known parameters, which are varied on a uniform grid: Ksat, Lsym, Ksym,

Qsat and Qsym.

(P3) The totally unknown parameters, which however do not impact our analysis

enough to be explored: Zsat and Zsym, since they do not play a major role for

the dense matter equation of state associated to NS in the mass range between

1M� and 2M� which corresponds to possible masses of the binary NSs from

GW170817 (see Ref. [128] for more details).
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Table 4.2 The prior parameters (The empirical parameters from group (P2), which
are varied on a uniform grid for two different scenarios. Changes between the two
sets are indicated in bold characters. Here Min, Max are first and last values of the
each parameter, Step is an increment for each iteration and N is the number of total

fragment. For prior set #1 and #2, please see the text for details)

Empirical
Parameters

Lsym

(MeV)
Ksat

(MeV)
Ksym

(MeV)
Qsat

(MeV)
Qsym

(MeV)
Prior set #1

Min -10 150 -500 -1000 -2000
Max 70 280 1500 3000 2000
Step 5 10 200 400 400
N 17 14 11 11 11

Prior set #2
Min -10 180 -500 -1000 -2000
Max 70 280 300 3000 2000
Step 5 10 100 400 400
N 17 11 9 11 11

In Table. 4.1, we show the parameters which are not varied (from group P1),

see Ref. [128] and references therein. The parameters like Esat, Esym and nsat are

well-known from finite-nuclei experiments and their uncertainty does not impact our

analysis. The other parameters such as m∗sat/m and∆m∗sat/m are also constrained from

nuclear physics experiments, to a lower extend, but their uncertainties only weakly

impact dense matter EoS [37].

In the present analysis the model parameters {ai} which are varied (group P2) are:

Lsym, Ksat, Ksym, Qsat and Qsym. These empirical parameters are sampled on a uniform

grid defined in Table 4.2. These parameters are varied between a lower (Min) and an

upper (Max) value, with N steps defining a constant step. We have considered two

different choices for the prior. In the prior set #1, the boundaries of the parameters

are determined such that the likelihood probability reaches zero, or a very small value

compared to the one inside the range. In the prior set #2, we fix the boundaries to

be the ones determined from nuclear physics experiments and reported in Ref. [37],
except for Lsym for which we allow the exploration of small values. Anticipating our

results, we will show that low values for Lsym are favoured by the tidal deformability

from GW170817. A detailed discussion about Lsym is made in next chapter.

The likelihood probability defines the ability of the model to reproduce the data. In

the present analysis, it is defined as [40],

P(data | {ai}) = wfilter × pΛ̃ × pχEFT × pISGMR , (4.54)
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Figure 4.2 The generated likelihood functions for tidal deformability from
Refs. [26, 30]

where wfilter({ai}) is a pass-band type filter which select only the models satisfying

the necessary condition (C1) expressed hereafter, and the probabilities pΛ̃, pχEFT and

pISGMR are associated to constraints (C2)-(C4) expressed hereafter. The constraints

entering into the Bayesian probability (Eq. (4.54)) are:

(C1) The necessary conditions that each viable EoS shall satisfy: causality, stability,

positiveness of the symmetry energy and maximum observed mass M obs
max .

(C2) pΛ̃: the probability associated to the ability of the EoS to reproduce the tidal

deformability extracted from the GW170817 event [26, 30].

(C3) pχEFT: the probability measuring the compatibility between the meta-model and

the energy and pressure bands function of the density predicted from χ-EFT

approach below saturation density [32].

(C4) pISGMR: the probability of a given meta-model to be compatible with recent

analysis of the ISGMR collective mode [33, 34].

The constraints (C1) are necessary constraints for all EoS, (C2) are constraints

from astrophysics impacting high densities, while (C3) and (C4) are constraints

from low-density nuclear physics. In the following, we detail how the probabilities

associated to these constraints are estimated in practice.
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Let us detail the constraints from the group (C1). Causality, stability and positiveness

of the symmetry energy are imposed as in Ref. [128]. The constraints are imposed up

to the density corresponding to the maximum density of the stable branch. We also

impose that all viable EoS shall have a maximum mass Mmax ≥ M obs
max = 2M� [23].

4.9.2 Constraints of the Gravitational Wave

We now come to the constraint (C2) associated to the tidal deformability from

GW170817. We consider two independent GW analyses which provide two slightly

different Λ̃ PDF. These PDFs are displayed in Fig. 4.2 under the legend "TD-LVC-2018"

and "TD-De-2018". TD-LVC-2018 is the result of the latest analysis from the

LIGO-Virgo collaboration [26]while TD-De-2018 is an independent analysis proposed

in Ref. [30]. Contrary to TD-De-2018, TD-LVC-2018 has a double peak; the highest

one is peaked around Λ̃1
max ≈ 180 and the smaller one is around Λ̃2

max ≈ 550. However,

in TD-De-2018, the only peak is Λ̃max ≈ 200. The presence of a double peak has

an impact on the higher value for the 90% confidence-level: It is 720 in the case

of TD-LVC-2018 while it is about 500 for TD-De-2018. Anticipating our results,

the PDF from TD-De-2018 shall select more compact objects than the one assuming

TD-LVC-2018.

Note that recently, a combined analysis including the electro-magnetic and GRB

counterpart observations has shifted up the lower limit for Λ̃ and the centroid:

300< Λ̃< 800 also displayed on Fig. 4.2 [31].

The probability pΛ̃ is calculated in the following way. For a given parameter set

{ai}, the TOV and the pulsation equations are first solved, which provides a family

{Mi,Λi}, where i is an index running over the central density. We then sample the

mass distribution for the two NS (M1, M2) by taking a set of six masses, where M2 is

distributed from 1.1M� to 1.35M�, and M1 is calculated such that M1+M2 = 2.73M�,

accurately determined from GW170817. Note that eventually there are less masses in

the sample if M1 exceeds the value Mmax for the EoS. For each sample elements the

combined tidal deformability Λ̃ is calculated from Eq. (4.50) and a probability, pk
Λ̃
, is

assigned from the PDF shown in Fig. 4.2 for the two scenarios. The final probability

pΛ̃ is then obtained from the averaging over sample elements,

pΛ̃ =
1
N

N
∑

i=k

pk
Λ̃

. (4.55)

Note that there are several ways to calculate pΛ̃. Another choice could have been, for

instance, to assign to the parameter set the maximum probability obtained for Λ̃, pΛ̃ =
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maxk pk
Λ̃
. However, since the Λ̃ PDF only weakly depends on the mass asymmetry [30],

we do not expect a large effect between these two possible prescriptions. It should also

be noted that this is true since we do not consider first-order phase transitions: the

mass asymmetry between the two NSs could have a strong impact on Λ̃ if the phase

transition occurs at a mass in-between the ones of the two NS [109, 136].

