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ABSTRACT

Domain Free Deep Learning Based Security Models for
Cyberphysical Systems

Dilara GUMUSBAS

Department of Electronics and Communications Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Tiillay YILDIRIM

With the developments in digital age and growing interest in IoT, a variety of
institutions and organizations have started to digitalize their systems. As a
consequence of these digitalizations, security of collecting, accessing and transferring
great amounts of private data via internet connection have became an important issue.
In particular, protection of data collected, transmitted and stored on cyberphysical

systems (CPS) such as security systems have gained great importance.

Recently, many studies have been conducted using state-of-the-art Deep Learning
(DL) algorithms for security systems. However, despite their groundbreaking results,
most of these studies either are biased to some particular datasets or too complex
and computationally-expensive to be used in real time. Moreover, DL algorithms
require a lot of input data to extract the most informative feature representations
and become disadvantageous in real situations, where imbalances among classes
and unlabelled samples in input data are quite common. Therefore, first goal of
this dissertation is to conduct a comprehensive research and to study Al-based new
approaches for two different domains of security-themed systems: biometric systems
and cybersecurity. In particular, new Capsule-based feature representations for these
domains are investigated in detail and these representations are compared with their

equivalent state-of-the-art algorithm-based models for the first time.

Second goal is to conduct an experiment on Transfer Learning (TL) for cybersecurity,
where features are in time-domain and benchmark datasets do not share sufficient

common feature space with each other like image-domain counterparts such as

xii



biometric systems to use pre-trained network in 1D. In addition, possible scenarios
are examined to adapt security systems into different domains and generalize by using
available benchmark datasets with different traffic collection as well as feature spaces.

Keywords: Deep learning, capsule networks, network intrusion detection, biometric
identification and verification, cyberphysical systems
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GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

Siberfiziksel Sistemler icin Alan Bagimsiz Derin
Ogrenme Tabanli Giivenlik Modelleri

Dilara GUMUSBAS

Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Doktora Tezi

Danigsman: Prof. Dr. Tiilay YILDIRIM

Dijital cagdaki gelismeler ve IoT’a yonelik artan ilgiyle, cesitli kurum ve kuruluslar
kendi sistemlerini dijitallestirmeye baslamislardir. Bu dijitallestirmelerin sonucunda,
bliyiik miktarlardaki kisisel verilerin internet yoluyla toplanmasi, ulasilmasi ve
iletilmesi énemli bir konu haline gelmistir. Ozellikle de, giivenlik sistemleri gibi
siberfiziksel sistemler (SFS) {izerinde toplanan, iletilen ve kaydedilen verilerin

giivenligi cok biiyiik 6nem kazanmuistir.

Son zamanlarda, giivenlik sistemleri icin yapilan ¢ogu calisma en geliskin Derin
Ogrenme (DO) metodlar1 kullanilarak gerceklenmistir. Lakin, ¢igir acici sonuclara
ragmen, bu calismalarin cogu ya belirli veri setlerine meyilli olacak sekilde 6grenmistir
ya da gercek zamanl kullanmak icin cok karisik ve hesapsal yiikii fazladir. Dahasi, DO
algoritmalar giris verisinden en anlamli 6zellikleri ¢ikarabilmek icin ¢ok sayida giris
veri o6rnegine ihtiyac duyar bunun sonucunda siniflar arasi verinin dengesiz oldugu
yada siniflanmamis veri 6rneklerinin oldugu gercek durumlar icin dezavantaj haline
gelir. Bu sebeple, bu tezin ilk amaci kapsamli bir arastirma ytirtitmek ve Al-tabanli yeni
yaklasimlari giivenlik temali sistemlerdeki iki farkli calisma alani -biyometrik sistemler
ve siber giivenlik sistemleri- icin analiz etmektir. Ozellikle de, yeni kapsiil-tabanli elde
edilmis 6zellikler ayrintili bir sekilde incelenmis ve bu 6zellikler ilk kez bu iki ¢calisma

alani icin esdeger en-geliskin algoritma tabanl 6zellikler ile kiyaslanmistir.

ikinci amag ise 6zelliklerin goriintii uzayinda degil, zaman uzayinda oldugu ve
referans veri setlerinin goriintii veri setleri gibi birbiriyle yeterli miktarda ortak 6zellik

uzaymin olmadig1 siber giivenlik sistemleri icin Transfer Ogrenme (TO) {izerine

Xiv



calisma yapmaktir. Buna ek olarak, giivenlik sistemlerini farkli 6zellik uzaylarina
uyarlayabilmek ve varolan farkli sekilde toplanmis ve ayr1 Ozellik uzaylarina
sahip referans veri setlerini kullanarak genellestirebilmek icin muhtemel senaryolar

incelenmistir.

Anahtar Kelimeler: Derin 6grenme, kapsiil aglari, ag saldir tespiti, biyometrik

kimlik tanimlama ve dogrulama, siber fiziksel sistemler

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

XV



1

INTRODUCTION

Cyberphysical system (CPS) is an interdisciplinary system that combines
computer-based systems with physical systems to operate together. Some of
the most known examples of CPS are biometric monitoring, smart grid systems,
cybernetics and autonomous cars. With the increasing interest of Internet of Things
(IoT), a type of CPS with less complexity regarding coordination, data collection,

transmission and storage has gained importance.

In this study, we consider security-themed approaches for IoT and employ
cybersecurity and biometric systems to conduct realistic research on domain-free
Artificial Intelligence (AI) methods for CPS. Here, cybersecurity is used to secure the
process of data transmission and storage of IoT. Similarly, biometric systems are chosen
to secure the process of data collection for IoT since it is done via physical components
such as keyboards, sensors for security systems and passwords or several biometric

traits are frequently used to secure the process of data collection.

Throughout this chapter, Al methods for CPS are discussed with a specific focus on
two different types of security-themed approaches, namely biometric systems and
cybersecurity. These two systems are chosen for two reasons. Firstly, Al-based
algorithms vary from time-series models to computer vision models. Thus, using such
security systems that are in different domains such as image and time domains is
important to obtain a comprehensive study. Besides, we employ two different types of
biometric systems, behavioral-based and physical-based systems, to widen the scope
of the study. Secondly, domain-free Al security models and Transfer Learning (TL)
can be experimented on these security-themed approaches since both show different
characteristics and experiments could give an idea about how dataset bias affects those
models.



1.1 Literature Review

This section presents Al methods for cybersecurity and biometric systems. These Al
methods are chosen according to two criteria: their contribution as a pioneer to the
literature and/or being recently-published with high citation statistics. Furthermore,

advantages and disadvantages of each Al algorithm type are only explained in detail.

1.1.1 AI Methods for Cybersecurity

With the increasing pace of developments in the digital age, accessing and
transferring great amounts of data via internet connection and evolving cyber threats,
cybersecurity-related issues have been increased. Therefore, these issues created the
need to deploy more trustable cybersecurity systems, which are composed of a variety
of preventive methods.

As one of the widely-studied branches of cybersecurity systems, Intrusion Detection
System (IDS) is developed to detect cyber threats and to ensure safe user access and
privacy protection. IDS primarily gathers data and makes a detection system into
work to catch and identify possible threats for the use of security analysts. Besides,
it can be categorized into two systems: Network Intrusion Detection System (NIDS)
and Host-based Intrusion Detection System (HIDS). While NIDS is based on network
traffic data that consists of whole interaction among devices on a network, HIDS is
based on HIDS agent data collected from only host devices such as operating system

logs.

A variety of algorithms are used for IDS which can be observed under three
categories: rule-based, statistics-based and Machine Learning (ML) based algorithms.
While rule-based algorithms use data distributions to construct a rule and execute
it, statistics-based algorithms benefit from previous attack patterns to estimate a
statistical distribution and employ this distribution to detect attacks. The last category
falls under ML-based algorithms as a sub-field of Al, which refers to machines that
mimic human cognitive abilities which varies from perception to problem-solving.
ML-based algorithms concentrate on the learning part of these cognitive abilities. After
learning, they perform classifier training to detect anomalies including known attacks.
Since each algorithm has its advantages and disadvantages thereby, choosing the best
one depends on the problem and the trade-offs. For example, rule-based algorithms
can be performed simply and quickly. However, it cannot perform well under missing
and/or imprecise data. Moreover, updating this approach is cumbersome. Similarly,
statistics-based algorithms solve these problems but as a trade-off, they demand high

computational power and they are not suitable for large amounts of data. Unlike



rule-based and statistics-based algorithms, ML-based algorithms are proposed to solve
these problems using inference models which can capture the complexity and can be

trained on big data.

As many organizations have started to employ interconnected systems, the amount of
data collected and transferred over a network has been growing gradually. Therefore,
the protection of the data coming from these systems has become even more
vulnerable to not only unauthorized access but also authorized access by the insider
attackers. Moreover, there may be a lack of human force to protect these systems in
real-time. To solve these issues, ML-based approaches, in particular Deep Learning
(DL) methods, are frequently used in cybersecurity for three main reasons. Firstly,
these approaches are successful to find underlying patterns of data not only for known
but also for novel attacks to automate threat and anomaly-based security monitoring
and detection. Secondly, ML-based approaches are good at reducing false positives and
lessen the number of false alarms to be analyzed by security analysts. Therefore, they
facilitate the process for security analysts and increase their productivity regarding
intrusion detection and response time. As a result, reducing the amount of data to
be investigated makes a huge contribution to real-time detection and avoids data
losses. Thirdly, they make the monitoring and detection systems computationally
inexpensive and adaptable to update towards evolving attack types. Furthermore,
ML-based approaches are able to predict anomalies.

This section not only presents an all-inclusive overview of ML approaches for
cybersecurity by analyzing concerning evaluation results and limitations but also
a further investigation on factors that affect reliability and scalability of these
approaches are provided for potential future directions. Besides, taxonomy for
ML-based approaches can be found in Figure

1.1.1.1 k-means Clustering

K-means Clustering is a method where each input data is grouped to a randomly
chosen clusters (k) according to their distance to these cluster centers and cluster
centers are updated until certain criterion such as minimizing distances among clusters
is met [[1]]. Although this algorithm is easy to implement, fast and computationally
inexpensive for big data, there are several issues related to the k-means clustering.
Firstly, choosing the optimal number of clusters is difficult. Secondly, noise in input
data has a strong effect on performance results. Lastly, k-means clustering is negatively
affected when different classes create the same cluster due to their same mean values
or data is non-convex.
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Figure 1.1 Taxonomy of ML-based algorithms for cybersecurity



Several methods have been proposed using different distance metrics. For instance,
the method introduced in [2] uses System Call Frequency Distribution (SCFD) to
calculate similarity metrics with k-means, where the cut-off distance of clusters is
calculated using cumulative distribution function (CDF) with Mahalanobis distance
to differentiate normal from attacks. The method achieves better detection than
Euclidean distance on outliers on the private dataset while it may not detect local
variations in system call sequences. Similarly, the method introduced in [|3] employs

k-means with Gaussian Similarity Measure on DARPA98 dataset.

To achieve high detection rates, several approaches have employed hybrid methods.
For example, the model proposed in [4] first employs k-means to obtain different
training subsets then uses five Fuzzy Neural Networks (NN). As a final step of the
model, it classifies with SVM. The model achieves high detection results on KDD99 for
each attack type. Similar to [4], the model proposed in [|5] selects the most distinctive
data samples with k-means then classifies these samples with NN. However, the model
achieves low detection rates for minority classes: R2L and U2R in KDD99. The method
introduced in [|6] uses k-means as a first step of separating data into clusters then
learns subgroups in clusters with C4.5 decision tree while the method proposed in [7]]
does same with Naive Bayes. Both methods achieves a high true positive rate with low

false positives on KDD99 dataset.

