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ABSTRACT

Crop Classification with Polarimetric Synthetic
Aperture Radar Images: Comparative Analysis

Mustafa USTUNER

Department of Geomatic Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Fiisun BALIK SANLI
Co-advisor: Assoc. Prof. Dr. Gokhan BILGIN

Polarimetric Synthetic Aperture Radar (PolSAR) images could provide beneficial
information regarding the complete scattering about the objects or targets and
this could be advantageous to derive the physical and geometrical structure. Due
to the benefits of the imaging capability day/night and weather-independent,
Synthetic Aperture Radar (SAR) sensors are of vital importance for time-critical
practices, especially in agricultural applications. In specific to agricultural practices,
multi-temporal or time series data is a pre-requisite for timely monitoring or
identification of crop pattern. This is because crops have a dynamically changing
structure in temporal domain. Each crop has different structural and physical changes
in temporal domain and the use of multi-temporal data leads to better separation of

crops.

The PolSAR data by itself (2x2 complex Sinclair scattering matrix) do not
explicitly/directly provide the “ready-to-use” information about the three elementary
scattering (surface, double bounce and volume scattering) for natural targets and
the data needs to be converted to second order statistical formalism (3x3 complex
matrices) for extracting the scattering properties. In such a case, polarimetric
decomposition methods can be used to extract the three elementary scattering for

the targets precisely.

In this thesis, the comparative performance of the original features (linear

polarizations and coherency matrix) and polarimetric features (incoherent

XVvi



polarimetric decompositions) from multi-temporal PolSAR data was investigated for
crop pattern identification through three different machine learning algorithms
(Light Gradient Boosting Machine, Support Vector Machine and Random
Forest). In order to create the polarimetric features, three different incoherent
polarimetric decompositions were utilized as follows: Cloude-Pottier decomposition
(eigenvector-based), Freeman-Durden decomposition (model-based) and Van Zyl
(hybrid) decomposition. Among these machine learning algorithms, Light Gradient
Boosting Machines was recently introduced to machine learning community and have

not been much explored in remote sensing for classification purposes.

The experimental results demonstrated that highest classification accuracy (0.96)
were received by Van Zyl decomposition as well as Freeman-Durden through
LightGBM. The results also addressed that LightGBM is much faster (almost ten
times) than RF and SVM for linear polarizations, coherency matrix and Cloude-Pottier

decomposition.

This thesis also highlights the benefits of model-based and hybrid decompositions
about obtaining the higher performance in comparison to original features for crop

pattern classification.

Keywords: Polarimetric decompositions, PolSAR, Light gradient boosting machines,

crop classification, machine learning

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

Polarimetrik Sentetik Aciklikli Radar Goriintiileri ile
Uriin Deseni Siniflandirmasi: Karsilastirmali Analiz

Mustafa USTUNER

Harita Miihendisligi Anabilim Dal1
Doktora Tezi

Danigsman: Prof. Dr. Fiisun BALIK SANLI
Es-Danisman: Dog¢. Dr. Gokhan Bilgin

Polarimetrik SAR goriintiileri, hedef objelerin tam sacilimlarina iligskin faydali bilgiler
icermektedir ve bu bilgiler de hedef objelerin fiziksel ve geometric yapilarina iligkin
bilgi elde etme noktasinda énemli avantajlar saglamaktadir. Iklim kosullarindan
bagimsiz ve gece/glindiiz olarak yeryliziinii goriintiileyebilme 6zelligi nedeniyle
SAR goriintileri, o6zellikle zamansal izlemenin kritik derecede 6nemli oldugu
calismalarda biiytik Oneme sahiptir. Tarim uygulamalar1 6zelinde bakildiginda
ise, tiriin dokusunun/deseninin belirlenmesinde ¢ok zamanl goriintiilerin kullanimi
zorunlu olmaktadir. Bu zorunlulugun nedeni ise, tarimsal {irlinlerin kisa zaman
araliginda dinamik bir yapisal degisiklik gostermesidir. Her bir tarim triini aym
zaman frekansinda farkli biiyiime gostereceginden bu farklilik iiriinlerin birbirinden

daha iyi ayrilmasini saglayacaktir.

PolSAR datasinin 2x2 lik sagilim matrisi, dogal kaynaklara iligskin ti¢c temel sagilim
bilgisini direkt olarak sunmamaktadir ve PolSAR verisi ikinci dereceden istatistiksel
doniisim aracilig1 ile elde edilen 3x3 liikk koherens yada kovaryans matrislerine
doniistiiriilmelidir. ~ Boyle bir durumda, {ii¢ temel sacilimin elde edilmesinde

polarimetrik ayristirma teknikleri kullanilmaktadir.

Bu tez calismasinda, cok zamanli PolSAR verisinden {iretilen orijinal ve polarimetrik
ozelliklerin tiriin dokusu tespitindeki karsilastirmali performans analizi ii¢ farklh
makine 6grenme algoritmasindan faydalanarak yapilmistir. Polarimetrik 6zelliklerin

liretilmesi asamasinda, ti¢ farkli koherent olmayan polarimetrik ayristirma teknigi
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kullanilmistir (Cloude-Pottier decomposition, Freeman-Durden ve Van Zyl (hybrid)
ayristirma teknikleri). Calisma kapsaminda kullanilan LightGBM yontemi ise, yeni bir

yontem olup uzaktan algilama ¢alismalarindaki kullanimi az sayidadir.

Deneysel sonuglar, en yiiksek siniflandirma dogrulugunun (0.96) LightGBM
siniflandirma yonteminden faydalanarak Van Zyl ve ayni zamanda Freeman-Durden
polarimetrik ayristirma teknikleri ile elde edildigini gostermistir. Islem siiresi
agisindan ise, LightGBM yonteminin dogrusal polarizasyon, koherens matrisi ve
Cloude-Pottier polarimetrik ayristirma tekniklerinin siniflandirilmasi islemlerinde,
DVM ve RO algoritmalarina kiyasla 10 kat daha hizli oldugu goriilmiistiir.

Bu tez calismasi, iiriin dokusunun siniflandirilmasinda model tabanli ve hybrid
ayristirma teknikleri ile, PoISAR verisinin orijinal 6zelliklerine kiyasla daha yiiksek

siniflandirma dogrulugu elde edilebilecegi sonucuna varmustir.

Anahtar Kelimeler: Polarimetrik ayristirma, PolSAR, Hafif gradyan hizlandirma

makineleri, tarimsal {iriin siniflandirma, makine 6grenmesi

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

Introduction

Remote sensing has a great capability of observing the land in a wide-range coverage
along with a short temporal scale [1]]. The mapping and monitoring of the cropland
play an essential role for many agricultural and economical practices in the regional
and global activities. Crops have spatially and temporally dynamic changes in a short
time period and therefore the systematic and timely monitoring is required to obtain
proper information [2, [3]. In this particular case, optical sensors might be of not
practical because it is not always possible to obtain "cloud-free" images therefore it can
not be of useful for time-critical agricultural practices. In this case, the use of synthetic
aperture radar (SAR) images could be a solution for such time-critical agricultural
applications with the advantage of day/night and weather-independent imaging [2,
4-6]]. Radar signal (radar backscatter) is sensitive to the crop dielectric properties,
structural attributes (shape, size and orientation) and the phenological changes [|7-
9]]. When it’s considered from that point, Polarimetric SAR (PolSAR) images provide
richer and more detailed information compared to single or dual polarization as radar
backscatter is polarization dependent[/7, 9} [10]. With this purpose, full polarimetric
space-borne SAR sensor are widely used such as RADARSAT-2 (C band), ALOS-2 (L
band) and GF-3 (C band) for crop mapping and monitoring.

Natural targets such as forest, crops and vegetation are considered as distributed or
incoherent scatterers and have a random scattering. Such targets can be modelled
through second-order formalism [7, (11, |12]]. For seperating the complex scattering
mechanism for incoherent scatterers into several scattering elements, polarimetric
target decompositions are widely used [|12, 13]]. In the case of crop classification,
incoherent target decompositions were employed since agricultural lands have
random scattering. Incoherent target decomposition can be separated into two
parts: eigenvector-based (mathematical) decompositions and model-based (physical)
decompositions [|7, [10]. More details about the polarimetric target decompositions

(Cloude-Pottier, Freeman-Durden and Van Zyl) are provided in Chapter 2.

The multi-temporal datasets for crop classification are usually preferred in order to



improve the classification performance since the phenological changes of each crop
in temporal domain are different than others, especially in their growing season.
These temporal changes lead to better discrimination of crop types. Therefore,
multi-temporal datasets are more powerful than single-date images to discriminate
the crop types [22, 4, 5]. This undisputed outperformance of multitemporal versus
monotemporal within PolSAR data for crop classification was proven in many studies
such as [[2], [[14] and [5]].

In this thesis, the original and polarimetric features from multitemporal RADARSAT-2
data were evaluated in crop classification using three supervised machine learning
algorithms, namely LightGBM, RF and SVM. The classification results were obtained
through k-fold cross validation. Also, the significance test was utilized to analyse the
differences between two classifier accuracy through McNemar’s test. The following
subsections present the literature review, the objective of the thesis, hypothesis and,
lastly the structure of the thesis.

1.1 Literature Review

In this section, the research studies employing at least one polarimetric target
decompositions along with original or polarimetric features for the crop (crop
dominated classes) classification from PolSAR data are only reviewed. The most
common used bands for crop classification in PolSAR are C or L bands, therefore only
research studies that employed of L. (Table 1.1) and C (Table 1.2) band were reviewed
here.

McNairn et al.(2009) tested the classification performances of Cloude-Pottier,
Freeman-Durden and Krogager target decomposition in addition to linear
polarizations from L-band ALOS PALSAR data for the classification of crops. In
their experimental results addressed the outperformance of target decomposition in

comparison with linear polarizations within overall classification accuracy [|15]].

Tamiminia et al.(2017) used the multi-temporal L-band UAVSAR data for the
classification of crops by the kernel based C-means clustering algorithm. In terms
of the polarimetric features, they utilize linear polarizations and three different
model-based target decompositions which are Cloude-Pottier, Freeman-Durden
and Yamaguchi. Their results proved that polarimetric features help in better
discrimination and classification of the crops [8]].



Whelen and Siqueira (2017) investigated the potential of linear backscatters and
Cloude-Pottier decompositions for crop classification from the time series of L-band
UAVSAR data. Based on their experimental results, two of the polarimetric features
of Cloude-Pottier decomposition (alpha and entropy) achieved higher accuracy in
comparison to linear polarization for time-series classification [|16]].

Hariharan et al.(2018) analysed the polarimetric features of the covariance
matrix and two different polarimetric decompositions (Cloude-Pottier and Touzi
They
proposed a new feature selection method. They concluded that the polarimetric

decompositions) extracted from the L-band AgriSAR-2006 campaign data.

parameters obtained from the target decomposition is vital for the discrimination of

crops [[17]].

Khosravi and Alavipanah (2019) employed the textural, polarimetric and spectral
features from optical (RapidEye) and PolSAR (L-band UAVSAR) data for crop mapping
using random forest classification. As the polarimetric as well as original features
from PolSAR data, they utilized the linear and circular polarizations, the eigenvalues
of coherency matrix, coherent (Pauli and Krogager) and incoherent (Freeman-Durden

and Yamaguchi) decompositions [[18]].

Table 1.1 Research Studies that use of L-Band

Input Features Classifier
Study Original Features Polarimetric Features | Method
Freeman-Durden MLC,
McNairn et al.(2009) Linear Polarizations Cloude-Pottier ANN,
Krogager DT
Freeman-Durden Kernel
Tamiminia et al.(2017) Linear Polarizations Cloude-Pottier based
Yamaguchi clustering
Whelen & Siqueira (2017) Linear Polarizations Cloude-Pottier
Hariharan et al.(2018) Linear. Polarizatic.)ns Clou('ile-Pottier RF
Covariance Matrix Touzi
. . Freeman-Durden
Linear Polarizations .
. . . . Yamaguchi
Khosravi & Alavipanah(2019) | Circular Polar1za}t1ons Pauli RF
Coherency Matrix Krogager
Li et al.(2019) Linear Polarizations l;zircrll;l;gzgﬁen 1?/[\2\1;[2 ANN)

Li et al.(2019) evaluated the linear polarizations and the polarimetric features of
Cloude-Pottier and Freeman-Durden target decompositions for the classification and
monitoring of crops using multitemporal L-band UAVSAR. Their results suggest that
decomposed parameters produced higher accuracy compared to linear polarizations
[19].



When Table 1.1 was examined, only Khosravi & Alavipanah (2019) used both linear
polarizations and coherency matrix as the original features along with polarimetric
features for crop classification from PolSAR data. However they did not explore the
potential of Van Zyl and Cloude-Pottier decompositions for crop classification from
PolSAR data and did not compare the classification performance of RF with other

machine learning classifier

Li et al.(2012) employed Freeman Durden, Cloude Pottier, and Touzi decompositions
for rice mapping and monitoring by using multitemporal RADARSAT-2 PolSAR
images. Their results concluded that Touzi decomposition produced the highest

accuracy for the classification of rice [[20]].