In the present analysis, we assume that each neutron star of the binary system has the

same EoS, the same particle composition and that their particle fractions is derived

from the β equilibrium condition. Other exotic compositions such as Delta resonances,

hyperons giving rise to Hybrid-Star/NS binaries could be considered, but are less likely.

4.9.3 Constraints of Nuclear Physics Observables

The constraint (C3) is a nuclear physics constraint which measures the proximity of

the meta-model to the prediction bands for the energy per particle and the pressure

in SM and NM obtained by many-body perturbation theory based on χEFT nuclear

two and three-body interactions [32], see Fig. 4.3 for illustration. At low densities,

the many-body perturbation theory based on χEFT nuclear two and three-body

interactions has predicted bands based on 7 Hamiltonians which could equally well

reproduce NN phase shifts and the binding energy of the deuteron [32]. These bands

are represented in Fig. 4.3 together with a set of models. We compare these bands with

three different models which are SLy [129], ArgonneV18 [137] and FSUGold [126].
The binding energies of these models are in good agreement with the χEFT bands

in both symmetric matter (SM) and neutron matter (NM). This is also true for the

pressure in SM, but there are deviations in NM for FSUGold and SLy models, which

predict the pressure above the bands for the high density region. The origin of these

deviations lies in the way the χEFT bands for the pressure is defined: It is the boundary

calculated from the derivative of the binding energy predicted from the 7 Hamiltonians

only. The pressure band does not exhaust all possible density dependence for the

binding energy. It is therefore possible for models, such as FSUGold and SLy, to be

inside the energy band and outside the pressure band. The pressure band from the

χEFT estimation provides a smaller band width than the one which would be based on

all the models compatible with the energy band. It is however the width compatible

with the 7 Hamiltonians that we will consider in the following. All in all, we can

interpret (C3) as an common expectation of the nuclear physics, since it is calculated

by using few-body observables at nucleonic scale with their theoretical uncertainties.

In practice, we estimate the following error function χ2,χEF T for each set of
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Figure 4.3 Energy (a) and Pressure (b) distributions calculated by using χEFT from
the Ref. [32] for both symmetric matter (SM) and neutron matter (NM)
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Figure 4.4 Pressure posterior functions in neutron matter (NM) (a) and symmetric
matter (SM) (b) obtained from the constraint C3 associated to the χEFT bands

calculated in Ref. [32]
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meta-models,

χ2
2,χEF T =

1
Ndata

Ndata
∑

i=1

�

odata
i − oi({ai})

σi

�2

. (4.56)

where Ndata = 20 is the number of data odata
i considered here, oi({ai}) is the

prediction of the model and σi is associated to the uncertainties in the data and

the accepted model dispersion. We consider 5 density points uniformly distributed

between 0.12 fm−3 and 0.20 fm−3. If ∆i is the width of the band at each density

point, we fix σi = ∆i/2 to ensure that 95% of the models lie inside the band. The

small tolerance of 5% of the models outside the band is there to smoothly reduce the

probability of marginal meta-models. The associated probability is thus deduced from

the usual Gaussian expression,

pχEF T = exp
�

−
1
2
χ2,χEF T

�

. (4.57)

An example of likelihood function associated to the pressure for a few densities (0.12,

0.16 and 0.20 fm−3) is shown in Fig. 4.4 for SM (a) and NM (b), where only the

constraint C3 is imposed. There is a nice overlap with all models inside χEFT bands

with 95% confidence level (shaded regions of Fig. 4.4).

The last constrain (C4) is obtained from a recent analysis of the ISGMR in finite

nuclei [33, 34]. Theoretical models designed to describe finite nuclei and applied to

the calculation of the ISGMR centroid energy in 120Sn and 208Pb suggest that the slope

of the incompressibility Mc at nc = 0.11 fm−3 is well correlated to the experimental

data. Mc is defined as

Mc = 3nc
dK(n0)

dn0

�

�

�

�

n0=nc

, (4.58)

where the incompressibility K(n0) in SM (δ = 0) is, χ being the compressibility,

K(n0) =
9n0

χ(n0)
= 9n2

0

d2e(n0)
dn2

0

+
18
n0

P(n0) , (4.59)

and the pressure is

P(n0) = n2
0

de(n0)
dn0

, (4.60)

It is found that Mc = 1050 MeV ± 50 MeV [33, 34]. The interesting feature of this

parameter is that it is much less model dependent that the more frequently considered

incompressibility modulus Ksat = K(nsat).

In practice, we calculate the value of Mc for each of our meta-models by assigning the
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following probability,

pISGMR = exp

�

−
1
2

�

Mc({ai})− 1050
25

�2�

, (4.61)

where we associate the dispersion ±50 MeV estimated in Refs. [33, 34] to the

distribution of 95% of the meta-models.

4.10 Concluding Remarks

Since the model dependency is a major problem to understand universal specifications

of the nuclear interactions, we used the metamodel which can reproduce all models

of the nuclear physics with the help of the unique set of nuclear EoS parameters.

Dealing with nuclear EoS parameters, we got 10 empirical parameters from the

Taylor expansion (Esat, nsat, Ksat, Qsat, Zsat, Esym, Lsym, Ksym, Qsym, and Zsym) and 2

parameters from Landau effective mass (m∗sat and ∆m∗sat). In order to calculate NS

properties and their related probabilities, we defined nuclear EoS parameters in an

uniform grid by grouping them as a priori to our calculation. The first one is prior

set #1 in which the boundaries of the empirical parameters are unconstrained by any

background information or bias. The second one is prior set #2: The boundaries of

the empirical parameters are defined from the expectations of the nuclear physics.

We then have calculated the β equilibrium nuclear matter by using the meta-model

and put them into the general relativistic equations for generating mass radius and

tidal deformability. Besides, we defined constraints from nuclear physics (χEFT and

ISGMR) and the tidal deformabilities from the GW170817 event.

