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Co-Advisor

Prof. Dr. Ziyadin ÇAKIR

January, 2020



REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

INTEGRATION OF OPTICAL AND SYNTHETIC APERTURE RADAR

IMAGERY FOR IMPROVING CROP MAPPING

A thesis submitted by Rouhollah NASIRZADEHDIZAJI in partial fulfillment of the

requirements for the degree of DOCTOR OF PHILOSOPHY is approved by the

committee on 06.01.2020 in Department of Geomatic Engineering, Program of Remote

Sensing and GIS.

Prof. Dr. Füsun BALIK ŞANLI
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advisor Prof. Dr. Füsun BALIK ŞANLI for her great support that helped me become

an independent researcher. She always motivated me when I had struggling times

and her ideas, attention to details and teaching helped me to improve my research

immensely and learn lots of academic concepts in my PhD journey. At many stages in

the course of this research, the critical discussions I had with her led me to develop a

critical sense of thinking and encouraged me for thinking big.

I would also like to extend my deepest gratitude to my co-advisor Prof. Dr. Ziyadin

ÇAKIR for his constant support, availability and constructive suggestions, which were

determinant for the accomplishment of the work presented in this thesis.

Last, but not least, I deeply thank my parents who have been authentic proof of eternal

love and support throughout my life. I am also grateful to my siblings for their timely

encouragement and emotional support along the way. My PhD journey would not

have been possible without the support of my family.

Rouhollah NASIRZADEHDIZAJI

iv



TABLE OF CONTENTS

LIST OF SYMBOLS vii

LIST OF ABBREVIATIONS x

LIST OF FIGURES xiii

LIST OF TABLES xvii

ABSTRACT xviii

ÖZET xxi

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 General Overview of Satellite Remote Sensing Systems 9

2.1 Optical Remote Sensing Systems . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Microwave Remote Sensing Systems . . . . . . . . . . . . . . . . . . . . . 14

3 Radar Bachground 17

3.1 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Radar image distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Microwave polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Radar data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Radar signal and object interactions . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Interferometric SAR 37

5 Methodology 40

5.1 Polarimetric SAR Backscatter . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Interferometric Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Decorrelation Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



6 Optical, SAR, PolSAR and InSAR Applications in Crop Monitoring and

Mapping 48

6.1 Sensitivity of Multi-Temporal SAR Parameters to Crop variables . . . . 48

6.1.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.2 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.3 Field Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.4 Sentinel-1 Dual Polarimetric SAR Data Statement and Processing 53

6.1.5 SAR Parameters and Their Correlation with Crop Height . . . . 55

6.1.6 SAR Parameters and Their Correlation with Crop Coverage . . . 60

6.2 Integration of radar and optical datasets for crop mapping improvment 67

6.2.1 Ground truth data acquisition . . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.3 SAR Image Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.4 Optical Image Pre-processing . . . . . . . . . . . . . . . . . . . . . 72

6.2.5 Combination of SAR and optical data . . . . . . . . . . . . . . . . 72

6.2.6 Crop Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.7 Accuracy Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Multi-temporal data analysis for crops growth monitoring and

identification of different crop types . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Sentinel-1 SAR data statement and processing . . . . . . . . . . . 78

6.3.2 SAR backscattering analysis . . . . . . . . . . . . . . . . . . . . . . 79

6.3.3 Crop mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.4 Accuracy assessment of crop classification . . . . . . . . . . . . . 82

6.4 Interferometric coherence analysis to crop growth monitoring . . . . . 85

6.4.1 Coherence estimation and its relation with crop growth . . . . . 86

7 Results And Discussion 94

References 97

Publications From the Thesis 108

vi



LIST OF SYMBOLS

ϑ Angle Variation from Near to Far Range

θH Angular Spread of the Radar Beam in the Azimuth Direction

l Antenna length

βa Azimuth Beamwidth

ρa Azimuth Resolution

σ0 Backscattering coefficient

σB Bistatic Radar Cross Section

Cp Complex Pixel

∆y Constant Resolution on the Ground Range

∆r Constant Resolution on the Slant Range

C Covariance Matrix

dB Decibel

RR Distance from the Receiver to the Object

RT Distance from the Transmitter to the Object

BDop Doppler Bandwidth

γDC Doppler Centroid Decoreelation

fD Doppler Frequency

χ Ellipticity Angle

β0 Estimated backscattered energy

v Frequency

γspatial Geometric or Spatial Baseline Decorrelation

ρg Ground Range Resolution of a RAR

KC Hermitian Conjugate

vii



HH Horizontal Transmission and Horizontal Reception

Ail l Illuminated Surface Area

η Incidence Angle

ψ Interferometric Phase

∆ϕ Interferometric Phase Difference

θi,local Local incidence angle

θo f f Off-nadir Angle

ψ Orientation Angle

α Orientation Angle of the Baseline

φ Phase Difference

Vs Platform Speed

τp Pulse Length

Gant Radar Antenna Gain

ρ Range Azimuth

∆R Range Difference of Two SAR Observations

R Range from the Sensor to the Object

τ Range Time

~E Real Vector

GR Receiver Gain

S Scattering Matrix

c Speed of light

ωs Squint Angle

γSNR System Noise Decorrelation

Hp Target Height

γtemporal Temporal Terrain Decorrelation

γthermal Thermal Decorrelation

γtotal Total Correlation or Coherence

PT Transmitted Energy

GT Transmitter Gain

viii



φ Unwrapped Phase

V V Vertical Transmission and Vertical Reception

V H Vertical Transmission and Horizontal Reception

γvol Volume Decorrelation

λ Wavelength

ix



LIST OF ABBREVIATIONS

ALOS Advanced Land Observing Satellite

AT Along-Track

BBCH Biologische Bundesanstalt, Bundessortenamt, and CHemische

BOA Bottom Of Atmosphere

CC Canopy Coverage

CSA Canada Space Agency

CT Cross-Track

DEM Digital Elevation Model

DInSAR Differential InSAR

ENVI Environment for Visualizing Images

ENVISAT Environmental Satellite

ERIM Environmental Research Institute of Michigan

ERS European Remote Sensing

ESA European Space Agency

ESM Electromagnetic spectrum

EVI Enhanced Vegetation Index

FVC Fractional Vegetation Cover

GMT Generic Mapping Tools

GMTSAR Generic Mapping Tools Synthetic Aperture Radar

GRD Ground Range Detected

GSD Ground Sampling Distance

HSV Hue, Saturation, and Value

InSAR Interferometric Synthetic Aperture Radar

x



IW Interferometric Wide swath

JERS Japanese Earth Resources Satellite

JPL Jet Propulsion Laboratory

LAI Leaf Area Index

LOS Line-Of-Sight

MLC Maximum Likelihood Classification

MSI Multispectral Instrument

MSS Multi Spectral Scanner

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

NESZ Noise Equivalent Sigma Zero

PI Pasture Index

PolSAR Polarimetri Synthetic Aperture Radar

RADAR RAdio Detection And Ranging

RAR Real Aperture Radar

RCS Radar Cross Section

ROI Regions of Interest

RVI Radar Vegetation Index

RVI Ratio Vegetation Index

SAR Synthetic Aperture Radar

SCP Semi-Automatic Classification plugins

SIR Shuttle Imaging Radar

SLAR Side Looking Aperture Radar

SLC Single Look Complex

SNAP Sentinel Application Platform

SNR Signal-to-Noise-Ratio

STRM Shuttle Radar Topography Mission

TOA Top Of Atmosphere

xi



UTM Universal Transverse Mercator

WGS84 World Geodetic System 1984

xii



LIST OF FIGURES

Figure 2.1 Electric and magnetic fields of the electromagnetic wave . . . . . . 9

Figure 2.2 The EMS different wavelength (frequency) regions . . . . . . . . . . 10

Figure 2.3 An illustration of optical remote sensing system (Image source: Sun

et. al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.4 Spectral characteristics of typical surface features (Image source:

crisp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.5 The interactions of the radiation with targets on the earth’s surface 12

Figure 2.6 Two different types of radiation reflection; specular reflection (left)

and diffuse reflection (right) . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.7 Visible and infrared wavelengths interactions with vegetation

leaves (left) and water (right) . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.8 Spectral responses of the vegetation and water over a variety of

different wavelengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.9 Parts of the electromagnetic spectrum . . . . . . . . . . . . . . . . . . 15

Figure 2.10 Microwave bandwidth ranges and specifications [72] . . . . . . . . 16

Figure 3.1 Geometry of RAR, side looking aperture radar [74] . . . . . . . . . 18

Figure 3.2 Exemplification of the slant range [76] . . . . . . . . . . . . . . . . . 19

Figure 3.3 RAR range resolution [75] . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.4 Geometry of imaging radar [75] . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.5 SAR system geometry with the parameters [77] [78] . . . . . . . . . 21

Figure 3.6 Synthetic aperture processing, basic theory including the Doppler

effect, matched filter, and azimuth compression [80] . . . . . . . . . 23

Figure 3.7 Radar Transmission scheme and coordinate system [82] [83] . . . 24

Figure 3.8 SAR geometry in the plane indicating slant range versus ground

range resolutions [80] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.9 Geometric distortions in radar images due to relief displacement [76] 27

Figure 3.10 Foreshortening effect when 0<α<ϑ, where the pixel on the ground

is highlighted [80] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.11 Foreshortening effect when −ϑ<α<0, where the pixel on the

ground is highlighted [80] . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.12 Layover effect when ϑ<α [80] . . . . . . . . . . . . . . . . . . . . . . 29

xiii



Figure 3.13 Shadow effect when α+ ϑ > 90 [80] . . . . . . . . . . . . . . . . . . 29

Figure 3.14 Schematic of polarization pulse traveling from the radar and wave

interactions [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.15 EM wave polarization represented in combination of two

orthogonal electric fields and direction of propagation a wave with

a circularly polarized wave (left) and polarization ellipse (right)[87] 31

Figure 3.16 Schematic illustrations of radar wave backscatter over various

surface cover conditions [92] . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.1 Geometry of repeat-pass CT-InSAR (left) and AT-InSAR (right) [77] 37

Figure 4.2 Configuration of the InSAR geometry [95] . . . . . . . . . . . . . . . 38

Figure 5.1 Flowchart of data processing . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 6.1 The location map of the study area; general overview (left) and

Sentinel-2 RGB image of the study site (right) . . . . . . . . . . . . . 49

Figure 6.2 Soil map of the study area . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 6.3 Land use map of the study area (Source: Copernicus Land

Monitoring Service [129]) . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 6.4 Seasonal maize, sunflower and wheat calendar of the region . . . . 52

Figure 6.5 Different growth stages of crops in the study area . . . . . . . . . . . 53

Figure 6.6 BBCH-scale relationship with crop height (a–c), and Correlation

between canopy coverage (CC) and crop height (d–f) for maize,

sunflower, and wheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 6.7 Flowchart of Sentinel-1 dual polarization SAR data processing . . . 56

Figure 6.8 Correlation between (a) intensity arithmetic calculation of VV+VH,

(b) σ0
V V backscatter, and (c) σ0

V H backscatter values of maize with

its height during growing stages . . . . . . . . . . . . . . . . . . . . . 57

Figure 6.9 Correlation between (d) intensity arithmetic calculation of VV+VH,

(e) σ0
V V backscatter, and (f) σ0

V H backscatter values of sunflowe

with its height during growing stages . . . . . . . . . . . . . . . . . . 58

Figure 6.10 Correlation between (g) intensity arithmetic calculation of VV+VH,

(h) σ0
V V backscatter, and (i) σ0

V H backscatter values of wheat with

its height during growing stages . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.11 Correlation between Entropy (a), Anisotropy, (b) and Alpha (c)

decompositions of maize with its height during growing stages . . 61

Figure 6.12 Correlation between Entropy (d), Anisotropy, (e) and Alpha (f)

decompositions of sunflower with its height during growing stages 62

Figure 6.13 Correlation between Entropy (g), Anisotropy, (h) and Alpha (i)

decompositions of wheat with its height during growing stages . . 63

xiv



Figure 6.14 Canopy coverage extraction from in-situ photo taken using python

image processing packages. Left panel is the original photo and the

right panel shows white ratio calculated as green areas and black

to the bare soil in wheat sample field . . . . . . . . . . . . . . . . . . 64

Figure 6.15 Correlation between σ0
V V (a), and VV+VH (b), backscatter values

of maize, and VV+VH (c) backscatter value of sunflower with their

CC during growing stages . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 6.16 Crop classification methodology . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.17 Flowchart of multi-temporal mapping . . . . . . . . . . . . . . . . . . 70

Figure 6.18 RGB color composite of Sentinel-1, (R: 2016.07.01_VH_dB, G:

2016.07.13_VV_dB, B: 2016.07.25_VH_dB) . . . . . . . . . . . . . . 71

Figure 6.19 Sentinels combined dataset (R: Near − In f rared, G: Red, B:

2016.07.25_V H_dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 6.20 Crop classification of combined dataset (MLC) . . . . . . . . . . . . . 75

Figure 6.21 Producer, User and Overall accuracies and Kappa coefficient

assessment of only Sentinel-1 SAR data . . . . . . . . . . . . . . . . . 76

Figure 6.22 Producer, User and Overall accuracies and Kappa coefficient

assessment of combined dataset . . . . . . . . . . . . . . . . . . . . . . 76

Figure 6.23 Seasonal maize, sunflower, wheat and potato calendar in the study

area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 6.24 Workflow of multi-temporal SAR analysis . . . . . . . . . . . . . . . . 78

