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ABSTRACT

Domain Free Deep Learning Based Security Models for
Cyberphysical Systems

Dilara GÜMÜŞBAŞ

Department of Electronics and Communications Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Tülay YILDIRIM

With the developments in digital age and growing interest in IoT, a variety of

institutions and organizations have started to digitalize their systems. As a

consequence of these digitalizations, security of collecting, accessing and transferring

great amounts of private data via internet connection have became an important issue.

In particular, protection of data collected, transmitted and stored on cyberphysical

systems (CPS) such as security systems have gained great importance.

Recently, many studies have been conducted using state-of-the-art Deep Learning

(DL) algorithms for security systems. However, despite their groundbreaking results,

most of these studies either are biased to some particular datasets or too complex

and computationally-expensive to be used in real time. Moreover, DL algorithms

require a lot of input data to extract the most informative feature representations

and become disadvantageous in real situations, where imbalances among classes

and unlabelled samples in input data are quite common. Therefore, first goal of

this dissertation is to conduct a comprehensive research and to study AI-based new

approaches for two different domains of security-themed systems: biometric systems

and cybersecurity. In particular, new Capsule-based feature representations for these

domains are investigated in detail and these representations are compared with their

equivalent state-of-the-art algorithm-based models for the first time.

Second goal is to conduct an experiment on Transfer Learning (TL) for cybersecurity,

where features are in time-domain and benchmark datasets do not share sufficient

common feature space with each other like image-domain counterparts such as

xii



biometric systems to use pre-trained network in 1D. In addition, possible scenarios

are examined to adapt security systems into different domains and generalize by using

available benchmark datasets with different traffic collection as well as feature spaces.

Keywords: Deep learning, capsule networks, network intrusion detection, biometric

identification and verification, cyberphysical systems

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

Siberfiziksel Sistemler için Alan Bağımsız Derin
Öğrenme Tabanlı Güvenlik Modelleri

Dilara GÜMÜŞBAŞ

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Tülay YILDIRIM

Dijital çağdaki geli̧smeler ve IoT’a yönelik artan ilgiyle, çeşitli kurum ve kuruluşlar

kendi sistemlerini dijitalleştirmeye başlamı̧slardır. Bu dijitalleştirmelerin sonucunda,

büyük miktarlardaki ki̧sisel verilerin internet yoluyla toplanması, ulaşılması ve

iletilmesi önemli bir konu haline gelmi̧stir. Özellikle de, güvenlik sistemleri gibi

siberfiziksel sistemler (SFS) üzerinde toplanan, iletilen ve kaydedilen verilerin

güvenliği çok büyük önem kazanmı̧stır.

Son zamanlarda, güvenlik sistemleri için yapılan çoğu çalı̧sma en geli̧skin Derin

Öğrenme (DÖ) metodları kullanılarak gerçeklenmi̧stir. Lakin, çığır açıcı sonuçlara

rağmen, bu çalı̧smaların çoğu ya belirli veri setlerine meyilli olacak şekilde öğrenmi̧stir

ya da gerçek zamanlı kullanmak için çok karı̧sık ve hesapsal yükü fazladır. Dahası, DÖ

algoritmaları giri̧s verisinden en anlamlı özellikleri çıkarabilmek için çok sayıda giri̧s

veri örneğine ihtiyaç duyar bunun sonucunda sınıflar arası verinin dengesiz olduğu

yada sınıflanmamı̧s veri örneklerinin olduğu gerçek durumlar için dezavantaj haline

gelir. Bu sebeple, bu tezin ilk amacı kapsamlı bir araştırma yürütmek ve AI-tabanlı yeni

yaklaşımları güvenlik temalı sistemlerdeki iki farklı çalı̧sma alanı -biyometrik sistemler

ve siber güvenlik sistemleri- için analiz etmektir. Özellikle de, yeni kapsül-tabanlı elde

edilmi̧s özellikler ayrıntılı bir şekilde incelenmi̧s ve bu özellikler ilk kez bu iki çalı̧sma

alanı için eşdeğer en-geli̧skin algoritma tabanlı özellikler ile kıyaslanmı̧stır.

İkinci amaç ise özelliklerin görüntü uzayında değil, zaman uzayında olduğu ve

referans veri setlerinin görüntü veri setleri gibi birbiriyle yeterli miktarda ortak özellik

uzayının olmadığı siber güvenlik sistemleri için Transfer Öğrenme (TÖ) üzerine
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çalı̧sma yapmaktır. Buna ek olarak, güvenlik sistemlerini farklı özellik uzaylarına

uyarlayabilmek ve varolan farklı şekilde toplanmı̧s ve ayrı özellik uzaylarına

sahip referans veri setlerini kullanarak genelleştirebilmek için muhtemel senaryolar

incelenmi̧stir.

Anahtar Kelimeler: Derin öğrenme, kapsül ağları, ağ saldırı tespiti, biyometrik

kimlik tanımlama ve doğrulama, siber fiziksel sistemler

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

Cyberphysical system (CPS) is an interdisciplinary system that combines

computer-based systems with physical systems to operate together. Some of

the most known examples of CPS are biometric monitoring, smart grid systems,

cybernetics and autonomous cars. With the increasing interest of Internet of Things

(IoT), a type of CPS with less complexity regarding coordination, data collection,

transmission and storage has gained importance.

In this study, we consider security-themed approaches for IoT and employ

cybersecurity and biometric systems to conduct realistic research on domain-free

Artificial Intelligence (AI) methods for CPS. Here, cybersecurity is used to secure the

process of data transmission and storage of IoT. Similarly, biometric systems are chosen

to secure the process of data collection for IoT since it is done via physical components

such as keyboards, sensors for security systems and passwords or several biometric

traits are frequently used to secure the process of data collection.

Throughout this chapter, AI methods for CPS are discussed with a specific focus on

two different types of security-themed approaches, namely biometric systems and

cybersecurity. These two systems are chosen for two reasons. Firstly, AI-based

algorithms vary from time-series models to computer vision models. Thus, using such

security systems that are in different domains such as image and time domains is

important to obtain a comprehensive study. Besides, we employ two different types of

biometric systems, behavioral-based and physical-based systems, to widen the scope

of the study. Secondly, domain-free AI security models and Transfer Learning (TL)

can be experimented on these security-themed approaches since both show different

characteristics and experiments could give an idea about how dataset bias affects those

models.
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1.1 Literature Review

This section presents AI methods for cybersecurity and biometric systems. These AI

methods are chosen according to two criteria: their contribution as a pioneer to the

literature and/or being recently-published with high citation statistics. Furthermore,

advantages and disadvantages of each AI algorithm type are only explained in detail.

1.1.1 AI Methods for Cybersecurity

With the increasing pace of developments in the digital age, accessing and

transferring great amounts of data via internet connection and evolving cyber threats,

cybersecurity-related issues have been increased. Therefore, these issues created the

need to deploy more trustable cybersecurity systems, which are composed of a variety

of preventive methods.

As one of the widely-studied branches of cybersecurity systems, Intrusion Detection

System (IDS) is developed to detect cyber threats and to ensure safe user access and

privacy protection. IDS primarily gathers data and makes a detection system into

work to catch and identify possible threats for the use of security analysts. Besides,

it can be categorized into two systems: Network Intrusion Detection System (NIDS)

and Host-based Intrusion Detection System (HIDS). While NIDS is based on network

traffic data that consists of whole interaction among devices on a network, HIDS is

based on HIDS agent data collected from only host devices such as operating system

logs.

A variety of algorithms are used for IDS which can be observed under three

categories: rule-based, statistics-based and Machine Learning (ML) based algorithms.

While rule-based algorithms use data distributions to construct a rule and execute

it, statistics-based algorithms benefit from previous attack patterns to estimate a

statistical distribution and employ this distribution to detect attacks. The last category

falls under ML-based algorithms as a sub-field of AI, which refers to machines that

mimic human cognitive abilities which varies from perception to problem-solving.

ML-based algorithms concentrate on the learning part of these cognitive abilities. After

learning, they perform classifier training to detect anomalies including known attacks.

Since each algorithm has its advantages and disadvantages thereby, choosing the best

one depends on the problem and the trade-offs. For example, rule-based algorithms

can be performed simply and quickly. However, it cannot perform well under missing

and/or imprecise data. Moreover, updating this approach is cumbersome. Similarly,

statistics-based algorithms solve these problems but as a trade-off, they demand high

computational power and they are not suitable for large amounts of data. Unlike

2



rule-based and statistics-based algorithms, ML-based algorithms are proposed to solve

these problems using inference models which can capture the complexity and can be

trained on big data.

As many organizations have started to employ interconnected systems, the amount of

data collected and transferred over a network has been growing gradually. Therefore,

the protection of the data coming from these systems has become even more

vulnerable to not only unauthorized access but also authorized access by the insider

attackers. Moreover, there may be a lack of human force to protect these systems in

real-time. To solve these issues, ML-based approaches, in particular Deep Learning

(DL) methods, are frequently used in cybersecurity for three main reasons. Firstly,

these approaches are successful to find underlying patterns of data not only for known

but also for novel attacks to automate threat and anomaly-based security monitoring

and detection. Secondly, ML-based approaches are good at reducing false positives and

lessen the number of false alarms to be analyzed by security analysts. Therefore, they

facilitate the process for security analysts and increase their productivity regarding

intrusion detection and response time. As a result, reducing the amount of data to

be investigated makes a huge contribution to real-time detection and avoids data

losses. Thirdly, they make the monitoring and detection systems computationally

inexpensive and adaptable to update towards evolving attack types. Furthermore,

ML-based approaches are able to predict anomalies.

This section not only presents an all-inclusive overview of ML approaches for

cybersecurity by analyzing concerning evaluation results and limitations but also

a further investigation on factors that affect reliability and scalability of these

approaches are provided for potential future directions. Besides, taxonomy for

ML-based approaches can be found in Figure 1.1.

1.1.1.1 k-means Clustering

K-means Clustering is a method where each input data is grouped to a randomly

chosen clusters (k) according to their distance to these cluster centers and cluster

centers are updated until certain criterion such as minimizing distances among clusters

is met [1]. Although this algorithm is easy to implement, fast and computationally

inexpensive for big data, there are several issues related to the k-means clustering.

Firstly, choosing the optimal number of clusters is difficult. Secondly, noise in input

data has a strong effect on performance results. Lastly, k-means clustering is negatively

affected when different classes create the same cluster due to their same mean values

or data is non-convex.

3



ML-based
approaches

k-means

Autoencoder
(AE)

Generative Adversarial Network
(GAN)

Self Organizing Map
(SOM)

k-nearest neighbors
(k-NN)

Bayesian Network

Decision Tree

Fuzzy Logic
(Fuzzy Set Theory)

Multilayer Perceptron
(MLP)

Support Vector Machine
(SVM)

Ensemble methods
Random Forest (RF)

AdaBoost
Evolutionary Algorithms

Restricted Boltzmann Machine
(RBM)

Deep Belief Network
(DBN)

Convolutional Neural Networks
(CNN)

Recurrent Neural Network
(RNN)

Long Short Term Memory
(LSTM)

Reinforcement Learning
(RL)

Figure 1.1 Taxonomy of ML-based algorithms for cybersecurity
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Several methods have been proposed using different distance metrics. For instance,

the method introduced in [2] uses System Call Frequency Distribution (SCFD) to

calculate similarity metrics with k-means, where the cut-off distance of clusters is

calculated using cumulative distribution function (CDF) with Mahalanobis distance

to differentiate normal from attacks. The method achieves better detection than

Euclidean distance on outliers on the private dataset while it may not detect local

variations in system call sequences. Similarly, the method introduced in [3] employs

k-means with Gaussian Similarity Measure on DARPA98 dataset.