1.1.1.2 Autoencoder (AE)

Autoencoder (AE) is a type of unsupervised DL method that first encodes then
decodes the original data to build novel representations of the data, which can be
seen in Figure While the encoding layers make data representations into lower
dimensions to find the most informative feature space, decoding layers samples from
this space to original feature space under an unsupervised fashion [|8]. All weights
are optimized by minimizing reconstruction error. AE has generally been used for
dimension reduction in cybersecurity thanks to its capability of extracting informative
feature representations. However, choosing the optimal structure of encoding and

decoding layers is difficult.

Several works are published for two different combinations of AE: AE with
shallow/deep ML algorithms and AE with statistical algorithms or statistics-driven
AE models such as Variational AE (VAE) with shallow ML algorithms. The studies
proposed for the first combination in [9, 10]] use AE for dimension reduction/nonlinear
feature extraction and combine it with several shallow classifiers such as SVM on
NSL-KDD dataset. It is reported that combinations with AE achieve higher accuracy
compared to the combinations with other dimension reduction methods. Furthermore,
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Figure 1.2 An example of Autoencoder

the study presented in [[11]] employs AE with a softmax regression classifier on the
same dataset and reports higher accuracy than the previous ones. In addition to
1-hidden-layered AE, multi-layered versions, also known as stacked AEs, are used in
the works introduced in [[12-14]]. These works combine stacked AEs with shallow
classifiers. While the first two uses random forest on NSL-KDD and KDD99 datasets,
the latter uses a radial basis function to achieve high overall accuracy on AWID2018
dataset. Similarly, the model introduced in [[15] uses stacked AEs to extract valuable
information from raw traffic data and automate the intrusion detection process.
Besides, the works proposed in [[16,|17] first use AE to extract meaningful information

from raw network traffic then detects anomalies with CNN.

The methods proposed for the second combination of AE in [|18,(19]] use VAE to reduce
dimension for raw network traffic and several featured datasets named NSL-KDD and
UNSW-NB15, respectively. In the second work, several shallow algorithms such as
random forest are also used to detect anomalies using the output of VAE. In a similar
manner, the work introduced in [[20]] employs VAE with gradient-based linear SVM to
detect some particular attacks on AWID2019 dataset, where SVM first reduces feature
dimension then VAE selects the most relevant features. It is reported that the detection
rate is higher than state-of-the-art models. In addition to models in [[18-20], the
model introduced in [[21]] combines VAE with GAN and DNN. Basically, it uses VAE
to obtain new input representations formed in a statistical and nonlinear way then
GAN to augment less-represented intrusions. Finally, the model uses DNN to classify

unknown intrusions as well as known ones.

Furthermore, several AE combinations with statistical algorithms in [22, 23]] adopt

AE to extract nonlinear representations, then use density estimation on NSL-KDD and
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Figure 1.3 An example of Generative Adversarial Network

Gaussian Mixture Model (GMM) on KDD99, respectively. The results indicate that AE
with statistical algorithms improves detection rates, especially for frequency-related
intrusions. Similarly, the work presented in [24]] combines AE with statistical models
and achieves higher accuracy than state-of-the-art deep and shallow ML on NSL-KDD
dataset.

1.1.1.3 Generative Adversarial Network (GAN)

GANs are one of the DL algorithms that consists of an encoder, a generator and
a discriminator. As can be seen in Figure the encoder first extracts statistical
information from the input, then the generator creates new samples using the
information and discriminator tries to differentiate original input from created ones
[25]]. The training of generator and discriminator is frequently done to minimize
loss of the generator while maximizing loss of the discriminator. GANs have a great
advantage of not only classifying but also augmenting new data samples only using
statistical characteristics of input, in particular for minority classes in a dataset.

Therefore, it has gained great interest in cybersecurity applications.

Several studies are done on data augmentation for cybersecurity datasets which have
frequently imbalanced data samples among classes. The work proposed in [26]] uses
sequence GANs to augment ADFA-LD dataset. Similarly, the studies introduced in [21),
27|] employ GANs to augment raw network traffic data. Both report an improvement
in detection results. Similarly, another method proposed in [[28] uses Flow Wasserstein
GANSs to generate adversarial data samples then employs them to detect and model
anomalies better for cybersecurity. The evaluation is conducted on ISCX-2012 and

ISCX-2017 datasets and an outperforming detection rate is reported.

In addition to the use of GANs for data augmentation, GANs are used for classification

of anomalies. The study proposed in [29] uses GANs for anomaly detection. Similarly,



the work proposed in [30] employs GANs with some modifications to achieve an
improvement in time. Both reported high and similar detection rates on KDD99

dataset.

1.1.1.4 Self Organizing Map (SOM)
Self Organizing Map (SOM) is an ML method where input data is organized and

reduced into a lower dimension in an unsupervised manner with a competitive
learning algorithm [[31]]. Even though SOM is one of the easiest methods to use, it is
unstable to distribution shifts in the input data as well as the initialization of neuron
weights.

The model introduced in [|32]] employs hierarchical SOM for a variety of different
design structures. The model achieves unsatisfactory detection rates except for DoS
attacks on KDD99 dataset. Several approaches also use hybrid models based on SOM.
For example, the model proposed in [33]] first reduces feature space with Principal
Component Analysis (PCA) by selecting eight eigenvectors with less noise with Fisher
Discriminant Ratio then classifies with SOM. The model achieves high sensitivity and
specificity on NSL-KDD dataset. Another approach proposed in [|34]] employs J.48
decision tree for misuse detection and a SOM for anomaly detection. This approach
first models normal data for TCE UDP and ICMP protocols, then analyses anomaly
with SOM. It obtains a high detection rate with low false positive on KDD99 dataset.

1.1.1.5 k-nearest neighbors (k-NN)

K-nearest neighbor (k-NN) is an ML method where each input data is assigned to a
class of its randomly chosen neighborhood (k) according to their distance similarity
[1]]. Despite using fewer parameters, simple calculations, scalability, robustness to
noise and uncovering natural patterns of data, there are a couple of problems related
to this method. Firstly, choosing the right k parameter is not simple. Because too
small k value models noise while too big k models other classes. Secondly, clustering
algorithms like k-NN makes algorithm stuck on a local minimum point. Thirdly, using
the Euclidean distance metric might not separate tangled data, in fact it may contribute
misleading results. Lastly, this method becomes slow and memory inefficient for high

dimensional data.

To accelerate detection time as well as to obtain a high detection rate, several
approaches combine k-NN with methods such as feature selection and new feature
representations. For example, the model introduced in [|35] uses GMM to model

statistical regularities in features. After GMM parameters are modeled in Gaussian



form, these parameters are fine-tuned with the EM algorithm. Then, the model
classifies with k-NN using these parameters. The model achieves satisfactory detection
results in particular on R2L and U2R attack types in KDD99 dataset. Similarly, the
model proposed in [|36]] first uses a new feature selection approach that assumes the
variance of a feature as a quality indicator and reduces all low-quality features. After
the selection of ten features, the model uses k-NN and achieves faster detection than

the one without feature selection on KDD99.

Several methods in the literature have used k-NN within the cascade system to achieve
higher detection rates. For instance, the method proposed in [37] firstly ranks
multi-resolution network traffic flow according to the level of anomaly then uses a
threshold to classify a high-level anomaly labeled flow as an intrusion. The method
achieves sufficient detection accuracy on KDD99 dataset. Similarly, the method
described in [38]] uses three level k-NN based cascade system. The method first
extracts cluster centers and nearest neighbors then forms training data by summing
the calculated distances between data and its cluster center and data and its nearest
neighbor. The method obtains a significantly high accuracy and detection rate on
KDD99 dataset. Similar to the methods proposed in [|37, 138]], the method introduced
in [39] uses a two-tier system based on k-NN with the knowledge-based system. The
method first uses a knowledge-based system to generate alarms then filters these
alarms with k-NN. The method, however, achieves average results on DARPA-1999
dataset.

1.1.1.6 Bayesian Network

Bayesian Network is an ML based model that learns from the intrinsic behavior of input
data by using statistical dependencies without requiring prior knowledge. Although
this network detects small deviations in data and can be applied for continuous,
discrete as well as binary input data types, there are some negative aspects related to
it. Firstly, it may be vulnerable towards distributed /low-frequency attacks that create
normal-like traffic. Secondly, it may be ineffective towards correlated features since it
assumes that every feature is independent of one another while calculating statistical

dependencies. Thirdly, it is slow for larger-scale input data due to computational load.

Bayesian Network is applied for several scenarios introduced in [40-43]]. The
approach proposed in [[40] uses Naive Bayes on NSL KDD and achieves a high true
positive rate for DoS, R2L, Probe attacks. Similarly, the model introduced in [|43] uses
Naive Bayes after discretization of the data. However, it only improves DoS attack
detection on KDD99 dataset. Besides, the work introduced in [42]] modifies Naive
Bayes with Discretization Filter, where a set of predefined intervals are used to change



feature values into interval values, and obtains higher detection with small alarm rate
than Naive Bayes itself on NSL KDD.

Several works in the literature combine Bayesian Network with other shallow
algorithms to achieve higher detection results. For example, the model proposed
in [44]] employs Correlation Feature Selection (CFS) and Information Gain (IG) for
feature selection then combines Adaptive Boosting and Naive Bayes on NSL KDD
dataset to detect anomalies. Similarly, the method introduced in [45] combines Naive
Bayes with ADAM based system on DARPA98 and DARPA99 datasets.

1.1.1.7 Decision Tree

Decision Tree is an ML model where all features are scanned and separated into
groups. The model is composed of three main elements which are leaf, root and
decision node. If-else command path obtains output from roots of decision tree
to leaves while leaving less important features behind [46]]. In particular, it is
effective for classes with insufficient data and able to work with categorical as well
as numerical input data. Moreover, it automates feature selections for trees and can
be easily interpreted thanks to the tree structure. However, it ignores the mutual
relationships among features. Mostly-known decision tree models are C4.5, CART
and J48, respectively.

The model proposed in [47] employs a suffix tree using a sequence covering.
This model calculates similarities between system calls on UNM and ADFA-LD
datasets. Although it does not use the length of symbolic sequences to achieve
faster-convergence than rival methods, the percentage of normal data samples in the

training dataset plays a crucial role.

Several models in the literature combine Decision Tree with other algorithms. For
example, the model proposed in [48] employs Decision Tree with IG to investigate
features and their relevance to each sub-attack type. The method reports that source
bytes and destination bytes are two of the most relevant features for all attack types on
KDD99 dataset. Similarly, another hybrid model introduced in [49]] uses Decision Tree
with Bayesian clustering. The model first splits data into three classes: DoS, Probe
and others then classifies others into attack and normal. As a final step, the model
separates U2R and R2L attacks. The model achieves high detection rates except for
U2R and R2L attacks on KDD99 dataset.
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1.1.1.8 Fuzzy Logic (Fuzzy Set Theory)

Fuzzy logic is a method where classification boundary is treated as soft boundary
among the range of 0 to 1 rather than firm boundary according to fuzzy rules [50].
These rules are defined to classify classes by the experts. Despite having uncertainty
flexibility towards input data with fuzzy rules, these rules cannot be scaled to other

systems easily.

The model introduced in [51]] uses fuzzy association rules based IDS approach.
However, the model achieves above average detection rates on KDD99 dataset. To
achieve higher detection rates, several hybrid methods extend their Fuzzy Logic
model by combining other algorithms. For instance, the models proposed in [|52,
53] combine Fuzzy Logic with Genetic Algorithm (GA). Both methods achieve high
accuracy and detection rates with low false-positive rates on private, KDD99, NSL KDD
and Gure-KddCup datasets. Similarly, several hybrid methods proposed in [|54, 55]
first employ a fuzzy rough set for feature selection/reduction. Then, [|54] uses k-NN
and achieves state-of-the-art detection with a small error rate on KDD99 while [|55]]
creates GMM based attack and normal pattern library and obtains high detection with
low error rate on NSL KDD dataset. Another hybrid approach proposed in [[56]] uses
Fuzzy Logic to create different training subsets then employs NN to classify attacks.
The approach achieves improved precision and recall particularly on R2L and U2R
attack types in KDD99 dataset.