On the nuclear physic side, we used χEFT predictions at near/below of the

saturation density (nsat) from Ref. [32] and the experimental value of Mc from

the results of the ISGMR from the Refs. [33, 34]. Additionally, three types of

tidal deformability probability distribution functions were considered: TD-LVC-2018,

TD-De-2018 and TD-Coughlin-2019. TD-LVC-2018 is the result of the latest analysis

from the LIGO-Virgo collaboration [26] while TD-De-2018 is an independent analysis

proposed in Ref. [30] and TD-Coughlin-2019 is a combined analysis including the

electro-magnetic and GRB counterpart observations from Ref. [31]. Finally, we

showed how to generate posterior probabilities of each empirical parameters (Lsym,

Ksym, Qsat and Qsym) and NS properties (P(2nsat) and R1.4) by taking advantage of the

Bayesian framework.
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5
NEUTRON STARS: PROPERTIES AND NUCLEAR

EQUATION OF STATE PARAMETERS

5.1 An Overview

Taking advantages of the Bayesian framework, we analyze the impact of the

constraints (C2)-(C4) (see Sec. 4.9.1 for details) to analyze each individual

contribution coming from Λ̃, χEFT and ISGMR on the final posterior probability. Both

joint and sole posterior probabilities will be shown. The influence of the prior set and

two pΛ̃ are also discussed. The uncertainty on probabilities are defined as the 68%

confidence level around the centroid values of PDF.

In the present statistical analysis, we generate a large enough sample of 294 151

parameter sets for prior set #1 and 203 643 for prior set #2 before the filtering (see

Table 4.2). For each set, the probabilities pΛ̃, pχEFT and pISGMR are calculated according

to Eqs. (4.55), (4.57) and (4.61). The total likelihood probability is calculated from

Eq. (4.54). The reduction from the multi-dimension PDF to the one- or two-parameter

probabilities are obtained from the marginalization principle (see Eqs. (4.52) and

(4.53) for details). We analyze the PDF for Lsym, Ksym, Qsat, Qsym, R1.4, P(2nsat) and

the correlations between the parameters Lsym-Ksym and Ksat-Qsat under the influence of

each constraint associated to pΛ̃ (TD-LVC-2018, TD-Le-2018 and TD-Coughlin-2019

as named in figures), pχEFT (χEF T as named in figures) and pISGMR (GMR as named

in figures). We also investigated the PDF for Ksat . However it is not shown here since

Ksat has only a weak impact on pΛ̃.

5.2 Probability Distributions for the Nuclear EoS Parameters

We first study posterior distributions for nuclear EoS parameters: Lsym, Ksym, Qsat, Qsym.
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Figure 5.1 The generated PDFs of Lsym for the prior set #1 (a) and the prior set #2
(b)
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5.2.1 The Slope of Symmetry Energy: Lsym

The empirical parameter Lsym is the slope of the symmetry energy at nsat. In Fig. 5.1 the

detailed contributions of the constraints (C2)-(C4) as well as of the role of the pΛ̃ and

of the prior scenario #1 (panel a) or #2 (panel b) is shown. Note the marked tension

between the PDF associated to χEFT and the Λ̃ one (TD-LVC-2018, TD-Le-2018,

TD-Coughlin-2019). Being peaked at higher values for Λ̃, the TD-Coughlin-2019 PDF

favors slightly larger Lsym values than the two others. The influence of the prior is

weak, but interestingly, the prior set #1 produces more peaked posteriors than the

prior set #2, which is inferred from analyses of nuclear physics models. This could

be interpreted as a signal for the marked deviations from nuclear physics predictions:

when the constraints from nuclear physics is relaxed (mainly the prior on Ksym) in the

set #1, there is a group of EoS which are clearly favored by the GW tidal deformability

and which are located well outside the domain for Lsym suggested by nuclear physics.

The GMR constraint has no effect on Lsym since the GMR mainly contributes to

parameters related to symmetric nuclear matter. The χ EFT constraint gives values

for Lsym = 35.37+7.09
−10.10/41.83+7.33

−15.82 MeV for the prior set #1/#2, while the tidal

deformability favors low or even negative Lsym values. For instance, TD-LVC-2018

gives Lsym = 0.00+5.00
−3.00/ − 3.44+18.34

−2.94 MeV for the prior sets #1/#2. As expected, the

prior set #2 allows some positive values for Lsym in the PDF shown in Fig. 5.1.

The joint probabilities naturally favor values for Lsym which are intermediate

between the two extremes. The most probable value for TD-LVC-2018

(TD-De-2018 and TD-Coughlin-2019) is Lsym = 0.00+12.00
−4.00 /16.58+11.28

−6.79 MeV (Lsym =
0.00+2.01

−2.91/15.47+11.24
−13.07 MeV and Lsym = 17.44+15.23

−15.23/16.48+14.73
−5.43 MeV) for the prior set

#1/#2. The difference between the prior sets #1 (panel a) and #2 (panel b) reflects

the choice for the prior distribution: the upper bound for Ksym is fixed to be 1500 MeV

for the prior set #1 and only 300 MeV for the prior set #2 (see Table 4.2). The

distribution of Lsym is thus impacted by the knowledge from the next order empirical

parameter Ksym: The better defined Ksym, the more peaked Lsym. The correlation

between Lsym and Ksym will be analysed in Sec. 5.4. Note that the influence of the

unknown high order empirical parameters was originally stressed in Ref. [138].

Interestingly, the empirical parameter Lsym is investigated by a large number of

experiments, see Ref. [139] and references therein. Confronting the predictions

of various nuclear physics experiments, namely neutron skin thickness, heavy ion

collisions, dipole polarizability, nuclear masses, giant dipole resonances and isobaric

analog states, the values of Lsym vary between 30 and 70 MeV [30, 37, 139, 140]. It is

however interesting to note that a few studies give for Lsym lower values, even negative

ones, see Refs. [141, 142], from the charge radius of Sn and Pb isotopes using a droplet
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model. A detailed analysis based on a few Skyrme and Gogny interactions advocates

also for a low values for Lsym [143]. The measurement of the 208Pb neutron skin

thickness from the PREX collaboration (Lead Radius Experiment [144]) is expected

to provide a model independent estimation of Lsym. The experiment has however not

yet been very conclusive, with a measured neutron skin thickness R208
skin = 0.33+0.16

−0.18 fm

points a lower limit for Lsym which is about 20 MeV if one includes the correlation for

Lsym and R208
skin (see Ref. [143] for details).

Anticipating the results of Sec. 5.3, there is a strong correlation between the

marginalized probability distribution as function of Lsym and the one as function of

R1.4: a low value of Lsym coincides with a low radius R1.4. Hence the peak at low

Lsym observed for the tidal deformabilities TD-LVC-2018 and TD-De-2018 reflects that

the Λ̃ PDF favors NS with small radii. Since the physical implications are clearer in

terms of radii, we further discuss the implication of low radii (equivalently low Lsym)

in Sec. 5.3.