To achieve high detection rates, several approaches have employed hybrid methods.

For example, the model proposed in [4] first employs k-means to obtain different

training subsets then uses five Fuzzy Neural Networks (NN). As a final step of the

model, it classifies with SVM. The model achieves high detection results on KDD99 for

each attack type. Similar to [4], the model proposed in [5] selects the most distinctive

data samples with k-means then classifies these samples with NN. However, the model

achieves low detection rates for minority classes: R2L and U2R in KDD99. The method

introduced in [6] uses k-means as a first step of separating data into clusters then

learns subgroups in clusters with C4.5 decision tree while the method proposed in [7]
does same with Naive Bayes. Both methods achieves a high true positive rate with low

false positives on KDD99 dataset.

1.1.1.2 Autoencoder (AE)

Autoencoder (AE) is a type of unsupervised DL method that first encodes then

decodes the original data to build novel representations of the data, which can be

seen in Figure 1.2. While the encoding layers make data representations into lower

dimensions to find the most informative feature space, decoding layers samples from

this space to original feature space under an unsupervised fashion [8]. All weights

are optimized by minimizing reconstruction error. AE has generally been used for

dimension reduction in cybersecurity thanks to its capability of extracting informative

feature representations. However, choosing the optimal structure of encoding and

decoding layers is difficult.

Several works are published for two different combinations of AE: AE with

shallow/deep ML algorithms and AE with statistical algorithms or statistics-driven

AE models such as Variational AE (VAE) with shallow ML algorithms. The studies

proposed for the first combination in [9, 10] use AE for dimension reduction/nonlinear

feature extraction and combine it with several shallow classifiers such as SVM on

NSL-KDD dataset. It is reported that combinations with AE achieve higher accuracy

compared to the combinations with other dimension reduction methods. Furthermore,

5



Figure 1.2 An example of Autoencoder

the study presented in [11] employs AE with a softmax regression classifier on the

same dataset and reports higher accuracy than the previous ones. In addition to

1-hidden-layered AE, multi-layered versions, also known as stacked AEs, are used in

the works introduced in [12–14]. These works combine stacked AEs with shallow

classifiers. While the first two uses random forest on NSL-KDD and KDD99 datasets,

the latter uses a radial basis function to achieve high overall accuracy on AWID2018

dataset. Similarly, the model introduced in [15] uses stacked AEs to extract valuable

information from raw traffic data and automate the intrusion detection process.

Besides, the works proposed in [16, 17] first use AE to extract meaningful information

from raw network traffic then detects anomalies with CNN.

The methods proposed for the second combination of AE in [18, 19] use VAE to reduce

dimension for raw network traffic and several featured datasets named NSL-KDD and

UNSW-NB15, respectively. In the second work, several shallow algorithms such as

random forest are also used to detect anomalies using the output of VAE. In a similar

manner, the work introduced in [20] employs VAE with gradient-based linear SVM to

detect some particular attacks on AWID2019 dataset, where SVM first reduces feature

dimension then VAE selects the most relevant features. It is reported that the detection

rate is higher than state-of-the-art models. In addition to models in [18–20], the

model introduced in [21] combines VAE with GAN and DNN. Basically, it uses VAE

to obtain new input representations formed in a statistical and nonlinear way then

GAN to augment less-represented intrusions. Finally, the model uses DNN to classify

unknown intrusions as well as known ones.

Furthermore, several AE combinations with statistical algorithms in [22, 23] adopt

AE to extract nonlinear representations, then use density estimation on NSL-KDD and

6



Figure 1.3 An example of Generative Adversarial Network

Gaussian Mixture Model (GMM) on KDD99, respectively. The results indicate that AE

with statistical algorithms improves detection rates, especially for frequency-related

intrusions. Similarly, the work presented in [24] combines AE with statistical models

and achieves higher accuracy than state-of-the-art deep and shallow ML on NSL-KDD

dataset.

1.1.1.3 Generative Adversarial Network (GAN)

GANs are one of the DL algorithms that consists of an encoder, a generator and

a discriminator. As can be seen in Figure 1.3, the encoder first extracts statistical

information from the input, then the generator creates new samples using the

information and discriminator tries to differentiate original input from created ones

[25]. The training of generator and discriminator is frequently done to minimize

loss of the generator while maximizing loss of the discriminator. GANs have a great

advantage of not only classifying but also augmenting new data samples only using

statistical characteristics of input, in particular for minority classes in a dataset.

Therefore, it has gained great interest in cybersecurity applications.

Several studies are done on data augmentation for cybersecurity datasets which have

frequently imbalanced data samples among classes. The work proposed in [26] uses

sequence GANs to augment ADFA-LD dataset. Similarly, the studies introduced in [21,

27] employ GANs to augment raw network traffic data. Both report an improvement

in detection results. Similarly, another method proposed in [28] uses Flow Wasserstein

GANs to generate adversarial data samples then employs them to detect and model

anomalies better for cybersecurity. The evaluation is conducted on ISCX-2012 and

ISCX-2017 datasets and an outperforming detection rate is reported.

In addition to the use of GANs for data augmentation, GANs are used for classification

of anomalies. The study proposed in [29] uses GANs for anomaly detection. Similarly,
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the work proposed in [30] employs GANs with some modifications to achieve an

improvement in time. Both reported high and similar detection rates on KDD99

dataset.

1.1.1.4 Self Organizing Map (SOM)

Self Organizing Map (SOM) is an ML method where input data is organized and

reduced into a lower dimension in an unsupervised manner with a competitive

learning algorithm [31]. Even though SOM is one of the easiest methods to use, it is

unstable to distribution shifts in the input data as well as the initialization of neuron

weights.

The model introduced in [32] employs hierarchical SOM for a variety of different

design structures. The model achieves unsatisfactory detection rates except for DoS

attacks on KDD99 dataset. Several approaches also use hybrid models based on SOM.

For example, the model proposed in [33] first reduces feature space with Principal

Component Analysis (PCA) by selecting eight eigenvectors with less noise with Fisher

Discriminant Ratio then classifies with SOM. The model achieves high sensitivity and

specificity on NSL-KDD dataset. Another approach proposed in [34] employs J.48

decision tree for misuse detection and a SOM for anomaly detection. This approach

first models normal data for TCP, UDP and ICMP protocols, then analyses anomaly

with SOM. It obtains a high detection rate with low false positive on KDD99 dataset.

1.1.1.5 k-nearest neighbors (k-NN)

K-nearest neighbor (k-NN) is an ML method where each input data is assigned to a

class of its randomly chosen neighborhood (k) according to their distance similarity

[1]. Despite using fewer parameters, simple calculations, scalability, robustness to

noise and uncovering natural patterns of data, there are a couple of problems related

to this method. Firstly, choosing the right k parameter is not simple. Because too

small k value models noise while too big k models other classes. Secondly, clustering

algorithms like k-NN makes algorithm stuck on a local minimum point. Thirdly, using

the Euclidean distance metric might not separate tangled data, in fact it may contribute

misleading results. Lastly, this method becomes slow and memory inefficient for high

dimensional data.

To accelerate detection time as well as to obtain a high detection rate, several

approaches combine k-NN with methods such as feature selection and new feature

representations. For example, the model introduced in [35] uses GMM to model

statistical regularities in features. After GMM parameters are modeled in Gaussian
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form, these parameters are fine-tuned with the EM algorithm. Then, the model

classifies with k-NN using these parameters. The model achieves satisfactory detection

results in particular on R2L and U2R attack types in KDD99 dataset. Similarly, the

model proposed in [36] first uses a new feature selection approach that assumes the

variance of a feature as a quality indicator and reduces all low-quality features. After

the selection of ten features, the model uses k-NN and achieves faster detection than

the one without feature selection on KDD99.

Several methods in the literature have used k-NN within the cascade system to achieve

higher detection rates. For instance, the method proposed in [37] firstly ranks

multi-resolution network traffic flow according to the level of anomaly then uses a

threshold to classify a high-level anomaly labeled flow as an intrusion. The method

achieves sufficient detection accuracy on KDD99 dataset. Similarly, the method

described in [38] uses three level k-NN based cascade system. The method first

extracts cluster centers and nearest neighbors then forms training data by summing

the calculated distances between data and its cluster center and data and its nearest

neighbor. The method obtains a significantly high accuracy and detection rate on

KDD99 dataset. Similar to the methods proposed in [37, 38], the method introduced

in [39] uses a two-tier system based on k-NN with the knowledge-based system. The

method first uses a knowledge-based system to generate alarms then filters these

alarms with k-NN. The method, however, achieves average results on DARPA-1999

dataset.

1.1.1.6 Bayesian Network

Bayesian Network is an ML based model that learns from the intrinsic behavior of input

data by using statistical dependencies without requiring prior knowledge. Although

this network detects small deviations in data and can be applied for continuous,

discrete as well as binary input data types, there are some negative aspects related to

it. Firstly, it may be vulnerable towards distributed/low-frequency attacks that create

normal-like traffic. Secondly, it may be ineffective towards correlated features since it

assumes that every feature is independent of one another while calculating statistical

dependencies. Thirdly, it is slow for larger-scale input data due to computational load.

Bayesian Network is applied for several scenarios introduced in [40–43]. The

approach proposed in [40] uses Naive Bayes on NSL KDD and achieves a high true

positive rate for DoS, R2L, Probe attacks. Similarly, the model introduced in [43] uses

Naive Bayes after discretization of the data. However, it only improves DoS attack

detection on KDD99 dataset. Besides, the work introduced in [42] modifies Naive

Bayes with Discretization Filter, where a set of predefined intervals are used to change
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feature values into interval values, and obtains higher detection with small alarm rate

than Naive Bayes itself on NSL KDD.

Several works in the literature combine Bayesian Network with other shallow

algorithms to achieve higher detection results. For example, the model proposed

in [44] employs Correlation Feature Selection (CFS) and Information Gain (IG) for

feature selection then combines Adaptive Boosting and Naive Bayes on NSL KDD

dataset to detect anomalies. Similarly, the method introduced in [45] combines Naive

Bayes with ADAM based system on DARPA98 and DARPA99 datasets.

1.1.1.7 Decision Tree

Decision Tree is an ML model where all features are scanned and separated into

groups. The model is composed of three main elements which are leaf, root and

decision node. If-else command path obtains output from roots of decision tree

to leaves while leaving less important features behind [46]. In particular, it is

effective for classes with insufficient data and able to work with categorical as well

as numerical input data. Moreover, it automates feature selections for trees and can

be easily interpreted thanks to the tree structure. However, it ignores the mutual

relationships among features. Mostly-known decision tree models are C4.5, CART

and J48, respectively.

The model proposed in [47] employs a suffix tree using a sequence covering.

This model calculates similarities between system calls on UNM and ADFA-LD

datasets. Although it does not use the length of symbolic sequences to achieve

faster-convergence than rival methods, the percentage of normal data samples in the

training dataset plays a crucial role.

Several models in the literature combine Decision Tree with other algorithms. For

example, the model proposed in [48] employs Decision Tree with IG to investigate

features and their relevance to each sub-attack type. The method reports that source

bytes and destination bytes are two of the most relevant features for all attack types on

KDD99 dataset. Similarly, another hybrid model introduced in [49] uses Decision Tree

with Bayesian clustering. The model first splits data into three classes: DoS, Probe

and others then classifies others into attack and normal. As a final step, the model

separates U2R and R2L attacks. The model achieves high detection rates except for

U2R and R2L attacks on KDD99 dataset.
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1.1.1.8 Fuzzy Logic (Fuzzy Set Theory)

Fuzzy logic is a method where classification boundary is treated as soft boundary

among the range of 0 to 1 rather than firm boundary according to fuzzy rules [50].
These rules are defined to classify classes by the experts. Despite having uncertainty

flexibility towards input data with fuzzy rules, these rules cannot be scaled to other

systems easily.