Ma et al.(2013) used the polarimetric parameters derived from three different
target decomposition (Pauli, Freeman-Durden, and H/Alpha/Anisotropy) from
RADARSAT-2 data for classification of crops. They concluded that multi-temporal
RADARSAT-2 PolSAR Data is suitable for accurate mapping of crops [21].

Jiao et al.(2014) assessed the potential of linear intensity backscatters and
polarimetric parameters extracted from Freeman-Durden and Cloude-Pottier
decompositions for crop mapping and monitoring by using an object-oriented
classification. Their results demonstrated that using the polarimetric parameters of
Cloude-Pottier decomposition provided higher accuracy than linear backscatters and

Freeman-Durden decomposition parameters [|5]].

Zeyada et al.(2016) tested the single-date PolSAR imagery for the classification of
four different crops by three different supervised classification models. They used the
polarimetric parameters obtained from Pauli, Cloude-Pottier, and Freeman-Durden
decompositions along with linear backscatter coefficients. They founded that
highest classification accuracy is obtained by SVM and stacking all the polarimetric

parameters generated in their experiment [22]].

Srikanth et al.(2016) compared the polarimetric decompositions (Pauli, Krogager,
Freeman-Durden, Yamaguchi and Van Zyl) for crop classification by using three
Radarsat-2 PolSAR data. In their experimental results, Krogager polarimetric

decomposition receives higher accuracy than other decomposition methods [23].

Liao et al.(2018) explored the a total of 15 RADARSAT-2 images for crop classification

using random forest and polarimetric features. In their experiment, linear



polarizations (HH, HV and VV) and polarimetric features from Pauli, Cloude-Pottier
and Freeman-Durden decompositions were extracted and used in classification step
as input data. Their results demonstrated that the highest classification accuracy was

obtained by the coherency matrix, followed by the covariance matrix [|14].

Shuai et al.(2019) used the polarimetric features from the polarimetric decomposition
methods (Pauli and Cloude-Pottier) for maize mapping using the optical
imagery-based segmentation [24]].

Table 1.2 Research Studies that use of C-Band

Input Features Classifier
Study Original Features | Polarimetric Features | Method
Freeman-Durden
Li et al.(2012) Linear Polarizations | Cloude-Pottier SVM
Touzi
Freeman-Durden
Ma et al.(2013) Coherency Matrix Cloude-Pottier MLC
Pauli
. . . Freeman-Durden Object-based
Jiao et al.(2014) Linear Polarizations Cloude-Pottier classification
Freeman-Durden SVM,
Zeyada et al.(2016) Linear Polarizations | Cloude-Pottier MLP(ANN),
Pauli DT
Supervised
Freeman-Durden .
parallelepiped
. Krogager ..
Srikanth et al.(2016) minimum
Van Zyl .
. distance
Yamaguchi e
classification

Linear Polarizations | Freeman-Durden
Liao et al.(2018) Coherency Matrix Cloude-Pottier RF
Covariance Matrix Pauli

Cloude-Pottier

Shuai et al.(2019) Linear Polarizations Pauli Object-based SVM
. Neumann
Xie et al.(2019) Cloude-Pottier RF
. . Freeman-Durden LightGBM,
. . Linear Polarizations .
This thesis Coherency Matrix Cloude-Pottier RE
Y Van Zyl SVM

Xie et al.(2019) compared the classification performance of Neumann decomposition
and Cloude-Pottier decomposition for crop classification using a time series of
RADARSAT-2 SAR images.They used random forest classification for the classification
of crops. Their experimental research concluded that Neumann decomposition
demonstrated better classification performance compared to Cloude-Pottier

decomposition [9].



When Table 1.2 was examined, only Liao et al.(2018) used both linear polarizations
and coherency matrix together as the original features along with polarimetric features
for crop classification from RADARSAT-2 data. However they did not investigate the
potential of Van Zyl decomposition for crop classification from PolSAR data and did not

compare the classification performance of RF with other machine learning classifier.

What distinguish this thesis work from those exists in the literature listed above mainly

three issues:

e LightGBM was used first time for crop classification except [25].

e Van Zyl decomposition (a hybrid decomposition) was compared with
Cloude-Pottier decomposition and Coherency matrix in terms of classification

performance.

e LightGBM was compared with SVM and RF in terms of accuracy and
computational cost for crop classification.

1.2 Objective of the Thesis

Full PoISAR sensors, by their characteristics, are able to record complete scattering for
the objects and these complete scattering have a complex mechanism. The original
features of PolSAR images could provide backscatter information about the objects
however cannot fully provide the proper or categorized information regarding their
scattering types. The natural or man-made objects could have different types of

scattering such as surface scattering or dihedral scattering.

In order to comprehensive understanding and simpler interpretation for scattering of
the target, polarimetric target decompositions are utilized for PolSAR images. Among
these polarimetric decompositions, there are several approaches available to explore
the hidden information in terms of different scattering for the object. Some of these
approaches are mathematical-based (i.e. eigenvector-eigenvalue analysis) and some
others are physical based (i.e. model based). Either method has various functionalities
and therefore provides different information for the clearer understanding of the

complex scattering mechanism regarding objects.

Specific to agricultural practices, crops have dynamic growing structure and different
physical/dielectric properties in the temporal domain. These dynamics hence lead to
have them different scattering since crops grow and change. In such cases, the use
of multi-temporal data is a requisite to fully model and understand the crop structure

and their scattering characteristics.



In this thesis work, original features (linear polarizations and coherency matrix)
and polarimetric features (three incoherent decompositions) were exploited for crop
classification and the use of PolSAR data for crop classification was investigated
through three different machine learning algorithms (LightGBM, RF and SVM).

The objectives of the thesis could be listed as following:

To compare the performance of original features vs polarimetric features for crop

classification in terms of overall accuracy and computational efficiency.

e To assess the polarimetric decomposition techniques and intercompare
their performance for crop classification (eigenvector-based vs model-based

decomposition).

e To assess the original features and intercompare their performance for crop

classification (linear polarizations vs coherency matrix).

e To explore/understand the LightGBM, the new ensemble learning method,
for the classification of PolSAR data and compare their performance with
two well-known and widely used machine learning algorithms in terms of

classification accuracy and computational costs.

e To analyze how one crop type behaves in temporal domain and how much
be distinguished from others based on the selection of features (class-based

accuracy analysis).

1.3 Hypothesis

Crops have complex scattering mechanism and dynamic structural changes in
temporal domain therefore it needs to be properly analyzed in terms of what type of
polarimetric information need to be extracted for proper analysis. Polarimetric target
decomposition can be of help in that case for better understanding the scattering of
crops and this might lead to more accurate classification for crops in terms of accuracy
and computation time. In this sense, polarimetric decomposition (i.e. polarimetric
features) might produce higher accuracy than original features of PolSAR data for

crop classification.

From the point of data classification in machine learning, there are several techniques
that have been explored so far in remote sensing however still there is not any
“commonly-held” single method or approach that could always outperform others,

which is known as no free lunch theorem in machine learning. This is because the



data classification in remote sensing is a complex decision making process and rely on
several factors such as training/testing data distribution, proper representativeness of
land covers in signature data, resolution of imagery and the landscape heterogeneity.
Ensemble learning algorithms fuse the decisions of single classifiers to produce the

more accurate classification through majority voting approach.

Recently, the novel ensemble learning algorithms (i.e. multiple classifiers) such
as LightGBM, XGBoost or canonical correlation forest (CCF) were introduced into
the machine learning/data science community with new ideas to overcome the
problems raised by single classifiers as well as to produce higher classification accuracy.
LightGBM among the recently proposed ensemble learning algorithms attracted many
researcher in machine learning because it’s lower memory usage and fast training
speed. When we consider these functionalities of LightGBM, this new ensemble
learning algorithms could be a promising method for crop classification and could
show greater performance compared to RF and SVM in terms of classification accuracy
and computational cost.

1.4 Structure of the Thesis

This thesis is structured as follows:

e The basic introduction to SAR and PolSAR is given in Chapter 2 and
subsequently the general overview for the polarimetric decompositions (target

decomposition) are introduced.

e In Chapter 3, an overview for the classification algorithms used in remote
sensing is provided. The recently developed ensemble learning algorithms are
reviewed for the studies in remote sensing and subsequently the summary for
the classification methods employed in thesis are provided in the subsections of

Chapter 3. Furthermore, the accuracy measures are introduced.

e Chapter 4 presents the study area, data set and experimental design for data

processing and analysis.

e And finally, Chapter 5 contains experimental results and corresponding
discussions of this thesis.



2

RADAR Remote Sensing

There are two types of sensing systems available in remote sensing, which are passive
and active remote sensing systems. Passive remote sensing systems need sun’s energy
to record the electromagnetic energy reflected (e.g., visible spectrum) or emitted
(thermal infrared) from the object. Passive remote sensing systems could only operate
and provide imagery of earth surface when sun illuminate the Earth surface. Active
remote sensing systems work independent of any external energy source (e.g., sun’s
energy) as these sensors provide their own source of energy (or electromagnetic
energy) to measure the objects. In terms of remote sensing, most commonly used
active sensors include: 1) radar, 2) lidar and 3) sonar as these terms are the acronyms
for “radio detection and ranging”, “light detection and ranging” and “sound navigation
and ranging”, respectively. Among of these three active sensors, radars are the most
widely used for observing the Earth. Lidar and sonar could be particularly useful for
mapping applications (i.e., topographic and bathymetric mapping) as compared to
radars [[26]

As it can be understood from the acronyms of radar, it was primarily designed for
detecting the objects and determine their distance by using radio waves. Radar
signals penetrate the cloud/rain under all weather conditions and hence radar systems
provide the all-weather and day or night images of earth surface. Radar system
transmits the electromagnetic (radio) signals (short bursts or pulses) towards to the
target and receives the echoes from the object to measure the distance (or range) to
an object [27, |28]. An example of how radar signal returns (echoes) from a house

and a tree can be represented in Figure 2.1

The fundamental principles of the image acquisition for a radar system and an optical
sensor are quite different. The main differences are the imaging geometry and
electrical/physical properties (i.e., permittivity, roughness) of the object depending
on the electromagnetic energy. Radars have the side-looking imaging geometry while
optical sensors have nadir-viewing geometry to acquire images. In the side-looking
imaging geometry, flight direction (or along-track) is defined as “azimuth direction”



Return signal frem tree

Figure 2.1 How radar systems works ||

Radar pulse sent from aircraft

and cross-track direction which is perpendicular to the moving imaging platform

(azimuth direction) is defined as “range or look direction” (Figure 2.2). In order to

determine the spatial resolution for any radar or SAR images, it’s necessary to compute

the resolutions in two directions: range and azimuth direction [27, ].

Azimuth
dire@/&

Range
direction

e,

Image strip

Antenna beam

Figure 2.2 Side-looking airborne SAR geometry ||

In terms of earth observation, airborne and spaceborne radar systems are referred to

“imaging radar”. The imaging radars for the first time were used in World War 1II in
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order to detect aircrafts and ships. In the 1950s, SLAR (side-looking airborne radar)
was developed and primarily used for military terrain reconnaissance. In mid-1960s,
some of SLAR systems were declassified and started to be operated for the civilian
mapping purposes. The use of SLAR systems in public-domain led to the development
of space-borne SAR missions. The main limitation of SLAR systems has been the low
or moderate azimuth resolution which is based upon antenna length in SLAR. This
limitation was achieved by using coherent radar and Doppler beam sharpening, which
were later extended to the principle of synthetic aperture radars (SAR)[]26, 28].

As of today, imaging radar systems use SAR technology to observe the earth surface
in high resolution. The first civilian satellite SEASAT was launched in 1978 by
NASA (National Aeronautics and Space Administration) to collect oceanographic
information in L-band and 25 meter spatial resolution. After this launch, the era for
SAR remote sensing began in early 1990s and has been developing every year with

new satellite missions [26, 28]].

2.1 SAR Remote Sensing

Synthetic Aperture Radar systems have been actively used for remote sensing in
the past decades because of providing high resolution and all-weather images. The
principle of synthetic aperture is based upon Doppler beam sharpening and the use
of a coherent radar, which was invented by Carl Wiley of the Goodyear Aircraft
Corporation in 1951. SAR systems employ the short physical antenna however operate
as if they have a very long antenna through the principle of synthetic aperture.
This operation can be broadly and simply explained as follows: a single antenna is
transformed into an array of antennas through the principle of the sensor motion on
along track and such successive positions of antenna behave as if a long synthetic

antenna (mathematically) [27, [28].