Figure 6.25 The backscatter value of maize, sunflower, wheat and potato on

multi-temporal Sentinel-1 images, in ascending pass direction with

VH (top) and VV (bottom) polarization . . . . . . . . . . . . . . . . . 80

Figure 6.26 The backscatter value of maize, sunflower, wheat and potato on

multi-temporal Sentinel-1 images, in descending pass direction

with VH (top) and VV (bottom polarization . . . . . . . . . . . . . . 81

Figure 6.27 RGB color composite using multi-temporal Sentinel-1 SAR

data in descending pass direction (R: 2016.05.15_V H_dB, G:

2016.06.01_V V_dB, B: 2016.07.31_V H_dB) . . . . . . . . . . . . . 82

Figure 6.28 Crop classification of SAR dataset (MLC) . . . . . . . . . . . . . . . . 83

Figure 6.29 Producer’s, User’s and Overall accuracies and Kappa coefficient

assessment of multi-temporal Sentinel-1 SAR data (percentages are

rounded to the nearest decimal) . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.30 Sentinel-1 imagery locations. The colored boxes with T indicate

the tracks and perpendicular arrows represent satellite propagation

direction and its LOS with longer and short arrows respectively and

yellow box shows the study area . . . . . . . . . . . . . . . . . . . . . 87

xv



Figure 6.31 Mean Coherence values of 9 maize fields during the seasonal

growth stages in the ascending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 88

Figure 6.32 Mean Coherence values of 9 maize fields during the seasonal

growth stages in the descending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 89

Figure 6.33 Mean Coherence values of 6 sunflower fields during the seasonal

growth stages in the ascending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 90

Figure 6.34 Mean Coherence values of 6 sunflower fields during the seasonal

growth stages in the descending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 91

Figure 6.35 Mean Coherence values of 5 wheat fields during the seasonal

growth stages in the ascending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 92

Figure 6.36 Mean Coherence values of 5 wheat fields during the seasonal

growth stages in the descending pass direction for VH and VV

polarization in two different tracks. The date of images used for

coherence pair formation is represented in the x − axis of the graph 93

xvi



LIST OF TABLES

Table 6.1 Biologische Bundesanstalt, Bundessortenamt, und CHemische

(BBCH)-identification keys for field measurements and Synthetic

Aperture Radar (SAR) data acquisitions of the study area . . . . . . . 52

Table 6.2 Specifications of acquired Sentinel-1 datasets over Konya basin, Turkey 54

Table 6.3 Coefficient of determination (R2) between crop height and

Sentinel-1 SAR parameters . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 6.4 Coefficient of determination (R2) between CC and Sentinel-1 SAR

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 6.5 Specifications of Sentinel-1 and Sentinel-2 . . . . . . . . . . . . . . . . 69

Table 6.6 Maximum Likelihood classification confusion matrix . . . . . . . . . . 84

Table 6.7 Percentages of errors of omission, errors of commission, Producer’s

and User’s accuracies for each class . . . . . . . . . . . . . . . . . . . . 84

Table 6.8 Characteristic parameters of acquired Sentinel-1 datasets . . . . . . . 85

Table 6.9 Datasets acquisition dates for different orbits . . . . . . . . . . . . . . 86

xvii



ABSTRACT

Integration of Optical and Synthetic Aperture Radar
Imagery for Improving Crop Mapping

Rouhollah NASIRZADEHDIZAJI

Department of Geomatic Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Füsun BALIK ŞANLI

Co-advisor: Prof. Dr. Ziyadin ÇAKIR

Land use/cover mapping is one of the main application fields of the remote sensing

data and thus is well suited for mapping of seasonally changing variables such as

agricultural areas. Since, crops are characterized by their typical spatial patterns,

temporal dynamics and changing radiation reflecting and scattering behavior due to

crop phenology and plant status, hence applying time series of remote sensing data

within a short revisiting time would be a beneficial method for agriculture monitoring.

The aim of this thesis therefore, centered on the monitoring and investigation of

the agriculture activities over the time in terms of estimation of the biophysical

parameters, crops phenological development and different growth stages, the

identification of certain types of crops, and providing useful information about crops

status in the study region located in the Konya basin central Anatolia Turkey. In this

work, Synthetic Aperture Radar (SAR) and optical as two different remote sensing

systems were applied to investigate and evaluate the temporal and spatial variability

of agricultural activities more precisely. The focus of this thesis is two-fold: (1) to

evaluate the use of SAR, Polarimetric SAR (PolSAR) and Interferometric SAR (InSAR)

techniques in estimation and monitoring of crop variables and parameters, and discuss

their potential relationship with remotely sensed data and field observations (2) to

investigate the integration of optical and SAR imagery for improving crop mapping,

and discuss the performance of the sensors backscatter and reflectance for temporal

crop type mapping with combination of the optical and SAR data.
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For these purposes as a first work, the sensitivity of 10 parameters derived from

multi-temporal C-band Sentinel-1 SAR data, to crop height and canopy coverage (CC)

of maize, sunflower, and wheat in the study area were analyzed. The coefficient

determination (R2) of 0.82 indicates that there is a strong relationship between the

maize height and SAR parameters of VV + VH, during the early growing stage. The

maize CC is well correlated with VV parameter (R2 = 0.73), however, it is observed

that at the later growing stage the correlation became weaker. This means that the

sensitivity decreases with increasing vegetation cover growth. The sensitivity of SAR

parameters to wheat variables is often good at the early stage. The sunflower’s CC

shows a relatively higher correlation with VV polarization (R2 = 0.46) at the early

stage while no considerable correlation is observed at the later stage. The sunflower

height also had an insignificant correlation with the majority of SAR parameters. It is

found that Sentinel-1 SAR data has a high potential for estimation of crop height and

CC of the maize as a broad-leaf crop. The same is not true for sunflower as another

broad-leaf crop.

The next step was the application of Sentinel-1 multi-temporal data for crop

monitoring and mapping and thereby extracting useful information, such as crops

status, estimating irrigation and harvesting time according to the changes made in

backscatters. From the backscattering analysis, it was observed that each similar crop

type in different test fields due to the distinct methods of irrigation and fertilization

has shown different intensity values. It has indicated that the homogeneity between

SAR backscatters is high for each field with the same crop type in descending pass

direction with VH polarization. In contrary, high-intensity values are recorded in VV

polarization for entire crop types. It is also observed that polarimetric composite

images for a different date are useful to roughly identify crop types, and validated

with the application of classification methods in the study area.

Later on, two different Sentinels data types in the same period of time and the same

scene have been selected to describe how to get information from combined optical

and SAR data. Hereby, to discriminate different land use/cover categories of the study

area, the potential of remotely sensed image analysis to merge multi-spectral and SAR

images within a hierarchical classification framework was evaluated. Multi-temporal

Sentinel-1, C-band VV, and VH polarized SAR data and Sentinel-2 optical data were

acquired simultaneously by in-situ measurements to investigate the performance of

the sensors backscatter and reflectance for temporal crop type mapping and the

sustainable management of agricultural activities for the study area. Results showed

that the combination of the radar and optical data indices caused to enhance crop

classification methodology and classification accuracies were improved results (5%)

using combinations of sensors and reached 93% in this study.
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Finally, the correlation between different phenological stages (sowing, growth, and

harvesting) of the crops and radar coherence were studied. Within the context of

this work, the relationship between the interferometric coherence calculated from the

different pass directions and multi-track of 12 and 6-day Sentinel-1 SAR image pairs

and the different crop type’s growth stages (i.e. sowing, growing and harvesting)

were investigated. For this purpose, field surveys were conducted for validation of

the correlation between the coherence and crop growth status. For interferometric

coherence analysis to monitoring the time evolution of different crop fields, 31 SAR

images in ascending and 31 in descending orbit direction were acquired throughout

the same growth season of the subject area. The results showed that coherence values

were high before plowing and seeding and had sharp coherence decrease with starting

the growing the crops. During the growth stage of crops the values stay low and

slightly similar for each field and crop type. The coherence values were significantly

higher after crop harvesting and reaping the remnants of the crops. In comparing

with ascending pass direction it has indicated that coherence value is high for each

field with the same crop type in descending orbit.

This dissertation emphasizes the potentialities of the remote sensing data - the

methodology of SAR, PolSAR and InSAR time-series analysis and integrated use of SAR

and optical data to efficiently evaluate the crop variables and parameters at different

phenological stages and crop map as an agricultural monitoring and management

strategies. To the better interpretation of the sensitivity of SAR parameters to the crop

biophysical variables most precise field observations are needed and as the further

work high spatial resolution SAR data would be efficient to achieve more accurate

information regarding agricultural activities and crop studying.

Keywords: Agricultural monitoring, Sentinel-1 SAR backscatter, polarimetric and

interferometric SAR, crop variables, crop mapping
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ÖZET

Ürün Deseni Haritası Üretimini İyileştirmek Üzere
Optik Ve Sentetik Açıklıklı Radar Görüntülerinin

Entegrasyonu

Rouhollah NASIRZADEHDIZAJI

Fotogrametri Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Füsun BALIK ŞANLI

Eş-Danı̧sman: Prof. Dr. Ziyadin ÇAKIR

Arazi kullanımı/örtüsü haritası üretimi, uzaktan algılama verilerinin ana uygulama

alanlarından biridir ve tarımsal alanlar gibi mevsimsel olarak farklılık gösteren

deği̧skenlerin haritalanması için çok uygundur. Tarım alanları tipik mekansal

özellikleri ile karakterize edildiğinden bitki fenolojisi ve bitki durumuna bağlı

olarak paternler, zamansal dinamikler ve deği̧sen ı̧sınımın yansıma ve saçılma

davranı̧slarından dolayı uzaktan algılama sistemleri ile izlenebilmektedir. Uyduların

kısa aralıklarla tekrarlı geçi̧sleri sayesinde elde edilen zaman serisi verileri ile tarım

alanlarının izlenmesinde çok faydalı bir method olarak kabul edilmektedir. Bu

nedenle, bu tezin amacı, zaman içerisinde bitkilerin biyofiziksel parametrelerinin

tahmini, bitkilerin fenolojik geli̧smeleri ve farklı büyüme aşamaları, bitki türlerinin

belirlenmesi ve bu konuda bitkilerin statüsü ile ilgili yararlı bilgiler verilmesi açısından

Türkiyenin Konya havzasında bulunan çalı̧sma bölgesinde ekili alanların tarımsal

faaliyetlerin izlenmesi ve araştırılması konusuna odaklanmı̧stır. Bu çalı̧smada,

tarımsal faaliyetlerin zamansal ve mekansal deği̧skenliğini daha kesin ve doğru

olarak araştırmak ve değerlendirmek için Sentetik Açıklık Radarı (SAR) ve optik

sistemler iki farklı uzaktan algılama veri kaynağı olarak kullanılmı̧stır. Bu tezin iki

temel odağı vardır: (1) SAR, Polarimetric SAR (PolSAR) ve Interferometric SAR

(InSAR) tekniklerinin bitki deği̧skenleri ve parametrelerinin tahmini ve izlenmesinde

kullanımını değerlendirmek ve uzaktan algılanan verilerle arazi gözlemleri arasındaki

potansiyel ili̧skiyi analiz etmek; (2) ürün deseni haritalarının iyileştirilmesi için optik
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ve SAR görüntülerinin entegrasyonunu araştırmak ve aynı zamanda optik ve SAR

verilerini birleştirerek yansıma ve saçılma değerlerinin zamansal ürün deseni harita

üretimindeki performansını analiz etmektir.

Bu amaçlar için ilk çalı̧smada, çok zamanlı C-bant Sentinel-1 SAR verilerinden elde

edilen 10 parametrenin, çalı̧sma alanındaki mısır, ayçiçeği ve buğday bitkilerinin

yüksekliği ve toprağı örtme oranına (CC) olan duyarlılığı analiz edildi. Korelasyon

katsayısı değerleri, ilk büyüme aşamasında mısır için yüksek bir korelasyon olduğunu

göstermektedir. Saptama katsayısı (R2 = 0.82), ilk büyüme aşamasında, VV +
VH’nin mısır yüksekliği ile SAR parametreleri arasında yüksek bir ili̧ski olduğunu

göstermektedir. Mısırın toprağı örtme oranı, VV parametresi ile iyi korelasyonludur

(R2 = 0.73), ancak son büyüme evresinde korelasyonun zayıflaştığı görülmektedir.

Yani bitki örtüsünün büyümesi arttıkça duyarlığının azaldığı anlamına gelir. SAR

parametrelerinin buğday deği̧skenlerine duyarlılığı ilk aşamada genellikle iyidir.

Ayçiçeğinin toprağı örtme oranı, ilk aşamada VV polarizasyonu (R2 = 0.46) ile

nispeten daha yüksek bir korelasyon gösterirken, sonraki aşamada önemli bir

korelasyon gözlenmemi̧stir. Ayçiçeği yüksekliği, SAR parametrelerinin çoğunluğu ile

anlamlı olmayan bir korelasyona sahiptir. Sentinel-1 SAR verilerinin, geni̧s yapraklı

bir bitki olarak mısırın toprağı örtme oranı ve boyunu tahmin etmek için yüksek bir

potansiyele sahip olduğu bulunmuştur. Aynısı durum diğer bir geni̧s yapraklı bitki

olan ayçiçeği için geçerli değildir.

Bir sonraki adım, Sentinel-1 çok-zamanlı verilerinin kullanılmasıyla ürünlerin

izlenmesi ve haritalarının üretilmesi ve böyleyce geri saçılmalarda oluşan

deği̧sikliklere göre bitkinin durumu, sulama ve hasat zamanı gibi yararlı bilgilerin

çıkarılmasıyla ilgilidir. Geri saçılma analizinden, farklı sulama ve gübreleme

yöntemleri nedeniyle farklı test alanlarındaki benzer bitki türlerinin farklı yoğunluk

değerlerin elde edildiği görülmüştür. SAR geri saçılmaları arasındaki homojenliğin,

VH polarizasyonu ile alçalan geçi̧s yönünde aynı bitki tipinde olan her alan için yüksek

olduğunu göstermi̧stir. Ancak yüksek yoğunluk değerleri tüm ürün tipleri için VV

polarizasyonunda kaydedilmi̧stir. Farklı tarihlerde elde edilen polarimetrik kompozit

görüntülerin bitki tiplerini kabaca tanımlamak için yararlı olduğu gözlemlenmi̧stir ve

çalı̧sma alanında sınıflandırma yöntemlerinin uygulanmasıyla doğrulanmı̧stır.