The model introduced in [51] uses fuzzy association rules based IDS approach.

However, the model achieves above average detection rates on KDD99 dataset. To

achieve higher detection rates, several hybrid methods extend their Fuzzy Logic

model by combining other algorithms. For instance, the models proposed in [52,

53] combine Fuzzy Logic with Genetic Algorithm (GA). Both methods achieve high

accuracy and detection rates with low false-positive rates on private, KDD99, NSL KDD

and Gure-KddCup datasets. Similarly, several hybrid methods proposed in [54, 55]
first employ a fuzzy rough set for feature selection/reduction. Then, [54] uses k-NN

and achieves state-of-the-art detection with a small error rate on KDD99 while [55]
creates GMM based attack and normal pattern library and obtains high detection with

low error rate on NSL KDD dataset. Another hybrid approach proposed in [56] uses

Fuzzy Logic to create different training subsets then employs NN to classify attacks.

The approach achieves improved precision and recall particularly on R2L and U2R

attack types in KDD99 dataset.

1.1.1.9 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a type of Artificial Neural Network (ANN) that is

composed of neurons with associated scalar weights to interconnect other neurons,

activation functions and layers. This network uses a backpropagation algorithm such

as Gradient Descent to tune/update weights by minimizing classification error [57].
Despite their robustness to noise and compatibility with linear and non-linear inputs,

choosing the optimal number of layers and neurons is difficult. Moreover, it may be

stuck at local minima resulting from Gradient Descent.

The model introduced in [58] first employs Particle Swarm Optimization (PSO) to

optimize parameters of MLP then conducts classification via MLP. The model obtains

slightly better error rates than the one without PSO. Another anomaly model proposed

in [59] first converts symbolic data to numerical by using Ghosh prototype and the

canberra metric then employs MLP with the chaotic neuron. However, the model

obtains average results on DARPA 1998 dataset.

A misuse based method is proposed in [60]. The method employs three different
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Figure 1.4 An example of Multilayer Perceptron

3-layer MLP structures and trains each by using ICMP, TCP and UDP based features,

separately. Then, the method uses rules by thresholding each output from MLPs.

Despite obtaining high detection rates on the private dataset with known DDoS and

unknown DDoS attacks, the model is limited to a few types of attacks and may not

handle DoS attacks with encrypted packet headers. Additionally, choosing the right

threshold value is not easy.

1.1.1.10 Support Vector Machine (SVM)

Support Vector Machine (SVM) is an ML method that defines a hyper-plane by

maximizing the margin among data samples from different classes [61]. To do that,

the method uses the closest data samples to the hyper-plane from different classes and

takes advantage of kernel space to map data into higher dimensional space. Despite

having the advantage of separating non-linear data using kernel-trick, the choice of

kernel type and the volume of feature space due to support vector size have a great

impact on performance results.

Several methods proposed in the literature frequently employ SVM with other

algorithms or cascade SVM. For instance, the model proposed in [62] uses two

different SVMs, where one is for misuse, another is for anomaly detection. Also, the

model presented in [63] first employs one of the Manifold methods, k variable locally

linear embedding(kv-LLE), and Isomap for feature reduction. Then, the model uses

SVM for anomaly detection. The model achieves high detection rates for anomaly

detection on KDD CUP 99 and UNM datasets. However, kv-LLE and kv-Isomap

combined with SVM achieves better detection rate than SVM itself on KDD99 dataset

in terms of reducing false-positive rates. In addition to [62, 63], the model proposed

in [64] first employs memory-efficient kernel tricked PCA for online feature extraction
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then uses SVM to classify. The model achieves a high overall detection rate on KDD99.

Also, the main contribution of the model is fast real-time/online detection.

Another hybrid detection model with SVM is proposed in [65]. The model uses agent

for anomaly detection and SVM for misuse detection, where four different SVMs are

trained for each attack type in KDD99 dataset. The model achieves a fast and high

detection rate. Additionally, the method presented in [66] first reduces the feature

space from 41 to 19 using GRF method then classifies with SVM. The method achieves

high accuracy by improving training time.

1.1.1.11 Ensemble Methods

Ensemble classifiers are a combination of two or more shallow classifiers. Random

Forest (RF) is one of the frequently used ensemble classifiers that consists of a bunch

of decision trees. Although it is a shallow classifier, training many shallow decision

trees contributes to optimizing/generalizing the model, add randomness and prevent

from overfitting [67].

Several methods in the literature employ RF. For example, the method introduced

in [68] first separates data using known patterns for specific intrusions then decides

whether data belong to anomaly by using RF. The model achieves a high overall

detection rate with low false alarms/positives on KDD99 dataset. Similarly, the

model proposed in [69] uses RF-based model named as Hybrid Isolation Forest

(HIF). The model first assumes unoccupied areas in feature space as normal then

models potential-anomaly-spots using few anomaly samples. The model achieves

high detection rates with a small improvement compared to other rival algorithms

such as SVM on ISCX IDS 2012 dataset. Another RF-based model proposed in [70]
first preprocesses by using Synthetic Minority Oversampling Technique (SMOTE) to

grow training sample size of U2R from 52 to 468 in NSL KDD dataset. Then, the

model employs IG to reduce features from 41 to 19. After preprocessing is completed,

data is given to RF for multiple classifications. The model achieves state-of-the-art

detection rates without false positives by improving detection for minority attack

types. Likewise, the model introduced in [71] first employs RF for misuse detection

then uses k-means for anomaly detection. The model obtains high overall detection

with low false alarms on KDD99 dataset.

Besides RF-focused models, there are a variety of shallow classifier combinations

with Adaboost algorithm in the literature. For instance, the model introduced in

[72] first uses RF for feature selection then employs k-means++ to separate data

into three clusters that represent normal, R2L and U2R attacks and remaining attack
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types due to similarity among normal, R2L and U2R. After these steps, the model

uses Adaboost to separate attack cluster into four sub-attack classes and achieves

state-of-the-art accuracy on balanced KDD99. Similar to [72], the method described

in [73] is composed of boosting algorithm, Adaboost and RF. The method achieves

identical accuracy with the one using only RF. Moreover, the model proposed in [74]
employs an ensemble of J48, Naive Bayes, Random Tree, AdaBoost, Meta Papping,

DecisionStump and REPTree on NSL KDD dataset while another model introduced in

[75] uses AdaBoost on KDD99 dataset. Both models achieve high accuracy.

In addition to discussed Adaboost combined models, other combinations are proposed

to create ensemble models. For example, the model proposed in [12] first uses

Non-symmetric Deep Autoencoder (NDAE) for dimension reduction then employs

RF for classification. It achieves high accuracy on DoS and Probe attacks while

obtaining below-average accuracy for minority attacks on both KDD99 and NSL KDD

datasets due to the need for more samples to train/tune Deep Learning models well.

Moreover, the main contribution of the model is shorter process time than standard

DBN techniques. Similarly, the model proposed in [76] combines CART with Bayesian

Network. The model obtains high detection rates especially for DoS, Probe and R2L

attacks on KDD99 dataset. Moreover, a misuse based detection model proposed in

[77] employs ensemble boosted decision trees. The model achieves high detection

rates only for DoS, R2L and probe attacks on KDD99 dataset.

1.1.1.12 Evolutionary Algorithms

Evolutionary algorithms are models that are inspired by the natural process of

evolution to solve optimization problems. There are a variety of evolutionary

classifiers such as Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm

Optimization (PSO). Among them, GA is one of most frequently used type of

evolutionary classifiers that generates chromosomes randomly and make stochastic

searches until the best combinations of chromosomes are found. During these

searches, chromosomes evolve through mutation, crossover and selection. GA are

advantageous at detecting global minima without requiring prior information about

feature space. However, the decision of fitness function and hyperparameters is

difficult.

The model proposed in [78] first employs PSO to reduce features in KDD99 dataset

to eighteen then classifies with SVM. The model achieves high accuracy with low

false positives. Another model proposed in [79] first uses rule mining process then

optimizes with graph-based genetic network programming to model parameters. The

model obtains high overall accuracy with low false positives on KDD99 dataset.
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Figure 1.5 An example of Convolutional Neural Networks

Besides, the study introduced in [80] combines two GA with fuzzy sets to evolve new

fuzzy rules. it evaluates new rules on several benchmark datasets.

1.1.1.13 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) is an ANN that is composed of different

variations of convolutional, pooling and fully connected layers [81]. As can be seen

in Figure 1.5, the input is first processed by convolutional and pooling layers that

create a variety of feature maps to find informative representations of the input. Then,

it is given to a fully-connected layer to classify. Besides, all weight parameters for

convolutional and fully-connected layers are optimized by gradient descent during

training.

CNN has a great advantage of automated feature extraction and is frequently

used in many recent works. However, using CNN and its powerful backbones

in two-dimensional space may require an additional step for the preprocessing of

one-dimensional input to be compatible with two-dimensional input. For example,

several approaches proposed in [82–84] use different preprocessing methods with

CNN. The first one converts symbolic features into numeric values using binarization

while converting continuous features into intervals to make them numeric features.

Then, one-hot encoding and reshaping are applied to all converted features to form

them pixel-like, respectively. Similar to the first method, the second one takes

raw input composed of numbers as 8-bit binary numbers and converts these binary

numbers into their analogous decimal counterparts. Afterwards, reshaping is applied

to form them image-like. Likewise, the third converts input into grayscale image

format after the process for the first method is done. Similarly, several methods employ

these preprocessing steps after feature selection is done [85].
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In addition to the new preprocessing steps, some works proposed in [86–88] focus on

more state-of-the-art CNN backbones to obtain higher detection rates. In particular,

most of the recent researches are conducted using LeNet backbone. For example, the

model proposed in [17] uses this backbone with an additional batch normalization

layer. The maximum performance result is reported as 94% accuracy for multi-class

classification on NSL-KDD dataset while the detection rate on minority classes such as

U2R, R2L is low. Similarly, the model introduced in [89] modifies this backbone with

Inception modules. The performance result is reported as 94.11% accuracy on KDD99

dataset. Furthermore, the method proposed in [90] adds preprocessing steps to RGB

scaling. After preprocessing, LeNet backbone is used for multi-class classification and

average accuracy is reported as above 99.8%.

Several CNN-based approaches are also proposed without using backbone models.

The models described in [16, 91, 92] focus on designing a novel CNN structure for

DoS/DDoS detection on KDD99, private and CICDDoS2019 datasets, respectively.

Similarly, the method introduced in [93] employs CNN on NSL-KDD dataset while the

method proposed in [84] employs CNN on NSL-KDD, UNSW-NB15 and CICIDS2017

with a new encoding method that is designed to give equal weight for each feature

and it provides twenty-four bits for each pixel as RGB-like encoding. Both reports high

accuracy.

Other CNN methods combine CNN with other methods such as LSTM and AE. For

example, the model proposed in [94] uses CNN with LSTM on the raw dataset. This

model extracts not only temporal features but also the spatial ones. Although deciding

hyperparameters such as the flow sizes is difficult, this model achieves high accuracy

over 95% with flow size as 100. Similar to [94], the model introduced in [16] encodes

raw input with one-hot encoding then uses CNN with AE. The performance result is

reported as having 98,95% accuracy. Another combined model, a Character Level

CNN (CLCNN), is proposed in [95]. This model first converts input, particularly each

character in input to an eight-bit numerical string. Then, the model gives an encoded

version of input into CNN. Reported results exhibit 98.8% accuracy.