The main difference between synthetic aperture and real aperture is along-track
(azimuth) resolution that was improved by synthetic aperture systems. In SAR
systems, the azimuth resolution is equal to the half physical antenna length and
independent from the range distance (distance between sensor and object). Before
defining the range resolution, it is necessary to understand the term “range” in terms
of radar imaging as two types of range are available as the slant-range and the
ground-range. Accordingly, two types of range resolution are available in radar/SAR
imaging. The slant-range resolution is equal to the half pulse length and not
dependent to the distance from the aircraft. However, the ground-range resolution is

depending upon the slant-range distance and depression angle. The depression angle
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is complement of the look angle that is the angle between nadir (vertical direction)
and radar beam [27, 28]].

Sensor

Depression Angle

| Look Angle

e

To Surface
“Target”
Ground Range
Figure 2.3 Ground and Slant Range [27]]
The ground-range resolution (R,) is defined as
cT
= 2.1
" 2cos0, (2.1)

where c is the speed of light, 7 is the pulse duration and 6, is the depression angle
[27,28]. The azimuth resolution (&,) is

d
5,= — 2.2
=5 (2.2)
where d, is the length of antenna [[10, 27].

Synthetic Aperture Radar systems provide two-dimensional reflectivity images as
these two dimensions correspond to range and azimuth direction. The visualizing
of raw SAR data, unlike optical images, does not provide any useful information in
terms of remote sensing interpretation however could only provide an image after
signal processing steps that are simply the two separate matched filter (convolution)
operations in range and azimuth dimensions [[10]. In SAR imaging, backscattered
signal is structured as a two-dimensional complex sample where each resolution cell
(pixel) has an amplitude and a phase value. In this case, amplitude (correspondingly
intensity) represents the value of the reflectivity and phase include the information

distance between sensor and target. The amplitude and phase values of the
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backscattered signal is heavily based on the electrical and physical properties of the
target as well as the frequency and wavelength ranges of electromagnetic wave.
Depending on the frequency and wavelength range, the penetration level for the target
object varies. The most common used bands and their wavelength ranges are listed
in Table 1 [[10]].

Table 2.1 Common bands and their wavelength ranges

Band | Frequency [GHz] | Wavelength [cm]

Ka 40-25 0.75-1.2
Ku 17.6-12 1.7-2.5

X 12-7.5 2.5-4

C 7.5-3.75 4-8

S 3.75-2 8-15

L 2-1 15-30

P 0.5-0.25 60-120

SAR images are display by using intensity (backscatter) values after calibration and
geocoding [[10]. These intensity values are depending on how SAR signal interacts
with the surface, which is a function of several parameters such as surface roughness,
permittivity, radar frequency, polarization, topography as well as radar viewing
geometry [|1, 30, |31]]. In terms of the interaction between the SAR signal and target,
three type of scattering happens. These three types of scattering include surface (single
bounce) scattering, dihedral (double bounce) scattering, and volume scattering [7,
10].

In surface scattering, the intensity value of the backscatter signal varies based on
the roughness level of the surface. If the height of the surface is much smaller
than radar wavelength, the surface is considered as “smooth surface”. Such smooth
surfaces lead to specular reflection where only a small portion of energy backscatter
to the sensor. However, a significant amount of energy returns to the radar for rough
surfaces (diffuse reflection) and hence high backscattered areas (rough surfaces)
appear brighter than smooth surfaces in SAR images. Incidence angle also plays a
significant role in this case. When incidence angle increases, the surface appears

smoother and accordingly in a brighter tone in SAR image [|1, 31, [32].

Dihedral (double bounce) scattering mostly shows up on the features such as buildings
and other types of man-made structures that might cause corner reflection. The
surfaces at right angles lead to corner reflection that might also come out for natural
targets like upright vegetation or cliff faces. Such targets directly send the radar energy
back (backscattered signal) to antenna due to the corner reflectors and therefore
appear very bright in SAR image[|1, 31, [32]].
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Depending on the moisture level of the target (accordingly electrical properties of
the target) and the wavelength of the radar signal, the scattering type can vary from
surface scattering to volume scattering. For moist/wet targets, surface scattering
(from specular to diffuse reflection) takes place in most cases based on surface
characteristics (either smooth or rough) however for dry targets, radar signal is able
to penetrate through the upper surface or canopy. In that type of penetration to the
target (e.g. soil, forest or vegetation), the volume scattering occurs. In SAR imaging,
the wet surfaces look brighter than dry surfaces (such as soil or vegetation) since the
moisture content influence the electrical properties of the target and correspondingly
the reflectivity[/1, [31, 32].

Volume scattering happens if penetration takes places through the surface and usually
is composed of multiple scattering (single and multiple scattering) from different
layers of vegetation. The amount of how much energy backscattered to the radar
within a volume can change depending on how radar signal interacts with the target
either from the canopy (top surface) or from the ground. The volume scattering is
also affected by the moisture content, surface roughness and the complex structure of
the target[|1, 31, 32].

Another important parameter for determining the radar backscatter is the polarization
of the electromagnetic waves. Polarization plays an important role for understanding
the target characteristics and structures since the targets provide different backscatter
information based upon the selection polarization state of radar signal. Many radar
systems are designed to transmit and receive the radar signal either horizontal (H)
or vertical (V) polarization. In particular, polarimetric radars (full polarimetric
or quad polarimetric) are managed to receive and transmit in both vertical and
horizontal polarization. In this way, they provide the four combination of polarization
as following: HH, HV, VH and VV, where first letter represents the polarization
transmitted and the second one represents the polarization received back. HH
and VV polarizations are entitled “like-polarization” while HV and VH polarizations
are entitled “cross-polarization”. Polarimetric radars can provide different and
complementary information for the target by offering the full polarization regarding
the scattering mechanism. Each polarization provides various information contents,
which could help for easier interpretation of the complex surface characteristics [|7,
31,33].
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Figure 2.4 Vertical and Horizontal Polarizations [|34]

Unlike optical images, radar images have an image characteristic called speckle that
inherently exists in radar images and degrades the image quality. Speckle is a
granular disturbance that can be modelled as multiplicative noise and the presence of
speckle makes the interpretation difficult. Therefore it’'s recommended to reduce the
speckle effect (a.k.a despeckling) in image for better analysis and easier interpretation.
Speckle seems like a "salt and pepper" noise in image and can be reduced by two
ways: multi-looking process or spatial filtering (or called speckle filtering). There is
a trade-off between speckle reduction and spatial resolution since either way smooth
the image while reducing the speckle therefore it should be carefully considered of

how despeckling will be implemented to the image [7, 35, 36].

2.2 Polarimetric SAR

Full polarimetric SAR (PolSAR) sensors measure the full scattering for each resolution
cell and these measurements are represented by 2 x 2 scattering matrix, which referred
as Sinclair matrix. For the horizontal (h) and vertical (v) polarizations in linear

polarization basis, this 2 x 2 scattering matrix S is given by
Spn S
S— [ hh hv:| (2.3)

Svh va

For the monostatic SAR systems, according to the reciprocity theorem, the transmitting
and receiving antennas are located in the same position. In monostatic backscattering

case, the diagonal terms of the measured scattering matrix are equal (S, = Syp)-

When SAR sensor illuminate a point (i.e. deterministic) target, the scattered wave is
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completely polarized and the complete scattering can be represented by S. However
this scattering matrix is not able to characterize the scattering process if a distributed
target is illuminated by SAR sensor. Distributed targets (i.e. natural targets such as
vegetation, forest or sea surface) are comprised of randomly distributed point targets
and in that case, the scattered wave is partially polarized. Partial polarization refers to
any case between two extreme cases of completely polarized and unpolarized waves.

Distributed targets can be characterized by second-order scattering matrices (T or C).

The scattering matrix S can be expressed in a vector format by defining the target

vector k as given below

k= %Trace (S¥) (2.4)

where Trace (.) represent the sum of the diagonal elements of a matrix and ¥ denotes
a set of 2 x 2 complex basis matrices. In this vectorization process, the Lexicographic
¥, the Pauli ¥, basis sets are often used. The mathematical definitions of the target

vector k in the Pauli and lexicographic basis are provided below.

T
k. =[Sw v2Sw Sw] (2.5)
k—i[s +S. S, —S.. 2S ]T (2.6)
P \/E hh vV hh Vv hv .

where k, and k; denotes the target vector in Pauli and lexicographic basis, respectively.
In terms of the interpretation of scattering process, Pauli formulation is more

advantageous than lexicographic formulation [|10, 37]]

In order to describe the polarimetric scattering process for distributed targets, a
stochastic process and second-order statistical formalism are required. In this case,
3 x 3 covariance C or coherency T matrices are derived from the target vectors k; and

k, , respectively.

The 3 x 3 complex covariance matrix is defined as

C=(k, k) (2.7)
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which extends to

(ISwl?)  v2(SwSi,)  (SmS3,)
C= | vV2(SwSy)  2{Swl®)  v2(SwS;,) (2.8)
(SwSm)  v2(swSp,)  (ISwl?)

And the 3 x 3 complex coherency matrix is given by

T=(ky-k}) (2.9)
which extends to
. (ISw, + S, 1%) (S +S0) S +5,)) 2((Sm+S.,)S5,)
T= E ((Shh_svv)(shh+svv)*> <|Shh_5vv|2> 2<(Shh_5vv)szv>
2 (Shv (Shh +va)*> 2<Shv (Shh_va)*) 4<|Shv|2>
(2.10)

In above equations, " and * denote the conjugate transpose and the complex conjugate,
respectively.

Both matrices are Hermitian semi positive definite and have the same eigenvalues.
The conversion between C and T matrices is possible by means of a unitary similarity
transformation [|7, |37]].

. 1 1 0 1 0 1
c=§ 0 0 v2|T|1 0o -1 (2.11)
1 -1 0 0 V2 0

2.3 Polarimetric Target Decompositions

Polarimetric target decompositions (also referred as target decompositions in radar
polarimetry) are primarily aimed to separate the complex scattering contributions
in a resolution cell into a sum of elementary scattering elements to provide
the simple interpretation of complex scattering by means of mathematical and
physical based models [[10, 13[]]. For this reason, these are widely used for
the classification/segmentation or parameter inversion. The elemantary scattering
mechanisms include the surface, double bounce (dihedral) and volume scattering.
Another important objective of the polarimetric target decompositions is to provide

accurate inference to the geophysical parameters of complex scattering [[13]. The
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target decompositions were first formalized by Huynen [38] and other target
decomposition theorems have been proposed afterwards such as Cloude and Pottier
[39]], Freeman and Durden [[40], and Van Zyl [41]].

Target decompositions can be categorized into four main groups [[7]].

Dichotomy of the Kennaugh matrix K (Huynen [|38], Holm and Barnes [42],
Yang [43]])

Eigenvector-based decompositions (Cloude [44]], Holm [42], van Zyl [45]],
Cloude and Pottier [39, |46])

Model-based decompositions (Freeman and Durden [[40], Yamaguchi [47]], Dong
(48

Coherent decompositions (Krogager [49]], Cameron [50], Touzi [|51])

Coherent decompositions are based on the decomposition of [S] matrix and can only
be used for coherent scatterers. The main disadvantage of coherent decompositions
is that they ignore the high speckle noise effects in single look complex SAR data,
which can be limiting factor for the physical interpretation of the coherent targets (i.e.
point or pure target) [[7]. For distributed scatterers, the incoherent decompositions
that employ the second-order scattering matrices (T or C) are used [7, |11, 33]].
The incoherent decompositions are divided into two categories: eigenvector- based
decompositions and model-based decompositions. Eigenvector-based decompositions
are based on the eigenvector or eigenvalues analysis of the T or C matrices,
which could be referred as mathematical based decompositions. Model-based

decompositions are based on the decomposition of the T or C matrices [|7, 8]].

In this thesis, incoherent target decompositions were implemented and therefore only
the basic details for eigenvector-based and model-based decomposition are provided
in the following subsections. More detailed information for polarimetric target

decompositions can be found in [[7]] and [33]].

2.3.1 Eigenvector based decomposition

Eigenvector-based decompositions are based on the eigenvector/eigenvalue analysis
of the 3x3 T or C matrices.An important example of eigenvector-based decompositions

is the Cloude-Pottier decomposition which decompose the 3 x 3 Hermitian coherency
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T matrix. Since being Hermitian and semi-definite positive, the coherency T matrix

can be diagonalized as given by

T::[U}[A][U]_1 (2.12)
where _
A, 0 0
A=|0 A, 0 (2.13)
0 0 A

[U]Z €51 €9y €3 (2.14)

The equation A denotes the diagonal eigenvalue matrix with elements of
nonnegative eigenvalues, A; > A, > A; > 0 and [U] is the unitary eigenvector matrix

with three orthogonal eigenvectors of €7,€, and €j, as provided below

[u]l=[e & &] (2.15)

The main idea of eigenvector approach is to decompose 3 x 3 T matrix into a sum of
three independent (orthogonal) coherency matrices T;.