Daha sonraki aşamada, aynı zaman dilimine ve aynı alana ait Sentinel 1 ve Sentinel

2 verileri SAR ve optik verilerin birleştirilmesi ile nasıl bilgi elde edileceği amacıyla

seçilmi̧stir. Böylelikle, çalı̧sma alanının farklı arazi kullanımı/örtüsü kategorilerini

ayırt etmek için, hiyerarşik bir sınıflandırma çerçevesi içinde çok bantlı optic ve

SAR görüntülerini birleştirmek üzere uzaktan algılama görüntü analizi potansiyeli

değerlendirilmi̧stir. Arazi çalı̧smaları ile aynı tarihte alınan çok zamanlı Sentinel-1,
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C-band VV ve VH polarizasyonlu SAR verileri ve Sentinel-2 optik verileri, sensörlerin

geri saçılma ve yansıma performansı zamansal ürün deseni harita üretimi ve tarımsal

faaliyetlerinin sürdürülebilir yönetimininde kullanıļsabilirliğini araştırmak amacıyla

incelendi. Sonuçlar, radar ve optik verilerin kombinasyonunun bitki sınıflandırma

doğruluğunun artmasını sağladığı (5%) ve bu çalı̧smada toplam doğruluğun 93%’e

ulaştığını gösterdi.

Son çalı̧sma, bitkilerin farklı fenolojik aşamaları (ekim, büyüme ve hasat) ve radar

tutarlılığı (coherence) arasındaki ili̧skiyi incelemektedir. Bu çalı̧sma kapsamında,

farklı geçi̧s yönlerinden hesaplanan interferometrik tutarlılık ile 12 ve 6 günlük farklı

izlerde alınan Sentinel-1 SAR görüntü çiftlerinin farklı ürün türleri için büyüme

aşamaları (yani ekim, yeti̧stirme ve hasat) arasındaki ili̧ski araştırılmı̧stır. Bu amaçla,

tutarlılık ile bitki büyüme durumu arasındaki korelasyonun doğrulanması için arazi

çalı̧smaları yapılmı̧stır. Farklı bitki alanlarının zaman evrimini izlemeye yönelik

interferometric tutarlılık analizi için, söz konusu alanın aynı büyüme mevsimi boyunca

yükselen ve alçalan yörünge yönünde 31 SAR görüntüsü kullanılmı̧stır. Sonuçlar,

tarlaların sürülmesi ve tohumlanmasından önce korelasyonun yüksek olduğununu

ve bitkilerin büyümeye başladığında korelasyonun keskin bir şekilde azaldığını

göstermi̧stir. Bitkilerin büyüme aşamasında, değerler her bir ürün tipi için düşük

ve az da olsa benzer kaldığı gözlemlenmi̧stir. Tutarlılık değerleri, bitkinin hasadı

ve bitkilerin kalıntılarının toplanmasından sonra önemli ölçüde yüksek değerde elde

edilmi̧stir. Yükselen geçi̧s yönüyle karşılaştırıldığında, alçalan yörüngede aynı bitki

tipinde olan her alan için tutarlılık değerinin yüksek olduğu gözlemlenmi̧stir.

Bu tez çalı̧sması, uzaktan algılama verilerinin zaman serisi analizi ve farklı fenolojik

aşamalardaki ürün deği̧skenleri ve parametreleri için – SAR, PolSAR ve InSAR ve de

SAR ve optik verilerin entegre kullanılamasında ve ayrıca tarımsal izleme ve yönetim

stratejileri olarak ürün deseni haritasını etkin bir şekilde değerlendirmesinde ki

potansiyelini vurgulamaktadır. SAR parametrelerinin bitki biyofiziksel deği̧skenlerine

duyarlılığının daha iyi yorumlanması için hassas arazi gözlemleri gereklidir ve bir

sonraki çalı̧smada tarımsal faaliyetler hakkında daha doğru bilgi elde etmek üzere

yüksek mekansal çözünürlüklü SAR verileri değerlendirilecektir.

Anahtar Kelimeler: Tarımsal izleme, Sentinel-1 SAR geri saçılması, polarimetrik ve

interferometrik SAR, ürün deği̧skenleri, ürün deseni haritası üretimi
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xxiii



1
Introduction

1.1 Literature Review

Crops as food resources have a substantial importance in socio-economic issues of

societies in terms of sustainable management. In this regard, sustainable food

security is dependent on precise agricultural activities monitoring and the collection

of accurate farming information [1]. Accordingly, agriculture is amongst important

activities that have played a key role in providing food security to a growing

population of the world [2]. Precision agriculture is a management strategy that

integrates information and communication technologies with the agricultural industry.

Therefore, the information of each component of the small area in a farm is used to

adapt the type and amount of inputs in those areas in order to evaluate and manage

the temporal and spatial variability more precisely. Spatio-temporal observing and

evaluation of crop type as an agricultural monitoring system is a critical step regarding

estimate the area allocated to each crop type, computing statistics for crop control of

area-based subsidies or crop production forecasting, environmental impact analysis

and some other applications. In fact, targeting and monitoring programs are designed

to promote economic and environmental sustainability as an agricultural management

policy [3].

Land use/cover mapping is one of the main application fields of the remote sensing

data and thus is well suited for mapping of seasonally changing variables such

as agricultural areas. Since, agricultural lands are characterized by their typical

spatial patterns, temporal dynamics and changing radiation reflecting and scattering

behavior due to crop phenology and plant status, hence applying time series

of remote sensing data within a short revisiting time can be utilized for better

discrimination and identification of different crops, investigating crop variables (

e.g. crop height, canopy coverage and water content) for improvements in crop

growth monitoring, crop disaster prediction and providing accurate information to

precise farming. Thus, decision-makers can have accurate and updated information

regarding crop management; agricultural production planning, food security stability
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promotion, crop trading market, etc. Besides, farmers also benefit from obtaining

timely information about crop phenological development as well as yield estimation.

Therefore, Satellite data are widely used to study and investigate agriculture activities

changes as dynamic phenomenon over the time and in terms of quantitative and

qualitative agricultural products, estimation of the planted area, the identification of

certain types of crops, the growth stages and crops tragedy prevision [4].

Remote sensing technologies that generating satellite data, are known as the most

unique and important source of information about the earth and other planets in

the space. The applicability of the satellite data is unlimited, providing various

and multi-fold advantages of the global, regional and local scale. Earth observation

satellites that transmit electromagnetic spectrum (EMS) energy and collect data

(reflecting and radiating) of the earth’s characteristics, in terms of their passive

or an active imaging instrument mode are two different remote sensing systems.

Different sensors measuring various wavelength portion (e.g. visible, near-infrared

or microwave) of the EMS. The remote sensing systems that their measurements

depend upon the external energy source, such as sun are known as passive and which

the transmitted energy from the sensor provided by system’s itself referred to active

remote sensing systems [5]. Optical (passive) and SAR (active) are two different

sources of remote sensing systems that can be applied separately or integrated,

offering unique spectral and textural information for land use/cover evaluations,

changes and generating information with higher quality [6]. The sensors that

functioning in the optical region of wavelength spectrum obtaining information on

visible, near-infrared and shortwave infrared wavelengths. Images obtained in the

optical spectrum from multi-spectral sensors due to their high spectral and spatial

resolutions and therefore, their straightforward interpretability are preferred data

sources in the case of favorable weather conditions. However, during the persistent

and long-lasting period of cloud cover in the rainy season and in the darkness, the use

of optical sensors are limited for the continuous monitoring of the earth surface and

characteristics [7].

One of the first remote sensing studies in vegetation monitoring is related to the year

1973, one year after the launch of the ERTS-1 satellite (Earth Resources Technology

Satellite)- the first series of Landsat (Landsat 1) satellites, where Rouse et al. [8] have

been developed a method for quantitative measurement of vegetation conditions over

wide areas using ERTS-1 MSS (Multi Spectral Scanner) data. The main objectives were

to evaluating of the application of the ERTS-1 spectral bands 5 and 7 data to compute

a Band Ratio Parameter (correlation of the Band Ratio Parameter above-ground

green biomass and vegetation water content) for measuring the vegetation type,

amount, and condition of rangeland vegetation to provide a new data source for
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regional basis agro-economic applications. Their project resulted that the proposed

method using ERTS-1 MSS data had good potential for mapping vegetation conditions

and for providing growth information in the test area. Different multispectral

and hyperspectral optical data for various purposes are used in the agriculture

domain. It has been achieved for many applications such as vegetation indices (e.g.

Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Normalised

Difference Water Index (NDWI), Enhanced Vegetation Index (EVI), Pasture Index

(PI), Ratio Vegetation Index (RVI), and etc. [8–13], nitrogen management [14–18],
pasture management [19], identification of different crop types, crop’s development

monitoring and mapping [20–27], crop acreage estimation [28], yield and production

forecasting [29–32], and other applications.

The role of active remote sensing systems including SAR, polarimetric SAR (PolSAR)

and interferometric SAR (InSAR) in agricultural activities was investigated in different

previous studies. SAR sensors are an active system independent of illumination

sources, equipping the microwave region of the EMS with long wavelengths to

collection of data in day-or-night and in different weather conditions with a constant

observation of earth surface from the polar orbit [2, 33]. Microwaves can penetrate

through clouds where the cloudy sky is a serious obstacle to the application of optical

images particularly in a rainy climate. The SAR system has sensitivity to the physical

morphology and the geometrical characteristics of the land surface and cover (soil

roughness, moisture, vegetation structure, etc.). Therefore, radar sensors collect the

echoes of the backscattered signal in a sequential way thus very different to that

of optical satellite data, which measure reflected solar light in visible and infrared

wavelengths [34]. The SAR technique has become increasingly an effective method

of providing seasonal agricultural monitoring [1, 2]. The superiority of radar remote

sensing techniques and capabilities of SAR technology have convinced researchers

and government officials to apply it as a widely used, practical and efficient tool in

such applications. The SAR system is sensitive to the vegetation biophysical variables

and dynamical characteristics of plant targets, and underlying soil parameters such

as moisture content, soil surface roughness, deflection and irregularity, geometric

property, and due to its high spatial and temporal resolution help to perform field-level

crop classification and monitoring activities [4, 35–37]. In addition, SAR sensor has

a capability to differentiate crop types due to its sensitivity to the crop structure and

water content. Plant water content, roughness, leaf size, and vegetation greenness

level that are related to the bio-physical characteristics of the features represent the

amount of reflectance. Crop structure and water content are variables that varying in

respect with crop type, growing stage and crop conditions [38]. Different crop types

at each phenological stage show different bio-physical characteristics [36]. Therefore,
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for various land cover features, SAR products provide the feasibility of estimating

crop height, crop type and crop condition mapping which are valuable information

for different agricultural applications and marketing of agricultural yields [39].

Optical sensors are beneficial for crop mapping and reliable applicants for agricultural

land use monitoring as they measure reflectance from targets in the electromagnetic

spectrum (reflectance in visible and shortwave infrared and thermal spectrum).

However, success in crop identification with optical data mainly depends on the

acquisition of image during key crop phonological stages. The accuracyof the

classification decreases during these critical periods if optical data are used [3]. When

added to the broad land use/cover classes’ information provided by the optical data,

the surface roughness and moisture information which are provided by SAR sensor

allow one to extract more detailed specification of land surface and features [2].
Integrating both optical (reflectance) and Synthetic Aperture Radar (backscatter)

multi- temporal features provides some advantages in terms of a more reliable crop

map. Combining data from different sources of remote sensing data such as optical

and radar datasets offer unique spectral and textural information for land use/cover

evaluations, characterizing land use changes and generating information with higher

quality than the individual datasets [6]. The high potential of inegration of the SAR

and optical datasets can meet various observational needs for land research activities

such as agriculture monitoring [40–45].

Scattering SAR data can be obtained in different wavelengths and polarizations.

Texture measures, multi-sensor fusion, multi-polarization data, multi-temporal data

and polarimateric data are techniques which is used to classification of the vegetation

type [46, 47]. In agricultural studying, interactions between radar configuration

(frequency, wavelength, polarity, and incident angle) with each other, as well as its

interaction with the plant variables, has made the use and interpretation of radar

data useful but complicated [48–50]. In this regard, radar parameters such as

polarization which affect the signal scatter and target parameters that influence the

signal propagation is subject to study. Object characteristics such as orientation,

material constituents, configuration, and dielectric properties can be estimated using

SAR Polarimetry (PolSAR) [51, 52].