1.1.1.9 Multilayer Perceptron (MLP)
Multilayer Perceptron (MLP) is a type of Artificial Neural Network (ANN) that is

composed of neurons with associated scalar weights to interconnect other neurons,
activation functions and layers. This network uses a backpropagation algorithm such
as Gradient Descent to tune/update weights by minimizing classification error [[57]].
Despite their robustness to noise and compatibility with linear and non-linear inputs,
choosing the optimal number of layers and neurons is difficult. Moreover, it may be
stuck at local minima resulting from Gradient Descent.

The model introduced in [[58] first employs Particle Swarm Optimization (PSO) to
optimize parameters of MLP then conducts classification via MLP The model obtains
slightly better error rates than the one without PSO. Another anomaly model proposed
in [|59] first converts symbolic data to numerical by using Ghosh prototype and the
canberra metric then employs MLP with the chaotic neuron. However, the model
obtains average results on DARPA 1998 dataset.

A misuse based method is proposed in [60]]. The method employs three different
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3-layer MLP structures and trains each by using ICMBE TCP and UDP based features,
separately. Then, the method uses rules by thresholding each output from MLPs.
Despite obtaining high detection rates on the private dataset with known DDoS and
unknown DDoS attacks, the model is limited to a few types of attacks and may not
handle DoS attacks with encrypted packet headers. Additionally, choosing the right

threshold value is not easy.

1.1.1.10 Support Vector Machine (SVM)
Support Vector Machine (SVM) is an ML method that defines a hyper-plane by

maximizing the margin among data samples from different classes [61]]. To do that,
the method uses the closest data samples to the hyper-plane from different classes and
takes advantage of kernel space to map data into higher dimensional space. Despite
having the advantage of separating non-linear data using kernel-trick, the choice of
kernel type and the volume of feature space due to support vector size have a great

impact on performance results.

Several methods proposed in the literature frequently employ SVM with other
algorithms or cascade SVM. For instance, the model proposed in [|62] uses two
different SVMs, where one is for misuse, another is for anomaly detection. Also, the
model presented in [63]] first employs one of the Manifold methods, k variable locally
linear embedding(kv-LLE), and Isomap for feature reduction. Then, the model uses
SVM for anomaly detection. The model achieves high detection rates for anomaly
detection on KDD CUP 99 and UNM datasets. However, kv-LLE and kv-Isomap
combined with SVM achieves better detection rate than SVM itself on KDD99 dataset
in terms of reducing false-positive rates. In addition to [62, 63]], the model proposed
in [|64] first employs memory-efficient kernel tricked PCA for online feature extraction
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then uses SVM to classify. The model achieves a high overall detection rate on KDD99.

Also, the main contribution of the model is fast real-time/online detection.

Another hybrid detection model with SVM is proposed in [[65]. The model uses agent
for anomaly detection and SVM for misuse detection, where four different SVMs are
trained for each attack type in KDD99 dataset. The model achieves a fast and high
detection rate. Additionally, the method presented in [|66] first reduces the feature
space from 41 to 19 using GRF method then classifies with SVM. The method achieves

high accuracy by improving training time.

1.1.1.11 Ensemble Methods

Ensemble classifiers are a combination of two or more shallow classifiers. Random
Forest (RF) is one of the frequently used ensemble classifiers that consists of a bunch
of decision trees. Although it is a shallow classifier, training many shallow decision
trees contributes to optimizing/generalizing the model, add randomness and prevent

from overfitting [67]].

Several methods in the literature employ RE For example, the method introduced
in [|68] first separates data using known patterns for specific intrusions then decides
whether data belong to anomaly by using RE The model achieves a high overall
detection rate with low false alarms/positives on KDD99 dataset. Similarly, the
model proposed in [69]] uses RF-based model named as Hybrid Isolation Forest
(HIF). The model first assumes unoccupied areas in feature space as normal then
models potential-anomaly-spots using few anomaly samples. The model achieves
high detection rates with a small improvement compared to other rival algorithms
such as SVM on ISCX IDS 2012 dataset. Another RF-based model proposed in [[70]
first preprocesses by using Synthetic Minority Oversampling Technique (SMOTE) to
grow training sample size of U2R from 52 to 468 in NSL KDD dataset. Then, the
model employs IG to reduce features from 41 to 19. After preprocessing is completed,
data is given to RF for multiple classifications. The model achieves state-of-the-art
detection rates without false positives by improving detection for minority attack
types. Likewise, the model introduced in [71] first employs RF for misuse detection
then uses k-means for anomaly detection. The model obtains high overall detection

with low false alarms on KDD99 dataset.

Besides RF-focused models, there are a variety of shallow classifier combinations
with Adaboost algorithm in the literature. For instance, the model introduced in
[72] first uses RF for feature selection then employs k-means++ to separate data

into three clusters that represent normal, R2L and U2R attacks and remaining attack
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types due to similarity among normal, R2L. and U2R. After these steps, the model
uses Adaboost to separate attack cluster into four sub-attack classes and achieves
state-of-the-art accuracy on balanced KDD99. Similar to [[72]], the method described
in [[73] is composed of boosting algorithm, Adaboost and RE The method achieves
identical accuracy with the one using only RE Moreover, the model proposed in [[74]
employs an ensemble of J48, Naive Bayes, Random Tree, AdaBoost, Meta Papping,
DecisionStump and REPTree on NSL KDD dataset while another model introduced in
[75] uses AdaBoost on KDD99 dataset. Both models achieve high accuracy.

In addition to discussed Adaboost combined models, other combinations are proposed
to create ensemble models. For example, the model proposed in [[12] first uses
Non-symmetric Deep Autoencoder (NDAE) for dimension reduction then employs
RF for classification. It achieves high accuracy on DoS and Probe attacks while
obtaining below-average accuracy for minority attacks on both KDD99 and NSL KDD
datasets due to the need for more samples to train/tune Deep Learning models well.
Moreover, the main contribution of the model is shorter process time than standard
DBN techniques. Similarly, the model proposed in [[76]] combines CART with Bayesian
Network. The model obtains high detection rates especially for DoS, Probe and R2L
attacks on KDD99 dataset. Moreover, a misuse based detection model proposed in
[77] employs ensemble boosted decision trees. The model achieves high detection
rates only for DoS, R2L and probe attacks on KDD99 dataset.

1.1.1.12 Evolutionary Algorithms

Evolutionary algorithms are models that are inspired by the natural process of
evolution to solve optimization problems. There are a variety of evolutionary
classifiers such as Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm
Optimization (PSO). Among them, GA is one of most frequently used type of
evolutionary classifiers that generates chromosomes randomly and make stochastic
searches until the best combinations of chromosomes are found. During these
searches, chromosomes evolve through mutation, crossover and selection. GA are
advantageous at detecting global minima without requiring prior information about
feature space. However, the decision of fitness function and hyperparameters is
difficult.

The model proposed in [[78] first employs PSO to reduce features in KDD99 dataset
to eighteen then classifies with SVM. The model achieves high accuracy with low
false positives. Another model proposed in [79] first uses rule mining process then
optimizes with graph-based genetic network programming to model parameters. The

model obtains high overall accuracy with low false positives on KDD99 dataset.
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Figure 1.5 An example of Convolutional Neural Networks

Besides, the study introduced in [|[80] combines two GA with fuzzy sets to evolve new

fuzzy rules. it evaluates new rules on several benchmark datasets.

1.1.1.13 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) is an ANN that is composed of different
variations of convolutional, pooling and fully connected layers [81[]. As can be seen
in Figure the input is first processed by convolutional and pooling layers that
create a variety of feature maps to find informative representations of the input. Then,
it is given to a fully-connected layer to classify. Besides, all weight parameters for
convolutional and fully-connected layers are optimized by gradient descent during

training.

CNN has a great advantage of automated feature extraction and is frequently
used in many recent works. However, using CNN and its powerful backbones
in two-dimensional space may require an additional step for the preprocessing of
one-dimensional input to be compatible with two-dimensional input. For example,
several approaches proposed in [[82-84] use different preprocessing methods with
CNN. The first one converts symbolic features into numeric values using binarization
while converting continuous features into intervals to make them numeric features.
Then, one-hot encoding and reshaping are applied to all converted features to form
them pixel-like, respectively. Similar to the first method, the second one takes
raw input composed of numbers as 8-bit binary numbers and converts these binary
numbers into their analogous decimal counterparts. Afterwards, reshaping is applied
to form them image-like. Likewise, the third converts input into grayscale image
format after the process for the first method is done. Similarly, several methods employ

these preprocessing steps after feature selection is done [85]].
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In addition to the new preprocessing steps, some works proposed in [[86-88]] focus on
more state-of-the-art CNN backbones to obtain higher detection rates. In particular,
most of the recent researches are conducted using LeNet backbone. For example, the
model proposed in [[17] uses this backbone with an additional batch normalization
layer. The maximum performance result is reported as 94% accuracy for multi-class
classification on NSL-KDD dataset while the detection rate on minority classes such as
U2R, R2L is low. Similarly, the model introduced in [[89] modifies this backbone with
Inception modules. The performance result is reported as 94.11% accuracy on KDD99
dataset. Furthermore, the method proposed in [90] adds preprocessing steps to RGB
scaling. After preprocessing, LeNet backbone is used for multi-class classification and

average accuracy is reported as above 99.8%.

Several CNN-based approaches are also proposed without using backbone models.
The models described in [[16, 91, 92] focus on designing a novel CNN structure for
DoS/DDoS detection on KDD99, private and CICDD0S2019 datasets, respectively.
Similarly, the method introduced in [93] employs CNN on NSL-KDD dataset while the
method proposed in [[84] employs CNN on NSL-KDD, UNSW-NB15 and CICIDS2017
with a new encoding method that is designed to give equal weight for each feature
and it provides twenty-four bits for each pixel as RGB-like encoding. Both reports high

accuracy.

Other CNN methods combine CNN with other methods such as LSTM and AE. For
example, the model proposed in [94]] uses CNN with LSTM on the raw dataset. This
model extracts not only temporal features but also the spatial ones. Although deciding
hyperparameters such as the flow sizes is difficult, this model achieves high accuracy
over 95% with flow size as 100. Similar to [|94]], the model introduced in [[16]] encodes
raw input with one-hot encoding then uses CNN with AE. The performance result is
reported as having 98,95% accuracy. Another combined model, a Character Level
CNN (CLCNN), is proposed in [[95]]. This model first converts input, particularly each
character in input to an eight-bit numerical string. Then, the model gives an encoded

version of input into CNN. Reported results exhibit 98.8% accuracy.

1.1.1.14 Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN) is a type of ANN in which the hidden neurons are

connected by following a temporal sequence. Thanks to such arrangement of their
nodes, RNNs are principally used to process data in the form of time series [96]]. Even
though RNN poses some problems such as vanishing gradients, it is frequently used

for time-series modeling for cybersecurity.
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Figure 1.6 An example of Recurrent Neural Network

The model proposed in [|97]] uses RNNs and achieves high detection accuracy and fast
real-time performance on the DARPA98 dataset. Similarly, the work introduced in [98]
obtains higher accuracy than CNN, SVM, and RF classifiers on the ADFA-LD dataset.
Another method proposed in [98]] employs RNN with Gated Recurrent Unit (GRU)
on ADFA-LD dataset. Since this dataset consists of system calls with various lengths,
the semantic model uses different lengths between 10-30 of system-calls. The model
achieves high detection rates. However, finding the optimal length of the system-call

sequences may be problematic.