T=T,+T,+T,
- -7 - o7 - o (2'16)
= A’l' (61.61 ) + Az. (62.62 ) + Ag. (63.63 )
In this decomposition, the polarimetric features are provided which are entropy
H, anisotropy A and mean alpha angle a. The entropy H and anisotropy A are
derived from the eigenvalues while mean alpha angle a is calculated by using

corresponding eigenvectors [|7, |8, |39].The definitions of each parameters as well as

their mathematical expressions are given in following paragraphs.

The first parameter is the entropy H, which is defined as the logarithmic sum of the
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eigenvalues.

3
H:_ZpilogBPi (2.17)
i=1

A
pi=—— (2.18)

3
Zk:l Ak

where p; is the probability of the eigenvalue A;

Entropy measures the degree of randomness of the scattering and ranges from 0 to
1. When entropy is equal to zero (A, = A; = 0), there is one non-zero eigenvalue
is present and the scattering process is described by single scattering. However,
the entropy is mostly assigned a value between 0 and 1 for distributed (incoherent)
scatterers.

The second parameter is the anisotropy A, which also ranges between 0 and 1. It is
defined as the normalized difference of the second and third eigenvalues, by taking
into account that A; > A, > A; >0

Ar—As
A=2"22 2.1
Ay +Asg (2.19)

Anisotropy provide the complementary information to the entropy and can play an
important role to distinguish the different types of scattering when entropy reaches to
a high value (when H > 0.7). This is because second and third eigenvalues are highly
affected by noise in low entropy values. Accordingly, the anisotropy becomes also
noisy. Anisotropy expresses the relative importance of third eigenvalue with respect
to second eigenvalue[|7, 8, 39].

The third parameter is the mean alpha angle a and alpha angle «; defines the
scattering types. For each eigenvector (€;), the alpha angle a; is calculated as following
and ranges from 0 to 90 degrees.

a; = arccos (|ey;]) (2.20)

And following, the mean alpha angle a is given by
o = P10y + pyay + p3Qs (2.21)
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The scattering types are defined based on the ranges of alpha angle a; as follows [|7,
8, (10]].

e Surface scattering if 0° < a; < 30°
e Dipole scattering if 40° < a; < 50°

e Dihedral scattering if 60° < a; < 90°

The Van Zyl decomposition is also an eigenvector-based decomposition and referred
as non-negative eigenvalue decomposition (NNED). Van Zyl decomposition is
the modified version of the Freeman and Durden decomposition and combines

model-based decomposition and eigenvector decomposition [|7, 13} 141]].

The fundamental idea of Van Zyl decomposition is to avoid negative eigenvalues
that might occur for the pixels in the vegetated areas once the scattering from
the vegetation is subtracted. This target decomposition is classified as a hybrid
(model-based with eigen-based) decomposition because the polarimetric features of
this method are very similar to those obtained from model-based decomposition (i.e.

surface, double-bounce and volume scattering) [7, 41, 52]].

2.3.2 Model based decomposition

Eigenvector-based decompositions provide the unique mathematical outputs that have
to be interpreted in terms of known polarimetric scattering. These mathematical
results can not be directly related to the physical scattering models such as
surface or volume scattering. For this case, model based decompositions are more
straightforward and easier to implement on PolSAR data for clearer understanding

and easier interpretation of the complex scattering process [[13}[53]].

Model based decompositions aim to decompose the complex scattering into
elementary contributions and model the scattering as the linear sum of the different
scattering mechanism [13} 41]]. Freeman and Durden decomposition (also knows
as Three-Component Decomposition), one of the first model-based decomposition
techniques, decomposes the coherency T matrix into three physical scattering

mechanism [|7, [40]:

e Surface or single-bounce scattering (a first-order Bragg surface scattering)
e Dihedral or double-bounce scattering (a dihedral reflection)

e Volume scattering ( a volume of randomly oriented dipole scattering)
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1 b 0 lal* a 0 2 00
T=f|b |b* O|+f;|d 1 of[+=]0 1 0 (2.22)
0 0 0 0 00 0 0 1

Vv v
Surface Scattering Dihedral Scattering Volume Scattering

In surface scattering, there are two parameters are describing the scattering process:

the real ratio b and the backscatter contribution f, as follows

R.+R
b= ﬁ (2.23)
s~ Op
and
fs = Rs _}{p|2 (2.24)

where R, and R, represent the the Bragg scattering coefficients perpendicular and

parallel to the incident plane.

There are two parameters to describe the dihedral scattering which are the scattering

amplitude f; and the ratio a. Their definitions are provided below

1 .
fd = E |Rsthh +Rsztv exp (l¢)|2 (225)

and )
_ Rsthh — Rsztv €xp (ld))

B Rsthh + Rsztv €xp (l¢)

(2.26)

where R, and R, represent the horizontal and vertical Fresnel coefficients for the
soil and R,;, and R,, are the horizontal and vertical Fresnel coefficients for the trunk.
The Fresnel coefficients R, and R, are depending on the local incidence angle 6 and

relative dielectric constant ¢, as follows [|10, 33, 54].

R = 8 0—+/e,—sin*0 2.27)
h = .
cos O + 4/ &, —sin®
0 — —sin* 0
p _ £rC0s0—ye —sin (2.28)

4
€,cos 0 + 4/ &, —sin® 0

The volume scattering is described by the scattering amplitude f, (vegetation

component) which is often approximated by a cloud of ellipsoids [|7, [10].
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The scattering power for the surface P,, dihedral P; and volume P, components are

given by

P.=f-(1+1b]) (2.29)
Py=fy-(1+1af) (2.30)
P,=f, (2.31)

And following, the total power (Span) is obtained as follows [|7, 10]

Ptotal:Ps+Pd+Pv

(2.32)
=f-(L+16P)+ fi- (L +1al) + 5,
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3

Classification and Accuracy Metrics

3.1 Image Classification

Image classification is still a challenging task because of some uncertainties such
as proper representativeness of training samples and the adaptation between
classification model and training data. The extraction of the land use/cover
information from the remotely sensed images is typically performed by using
classification algorithms. Image classification is the process of assigning pixels into
one of pre-defined classes in the classification scheme based on their spectral ranges.
Based on the availability of training data (the sample pixels of pre-defined classes), the
classification algorithms are grouped as two categories: supervised and unsupervised.
In most cases, supervised ones are more robust and obtain higher accuracy compared

to unsupervised methods [55, |56].

With respect to consideration for the distribution assumptions of the sample pixels,
the classification algorithms can be split into parametric and nonparametric methods.
Parametric methods assume that the distribution of sample data (also known as
probability density function) for each class follow a normal distribution while
nonparametric methods do not have any constrain by any assumption regarding the
distribution of sample data [|55, 57]]. In remote sensing, machine learning algorithms
are widely used and accepted for image classification. The majority of advanced

machine learning algorithms are nonparametric such as SVM, RF and DT [58, |59].

In supervised learning, the learning stage is based upon a number of factors, such
as design (purity and set size) of training samples, data dimensionality, resolution of
input imagery, and selection of proper features. The uncertainty in the training stage
of supervised learning causes to implement different type of classification model to
achieve the higher accuracy [57, 60]. There are several approaches are available
in machine learning for classification purposes such as margin based classifiers,
ensemble classifiers, instance-based classifiers and neural-network based classification

approaches. Each model has different functionalities and constrain based upon the
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data type and training samples [|59, |61]].

Ensemble learning algorithms (multiple classifiers) have attracted many researchers
in the areas of machine learning and remote sensing as it may achieve higher accuracy
compared to single (based) classifiers. The most common ensemble learning algorithm
for remote sensing is Random forest [|62, |63]]. Relatively newer ensemble learning
algorithms such as rotation forest [|64], random M5 model forest [65], extratrees
[66], extreme gradient boosting [|67/], canonical correlation forest [[68], ForestPA [[69]
and Light gradient boosting machine [[70] have been investigated in remote sensing,
however have not yet been fully explored for the "crop classification" with SAR/PolSAR
data.

Xia et al.(2014) applied the rotation forest for the classification of hyperspectral
images first time in remote sensing and compared the performance of rotation forest
with RE AdaBoost and bagging. Their research deduced that rotation forest obtained
higher accuracy than RE AdaBoost and bagging. [[64]

Du et al.(2015) assessed the impact of polarimetric and spatial features on the
classification of PolSAR data using RE rotation forest, SVM and supervised Wishart
classifier. For polarimetric features, they employed polarimetric decompositions.
Their research pointed out that rotation forest can obtain higher accuracy in
comparison to RF and SVM [71].

Samat et al.(2018) proposed a novel ensemble learning algorithm "random M5 model
forest" to classify land cover types by using full polarimetric L-band ALOS 2 data to
map halophyte plants. They analysed the performance of random M5 model forest
in comparison to RE rotation forest, SVM and MultiBoost. Their results decided that
random M5 model forest could outperform other classifiers employed in their research
study [65]].

Mills and Fotopoulos (2015) exploited the extratrees for the classification of rock

surface on the purpose of modelling the natural surface [72].

Samat et al.(2018) explored the ability of extratrees for the classification of very high
resolution multispectral images and compared the performance with RE SVM, rotation
forest and bagging. In their experimental results, extratrees obtained better results
than others [66].

Georganos et al. (2018) explored the XGBoost for the object based classification of
urban land use and cover using very high resolution images. They compared the

classification performance of CCF with SVM and RE In their experimental results,
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XGBoost ourperformed SVM and RF in terms of classification accuracy [[73]].

Dong et al. (2018) used XGBoost for the classification of Chinese Gaofen-3 (GF-3)
PolSAR image and compared with SVM, RF and DT. They concluded that XGBoost

showed comparable results but with less computation time [[74]].

Xia et al.(2017) compared the performance of CCF for the hyperspectral image
classification with random forest (RF) and rotation forest (RoF) in terms of accuracy
and computational complexity. Their experimental results demonstrated that CCF

received greater performance than RF and RoF [75]].

Likewise, Colkesen and Kavzoglu (2017) also tested CCF for land use/cover
classification and compared with random forest (RF) and rotation forest (RoF).
However, they used multispectral images (Sentinel-2 and Landsat-8) for land use and
cover classification. Their results concluded that RoF and CCF produced similar results
statistically [[76].

Samat et al.(2019) investigated the performance of ForestPA for the first time in
remote sensing for the classification of multispectral and hyperspectral images using
spextral and morphological features. To evaluate the performance of ForestPA, they
also exploited SVM and ensemble classifiers such as bagging, extratrees, RF and
rotation forest. They concluded that ForestPA could only obtain better accuracy than
bagging and found to be not proper forthe classification of high dimensional data [69]].

Ustuner and Sanli (2019) compared the impacts of original features and polarimetric
features (desomposed parameters) for the crop classification using LightGBM and
multitemporal RADARSAT-2 images. Their results proved the benefits of the

polarimetric decomposition parameters for classification of crops [25]].

In this thesis work, one recently developed LightGBM and two well-known classifiers
(SVM and RF) were used.

e Ensemble classifiers: LightGBM and RF

e Margin-based classifier: SVM

The brief summary of the classification methods are provided in following subsections.
More details about the classification methods can be found in [[70]], [77]] and [78]] for
LightGBM, SVM and RE respectively
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3.1.1 Support Vector Machines

Support vector machines are the kernel-based learning algorithms from statistical
learning theory and have been widely used in remote sensing and pattern recognition
for the classification and regression problems. SVMs were originally developed by
Vapnik and Cortes [[79] to define the optimal linearly-separating hyperplane (the
class boundary) in a feature space in order to separate two classes with maximum
margin. Here the term “margin” refers to the distance between two hyperplanes and
classification errors are minimized by maximizing the margin. In order to maximize
the margin, SVMs utilize the “support vectors” which are the closest training samples
to the optimal separating hyperplane and lie on individual class hyperplane in feature
space. In order to define the decision boundaries, support vectors are sufficient and
these samples usually represent only a small portion of total training data [|77, 80,
81].

SVM:s are also popular in handling the classification problems of high dimensional data
(e.g. hyperspectral data) with a limited number of training samples since only closest
training samples (i.e. support vectors) are initially needed for placing the hyperplanes
[61].

For the binary classification problem, consider a training dataset with k number of

samples in a n-dimensional feature space is represented by:

{Xi,_)/i}, i:].,...,k (3.1)

where x; € R" represent the training samples in R" which is an n-dimensional vector
and y; € {—1,+1} is the class label.

The hyperplane separating for two classes in the linearly separable case given by

w-x;+b>1, forall y=+1 (3.2)

w-x;+b<—-1, forall y=-1 (3.3)

and these two inequalities can be combined into as follows

yiw-x;+b)—12>0 (3.4)
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where w denotes a vector which determines the orientation of the hyperplane, b is
the distance of hyperplane from the origin point [|77, 80, 81]].

In this case, support vectors are defined by the functions w-x; + b = £1.