5.2.2 The Curvature of the Symmetry Energy: Ksym

The empirical parameter Ksym encodes the curvature of the symmetry energy at nsat.

It is different from the parameter Kτ which is defined as the curvature of the binding

energy for a fixed proton fraction and can be related to other nuclear EoS parameters

as follows [126],
Kτ ≡ Ksym − 6Lsym −Qsat Lsym/Ksat . (5.1)

The isospin dependence of the isoscalar giant monopole resonance (ISGMR) is a

natural observable to determine the parameter Kτ [126]. Kτ = −550 ± 100 MeV

has been extracted from the breathing mode of Sn isotopes (Refs. [145, 146]) and

also from isospin diffusion observables in nuclear reactions (Refs. [147, 148]). If Lsym

and Qsat were well determined, Eq. (5.1) would provide an equivalence between Kτ
and Ksym. However, the large uncertainties on Lsym and Qsat induce a large error bar

for Ksym, of the order of ±600 MeV [37]. Besides, the statistical analysis of various

theoretical model predict a value Ksym = −100± 100 MeV [37]. This result is also in

agreement with Ref. [115], which is GW analysis done by using TE EoSs. On the other

hand, there is an experimental determination of Ksym by using latest ISGMR values of
90Zr, 116Sn and 208Pb nuclei from Skyrme EDFs: Ksym = −120±40 MeV from Ref. [149].
The smaller error bar than the statistical analysis reveals the presence of correlations

between Lsym, Qsat and Ksym which does not vary independently from each other.

In our analysis, we explore two priors for Ksym, one which is pushed until the

likelihood probability is quenched (prior set #1), and one which is compatible
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Figure 5.2 The generated PDFs of Ksym for the prior set #1 (a) and #2 (b)
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with the expectation Ksym = −100 ± 100 MeV (prior set #2). In Fig. 5.2,

the posterior PDFs for Ksym are displayed for both prior sets. The posteriors

are qualitatively similar between the prior sets #1 and #2. From χEFT, we

obtain Ksym = 13.71+595.94
−265.02/12.58+287.42

−410.00 MeV for the prior set #1/#2. The tidal

deformability however favors positive values since TD-LVC-2018 (TD-De-2018 and

TD-Coughlin-2019) predicts Ksym = 376.44+1123.46
−400 MeV (Ksym = 389.65+1110.45

−400 and

Ksym = 273.82+888.16
−330.93 MeV) for the prior set #1. TD-Coughlin-2019 favors values

for Ksym slightly below the distributions produced by TD-LVC-2018 and TD-De-2018.

This can be understood from the Lsym-Ksym anti-correlation originating in the causality

condition. Although we cannot define centroid values of Ksym since the prior set #2

limits the posteriors to Ksym = 300 MeV, shifting the prior set #1 to #2 adds 100 MeV to

the minimum values of Ksym. There is also a difference between the expectations from

χEFT and from the tidal deformability, while at variance with Lsym, the differences are

here less marked. The impact of the ISGMR is also pretty small.

Finally, the joint probabilities shown in Fig. 5.2 give Ksym = 438.57+210.12
−210.12 MeV (Ksym =

561.20+150.23
−150.23 MeV and Ksym = 261.00+237.14

−237.14 MeV) for TD-LVC-2018 (TD-De-2018 and

TD-Coughlin-2019). Considering the −2σmin value for each centroid, one can define

the lower limit for Ksym: Ksym ≥ 18.33 MeV for TD-LVC-2018, Ksym ≥ 260.74 MeV for

TD-De-2018 and Ksym ≥ −213.28 MeV for TD-Coughlin-2019. It should be noted that

several analysis have been done on the bounds of Ksym, providing Ksym ≥ −500 MeV

to Ksym ≥ −250 MeV depending on considered models [150–153]. Besides, an

interesting work about the lower limit of Ksym is the Unitary Gas (UG) limit for the

NM, which is in a good agreement with our predictions [154]. Since the ground state

energy per particle in the UG is proportional to the Fermi energy, one can describe a

forbidden zone for energy per particle of EoS in terms of the Fermi energy for neutron

matter. In Ref. [154], a suitable conjecture imposed from the UG limit is shown: ENM ≥
EUG = E0

UGn2/3
0 . Eventually it leads to Ksym ≥ −2E0

UG − Ksat where E0
UG = 12.6 MeV is

the Fermi energy of neutrons including Bertsch parameter ξ0. Using the average value

of Ksat = 230 ± 20 MeV (see Ref. [37] for a complete analysis about the parameter

Ksat), a minimum limit for Ksym can be obtained: Ksym ≥ −255.2± 20 MeV. However,

contrary to the UG, the NM includes effective-range effects and interactions in higher

partial waves especially for densities n≥ nsat. Therefore, it is expected that the lower

limit of Ksym should be higher then the one obtained from the UG.

5.2.3 The Skewness Parameter for Symmetric Matter: Qsat

The skewness parameter Qsat is the lowest order empirical parameter in SM which is

almost unconstrained. While the incompressibility modulus Ksat is well defined, the
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Figure 5.3 The generated PDFs of Qsat for the prior set #1 (a) and #2 (b)
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density dependence of the incompressibility is poorly known and there are very scarce

experimental analysis to determine its value. An analysis based on charge and mass

radii of the Sn isotopes concluded that either Qsat ≈ 30 MeV or Lsym ≈ 0 MeV [142].
Another analysis based on the Skyrme functionals which are fitted according to the

breathing modes concluded that Qsat ≈ 500 MeV [155]. A systematic analysis also

suggests Qsat = 300± 400 MeV based on a large number of theoretical models of the

literature [37].

There are also other analysis based on various models from the RMF and SHF

frameworks in which the tidal deformability of GW170817 constrains the parameter

M0 of the nuclear EoS defined as [115, 117],

M0 = M(nsat) = 3nsat
dK(n0)

dn0

�

�

�

�

n0=nsat

. (5.2)

The following predictions were obtained for M0: 2254 ≤ M0 ≤ 3631 MeV or 1926 ≤
M0 ≤ 3768 MeV depending on Lsym [117] and 1526≤ M0 ≤ 4971 MeV [115].

Using the relation M0 = 12Ksat + Qsat (see Ref. [156]), one can make a prediction

for Qsat by considering adequate Ksat value. Considering Ksat = 230 ± 20 MeV from

Ref. [37], then −800 ≤ Qsat ≤ 1100 MeV for Ref. [117] and −1200 ≤ Qsat ≤
2100 MeV for Ref. [115].