Previous studies have demonstrated the sensitivity of polarimetric SAR to crop

variables such as crop leaf area index (LAI), and crop biomass [53–55]. Processing and

analyzing of the radar signals indices at different wavelengths, frequencies, incident

angles, and polarization are amongst the techniques used in the studies of the crop

biophysical characteristics [6]. In a study of monitoring and estimating wheat yield,

Mattia et al. [55] investigated the sensitivity of multi-temporal C-band, polarizations
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(HH and VV) to biophysical parameters, and the relationship between the radar and

biophysical measurements on the wheat development stages. In order to maximize

the sensitivity of SAR sensors for the maize growth cycle monitoring and mitigating

the soil moisture impact on the signal and in SAR time series, Blaes et al. [56]
developed a model by simulating the signal in all possible configurations (polarization

and incidence angles at C-band) for ENVISAT, RADARSAT, and ERS SAR images and

they found that dual polarizations indices are more sensitive to maize growth and

less sensitive to soil moisture variations. Ruiz et al. [35] utilized multi-polarized

RADARSAT-2 data to set up indicators of crop condition and yield estimation for

corn crop growth stages by obtaining polarization signatures from radar data, and

applying related crop parameters and vegetation indices in Central Mexico. The results

indicate that the application of RADARSAT-2 polarimetric SAR data isoperational in

the agricultural activities. Liao et al. [57] investigated the sensitivity of RADARSAT-2

polarimetric SAR (C-band) data using sixteen parameters to crop height and fractional

vegetation cover (FVC) variables of corn and wheat. They explored that the corn

height and FVC are strongly correlated with SAR parameters at the early growing stage

but the correlation is low at the later growing stages. Furthermore, they observed

that the sensitivity of SAR parameters to wheat variables (height and FVC) is very

low. The study concluded that RADARSAT-2 polarimetric SAR (C-band) data has high

potential in crop variables estimation for broad-leaf crops. Some other studies have

also investigated the potential use of PolSAR technique as an agricultural monitoring

method such as using backscatter intensities of TerraSAR-X, ASAR/ENVISAT, and

PALSAR/ALOS data to the detection of sugarcane harvesting events [58], analysing

the COSMO-SkyMed X-band, ENVISAT ASAR, and ALOS PALSAR backscatter values

relationship to the vegetation indices [59] and the sensitivity of C-band and X-band

PolSAR to grasslands mowing events [60, 61].

Regarding the different agricultural applications of SAR system and based on the

analysis of backscatter intensities, InSAR approach has also shown the potentiality

for monitoring and management practices and vegetation change detection. As the

first applications of InSAR-based technique in vegetation parameters assessment were

abrupt changes detection in vegetation in the forest region [62] and deforestation

observations [63]. The InSAR-based approach has been applied for agricultural

monitoring in terms of comparing interferometric coherence for mowed grasslands

with grasslands covered by vegetation [64, 65], ploughed bare fields and vegetation

with low height [66, 67], and the importance of the meteorological effects in the

interpretation of interferometric coherence [68–70]. The relationship between the

repeat pass temporal interferometric coherence C-band SAR and grasslands mowing

events, and also temporal decorrelation affected by precipitation in Central Estonia
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were investigated by [71] and resulted the feasibility of interferometric coherence for

mowing detection and the source of factors that affect the coherence such as farming

activities and meteorological conditions were determined.

On this purpose it is aimed to research different remote sensing systems including

optical, SAR, PolSAR and InSAR in agricultural activities to crop monitoring,

management and mapping in the selected test area in the konya basin, Turkey. In this

study, the goal is application of the remote sensing system’s potential to provide useful

information during growing stages of different crop types and seasonally changing

variables and hence, the information of each component of the small area in a farm is

used to adapt the type and amount of inputs in those areas in order to evaluate and

manage the temporal and spatial variability more precisely.

1.2 Objective of the Thesis

Agriculture in Turkey as one of the top ten largest agricultural producer in the world

plays a critical role in socio-economic terms of the country. Due to its great variety in

geomorphology, topography and climate, therefore, a large percentage of the country

is allocated to the agricultural land, and hereby a great number of the population is

employed in agriculture. The conventional agricultural survey and management, and

crop condition monitoring which mainly based on field observations on small scale

and being non-real-time, thus used to be time and labor-consuming and expensive.

Whereas the plant biological and biophysical parameters which are measuring from

the field surveys, can also be derived from remotely sensed data, freely or at a very

low cost, in high frequency and more precisely at a very wide range of scales, from the

micro-level to global surveys. On the other hand, for precision agriculture, real-time

basis information and reliable data leading to better response times and allowing to

take on time and appropriate actions. Therefore, remote sensing systems provide

the actual synoptic view of large region at a time, frequently and accurate for those

purpose, which is not possible to obtain from conventional survey methods.

This thesis attempted to investigate different remote sensing techniques and

applications in crop monitoring and mapping in the study area. The main objective

is to assess the sensitivity of remote sensing data to the crop variables (i.e. crop

height and canopy coverage) of different crops and comparing the finding with the

data acquired from field observation during the crop growing season. Moreover, the

potential of the remote sensing data in crop condition estimation and the integration

use of different sensors data to discriminate the different crop types were investigated.

Therefore, the intention of this study is two-fold: (1) to highlight the potential use
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of SAR, PolSAR and InSAR systems in crop variables and parameters estimation and

assessment of the relationship with remotely sensed data and field observations in

agricultural studying (2) to investigate the optical and radar data integration approach

to the enhancement of crop mapping, and the performance of the sensors backscatter

and reflectance for temporal crop type discrimination with a combination of the optical

and SAR data. In order to evaluate the capability and efficiency assessment of the

sensors, the datasets were acquired parallel to the field surveys in 2016 in the study

area. The summary of the main contributions of this work is as follows:

1. To evaluate the sensitivity of different dual polarimetric SAR parameters to crop

height and CC of maize, sunflower and wheat, and to investigate the changes in SAR

backscatter arising from crop height and CC during crop phenological stages.

2. To investigates the potential of polarimetric SAR backscatter data in an agricultural

area for growth monitoring of different crop types (maize, sunflower, wheat and

potato) and crop mapping using that polarimetric composite of images which are

produced from multi-temporal analysis.

3. To demonstrate the potential of discriminating crop types using polarimetric SAR

(backscatter) in integration with useful optical (reflectance) indices.

4. To studying the relationship between the interferometric coherence calculated from

the different pass directions and multi-track SAR image pairs and the different crop

type’s growth stages (i.e. sowing, growing and harvesting).

1.3 Hypothesis

To indicate the sensitivity of the SAR Parameters to Crop variables the research

hypotheses were that:

- There is correlation between the SAR backscattering values with each crop in the

different growing stages and SAR parameters are most correlated with crop variables.

- The different crop types from the same leaf category show the similar correlation

between SAR parameters and crops variables.

To show the potentiality of the time-series analysis of the SAR polarimetry in growth

monitoring and the temporal backscatter changes for different crop types and crop

mapping:

- Useful information about crop status can be extracted from SAR backscattering values
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during growing stages where polarity can affect intensity values.

- The classification of the polarimetric composite of the images can help to identify

crop types.

To illustrate the advantages of the integration of the optical and SAR datasets:

- The integrated use of the optical and SAR data and a combination of different datasets

can improve the crop classification results.

To assess the interferometric coherence capability to crop growth monitoring using

InSAR repeated-pass approach:

- The interferometric coherence calculated from the multi-track and different pass

directions of the SAR image pairs indicates the high correlation with crop growth

status.
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2
General Overview of Satellite Remote Sensing Systems

The events or objects that are being observed with remote sensing sensors, the

information needs a physical carrier to move from the events/objects to the sensors

via an intervening environment. The output of the obtained information from the

scene being observed is an image that is required the additional steps of processing

and analyzing to make the interpretation possible. In general, electromagnetic waves

are as an information carrier in remote sensing systems. Electromagnetic waves are

energy that transported through space in the form of periodic disturbances of electric

and magnetic domains at the same speed as commonly known as the speed of light

(Figure 2.1).

Figure 2.1 Electric and magnetic fields of the electromagnetic wave

An electromagnetic wave is specified by a frequency and a wavelength and these two

quantities are related to the light speed and is shown as the equation 2.1.

speed o f l i ght (c) = f requenc y (v)× waveleng th (λ) (2.1)

The frequency and therefore, the wavelength of an electromagnetic wave depend

on the energy source. In our physical world there is a wide range of frequency

encountered, beginning from the low frequency (long wavelength) of the radio waves

of the electric waves created by the energy transmission lines and end to the very

high frequency (very short wavelength) of the gamma rays originating from the

atomic nuclei. This broad frequency domain of electromagnetic waves forms the
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Electromagnetic Spectrum (EMS). Figure 2.2 shows several wavelength (frequency)

regions of the EMS.

Figure 2.2 The EMS different wavelength (frequency) regions

From the wide range of electromagnetic radiation, only a narrow band of the EMS

ranging from 400 to 700 nm is visible to the human eyes. Regarding the boundary

between the EMS regions, it should be considered that the boundaries are approximate

and two adjacent portions can be overlapped. Therefore, earth observation satellites

in terms of their sensors’ capabilities of using different parts of the EMS and also their

energy source are categorized into two distinct optical and microwave remote sensing

systems.

2.1 Optical Remote Sensing Systems

Optical sensors detect solar radiation (sunlight) reflected and/or emitted from the

surface features of earth and targets on the ground to form images of the earth’s

surface and characteristics (Figure 2.3). The sensors that functioning in the optical

region of wavelength spectrum obtaining information on visible, near-infrared and

shortwave infrared wavelengths. Different features such as constructions, vegetation,

water, cloud, road, and soil reflect visible and infrared radiation in different ways

(Figure 2.4). The radiation after being emitted from its energy source (e.g. sun) and

before used for remote sensing has to travel distances through the earth’s atmosphere

to reaches the earth’s surface. The incoming electromagnetic radiation to the sensor

due to the mechanisms which are known as scattering and absorption caused to be

attenuated and redirected from its original pathway. These mechanisms are related to
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the existence of particles or large gas molecules in the atmosphere and the interaction

of light or radiation with these particles or gases. Therefore, the amount of scattering

and absorption can be changed depending on the the distance the light travels through

the atmosphere, the wavelength of the radiation, and the redundancy of particles or

gas molecules.

Figure 2.3 An illustration of optical remote sensing system (Image source: Sun et.
al.)

Figure 2.4 Spectral characteristics of typical surface features (Image source: crisp)
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The rest of the radiation that is not scattered or absorbed in the atmosphere and

reaches the ground can interact with the targets and the earth’s surface. The Target

Interactions when the energy hits or is incident (I) upon the surface are normally

happening in three forms including absorption (A); transmission (T); and reflection

(R) [72] as shown in Figure 2.5. With regard to the wavelength, the substance and the

condition of the features, the proportions of each interaction will differ and hence, the

collected incident energy will interact with the ground in one or more of these three

forms.

Figure 2.5 The interactions of the radiation with targets on the earth’s surface

Among these three ways of interaction, the most interesting form in remote sensing is

the reflection (R) and when the radiation bounces off from the object and redirected.

Depending on the surface characteristics two types of radiation reflection occur,

specular reflection and diffuse reflection (Figure 2.6). When a surface is smooth,

approximately all the energy that reaches the ground is directed off from the surface

in a single direction, and therefore, specular or mirror-like reflection occurs. Whereas,

diffuse reflection happens when the surface is rough and the energy is reflected nearly

in a uniform manner in different orientations.

Figure 2.6 Two different types of radiation reflection; specular reflection (left) and
diffuse reflection (right)
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Depending on the target roughness and the incoming radiation wavelength, surface

features mostly lie somewhere in the perfectly specular, perfectly diffuse reflectors

or somewhere in between. This means that, once the wavelengths are considerably

smaller than the surface properties variations or the dimension of the pieces that

form the surface, the diffuse reflection would dominate. The interactions of

some of the targets surface feature with incoming radiations at the visible and

infrared wavelengths can be explained through some examples. For instance, in

vegetation when chlorophyll pigment (a chemical compound that provides energy

for photosynthesis with the absorption of light) is maximum at plants in summer,

leaves appear greenest,and when the chlorophyll is less in autumn leaves appear red

or yellow. This is due to that in summer, the chlorophyll strongly holds radiation

in the red and blue wavelengths but reflects green wavelengths, whereas there is

excessive green radiation absorption in autumn because of the less chlorophyll in the

leaves and therefore, more reflection of the red wavelengths occurs. If the internal

structure of leaves is healthy then leaves act as perfectly diffuse reflectors to the

near-infrared wavelengths. Hence, as a one way to determine how healthy vegetation

is the measuring of the near-infrared reflectance. Water as another example is the

strong reflector of shorter visible wavelengths (e.g. blue) and absorbs radiation

with longer wavelengths (e.g. near-infrared). Since water reflects radiation in the

blue wavelength, it usually looks blue or blue-green but darker if observed at red or

near-infrared wavelengths. Figure 2.7 shows the interactions of different visible and

infrared wavelengths with vegetation leaves and water.

Figure 2.7 Visible and infrared wavelengths interactions with vegetation leaves (left)
and water (right)

However, the existence of algae in the water can make confusion in terms of reflection

because the chlorophyll in algae causes to reflects radiation in the green and absorbs

more of the blue wavelengths and, making the water look greener in color. Moreover,

water surface characteristics such as water surface roughness, suspended materials
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and oil spills, due to their different reflection properties, therefore, can also make

the water-related interpretation more complicated. Accordingly, to indicate spectral

responses for the different objects over a variety of different wavelengths and to

correctly evaluate the interaction of the surface properties with electromagnetic

radiation, knowing the factors which influence the spectral response is critical.

Therefore, a spectral response for the specific target can be build up by measuring the

reflected (or emitted) amount of electromagnetic energy by the targets over a variety

of different wavelengths. Figure 2.8 illustrates the vegetation and water spectral

response at different wavelengths.