In order to determine the optimal hyperplane in the linearly separable case, it is

required to solve the optimization problem as follows:
1 2
min 5 [|w]| (3.5)

y;(w-x;,+b)>1, andy; €{-1,+1} (3.6)

When it is not possible to separate the two classes with a linear function, the slack

variable & is introduced. In this case, the optimization problem becomes,

| w]? -
m1n|:T+C;§i:| (3.7)

yiw-x,+b)>1-¢&;,, &£,>0, i=1,..,n (3.8)

where C is the penalty parameter and ¢ is the slack variable. Both terms are deal with
the incorrectly classified pixels for the linearly non-separable cases.

In some cases, defining the optimal hyperplane is not possible in linear feature space.
For such cases, the training data can be projected into higher dimensional feature
space (H) by using nonlinear mapping functions (®). Thus, the decision function for
the classification is obtained as

f(x)zsign(Z?LiyiK(xi,xj)+ b) (3.9)

where A, is a Lagrance multiplier and y; is a class label. A kernel function is defined

as K(xi, xj) =®(x;)-® (xj) is the kernel function.

There are four types of kernel commonly used in SVM classification as follows: linear,

polynomial, radial basis function (RBF) and sigmoid. In our experiment, the radial
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basis function was employed as a kernel, as provided below

K(xi,xj) =exp(—}/||xi—xj||2) (3.10)

There are two parameters have to be determined for RBF kernel which are the kernel
width (y) and penalty parameter C [|77, 80, 81]].

3.1.2 Random Forest

Random forest (RF) is an ensemble-based learning algorithms which combine the
results (i.e. predictions) of several individual classifiers through a voting process.
The fundamental purpose of ensemble classifiers is to improve the classification
performance as the underlying reason is a set of classifiers could outperform the single
(base) classifiers in terms of performance [[78, 82, 83|]. There are several ensemble
learning algorithms such as bagging [|84]] (bootstrap aggregating), boosting [85]],
random forest [|86], rotation forest [|87], extremely randomized trees [|88], canonical
correlation forest (CCF) [|68]], extreme gradient boosting (XgBoost)[67]], and Light
Gradient Boosting Machine (LightGBM) [[70]. The most widely used ones are bagging
(bootstrap aggregating), boosting, and random forest [|62, |63, |83]].

Bagging creates the training sample subsets by resampling the original dataset several
times in a random selection (i.e. bootstrap sampling) and trains a (base) classifier
with these bootstrapped samples. The final classifier is generated by combining all

these individual outputs though majority voting.[[62, 63, |83].

Boosting is an iterative training process and aims increasing the performance of weak
learners. As a initial step, all training samples are weighted equally. During the
boosting step, the training samples are re-weighted and the misclassified pixels are
assigned the stronger weight than correctly-classified pixels. Thus, the classifier is
forced to concentrate on misclassified samples to reduce the classification error. In
other saying, boosting aims to improve the classification accuracy by increasing the
weights of misclassified samples while decreasing the weights of correctly classified
ones [62, |63, 83]].

Random forest (RF) is the ensemble of tree-type (e.g. decision trees) classifiers
and uses of the different subsets of training data generated through the bagging
or bootstrap aggregating to build the ensemble therefore it can be considered as
an improved version of bagging. RF uses the decision trees as base classifiers,

{h(x,6,),i=1,...,}, where x is the input vector and 6; denotes the independent and
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identically distributed random vectors. Each tree is trained through a bootstrapped
sample of training data and the split for each node is determined by using a randomly
selected subset of input data. At the end of this process, several classification results
are obtained. The final classification is constructed through the majority voting of the
trees

There are two model parameters need to be tuned for RF classification, which are the
number of trees (T) and the number of features (M). The computational time of RF is
calculated through cT+/MN log (N ), where c is a constant and N denotes the number
of samples. In terms of computational time, RF is faster than boosting and bagging

since it uses of subsets of input data [[62, 63, 83].

3.1.3 Light Gradient Boosting Machines

Gradient boosting decision tree (GBDT) [|89]] is one of the tree-based machine learning
algorithm and has been preferred in classification and regression tasks because of
its efficiency and interpretability. In the last few years, the increasing of the data
size and feature dimension in earth observation data obliged researchers to develop
more optimized and efficient solutions in terms of accuracy, time and efficiency [70]].
The extended and modified versions of GBDT have been developed by the machine
learning community in recent years such as XGBoost [|67]], LightGBM [|70], mGBDTs
[90] and CatBoost [91]]. All these new algorithms have been developed for higher
accuracy, faster training speed as well as lower memory usage compared to GBDT in
handling big data [[70].

In this thesis, we chose LightGBM among all these newly developed gradient boosting
frameworks since it was placed the first ranking in many machine learning competition
and outperformed other gradient boosting frameworks on public datasets in terms of

efficiency, accuracy and lower memory consumption. [[92]

LightGBM takes the advantages of using two novel techniques: Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) which are deal with

the number of data instances and features, respectively [[70].

e Gradient-based One-Side Sampling (GOSS): GOSS primarily aims to reduce
the number of data instances (or subsampling the data) while keeping the
accuracy of learned decision trees. Conventional GBDT scans all data instances
to calculate the information gain for each feature however GOSS only uses the
significant data instances. In other words, GOSS keeps the instances with large

gradients and randomly drop the instances with small gradients to retain the
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accuracy of information gain while downsampling the data. By doing this, GOSS
reduces the data instances without much effecting the data distribution [|70, 93,
94].

Exclusive Feature Bundling (EFB): EFB ultimately aims to reduce the number
of features and accordingly improve the efficiency of model training without
hurting the accuracy. EFB has two internal processing steps: constructing the
bundles and merging the features into the same bundle. Many features in
a sparse feature space are almost exclusive (i.e. rarely take nonzero values
simultaneously) and these exclusive features can be bundled through a greedy
algorithm (referred as greedy bundling). At the same time, it was aimed to
merge such many exclusive features into a single (or same) bundle to reduce the
training complexity. Through this way, EFB merges sparse features into fewer
dense features and correspondingly leads to faster training process along with

lower memory consumption [|70, |93, |94].

By using these two novel functions, LightGBM could reduce the number of data

instances and features, which improves the efficiency of training process as well

as speed up the process. Apart from the other boosting frameworks, LightGBM

uses histogram-based algorithms rather than presorted-based algorithms to find the
optimal (i.e.best) split points. [[70, 93, |94]

For the implementation of LightGBM, LightGBM Python Package v.2.2.2 that can be

freely accessible at [95] was utilized. The main (core) parameters of LightGBM can

be listed as following:

Table 3.1 LightGBM Parameters

Classification

Number of leaves per tree
Learning rate
Maximum learning depth
Minimum number of data per in a leaf
Feature fraction

Bagging fraction

More details about the descriptions of the parameters of LightGBM can be found at

[96]].
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3.2 Accuracy Measures

3.2.1 Overall Accuracy and Kappa Coefficient

In order to assess the performance of the classification model, there are several
measures such as overall accuracy and kappa coefficient widely used in remote

sensing. These measures are can be derived from a confusion or error matrix.

In this content, the ’accuracy’ means the degree of the ’correctness’ of the classified
image. In other words, it represents of how much a classified image conform to the
ground truth or reference map. Error matrix also provides the information about the
class-confusion or the misclassified samples for a particular class [|97]].

An example of an error matrix with four classes are provided in Table 3.2 where
the diagonal elements represent the correctly classified samples while off-diagonal
elements demonstrate the misclassified samples or class confusion [97]].

Table 3.2 An error matrix with four classes

Classa Classb Classc Classd D,

Class a | m, Mgy My, My My,
Class b | my, My My, Mg My,
Class ¢ | m, mg, M. m.q Mg,
Class d | my, Mmgp mg. Mgq Mgy
> Miq myp M. Myq m

For a given error matrix above, the overall accuracy and kappa coefficient, can be

derived from a confusion matrix, are computed as given by

q
k=1 Mkk

Overall Accuracy = x 100 (3.11D)

m Zzﬂ My — 22:1 My My

2_\NY4
m Zk:1 My My

Kappa Coefficient = (3.12)

where q represent the number of classes and m is the total number of reference pixels
[971.

Furthermore, a few number of measures (User’s accuracy, Producer’s accuracy and

Fl-score) are computed as following for the given error matrix:

m..
User’s accuracy (UA) = — (3.13)

i+
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m..:
Producer’s accuracy (PA) = —+ (3.149)

+i

(PA x UA)

Fl-score = 2 x
(PA+ UA)

(3.15)

These three measures (PA, UA and F1-score) are used for the class-based accuracy
assessment [97]].

3.2.2 McNemar’s test

In order to analyse the differences between two classifier performance in terms of
whether this difference is statistical significance or not significant, McNemar’s test is
utilized. This test is based upon 2 x 2 confusion matrix.

McNemar’s test is based on the standardized normal test statistic as given by:

g = M (3.16)

V izt fa

where f,, and f,; are defined in the given 2 x 2 confusion matrix in Table 3.2.

Table 3.3 2 x 2 confusion matrix and elements in equation 3.16

Classification 2
Allocation Correct Incorrect
Classification 1
Correct fi f1o
Incorrect for fon

The use of McNemar’s test within remote sensing is based upon a chi-square (y2)
distribution with one degree of freedom [63, 97, 98]]. For such cases, McNemar’s test
is expressed as

_ 2
Xzz (f12 fZl) (317)

f12 +f21

The statistical significance is evaluated based on the ( )(2) value. If the ( xz) value is
greater than the critical table value ( )(223.84 at 95% confidence interval), it means

that the difference in the accuracy between two classifiers is statistically significant
[63,99].
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3.2.3 K-Fold Cross Validation

K-Fold cross validation is commonly used in machine learning for estimating the model
accuracy as well as for parameter optimization. In this method, the whole reference
data was randomly split into equally sized k fold (or part). The model is trained using
k-1 folds and is assessed using the withheld one part. Each time different partition is
used as testing data, as illustrated in Figure 3.1 where k is equal to 5. The model is

run k times and the model accuracy is the average of k different predictions. In our

case, k is equal to 5 [|100, (101]].

The main advantage of K-Fold cross validation is that it ensures every sample of the

reference data is used as training and testing, which leads to less biased and more fair

estimates for model accuracy [|102,|103]

Iteration 1

Iteration 2

Train Train

Train

Iteration 3 Train
Iteration 4 Train
Iteration 5 Train

Figure 3.1 5-Fold cross validation
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4

Experimental Design

This chapter will provide you with an overview of experimental design for data
processing (Figure 4.5) and analysis (i.e. methodology) conducted in this thesis.

Furthermore, the study area and data set are introduced in the first section.

4.1 Study Area and Data set

The study site is located in Konya province of Turkey and extending from 38°43’ to
38°53’ North latitudes and 32°43’ to 32°53’ East longitudes (approx.65 km north
of Konya city center), as illustrated in Figure 4.1. The region has flat topography,
productive soils and good weather condition (e.g. solar illumination, precipitation),
thus such points make this region very ideal for agricultural operations. The major

crops covering the study site are alfalfa, maize, potato, sunflower and wheat.

Multi-temporal RADARSAT-2 data was acquired on following dates: 13 June, 7 July,
31 July, and 24 August in 2016 (Figure 4.2). The specifications of the RADARSAT-2

images are presented in Table 4.1.

Table 4.1 Specification of RADARSAT-2 image

Sensor Type RADARSAT-2
Wavelength C Band- 5.6 cm
Resolution 4.7m x 5.1 m (range x azimuth)
Incidence angle 40
Pass direction Descending
Acquisition type Fine quad pol
Polarization Full polarimetric
Nominal Scene Size 25 x 25 km
Product type Single look complex
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Figure 4.2 Multi-temporal Images
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4.2 Experimental Design and Data Analysis

4.2.1 Data Pre-Processing

Typically, PoISAR images are served in a complex-valued data structure and need to
be projected into the real domain (i.e. real-valued data) to be used as an input data
for machine learning algorithm [[104]]. Within this thesis, the RADARSAT-2 data was
pre-processed using the European Space Agency (ESA) Sentinels Application Platform

(SNAP) software (v.6.0).

The workflow for the data pre-processing is illustrated in Figure 4.3.

POISAR Data Calibration

Y

Matrix
Generation

Polarimetric
Decomposition

Y

Terrain
Correction
Temporal and
Stack Data Geocoding

Figure 4.3 Data Pre-Processing

The data pre-processing steps were as follows:

e Radiometric calibration: Data calibration was performed using ESA SNAP
software (v.6.0)

Matrix generation: 3 x 3 coherency and covariance matrix were generated from
2 x 2 sinclair scattering matrix. In this formation, the window size was selected

as 9.