In Fig. 5.3, the posterior PDFs of Qsat are presented. It is clear that χEFT does not

constrain Qsat. This is because Qsat influences the EoS at densities well above saturation

density, while the data from χEFT are relevant until n0 = 0.2 fm−3. The empirical

parameter Qsat is however better constrained by both the tidal deformability from

GW170817 and the ISGMR while the predictions from prior set #1 and #2 are very

similar. Despite that all posteriors of tidal deformability considering TD-LVC-2018,

TD-De-2018 or TD-Coughlin-2019 independently agree on the lower limit of Qsat

(Qmin
sat ≈ −500 MeV), the higher boundary of Qsat requires by applying both the tidal

deformability and the ISGMR constraints. The results from the joint posteriors are

Qsat = −180+1222
−175 / − 162+935

−175 MeV (Qsat = −220+1130
−150 / − 214+652

−153 MeV and Qsat =
93+1365
−250 /200+1107

−445 MeV) for TD-LVC-2018 (TD-De-2018 and TD-Coughlin-2019) for the

prior set #1/#2, respectively.

Furthermore, we also study the impact of switching off the ISGMR constraint for

the prior set #1 on the posterior probability in order to see its global effect on the

joint posteriors, see Fig. 5.4. The new the joint posteriors are Qsat = −134+1757
−250 MeV

(Qsat = −189+1800
−200 MeV and Qsat = −130+2000

−250 MeV) for TD-LVC-2018 (TD-De-2018

and TD-Coughlin-2019). Removing the ISGMR constraints increases the uncertainty
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Figure 5.4 Same as Fig. 5.3 for the prior set #1 without ISGMR

on the joint posteriors for Qsat by about 500 MeV. This shows that Mc (see Sec. 4.9.3 for

details) is an important constraint for better defining the value of Qsat. Furthermore,

a reduction of the uncertainty on Mc, by a systematical comparison of the meta-model

predictions in finite nuclei for instance, would imply a more precise estimation for the

empirical parameter Qsat.

5.2.4 The Skewness Parameter for Neutron Matter: Qsym

The nuclear EoS parameter Qsym controls the skewness of the symmetry energy at

nsat. An analysis based on the various theoretical models (Skyrme Hartree Fock,

Relativistic Hartree Fock, RMF and χEFT) suggests Qsym = 0 ± 400 MeV but still

its value runs over a large range from models to models, e.g. −2000 ≤ Qsym ≤
2000 MeV [37]. Since Qsym contributes to the EoS at supra-saturation densities, it

is quite difficult to estimate the value of this empirical parameter from low-density

χEFT or from terrestrial experiments in finite nuclei like the ISGMR. It furthermore

requires systems which probe asymmetric nuclear matter. It is therefore completely

unknown from nuclear physics traditional approach and one could easily understand

that χEFT and ISGMR constraints are ineffective for constraining Qsym, as shown in

Fig 5.5. The most effective constraint is provided by the tidal deformability, but it is

interesting to remark that even if χEFT and ISGMR do not provide constraints taken
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Figure 5.5 The generated PDFs of Qsym for the prior set #1 (a) and #2 (b)
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individually, the joint posterior, including tidal deformability, χEFT and ISGMR, is

narrower than the probability distribution considering Λ̃ alone. The joint posteriors

from TD-LVC-2018 (TD-De-2018 and TD-Coughlin-2019) favor the following values:

Qsym = −270+1690
−1126/ − 169+1376

−748 MeV (Qsym = −677+1159
−597 / − 376+835

−477 MeV and Qsym =
218+1942

−1576/276+1815
−1242 MeV) for the prior set #1/#2. It shall also be noted that there is

a marked correlation between Ksym and Qsym: the prior set #2, considering a tighter

prior for Ksym, (compared to the prior set #1) also predicts a narrower peak for Qsym.

In conclusion, we point out that a more accurate PDF for Λ̃, a better constrain for Qsym.

5.3 Posteriors for Neutron Star Observables: Radius and Pressure

Let us discuss the impact of the posteriors on the NS properties. In the present section,

we discuss the impact of the constraints on the posterior distribution for the NS radius

at 1.4M�: R1.4, and the pressure at 2nsat: P(2nsat).

5.3.1 The Neutron Star Radius at 1.4M�: R1.4

As discussed in Sec. 4.2, X-ray observations of NS such as thermal emissions or X-ray

bursts, advocate for the following limits of NS radii: 7.9 ≤ R1.4 ≤ 12.66 km [6, 98,

99, 102, 103]. Moreover, GW analysis based on various models concluded to 11.80≤
R1.4 ≤ 12.80 km in Ref. [118], 12.00≤ R1.4 ≤ 13.70 km in Refs. [111, 112], and 11≤
R1.4 ≤ 13 km considering 100≤ Λ̃≤ 600 in Ref. [114]. While being consistent among

them, these predictions are slightly different, reflecting the small model dependence

in the theoretical models employed.

We show in Fig. 5.6 the posteriors PDFs for the NS radius R1.4 for the different

individual constraints and for the joint one. The predictions from TD-LVC-2018

and TD-De-2018 are R1.4 = 10.65+2.1
−0.26/10.51+1.29

−0.17 km for the prior set #1/#2

at variance with the prediction from TD-Coughlin-2019 R1.4 = 13.13+0.51
−0.51 km,

which are consistent with the predictions from nuclear physics (χEFT): R1.4 =
12.99+0.76

−1.21/12.72+0.82
−0.61 km for the prior set #1/#2. If the Λ̃ distribution suggested

by TD-LVC-2018 and TD-De-2018 is correct, there is a difference of about 1.5 km

for the most probable radii compared to the prediction from χEFT. This difference

is larger that the standard deviation for each PDF, indicating a possible source

of tension, as also observed for the PDF of Lsym. Finally, the joint probabilities

shown in Fig. 5.6 give R1.4 = 11.00+1.30
−0.25/10.98+1.90

−0.25 or R1.4 = 12.00+0.30
−1.25/10.98+1.90

−0.25

km (R1.4 = 11.00+1.25
−0.25/10.99+1.70

−0.25 or R1.4 = 12.00+0.25
−1.25/10.99+1.70

−0.25 km and R1.4 =
12.91+0.43

−0.43/12.50+0.54
−0.27 km) for TD-LVC-2018 (TD-De-2018 and TD-Coughlin-2019) for
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Figure 5.6 The generated PDFs of NS radius R1.4 for the prior set #1 (a) and #2 (b)
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the prior set #1/#2. Interestingly, the joint posteriors suggested by TD-LVC-2018

and TD-De-2018 predicts a double peak, where the first one is around 11 km and the

second one is around 12 km for the prior set #1.