1.1.1.14 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a type of ANN in which the hidden neurons are

connected by following a temporal sequence. Thanks to such arrangement of their

nodes, RNNs are principally used to process data in the form of time series [96]. Even

though RNN poses some problems such as vanishing gradients, it is frequently used

for time-series modeling for cybersecurity.
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Figure 1.6 An example of Recurrent Neural Network

The model proposed in [97] uses RNNs and achieves high detection accuracy and fast

real-time performance on the DARPA98 dataset. Similarly, the work introduced in [98]
obtains higher accuracy than CNN, SVM, and RF classifiers on the ADFA-LD dataset.

Another method proposed in [98] employs RNN with Gated Recurrent Unit (GRU)

on ADFA-LD dataset. Since this dataset consists of system calls with various lengths,

the semantic model uses different lengths between 10-30 of system-calls. The model

achieves high detection rates. However, finding the optimal length of the system-call

sequences may be problematic.

1.1.1.15 Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) is designed as an improved version of RNN. An

LSTM network consists of sequentially-connected neurons that are composed of input

and output gate units, known as memory cells, to save the memory of previous inputs

and forget these inputs for the subsequent interval of time [99]. As can be seen in

Figure 1.7, the input is processed by sequential neurons to model as time-series.

Figure 1.7 An example of Long Short Term Memory
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LSTM has a great advantage of modeling time-series and it is employed in many recent

works for cybersecurity despite the difficulty of choosing optimal hyperparameters.

For instance, the models proposed in [100, 101] employ only LSTM as a classification

algorithm on several benchmark datasets under different settings. While the first uses

a 3-layer-structure on KDD99, UNM and ADFA-LD datasets, the second cascades LSTM

combining their activations with voting in the end and both report high detection

accuracy. Similarly, the work introduced in [102] only employs Bidirectional LSTM on

UNSW-NB15 benchmark dataset and the study proposed in [103] adapts multivariate

correlations analysis into LSTM on NSL-KDD dataset to separate feature subsets more

efficient.

Besides, several works combine LSTM with DL algorithms, in particular with CNN. The

works proposed in [94, 104] combine LSTM with CNN on frequently used benchmark

datasets: KDD99 and CICIDS2017, respectively. Similarly, the approach introduced in

[105] combines bi-directional LSTM with CNN to extract temporal and spatial features

on NSL-KDD and UNSW-NB15 datasets after balancing the datasets with SMOTE.

1.1.1.16 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) is an energy-based neural network with two

layers; hidden layer and visible layer, where the weights of the network are trained in

an unsupervised fashion [106]. Since RBM can extract hidden patterns of input data

modeling probability distributions of inputs, it is generally used for feature extraction

in cybersecurity.

Figure 1.8 An example of Restricted Boltzmann Machine

The study introduced in [107] employs RBM for the FPGA-based intrusion detection

system. Using RBM for this system increases computational efficiency by 30% on

HTTP CSIC 2010 dataset. Similarly, the works proposed in [108, 109] use RBM for

dimension reduction on KDD99 dataset to improve accuracy and memory efficiency.

The work introduced in [110] uses RBM with AE on KDD99 to obtain powerful

feature extraction and dimension reduction processes. The evaluation results show

an improvement in detection.
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Figure 1.9 An example of Deep Belief Network

1.1.1.17 Deep Belief Network (DBN)

Deep Belief Network (DBN) is composed of several RBM blocks. As can be seen in

Figure 1.9, all layers are fully-connected and only connections between successive

layers are allowed while interconnections among non-subsequent layers and within

each layer are prohibited [111]. DBN has a great advantage of being time-efficient

thanks to training in a greedy-fashion as well as a good feature extractor/selector

without requiring any supervision.

DBN is frequently employed for feature selection and combined with other ML

algorithms. For example, the method presented in [112] uses DBN as a feature

extractor with SVM to classify attack types on NSL-KDD dataset. Similarly, the

approaches proposed in [113, 114] employ DBN to model and detect anomalies on the

same benchmark dataset. A novel DBN-based model with extreme learning machine

(ELM) on the same dataset is proposed in [115]. This model improves detection while

reducing false positives.

In addition to the works mentioned, a variety of methods that use DBN are designed

on KDD99 benchmark dataset. For instance; the [116] uses DBN with probabilistic

ANN to detect intrusions. Similarly, the models introduced in [117, 118] employ DBN

on the same benchmark dataset and report improved detection results compared to

shallow ML methods such as ANN and SVM.

1.1.1.18 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a DL method which uses agent interacting with the

environment directly under three concepts: state, action and reward function. The

agent first learns from its actions according to reward function then optimizes its state,

where the reward function shows how good the action is and enables agent to learn

what is good action by giving reward [119]. One of the frequently used RL methods
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is Q-Learning, where reward function is based on Bellman Equation.

The model proposed in [120] first uses rough set theory to reduce features and

discretize data with Q-learning that finds optimal cut values for features in the dataset.

It achieves high accuracy on NSL-KDD dataset for anomaly detection.

1.1.1.19 Open Topics and Potential Directions for Cybersecurity

This section presents an overview of open topics and potential directions regarding

new feature representations and the reliability of a model.

The first one of those potential directions are seen as novel feature representations.

As new AI-based methods are available, security systems take advantage of these

methods. Nevertheless, hackers use them for testing their novel attacks. For instance,

GANs are used to generate new samples to train the system better, however, hackers

could also take advantage of generating normal traffic data from a variety of sources

with different background noise and then use their statistical properties to design a

new attack.

Besides, these novel attacks can evolve to mimic normal traffic data and cheat the

system. For example, DDoS attacks are a low-frequency version of DoS attacks and

their characteristics exhibit a great similarity to normal traffic data. Although they are

from the same attack family, low-frequency related features are more vital to detect

DDoS attacks. Therefore, novel feature representations gain more importance and

remain as a potential research area.

The second one of those potential directions are seen as reliability of the model. Due to

the increasing number of new data, novel attacks may be labeled as normal by a human

expert or their characteristics may not be differentiated as intrusion by security systems

that are biased to their training dataset. Thus, the reliability of the model poses great

importance for system breakdowns not to happen and TL becomes a potential research

area for future works.

1.1.2 AI Methods for Biometric Systems

With the accelerated digitalization of daily-life applications such as digital banking,

digital health services, digital security has gained importance. Therefore, a variety of

authentication methods are employed to use digital systems safely in daily personal

activities. In the beginning, simple authentication methods are used such as ID cards,

passwords. However, these methods are prone to being copied easily thereby risky to

secure private data. As a result, these issues created the need to deploy more trustable

20



authentication systems which are composed of a variety of methods.

As one of the widely-used and more secure branches of authentication systems,

biometric systems are developed to prevent not only any personal information loss but

also to prevent spoofing attacks. Biometrics is a field of science that recognizes the

identity of an individual based on her/his personal characteristics and differentiates

the individual from others. Besides, these personal characteristics can be grouped into

two categories: physical and behavioral. While some frequently-used types of physical

characteristics are fingerprints, palmprints, ears, finger-veins and facial characteristics

such as iris, face, some types of behavioral characteristics are signature, voice and gait.

The algorithms used for biometric systems can be categorized into two general classes

regarding the type of feature extraction: hand-crafted feature-based algorithms and

automatically extracted feature-based algorithms. While hand-crafted features are

designed specifically for the problem by experts and combined with shallow ML

algorithms such as SVM, MLP, automatically extracted features are obtained via DL

algorithms and they are adaptable to any other problems without expert supervision.

Besides, the first category extracts low-level feature representations of input while the

last category extracts not only low-level feature representations but also high-level

ones thanks to the deep layer structure of DL algorithms. Since each algorithm has its

advantages and disadvantages thereby, choosing the best one depends on the problem

and the trade-offs. For example, DL algorithms can be performed simply and quickly.

However, there may be such rare cases where spoofing is done with a high-level

attacker and requires expert knowledge. Similarly, hand-crafted feature extraction

may solve these cases but as a trade-off, it requires expert knowledge and cannot be

adapted to new problems.

As many daily-life activities have started to employ interconnected systems, the

protection of private data has become even more challenging. Moreover, attackers

take advantage of using the newest algorithms to design their spoofing attacks so that

distinguishing them from real ones becomes more difficult. To solve these issues, ML

based approaches, in particular DL methods, are frequently used in biometrics for two

main reasons. Firstly, DL methods can extract feature representations automatically

without requiring any prior supervision. Therefore, they are easy to modify and

adapt to any environment. Secondly, DL methods extract more informative feature

representations thanks to their deep-layer structure. Thus, they are successful to find

underlying patterns of data not only for real samples but also for spoofing ones. As a

result of this, they increase accuracy and achieve breakthrough results.

This section presents an all-inclusive overview of the most popular and up-to-date
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DL approaches for biometrics. In particular, signature is chosen as a behavioral

characteristic while finger-vein is chosen as a physical characteristic among all

biometric traits. Besides, a further investigation of potential future directions is

presented.

1.1.2.1 AI methods for Signature Recognition and Verification

Before going into detail about up-to-date DL models, several methods concerning

hand-crafted feature extraction are given in Table 1.1. With the great success of

DL models, a variety of research fields have started to employ these models in their

studies. Even though several ongoing types of research are on hand-crafted feature

extraction, most of the recent studies for signature-based recognition and verification

are dominated by DL models, particularly CNN.

Table 1.1 Some of frequently-used hand-crafted feature extractors

EXTRACTOR TYPE FILTER NAME REFERENCE
Edge Sobel Filter [121]
Edge Canny Edge Detection [122]
Edge Boosted Edge Learning (BEL) [123]

Texture Gabor Filter [124]
Blob The Laplacian of Gaussian (LoG) [125]
Blob The difference of Gaussians (DoG) [126]

Feature Histogram of oriented gradients(HOG) [127]
Feature Scale-invariant feature transform(SIFT) [128]
Feature Speed Up Robust Features(SURF) [129]

The works presented in [130, 131] use GAN for offline signature identification

systems. While the first uses a hybrid approach of Writer-dependent (WD) with

Writer-independent (WI), the latter adds GAN a threshold parameter for the loss

function. Similarly, the study introduced in [132] employs other DL methods, Siamese

RNN and LSTM, to distinguish adversarial samples under WI supervision.

The model proposed in [133] employs CNN for signature verification and obtains

state-of-the-art performance. Then, the work presented in [134] extends the

previous CNN approach with Model-Agnostic Meta-Learning (MAML) to learn CNN

filter weights and improve performance results. Similarly, the model proposed

in[135] uses CNN backbone, Inception themed GoogleLeNet for signature verification.

Another model proposed in [136] uses CNN with modification using Logit layers to

calculate similarities between the reference and input samples. The model achieves

state-of-the-art performance results thanks to the modification.
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1.1.2.2 AI methods for Finger-Vein-based Biometric Identification and Verifica-

tion

Until now, most of the studies are conducted with a variety of hand-crafted extractors

as given in Table 1.1. After GPUs have become common and automatic extractors

have become the trailblazers, CNNs with their several backbones have started to be

used. Recent studies for finger-vein based identification and verification are frequently

done using CNN. For example, the works proposed in [137–139] employ VGG-16 -a

CNN backbone- for input resolutions as 65x153, 128x128 and 224x224, respectively.

The first study reports high accuracy over four benchmark datasets. While the second

study modifies VGG-16 by adding more layers, the third one uses pre-trained weights

to achieve high accuracy. Another CNN backbone, AlexNet structure is employed

with small modifications on kernels in the work introduced in [140]. Similarly, LeNet

backbone is used in the model proposed in [141].