Extraction of polarimetric features: The incoherent polarimetric decompositions
were generated from either coherency or covariance matrix. In this step,
three polarimetric decomposition method were performed as follows: 1)

Cloude-Pottier, ii) Freeman-Durden and iii) Van Zyl

Terrain correction and geocoding: Orthorectification was performed using the
Range Doppler orthorectification method in SNAP In this step, the Shuttle
Radar Topography Mission (SRTM) data (~30 m resolution) was used as digital
elevation model.
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4.2.2 Data Classification

In this thesis, three supervised machine learning algorithms (SVM, RF and LightGBM)
have been used for classification of crops in the study area. SVM and RF are widely
used in pattern recognition for classification and regression problems. Both method
was implemented using an open-source Scikit-learn module in Python v3.6.4 [[105~
107]]. LightGBM is a novel machine learning algorithm that has became popular in
data science and computer vision. It has been the winning solutions in many machine
learning competitions [92]. LightGBM was utilized via LightGBM Python Package
v.2.2.2 [95].

There are five types of crops in the study area as follows: alfalfa, maize, potato,
sunflower and wheat. The ground truth data (i.e. reference data) was collected on the
acquisition date of per image and these data was recorded to be used in classification
as well as accuracy assessment. The details of the reference data can be illustrated in

Figure 4.4 and pixel information regarding the reference data is listed in Table 4.2.

Ground Truth Data

200

- Alfalfa

400 - Maize
Potato
600
Wheat
Sunflower

800

Figure 4.4 Ground Truth Data

Table 4.2 Ground Truth (Reference) Data

Class Reference Data (pixel)
Alfalfa 5460
Maize 5581
Potato 6093
Sunflower 5361
Wheat 5481
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The crop growth stages based on "Biologische Bundesanstalt, Bundessortenamt, and
CHemische (BBCH)" scale was presented in Table 4.3.

Table 4.3 Ground Truth (Reference) Data

Dates Crop Growth Stages
May 19 - June 12  leaf development
July 01-02 stem elongation
July 31 heading
August 24-25 flowering

Data processing chart is provided in Figure 4.5.

4.2.3 Parameter Tuning for Classification Models

For all the classification models implemented in thesis, the parameter tuning is needed
to maximize the capability of algorithm for classification in better accuracy. The main
parameters of LightGBM, needed to be tuned, were set to the values as suggested
on the parameter tuning (official) page of LightGBM [108] and the parameters were
provided in Table 4.3.

For better accuracy in LightGBM model, it is suggested the use of bigger training data,
small number of learning rate, large number of boosting iteration and large number
of leaves in parameter tuning (official) page of LightGBM [|108]].

Table 4.4 LightGBM Parameters

Parameter Value
Boosting type GOSS
Number of leaves per tree 100
Learning rate 0.1
Maximum learning depth 5

Minimum number of data per in a leaf =~ 20

Feature fraction 1.0
Bagging fraction 1.0
Number of boosting iteration 500

For RE the number of trees and number for features were defined as 500 and 2,
respectively.

In SVM classification, the RBF kernel was chosen and the parameters were optimized

by using grid search. The two parameters needed to tuned for RBF kernel were
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regularization parameter (C) and kernel width (y). The optimum parameters were

set to 500 and 3 for C and y, respectively.

All experiments were performed on Python 3.6.4 through LightGBM Python Package
[95]] and an open-source Scikit-learn module [[105~107]].
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Results And Discussion

This section presents the experimental results, including overall accuracies (with
standard deviation), kappa coefficients, class-based accuracy (based on F-scores).
Before providing the classification results, the in-depth analysis of crops of how it
characterizes or behaves in temporal domain was performed. To able to see the
feature-based crop characterization in temporal domain would provide us the possible
supporting (or underlying) reasons behind the classification results.

5.1 Temporal Analysis of Features for Crop

In this section, the in-depth analysis of crops of how it characterizes in temporal
domain was performed. Within this scope, the following features were investigated
for per crop type in temporal domain: Entropy/Anisotropy/Alpha Angle, linear
polarizations(HH/HV/VV) and Surface/Double Bounce/Volume scattering

Temporal Changes in Entropy
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—— Sunflower
—— Wheat
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-3.0

Junel3
July7
July31 -
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Figure 5.1 Temporal Changes in Entropy
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The temporal crop characterization (i.e. changes in time) for Entropy can be seen
in Figure 5.1. Entropy, which is obtained through Cloude-Pottier decomposition,
provides the information for the degree of randomness for the scattering. It can
be clearly seen that Sunflower and Wheat have different characteristic from other
crops in temporal domain, which might lead to separation them from others in crop
classification. It can also be seen that Maize and Potato have similar (very close)
Entropy values to Alfalfa in flowering stage in August24. Alfalfa also has close Entropy
values to Potato in leaf development period in June. Such close values between Alfalfa
and Maize/Potato might lead to class confusion in crop classifications. In this case,

Alfalfa might not be distinguished from other crops in sufficient level in Entropy.

Temporal Changes in Anisotropy
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Figure 5.2 Temporal Changes in Anisotropy

In Figure 5.2, the temporal crop characteristics for Anisotropy was presented.
Anisotropy provides the complementary information to the entropy and is an another
feature obtained from Cloude-Pottier decomposition. When Figure 5.2 was examined,
it is clearly seen that Wheat and Potato do not confuse with others and have completely
different values than other three crop types. This might lead to accurate separation of
these two crops from others in terms of crop classification.

As distinct from the Figure 5.1, Sunflower have similar values with Alfalfa in heading

period (July 31) in Figure 5.2. Maize has also close values to Sunflower in the stem
elongation period.
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The temporal changes in crop characterization for alpha angle was provided in Figure
5.3. The alpha angle provides the information about the scattering types and in this
case, all crops have surface scattering because all values are smaller than 30°. Maize,
potato and alfalfa have very similar angles during the whole period while sunflower
and wheat have different characteristics in temporal domain. Such different temporal
characterization might lead to separation of sunflower and wheat from other three

types of crops as well as confusion of maize and potato in terms of crop classification.

This graph also demonstrates that sunflower and wheat have different angles in their
growth stages except flowering stage.
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Figure 5.3 Temporal Changes in Alpha Angle

In Figure 5.4, the temporal crop characterization for HH polarization was presented.
As similar to Figure 5.3, wheat and sunflower has different crop characteristics than
other crop types especially in stem elongation and heading period, which might lead
to greater separation of these two crop types than others. However, sunflower and
wheat have same values in the leaf development stage (June 13), that might lead to

class confusion and hence might be the reason of low classification accuracy.

Also the changes in backscatter values of sunflower and wheat in temporal domain are
higher than other crops types, which is because of their behaviours (characteristics)
from stem elongation to heading stage differ from others.
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Temporal Changes in HH Polarization
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Figure 5.4 Temporal Changes in HH Polarization

The temporal changes of crops for HV polarization were demonstrated in Figure 5.5.
For HV polarization, potato and wheat have very distinct behaviour in backscatter
compared to other crop types, especially in stem elongation and heading stages. This

distinct behaviour might help for the class separation of potato and wheat from each
other as well as from other crop types.

Even though the temporal characteristics of maize and sunflower look different, they
have similar backscatter values in growth stages like stem elongation and flowering,
which might be the reason of the confusion between maize and potato.

Temporal Changes in HV Polarization
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Figure 5.5 Temporal Changes in HV Polarization
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In Figure 5.6, the temporal crop characterization for VV polarization was provided.
VV polarization backscatter values almost provided similar trend like HH polarization
for crops in temporal domain, especially for wheat, sunflower and potato. These
three types of crops distinguish from each other in terms of their dynamics as well
as backscatter values in VV polarization. Such different crop characterization might
lead to obtain high accuracy in crop classification. However all crop types, except
potato, have very close backscatter values in leaf development stage

Temporal Changes in VV Polarization
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Figure 5.6 Temporal Changes in VV Polarization

Both Freeman-Durden decomposition and Van Zyl decomposition produce the same
polarimetric outputs (surface, double bounce and volume scattering) and therefore
each polarimetric feature for both decomposition was interpreted together with

providing the important differences. The original values were multiplied by 100 for
better visual comparison.

The temporal crop characterizations for surface scattering of Freeman-Durden and
Van Zyl decomposition was provided in Figure 5.7. It can be simply seen that,
crops have almost similar temporal characterization in both graph, except maize. For
this exception, we can easily deduce that Van Zyl decomposition might differ from
Freeman-Durden for some particular cases in surface scattering.

Sunflower has sharp increase in surface scattering in leaf development stage to
heading stage, that might provide the good separation of sunflower from other classes.

Also in temporal domain, each crop type has different dynamics that might lead to
good separation in terms of crop classification.
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Figure 5.7 Temporal Changes in Surface Scattering

Figure 5.8 demonstrates the temporal changes in double-bounce scattering for per
crop type. Except alfalfa which does not have any phenological stage, all crop
type has similar temporal trend or dynamics in both Freeman-Durden or Van Zyl
decomposition. Different from surface scattering, wheat has the critical changes (i.e
sharp decline) in double-bounce scattering, that can help the good separation of wheat
from other crops. Maize also might be easily distinguished from other classes in
double-bounce scattering as it has a relatively sharp increase from stem elongation
stage to heading stage in double-bounce.
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Figure 5.8 Temporal Changes in Double Bounce Scattering

Figure 5.9 illustrates the temporal changes in volume scattering for per crop type
in both Freeman-Durden or Van Zyl decomposition. Different from the surface and
volume scattering, potato has the critical changes (sharp decline) in volume scattering,
that can help the good separation of potato from other crops. Sunflower might also be
easily distinguished from other classes in volume scattering as it has a relatively sharp
increase from stem elongation stage to heading stage. Wheat has also low volume

scattering compared to other crops, which might lead to better discrimination of it
from other classes.
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Figure 5.9 Temporal Changes in Volume Scattering

5.2 Classification Results

Figure 5.10 illustrates the overall accuracies (cross-validation scores) of five different
features for per classification model from multi-temporal data. The highest
classification accuracy was achieved by LightGBM with Van Zyl decomposition and

Freeman-Durden decomposition while the lowest classification accuracy was produced
by RF with Coherency matrix.

This is because sunflower, wheat and potato have sharp changes in temporal domain
for surface (Figure 5.7), double-bounce (Figure 5.8) and volume scattering (Figure
5.9), respectively. Such critical changes lead to better crop discrimination and hence
yielding the higher classification accuracy compared to other features. These three

polarimetric features are the elements of both Freeman-Durden decomposition and
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Van Zyl decomposition.

This mean value of overall accuracy is the results from the 5-fold cross validation.

Overall Accuracies
1.00

Cloude-Pottier Decomposition
Coherency Matrix
Freeman-Durden Decomposition
Linear Polarizations

Van Zyl Decomposition

Accuracy (Mean)
o o o©
© (o) ()
(6] o (]
1 1 1

o

©

o
1

©

N

w
1

0.70 -

LightGBM
SVM

Figure 5.10 Overall Accuracy

Both Van Zyl decomposition and Freeman-Durden decomposition produced the
highest overall classification accuracy (0.960) through LightGBM and followed by Van
Zyl decomposition with RF (0.955), Freeman-Durden decomposition with RF (0.952)
and Freeman-Durden decomposition with SVM (0.923). Though the same features
and reference data are used, the classification accuracies differ from each other. This
is because each classification model has different sensitivity to the data in supervised

learning process as well as uses different decision rule.

The differences between two classification within statistical significance was evaluated
by utilizing McNemar’s test. All the differences between two competitive results were
found statistically significant based on (y?) value. The (y?2) values are presented
in Table 5.1. The overall accuracies with standard deviation for per feature were
illustrated in Figure 5.11. The black line on the bar denotes the range between

maximum and minimum value within overall accuracy in cross validation scores.

Table 5.1 McNemar’s Test (y?2) values

Classification 22 value
Van Zyl (LightGBM-RF) 30.37
Freeman-Durden (LightGBM-RF) 66.45
Freeman-Durden (RF-SVM) 385.27

When overall accuracies with standard deviation in Figure 5.11 were examined, it can

be concluded that LightGBM is the most robust classification model with an exception
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Figure 5.11 Accuracies with Standart Deviation

of the Cloude-Pottier decomposition. The robustness means here the low value of
standard deviation. In other words, the classification results are not much affected
from the different iteration during 5-fold cross validation. Among the features,
the highest three values of standard deviation were received from Cloude-Pottier
decomposition by LightGBM (£0.043), SVM (£+0.039) and RF (£0.038). These values
mean that the classifiers are more sensitive and much affected from the displacement
of training data (during k-fold cross validation) when using the Cloude-Pottier

decomposition than other features.