Figure 2.8 Spectral responses of the vegetation and water over a variety of different
wavelengths

2.2 Microwave Remote Sensing Systems

This remote sensing system uses the long-wavelength radiation region of the

electromagnetic spectrum and measures the microwave portion of the EMS which is

ranging from approximately 1 mm to 1 m in wavelength of the spectrum. Microwave

frequency is ranging from 0.3 GHz to 300 GHz corresponding to the 1 mm to 1 m in

wavelength, respectively (Figure 2.9). Microwave sensors are typically active remote

sensing systems that detect and record echos (backscatters) reflected from transmitted

microwave radiation incident upon the features on the surface [73]. In compare to

the active microwave remote sensing system, passive sensor utilizes a broad range

of microwave radiation. The microwave bandwidths are commonly known as the

K, X, C, L and P bands that are employed the microwave band ranges in the active

microwave sensors (Figure 2.10) [72]. In order to proceed active microwave, the

sensor integrates several pieces of microwave equipment for imaging (i.e. SAR sensor)
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and non-imaging including radars (RAdio Detection And Ranging), scatterometer,

and altimeter. Radar sensor transmits a signal (microwave radio) upon the target

and records the backscattered part of the signal. The round trip time delay between

the signals (transmitted and reflected pulses) defines the distance (or range) to the

object and therefore, the intensity (which is related to the surface characteristics and

incidence angle) of the backscattered signal is measured to separate different targets

on the ground. SAR as an imaging sensor is used for measuring and imaging the

surface variations in microwave backscattered signal such as surface roughness and

surface moisture. Non-imaging scatterometers are used to detect variations in a wide

range area, for example, estimating ocean wind speed by measuring the variations

in the surface roughness. The elevation of the earth’s surface is measured by the

altimeters that are fixed below the platform viewing the ground straight down at nadir.

In fact, non-imaging microwave sensors are one linear dimension profiling devices

while imaging sensors take measurements in two-dimensional.

Figure 2.9 Parts of the electromagnetic spectrum

Given that active microwave remote sensing carrying its own energy source and

independent of the sun as source of illumination and hence, can be operated

day-or-night. In addition, microwave radiations with long wavelengths are not prone
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Figure 2.10 Microwave bandwidth ranges and specifications [72]

to atmospheric scattering and therefore, enables radar pulses to penetrate through

cloud cover, haze, smoke, dust, and all rainy climate but the heavy rainfall [5].
Consequently, These properties of microwave energy allow collecting data at any time,

different weather and environmental conditions.

The focus of this thesis is solely on imaging radar active microwave remote sensing

systems. The basic principles of Synthetic Aperture Radar (SAR), Polarimetric SAR

and Interferometric SAR is discussed in the next chapter.
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3
Radar Bachground

3.1 Synthetic Aperture Radar

Imaging radar can be generally divided into two distinct categories: Side Looking

Aperture Radar or Side Looking Radar (SLAR or SLR ) and Synthetic Aperture Radar

(SAR). SLAR radar is the classical radar system that is well-known as Real Aperture

Radar (RAR) with a real aperture antenna (a physical antenna) in limited length. The

SLR imaging system is equipped to a straight lengthy antenna mounted on the aircraft

or satellite platform that its longitudinal axis parallel to the flight direction. Parallel

direction to the flight track is called the azimuth direction (along-track) and the

direction of the radar Line-Of-Sight (LOS) is called the range direction (across-track).

Detail of the imaging geometry of the side-looking monostatic radar in a straight

flight line over the flat terrain at altitude H is illustrated in Figure 3.1. The radar

platform is on motion with velocity v, and the radar antenna emits microwave energy

pulses perpendicularly to the platform flight direction and towards to the targets on

the ground. The pulses after reaching to the ground and depending on the targets

characteristics are scattered usually in different directions as well as the direction of

the antenna. The return pulses ( the backscattered echoes) are received by the antenna

at different times based on the distance between the antenna and different objects on

the ground and the recorded backscatters of the echoes are used in the construction

of the radar image. Radar is basically a ranging device that measures range (distance)

to targets located within the beam footprint [74]. In any microwave remote sensing

systems, a transmitter, an antenna, a receiver, and a recorder are basic devices in the

configuration of the radar sensors. The size of the antenna is the principle for the

footprint (beam width) and therefore, for the radar imagery resolution. The ground

resolution of a real aperture SLAR system (i.e. spatial resolution; range and azimuth

resolution) is related to the slant range and azimuth direction which depending on the

length (aperture length) and the antenna beamwidth and is defined as the capability

of the device to differentiate between two objects on the ground [75]. The slant range

and range resolution of a RAR are displayed in Figure 3.2 and Figure 3.3, respectively.
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Figure 3.1 Geometry of RAR, side looking aperture radar [74]

The ground range resolution of a RAR is assigned as ρg in Figure 3.3 and is given as

equation 3.1.

ρg =
cτp

2sinθ
(3.1)

Where τp is indicates the pulse length and c is the speed of light. In fact, the range

resolution is based on the pulse width and look angle but it is independent from

the height. The coefficient of two is related to the round-trip of the radar pulse

(sent out from and return to the radar). Since there are practical limits on peak

transmitter energy and, in practice, the radar pulses cannot be made short arbitrarily

thus, sufficient microwave energy required to be delivered to lightening the target

in order to gain the needed Signal-to-Noise-Ratio (SNR). Therefore the maximum

transmitter energy and required SNR determine the length of the pulse [74]. Azimuth

resolution which is parallel to the flight direction of the platform is defined by the

minimum distance on the ground in which two objects can be separately imaged.

Hence, two objects at the same slant range can be distinguished only if they are not

at the same time in the radar beam. Thus, the azimuth resolution (ρa) can be written

as equation 3.2, where the θH the angular spread of the radar beam in the azimuth
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direction is equal to wavelength (λ) divided by antenna lenght (l).

ρa = RθH =
Rλ
l

(3.2)

There is an inverse proportional between the footprint and the size of the antenna,

thereby the longer antenna has a narrow footprint and hence, high spatial resolution

in azimuth direction. The resolution in terms of the slant range is defined with the

distance that two objects on the ground have to be away from each other to give two

different waves (echoes) in the return signal to avoid overlap of the incoming signals.

This means that if two objects (e.g. A and B objects in Figure 3.2) are separated by at

least half a pulse length then they can break down in the range direction.

Figure 3.2 Exemplification of the slant range [76]

Figure 3.3 RAR range resolution [75]
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The interaction between the several components of the radar imaging system is that

the transmitter generates the microwave energy and transmits the energy to the

antenna from where it is emitted upon to the target. After the energy hits and interacts

with the target, the receiver accepts the backscattered energy (signal) as received by

the antenna, and the received signal is filtering and amplifying by the receiver as it

required for recording and the recorder then stores the signal [76]. Radar imaging

principles and the systematic interactions between its components is shown in Figure

3.4.

Figure 3.4 Geometry of imaging radar [75]

Given that it is not feasible for a RAR system platform (aircraft or spacecraft) to carry

a very long physical antenna which is required for getting useful and high spatial

resolution imaging of the earth surface, therefore, SAR was developed to overcome this

limitation of the RAR system and thus, to improve spatial resolution with synthesizing

the large antenna from the small antenna (RAR real antenna) by taking advantages

of the motion of the platform to emulate a longer antenna [76]. As shown in the

Figure 3.5, SAR principally, operates by simulating long antennae and this virtual

implication is achieved through the Doppler effect that allows the small real antennae

with a limited beam width (D) to forward microwave beams at different time intervals

along with the beamwidth [72]. During the time that radar transmits the microwave
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Figure 3.5 SAR system geometry with the parameters [77] [78]
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signals to the object, SAR continues to receive the return pulses. Meanwhile with

the movement of the platform the relative distance between the radar and the object

changes which causes a Doppler effect to dampen a chirp modulation of the received

return pulses.

In the imaging radar, due to the earth’s rotation and because of the radar moves

along its flight direction the relative speed between the radar and each scatterer

changes, hence, the Doppler frequency shift corresponding to each point scatterer

on the ground is different, and this causes the received signals to have a fading

characteristic. Therefore, Doppler frequency shifts can more easily be perceived when

applying higher frequency due to that the proportion of frequency shift would be

larger. However, there would be a slight angle called the squint angle, ωs of the

radar platform [79]. Thus, the Doppler frequency for a specific target, based on the

squint angle and platform speed Vs (the sensor-target velocity), and look angle can

be written as equation 3.4.

fD =
2vs

λ
sinωs sinθ (3.3)

When the sensor is in the closest position to the target and the center frequency of

the sequence of a target through the radar beam is in zero Doppler position ((i.e.

t = 0) it is called the Doppler centroid frequency. It is assumed that the Doppler

frequency first is positive in zero Doppler position and decreases down to zero, and

then becomes increasingly negative as the movement of the frequency of the sequence

of a target through the antenna beam. The changes of the Doppler frequency composes

the Doppler bandwidth BDop, where βa is the azimuth beamwidth of the antenna and

the vs is the relative speed of the platform and is given by the equation 3.5.

BDop =
2βavs

λ
(3.4)

The total Doppler frequency turn is from −v/L to v/L, thus describing the Doppler

bandwidth as the following equation.

∆ fD =
2v
l

(3.5)

The resolution in the azimuth direction of a SAR focused image related to Doppler

bandwidth and the relative speed of the platform is shown in equation 3.6.

∆Ag =
vs

BDop
=

l
2

(3.6)

Therefore, the azimuth resolution of a SAR is only a function of the length of the
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physical antenna and not depend on imaging distance or wavelength. In order to

increase the azimuth resolution of azimuth direction, a matched filter proportional to

the reverse characteristics of chirp modulation called azimuth compression is intended

as shown Figure 3.6. On the Doppler frequency shift assessment, it is considered that

the Doppler shift when the target is moving away from the radar system is negative

(opening range) and when the target is moving toward the radar it is positive (closing

range).

Figure 3.6 Synthetic aperture processing, basic theory including the Doppler effect,
matched filter, and azimuth compression [80]

An image acquired by the radar contains a digital number for each pixel which

indicates the strength of the received backscattered energy from the ground. The

received energy from the each transmitted radar signal can be represented by the

physical parameters and illumination geometry using radar equation as shown in

equation 3.7 [81]. The bistatic radar equation is extracted as with monostatic radar

(transmitter and receiver is at the same platform) and solely the grouping of terms is

different.
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Figure 3.7 Radar Transmission scheme and coordinate system [82] [83]
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Where

PR = received energy,

PT = transmitted energy,

RT = distance from the transmitter to the object,

RR = distance from the receiver to the object,

GT = transmitter gain,

GR = receiver gain,

λ = wavelength,

R = range from the sensor to the object, and

σB = bistatic Radar Cross Section (RCS) of the target and it is depending

on the target properties and the extent of the illuminated terrain.

In fact, the radar equation demonstrates the basic relationship between the

radar system parameters, the received energy, and the target’s characteristic [82].
Measurement of the intensity of the received signal is the critical objective made

by the radar that allows various subjects are differentiated in microwave remote

sensing systems. Accordingly, measuring the angle and distance to a target is made

by recording the arrival time of the received signals to discriminate among different

targets. For distributed targets with the bistatic radar equation 3.7 can be extended by

integrating the backscattered energy over the illuminated terrain surface and modified

it as equation 3.8.

PR = PT

∫

Ail l

�

G2
antλ

2

(4π)3R4

�

σ0dA (3.8)
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Where (Ail l) is the illuminated surface area, Gant is the radar antenna gain and σ0 is

the unitless backscattering coefficient that indicates the return backscattered per unit

surface area. The radar equation can be used to estimate the energy backscattered

by the target if the characteristics of the radar system and the imaging geometry are

specified. The intensity of the backscattered radar turn back from the pointlike target

is described by the RCS (σ) through the equation 3.7 (radar equation) in the units of

area (m2). In general, RCS mostly depends on the shape of the scatterer, its dielectric

constant, imaging geometry (orientation of the scatterer), and the used wavelength

than the size of the object in the real-world [84]. Similar to the RCS, the proportion

of the backscattered energy compared with the incident energy on the scene for

distributed targets obtained from equation 3.7, is described by the backscattering

coefficient which is unitless and normalized by the illuminated surface area using the

incidence angle θi, assumed in flat terrain and can be expressed by equation 3.9.

σ0 =
β0

sinθi
(3.9)

Where β0 is the estimated backscattered energy (brightness estimate) aquired by

the radar in slant-range geometry that is not related the incidence angle and local

topography [85]. However, if the local terrain topography is recognized for normalize

the backscattered energy properly, the local incidence angle θi,local , should be used

in equation 3.9. According to the published works recommendation, the σ0 is used

only in connection with calibrated radar systems [84]. The σ0 is often represented in

decibels and is given as equation 3.10.

σ0
dB = 10 log10(σ

0) (3.10)

Because of the normalisation of σ and σ0 the backscattering coefficient in decibels

σ0
dB properly defines the orientation of the scattering which 0 dB refers to isotropic

scattering, positive and negative values to scattering are representing that energy

focuses towards or away from the radar respectively.

3.2 Radar image distortions

SAR imaging with the side-looking viewing geometry is achieved by sweeping the

ground through the antennae in an orthogonal direction to the platform flight

direction (azimuth direction). The sweeping width is a function of the magnitude

of the off-nadir angle. Radar is measuring the distance to targets in slant range

rather than the ground range (real lateral distance) along the ground thus slant-range

distortion appeared which causes variations in scale (caused by slant range to ground
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range conversion) that change from near to far range in the image [86]. Therefore,

due to the terrain elevation, SAR images in the natural coordinates (range and

azimuth) is limited by the presence of geometric distortions (caused by slant range to

ground range conversion) inherent to the range imaging mode. Figure 3.8 illustrates

the SAR geometry in the plane perpendicular to the azimuth track with a side-looking

antenna that illuminates the planarity (ground range plane) area in slant range

directions. A constant resolution (∆y) on the ground range corresponding to a

constant resolution (∆r) in the slant range direction of a target within the near and

far range can be derived from the equation 3.11.