1.1.1.15 Long Short Term Memory (LSTM)
Long Short Term Memory (LSTM) is designed as an improved version of RNN. An

LSTM network consists of sequentially-connected neurons that are composed of input
and output gate units, known as memory cells, to save the memory of previous inputs
and forget these inputs for the subsequent interval of time [99]]. As can be seen in

Figure the input is processed by sequential neurons to model as time-series.
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Figure 1.7 An example of Long Short Term Memory
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LSTM has a great advantage of modeling time-series and it is employed in many recent
works for cybersecurity despite the difficulty of choosing optimal hyperparameters.
For instance, the models proposed in [[100, [101]] employ only LSTM as a classification
algorithm on several benchmark datasets under different settings. While the first uses
a 3-layer-structure on KDD99, UNM and ADFA-LD datasets, the second cascades LSTM
combining their activations with voting in the end and both report high detection
accuracy. Similarly, the work introduced in [[102]] only employs Bidirectional LSTM on
UNSW-NB15 benchmark dataset and the study proposed in [|[103]] adapts multivariate
correlations analysis into LSTM on NSL-KDD dataset to separate feature subsets more

efficient.

Besides, several works combine LSTM with DL algorithms, in particular with CNN. The
works proposed in [94, 104]] combine LSTM with CNN on frequently used benchmark
datasets: KDD99 and CICIDS2017, respectively. Similarly, the approach introduced in
[[105]] combines bi-directional LSTM with CNN to extract temporal and spatial features
on NSL-KDD and UNSW-NB15 datasets after balancing the datasets with SMOTE.

1.1.1.16 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) is an energy-based neural network with two
layers; hidden layer and visible layer, where the weights of the network are trained in
an unsupervised fashion [[106]]. Since RBM can extract hidden patterns of input data
modeling probability distributions of inputs, it is generally used for feature extraction

in cybersecurity.
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Figure 1.8 An example of Restricted Boltzmann Machine

The study introduced in [[107]] employs RBM for the FPGA-based intrusion detection
system. Using RBM for this system increases computational efficiency by 30% on
HTTP CSIC 2010 dataset. Similarly, the works proposed in [[108, (109]] use RBM for
dimension reduction on KDD99 dataset to improve accuracy and memory efficiency.
The work introduced in [[110] uses RBM with AE on KDD99 to obtain powerful
feature extraction and dimension reduction processes. The evaluation results show

an improvement in detection.
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1.1.1.17 Deep Belief Network (DBN)
Deep Belief Network (DBN) is composed of several RBM blocks. As can be seen in

Figure all layers are fully-connected and only connections between successive
layers are allowed while interconnections among non-subsequent layers and within
each layer are prohibited [[111]. DBN has a great advantage of being time-efficient
thanks to training in a greedy-fashion as well as a good feature extractor/selector

without requiring any supervision.

DBN is frequently employed for feature selection and combined with other ML
algorithms. For example, the method presented in [[112]] uses DBN as a feature
extractor with SVM to classify attack types on NSL-KDD dataset. Similarly, the
approaches proposed in [[113,|114]] employ DBN to model and detect anomalies on the
same benchmark dataset. A novel DBN-based model with extreme learning machine
(ELM) on the same dataset is proposed in [[115]]. This model improves detection while

reducing false positives.

In addition to the works mentioned, a variety of methods that use DBN are designed
on KDD99 benchmark dataset. For instance; the [[116]] uses DBN with probabilistic
ANN to detect intrusions. Similarly, the models introduced in [[117,|118]] employ DBN
on the same benchmark dataset and report improved detection results compared to
shallow ML methods such as ANN and SVM.

1.1.1.18 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a DL method which uses agent interacting with the
environment directly under three concepts: state, action and reward function. The
agent first learns from its actions according to reward function then optimizes its state,
where the reward function shows how good the action is and enables agent to learn
what is good action by giving reward [[119]. One of the frequently used RL methods
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is Q-Learning, where reward function is based on Bellman Equation.

The model proposed in [[120] first uses rough set theory to reduce features and
discretize data with Q-learning that finds optimal cut values for features in the dataset.

It achieves high accuracy on NSL-KDD dataset for anomaly detection.

1.1.1.19 Open Topics and Potential Directions for Cybersecurity

This section presents an overview of open topics and potential directions regarding

new feature representations and the reliability of a model.

The first one of those potential directions are seen as novel feature representations.
As new Al-based methods are available, security systems take advantage of these
methods. Nevertheless, hackers use them for testing their novel attacks. For instance,
GANSs are used to generate new samples to train the system better, however, hackers
could also take advantage of generating normal traffic data from a variety of sources
with different background noise and then use their statistical properties to design a
new attack.

Besides, these novel attacks can evolve to mimic normal traffic data and cheat the
system. For example, DDoS attacks are a low-frequency version of DoS attacks and
their characteristics exhibit a great similarity to normal traffic data. Although they are
from the same attack family, low-frequency related features are more vital to detect
DDoS attacks. Therefore, novel feature representations gain more importance and

remain as a potential research area.

The second one of those potential directions are seen as reliability of the model. Due to
the increasing number of new data, novel attacks may be labeled as normal by a human
expert or their characteristics may not be differentiated as intrusion by security systems
that are biased to their training dataset. Thus, the reliability of the model poses great
importance for system breakdowns not to happen and TL becomes a potential research
area for future works.

1.1.2 AI Methods for Biometric Systems

With the accelerated digitalization of daily-life applications such as digital banking,
digital health services, digital security has gained importance. Therefore, a variety of
authentication methods are employed to use digital systems safely in daily personal
activities. In the beginning, simple authentication methods are used such as ID cards,
passwords. However, these methods are prone to being copied easily thereby risky to

secure private data. As a result, these issues created the need to deploy more trustable
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authentication systems which are composed of a variety of methods.

As one of the widely-used and more secure branches of authentication systems,
biometric systems are developed to prevent not only any personal information loss but
also to prevent spoofing attacks. Biometrics is a field of science that recognizes the
identity of an individual based on her/his personal characteristics and differentiates
the individual from others. Besides, these personal characteristics can be grouped into
two categories: physical and behavioral. While some frequently-used types of physical
characteristics are fingerprints, palmprints, ears, finger-veins and facial characteristics

such as iris, face, some types of behavioral characteristics are signature, voice and gait.

The algorithms used for biometric systems can be categorized into two general classes
regarding the type of feature extraction: hand-crafted feature-based algorithms and
automatically extracted feature-based algorithms. While hand-crafted features are
designed specifically for the problem by experts and combined with shallow ML
algorithms such as SVM, MLE automatically extracted features are obtained via DL
algorithms and they are adaptable to any other problems without expert supervision.
Besides, the first category extracts low-level feature representations of input while the
last category extracts not only low-level feature representations but also high-level
ones thanks to the deep layer structure of DL algorithms. Since each algorithm has its
advantages and disadvantages thereby, choosing the best one depends on the problem
and the trade-offs. For example, DL algorithms can be performed simply and quickly.
However, there may be such rare cases where spoofing is done with a high-level
attacker and requires expert knowledge. Similarly, hand-crafted feature extraction
may solve these cases but as a trade-off, it requires expert knowledge and cannot be

adapted to new problems.

As many daily-life activities have started to employ interconnected systems, the
protection of private data has become even more challenging. Moreover, attackers
take advantage of using the newest algorithms to design their spoofing attacks so that
distinguishing them from real ones becomes more difficult. To solve these issues, ML
based approaches, in particular DL methods, are frequently used in biometrics for two
main reasons. Firstly, DL methods can extract feature representations automatically
without requiring any prior supervision. Therefore, they are easy to modify and
adapt to any environment. Secondly, DL methods extract more informative feature
representations thanks to their deep-layer structure. Thus, they are successful to find
underlying patterns of data not only for real samples but also for spoofing ones. As a

result of this, they increase accuracy and achieve breakthrough results.

This section presents an all-inclusive overview of the most popular and up-to-date
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DL approaches for biometrics. In particular, signature is chosen as a behavioral
characteristic while finger-vein is chosen as a physical characteristic among all
biometric traits. Besides, a further investigation of potential future directions is

presented.

1.1.2.1 AI methods for Signature Recognition and Verification

Before going into detail about up-to-date DL models, several methods concerning
hand-crafted feature extraction are given in Table With the great success of
DL models, a variety of research fields have started to employ these models in their
studies. Even though several ongoing types of research are on hand-crafted feature
extraction, most of the recent studies for signature-based recognition and verification

are dominated by DL models, particularly CNN.

Table 1.1 Some of frequently-used hand-crafted feature extractors

EXTRACTOR TYPE FILTER NAME REFERENCE
Edge Sobel Filter [121]]
Edge Canny Edge Detection [122]
Edge Boosted Edge Learning (BEL) [123]
Texture Gabor Filter [124]
Blob The Laplacian of Gaussian (LoG) [125]
Blob The difference of Gaussians (DoG) [126]
Feature Histogram of oriented gradients(HOG) [127]]
Feature Scale-invariant feature transform(SIFT) [128]]
Feature Speed Up Robust Features(SURF) [129]

The works presented in [|130, 131]] use GAN for offline signature identification
systems. While the first uses a hybrid approach of Writer-dependent (WD) with
Writer-independent (WI), the latter adds GAN a threshold parameter for the loss
function. Similarly, the study introduced in [[132] employs other DL methods, Siamese

RNN and LSTM, to distinguish adversarial samples under WI supervision.

The model proposed in [|133]] employs CNN for signature verification and obtains
state-of-the-art performance. Then, the work presented in [[134] extends the
previous CNN approach with Model-Agnostic Meta-Learning (MAML) to learn CNN
filter weights and improve performance results. Similarly, the model proposed
in[[135[] uses CNN backbone, Inception themed GoogleLeNet for signature verification.
Another model proposed in [[136] uses CNN with modification using Logit layers to
calculate similarities between the reference and input samples. The model achieves
state-of-the-art performance results thanks to the modification.
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1.1.2.2 AI methods for Finger-Vein-based Biometric Identification and Verifica-
tion
Until now, most of the studies are conducted with a variety of hand-crafted extractors
as given in Table After GPUs have become common and automatic extractors
have become the trailblazers, CNNs with their several backbones have started to be
used. Recent studies for finger-vein based identification and verification are frequently
done using CNN. For example, the works proposed in [[137-139] employ VGG-16 -a
CNN backbone- for input resolutions as 65x153, 128x128 and 224x224, respectively.
The first study reports high accuracy over four benchmark datasets. While the second
study modifies VGG-16 by adding more layers, the third one uses pre-trained weights
to achieve high accuracy. Another CNN backbone, AlexNet structure is employed
with small modifications on kernels in the work introduced in [[140]. Similarly, LeNet

backbone is used in the model proposed in [[141].

Although state-of-the-art methods are successful at finding good feature
representations of the data, several ongoing studies proposed in [140, (142,
143[] report that even these methods are slightly weak to adversarial attacks which
are designed by printing out original images and showing those images directly to
the sensor. Moreover, these attack vectors can be designed using state-of-the-art Al
methods such as GANs. Therefore, liveliness detection and novel sensors that detect
temperature have started to be used in recent ongoing works such as the model
introduced in [|142].

1.1.2.3 Open Topics and Potential Directions for Biometric Systems

This section presents an overview of open topics and potential directions regarding

new feature representations and the reliability of a model for biometric systems.

The first one of those potential directions are seen as novel feature representations.
As new Al-based methods are available, both signature and finger-vein biometric
systems have employed these methods to improve their accuracy. However, these new
approaches either require more data samples to model better or use of pre-trained
weights. For example, CNN and its backbones require a variety of input data from
different viewpoints to model. Nevertheless, biometric benchmark datasets have small
sample sizes per class and some of them are imbalanced. Furthermore, pre-trained
weights may not be optimal for several biometric datasets. Therefore, new feature
representations that model viewpoint invariance and equivariance using few data gain

importance and remain as a potential research area.