As similar to overall accuracy, the top five classification results are in the same order
(ranking) in kappa coefficients for this experiment. Both Van Zyl decomposition and
Freeman-Durden decomposition produced the highest overall classification accuracy
(0.950) through LightGBM and followed by Van Zyl decomposition with RF (0.944),
Freeman-Durden decomposition with RF (0.939) and Freeman-Durden decomposition
with SVM (0.904). Figure 5.12 illustrates the (mean) kappa coefficients of five
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different features for per classification model from multi-temporal data .
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Figure 5.12 Kappa Coefficients

When kappa coefficients with standard deviation in Figure 5.13 were examined, it can
be concluded that LightGBM is the most robust classification model with an exception
of the Cloude-Pottier decomposition as similar to overall accuracies with standard
deviation illustrated in Figure 5.11. Among the features, the highest three values of
standard deviation were received from Cloude-Pottier decomposition by LightGBM
(£0.053), SVM (£0.049) and RF (£0.049). These values mean that the classifiers are
more sensitive and much affected from the displacement of training data when using
the Cloude-Pottier decomposition than other features.

The McNemar’s test results are presented in the tables in Appendix A to analyse the
differences between two classification (in a case of where two classification produced
competitive accuracies) in terms of statistical significance. Only in two cases, the

differences between two classification are found statistically non-significant.

Table 5.2 McNemar’s Test (y?) values

Classification x2 value
Coherency Matrix (LightGBM-SVM)  0.0002
Linear Polarizations (LightGBM-RF) 1.68
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5.3 Evaluation of Computational Costs

Besides the comparison of overall accuracies, the computation times of the training
process for models as well as features were calculated and compared with each other.
Computational costs such as training speed or optimization of model parameters in
machine learning are also another important criteria on to choose the classification
model as well as to evaluate the classification performance. In some cases, there
is a trade-off computational efficiency and overall performance (accuracy). In fact,
the computation time for machine learning algorithms in terms of classification and
regression is heavily depending on how the algorithm is well-adapted (how well of
train data represent the land cover) to the input imagery as well as the characteristic
features of the classification model (i.e. ensemble learning, max-margin based models,
decision tree based models etc.). All experiments were performed on Python 3.6.4
in a computer whose technical specifications are provided in Table 5.3. Table 5.4
demonstrates the training times (in seconds) for LightGBM, RF and SVM for per

feature.

Table 5.3 Computer Specifications

Specifications Details
Processor Intel(R) Core(TM) i7-7700K
RAM 64 GB
Processor Base Frequency 4.20 GHz
Operating System Windows Server 2016 (64-Bit)

Table 5.4 CPU running times for training process (in seconds)

LightGBM SVM RF

Linear Polarizations 3.32 31.04 31.20
Coherency Matrix 3.89 16.17 65.30
Cloude-Pottier Decomposition 2.87 42.04 28.17
Freeman-Durden Decomposition 1.87 1.44 19.17
Van Zyl Decomposition 1.91 1.32 20.23

For linear polarizations, coherency matrix and Cloude-Pottier decomposition, the
LightGBM is much faster (almost ten times) than RF and SVM, which is as expected.
However for the Freeman-Durden and Van Zyl decomposition, SVM is slightly faster

than LightGBM in terms of training time (in the milliseconds level).
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5.4 F-scores for per model

In this subsection, the F-scores of classes for per classification model are presented in
Fig 5.14, Fig 5.15 and Fig 5.16 for LightGBM, RF and SVM, respectively.

F-scores for LightGBM
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Figure 5.14 F-scores for LightGBM

Freeman-Durden and Van Zyl decomposition with LightGBM classified every class with
higher than 0.90, as illustrated in Figure 5.14. The highest score was received for
the sunflower as 1.00 from Freeman-Durden and Van Zyl. This is because sunflower
has high scattering values in surface, double-bounce and volume scattering as well as

sharp changes in surface scattering from leaf development stage to heading stage.
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Figure 5.15 F-scores for RF

Such differences compared to other crops lead to higher F-score for sunflower than
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others for LightGBM, which also applies for SVM and RF as well. The coherency matrix
produced the lowest scores for maize as 0.51 and for alfalfa as 0.54 by LightGBM where

maize was misclassified as alfalfa and vice versa.

As similar to LightGBM, Freeman-Durden and Van Zyl decomposition with RF
classified every class with higher than 0.90 with an exception of alfalfa. The highest
score was received by Freeman-Durden and Van Zyl as 1.00 for sunflower while lowest
score was produced by coherency matrix as 0.50 for maize and alfalfa, as illustrated

in Figure 5.15
SVM also showed similar tendency to RF for all classes, as illustrated in Figure 5.16.
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Figure 5.16 F-scores for SVM

5.5 Class-based Accuracy Assessment

The class-based performance was assessed using F-score which is the harmonic mean
of precision and recall values. In the following subsections, the F-scores were
presented for per crop category as well as for each features. All comparison regarding

class-based performances will be based on F-score in the following subsections.

5.5.1 Alfalfa

For all features as well as for each classification model, alfalfa was classified higher
than 0.49 F-scores. Van Zyl decomposition with LightGBM produced the highest score
(0.91) while Coherency matrix by RF produced the lowest score (0.50) for alfalfa, as
illustrated in Figure 5.17.
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Alfalfa has not much critical changes on surface scattering in temporal domain and
obviously be distinguished from others, as illustrated in Figure 5.7. However for
double-bounce and volume scattering, alfalfa is crossed with maize and this leads

to class confusion between maize and alfalfa.

Van Zyl decomposition with LightGBM produced the highest score (0.91) and followed
by Freeman-Durden decomposition with LightGBM (0.90), Van Zyl decomposition
with RF (0.89), Freeman-Durden decomposition with RF (0.88) and Freeman-Durden
decomposition with SVM (0.81). The alfalfa was mixed with maize for per feature
and therefore, in some percentage, incorrectly classified as maize, listed in confusion
matrices in Appendix-A.
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Figure 5.17 F-scores for Alfalfa

When Figure 5.17 was examined, it can be deduced that polarimetric features with
an exception of Cloude-Pottier decomposition produced higher score than original
features (i.e. coherency matrix and linear polarizations) for the identification of
alfalfa. When Figure 5.1 was examined, it can be obviously seen that Maize and Potato
in flowering stage have similar (very close) Entropy values to alfalfa. Such close values

between alfalfa and maize leads to class confusion for Cloude-Pottier decomposition.

Among inter-comparison of decomposition methods in terms of F-score for alfalfa, Van
Zyl decomposition outperformed Cloude-Pottier and Freeman-Durden decomposition
with an exception of SVM where Freeman-Durden decomposition achieved the score
as 0.81.
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5.5.2 Maize

Maize was classified higher than 0.49 F-scores for all features. Van Zyl decomposition
and Freeman-Durden decomposition with LightGBM produced the highest score
(0.93) while Coherency matrix by RF and SVM produced the lowest score (0.50)
for maize, as illustrated in Figure 5.18. Van Zyl decomposition with LightGBM
and Freeman-Durden decomposition with LightGBM produced the highest score
(0.93) and followed by Van Zyl decomposition with RF (0.91), Freeman-Durden
decomposition with RF (0.91) and Freeman-Durden decomposition with SVM (0.81).

When Figure 5.1 was examined, it can be obviously seen that Maize and Potato in
flowering stage have similar (very close) Entropy values to alfalfa. Such close values
between maize and alfalfa leads to class confusion for Cloude-Pottier decomposition.
The maize was mixed with alfalfa for per feature and therefore, in some percentage
incorrectly classified as alfalfa, listed in confusion matrices in Appendix-A as well as

illustrated in Figure 5.1, Figure 5.3 and Figure 5.6

When Figure 5.18 was examined, it can be seen that polarimetric features
with an exception of Cloude-Pottier decomposition produced higher score than
original features (i.e. coherency matrix and linear polarizations) for the
identification/classification of maize. The underlying reason of this exception
for Cloude-Pottier decomposition was explained in previous paragraph. Within
intercomparison of decomposition methods in terms of F-score for maize, Van Zyl
decomposition produced the equal scores with Freeman-Durden decomposition with
an exception of SVM. Coherency matrix produced lowest scores for maize among

decomposition methods.

5.5.3 Potato

Potato was classified higher than 0.69 F-scores for all features. Van Zyl and
Freeman-Durden decomposition with LightGBM and Van Zyl decomposition with RF
produced the highest score (0.99) while Cloude-Pottier decomposition with SVM
produced the lowest score (0.70) for potato, as illustrated in Figure 5.19. Van Zyl
and Freeman-Durden decomposition with LightGBM and Van Zyl decomposition with
RF produced the highest score (0.99) and followed by Freeman-Durden decomposition
with RF (0.98) and Van Zyl decomposition with SVM (0.98).

Potato has the critical changes (sharp decline) in volume scattering and distinguishable
trend in temporal domain for surface scattering , that lead to good separation of potato

from other crops, as illustrated in Figure 5.9 and Figure 5.7, respectively.
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Figure 5.18 F-scores for Maize

When Figure 5.19 was examined, it can be seen that polarimetric features
with an exception of Cloude-Pottier decomposition produced higher score than
original features (i.e. coherency matrix and linear polarizations) for the
identification/classification of potato. The underlying reason of this exception could
be that the temporal line for potato has crossed with wheat in Entropy (Figure
5.1) and the alpha angle values of potato is very close (similar) to maize (Figure
5.3). Within intercomparison of decomposition methods in terms of F-score for
maize, Van Zyl decomposition produced the very similar scores with Freeman-Durden
decomposition. Cloude-Pottier decomposition produced lowest scores for potato
among decomposition methods as well as all features. Different from the classes of
maize and alfalfa, Coherency matrix outperformed Cloude-Pottier decomposition in

terms of F-scores for potato

5.5.4 Sunflower

Van Zyl and Freeman-Durden decomposition with each model produced the highest
score (1.0) while Coherency matrix by RF produced the lowest score (0.77) for
sunflower, as illustrated in Figure 5.20. Van Zyl and Freeman-Durden decomposition
with each model produced the equal and highest score (1.00) and followed by Cloude
Pottier decomposition with per model (0.99), Linear polarizations with LightGBM
(0.92) and Linear polarizations with SVM (0.91)

Sunflower has sharp changes in surface scattering from leaf development stage to

heading stage (Figure 5.7) and in volume scattering (Figure 5.9) from stem elongation
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Figure 5.19 F-scores for Potato

stage to heading stage , that provide the good separation of sunflower from other
classes. This might be the underlying reason of how Van Zyl and Freeman-Durden

decomposition with per classification model produced the highest F-score (1.00).
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Figure 5.20 F-scores for Sunflower

When Figure 5.20 was examined, it can be deduced that polarimetric features
produced higher score than original features (i.e.coherency matrix and
linear polarizations) for the identification/classification of sunflower. =~ Among
intercomparison of decomposition methods in terms of F-score for sunflower,
there is not any difference between Van Zyl decomposition and Freeman-Durden
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decomposition as either decomposition achieved 1.00 F-score for all classification
method.

5.5.5 Wheat

As similar manner to sunflower, Van Zyl and Freeman-Durden decomposition with
each model produced the highest score (0.98) while Coherency matrix by RF produced
the lowest score (0.93) for wheat, as illustrated in Figure 5.21. Wheat was classified

higher than 0.90 F-scores for all features per classification model.

Wheat has the critical changes (i.e sharp decline) in double-bounce scattering (Figure
5.8) and low scattering compared to other crops in volume scattering (Figure 5.9),
which lead to greater separation of wheat from other crops. These key differences
enabled that Van Zyl and Freeman-Durden decomposition with per model produced
the highest F-score (0.98)

Van Zyl and Freeman-Durden decomposition with per model produced the equal
and highest score (0.98) and followed by Linear polarizations with LightGBM
(0.97), Linear polarizations with SVM (0.96) and Cloude-Pottier decomposition with
LightGBM (0.95).
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Figure 5.21 F-scores for Wheat
When Figure 5.21 was examined, it can be seen that polarimetric features
with an exception of Cloude-Pottier decomposition produced higher score than

original features (i.e. coherency matrix and linear polarizations) for the

identification/classification of wheat. Within intercomparison of decomposition
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methods in terms of F-score for maize, Van Zyl decomposition produced the equal
scores with Freeman-Durden decomposition (0.98). Linear polarizations achieved

higher scores than Coherency Matrix and Cloude-Pottier decomposition for wheat.

5.6 Conclusion

In this thesis, the performance of original and polarimetric features from the
multi-temporal PolSAR data was investigated and the usability of multi-temporal
PolSAR data for the crop pattern identification was evaluated using three different

machine learning algorithms.

The experimental results highlights the superior performance of LightGBM compared
to RF and SVM in terms of overall accuracy and computational cost. There is no
statistically significance (up to McNemar’s test) between the overall accuracies of
LightGBM and SVM for coherency matrix as well as LightGBM and RF for linear
polarizations. However LightGBM is much faster (almost ten times) than RF and
SVM, when compared the CPU running times for training process. RF produced higher
classification accuracy than SVM for all features with an exception of coherency matrix
where LightGBM and SVM yielded the same accuracy score and outperformed RF
(0.723 vs 0.710).