∆y =
∆r

sinϑ
(3.11)

Where the incidence ϑ angle variation from near to far range causes to reduce the

ground range resolution∆y; meaning that features in the near range are compressed

with regard to the features at far range. These results also are relevant to the ground

range pixel (resolution cell) dimension. Similarly to the distortions encountered in

Figure 3.8 SAR geometry in the plane indicating slant range versus ground range
resolutions [80]

the planar area, radar imagery are also exposure to geometric distortions due to

relief displacement. In considering the effects of the surface slope α, the resolution

of the ground is determined by the local incidence angle ϑi = ϑ - α and related to

the terrain topography on the slant range direction of radar. foreshortening, layover

and shadows are three consequences that are resulted from relief displacement as

depicted in Figure 3.9. As previously mentioned radar measures distance in slant

range, and hence, foreshortening that depends on the angle that surface slope makes

in relation to the incidence angle, is responsible to the dilation or compression of the
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Figure 3.9 Geometric distortions in radar images due to relief displacement [76]

pixel in the radar image with respect to the radar beam with the slope on the ground.

Different foreshortening effects in terms of slant range and slop (−ϑ<α<ϑ) are shown

in Figures 3.10 to 3.13. foreshortening occurs when the radar beam hits the base of

Figure 3.10 Foreshortening effect when 0<α<ϑ, where the pixel on the ground is
highlighted [80]
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tall features (e.g. hills or mountains) and back towards the radar before it arrives

at the peak. When the radar beam is orthogonal to the slope such that the slope,

the base, and the peak are imaged simultaneously, then maximum foreshortening

occurs. The slopes in the mountainous terrain with intensive foreshortening effects

appear as bright features on the image and therefore, the length of the slope not

represented correctly. Layover happens when the radar beam hits the peak of a hill

Figure 3.11 Foreshortening effect when −ϑ<α<0, where the pixel on the ground is
highlighted [80]

or mountain before it arrives at the base, where the return pulse from the peak of

the hill or mountain is received before the pulse from the bottom and resulting to

the compression of the area with the slope into a single pixel in the radar image.

It causes where the incidence angle is smaller than the slope angle In the image it

appears bright features. This is similar to what happens in foreshortening but layover

is extremely severe for small incidence angles in the near range and in very steep

slope mountainous. In the case of, targets in the valley have a larger slant range than

related mountain peak, then the foreslope is "reversed" in the slant range image and

therefore, the ordering of surface features in the radar image is the inverse with the

ordering on the ground.

Radar shadow results from foreshortening and layover. In the case, that radar beam is

not able to illuminate the surface and the region does not generate any backscattered

signal thus radar shadow occurs and behind vertical features or slopes with steep sides

appear dark in the radar image due to the absence of the backscattered energy.

28



Figure 3.12 Layover effect when ϑ<α [80]

Figure 3.13 Shadow effect when α+ ϑ > 90 [80]
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Besides its characteristic slant range geometry, radiometric distortion is also subjects

of the side-looking SAR sensor which is related to the spectral anomalies arise from

the sensor itself imaging geometry (non-systematic errors). As backscattered energy

is received in the slant-range, therefore, the collected energy coming from a slope

facing the sensor is recorded in a diminished space in the image, meaning that it

is compressed into fewer image pixels than should be the case if acquired in-ground

range geometry [76]. Because the obtained energy from different features is combined

thus this results in high digital numbers and hence, the slops projecting the radar

appear extremely bright. Therefore, it is essential to correct SAR images geometrically

and radiometrically so that the pixel values truly and directly represent the radar

backscatter of the reflecting surface. For proper interpretation of the images, due

to the inherent radar geometry and radiometric distortions, a postprocessing step is

necessary to generate SAR images with uniform and earth-fixed grids to represent

the images in a standard map projection, for example, the Universal Transverse

Mercator (UTM). Thereby, the images are corrected and transformed into ground

range geometry that is usually referred to as geocoding. SAR images also have

inherent salt and pepper like texturing called speckle-effect nose, due to the hardware

or the erratic radiation from other sources (constructive and destructive interference)

resulting in dark and bright pixels in the image. The quality of the image decreases

with the appearance of speckle noise and the interpretation of the features be more

difficult. To reduce speckle nose effects either multilook processing or spatial filtering

can be applied.

3.3 Microwave polarizations

An electromagnetic wave polarization in the field of radar remote sensing applications

has a substantial function. In respect to the direction of the transmitted and received

microwave signal, different backscattering values and consequently different radar

images resulting from it. In fact, radar systems are capable to transmit the EM wave

horizontally and receive it again horizontally (HH), vertical transmission and vertical

reception (VV) and cross-polarized transmit and receive (HV or VH). In respect to the

direction of the transmitted and received microwave signal, different backscattering

values, and consequently different radar images result. The principles of the

transmitted and received radar wave in the linear (horizontal-vertical) combination

of two perpendicular fields are shown in Figure 3.14. Accordingly, a wave strikes,

out of +∞ (orientation of propagation z), on a target, then the incident electric field

registers as a superposition of two linear, orthogonal polarized waves in the linear

reference system. The polarization transformation state represented in terms of polar-

ization ellipse, [87]. It describes a curve, which the real part of the electrical field
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vector passes through if either the position of the propagation orientation is held

steady and the time runs or the time is held constant and the position of propagation

direction changes [76]. Figure 3.15 illustrates the direction of propagation a wave

Figure 3.14 Schematic of polarization pulse traveling from the radar and wave
interactions [88]

Figure 3.15 EM wave polarization represented in combination of two orthogonal
electric fields and direction of propagation a wave with a circularly polarized wave

(left) and polarization ellipse (right)[87]

in electric fields with a circularly polarized wave as a sum of two linearly polarized
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elements 90◦ out of phase and polarization ellipse. The orientation angle (ψ) and the

ellipticity angle (χ) are two angular parameters that the polarization ellipse can be

represented. The EM wave is fully determined by the parameters of its electric vector
~E(~r, t) including magnitude, phase, and direction given by equation 3.12.

~E(~r, t) = Ex ~x + Ey ~y (3.12)

Where (~E) is corresponding components of the real vector Real(~E) and ~r(x , y, z) is

related to the position of a vector that illuminated of a point in the space by the wave

characterized by the wave vector [89].

3.4 Radar data formats

The primary obtained SAR data are in a raw data format which their spatial resolution

depending on the radar system imaging characteristics. Raw data include the

backscatter of targets on the ground viewed at different points in the sensor trajectory.

The received backscatter signals from the targets are sampled and separated into two

components including information about the amplitude and the phase of the detected

signal are stored in different layers, together forming a complex number. Different

products derived from the raw data such as intensity images, geocoded images, and

phase-containing data are generated after being processed with a SAR processor.

Based on each pixel’s range and unique Doppler shift information the raw data are

compressed meaning that many backscatters of a point are merged into one pixel in

complex format which has information of the returned microwave. It should be noted

that the highest possible spatial resolution for compressed data is still maintained.

For each pixel, the phase and amplitude information is calculated from the complex

number.

When all backscattered information (both phase and amplitude) of a point is used

in the compression, then the Single Look Complex (SLC) format data is the output

data. In the case of multi-look processing, the whole range of the orbit in that an

object can be seen is separated into multiple components which each component

provides a look at the object. With making an average of these multiple looks, the

output image that acquired is a Multi-look image that is still in complex format but

with reduced spatial resolution. However, multiple looks averaging also reduces the

effects of the speckle-noise in the image. In order to produce an image to use for

visual interpretations, the SLC or Multi-look data require to be processed to change

the complex format into the Intensity image. The number of looks that are used in the

compression step, has a direct effect on the spatial resolution of the intensity image.
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3.5 Radar signal and object interactions

The received energy rate by the radar antenna is a function of the illuminating signal

strength and the characteristics of the illuminated object [76]. The transmitted energy

rate for illuminating the object on the ground is related to the surface characteristics

of the illuminated object such as surface roughness, shape, orientation, and dielectric

constant. On the other hand, illuminating signal (microwave energy) strength which is

in relation to radar system parameters such as wavelength, polarization, and imaging

geometry vary depending on the sensor types which has been explained in previous

sections. Surface roughness is the terrestrial property that most strongly influenced

the intensity of the radar backscatters such that a smaller scale also affects radar return

pulses. It is inferred by the wavelength of the radar (usually between 5 and 40 cm)

comparable with textural elements such as leaves and twigs of vegetation, gravel, and

sand. In terms of the radar wave interactions, a distinction needs to be taken between

the surface roughness and topographic relief. Surface roughness happens in the radar

wavelength range and between centimeters to decimetres while this range is between

meters to kilometers that topographic relief takes place [76]. A smooth surface acts as

a mirror (specular scattering), reflecting the radar wave at an angle equal and opposite

to the incidence angle which causes that the energy reflected away from the sensor

and thus a smooth surface appears black in the SAR image due to the no signal return

to the radar antenna. A surface is considered smooth with the Rayleigh roughness

criteria as written in below.

h=
λ

8sinη
(3.13)

Where h is mean height of surface roughness feature, λ is radar wavelength and η is

incidence angle [90]. The electrical properties of surface materials is measured by the

the complex dielectric constant which is related to the reflectivity of the microwave

consist of two part including permittivity and conductivity of a medium [91]. These

two properties are strongly related to the moisture or liquid water content of a medium

(e.g. soil moisture) in which an object with high dielectric coefficient has a strong

surface reflection. The distinguish of the two surfaces with equal roughness and the

equal radar return intensity for two surfaces, is detected by the difference in their

dielectric properties. Radar backscatter depends also on to the orientation of the target

relative to the radar antenna and also the local incidence angle. Natural surfaces

(e.g. vegetation canopy, forested area, grasses, variable soil surface, etc.) which are

composed of different mediums are generally inhomogeneous and thereby usually

depending on the wavelength of the radar and the permittivity of the media, resulted

in both surface scattering and volume scattering. Usually the high backscatter is caused

by the corner reflection ( e.g. the dihedral corner reflector) in point objects with
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limited size (manmade features, such as buildings, transmission towers, trunk of trees)

which gives a very strong radar return. The interactions of radar waves with the point

objects resulted double bounced scattering. Different radar backscatter behaviours over

the various objects on the ground is depicted on the Figure 3.16.

Figure 3.16 Schematic illustrations of radar wave backscatter over various surface
cover conditions [92]

3.6 Historical Background

SAR system first operational time is believed to be the X-band (3 cm wavelength)

sensor built in 1957 by Willow Run Laboratories of the University of Michigan for

the U.S. Department of Defense. NASA started to support the development of SAR

systems for civilian programs. The SEASAT-A developed by Environmental Research

Institute of Michigan (ERIM) and Jet Propulsion Laboratory (JPL) convinced NASA in

1978 to launch it as the earliest earth based radar remote sensing satellite that was

included an L-band (23cm wavelength) SAR sensor [80]. Although, The SEASAT-A

operational time was short and limited to 100 days due to damage occurred in the

system, the achieved results significantly shown the importance of the SAR system.

NASA approved the Shuttle Imaging Radar (SIR) series following the SEASAT-A
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mission and in years 1981 and 1984 the SIR-A and SIR-B series were launched

respectively. The L-band SIR space shuttles designed for monitoring of glacial

movements, oceanography and terrestrial analysis applications. The first S-band

SAR satellite was launched in 1987 by the former Soviet Union called as spacecraft

Cosmos 1870. The ALMAZ-1, second S-band HH-polarized satellite with 15 m ground

resolution was launched in 1991. Same year European Space Agency (ESA) launched

first European Remote Sensing satellite (ERS-1) with C-band (5.6 cm wavelength)

VV-polarized sensor and aim for 10 years data acquisitions. In 1992 the first Japanese

Earth Resources Satellite (JERS-1) L-band HH-polarized satellite was launched with

6 years operational mission until 1998.

In 1994 a four-polarization C-band and L-band system that has been integrated with an

X-band SIR-C sensor jointly developed by Germany and Italy. So far the SIR-C/X-SAR

was representing a unique spaceborne sensor due to its capabilities of simultaneously

acquire different bands and polarizations. ERS-2 was as a second mission which

overlapped with the ERS-1, and was launched in 1995. TANDEM orbit mission, was

offered to compose and the joint use of the two sensors (ERS-1and ERS-2) which

allowed a repeat orbit of the sensor with 1 day temporal baseline, and therefore, this

approach was provided different opportunities such as repeat pass SAR interferometry.

Canada Space Agency (CSA) in 1995, operated Radarsat-1, a multimode C-band HH

polarization satellite. NASA’s Shuttle Radar Topography Mission (SRTM) that in 2000

was released, used C and X band to compose Digital Elevation Model (DEM) outfitted

with two radar antennas with 60 m baseline between. The SRTM was designed to

moved the temporal decorrelation of repeat pass satellites and hence to implement a

single pass interferometry.