The second one of those potential directions are seen as reliability of the model. Due
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to the increasing number of new data, new spoofing attacks may not be distinguished
easily by the biometric systems that are biased to their training dataset. Therefore,
the reliability of the model poses great importance and remains as a potential research

area for future works.

1.2 Objective of the Thesis

The main objective of the thesis is to conduct comprehensive research of domain
free DL based Security Models for CFS concerning data collection, transmission and
storage, where domain free indicates bias-free, more reliable systems to be used for

different domains.

To decide the domain free AI algorithm, we first take open topics and potential
directions for cybersecurity and biometric systems into consideration. Considering
the recent state-of-the-art feature extractors such as CNN backbones: VGG, ResNet,
Inception, their requirement for a huge volume of input data from different viewpoints
or the adaption of pre-trained network weights to model the input data, we decided
to deploy an Al algorithm that has two distinct qualities. The first quality is both
the ability to model invariance and equivariance of data without requiring any
augmentation and the ability to keep spatial relationships among features and model
feature activations smarter than using only scalar values. The second quality is the
ability to work and achieve feature representations similar to the human neural system
under hierarchical supervision, abstraction and adaptability to domain-independent

datasets.

As for the first quality, although CNN backbones achieve rotational robustness with
pooling layers, this robustness is limited to small local rotations. Therefore, a variety of
novel approaches use CNN by adapting either rotation invariant convolution outputs
or convolution filters. For example, steerable CNN [|144]], Group Equivariant CNN
(G-CNN) [[145]], Harmonic Networks [|146]], CubeNet [[147] use rotated/transformed
convolutional filters in different orientations while the model introduced in [[148]]
manipulates feature maps. However, these rotations are limited to the finite-set of
orientations and still require more variations in the input data for complex systems.
Besides, pooling layers still lose information about spatial relations. Since CNN and
its variants are on Euclidean domain, a non-Euclidean domain such as Graphs, Point
Clouds and Manifolds is employed to extend the generalization ability and named
as Geometric DL. For instance, Graph Convolutional Network (GCN) [|149]], Geodesic
CNN on Riemannian Manifolds [[150] and 3D Keypoints with Geometric Reasoning
[151]] employ graphs or manifolds to model three-dimensions [[152]. Although these
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methods model inputs using many orientations of tangent space thanks to Lie Algebra,

they are computationally complex to use in real-time [[153]].

As for the second quality, several algorithms are proposed particularly for the
abstraction of classes. For example, the method introduced in [[154] searches
embeddings attached to each class using non-linear mapping and clustering to find the
abstract prototypes for each class. Similarly, the method proposed in [155]] abstracts
each class with the mean output vector. Even though these methods are good at
simplifying, they do not use convolution filters which are the most powerful feature
extractor in a two-dimensional domain.

Since Capsule Network:

e models with small data and do not require input from different viewpoints and

simply models input with affine matrices,
o takes advantage of weight sharing properties of convolutional layers,

e keeps spatial relations of activations and can recognize the parts and their spatial

relationships among one another like the human brain.

e abstracts the activations and routes only the most contributing ones to the next
layer with routing function. Therefore, unrelated capsules become less effective
and the network exhibits Explainable Al (XAI) model characteristics.

Capsule Network is employed as a domain free Al algorithm to conduct experiments.

In addition to the main objective of this study, there are several sub-objectives
summarized as examining Capsule-based feature representations for different
security-themed CFS for the first time, TL for one-dimensional feature space,
detailed investigation of Capsule Network and its hyperparameters. Furthermore, all
experiments are conducted using Python and DL models are built using TensorFlow
library in Python.

1.3 Hypothesis

Original contributions are listed below:

e A comprehensive research on a domain-free Al model for security-themed CFS

is conducted for the first time.
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e Capsule Network performance and comparisons with its CNN equivalent are
analyzed, in particular their feature representations and impact on performance

results are investigated for biometric systems and cybersecurity for the first time.

e TL scenarios are extended to one-dimensional feature space for cybersecurity
and conducted under the content of reliability for the first time. Moreover, their

limitations are analyzed in detail under different scenarios.
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2

AI-BASED APPROACHES FOR BIOMETRIC SYSTEMS

CNN is proposed for automatic feature extraction and to obtain high-level
representations of input images in [[156]. CNN consists of three main parts:
convolutional layers, pooling layers, and fully connected layers. The convolutional
layers are used for feature extraction by using a variety of kernels to find the best input
representation. Then pooling layers take the output of convolution layers and discard
non-informative parts of the outputs coming from the convolution layers as well as
reduce dimensions for computational efficiency. After these two types of layers with
different combinations have been completed, the fully connected layer uses the most
informative extracted features to classify inputs. Until now, different combinations of
the first two parts of CNN have been used as backbones, such as LeNet, ResNet, and
VGG.

For this chapter, the CNN-based equivalent model was chosen to demonstrate that
the output of two convolutional layers is not as informative as the output of Capsule
layers. Moreover, it has a similar complexity to Capsule Network in terms of kernel
sizes in convolutional layers and neuron sizes in fully connected layers. In addition
to the CNN-based equivalent model, LeNet-5, which is one of the backbone models of
CNN, is employed due to its similarity to the model structure of Capsule Network for

a fair evaluation.

Although CNN offers translational invariance with pooling, it has limited rotational
invariance. Therefore, CNN requires data from different viewpoints. Capsule Network
is proposed to model feature representations of an object without requiring samples
from different viewpoints by ensuring translational and rotational invariance [[157]].
The network structure is shown in Figure and algorithm flowchart of Capsule
Network is shown in Figure As can be seen from Figure the model consists of
four main parts which are convolution layers, Primary Capsules, Signature Capsules
and fully connected layers, respectively. Here, Primary Capsules puts activation
outputs from convolution layers into capsules to obtain vector representation of

features instead of numerical activation values in CNN.
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Firstly, a variety of convolutions are applied to input images to obtain local
low-level features in convolution layers. After obtaining activations as the output
of these convolution layers, all these scalar-valued activations are given to primary
capsules to be grouped into multi-dimensional vector representations. Then, these
multi-dimensional vectors are multiplied with the affine transformation matrix to
obtain many different variations of these vectors for better modeling of the input
images. To select the most informative feature vectors, the routing algorithm is
employed. Before employing this routing algorithm, all transformed feature vectors
are squashed according to the Equation to make discriminative feature vectors
more apparent and to fade less-informative ones out. After squashing, the most
informative vectors are routed to signature capsules to form an entity. When the
routing algorithm is agreed, signature capsules with one multidimensional capsule per
class is created. The new capsule keeps the information about all outputs of capsules

from the previous layer and keeps absolute characteristic features for each class.

||5]'||2 S;
V. = x (2.1)
T sil12 sl

where v; is output of a capsule, s; is total input of a capsule and s; also includes affine

transformed versions of convolution outputs which can be studied in detail from [[157]].

Lastly, these signature capsules are fed into fully connected layers to classify. The loss
function is designed as a combination of margin loss, which is obtained from false

predictions, and reconstruction loss. This loss function is calculated according to the

Equation 2.2
L = T.max(0,m" —||V[[)* + (1 — T)max(0, ||V,|| = m~) (2.2)

where L is loss term for one signature capsule, m"andm are constants and chosen as
0.9 and 0.1, T, is a constant that is 1 if the signature capsule is the correct, otherwise
it is 0. First-term of loss equation is to calculate correct prediction probability while

the latter term is employed to calculate incorrect prediction probability.

All in all, Capsule Network provides three main innovations compared to
Convolutional Neural Network:

e Inner affine matrix multiplication instead of data augmentation

e Vector representation instead of scalar-valued representation

e Forwarding only the most informative feature representations by Dynamic

Routing algorithm instead of forwarding all extracted feature activation values
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2.1 Model for Offline-Signature-based Identification and Verifica-
tion Systems

Biometrics is a field that uses behavioral and biological traits to identify/verify a
person. Due to ease of collection and being non-invasive, signature-based biometric
systems are frequently used. These systems are divided into two sub-systems
depending on their collection method; online and offline systems. The first one collects
dynamic signature features as a sequence of time. In this manner, features such as
speed and pressure can be extracted. The second one uses the image after signing
is done. Even though the online signature is advantageous for keeping more details
about a signature, the offline signature is the most frequently used behavioral trait in
daily life [|158].

o

Figure 2.3 Two genuine (first two rows) and one forgery signature (last row)
samples from CEDAR, GPDS and MCYT databases, respectively [[159-161]]

In offline signature verification systems, the main aim is to separate the genuine
signatures from forgeries, which can be random, simple or skilled done by a forger.
Unlike random and simple forgeries, skilled forgeries are not always easy to distinguish
due to the intra-class variance of genuine signatures shown in Figure Therefore,
a detailed investigation of not only local but also global features of genuine signatures
is required to achieve high verification results. Moreover, insufficient prior knowledge
about forgeries during training and limited genuine samples make the verification

process even more challenging.

A great deal of research has been devoted to extracting the most informative global
and -in particular- local feature representations to differentiate forgeries. These
hand-crafted local descriptors can be texture-based such as gray level co-occurrence
matrix [[162]], direction-based such as Histogram of Gradients (HOG) [|163]], Scale
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Invariant Feature Transform (SIFT) [[164]] or combination of two or more different
local descriptors [[165]. While research on hand-crafted local descriptors is still
ongoing, recent studies have been conducted by employing automatic feature
extractor algorithms such as CNN. Since data samples per user are limited, a
few studies are dedicated to using transfer learning instead of conducting data
augmentation. The works presented in [166, (167] use a pre-trained CNN-based
model after training the model with other benchmark datasets for coarse-tuning
weight parameters. After this coarse-tuning process, limited training data from the
original dataset is used for fine-tuning. In brief, coarse-tuning is employed to narrow
down signature feature space while fine-tuning is used to guarantee optimal decision
boundaries. Similarly, the model proposed in [168] employs Siamese CNN with an
inception layer. To cope with the few data samples per user, the model generates
augmented samples for training. The model achieves 99.15% and 99.82% Area Under
the ROC Curve (AUC) for sub CEDAR and MCYT databases.

Unlike pre-trained CNN-based models, the method proposed in [[157]] narrows feature
space down by only modeling with few data from the original dataset. From this point
of view, the first goal of this chapter is to investigate the feature modeling capability of
Capsule Network and to evaluate Capsule Network under different input resolutions,
such as 64x64 and 32x32, which are four to eight times lower than the usual signature
resolutions for practical usage of signature verification and identification tasks. This
goal is chosen not only to investigate the modeling capability of Capsule Network
without requiring pre-trained weights under extremely low resolutions but also to
fasten evaluation times and lessen memory usage. The second goal is to obtain a
comparison among Capsule Network and its CNN equivalent on three benchmark
databases to understand how well algorithms can keep features as informative as

possible under extreme conditions.

2.1.1 Benchmark Datasets and Preprocessing Steps
2.1.1.1 Benchmark Datasets

In this chapter, three frequently-used offline signature databases are employed for
identification and verification tasks.

CEDAR: CEDAR database consists of 1320 genuine and 1320 forgery samples in total

and 24 genuine and 24 forgery samples are collected per user among 55 users [[159]].

MCYT: MCYT database consists of 1125 genuine and 1125 forgery samples in total
and 15 genuine and 15 simulated forgery samples are collected per user among 75
users [[161]].
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GPDS: GPDS database consists of 96000 genuine and 120000 forgery samples in total
and 24 genuine and 30 simulated forgery samples are collected per user among 4000
users [|160]]. In this chapter, we employed GPDS-100, which is only the first 100 users
for identification and verification tasks [|163,(169]].

2.1.1.2 Preprocessing Steps

Before the evaluation procedure, benchmark databases are preprocessed as shown in
Figure Firstly, data samples for each database are cropped regarding the center
of signatures to discard unnecessary parts. Then, these data samples are resized to
64x64 and 32x32 extreme image resolutions. After resizing is done, data samples are
converted into binary values with Otsu’s method. As a final step of preprocessing,

binarization is done to make background pixels black, foreground pixels white.