The highest classification accuracy (0.96) were received by Van Zyl decomposition and
Freeman-Durden through LightGBM. Even though these two decomposition produced
same accuracy and kappa score for LightGBM, Freeman-Durden outperformed Van
Zyl for SVM however Van Zyl yielded higher score than Freeman-Durden for RF on
the contrary. This diversity is due to class signatures have different impact on the
training process of the machine learning algorithms at their decision making process.
Compared to Cloude-Pottier decomposition in terms of classification performance,
Van Zyl decomposition as another eigenvector-based decomposition method yielded
higher accuracy in all classification model. The possible reason should be of all the
parameters of Cloude-Pottier decomposition are relative to power and do not have
the power (intensity) information. Furthermore, Cloude-Pottier demonstrated greater
performance than coherency matrix in all classification model with an exception of

linear polarizations.

For linear polarizations, coherency matrix and Cloude-Pottier decomposition, the
LightGBM is much faster (almost ten times) than RF and SVM. However for the
Freeman-Durden and Van Zyl decomposition, SVM is slightly faster than LightGBM in
terms of training time (in the milliseconds level). This is probably because SVM was

able to define the optimal hyperplane between the classes in a simple way, where the
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scattering was provided based upon the three fundamental scattering type (surface,

dihedral and volume).

This thesis proved the benefits of model based and hybrid based decomposition
about obtaining higher performance compared to original features for crop pattern
classification. Also the efficiency of LightGBM, a novel ensemble learning algorithm,

was explored for crop classification from multi-temporal PolSAR data.
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Appendix 1

Normalized confusion matrices, McNemar’s test results, F-scores for classes and overall

classification accuracies are provided in Appendix A.
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Table A.1 Normalized Confusion Matrices for LightGBM

Linear Polarization

Alfalfa Maize Potato Sunflower Wheat
Alfalfa 0.7 0.23 0.02 0.01 0.03
Maize 0.17 0.73 0.03 0.06 0.0
Potato 0.02 0.02 095 0.01 0.0
Sunflower 0.01 0.06 0.01 0.92 0.0
Wheat 0.03 0.0 0.0 0.0 0.97
Cloude-Pottier Decomposition
Alfalfa 0.62 0.22 0.15 0.0 0.01
Maize 0.24 0.58 0.13 0.01 0.04
Potato 0.1 0.13 0.76 0.0 0.01
Sunflower 0.0 0.01 0.0 0.99 0.0
Wheat 0.01 0.03 0.0 0.0 0.96
Coherency Matrix
Alfalfa 0.52 0.3 0.1 0.04 0.05
Maize 0.25 0.51 0.09 0.14 0.01
Potato 0.06 0.05 0.86 0.03 0.0
Sunflower 0.03 0.15 0.05 0.78 0.0
Wheat 0.06 0.0 0.0 0.0 0.94
Freeman-Durden Decomposition
Alfalfa 0.88 0.08 0.01 0.0 0.02
Maize 0.05 094 0.0 0.0 0.0
Potato 0.0 0.01 099 0.0 0.0
Sunflower 0.0 0.0 0.0 1.0 0.0
Wheat 0.01 0.0 0.0 0.0 0.99
Van Zyl Decomposition
Alfalfa 0.89 0.08 0.01 0.0 0.02
Maize 0.05 094 0.0 0.0 0.0
Potato 0.0 0.01 099 0.0 0.0
Sunflower 0.0 0.0 0.0 1.0 0.0
Wheat 0.01 0.0 0.0 0.0 0.99
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Table A.2 Normalized Confusion Matrices for RF

Linear Polarization

Alfalfa Maize Potato Sunflower Wheat
Alfalfa 0.68 0.25 0.03 0.01 0.03
Maize 0.16 0.74 0.04 0.06 0.0
Potato 0.02 0.02 096 0.01 0.0
Sunflower 0.0 0.07 0.01 0.92 0.0
Wheat 0.03 0.0 0.0 0.0 0.97
Cloude-Pottier Decomposition
Alfalfa 0.56 0.23 0.19 0.0 0.01
Maize 0.24 0.56 0.15 0.01 0.04
Potato 0.11 0.12 0.75 0.0 0.01
Sunflower 0.0 0.01 0.0 0.99 0.0
Wheat 0.02 0.02 0.0 0.0 0.96
Coherency Matrix
Alfalfa 0.46 0.29 0.14 0.05 0.06
Maize 0.23 0.49 0.12 0.14 0.01
Potato 0.06 0.03 0.88 0.03 0.0
Sunflower 0.02 0.15 0.06 0.76 0.0
Wheat 0.07 0.0 0.0 0.0 0.93
Freeman-Durden Decomposition
Alfalfa 0.85 0.11 0.01 0.0 0.02
Maize 0.05 094 0.0 0.0 0.0
Potato 0.01 0.01 099 0.0 0.0
Sunflower 0.0 0.01 0.0 0.99 0.0
Wheat 0.02 0.0 0.0 0.0 0.98
Van Zyl Decomposition
Alfalfa 0.87 0.11 0.01 0.0 0.02
Maize 0.05 094 0.0 0.0 0.0
Potato 0.01 0.01 099 0.0 0.0
Sunflower 0.0 0.01 0.0 0.99 0.0
Wheat 0.02 0.0 0.0 0.0 0.98
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Table A.3 Normalized Confusion Matrices for SVM

Linear Polarization

Alfalfa Maize Potato Sunflower Wheat
Alfalfa 0.71 0.23 0.03 0.01 0.03
Maize 0.22 0.68 0.03 0.06 0.0
Potato 0.06 0.03 091 0.01 0.0
Sunflower 0.01 0.06 0.01 0.91 0.0
Wheat 0.04 0.0 0.0 0.0 0.96
Cloude-Pottier Decomposition
Alfalfa 0.6 0.21 0.16 0.0 0.02
Maize 0.31 0.5 0.13 0.0 0.05
Potato 0.17 0.15 0.68 0.0 0.01
Sunflower 0.0 0.01 0.0 0.99 0.0
Wheat 0.02 0.04 0.0 0.0 0.94
Coherency Matrix
Alfalfa 0.53 0.28 0.08 0.04 0.07
Maize 0.29 0.49 0.09 0.13 0.01
Potato 0.07 0.05 0.85 0.04 0.0
Sunflower 0.02 0.16 0.04 0.78 0.0
Wheat 0.04 0.0 0.0 0.0 0.95
Freeman-Durden Decomposition
Alfalfa 0.78 0.18 0.01 0.0 0.02
Maize 0.12 0.87 0.01 0.0 0.0
Potato 0.0 0.01 0.98 0.0 0.0
Sunflower 0.0 0.0 0.0 1.00 0.0
Wheat 0.02 0.0 0.0 0.0 0.98
Van Zyl Decomposition
Alfalfa 0.77 0.2 0.01 0.0 0.02
Maize 0.13 0.86 0.0 0.0 0.0
Potato 0.0 0.01 0.98 0.0 0.0
Sunflower 0.0 0.0 0.0 1.00 0.0
Wheat 0.02 0.0 0.0 0.0 0.98
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Table A.4 McNemar’s test results for Coherency Matrix

LightGBM RF SVM

LightGBM - 42.50 0.0002
RF - 41.16
SVM -

Table A.5 McNemar’s test results for Linear Polarizations

LightGBM RF SVM

LightGBM - 1.68 160.25
RF - 122.57
SVM -

Table A.6 McNemar’s test results for Cloude-Pottier Decomposition

LightGBM RF  SVM

LightGBM - 68.64 335.92
RF - 133.95
SVM

Table A.7 McNemar's test results for Freeman-Durden Decomposition

LightGBM RF SVM

LightGBM - 66.45 580.04
RF - 385.27
SVM

Table A.8 McNemar’s test results for Van Zyl Decomposition

LightGBM RF SVM

LightGBM - 30.37 746.79
RF - 615.70
SVM
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Table A.9 Overall accuracy with standart deviation

Accuracy: acc. (+/- std)

Data Type

Coherency Matrix

Linear Polarizations
Cloude-Pottier Decom

Freeman-Durden Decom

Van Zyl Decom

Light GBM

0.723 (+/- 0.019)
0.857 (+/- 0.026)
0.780 (+/- 0.043)
0.960 (+/- 0.015)
0.960 (+/- 0.013)

SVM
0.723 (+/- 0.018)
0.834 (+/- 0.039)
0.738 (+/- 0.039)
0.923 (+/- 0.034)
0.918 (+/- 0.036)

RF
0.710 (+/- 0.022)
0.856 (+/- 0.033)
0.766 (+/- 0.038)
0.952 (+/- 0.022)
0.955 (+/- 0.022)

Table A.10 Kappa Coefficients with standart deviation

Kappa: kappa. (+/- std)

Data Type

Coherency Matrix

Linear Polarizations
Cloude-Pottier Decom

Freeman-Durden Decom

Van Zyl Decom

Light GBM

0.654 (+/- 0.023)
0.822 (+/- 0.033)
0.725 (+/- 0.053)
0.950 (+/- 0.019)
0.950 (+/- 0.016)
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SVM
0.654 (+/- 0.023)
0.793 (+/- 0.049)
0.672 (+/- 0.049)
0.904 (+/- 0.042)
0.897 (+/- 0.045)

RF
0.637 (+/- 0.027)
0.819 (+/- 0.040)
0.707 (+/- 0.049)
0.939 (+/- 0.027)
0.944 (+/- 0.027)



Table A.11 F-scores for Alfalfa

F-scores
Data Type Light GBM SVM RF
Coherency Matrix 0.54 0.54 0.50
Linear Polarizations 0.73 0.69 0.72
Cloude-Pottier Decom 0.62 0.57 0.58
Freeman-Durden Decom 0.90 0.81 0.88
Van Zyl Decom 0.91 0.80 0.89

Table A.12 F-scores for Maize

F-scores
Data Type Light GBM SVM RF
Coherency Matrix 0.51 0.50 0.50
Linear Polarizations 0.72 0.68 0.71
Cloude-Pottier Decom 0.59 0.52 0.58
Freeman-Durden Decom 0.93 0.84 0.91
Van Zyl Decom 0.93 0.83 0.91

Table A.13 F-scores for Potato

F-scores
Data Type Light GBM SVM RF
Coherency Matrix 0.83 0.83 0.81
Linear Polarizations 0.95 0.92 0.94
Cloude-Pottier Decom 0.76 0.70 0.73
Freeman-Durden Decom 0.99 0.98 0.98
Van Zyl Decom 0.99 0.98 0.99
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Table A.14 F-scores for Sunflower

F-scores
Data Type Light GBM SVM RF
Coherency Matrix 0.78 0.78 0.77
Linear Polarizations 0.92 091 0.92
Cloude-Pottier Decom 0.99 0.99 0.99
Freeman-Durden Decom 1.00 1.00 1.00
Van Zyl Decom 1.00 1.00 1.00

Table A.15 F-scores for Wheat

F-scores
Data Type Light GBM SVM RF
Coherency Matrix 0.94 0.94 0.93
Linear Polarizations 0.97 0.96 0.97
Cloude-Pottier Decom 0.95 0.93 0.95
Freeman-Durden Decom 0.98 0.98 0.98
Van Zyl Decom 0.98 0.98 0.98
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Appendix 2

All comparison regarding class-based performances will be based on F-score in the

following subsections.

Cloude Pottier-LightGBM

200 - Alfalfa
Potato
600
Wheat
2he Sunflower
1000

Figure B.1 Classified Image of Cloude-Pottier and LightGBM
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Cloude Pottier-RF
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Figure B.2 Classified Image of Cloude-Pottier and RF

Cloude Pottier-SVM
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Figure B.3 Classified Image of Cloude-Pottier and SVM
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Coherency Matrix-LightGBM
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Figure B.4 Classified Image of Coherency Matrix and LightGBM

Coherency Matrix-RF
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Figure B.5 Classified Image of Coherency Matrix and RF
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Coherency Matrix-SVM
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Figure B.6 Classified Image of Coherency Matrix and SVM

Freeman Durden-LightGBM
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Figure B.7 Classified Image of Freeman-Durden Decomposition and LightGBM
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Freeman Durden-RF
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Figure B.8 Classified Image of Freeman-Durden Decomposition and RF

Freeman Durden-SVM
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Figure B.9 Classified Image of Freeman-Durden Decomposition and SVM
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Linear Polarizations-LightGBM
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Figure B.10 Classified Image of Linear Polarizations and LightGBM
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Figure B.11 Classified Image of Linear Polarizations and RF
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Linear Polarizations-SVM
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Figure B.12 Classified Image of Linear Polarizations and SVM

Van Zyl-LightGBM
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Figure B.13 Classified Image of Van Zyl Decomposition and LightGBM
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Van Zyl-RF
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Figure B.14 Classified Image of Van Zyl Decomposition and RF

Van Zyl-SVM

200

Alfalfa
400 Maize
Potato
600
Wheat
800 Sunflower

Figure B.15 Classified Image of Van Zyl Decomposition and SVM
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