Although state-of-the-art methods are successful at finding good feature

representations of the data, several ongoing studies proposed in [140, 142,

143] report that even these methods are slightly weak to adversarial attacks which

are designed by printing out original images and showing those images directly to

the sensor. Moreover, these attack vectors can be designed using state-of-the-art AI

methods such as GANs. Therefore, liveliness detection and novel sensors that detect

temperature have started to be used in recent ongoing works such as the model

introduced in [142].

1.1.2.3 Open Topics and Potential Directions for Biometric Systems

This section presents an overview of open topics and potential directions regarding

new feature representations and the reliability of a model for biometric systems.

The first one of those potential directions are seen as novel feature representations.

As new AI-based methods are available, both signature and finger-vein biometric

systems have employed these methods to improve their accuracy. However, these new

approaches either require more data samples to model better or use of pre-trained

weights. For example, CNN and its backbones require a variety of input data from

different viewpoints to model. Nevertheless, biometric benchmark datasets have small

sample sizes per class and some of them are imbalanced. Furthermore, pre-trained

weights may not be optimal for several biometric datasets. Therefore, new feature

representations that model viewpoint invariance and equivariance using few data gain

importance and remain as a potential research area.

The second one of those potential directions are seen as reliability of the model. Due
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to the increasing number of new data, new spoofing attacks may not be distinguished

easily by the biometric systems that are biased to their training dataset. Therefore,

the reliability of the model poses great importance and remains as a potential research

area for future works.

1.2 Objective of the Thesis

The main objective of the thesis is to conduct comprehensive research of domain

free DL based Security Models for CFS concerning data collection, transmission and

storage, where domain free indicates bias-free, more reliable systems to be used for

different domains.

To decide the domain free AI algorithm, we first take open topics and potential

directions for cybersecurity and biometric systems into consideration. Considering

the recent state-of-the-art feature extractors such as CNN backbones: VGG, ResNet,

Inception, their requirement for a huge volume of input data from different viewpoints

or the adaption of pre-trained network weights to model the input data, we decided

to deploy an AI algorithm that has two distinct qualities. The first quality is both

the ability to model invariance and equivariance of data without requiring any

augmentation and the ability to keep spatial relationships among features and model

feature activations smarter than using only scalar values. The second quality is the

ability to work and achieve feature representations similar to the human neural system

under hierarchical supervision, abstraction and adaptability to domain-independent

datasets.

As for the first quality, although CNN backbones achieve rotational robustness with

pooling layers, this robustness is limited to small local rotations. Therefore, a variety of

novel approaches use CNN by adapting either rotation invariant convolution outputs

or convolution filters. For example, steerable CNN [144], Group Equivariant CNN

(G-CNN) [145], Harmonic Networks [146], CubeNet [147] use rotated/transformed

convolutional filters in different orientations while the model introduced in [148]
manipulates feature maps. However, these rotations are limited to the finite-set of

orientations and still require more variations in the input data for complex systems.

Besides, pooling layers still lose information about spatial relations. Since CNN and

its variants are on Euclidean domain, a non-Euclidean domain such as Graphs, Point

Clouds and Manifolds is employed to extend the generalization ability and named

as Geometric DL. For instance, Graph Convolutional Network (GCN) [149], Geodesic

CNN on Riemannian Manifolds [150] and 3D Keypoints with Geometric Reasoning

[151] employ graphs or manifolds to model three-dimensions [152]. Although these
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methods model inputs using many orientations of tangent space thanks to Lie Algebra,

they are computationally complex to use in real-time [153].

As for the second quality, several algorithms are proposed particularly for the

abstraction of classes. For example, the method introduced in [154] searches

embeddings attached to each class using non-linear mapping and clustering to find the

abstract prototypes for each class. Similarly, the method proposed in [155] abstracts

each class with the mean output vector. Even though these methods are good at

simplifying, they do not use convolution filters which are the most powerful feature

extractor in a two-dimensional domain.

Since Capsule Network:

• models with small data and do not require input from different viewpoints and

simply models input with affine matrices,

• takes advantage of weight sharing properties of convolutional layers,

• keeps spatial relations of activations and can recognize the parts and their spatial

relationships among one another like the human brain.

• abstracts the activations and routes only the most contributing ones to the next

layer with routing function. Therefore, unrelated capsules become less effective

and the network exhibits Explainable AI (XAI) model characteristics.

Capsule Network is employed as a domain free AI algorithm to conduct experiments.

In addition to the main objective of this study, there are several sub-objectives

summarized as examining Capsule-based feature representations for different

security-themed CFS for the first time, TL for one-dimensional feature space,

detailed investigation of Capsule Network and its hyperparameters. Furthermore, all

experiments are conducted using Python and DL models are built using TensorFlow

library in Python.

1.3 Hypothesis

Original contributions are listed below:

• A comprehensive research on a domain-free AI model for security-themed CFS

is conducted for the first time.
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• Capsule Network performance and comparisons with its CNN equivalent are

analyzed, in particular their feature representations and impact on performance

results are investigated for biometric systems and cybersecurity for the first time.

• TL scenarios are extended to one-dimensional feature space for cybersecurity

and conducted under the content of reliability for the first time. Moreover, their

limitations are analyzed in detail under different scenarios.

26



2
AI-BASED APPROACHES FOR BIOMETRIC SYSTEMS

CNN is proposed for automatic feature extraction and to obtain high-level

representations of input images in [156]. CNN consists of three main parts:

convolutional layers, pooling layers, and fully connected layers. The convolutional

layers are used for feature extraction by using a variety of kernels to find the best input

representation. Then pooling layers take the output of convolution layers and discard

non-informative parts of the outputs coming from the convolution layers as well as

reduce dimensions for computational efficiency. After these two types of layers with

different combinations have been completed, the fully connected layer uses the most

informative extracted features to classify inputs. Until now, different combinations of

the first two parts of CNN have been used as backbones, such as LeNet, ResNet, and

VGG.

For this chapter, the CNN-based equivalent model was chosen to demonstrate that

the output of two convolutional layers is not as informative as the output of Capsule

layers. Moreover, it has a similar complexity to Capsule Network in terms of kernel

sizes in convolutional layers and neuron sizes in fully connected layers. In addition

to the CNN-based equivalent model, LeNet-5, which is one of the backbone models of

CNN, is employed due to its similarity to the model structure of Capsule Network for

a fair evaluation.

Although CNN offers translational invariance with pooling, it has limited rotational

invariance. Therefore, CNN requires data from different viewpoints. Capsule Network

is proposed to model feature representations of an object without requiring samples

from different viewpoints by ensuring translational and rotational invariance [157].
The network structure is shown in Figure 2.1 and algorithm flowchart of Capsule

Network is shown in Figure 2.2. As can be seen from Figure 2.1, the model consists of

four main parts which are convolution layers, Primary Capsules, Signature Capsules

and fully connected layers, respectively. Here, Primary Capsules puts activation

outputs from convolution layers into capsules to obtain vector representation of

features instead of numerical activation values in CNN.
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Figure 2.1 Capsule Network

Figure 2.2 Algorithm flowchart for Capsule Network
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Firstly, a variety of convolutions are applied to input images to obtain local

low-level features in convolution layers. After obtaining activations as the output

of these convolution layers, all these scalar-valued activations are given to primary

capsules to be grouped into multi-dimensional vector representations. Then, these

multi-dimensional vectors are multiplied with the affine transformation matrix to

obtain many different variations of these vectors for better modeling of the input

images. To select the most informative feature vectors, the routing algorithm is

employed. Before employing this routing algorithm, all transformed feature vectors

are squashed according to the Equation 2.1 to make discriminative feature vectors

more apparent and to fade less-informative ones out. After squashing, the most

informative vectors are routed to signature capsules to form an entity. When the

routing algorithm is agreed, signature capsules with one multidimensional capsule per

class is created. The new capsule keeps the information about all outputs of capsules

from the previous layer and keeps absolute characteristic features for each class.

v j =
||s j||2

1+ ||s j||2
x

s j

||s j||
(2.1)

where v j is output of a capsule, s j is total input of a capsule and s j also includes affine

transformed versions of convolution outputs which can be studied in detail from [157].

Lastly, these signature capsules are fed into fully connected layers to classify. The loss

function is designed as a combination of margin loss, which is obtained from false

predictions, and reconstruction loss. This loss function is calculated according to the

Equation 2.2.

L = Tcmax(0, m+ − ||Vc||)2 +λ(1− Tc)max(0, ||Vc|| −m−)2 (2.2)

where L is loss term for one signature capsule, m+andm are constants and chosen as

0.9 and 0.1, Tc is a constant that is 1 if the signature capsule is the correct, otherwise

it is 0. First-term of loss equation is to calculate correct prediction probability while

the latter term is employed to calculate incorrect prediction probability.

All in all, Capsule Network provides three main innovations compared to

Convolutional Neural Network:

• Inner affine matrix multiplication instead of data augmentation

• Vector representation instead of scalar-valued representation

• Forwarding only the most informative feature representations by Dynamic

Routing algorithm instead of forwarding all extracted feature activation values
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2.1 Model for Offline-Signature-based Identification and Verifica-

tion Systems

Biometrics is a field that uses behavioral and biological traits to identify/verify a

person. Due to ease of collection and being non-invasive, signature-based biometric

systems are frequently used. These systems are divided into two sub-systems

depending on their collection method; online and offline systems. The first one collects

dynamic signature features as a sequence of time. In this manner, features such as

speed and pressure can be extracted. The second one uses the image after signing

is done. Even though the online signature is advantageous for keeping more details

about a signature, the offline signature is the most frequently used behavioral trait in

daily life [158].

Figure 2.3 Two genuine (first two rows) and one forgery signature (last row)
samples from CEDAR, GPDS and MCYT databases, respectively [159–161]

In offline signature verification systems, the main aim is to separate the genuine

signatures from forgeries, which can be random, simple or skilled done by a forger.

Unlike random and simple forgeries, skilled forgeries are not always easy to distinguish

due to the intra-class variance of genuine signatures shown in Figure 2.3. Therefore,

a detailed investigation of not only local but also global features of genuine signatures

is required to achieve high verification results. Moreover, insufficient prior knowledge

about forgeries during training and limited genuine samples make the verification

process even more challenging.

A great deal of research has been devoted to extracting the most informative global

and -in particular- local feature representations to differentiate forgeries. These

hand-crafted local descriptors can be texture-based such as gray level co-occurrence

matrix [162], direction-based such as Histogram of Gradients (HOG) [163], Scale
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Invariant Feature Transform (SIFT) [164] or combination of two or more different

local descriptors [165]. While research on hand-crafted local descriptors is still

ongoing, recent studies have been conducted by employing automatic feature

extractor algorithms such as CNN. Since data samples per user are limited, a

few studies are dedicated to using transfer learning instead of conducting data

augmentation. The works presented in [166, 167] use a pre-trained CNN-based

model after training the model with other benchmark datasets for coarse-tuning

weight parameters. After this coarse-tuning process, limited training data from the

original dataset is used for fine-tuning. In brief, coarse-tuning is employed to narrow

down signature feature space while fine-tuning is used to guarantee optimal decision

boundaries. Similarly, the model proposed in [168] employs Siamese CNN with an

inception layer. To cope with the few data samples per user, the model generates

augmented samples for training. The model achieves 99.15% and 99.82% Area Under

the ROC Curve (AUC) for sub CEDAR and MCYT databases.

Unlike pre-trained CNN-based models, the method proposed in [157] narrows feature

space down by only modeling with few data from the original dataset. From this point

of view, the first goal of this chapter is to investigate the feature modeling capability of

Capsule Network and to evaluate Capsule Network under different input resolutions,

such as 64x64 and 32x32, which are four to eight times lower than the usual signature

resolutions for practical usage of signature verification and identification tasks. This

goal is chosen not only to investigate the modeling capability of Capsule Network

without requiring pre-trained weights under extremely low resolutions but also to

fasten evaluation times and lessen memory usage. The second goal is to obtain a

comparison among Capsule Network and its CNN equivalent on three benchmark

databases to understand how well algorithms can keep features as informative as

possible under extreme conditions.