ESA was launched the Environmental Satellite (ENVISAT) in 2002, to study on earth

as land, ocean and atmosphere with ten different equipments. Japan, following the

JERS-1 and in 2006, has launched the second L-band equipped satellite called the

Advanced Land Observing Satellite (ALOS). In 2007 the other SAR new generation

satellites including COSMO-SkyMed in 8th of June, TerraSAR-X in June 15th, and

Radarsat-2 in the 14th of December were launched. The Italian COSMO-SkyMed

satellite series provides very short temporal baseline due to the constellation of the

four satellites equipped with X-band SAR sensor. The German TerraSAR-X satellite

has X-band and an 11 day revisit time. Canadian C-band Radarsat-2 satellite has left

and right looking operation systems. Since 2012 the SEOSAR/PAZ as an X-band SAR

satellite, is based on the TerraSAR-X platform operated by Spanish Earth Observation

Program as a dual-use (civil/defense) mission. ESA, in 2014 and 2016 has been

launched Sentinel-1 (Sentinel-1A/B) as a constellation of two satellites orbiting 180◦

apart with the main goals of land and ocean monitoring and also to provide C-band
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SAR data continuity following the retirement of the ERS-2 and end of the Envisat

mission. Sentinel-1 offers dual-polarized (HH+HV, VV+VH) products with a different

spatial resolution (down to 5 m) and coverage (up to 400 km) and high temporal

resolution (6 days repeat frequency) in four exclusive imaging operational mode which

enables to map the entire world (land and ocean). The expected operational life of

each SENTINEL-1 satellite to transmit earth observation data is at least 7 years and

have fuel on-board for 12 years. ESA has ensured the continuation of the Sentinel-1 by

ordering two more radar satellites i.e. Sentinel-1 C and -1D that will be launched from

2021 onwards to extend the operational monitoring at least until the end of 2030.
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4
Interferometric SAR

Interferometry is a procedure enables precise quantitative measurements of the terrain

heights and is among the principal applications of the SAR technology which is

typically represented by the SAR interferometry (InSAR) technique [93, 94]. It

essentially relies on the ability to measure the phase difference of radar waves in

interactions with a scattering objects from different passes made with the same sensor,

or even from different sensors and/or at a different time interval. InSAR technique

can be employed either to represent variations in height to generate a Digital Elevation

Model (DEM), referred as InSAR-DEM or an interferogram of the ground topography

and/or to obtain very accurate terrain surface height (sub-centimeter) changes

information (surface deformation) after the events (e.g. earthquake or volcanic

activity). InSAR is categorized into two groups as Cross-Track-InSAR (CT-InSAR)

and Along-Track-InSAR (AT-InSAR) depending on the measurable quantities (Figure

4.1). Repeat-pass CT-InSAR (also known as two-pass CT-InSAR) including DInSAR

Figure 4.1 Geometry of repeat-pass CT-InSAR (left) and AT-InSAR (right) [77]

(Differential InSAR), in which a single antenna forming two complex images (SLC

images) of the same area on land in different times and/or passes and a complex

interferogram is generated by multiplying of the first complex image (i.e. typically

referred to as master image) and the complex conjugate of the second image (i.e.,

the so-called slave image). Hence, from the measuring of the exact phase variation

between the two backscatters within an accuracy of the sequence of the wavelength

(i.e., centimeters) and also with the knowledge of the precise position of the antennas
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with respect to the earth’s surface from Global Navigation Satellite Systems (GNSS)

and the position of the pixel including its elevation the difference in the path length

can be estimated [72]. Figure 4.2 shows the repeat-pass interferometry and the

configuration of the InSAR geometry. In the AT-InSAR system a complex interferogram

is produced by using a satellite outfitted with two radar antennas with 60 m baseline

in between (e.g. SRTM sensor) by implementing single-pass interferometry. The

produced interferogram includes the interferometric phase, ψ (InSAR phase) and

coherence information (InSAR coherence). In addition to the radar wavelength and

antenna separation, the InSAR phase ψ also depends on the ground-range distance

and surface elevation. Theψ that depends on the ground-range distance is referred to

as the orbital or the flat phase and the relevant interferometric fringes are termed as

the orbital fringes. Theψ that related to the surface elevation is the topographic phase

to produce topographic fringes. In order to estimate the topographic phase, the flat

phase should be removed from theψ. Since for computing the complex interferogram,

the complex conjugate of the second image is used then InSAR phase ψ is folded or

“wrapped” about (0, 2π] at each 2π and therefore, ψ is so-called the wrapped phase

and the unwrapped phase φ is subjected as the true phase, absolute phase [77].

Figure 4.2 Configuration of the InSAR geometry [95]

The complex pixel (Cp) value which is calculating from the two complex images and

the phase difference (φ) are expressed by the equations 4.1 and 4.2, respectively.

Cp = A1A2 cosφ + isinφ = A12eiφ (4.1)
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φ = φ1−φ2= −
4π
λ
∆R (4.2)

Where A1, A2 and φ1, φ2 respectively, are representing amplitude and phase

components of two SAR images for the same pixel, ∆R is the range difference of two

SAR observations (displacement in the Line Of Sight (LOS)), the orientation angle of

the baseline (B) is α. Regarding that∆R can not be derived directly from the geometry

because of the orbital inaccuracies and also the 2π phase ambiguity (because of the

atmospheric condition changes between the two radar observations), thus ∆R can be

expressed through the equation 4.3 and 4.4 and thereby, the target height Hp can be

written as equation 4.5.

(R1 +∆R)2 = R1
2 + B2 + 2R1B sinθ −α (4.3)

∆R≈ B sin (θ −α) (4.4)

Hp = H − R1 cosθ (4.5)

Therefore, Interferometric phase (∆ϕ) is influenced by four factors consist of

topographical distortions caused by slightly different imaging angles of the two sensors

directions (t) atmospheric impacts (α) resulting in the wavelength distortions, any

range displacement of the radar target (∆R), and decorrelation effects (noise). Among

these four contributions, the decorrelation effects when the noise amount is low are

negligible and due to the local topography is accurately compensated (errors in the

DEM) the phase contribution is also negligible and therefore ∆ϕ can be simplified as

equation 4.6.

∆ϕ =
4π
λ
∆R+α (4.6)
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5
Methodology

5.1 Polarimetric SAR Backscatter

Several studies on the processing of radar data indicate that the phenological stages

of the plant have an effect on the backscatter of the signal, and there is a significant

correlation between the biophysical parameters of the plants, including height, leaf

area index, vegetation mass, plant water content, and radar signal backscatter [50,

58, 96]. Radar backscattering from vegetation is a function of both wavelengths

polarization and frequency. Different frequencies and polarizations enable one to infer

various and supplementary information from the single object. In agricultural radar

applications, combination of polarizations (co-polarization and cross-polarization)

allows analyst to extract extra information about crop characteristics. The polarization

of backscattering microwaves indicates the target structural properties and visualizes

scattering characteristics of observed features [35, 97]. A majority of the space borne

radar systems often transmit only one polarization and receives both polarization

giving rise to dual polarimetric SAR data (e.g., Sentinel-1 with VH and VV

polarizations), while some collecting full polarimetric so-called quad polarization

(HH, VV, HV, and VH) imagery (e.g., PALSAR, TerraSAR-X, and RADARSAT-2). Fully

polarimetric SAR data is acquired using the H and V polarizations which extracted

from SLC data and can be represented by a 2× 2 scattering matrix S (Equation 5.1)

including polarimetric information for each individual resolution cell [98, 99].

S =

�

SHH SHV

SV H SV V

�

(5.1)

Scattering matrix which depends on incident and the scattered field, has four

components, each representing the received and transmitted polarizations [100, 101].
The scattering matrix consists of information on the nature and characteristic of the

observed media and features. Full polarimetric SAR data set which is described

as scattering matrix is foundation for several coherent polarimetric decomposition

and analysis. For polarimetric analysis an alternative procedure is derived from a
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covariance matrix (C3) that represents the average polarimetric information extracted

from a set of neighboring pixels to produce the mean polarimetric response. The

covariance matrix C3, (Equation (5.2)), is determined from the outer element of

the vector form of the scattering matrix with its Hermitian conjugate, KC [57, 102].
The averaged target vector (covariance matrix) for fully polarimetric data is given by

Equation 5.3.

C3 = KC .KC
∗T =







C11 C12 C13

C21 C22 C23

C31 C32 C33






,

〈C〉 f ul l = 〈S(i)S(i)H〉,

=







〈SHHSHH
∗〉 〈SHHSHV

∗〉 〈SHHSV V
∗〉

〈SV HSHH
∗〉 〈SHV SHV

∗〉 〈SV HSV V
∗〉

〈SV V SHH
∗〉 〈SV V SV H

∗〉 〈SV V SV V
∗〉







(5.2)

=







�

�SHH

�

�
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2SHHSHV

∗ SHHSV V
∗

p
2SHV SHH

∗ 2
�

�SHV

�

�
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2SHV SV V

∗

SV V SHH
∗ 2SHV (SHV − SV V )∗

�

�SV V

�

�

2






(5.3)

Where ensemble averaging is shown by the
�

�

�

� represents the modulus, the ∗ indicates

complex conjugation and the complex conjugate transpose shown by superscript H. For

natural targets, in case and transmitted polarization (r, t ∈ {h, v}) for horizontal and

vertical polarization and the scattering matrix is defined by three-element complex

target vector, KC =
�

SHH

p
2SHV SV V

�T
, where superscript T indicates the matrix

transpose [100, 101]. In the covariance matrix, diagonal elements (C11 = σ0
HH),

C22 = σ0
HV ), and C33 = σ0

V V ) define backscattering coefficients and the upper or lower

triangular components represent complex numbers. The backscattering coefficients

have correlation with the structural characteristics of the features [57, 103].

In comparison to the quad polarization, dual polarimetric SAR sensors collect a

fraction of total (precisely half of the scattering matrix components) polarimetric

information involved in fully polarimetric imagery [102]. It means that each

resolution cell at each time point is defined by a 2 × 2 covariance matrix (C2) that

is obtained from C3. The resulting covariance matrix which is for dual polarization
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(e.g., Sentinel-1) is represented by Equation 5.4.

C2 =

�

C11 C12

C21 C22

�

,

〈C〉dual =

�

〈SV V SV V
∗〉 〈SV V SV H

∗〉
〈SV HSV V

∗〉 〈SV HSV H
∗〉

� (5.4)

Since dual polarization has only diagonal elements, the matrix with off-diagonal

components are set to zero and do not follow a complex Wishart distribution; however,

the two diagonal blocks (1 by 1) do [101, 104].

Polarimetric Synthetic Aperture Radar (PolSAR) technique has resulted many different

investigations and improvements in crop growth monitoring, yield estimation, crop

disaster prediction and prevention and in more general terms providing accurate

information for precision farming. PolSAR products, such as Entropy (H), Alpha

(α) and Anisotropy (A) decompositions are calculated from the covariance matrix.

The H-α-A decompositions are used to extract average parameters from experimental

data suggested by Cloude and Pottier [105]. This approach is based on second-order

statistics using a smoothing algorithm [106]. Natural measure of the inherent

reversibility of the backscattering data is defined by entropy (H), and indicates the

randomness of the scatter, while the underlying average scattering mechanisms,

scattering type (surface, double-bounce and volume scattering) can be identified using

Alpha parameters. The relative power the second and third eigenvectors is described

by Anisotropy (A), which represents being of different properties in different directions

when measured along different axes [105, 107]. The Entropy (H) decomposition

parameter has more sensitivity to the crop parameters and the density and randomness

of some vegetation canopy than Alpha and Anisotropy [99, 108].

In agricultural radar monitoring, Radar Vegetation Index (RVI) is a method for

observation of the level of the vegetation growth in time series data analysis as an

alternative to NDVI (Normalized Difference Vegetation Index) method used in optical

image processing studies [109]. Ranging between 0 and 1, RVI is used for measuring

the randomness of scattering in microwave signal [110]. It is close to 0 for a smooth

bare surface and as vegetation grows the value increases till the crop reaches to the

end of growth cycle and it is affected by vegetation water content and sensitive to the

biomass [111]. RVI calculation needs quad-polarized data, thus for full polarization,

RVI is retrieved by the Equation 5.5.

RV I =
8σ0

HV

σ0
HH +σ

0
V V + 2σ0

HV

(5.5)
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where σ0
HH and σ0

V V are co-polarized backscattering coefficients and σ0
HV is

cross-polarized backscattering coefficient in power units. According to the

Charbonneau et al. [112] the assumption that supposes σ0
HH ≈ σ

0
V V then Equation

5.5 can be reduced to the form as Equation 5.6.

RV IHH =
4σ0

HV

σ0
HH +σ

0
HV

(5.6)

Melanie et al. [113] studied the RVI and concluded that RV IHH is useful when just

two polarizations are available and can be an appropriate approximation of the surface

scattering if the interaction between the surface plane and vegetation is insignificant.

Since Sentinel-1 is dual polarization and has VH and VV polarizations, following

Charbonneau et al. [112] assumption of possibility to modification of RVI in case of

availability of two polarizations we assume an alternative to RVI for dual polarization

as shown in Equation 5.7.

RV I =
4σ0

V H

σ0
V V +σ

0
V H

(5.7)

5.2 Interferometric Coherence

A digital SAR image is consist of rows and columns of small picture elements called

pixels and each pixel is representing a small area of the earth’s surface known as a

resolution cell. Each pixel is achieved by summing the complex numbers along a

constant range which contains amplitude (the strength of the reflected signal) and

phase (the position of a point in time on a waveform cycle) information about the

microwave reflected signals toward the satellite antenna by the objects (scatterers)

such as rocks, vegetation and buildings within the corresponding resolution cell

projected onto the surface of the earth. Coherence, as a complex quantity and its

absolute value, is considered as a critical analytical parameter which provides a useful

measure of the interferogram quality (SNR: signal-to-noise ratio) and evaluating the

quality of the two complex SAR images [114–118]. To obtain Interferometric synthetic

aperture radar (InSAR) coherence image and interferogram generation it’s necessary

to input Single Look Complex (SLC) image pair referred to as ‘master’ and ‘slave’ that

are focused complex SAR data in full resolution and that preserve both amplitude and

phase information for each pixel. Equation 5.8 indicates the general expression of the

SLC image [119].

C(x) = A(x)eiφ(x) (5.8)
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Where C(x) (a complex value) is represented by A(x) amplitude, and e Euler’s number

of exponential function wherein i is an imaginary number and equals to
p
−1 andφ(x)

is phase. Since SLC image is composed of a regular grid, then x can be replaced by

(ρ, a) which ρ is the range and a is the azimuth. Equation 5.8 can be replaced with

Equation 5.9 [119].

C(ρ, a) = A(ρ, a)eiφ(ρ,a) (5.9)

The complex interferogram is the product of two registered SLC images acquired

at different times and consists of backscatter amplitude and phase differences

between the acquisitions. The complex interferogram is achieved by pixel-by-pixel

cross-multiplication of the first the image with the complex conjugate of the second

[80, 94, 120, 121] and it can be written as Equation 5.10 [119, 122].