PREPROCESSING STEPS

CONVERTING
BINARIZATION BACKGROUMND

CROPPING mm WITH OT5U PIXELS TO BLACEK,
THRESHOLDING FOREGROUND

PIKELS TO WHITE

Figure 2.4 Preprocessing steps for signature benchmark databases

2.1.2 Experiments and Conclusion
2.1.2.1 Experimental Setups and Experiments

General settings for the identification task are given below:

e One model is trained for all users in a specific dataset.

¢ Only genuine samples are used for training and testing. Train and test partitions
are set as the first half and the second half of genuine samples per user,

respectively.
e Two-fold cross-validation is employed for both tasks.
e For training, epoch size and batch size are chosen as 50 and 16.

e Image resolutions of 64x64 and 32x32, which are 4-8 times lower than the usual,
are used for identification task [[166, 170-172].

e Capsule Network hyper-parameters such as layer structure, the routing number
are chosen as the original in [[157]]. Only convolution kernel sizes and capsule
dimensions are modified as given in Table [2.1]and Figure
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e Evaluation metric is chosen as accuracy since classes in datasets are balanced.

General settings for the verification task are given below:

A model is trained for each user separately, which is also known as the
Writer-dependent approach. For example, 55 separate models are created for

55 users in CEDAR dataset and only average accuracy of all models is reported.

e Genuine as well as random and simple forgery samples, which are treated as a
separate class, are used for training and testing. Train partition is set as the first
half of genuine and forgery samples per user while test partition is set as the

remaining half.
e Two-fold cross-validation is employed.
e For training, epoch size and batch size are chosen as 50 and 16, respectively.

e Only image resolution 64x64 is used since the inner variance of genuine
signatures makes modeling genuine signatures difficult for smaller resolutions
such as 32x32.

e Model hyper-parameters such as layer structure and the routing number are
chosen as the original in [[157]. Capsule dimension is set the same as in the
identification task. Only convolution kernel sizes and capsule dimensions are
modified separately as given in Table and Figure for each dataset.

e Evaluation metric is chosen as accuracy since classes in datasets are balanced.

Table 2.1 Test accuracy for Offline Signature Identification tasks

Resolution Dataset nxn(stride) kxk(stride) Train Test Accuracy Equiv.

Acc.
64x64 CEDAR 21x21(1) 21x21(2) 12 12 %97 %55
32x32 CEDAR 13x13(1) 11x11(2) 12 12 %96 %54

64x64 GPDS-100  21x21(1) 21x21(2) 12 12 %94 %54

32x32 GPDS-100  13x13(1) 11x11(2) 12 12 %89 %51

64x64 MCYT 21x21(1) 21x21(2) 12 12 %95 %55

32x32 MCYT 13x13(1) 11x11(2) 12 12 %91 %51

All experimental results for offline signature identification tasks are given with the
information of input resolutions, train-test partitions and convolution kernel sizes
with stride in Table As can be seen, even outputs of big convolution kernels are

good enough at modeling and separating signatures from one another using Capsule
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Table 2.2 Test accuracy for Offline Signature Verification tasks

Resolution Dataset nxn(stride) kxk(stride) Train Test Avg. Acc.

64x64 CEDAR 21x21(1) 21x21(2) 14+14  5+5 %91
64x64 GPDS-100 3x3(1) 5x5(2) 12+15 12+15 %86
64x64 MCYT 21x21(1) 21x21(2) 8+8 7+7 %89

Network while they are not enough to model using CNN-equivalent. Furthermore,
identification at input resolutions of 32x32 achieves average %92 accuracy over three

benchmark datasets for Capsule-based representations.

All experimental results for offline signature verification tasks are given in Table
As can be seen, only 64x64 image resolution is used due to the difficulty level at

differentiating forgeries from genuine.

Moreover, genuine and forgery samples in the GPDS-100 dataset seem almost
identical. Therefore, they require smaller kernels to extract local features in detail
for verification tasks. Only for this dataset, additional two convolution layers before
primary capsules are added as 3x3(1) and 5x5(2). Additionally, train and test samples

are given as genuine+forgery format.

2.1.2.2 Conclusion

Capsule Network acquires promising results while using at least four times lower
resolutions than frequently used ones for identification tasks. This indicates that
Capsule Network is reliable enough to classify signatures and to have a unique ability
to model local features better under extremely low resolutions for practical purposes.
Moreover, results for identification tasks reveal that even using bigger sized (around
one-third of input resolutions) convolutions are useful to separate signatures owing
to the modeling capability of Capsule Network while CNN equivalent cannot perform
well and requires bigger input resolutions and/or more layers.

Similarly, verification results also indicate that the algorithm has a great capability
to cope with differentiating genuine signatures from forgeries. However, unlike
identification tasks, high-similarity between genuine and forgery samples requires
the extraction of low and mid-level features together. Moreover, different benchmark
datasets require different levels of convolution layers. For instance, two-layer kernels
are enough to extract enough information in CEDAR and MCYT datasets while
GPDS-100 dataset requires more. Therefore, convolution layers and convolution

kernel sizes are arranged for that requirement for all datasets.

For future works, there are a couple of things to be taken into consideration for offline
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signature identification and verification tasks.

e Different model combinations for Capsule Network may be tried, such as

modifying the stride and convolution layers.

e Capsule Network and state-of-the-art CNN models such as VGG-16 can be
compared for high input resolutions using the same convolution layers to
investigate the modeling capability of Capsule Network in detail.

e For verification task, performance comparison can be generalized with the use

of adversarial attacks, such as adding noise to genuine signatures.

e Visualising feature representations before and after capsule layers can be done

to increase the explainability of capsule-based feature modeling.

In conclusion, the main point of this chapter is to investigate Capsule Network’s
advantages in terms of data representation, using few data in signature identification
and verification tasks for CPS and to encourage a community that is interested
in online signature verification to think one step further to obtain better feature

representations for the future.

2.2 Model for Finger-Vein-based Biometric Identification Systems

In comparison to other biometric system types, finger-vein-based recognition provides
some advantages due to its non-invasive and low-cost procedure, simplicity of
collection, and the fact that it is one of the biological characteristics that is affected only
by internal factors [[173]. Although finger-vein-based biometric systems have these
advantages, they possess some drawbacks, such as poor quality of finger-vein images
related to internal factors that have a negative impact on the accuracy of finger-vein
recognition methods [174]. These internal factors could be finger tissue-based

problems as well as the quantity of fat and water levels under the skin.

There are two types of finger-vein identification systems: finger-dependent and
individual-dependent systems. The first focuses on each finger and creates separate
feature spaces for individuals, while the latter uses all fingers belonging to an
individual and creates feature space for each individual. Since each finger vein has
its characteristics, a person’s fingers lack common features. Thus, many types of
researches are conducted using a finger-dependent approach, such as [137, [175]].
In recent years, there have been significant technical advances in the technology of

graphics processing units (GPUs) of computers. Moreover, with the increase in the
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number of open benchmark databases, these technical advances have stimulated an
increase in CNN-based implementations in biometrics. Besides, unlike conventional
methods, CNN accomplishes automatic feature extraction. This motivates most of the
ongoing researches to use CNN-based approaches to improve recognition performance
as well as the robustness of the recognition system. Li et al. proposed a system
based on CNN backbones, VGG-16 and AlexNet, that use pre-trained weights [[176]].
Similarly, Hong et al. proposed a method of applying VGG-16 and VGG-19 backbones
with pre-trained weights [|177]]; additionally, Das et al. used a VGG-16 backbone for
finger-vein identification [[137]. Even though the VGG-16 backbone dominates the
other CNN-based backbones in recent researches, whether VGG-16 with pre-trained
weights achieves satisfying results due to extracting the best representations is open
for debate [|157]].

From this point of view, the first goal of this chapter is to investigate the feature
extraction capability of Capsule Network for finger-vein-based identification. The
second goal is to obtain a comparison among Capsule Network, its CNN equivalent,
and LeNet-5 on four benchmark sub-databases. Moreover, all of these evaluations are
made using 32x32 image resolutions for practical purposes, which is much lower than
the usual setup in use, such as 224x224. Therefore, this comparison also evaluates
how well algorithms can keep features as informative as possible under extreme

conditions.

2.2.1 Benchmark Datasets and Preprocessing Steps
2.2.1.1 Benchmark Datasets

Four publicly available finger-vein image databases are used for the experiments.
These are SDUMLA from Shandong University, UTFVP from University of Twente,
HKPU from Hong Kong Polytechnic University and MMCBNU-6000 from Chonbuk
National University. Details about these databases are given in Table For the
experimental setup, the first eighteen fingers are chosen from each database while

creating sub-databases for evaluation.

2.2.1.2 Preprocessing Steps

In vein identification systems, there are several frequently used pre-processing
techniques, such as repeated line tracking and maximum curvature. Before the

evaluation procedure, benchmark databases are preprocessed as shown in Figure

They are also summarized in detail below:
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Table 2.3 Benchmark databases for Finger-vein Identification

Name Number of No of samples  Total Image
Individuals per Individual Samples Resolutions
SDUMLA [|178] 106 36 (6Sx6F) 3816 320x240
UTFVP [179] 60 24 (4Sx6F) 1440 672x380
HKPU [/180] 156 24 (12Sx2F)* 3132 513x256
MMCBNU-6000 [[181]] 100 60 (10Sx6F) 6000 320x240

S: samples per finger
F: total no of fingers
*: 12S(first 105)and 6S(last 51)

PREPROCESSING STEPS

REPEATED LINE

e TRACKING (RLT)

RESIZING TO 32%32

Figure 2.5 Preprocessing steps for finger-vein benchmark databases

e Cropping : It is done to discard the irrelevant parts of the finger-vein image.

e Repeated Line Tracking (RLT) : To capture the edges of finger veins, RLT
is employed to track local black lines (veins) and separate them from the
background in a pixel-wise manner until there is no longer any local black lines
tracked [[182]].

e Resizing : It is done to convert input images to 32x32, which is a much lower

resolution than those in the literature.

bl

Figure 2.6 Original and pre-processed finger-vein samples of a) SDUMLA [|178] b)
UTFVP (Twente) [|179]] ¢) HKPU [|180] d) MMCBNU-6000 [|181]] databases

Samples from each database and pre-processed versions of these samples can be seen

in Figure
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2.2.2 Experiments and Conclusion

2.2.2.1 Experimental Setups and Experiments

o Fully-Connected Layers
Convolution Layer (Convl) PrimaryCaps DigitCaps (512,1024,784)

5.

8x32

16

Figure 2.7 Capsule Network model for Finger-vein Identification

Capsule Network CNN-Based Equivalent LeMNet-5
I Input Image 32x32x1 | I Input Image 32x32x1 I | Input Image 32x32x1 |
* PR Conv 1layer  5x5,6,stride=1
IConv 1layer mxm, 256, stride=1| IConv llayer mxm, 256, St”de‘ll | Y |

‘.

Max Pool 1 2% 2, stride=2 |

IConv 2Llayer nxn, 256, stride:2|

|primaryCaps  nxn, 256, stride=2 |

‘_

‘_

| Conv 2 Layer 5x5,16, stride=1|

_ v | FC-1 512 | -

I DigitCaps 10x18 l + | Max Pool 2 2x 2, stride=2 |
v [ FC-2 1024 | -

| FC-1 512 | v | FC-1 120 |
v | FC-3 784 | v

| FC-2 1024 | | FC-2 84 |
¥ v ¥

| FC-3 784 | | FC-4 18 | | FC-3 18 |

Figure 2.8 Capsule Network, CNN-based equivalent and LeNet-5 model structures

Model layer structure is given in Figure and chosen similar to the original work
proposed in [[157]]. Similarly, all models and their layer parameters can be seen
in Figure Here, convolution filter kernels are chosen as 2x2 for CONV1, 3X3
for PrimaryCaps which are at least 10% of the input image size to secure absolute
information similar to work proposed in [[137]]. For all experimental setups, epoch

size, routing number, and capsule size are chosen 500, 3, and 32, respectively.