Our prediction for R1.4 favored by GW170817 only (TD-LVC-2018 and TD-De-2018

but not TD-Coughlin-2019) is very similar to the one recently performed in Ref. [124],
where R1.4 ≈ 11± 1 km is obtained from the analysis of the GW waveforms and the

constraint from the maximum mass. This is not entirely surprising: even if the analysis

is different from ours, namely relaying on the bare data of Ref. [124] and based on

the post-processed analysis in terms of Λ̃ in our case, the physics issued from GW is

the same. A low value for the radius R1.4 ≈ 11 km is marginal with nuclear physics

(represented here by the χEFT and GMR constraints). This results of low value for

the radius suggest that the low peak value for Λ̃ ≈ 200 needs a softening of the EoS

that nuclear degrees of freedom could not produce for the typical masses estimated

from GW170817, which are around 1.3 − 1.5M� (coinciding to central densities of

about 2 − 3ρsat). This softening could be obtained by the onset of new degrees of

freedom, such as pion or kaon condensation, hyperonization of matter or a first order

phase transition to quark matter. The requirement to reach about 2M� also limits the

softening, which could be obtained assuming a transition to quark matter [18].

5.3.2 The Pressure at 2nsat: P(2nsat)

It was recently proposed to analyze the constraint from the tidal deformability

from GW170817 in terms of the pressure at 2nsat [157]. An analysis done by

Ligo-Virgo collaborations [157] obtained (with 90% confidence interval) a pressure

P(2nsat) = 21.80+15.76
−10.55 MeV fm−3 where the error bars represent 90% confidence

level (corresponding to P(2nsat) = 21.80+9.58
−6.41 MeV fm−3 for 65% confidence level).

Another analysis based on χEFT [114] concluded that 15 ≤ P(2nsat) ≤ 25 MeV fm−3

considering 100≤ Λ̃≤ 600.

We thus further extend this approach by also imposing nuclear physics constraints

on top of the tidal deformability, in the same spirit of the previous plots (Fig.5.7).

We have also added P(2nsat) from Ref. [157] for comparison. The constraints

from χEFT and ISGMR generate a rather flat distribution between the boundaries

with small and marginal peaks. The tidal deformability imposes slightly stronger

constraints, with P(2nsat) ≥ 15 MeV for the prior set #1 and #2. It is however

interesting to note that here also, the joint posteriors predicts a peak narrower

when including all three constraints: P(2nsat) = 24.61+24.42
−5.00 /26.02+13.58

−5.00 MeV fm−3

(P(2nsat) = 23.69+27.95
−5.00 /25.00+7.82

−5.21 MeV fm−3 and P(2nsat) = 25.00+19.91
−5.00 /30.00+18.29

−6.69

MeV fm−3) for TD-LVC-2018 (TD-De-2018 and TD-Coughlin-2019) for the prior set
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Figure 5.7 The generated PDFs of the pressure at 2nsat for the prior set #1 (a) and
#2 (b)
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#1/#2. Although the centroid value of each tidal deformabilities are quite similar

between the priors, the prior set #2 gives less uncertainty in the TD-LVC-2018 and

TD-De-2018 cases. All in all, we conclude that the limits of the pressure at 2nsat is:

19 ≤ P(2nsat) ≤ 50 MeV fm−3. Besides, considering the prior set #2 which has a

tighter bound for Ksym, our prediction is in good agreement with the one proposed from

Ligo-Virgo (Ref. [157]). The smaller dispersion is shown to come from the ISGMR,

χEFT and tidal deformability considered all together. There is however no inclusion

of quark phase transition in the present analysis, which is expected to increase the

width of the prediction [108, 109].

5.4 Analysis of the Correlations Among the Nuclear Empirical Pa-

rameters

It is interesting to study the correlations among empirical parameters since they

could sometimes reveal physical and universal correlations, or spurious correlations

generated by the reduced number of free parameters. Therefore, the correlations

Esym−Lsym, Lsym−Ksym and Ksat−Qsat are widely discussed [33, 34, 150–153, 158–161].
For instance, the correlation between Ksat and Qsat typically found for Skyrme and

Gogny interactions, is related to the presence of a single density dependent term in

the nuclear force [33, 34]. Hence, a recent analysis of several of these correlations can

be found in Ref. [138]. In the present section we provide an analysis on Lsym − Ksym

and Ksat − Qsat correlations under the influence of each constraint associated to pΛ̃,

pχEFT and pISGMR. The correlation between Esym and Lsym is not shown here since we

used a fixed Esym value for prior sets #1/#2 (see Table 4.1 for details).

5.4.1 The Correlation between Lsym and Ksym

We first explore the correlation between Lsym and Ksym (see Figs. 5.8), which was also

explored in Refs. [150–153, 158–161]. We remind that the influence of the prior sets

on the PDF related to Lsym (Fig. 5.1), was suggesting the presence of a correlation

between Lsym and Ksym. Here also we find a marked difference between the Lsym−Ksym

domain favored by the GW constrain (low Lsym values) and the one favored by the

χEFT one (high Lsym values). The lower bounds in Lsym and Ksym are imposed by the

stability and Mobs
max constraints, while the upper bounds are fixed by the causality one.

Note that the Lsym − Ksym domain favored by the TD-De-2018 Λ̃-PDF is a bit smaller

than the one favored by TD-LVC-2018. Moreover, the prior set #2 exploring a smaller

parameter space than the prior set #1 (see Tab. 4.2), the correlation domain is smaller

for prior set #2 compared to #1. Despite this main difference, there is still a small but

noticeable impact of the prior set.
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Figure 5.8 The values of the Lsym and Ksym inside of the 1-σ probability for the prior
set #1 (a) and #2 (b) with the fit from Ref. [150]
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Exploring a large set of RMF and Skyrme EDFs, the following relation Ksym = β(3Esym−
Lsym) + α, with β = −4.97 ± 0.07 and α = 66.80 ± 2.14 MeV, was suggested [150].
Fixing Esym = 32 MeV (actually Esym = 32.1 ± 0.3 MeV is taken in Ref [150], but

we keep fixed Esym = 32 MeV in our analysis, for details see Table. 4.1 and related

explanations), this correlation is shown in Fig. 5.8 with the legend Mondal 2017.

This correlation was shown to originate from the physical condition that the energy

per particle in NM should be zero at zero density [138]. Using the meta-model, the

validity of this correlation has been confirmed and the contribution of higher order

parameter (Qsym, Qsat, Zsym and Zsat) has also been investigated, adding about 200 MeV

uncertainty to Ksym [138]. There is an overlap between the Mondal 2017 correlation

line and the χEFT favored domain, as expected (Fig. 5.8). However, the χEFT favored

domain is much larger since we have considered only the n0 ≥ 0.12 fm−3 energy band

in NM. The constrain at very low density is thus not included in the χEFT favored

domain.