2.1.1 Benchmark Datasets and Preprocessing Steps

2.1.1.1 Benchmark Datasets

In this chapter, three frequently-used offline signature databases are employed for

identification and verification tasks.

CEDAR: CEDAR database consists of 1320 genuine and 1320 forgery samples in total

and 24 genuine and 24 forgery samples are collected per user among 55 users [159].

MCYT: MCYT database consists of 1125 genuine and 1125 forgery samples in total

and 15 genuine and 15 simulated forgery samples are collected per user among 75

users [161].
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GPDS: GPDS database consists of 96000 genuine and 120000 forgery samples in total

and 24 genuine and 30 simulated forgery samples are collected per user among 4000

users [160]. In this chapter, we employed GPDS-100, which is only the first 100 users

for identification and verification tasks [163, 169].

2.1.1.2 Preprocessing Steps

Before the evaluation procedure, benchmark databases are preprocessed as shown in

Figure 2.4. Firstly, data samples for each database are cropped regarding the center

of signatures to discard unnecessary parts. Then, these data samples are resized to

64x64 and 32x32 extreme image resolutions. After resizing is done, data samples are

converted into binary values with Otsu’s method. As a final step of preprocessing,

binarization is done to make background pixels black, foreground pixels white.

Figure 2.4 Preprocessing steps for signature benchmark databases

2.1.2 Experiments and Conclusion

2.1.2.1 Experimental Setups and Experiments

General settings for the identification task are given below:

• One model is trained for all users in a specific dataset.

• Only genuine samples are used for training and testing. Train and test partitions

are set as the first half and the second half of genuine samples per user,

respectively.

• Two-fold cross-validation is employed for both tasks.

• For training, epoch size and batch size are chosen as 50 and 16.

• Image resolutions of 64x64 and 32x32, which are 4-8 times lower than the usual,

are used for identification task [166, 170–172].

• Capsule Network hyper-parameters such as layer structure, the routing number

are chosen as the original in [157]. Only convolution kernel sizes and capsule

dimensions are modified as given in Table 2.1 and Figure 2.1.
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• Evaluation metric is chosen as accuracy since classes in datasets are balanced.

General settings for the verification task are given below:

• A model is trained for each user separately, which is also known as the

Writer-dependent approach. For example, 55 separate models are created for

55 users in CEDAR dataset and only average accuracy of all models is reported.

• Genuine as well as random and simple forgery samples, which are treated as a

separate class, are used for training and testing. Train partition is set as the first

half of genuine and forgery samples per user while test partition is set as the

remaining half.

• Two-fold cross-validation is employed.

• For training, epoch size and batch size are chosen as 50 and 16, respectively.

• Only image resolution 64x64 is used since the inner variance of genuine

signatures makes modeling genuine signatures difficult for smaller resolutions

such as 32x32.

• Model hyper-parameters such as layer structure and the routing number are

chosen as the original in [157]. Capsule dimension is set the same as in the

identification task. Only convolution kernel sizes and capsule dimensions are

modified separately as given in Table 2.2 and Figure 2.1 for each dataset.

• Evaluation metric is chosen as accuracy since classes in datasets are balanced.

Table 2.1 Test accuracy for Offline Signature Identification tasks

Resolution Dataset nxn(stride) kxk(stride) Train Test Accuracy Equiv.
Acc.

64x64 CEDAR 21x21(1) 21x21(2) 12 12 %97 %55
32x32 CEDAR 13x13(1) 11x11(2) 12 12 %96 %54
64x64 GPDS-100 21x21(1) 21x21(2) 12 12 %94 %54
32x32 GPDS-100 13x13(1) 11x11(2) 12 12 %89 %51
64x64 MCYT 21x21(1) 21x21(2) 12 12 %95 %55
32x32 MCYT 13x13(1) 11x11(2) 12 12 %91 %51

All experimental results for offline signature identification tasks are given with the

information of input resolutions, train-test partitions and convolution kernel sizes

with stride in Table 2.1. As can be seen, even outputs of big convolution kernels are

good enough at modeling and separating signatures from one another using Capsule
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Table 2.2 Test accuracy for Offline Signature Verification tasks

Resolution Dataset nxn(stride) kxk(stride) Train Test Avg. Acc.
64x64 CEDAR 21x21(1) 21x21(2) 14+14 5+5 %91
64x64 GPDS-100 3x3(1) 5x5(2) 12+15 12+15 %86
64x64 MCYT 21x21(1) 21x21(2) 8+8 7+7 %89

Network while they are not enough to model using CNN-equivalent. Furthermore,

identification at input resolutions of 32x32 achieves average %92 accuracy over three

benchmark datasets for Capsule-based representations.

All experimental results for offline signature verification tasks are given in Table 2.2.

As can be seen, only 64x64 image resolution is used due to the difficulty level at

differentiating forgeries from genuine.

Moreover, genuine and forgery samples in the GPDS-100 dataset seem almost

identical. Therefore, they require smaller kernels to extract local features in detail

for verification tasks. Only for this dataset, additional two convolution layers before

primary capsules are added as 3x3(1) and 5x5(2). Additionally, train and test samples

are given as genuine+forgery format.

2.1.2.2 Conclusion

Capsule Network acquires promising results while using at least four times lower

resolutions than frequently used ones for identification tasks. This indicates that

Capsule Network is reliable enough to classify signatures and to have a unique ability

to model local features better under extremely low resolutions for practical purposes.

Moreover, results for identification tasks reveal that even using bigger sized (around

one-third of input resolutions) convolutions are useful to separate signatures owing

to the modeling capability of Capsule Network while CNN equivalent cannot perform

well and requires bigger input resolutions and/or more layers.

Similarly, verification results also indicate that the algorithm has a great capability

to cope with differentiating genuine signatures from forgeries. However, unlike

identification tasks, high-similarity between genuine and forgery samples requires

the extraction of low and mid-level features together. Moreover, different benchmark

datasets require different levels of convolution layers. For instance, two-layer kernels

are enough to extract enough information in CEDAR and MCYT datasets while

GPDS-100 dataset requires more. Therefore, convolution layers and convolution

kernel sizes are arranged for that requirement for all datasets.

For future works, there are a couple of things to be taken into consideration for offline

34



signature identification and verification tasks.

• Different model combinations for Capsule Network may be tried, such as

modifying the stride and convolution layers.

• Capsule Network and state-of-the-art CNN models such as VGG-16 can be

compared for high input resolutions using the same convolution layers to

investigate the modeling capability of Capsule Network in detail.

• For verification task, performance comparison can be generalized with the use

of adversarial attacks, such as adding noise to genuine signatures.

• Visualising feature representations before and after capsule layers can be done

to increase the explainability of capsule-based feature modeling.

In conclusion, the main point of this chapter is to investigate Capsule Network’s

advantages in terms of data representation, using few data in signature identification

and verification tasks for CPS and to encourage a community that is interested

in online signature verification to think one step further to obtain better feature

representations for the future.

2.2 Model for Finger-Vein-based Biometric Identification Systems

In comparison to other biometric system types, finger-vein-based recognition provides

some advantages due to its non-invasive and low-cost procedure, simplicity of

collection, and the fact that it is one of the biological characteristics that is affected only

by internal factors [173]. Although finger-vein-based biometric systems have these

advantages, they possess some drawbacks, such as poor quality of finger-vein images

related to internal factors that have a negative impact on the accuracy of finger-vein

recognition methods [174]. These internal factors could be finger tissue-based

problems as well as the quantity of fat and water levels under the skin.

There are two types of finger-vein identification systems: finger-dependent and

individual-dependent systems. The first focuses on each finger and creates separate

feature spaces for individuals, while the latter uses all fingers belonging to an

individual and creates feature space for each individual. Since each finger vein has

its characteristics, a person’s fingers lack common features. Thus, many types of

researches are conducted using a finger-dependent approach, such as [137, 175].
In recent years, there have been significant technical advances in the technology of

graphics processing units (GPUs) of computers. Moreover, with the increase in the
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number of open benchmark databases, these technical advances have stimulated an

increase in CNN-based implementations in biometrics. Besides, unlike conventional

methods, CNN accomplishes automatic feature extraction. This motivates most of the

ongoing researches to use CNN-based approaches to improve recognition performance

as well as the robustness of the recognition system. Li et al. proposed a system

based on CNN backbones, VGG-16 and AlexNet, that use pre-trained weights [176].
Similarly, Hong et al. proposed a method of applying VGG-16 and VGG-19 backbones

with pre-trained weights [177]; additionally, Das et al. used a VGG-16 backbone for

finger-vein identification [137]. Even though the VGG-16 backbone dominates the

other CNN-based backbones in recent researches, whether VGG-16 with pre-trained

weights achieves satisfying results due to extracting the best representations is open

for debate [157].

From this point of view, the first goal of this chapter is to investigate the feature

extraction capability of Capsule Network for finger-vein-based identification. The

second goal is to obtain a comparison among Capsule Network, its CNN equivalent,

and LeNet-5 on four benchmark sub-databases. Moreover, all of these evaluations are

made using 32x32 image resolutions for practical purposes, which is much lower than

the usual setup in use, such as 224x224. Therefore, this comparison also evaluates

how well algorithms can keep features as informative as possible under extreme

conditions.

2.2.1 Benchmark Datasets and Preprocessing Steps

2.2.1.1 Benchmark Datasets

Four publicly available finger-vein image databases are used for the experiments.

These are SDUMLA from Shandong University, UTFVP from University of Twente,

HKPU from Hong Kong Polytechnic University and MMCBNU-6000 from Chonbuk

National University. Details about these databases are given in Table 2.3. For the

experimental setup, the first eighteen fingers are chosen from each database while

creating sub-databases for evaluation.

2.2.1.2 Preprocessing Steps

In vein identification systems, there are several frequently used pre-processing

techniques, such as repeated line tracking and maximum curvature. Before the

evaluation procedure, benchmark databases are preprocessed as shown in Figure 2.5.

They are also summarized in detail below:
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Table 2.3 Benchmark databases for Finger-vein Identification

Name Number of No of samples Total Image
Individuals per Individual Samples Resolutions

SDUMLA [178] 106 36 (6Sx6F) 3816 320x240
UTFVP [179] 60 24 (4Sx6F) 1440 672x380
HKPU [180] 156 24 (12Sx2F)* 3132 513x256

MMCBNU-6000 [181] 100 60 (10Sx6F) 6000 320x240
S: samples per finger
F: total no of fingers

*: 12S(first 105)and 6S(last 51)

Figure 2.5 Preprocessing steps for finger-vein benchmark databases

• Cropping : It is done to discard the irrelevant parts of the finger-vein image.

• Repeated Line Tracking (RLT) : To capture the edges of finger veins, RLT

is employed to track local black lines (veins) and separate them from the

background in a pixel-wise manner until there is no longer any local black lines

tracked [182].

• Resizing : It is done to convert input images to 32x32, which is a much lower

resolution than those in the literature.

Figure 2.6 Original and pre-processed finger-vein samples of a) SDUMLA [178] b)
UTFVP (Twente) [179] c) HKPU [180] d) MMCBNU-6000 [181] databases

Samples from each database and pre-processed versions of these samples can be seen

in Figure 2.6.
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2.2.2 Experiments and Conclusion

2.2.2.1 Experimental Setups and Experiments

Figure 2.7 Capsule Network model for Finger-vein Identification

Figure 2.8 Capsule Network, CNN-based equivalent and LeNet-5 model structures

Model layer structure is given in Figure 2.7 and chosen similar to the original work

proposed in [157]. Similarly, all models and their layer parameters can be seen

in Figure 2.8. Here, convolution filter kernels are chosen as 2x2 for CONV1, 3X3

for PrimaryCaps which are at least 10% of the input image size to secure absolute

information similar to work proposed in [137]. For all experimental setups, epoch

size, routing number, and capsule size are chosen 500, 3, and 32, respectively.