In addition to the hyperparameter setup of the model, train-test partitions are chosen
according to the sample size per finger. Due to the small sample size, these partitions
are arranged as half for training half for testing at least and given in Table For
SDUMLA database, each finger has one session with six samples. Therefore, three
train-test percentages are chosen as 3-3, 4-2 and 5-1. For UTFVP (TWENTE) database,

each finger has one session with four samples. Therefore, two train-test percentages
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Table 2.4 Evaluation results for Finger-vein Identification

Accuracy
Database Train Test Capsule Network CNN Equivalent LeNet-5
3 3 87% 42% 74%
SDUMLA 4 2 88% 52% 83%
5 1 100% 88% 100%
UTFVP 2 2 66% 41% 77%
3 1 94% 55% 88%
6* 6** 56% 25% 60%
6+1 5 67% 30% 63%
HKPU 6+2 4 79% 34% 75%
6+3 3 83% 47% 83%
6+4 2 88% 50% 86%
5 5 95,5% 77% 92%
MMCBNU-6000 6 4 95,8% 77% 90%
7 3 98% 79% 94%
8 2 100% 80% 97%

*: from session one
**:from session two

are chosen as 2-2 and 3-1. For HKPU database, each finger has two sessions with six
samples each (12 samples in total for per finger). Therefore, five train-test percentages
are chosen as (3+3)-(34+3), (6+1)-5, (6+2)-4, (6+3)-3 and (6+4)-2. MMCBNU-6000
database, each finger has one session with ten samples. Therefore, four train-test
percentages are chosen as 5-5, 6-4, 7-3 and 8-2. For evaluation metric, accuracy is
chosen since classes in datasets are balanced.

2.2.2.2 Conclusion

Performance results are given in Table For all databases, the results indicate
that even though Capsule Network and the CNN-based equivalent use the same
CNN-extracted features, Capsule Network achieves better performance results at

modeling finger-vein.

For SDUMLA database, it is also pointed out that Capsule Network and LeNet-5 obtain
the same results for 5-1 train-test partition. This may indicate that if CNN-extracted
features are discrete enough among classes and there is a sufficient amount of training
data, LeNet-5 works as well as Capsule Network. However, for the opposite case,
where CNN-extracted features are not discrete, Capsule Network tops the accuracy of
94%, 88% and 100% for UTFVE HKPU and MMCBNU-6000 databases, respectively.

One intriguing point to note is that all evaluations are done under 32x32 image
resolution, which is much lower than usual and satisfactory for practical purposes.

Furthermore, there is not a single finger-vein-based biometric system that uses this

39



Training loss Training and validation accuracy

—— capsnet_loss 1.0+
0.8 4 decoder loss
— loss R
0.6 1
0.6 4
0.4 0.4 -
" W ° B,
b B LI, NI | val_capsnet_acc
4] 100 200 300 400 200 Q 100 200 300 400 200

Figure 2.9 Accuracy vs Epoch for MMCBNU-6000 database with train-test partition
as 7-3

kind of extreme image resolution and obtains results as high as those in this chapter.

Besides, accuracy becomes stable by 50 epoch for all vein databases thanks to fast
convergence. As an example, results for MMCBNU-6000 database with Train-Test

partition as 7-3 are given in Figure [2.9

To sum up, performance results show that Capsule Network is quite robust in that it
can achieve high results while only using a small number of samples and outperforms
its opponent algorithms. Moreover, it achieves an average 95.5% accuracy over four
benchmark sub-databases, while opponents, which are the CNN-based equivalent
and LeNet-5, obtain a maximum average of 92.5%. Performance results also show
that 32x32 image resolutions are enough for finger vein identification and Capsule
Network-based finger vein identification obtains promising results for all practical

purposes.

For future works, there are five main steps to be taken: Firstly, Capsule Network
can be evaluated on other finger-vein databases using whole samples. Secondly,
the capability of Capsule Network towards adversarial attacks can be analysed on
benchmark databases with adversarial samples, such as VERA database. Thirdly,
model parameters such as convolution kernel sizes and the number of layers for
Capsule Network can be modified. Fourthly, different CNN backbones, both with
and without pre-trained weights, can be employed to generalise results. Lastly, using
other commonly used pre-processing methods, such as Contrast Limited Adaptive
Histogram Equalization, the tests conducted above can be repeated to obtain a more

comprehensive comparison.
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3

AI-BASED APPROACHES FOR CYBERSECURITY

Cybersecurity systems are designed to prevent any hardware or software-based system
connected to the internet from the information/privacy loss. These systems can
be classified into three categories: misuse, anomaly and hybrid-based detection
systems. While misuse-based detection systems analyse concerning characteristics
of known intrusions, anomaly-based detection systems classify novel intrusions by
detecting divergent data pattern than normal. The hybrid-based detection systems

take advantage of the strategies of both misuse and anomaly-based systems.

According to August 2019 McAfee Labs threats report, besides known intrusions,
novel intrusions present a great challenge for cybersecurity systems. Since current
anomaly-based detection systems are trained on particular datasets with previously
known intrusions and heavily biased on the characteristics of known intrusions,
there may be a question arising on how reliable these systems are at detecting
novel intrusions with totally different characteristics than previous ones or even
closer characteristics to normal traffic. Moreover, benchmark datasets generally have
unbalanced network traffic data, where some known intrusions are well-represented

while others are insufficient for training purposes.

To increase the effectiveness of anomaly detection systems, in theory, one possible
solution is to use different datasets or extract new feature representations while
training since each benchmark dataset for cybersecurity has a unique internal bias
regarding the data collection process of network traffic and variety of intrusion types.
However, in practice, adaptability becomes a huge problem at using different datasets
due to uniqueness in feature spaces and distribution differences/shifts in network
traffic data. Another possible solution is to extract common features using sniffer
programs such as Wireshark from benchmark datasets with raw data. However,
not all benchmark datasets have raw labeled network traffic data. The last but
not least possible solution is to create a new dataset with all known intrusions by
collecting traffic data from new distribution and label. However, it is expensive and

time-consuming.
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Table 3.1 Types of Transfer Learning

2*Type of Transfer Learning Domain Task
Source | Target | Source | Target
Inductive 0 0 X X
Transductive X X 0 0
Unsupervised X X X X

2 o0: indicates same, x: indicates related but not same

Starting from these possible solutions, this chapter focuses not only on new
Capsule-based feature representations to improve detection rates for minority classes
but also TL for Cybersecurity to lessen bias issues and generalize similar domains of

interests for the first time.

Types of TL are categorized according to the relation between source and target
domains as well as the source and target tasks, which are given in Table [183]].
Since the source and target domains are not similar in cybersecurity, we introduce and
conduct an inner dataset TL for Cybersecurity which can be done by using different
attack types from the same dataset and projecting them as an intrusion on a different

plane for this chapter.

Few studies in the literature have investigated TL for cybersecurity systems until
now. One of the very first methods is proposed in [[184]. Since different intrusions
show distinct patterns in feature space, the method first projects features to a latent
space via spectral transformation then uses a variety of shallow classifiers for anomaly
detection. On NSL-KDD dataset, performance results without projection are reported
as low as random classification while the proposed method achieves much more
improved results. Similarly to the study presented in [[184]], an extended version is
proposed in [[185]. This version uses kmeans++ based clustering approach instead
of manual pre-settings to find the similarity between known and novel intrusions
before projection. After obtaining new feature representations of different intrusions
on the same latent space, it employs shallow classifiers for anomaly detection. On
NSL-KDD dataset, it achieves higher accuracy and sensitivity than the results in [|[184]].
Although it is promising regarding the flexibility of using different feature sets and
the ability to map them into the same latent space, it may even lead to tangling data
due to linear mapping/transformation. Besides, the works proposed in [184, 185]
use different feature sets from only one particular dataset. Therefore, these feature
sets are collected under the same network traffic distributions. However, it might
not fully represent the real-time scenario due to the variations in background traffic

distributions.
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In contrast to [|184, 185]], the method proposed in [[186] employs two different
benchmark datasets using their common feature space to conduct TL. This method
transforms all common features to novel representations via Domain Adaptation
Manifold Alignment. Then, different intrusion types in NSL-KDD dataset are trained
under intrusion label and tested on Kyoto2006 dataset using SVM. Similar to [|186]],
the method proposed in [|187]], employs common features between NSL-KDD and
CIDD datasets. Results are reported as insufficient due to limited amount -three- of
overlapping features between these two datasets. Similarly, the study proposed in
[188]], uses the same extracted features from raw Netflow data of CTU-13 dataset
and transforms all features into new latent space by minimizing the distance between
the novel and known malware intrusions. The study described in [[189] also employs
common features for DoS attacks from UNSW-NB15 and CICIDS2017 as train and
test data, respectively. Then, it maps these common features to a latent space via
Correlation Alignment and classifies using Siamese NN. Another study presented in
[[190] uses directly raw malware traffic -which is divided into train and test data with
different malware intrusions- and detect anomalies with DNNs. Another TL under
domain adaptation is discussed in [[191]. It employs bag of samples method using
traffic logs for evolving intrusions to have more robust representations. Although it
improves recall only using linear transformation via the self-similarity matrix without
requiring classification loss function or probability distribution similarity calculation,
it may overlook the necessity of new feature space/features of evolving intrusions. As

an example, DDoS attacks and low-frequency DDoS attacks can be given.

Unlike other methods, the research proposed in [[192] uses pre-trained ResNet-50
backbone for TL, where network traffic data is represented as grayscale images to
make data compatible with a two-dimensional domain. Here, while lower layers of a

pre-trained ResNet-50 are frozen, higher layers are fine-tuned for cybersecurity.

3.1 Benchmark Datasets and Preprocessing Steps

3.1.1 Benchmark Datasets

Although there are a variety of available traffic databases, most of them are not in use
due to reasons of being outdated, only raw data, unrealistic background traffic, lack of
novel attacks etc. For this chapter, only frequently-used and robust ones are selected
while several datasets such as ADFA, ISCX2012, DEFCON and CDX are excluded due

to:

e ADFA database lacks of diversity in terms of attacks.
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ISCX2012 has no realistic background as well as does not include new protocols.

DEFCON datasets do not have a realistic background and mostly include

intrusive traffic.
CDX dataset lacks of volume as well as attack type diversity.

DARPA(1999-2000) is outdated in terms of attacks.

For TL scenario, several benchmark datasets are chosen in two steps. As a first step,
only frequently-used benchmark datasets are limited to the ones which are labelled
and feature-extracted. Details about these datasets are given below and more details
can be found at [[193]].

. CICIDS2017: This dataset consists of full-packet network traffic data including

raw network traffic files. Not only it includes a variety of attack types such
as flooding, bruteforce, but also it meets the criteria for a reliable dataset in
cybersecurity [[194, 195]].

. KDD99: Similar to CICIDS2017, it consists of full-packet network traffic

data including raw network traffic files [[196]. Even though it is the
most-frequently-used benchmark dataset for cybersecurity and has a huge
diversity of attack types such as R2L and U2R, it has reliability issues regarding
unbalancing among attack types and the absence of novel attacks.

. NSL-KDD: This dataset is directly created from KDD99 [|197]]. Although this

dataset becomes reliable regarding the balance among attacks by sampling
methods as well as deleting duplicated samples, the absence of novel attacks

is an issue.

KYOTO: This dataset is collected from honeypot network traffic [[198]]. It is often

criticized since the honeypot data does not encounter advanced attacks.

. UNSW-NB15: Similar to CICIDS2017 and KDD99, this dataset consists of

full-packet network traffic data including raw network traffic files. Even though
it has missing samples, it consists of a variety of attacks such as backdoors and
reconnaissance [[199]].