We have also analyzed the impact of the ISGMR constraints on the Lsym − Ksym

correlation, but since this is a correlation among isovector empirical parameter, there

is no impact of the ISGMR constraint.

Finally, the blue contours in Figs. 5.8 represent the 1-σ ellipses including both the

GW and χEFT constraints together. This ellipse is only weakly dependent on the prior

sets #1 and #2. We therefore propose a new correlation which reproduces the joint

probability as,

Ksym = α1 Lsym + β1, (5.3)

where α1 = −18.83+3.00
−2.00 and β1 = 616+140

−180 MeV.

5.4.2 The Correlation between Ksat and Qsat

The second correlation we analyze here is the one between Ksat and Qsat. The physical

origin of this correlation is related to the ISGMR constraint reflected into the parameter

Mc defined below saturation density at nc ≈ 0.11 fm−3 [33, 34]. Setting n0 = nc in the

isoscalar channel (δ = 0) of the meta-model, one can obtain the following relation:

Mc ≈ 4.6Ksat − 0.18Qsat − 0.007Zsat [138]. Fixing Mc = 1050± 100 MeV, this relation

induces a correlation between Ksat and Qsat. However, a general analysis based on

meta-model shows that this correlation is rather weak from the various EDFs, and the

parameter Qsat is yet unknown [138]. Since Qsat can be constrained by the GW data,

it is worth analyzing the correlation Ksat −Qsat under the influence of GWs.

In Figs. 5.9, the Ksat−Qsat correlations are shown for various constraints with a spurious

correlation found for Skyrme and Gogny EDFs from Ref. [34] as the legend Khan
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Figure 5.9 The values of the Ksat and Qsat inside of the 1-σ probability for the prior
set #1 (a) and #2 (b) with a spurious correlation found for Skyrme and Gogny EDFs

from Ref [34]. Note that the χEFT constraint is included for all joint posteriors
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2013. The source of this correlation is the density dependent term from Skyrme and

Gogny EDFs(see Ref. [34] for details). First, it should be stressed that the χEFT

constraint is included for all joint posteriors, but its effect was found negligible in

this case. The domain allowed from the ISGMR constraint is shown with purple large

dots, as previously discussed. A lower bound Qsat ≥ −500 MeV is shown, originating

from the GW constraint has previously discussed in Fig. 5.3. Finally we represent the

domain allowed by the GW data with the "+" (TD-LVC-2018), "x" (TD-De-2018) and

"?" (TD-Coughlin-2019) symbols. There is a nice overlap between the GW data and

the ISGMR. Furthermore, the confrontation of the GW data to the ISGMR correlation

band allows to identify a smaller domain in Ksat−Qsat, which is represented by the blue

1σ ellipse. However there is a discrepancy between the correlations from Skyrme and

Gogny EDFs from Ref [34] and the GW, since the GW favors −500≤Qsat ≤ 1500 MeV

and it forbids Qsat ≤ −500 MeV. The difference of this divergence can also be a hint

for a phase transition.

From the 1σ confidence interval one can derive the following relation:

Ksat = α2Qsat + β2, (5.4)

where α2 = 0.035+0.010
−0.010 and β2 = 199+20

−30. Furthermore, it seems that the ISGMR

and GW constrain a different parameter at same time. While the GW is constraining

Qsat, the ISGMR impacts Ksat. Consequently, joint posteriors predict 170/180≤ Ksat ≤
250/240 MeV and −500/ − 500 ≤ Qsat ≤ 1200/1000 MeV for the prior set #1/#2,

respectively. An increased resolution of both constraints shall lead to more accurate

determination of Ksat and Qsat.

5.5 Concluding Remarks

In the present chapter, the main result is a marked tension between nuclear physics

constraints (χEFT and ISGMR) and the astrophysical constraints from GW170817 and

M obs
max , assuming the PDF from Refs. [26, 30]. The posteriors of GW for these two

PDF favors −4 ≤ Lsym ≤ 27 MeV and 218 ≤ Ksym ≤ 648 MeV while posteriors of

χEFT predicts 25 ≤ Lsym ≤ 49 MeV and −265 ≤ Ksym ≤ 608 MeV. Consequently, the

neutron star properties, R1.4 and P(2nsat), also exhibit marked tensions between these

two constraints: the pΛ̃ suggests smaller radii at 1.4M� and higher pressure at 2nsat

at variance with nuclear physics. Since Ksym is responsible for the pressure at high

density, but not for the radius at 1.4M�, this effect can be understood as a consequence

of the low Lsym− high Ksym case. However the models of nuclear physics predict high

Lsym− low Ksym, in an opposite way. This tension may be a hint for a quark phase

80



transition which would lower the radius of NS with masses larger than about 1.3M�,

i.e. densities larger than about 2nsat . This conclusion should however be contrasted

with the results obtained from a third analysis exploiting the multi-messenger signals

from GW170817 (GW, EM and GRB), which favors a larger value of tidal deformability

(Λ̃ ≈ 600). In this case, the tension with nuclear physics is solved and typical radii

R1.4 ≈ 12.5− 13 km are obtained. Note that the multi-messenger analysis is based on

the present state-of-the-art numerical simulations as well as on the single GW170817

event. Future improvements of the simulations as well as more binary neutron star

events will potentially influence the result of the present Bayesian analysis. This

illustrates the complexity of the multi-messenger analysis, which can be contrasted

with the GW waveform analysis which is almost only based on general relativity theory

and the assumption of low spin of the NS.

The second main result is that we could extract boundaries for a set of nuclear

empirical parameters from the joint probability from TD-LVC-2018:

(1) Lsym = 0.00+12.00
−4.00 /16.58+11.28

−6.79 MeV,

(2) Ksym = 438.57+210.12
−210.12 MeV (see related discussion for the prior set #2),

(3) Qsat = −180+1222
−175 /− 162+935

−175 MeV,

(4) Qsym = −270+1690
−1126/− 169+1376

−748 MeV,

for the prior set #1/#2, respectively. It is also concluded that Qsat is constrained by

both GW and ISGMR analyses.