In addition to the hyperparameter setup of the model, train-test partitions are chosen

according to the sample size per finger. Due to the small sample size, these partitions

are arranged as half for training half for testing at least and given in Table 2.4. For

SDUMLA database, each finger has one session with six samples. Therefore, three

train-test percentages are chosen as 3-3, 4-2 and 5-1. For UTFVP (TWENTE) database,

each finger has one session with four samples. Therefore, two train-test percentages
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Table 2.4 Evaluation results for Finger-vein Identification

Accuracy
Database Train Test Capsule Network CNN Equivalent LeNet-5

3 3 87% 42% 74%
SDUMLA 4 2 88% 52% 83%

5 1 100% 88% 100%
UTFVP 2 2 66% 41% 77%

3 1 94% 55% 88%
6* 6** 56% 25% 60%

6+1 5 67% 30% 63%
HKPU 6+2 4 79% 34% 75%

6+3 3 83% 47% 83%
6+4 2 88% 50% 86%

5 5 95,5% 77% 92%
MMCBNU-6000 6 4 95,8% 77% 90%

7 3 98% 79% 94%
8 2 100% 80% 97%

*: from session one
**:from session two

are chosen as 2-2 and 3-1. For HKPU database, each finger has two sessions with six

samples each (12 samples in total for per finger). Therefore, five train-test percentages

are chosen as (3+3)-(3+3), (6+1)-5, (6+2)-4, (6+3)-3 and (6+4)-2. MMCBNU-6000

database, each finger has one session with ten samples. Therefore, four train-test

percentages are chosen as 5-5, 6-4, 7-3 and 8-2. For evaluation metric, accuracy is

chosen since classes in datasets are balanced.

2.2.2.2 Conclusion

Performance results are given in Table 2.4. For all databases, the results indicate

that even though Capsule Network and the CNN-based equivalent use the same

CNN-extracted features, Capsule Network achieves better performance results at

modeling finger-vein.

For SDUMLA database, it is also pointed out that Capsule Network and LeNet-5 obtain

the same results for 5-1 train-test partition. This may indicate that if CNN-extracted

features are discrete enough among classes and there is a sufficient amount of training

data, LeNet-5 works as well as Capsule Network. However, for the opposite case,

where CNN-extracted features are not discrete, Capsule Network tops the accuracy of

94%, 88% and 100% for UTFVP, HKPU and MMCBNU-6000 databases, respectively.

One intriguing point to note is that all evaluations are done under 32x32 image

resolution, which is much lower than usual and satisfactory for practical purposes.

Furthermore, there is not a single finger-vein-based biometric system that uses this
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Figure 2.9 Accuracy vs Epoch for MMCBNU-6000 database with train-test partition
as 7-3

kind of extreme image resolution and obtains results as high as those in this chapter.

Besides, accuracy becomes stable by 50 epoch for all vein databases thanks to fast

convergence. As an example, results for MMCBNU-6000 database with Train-Test

partition as 7-3 are given in Figure 2.9.

To sum up, performance results show that Capsule Network is quite robust in that it

can achieve high results while only using a small number of samples and outperforms

its opponent algorithms. Moreover, it achieves an average 95.5% accuracy over four

benchmark sub-databases, while opponents, which are the CNN-based equivalent

and LeNet-5, obtain a maximum average of 92.5%. Performance results also show

that 32x32 image resolutions are enough for finger vein identification and Capsule

Network-based finger vein identification obtains promising results for all practical

purposes.

For future works, there are five main steps to be taken: Firstly, Capsule Network

can be evaluated on other finger-vein databases using whole samples. Secondly,

the capability of Capsule Network towards adversarial attacks can be analysed on

benchmark databases with adversarial samples, such as VERA database. Thirdly,

model parameters such as convolution kernel sizes and the number of layers for

Capsule Network can be modified. Fourthly, different CNN backbones, both with

and without pre-trained weights, can be employed to generalise results. Lastly, using

other commonly used pre-processing methods, such as Contrast Limited Adaptive

Histogram Equalization, the tests conducted above can be repeated to obtain a more

comprehensive comparison.
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3
AI-BASED APPROACHES FOR CYBERSECURITY

Cybersecurity systems are designed to prevent any hardware or software-based system

connected to the internet from the information/privacy loss. These systems can

be classified into three categories: misuse, anomaly and hybrid-based detection

systems. While misuse-based detection systems analyse concerning characteristics

of known intrusions, anomaly-based detection systems classify novel intrusions by

detecting divergent data pattern than normal. The hybrid-based detection systems

take advantage of the strategies of both misuse and anomaly-based systems.

According to August 2019 McAfee Labs threats report, besides known intrusions,

novel intrusions present a great challenge for cybersecurity systems. Since current

anomaly-based detection systems are trained on particular datasets with previously

known intrusions and heavily biased on the characteristics of known intrusions,

there may be a question arising on how reliable these systems are at detecting

novel intrusions with totally different characteristics than previous ones or even

closer characteristics to normal traffic. Moreover, benchmark datasets generally have

unbalanced network traffic data, where some known intrusions are well-represented

while others are insufficient for training purposes.

To increase the effectiveness of anomaly detection systems, in theory, one possible

solution is to use different datasets or extract new feature representations while

training since each benchmark dataset for cybersecurity has a unique internal bias

regarding the data collection process of network traffic and variety of intrusion types.

However, in practice, adaptability becomes a huge problem at using different datasets

due to uniqueness in feature spaces and distribution differences/shifts in network

traffic data. Another possible solution is to extract common features using sniffer

programs such as Wireshark from benchmark datasets with raw data. However,

not all benchmark datasets have raw labeled network traffic data. The last but

not least possible solution is to create a new dataset with all known intrusions by

collecting traffic data from new distribution and label. However, it is expensive and

time-consuming.
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Table 3.1 Types of Transfer Learning

2*Type of Transfer Learning Domain Task
Source Target Source Target

Inductive o o x x
Transductive x x o o
Unsupervised x x x x

a o: indicates same, x: indicates related but not same

Starting from these possible solutions, this chapter focuses not only on new

Capsule-based feature representations to improve detection rates for minority classes

but also TL for Cybersecurity to lessen bias issues and generalize similar domains of

interests for the first time.

Types of TL are categorized according to the relation between source and target

domains as well as the source and target tasks, which are given in Table 3.1 [183].
Since the source and target domains are not similar in cybersecurity, we introduce and

conduct an inner dataset TL for Cybersecurity which can be done by using different

attack types from the same dataset and projecting them as an intrusion on a different

plane for this chapter.

Few studies in the literature have investigated TL for cybersecurity systems until

now. One of the very first methods is proposed in [184]. Since different intrusions

show distinct patterns in feature space, the method first projects features to a latent

space via spectral transformation then uses a variety of shallow classifiers for anomaly

detection. On NSL-KDD dataset, performance results without projection are reported

as low as random classification while the proposed method achieves much more

improved results. Similarly to the study presented in [184], an extended version is

proposed in [185]. This version uses kmeans++ based clustering approach instead

of manual pre-settings to find the similarity between known and novel intrusions

before projection. After obtaining new feature representations of different intrusions

on the same latent space, it employs shallow classifiers for anomaly detection. On

NSL-KDD dataset, it achieves higher accuracy and sensitivity than the results in [184].
Although it is promising regarding the flexibility of using different feature sets and

the ability to map them into the same latent space, it may even lead to tangling data

due to linear mapping/transformation. Besides, the works proposed in [184, 185]
use different feature sets from only one particular dataset. Therefore, these feature

sets are collected under the same network traffic distributions. However, it might

not fully represent the real-time scenario due to the variations in background traffic

distributions.
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In contrast to [184, 185], the method proposed in [186] employs two different

benchmark datasets using their common feature space to conduct TL. This method

transforms all common features to novel representations via Domain Adaptation

Manifold Alignment. Then, different intrusion types in NSL-KDD dataset are trained

under intrusion label and tested on Kyoto2006 dataset using SVM. Similar to [186],
the method proposed in [187], employs common features between NSL-KDD and

CIDD datasets. Results are reported as insufficient due to limited amount -three- of

overlapping features between these two datasets. Similarly, the study proposed in

[188], uses the same extracted features from raw Netflow data of CTU-13 dataset

and transforms all features into new latent space by minimizing the distance between

the novel and known malware intrusions. The study described in [189] also employs

common features for DoS attacks from UNSW-NB15 and CICIDS2017 as train and

test data, respectively. Then, it maps these common features to a latent space via

Correlation Alignment and classifies using Siamese NN. Another study presented in

[190] uses directly raw malware traffic -which is divided into train and test data with

different malware intrusions- and detect anomalies with DNNs. Another TL under

domain adaptation is discussed in [191]. It employs bag of samples method using

traffic logs for evolving intrusions to have more robust representations. Although it

improves recall only using linear transformation via the self-similarity matrix without

requiring classification loss function or probability distribution similarity calculation,

it may overlook the necessity of new feature space/features of evolving intrusions. As

an example, DDoS attacks and low-frequency DDoS attacks can be given.

Unlike other methods, the research proposed in [192] uses pre-trained ResNet-50

backbone for TL, where network traffic data is represented as grayscale images to

make data compatible with a two-dimensional domain. Here, while lower layers of a

pre-trained ResNet-50 are frozen, higher layers are fine-tuned for cybersecurity.

3.1 Benchmark Datasets and Preprocessing Steps

3.1.1 Benchmark Datasets

Although there are a variety of available traffic databases, most of them are not in use

due to reasons of being outdated, only raw data, unrealistic background traffic, lack of

novel attacks etc. For this chapter, only frequently-used and robust ones are selected

while several datasets such as ADFA, ISCX2012, DEFCON and CDX are excluded due

to:

• ADFA database lacks of diversity in terms of attacks.
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• ISCX2012 has no realistic background as well as does not include new protocols.

• DEFCON datasets do not have a realistic background and mostly include

intrusive traffic.

• CDX dataset lacks of volume as well as attack type diversity.

• DARPA(1999-2000) is outdated in terms of attacks.

For TL scenario, several benchmark datasets are chosen in two steps. As a first step,

only frequently-used benchmark datasets are limited to the ones which are labelled

and feature-extracted. Details about these datasets are given below and more details

can be found at [193].

1. CICIDS2017: This dataset consists of full-packet network traffic data including

raw network traffic files. Not only it includes a variety of attack types such

as flooding, bruteforce, but also it meets the criteria for a reliable dataset in

cybersecurity [194, 195].

2. KDD99: Similar to CICIDS2017, it consists of full-packet network traffic

data including raw network traffic files [196]. Even though it is the

most-frequently-used benchmark dataset for cybersecurity and has a huge

diversity of attack types such as R2L and U2R, it has reliability issues regarding

unbalancing among attack types and the absence of novel attacks.

3. NSL-KDD: This dataset is directly created from KDD99 [197]. Although this

dataset becomes reliable regarding the balance among attacks by sampling

methods as well as deleting duplicated samples, the absence of novel attacks

is an issue.

4. KYOTO: This dataset is collected from honeypot network traffic [198]. It is often

criticized since the honeypot data does not encounter advanced attacks.

5. UNSW-NB15: Similar to CICIDS2017 and KDD99, this dataset consists of

full-packet network traffic data including raw network traffic files. Even though

it has missing samples, it consists of a variety of attacks such as backdoors and

reconnaissance [199].