As a second step, these benchmark datasets are investigated by analyzing the diversity
of attack types and features to decide the ultimate datasets. After these steps, only
CICIDS2017 is chosen for the inner-dataset TL scenario for two reasons. First, it is

proposed as the most comprehensive and accurate traffic among benchmark datasets
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in [[194]] and meets a variety of important reliability criteria such as rich feature variety
from traditional to novel features, realistic traffic with noisy background and diversity
in attack types including recent attack types for a fair evaluation. Second, this scenario
is proposed to take full-advantage of feature space and only two benchmark datasets,
AWID2018 and CICIDS2017, have a huge diversity of features over 150 while others
are below 50. Between these two datasets, CICIDS2017 has eight main attack types
while AWID2018 has only three.

Similarly, considering the popularity and recent CNN-based works, NSL-KDD is chosen
to evaluate Capsule-based representations and to compare with these CNN-based

works.

3.1.2 Preprocessing Steps

For Capsule-based representations, preprocessing steps are used:

e One-hot encoding is applied to categorical features.

e All remaining features are discretized and normalized.
For Inner-dataset TL, standard preprocessing steps for cybersecurity are used:

e One-hot encoding is applied to categorical features.
e All remaining features are discretized and normalized.

e Conversion into two-dimensional input is done for several experiments.

3.2 Experiments and Conclusion

3.2.1 Experimental Setups and Experiments for Capsule-based Representations

One of the recent papers using LeNet [[17] is chosen as a baseline model. A variety of
preprocessing methods are used with this baseline model except for Capsule Network.
For Capsule Network, kernels are modified as 2x2 for the first layer and 1x1 identity
kernels for the second layer, respectively. Other hyperparameters for Capsule Network

are chosen the same as the previous chapter.

All evaluation results and comparisons with a variety of preprocessing methods are
given in Table for train size of 494021 and test size of 311029. These evaluations
are done for both binary classification (attack-normal) and multiclass classification
(DoS, Probe, R2L, U2R and normal).
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Table 3.2 Accuracy for LeNet-5 and Capsule Network on NSL-KDD dataset

Multiclass Classification
Features Model Structure
Model Input Size | Accuracy
AE(100) LeNet-5 100 94%
PCA(25) LeNet-5 361 92.3%
PCA(1)+Categorical LeNet-5 361 92%
PCA(2)+Categorical LeNet-5 361 92.1%
PCA(3)+Categorical LeNet-5 900 92%
All Capsule Network 122 93,9%
Binary Classification
Features Model Structure
Model Input Size | Accuracy
PCA(1)+Categorical LeNet-5 361 93.3%
PCA(2)+Categorical LeNet-5 625 92.9%
PCA(3)+Categorical LeNet-5 900 92.8%
All Capsule Network 122 94,2%

3.2.2 Experimental Setups and Experiments for Inner-dataset TL

Inner-dataset TL is designed to examine the true capability of TL for novel attack
detection by taking full advantage of whole feature space extracted from network
traffic data. Moreover, this type of TL can be used where a dataset lacks sufficient

common feature space with other datasets.

The scenario is done in two steps. As the first step, the model is trained on each attack
separately and tested on other attack types one by one. Since each attack generally
has quite distinct characteristics, the first step is expanded with the second step. In the
second step, some distinct attack types are grouped to train the model separately and
tested on other distinct groups of attacks. These groups are formed according to their
divergence to one another. To sum up, the basic idea behind this scenario is to train
the model on a known attack or a distinct group of known attacks then to test on an
unseen attack or a distinct group of unseen attacks. Therefore, the scenario concludes

with the prospective advantages and disadvantages of TL for cybersecurity.

Results for inner-dataset TL are given in Table Here, the confusion matrix is used
as a performance metric to calculate precision, recall, accuracy and f-score are given
for binary classification/anomaly detection, where the attack is labeled as 0 while

normal data is labeled as 1.
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Table 3.3 Confusion Matrices of Inner-Dataset Transfer Learning on CICIDS2017

dataset
Train On Test On
DoS DDoS Brute Force FTP Brute Force SSH
DoS ) 67229 151606 0 5933 0 3219
| 761 1047481 | [761 1047481] | [761 1047481 |
Attacks BotNet Web Attack Infiltration Heartbleed
0 1953 2 2141 0 36 11 0
|761 1047481 | |761 1047481 | 761 1047481 | |761 1047481 |
DoS DDoS Brute Force FTP Brute Force SSH
1818 191930 0 5933 0 3219
DDos$ | s6 1048186 |56 1048186] | |56 1048186]
Attacks BotNet Web Attack Infiltration Heartbleed
0 1953 0 36 0 36 0 11
|56 1048186 | |56 1048186 | |56 1048186 | |56 1048186 |
DoS DDoS Brute Force FTP Brute Force SSH
0 193748 0 218835 0 3219
Brute Force FTP 0 1048242 0 1048242 0 1048242
Attacks BotNet Web Attack Infiltration Heartbleed
0 1953 0 2143 0 36 0 11
[0 1048242 | [0 1048242 | [0 1048242 ] [0 1048242 |
DoS DDoS Brute Force FTP Brute Force SSH
0 193748 0 218835 0 5933
Brute Force SSH | |5 10482442 0 1048242 ] [0 1048242 ]
Attacks BotNet Web Attack Infiltration Heartbleed
0 1953 0 5933 0 36 0 11
[0 1048242 ] [0 1048242 ] [0 1048242 ] [0 1048242 ]

3.2.3 Conclusion

As can be seen in Table even using one element of PCA with categorical features
is as effective as using 25 elements of PCA. This is either because the image domain
contributes features to be more expressive or dataset has a distribution where it can
be obtained easily via PCA. Also, evaluation results for AE indicate that AE separate
classes better due to its internal non-linear structure compared to PCA. From this
point of view, we either employ algorithms that are highly capable of non-linear
separation or change pre-processing where all features are more expressive. Owing
to the capability of Capsule Network for non-linear modeling, it achieves close to
state-of-the-art accuracy for multiclass classification while it achieves 94,2% accuracy
for binary classification. For the future work, we will modify convolution filters in

Capsule Network and experiment with different preprocessing steps.

In Table it can be seen that similar type of attacks such as DoS and DDoS could be
trained and tested on behalf of each other while a totally different attack types such as
web attacks could not. As a conclusion, promising results are achieved for attacks with
close characteristics as train-test pairs. Although some preliminary results show some
encouraging results, there are still a variety of ways to test TL and its capabilities for
different scenarios. Therefore, for inner dataset TL, we combined groups of divergent

attacks to make the training process more generalizable. Although we obtained
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slightly better results than Table we are still trying to obtain state-of-the-art results

to publish.

For the next steps, this chapter will be extended to cross-dataset TL using common
features and attack types among datasets which can be seen in Table Table

and Table respectively. Since common feature space among datasets is limited,

datasets for this scenario will be chosen according to criteria that require the dataset

to have at least seven common features with others. To make common feature space

reliable enough to conduct TL, k-NN is employed and evaluated only using one feature

each time to find the most contributing features for each dataset. Then, the best ten

features are listed for each benchmark dataset. Only benchmark datasets that share

seven best common features at least will be employed for cross-dataset TL.

Table 3.4 Attack types for benchmark datasets

Attack Types

Benchmark Datasets

NSL-KDD

KYOTO

CICIDS2017

UNSW-NB15

DoS

o

attack unknowns 0

()

DDoS

X

BruteForce (Password)

Injection

Infiltration

U2R

R2L

Probe

Fuzzlers

Analysis

Backdoors (Password)

Exploits

Generic

Reconnoissance

Shellcode

Worms (Malware)

YRR H XX H]|O|O|O MM XM

e R R AR A R R R R A e R e R R A R A e R i R B
MM R XM XXM HX|X|H®[O]|O|O[O

O|O|O[O|O|OC|O|O M |[M|[M]|M|MX|[M]|NX
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Table 3.5 Common features extracted via top-ten selection using KNN

Feature Name Datasets
KDD99 | KYOTO | UNSW-NB15
Service o) 0] o
src bytes 0 0 0
dst bytes 0 0 0
count o o X
dst host count o o o
dst host srv count o o o
dst host same src port rate o o} o
protocol o X 0

2 o0: indicates "exists", x: indicates "do not exist"

Table 3.6 Common features used for Cybersecurity

Feature Description

NSL-KDD

Benchmark Datasets

KYOTO

CICIDS2017

UNSW-NB15

Duration

Protocol Type

Service

Flag

Source Bytes

Destination Bytes

Count

Same Service (SS) Rate

Same Error Rate

Same Service Error Rate

Count of Same Destination (SD) IP

Count of SS from SD IP

Source Port is from SD IP Rate

SYN errors found in Count of SD IP

SYN errors when SS from SD IP

Start time of connection

Finish Time of Connection

Source Port Number

Source ID Number

Destination Port Number

Destination IP Number

I X[ XX =< O|O|O|O|O|O|O|O|O|O|O|0|0|e|O

O|O|O|O|O|0O|0O|O|O|O|O|O|0O|0O|0O|0|0|0|0O| =[O

P O P P | RO Of [ DR | X R | <[ O O Of ™| <| O

O|O|O|O|O| O XXX OO XXX OIO|O|=X|O|0|0
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4

RESULTS AND DISCUSSION

In this study, we particularly investigate one reliable model for all in CFS and we
used the model in a variety of feature spaces. The challenging point of the study is
to recognize and model patterns of data from different feature spaces and problems
using only one DL based algorithm. While investigating, we also argued that 1)
the advantages and disadvantages of probably one of the next frontier algorithms in
Computer Vision, -Capsule-based feature representations-, 2) experimented with the
undiscovered areas like more expressive feature representations, 3) experimented TL
from another perspective.

Concretely, in Chapter 2, we developed two models based on Capsule representations
over the most frequently used benchmark datasets for biometrics. These models
not only outperform opponent algorithms using a small number of data samples
and obtain high accuracy for the tasks but also show domain-free consistency and
reliability. In addition to the powerful feature extraction ability from signatures and
finger-veins in lower resolutions than frequently used ones, they are adaptable to
any biometric systems that require fast convergence for practical purposes changing
capsule sizes. In identification and recognition tasks, these two models show
robustness using only low-level feature representations of data while CNN equivalent
requires bigger input resolutions and/or more layers. In the verification task, results
indicate that low-level features extracted from extreme resolutions are not enough
to differentiate highly similar forgery samples from genuine ones. Therefore, either
higher resolutions, yet lower than the most frequently used ones, or deeper layers to
extract low and mid-level features together are necessary.

In Chapter 3, we experiment with Capsule-representations in cybersecurity.
Although the domain is in time and they cannot be used easily without mapping
one-dimensional features into two-dimensions, we achieved high detection rates
for both minority and majority classes and overall accuracy thanks to capsule
representations. Furthermore, results indicate that mapping features into another
domain makes features more expressive for cybersecurity. In the anomaly detection
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task, results show that Capsule-based representations can be another way of nonlinear
mapping such as AEs for cybersecurity. Besides, TL task states the importance of
bias-free Al-based model and conducts tests on attacks with distinct characteristics.
The results indicate that training with a group of attack instead of a specific attack
type is necessary to detect anomalies. However, limited common feature spaces and
differences in attack patterns make detection more difficult. Therefore, new scenarios
for domain adaptation and nonlinear mapping have great importance for future of

cybersecurity.

Finally, several challenges on feature representations are left for the future researches.

Those challenges include:

e Instead of supervised learning, discovering and modeling the data using
manifold embeddings then learning by clustering to maximize the spatial

distance among data samples,

e Conducting research on performance comparison with the use of adversarial

attacks,

e Investigating bias-free Al models more to achieve less biased results in the

literature,

e Conducting more researches on domain adaptation ways to reuse model and

make domain-free approaches more usable in the future.
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