With the use of these nuclear parameters, we obtained the following values for the NS

properties:

(5) R1.4 = 11.00+1.30
−0.25/10.98+1.90

−0.25 or R1.4 = 12.00+0.30
−1.25/10.98+1.90

−0.25 km and

(6) P(2nsat) = 24.61+24.42
−5.00 /26.02+13.58

−5.00 MeV fm−3

for prior set #1/#2, respectively. It should be noted that these last results are in a

good agreement with other recent analyses using GW [114, 120, 157].

Finally we have analyzed the Lsym-Ksym and Ksat-Qsat correlations under the influence

of GW170817, χEFT and ISGMR constraints and proposed fits for our joint probability

correlations. A different relation from nuclear physics is found: Ksym = α1 Lsym + β1

where α1 = −18.83+3.00
−2.00 and β1 = 616+140

−180 MeV. Another correlation which we found
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is the Ksat − Qsat one. As one expects, this relation is highly correlated with the

ISGMR [33, 34]. However we showed that GW has also a decisive role in determining

these parameters since it constrains Qsat. Consequently, we found the following

relation: Ksat = α2Qsat + β2 where α2 = 0.035+0.010
−0.010 and β2 = 199+20

−30. All things

considered, increasing the accuracy on the determination of tidal deformability from

GW, as well as Mc from the ISGMR, will lead to a better determination of Ksat and Qsat.
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RESULTS AND DISCUSSIONS

In the present thesis, we have investigated the nuclear equation of state (EoS),

impacting the structure of neutron stars (NS). On this purpose, we first discussed

two different cases of the NS core: the phase transition to hypernuclear matter and

the traditional nuclear matter approach.

Hypernuclear matter for NSs is problematic since hypernuclear equation of states

decrease the pressure inside the NS core [9–13, 15] leading to smaller maximum

mass than the observational maximum mass for NS (2M� [23, 24]). One of the

solution to this "puzzle" could be the better understanding of the hyperon interaction

inside the nuclear medium, which can be extracted from experiments on multi-strange

hypernuclei. In this case superfluidity (or pairing) in hypernuclei could impact the

interpretation of the experiments. Therefore, the Λ pairing channel was studied for

multi-strange hypernuclei in the first part of the thesis. On this purpose, we considered

Hartree-Fock-Bogoliubov (or Bogoliubov-de Gennes) formalism [35, 36] to evaluate

ground state properties of 40 – S
– SΛCa, 132 – S

– SΛSn and 208 – S
– SΛPb hypernuclei which have closed

proton and neutron shells, since the semi-magicity often guarantees that nuclei remain

at, or close to, sphericity. We first investigated the possibility of NΛ (N=proton or

neutron) pairing channel by comparing the Fermi energies of each nucleons and Λ by

using the Hartree-Fock approach. Since the energy difference between nucleons and

Λ Fermi levels is usually large (more than 5 MeV) in the considered nuclei, the NΛ

pairing is quenched in most of the cases. We then fit a ΛΛ pairing interaction into the

Hartree-Fock-Bogoliubov equations, which magnitude is calibrated to be consistent

with the maximum predictions for the Λ pairing gap in hypernuclear matter [73].
Generally, we found that ΛΛ pairing could be active if the energy gap between orbitals

is smaller than 3 MeV. Under this condition, Λ pairing could impact densities and

binding energies. Since only a weak spin-orbit interaction is expected in theΛ channel,

Λ states are highly degenerated and usually distant by more than 3 MeV in energy.

Therefore, Λ-related pairing effect can usually be neglected in most of hypernuclei,

except for hypernuclei which have a single particle gap lower than 3 MeV around the

Fermi level.
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With the advent of a first gravitational wave detection from a binary NS merger

(GW170817) [25, 157], a new era for nuclear astrophysics has begun, since it has

provided an additional observable related to the EoS of NS: Tidal deformability

(Λ̃) [27–29]. It has also opened a possibility to test different EoSs for NSs. Taking

advantage of GW constraints on tidal deformability, we tested the validity of the

traditional nuclear matter hypothesis in the second part of the thesis. On this purpose,

nuclear EoSs were generated by using observational data such as the maximum mass

(2M� see Refs. [23, 24] for details) and Λ̃ constrained from the gravitational wave

event of GW170817 [25, 26, 30, 31], as well as predictions from nuclear physics such

as Chiral Effective Field Theory (χEFT) [32] and Isoscalar Giant Monopole Resonance

(ISGMR) [33, 34]. Our main results are the presence of marked tensions between

various analyses of the GW signal from GW170817, depending on the inclusion or

absence of multi-messenger additional constraints, and also marked tensions between

astrophysical and nuclear physics constraints. For instance, the posteriors using the

Ref. [30] (TD-De-2018) favors Lsym = 0+2
−3 MeV, Ksym = 390+1110

−400 MeV, while Ref. [31]
(TD-Coughlin-2019) favours, Lsym = 17+15

−15 MeV, Ksym = 275+890
−330 MeV. The posterior

predictions using Λ̃ from Ref. [26] (TD-LVC-2018) are intermediate between these two

cases. This tension also exists for the radius predictions R1.4, since R1.4 = 10.7+2.1
−0.3 km

in the case of TD-De-2018 and TD-LVC-2018, while it is R1.4 = 13.1+0.5
−0.5 km in the

case of TD-Coughlin-2019. These probability density functions (PDFs) of Λ̃ are

however more consistent in their predictions for the pressure and we have found

P(2nsat) = 45+35
−25 MeV fm−3 for prior set #1 (see Sec. 4.8 for details). Besides, these

predictions are also in marked tension with the posteriors obtained from χEFT which

predict Lsym = 35+7
−10 MeV, Ksym = 14+600

−265 MeV, R1.4 = 13.0+0.8
−1.2 km and P(2nsat) =

12+23
−4 MeV fm−3 for prior set #1. It is interesting to note that there is a marked tension

in the values for Lsym between all Λ̃-PDF analyses and the χEFT one. However, it

should be noted that for the radius R1.4 the multi-messenger Λ̃-PDF from Ref. [31],
which is peaked at Λ̃≈ 600 is in good agreement with χEFT predictions.

The tensions presented here between the posterior predictions are marked, but still

consistent at 2-3σ. The reduction of the uncertainties in our predictions requires a

reduction of the observational or experimental uncertainties. Hence increasing the

accuracy on the determination of tidal deformability from gravitational wave, as well

as Mc from the ISGMR, will lead to a better determination of Ksat and Qsat and NS

properties. Increasing the number of gravitational wave signals of binary NS merger

is also a way to refine our present analysis and conclude on the strength of the tension

between multi-physics constraints. Ultimately including hyperon degree of freedom

in the GW constrained EoS, shall allow to bridge the two main parts of the present

work in a unified form.
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