As a second step, these benchmark datasets are investigated by analyzing the diversity

of attack types and features to decide the ultimate datasets. After these steps, only

CICIDS2017 is chosen for the inner-dataset TL scenario for two reasons. First, it is

proposed as the most comprehensive and accurate traffic among benchmark datasets
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in [194] and meets a variety of important reliability criteria such as rich feature variety

from traditional to novel features, realistic traffic with noisy background and diversity

in attack types including recent attack types for a fair evaluation. Second, this scenario

is proposed to take full-advantage of feature space and only two benchmark datasets,

AWID2018 and CICIDS2017, have a huge diversity of features over 150 while others

are below 50. Between these two datasets, CICIDS2017 has eight main attack types

while AWID2018 has only three.

Similarly, considering the popularity and recent CNN-based works, NSL-KDD is chosen

to evaluate Capsule-based representations and to compare with these CNN-based

works.

3.1.2 Preprocessing Steps

For Capsule-based representations, preprocessing steps are used:

• One-hot encoding is applied to categorical features.

• All remaining features are discretized and normalized.

For Inner-dataset TL, standard preprocessing steps for cybersecurity are used:

• One-hot encoding is applied to categorical features.

• All remaining features are discretized and normalized.

• Conversion into two-dimensional input is done for several experiments.

3.2 Experiments and Conclusion

3.2.1 Experimental Setups and Experiments for Capsule-based Representations

One of the recent papers using LeNet [17] is chosen as a baseline model. A variety of

preprocessing methods are used with this baseline model except for Capsule Network.

For Capsule Network, kernels are modified as 2x2 for the first layer and 1x1 identity

kernels for the second layer, respectively. Other hyperparameters for Capsule Network

are chosen the same as the previous chapter.

All evaluation results and comparisons with a variety of preprocessing methods are

given in Table 3.2 for train size of 494021 and test size of 311029. These evaluations

are done for both binary classification (attack-normal) and multiclass classification

(DoS, Probe, R2L, U2R and normal).
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Table 3.2 Accuracy for LeNet-5 and Capsule Network on NSL-KDD dataset

Multiclass Classification
Features Model Structure

Model Input Size Accuracy
AE(100) LeNet-5 100 94%
PCA(25) LeNet-5 361 92.3%

PCA(1)+Categorical LeNet-5 361 92%
PCA(2)+Categorical LeNet-5 361 92.1%
PCA(3)+Categorical LeNet-5 900 92%

All Capsule Network 122 93,9%
Binary Classification

Features Model Structure
Model Input Size Accuracy

PCA(1)+Categorical LeNet-5 361 93.3%
PCA(2)+Categorical LeNet-5 625 92.9%
PCA(3)+Categorical LeNet-5 900 92.8%

All Capsule Network 122 94,2%

3.2.2 Experimental Setups and Experiments for Inner-dataset TL

Inner-dataset TL is designed to examine the true capability of TL for novel attack

detection by taking full advantage of whole feature space extracted from network

traffic data. Moreover, this type of TL can be used where a dataset lacks sufficient

common feature space with other datasets.

The scenario is done in two steps. As the first step, the model is trained on each attack

separately and tested on other attack types one by one. Since each attack generally

has quite distinct characteristics, the first step is expanded with the second step. In the

second step, some distinct attack types are grouped to train the model separately and

tested on other distinct groups of attacks. These groups are formed according to their

divergence to one another. To sum up, the basic idea behind this scenario is to train

the model on a known attack or a distinct group of known attacks then to test on an

unseen attack or a distinct group of unseen attacks. Therefore, the scenario concludes

with the prospective advantages and disadvantages of TL for cybersecurity.

Results for inner-dataset TL are given in Table 3.3. Here, the confusion matrix is used

as a performance metric to calculate precision, recall, accuracy and f-score are given

for binary classification/anomaly detection, where the attack is labeled as 0 while

normal data is labeled as 1.
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Table 3.3 Confusion Matrices of Inner-Dataset Transfer Learning on CICIDS2017
dataset

Train On Test On
DoS DDoS Brute Force FTP Brute Force SSH

DoS -
�

67229 151606
761 1047481

� �

0 5933
761 1047481

� �

0 3219
761 1047481

�

Attacks BotNet Web Attack Infiltration Heartbleed
�

0 1953
761 1047481

� �

2 2141
761 1047481

� �

0 36
761 1047481

� �

11 0
761 1047481

�

DoS DDoS Brute Force FTP Brute Force SSH

DDoS
�

1818 191930
56 1048186

�

-
�

0 5933
56 1048186

� �

0 3219
56 1048186

�

Attacks BotNet Web Attack Infiltration Heartbleed
�

0 1953
56 1048186

� �

0 36
56 1048186

� �

0 36
56 1048186

� �

0 11
56 1048186

�

DoS DDoS Brute Force FTP Brute Force SSH

Brute Force FTP
�

0 193748
0 1048242

� �

0 218835
0 1048242

�

-
�

0 3219
0 1048242

�

Attacks BotNet Web Attack Infiltration Heartbleed
�

0 1953
0 1048242

� �

0 2143
0 1048242

� �

0 36
0 1048242

� �

0 11
0 1048242

�

DoS DDoS Brute Force FTP Brute Force SSH

Brute Force SSH
�

0 193748
0 10482442

� �

0 218835
0 1048242

� �

0 5933
0 1048242

�

-

Attacks BotNet Web Attack Infiltration Heartbleed
�

0 1953
0 1048242

� �

0 5933
0 1048242

� �

0 36
0 1048242

� �

0 11
0 1048242

�

3.2.3 Conclusion

As can be seen in Table 3.2, even using one element of PCA with categorical features

is as effective as using 25 elements of PCA. This is either because the image domain

contributes features to be more expressive or dataset has a distribution where it can

be obtained easily via PCA. Also, evaluation results for AE indicate that AE separate

classes better due to its internal non-linear structure compared to PCA. From this

point of view, we either employ algorithms that are highly capable of non-linear

separation or change pre-processing where all features are more expressive. Owing

to the capability of Capsule Network for non-linear modeling, it achieves close to

state-of-the-art accuracy for multiclass classification while it achieves 94,2% accuracy

for binary classification. For the future work, we will modify convolution filters in

Capsule Network and experiment with different preprocessing steps.

In Table 3.3, it can be seen that similar type of attacks such as DoS and DDoS could be

trained and tested on behalf of each other while a totally different attack types such as

web attacks could not. As a conclusion, promising results are achieved for attacks with

close characteristics as train-test pairs. Although some preliminary results show some

encouraging results, there are still a variety of ways to test TL and its capabilities for

different scenarios. Therefore, for inner dataset TL, we combined groups of divergent

attacks to make the training process more generalizable. Although we obtained
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slightly better results than Table 3.3, we are still trying to obtain state-of-the-art results

to publish.

For the next steps, this chapter will be extended to cross-dataset TL using common

features and attack types among datasets which can be seen in Table 3.4, Table 3.5

and Table 3.6, respectively. Since common feature space among datasets is limited,

datasets for this scenario will be chosen according to criteria that require the dataset

to have at least seven common features with others. To make common feature space

reliable enough to conduct TL, k-NN is employed and evaluated only using one feature

each time to find the most contributing features for each dataset. Then, the best ten

features are listed for each benchmark dataset. Only benchmark datasets that share

seven best common features at least will be employed for cross-dataset TL.

Table 3.4 Attack types for benchmark datasets

Attack Types Benchmark Datasets
NSL-KDD KYOTO CICIDS2017 UNSW-NB15

DoS o attack unknowns o o
DDoS x x o x

BruteForce (Password) x x o x
Injection x x o x

Infiltration x x o x
U2R o x x x
R2L o x x x

Probe o x x x
Fuzzlers x x x o
Analysis x x x o

Backdoors (Password) x x x o
Exploits x x x o
Generic x x x o

Reconnoissance x x x o
Shellcode x x x o

Worms (Malware) x x x o
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Table 3.5 Common features extracted via top-ten selection using KNN

Feature Name Datasets
KDD99 KYOTO UNSW-NB15

Service o o o
src bytes o o o
dst bytes o o o

count o o x
dst host count o o o

dst host srv count o o o
dst host same src port rate o o o

protocol o x o
a o: indicates "exists", x: indicates "do not exist"

Table 3.6 Common features used for Cybersecurity

Feature Description Benchmark Datasets
NSL-KDD KYOTO CICIDS2017 UNSW-NB15

Duration O O O O
Protocol Type 0 X X O

Service O O X O
Flag O O O X

Source Bytes O O O O
Destination Bytes O O O O

Count O O X O
Same Service (SS) Rate O O X X

Same Error Rate O O X X
Same Service Error Rate O O X X

Count of Same Destination (SD) IP O O X O
Count of SS from SD IP O O X O

Source Port is from SD IP Rate O O X X
SYN errors found in Count of SD IP O O O X

SYN errors when SS from SD IP O O O X
Start time of connection X O X O

Finish Time of Connection X O X O
Source Port Number X O X O
Source ID Number X O X O

Destination Port Number X O O O
Destination IP Number X O X O
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4
RESULTS AND DISCUSSION

In this study, we particularly investigate one reliable model for all in CFS and we

used the model in a variety of feature spaces. The challenging point of the study is

to recognize and model patterns of data from different feature spaces and problems

using only one DL based algorithm. While investigating, we also argued that 1)

the advantages and disadvantages of probably one of the next frontier algorithms in

Computer Vision, -Capsule-based feature representations-, 2) experimented with the

undiscovered areas like more expressive feature representations, 3) experimented TL

from another perspective.

Concretely, in Chapter 2, we developed two models based on Capsule representations

over the most frequently used benchmark datasets for biometrics. These models

not only outperform opponent algorithms using a small number of data samples

and obtain high accuracy for the tasks but also show domain-free consistency and

reliability. In addition to the powerful feature extraction ability from signatures and

finger-veins in lower resolutions than frequently used ones, they are adaptable to

any biometric systems that require fast convergence for practical purposes changing

capsule sizes. In identification and recognition tasks, these two models show

robustness using only low-level feature representations of data while CNN equivalent

requires bigger input resolutions and/or more layers. In the verification task, results

indicate that low-level features extracted from extreme resolutions are not enough

to differentiate highly similar forgery samples from genuine ones. Therefore, either

higher resolutions, yet lower than the most frequently used ones, or deeper layers to

extract low and mid-level features together are necessary.

In Chapter 3, we experiment with Capsule-representations in cybersecurity.

Although the domain is in time and they cannot be used easily without mapping

one-dimensional features into two-dimensions, we achieved high detection rates

for both minority and majority classes and overall accuracy thanks to capsule

representations. Furthermore, results indicate that mapping features into another

domain makes features more expressive for cybersecurity. In the anomaly detection
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task, results show that Capsule-based representations can be another way of nonlinear

mapping such as AEs for cybersecurity. Besides, TL task states the importance of

bias-free AI-based model and conducts tests on attacks with distinct characteristics.

The results indicate that training with a group of attack instead of a specific attack

type is necessary to detect anomalies. However, limited common feature spaces and

differences in attack patterns make detection more difficult. Therefore, new scenarios

for domain adaptation and nonlinear mapping have great importance for future of

cybersecurity.

Finally, several challenges on feature representations are left for the future researches.

Those challenges include:

• Instead of supervised learning, discovering and modeling the data using

manifold embeddings then learning by clustering to maximize the spatial

distance among data samples,

• Conducting research on performance comparison with the use of adversarial

attacks,

• Investigating bias-free AI models more to achieve less biased results in the

literature,

• Conducting more researches on domain adaptation ways to reuse model and

make domain-free approaches more usable in the future.
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