C2C1
∗ = A1A2ei(φ2−φ1) = R(ρ, a) + I(ρ, a) (5.10)

Where C1 and C2 are refer to the master (the reference) and slave (the repeat) SLC

images, A1 and A2 are master and slave amplitudes and φ1 and φ2 are master

and slave phases, respectively. The asterisk (∗) denotes complex conjugation. R is

the real and I represents the imaginary component of the complex interferogram.

As it can be inferred from the Equation 5.10, that the amplitude multiplication

of the first and second images produces the interferogram amplitude whereas the

interferometric phase is the phase difference between the images [118]. The phase

of the interferogram is extracted in usual manner and can be expressed as Equation

5.11.

(φ2 −φ1) = tan−1
� I

R

�

(5.11)

Considering complex SAR image pair that contain both amplitude and phase

information, the correlation between the two radar complex signals can be evaluated

by calculating the interferometric phase noise. In fact, the coherence is the

cross-correlation coefficient of an InSAR pair estimated over a small window with

a specific size (a few pixels in range and azimuth) [123, 124]. The interferometric

coherence (γ) between two complex co-registered images can be defined as Equation

5.12 [125].

γ=

�

�〈C1C2
∗〉
�

�

p

(〈C1C1
∗〉〈C2C2

∗〉)
(5.12)

44



Where
�

�

�

� indicates absolute value, ∗ indicates complex conjugation and angle brackets

〈 〉 are the averaging operation to the statistical estimation with a rectangular filter

(also known as the window size). The filter is applied for the extra reduction of the

difference in radar impulse response perceived by sensor path from the same piece

of ground [94]. To enhance the quality of the amplitude image of the single-look

Sentinel-1 that has 5 m resolution in range and 20 m in azimuth, and to obtain a spatial

averaging coherence, different window sizes (e.g. 3 × 3 or 5 × 5 pixels) is applied

based on the corresponding spatial resolution of the image [119]. The magnitude of

the coherence ranges from 0 in the case of decorrelation (the interferometric phase

is just noise), and 1 if the two signals are entirely correlated (complete absence of

phase noise and a meaningless phase measurement). When the position and physical

properties of the scatterers within the averaging window are the same for the two

observations the coherence reaches to the maximum value [126]. In contrast, any

differences in the position or properties of the scatterers in the interval between the

two observations cause the phase difference of two signals backscattered by targets

and thereby cause the coherence value to decrease. The phase difference of two

signals backscattered by scatterers to the sensor is represented by an image called

interferogram and the phase is given modulus 2π and revealed in the image by fringes

[127].

5.2.1 Decorrelation Sources

A decrease of the coherence magnitude or decorrelation can have several sources

such as physical changes in the terrain and changes in the position or charachteristics

of the scattereres of the surface caused the non-conformity of the properties of the

two acquisitions and expressed by the temporal terrain decorrelation (γtemporal) [79].
The difference in the incidence angles between the two observations give rise to

the geometric or spatial baseline decorrelation (γspatial). Thermal or system noise

decorrelation (γthermal) or (γSNR) due to the charachteristics of the system e.g., antenna

charachteristics and gain factor, the volume decorrelation (γvol) which results by

volume scattering, (γDC) Doppler centroid decoreelation raised by the differences

in the Doppler centroids between the two observations, the processing induced

decorrelation (γprocessing) that is the error eventuates from the selected algorithms

for example for co-registration and interpolation, and the bias decorrelation caused

by the averaging window size (γbias). The total correlation or coherence (γtotal)
which is calculated from Equation 5.12 is corresponding of the multiplication of the

aforementioned correlation terms [63] and is defined as the equation 5.13.

γtotal = γtemporalγspatialγthermalγvolγDCγprocessingγbias (5.13)
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To obtain the Interferometric coherence this study only focused on the temporal

decorrelation due to rapid changes in the scattereres over the agricultural fields

during the crop growth season between the acquisitions and the other sources of

the decorrelation (including geometric decorrelation, given the small differences

in the incidence angles and the baselines between the Sentinel-1 interferometric

acquisitions) was Ignored. However, due to that the absolute value of the coherence
�

�γ
�

� which varies between 0 and 1, is alternatively demonstrated as a function of the

Signal-to-Noise-Ratio (SNR) [63, 116, 128] and the sensitive interaction between

C-band signal and vegetation therefore, the system noise decorrelation (γSNR) is also

considered in this study and is defined in Equation 5.14.

�

�γ
�

�=
SNR

SNR+ 1
(5.14)

Since the noise (n) and signal (C) are uncorrelated then:

�

�γ
�

�=

�

�C
�

�

2

�

�C
�

�

2
+
�

�n
�

�

2 (5.15)

Given that the thermal Signal-to-Noise-Ratio (SNR) is

�

�C
�

�

2

�

�n
�

�

2 , then the Equation 5.15

may be equivalently written as Equation 5.16 [63].

γSNR =
1

1+ SNR−1
Or =

1
Æ

(1+ SNR−1
sat1)(1+ SNR−1

sat2)
(5.16)

Where SNRsat , the Signal-to-Noise-Ratio for each images is calculated in the

interferometric pair and can be defined using Equation 5.17.

SNRsat =
σ0

sat − N ESZsat

N ESZsat

(5.17)

Where σ0
sat is the backscattering coefficient for different acquisitions, and N ESZsat

(Noise Equivalent Sigma Zero) that can be estimated suing look-up tables which is

available in the Sentinel-1 metadata.

Figure 5.1 shows the general overview of satellite data processing in this thesis. A

more detail workflow has been provided in each related subsection.
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Figure 5.1 Flowchart of data processing
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6
Optical, SAR, PolSAR and InSAR Applications in Crop

Monitoring and Mapping

6.1 Sensitivity of Multi-Temporal SAR Parameters to Crop vari-

ables

The SAR technique has become increasingly an effective method of providing seasonal

agricultural monitoring. SAR is a coherent radar system that generates high-resolution

remote sensing imagery. A SAR sensor has capability to collect data in different

weather conditions where the cloudy sky in most time of the growing season

(particularly in rainy climate) is a serious obstacle to the application of optical

images. Moreover, it can acquire data in day-or-night; exclusivity makes it suitable for

long-term and multi-seasonal agricultural monitoring. The SAR system is sensitive to

the vegetation biophysical variables and dynamical characteristics of plant targets, and

underlying soil parameters such as plant water content, geometric property, deflection

and irregularity, soil surface roughness and moisture content. The Polarimetric

Synthetic Aperture Radar (PolSAR) technique has provided various opportunities

and challenges in agricultural activities mainly on crop management. This study

investigates the potential of Sentinel-1 dual polarimetric SAR in estimation and

monitoring of crop parameters, namely crop height and canopy coverage (CC) in

an agricultural area. The objective of this study is to evaluate the sensitivity of

different Sentinel-1 dual polarimetric SAR parameters to crop height and CC of maize,

sunflower and wheat, and to investigate the changes in SAR backscatter arising from

crop height and CC during crop phenological stages.

6.1.1 Materials and methods

Within this framework, we have investigated the sensitivity of 10 parameters including

linear polarization backscattering coefficients, H-A-α decompositions, polarization

intensity ratios (VH/VV , VV/VH and VV-VH/VV+VH), Radar Vegetation Index

(RVI) and intensity arithmetic calculations (VH-VV and VV+VH) derived from
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multi-temporal C-band Sentinel-1 SAR data, to crop height and canopy coverage (CC)

of maize, sunflower, and wheat. For this purpose, field measurements were carried out

simultaneously with SAR data acquisitions. For backscattering analysis four Sentinel-1

SAR images in descending orbit direction were acquired throughout the same growth

season of the study area.

6.1.2 Study Area

The Konya basin (38◦ 40’ N, 32◦ 26’ E) in central Turkey is selected for field

measurements and satellite images collection (Figure 6.1). The terrain of the study

area is partly flat with a gently sloping (2%-6%) and, the smallest field area of

approximately 0.5 and the largest 18 hectare in size. According to the Ministry of

Agriculture and Forestry of Turkey, the distribution of major soils in the study region

is Reddish Brown and Brownish soils Figure 6.2. The soil texture in the study area

Figure 6.1 The location map of the study area; general overview (left) and
Sentinel-2 RGB image of the study site (right)

consists of clayed loam and loamy (medium structure), slightly alkaline, salt-free, and

low contents of organic matter (1.30-2.08%). The region has an arid to semi-arid

predominant weather conditions. The land use type is mainly agricultural land in the

study site (Figure 6.3). Therefore, the demand for water consumption for irrigation is

increasing due to the extent and dense of agricultural activities. Maize, sunflower, and

wheat are three investigated crops patterns as they have different structures. Maize

and sunflower based on field campaign, generally are planted at the beginning of May,
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and harvested at the end of August or the beginning of September in this study area.

Winter wheat is seeded in previous November and harvested at the end of July.

6.1.3 Field Surveys

In situ measurements were conducted for maize, sunflower and wheat fields in

the spring–summer agricultural season of the year 2016. Crop variables and

parameters which indicate the growth rate including crop height and CC were

collected simultaneously with the SAR data acquisition, and recorded during the field

works. Field data collection includes measuring the row and plant cover by still tape

in unit area, taking photographs by the camera and recording field characteristics such

as soil properties and irrigation status. For calculating CC, photographs were taken

in downward position and perpendicular to the ground with 100 cm distance from

camera and canopy outmost in the tillering stage when the crop height was less than

100 cm. Considering the study area, 36 test fields that consist of 19 maize, 6 sunflower

fields, and 11 wheat fields were dedicated for this research.

Figure 6.2 Soil map of the study area

The variability of development stages for maize, sunflower and wheat has been defined
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Figure 6.3 Land use map of the study area (Source: Copernicus Land Monitoring
Service [129])
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by applying the “Biologische Bundesanstalt, Bundessortenamt, and CHemische”

(BBCH) [20] indicator for each field that generally consist of vegetative and

reproductive stages. Seasonal maize, sunflower, and wheat crop calendar of the study

area is presented in Figure 6.4.

Figure 6.4 Seasonal maize, sunflower and wheat calendar of the region

According to the defined height and CC thresholds, derived from SAR backscattering

and BBCH-scale, we call two stages for crops growth season; season; the early stage

and the later stage.

Four field surveys were conducted to obtain accurate ground measurements in late

May–mid June, early July, late July, and late August 2016. General growth stages

categories (leaf development, stem elongation, heading and flowering), are defined

according to the BBCH-scale (Table 1). For calculating the crop height of each test

site, five height measurements were obtained and their mean value was calculated to

represent the crop height of the relevant test field. From the test sites, plant cover and

row were measured and also photographs were captured to determine and evaluate

the CC percentage. A synopsis of the maize, sunflower and wheat of different growing

stages is given in Figure 6.5.

Table 6.1 Biologische Bundesanstalt, Bundessortenamt, und CHemische
(BBCH)-identification keys for field measurements and Synthetic Aperture Radar

(SAR) data acquisitions of the study area

Field Surveys Crop Growth Stages (BBCH) SAR Acquisitions Dates

19 May–12 June 2016 leaf development 13 June 2016
01–02 July 2016 stem elongation 07 July 2016

31 July 2016 heading1 31 July 2016
24–25 August 2016 flowering 24 August 2016

1Due to variation in wheat growth conditions in different fields, in general heading stage starts at
late May and lasts until mid-June.
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Figure 6.5 Different growth stages of crops in the study area

In this study site, the BBCH-scale is considered as 53 when the maize height was in

range of 120–150 cm. This growth stage of the maize is at the inflorescence emergence

and heading stage. When maize height was greater than 220 cm, the BBCH-scale was

69 and represented the end of flowering. Once the sunflower height was greater

than 92 cm, the BBCH-scale is found as 79, indicating the end of flowering and the

inflorescence reaches full size. The BBCH-scale is considered as 59 after that wheat

height reached to 53 cm and inflorescence fully emerged. We observed that different

wheat height could have the similar wheat BBCH due to variation of wheat growth

conditions which cause to distinction even though they are at the same phenology, in

agreement with the study of Liao et al. [57]. Figure 6.6 (a-c) shows the relationship

between crop height and the BBCH-scale corresponding to the each crop principal

growth stages.

Scatterplots (d–f) in Figure 6.6 show the relationship between crop height and CC.

Note that the correlation between CC of three different crops has been changed in

different height in each crop. For maize, the variation of correlation was determined

when the maize CC threshold is 75%. This threshold is 85% and 60% for sunflower

and wheat respectively.

6.1.4 Sentinel-1 Dual Polarimetric SAR Data Statement and Processing

We used Single Look Complex (SLC) Sentinel-1A interferometric wide swath (IW) data

in descending pass direction (Table 2). Sentinel-1 satellites are equipped with C-band

sensor with an incidence angle range between 29.1◦ and 46.0◦ at 5405 MHz radar
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Figure 6.6 BBCH-scale relationship with crop height (a–c), and Correlation between
canopy coverage (CC) and crop height (d–f) for maize, sunflower, and wheat

frequencies. The satellite obtains data with dual polarization (VV and VH) backscatter

where electromagnetic waves have polarized vertically (V) for transmission and H/V
for reception [130]. Data can be acquired in both ascending and descending orbit

pass directions, which means that any object on the earth surface can be evaluated

as two independent sights. The difference is that due to steeper incident angle of the

ascending orbit therefore the mean backscatter values are rather higher in compare

with descending orbit [131]. For time series analysis of SAR backscatter, four C-band

polarimetric SAR data during the growth stages of the selected crops from mid-June

to late August were acquired for investigation of the sensitivity of Sentinel-1 data to

the crops. Figure 6.7 shows the flowchart of Sentinel-1 dual polarimetric SAR data

processing.

Table 6.2 Specifications of acquired Sentinel-1 datasets over Konya basin, Turkey

Acquisition
Date

Incidence
Angle (◦)1

Satellite
Pass

Polarization
Nominal
Res.(m)2

Orbit
No

13 June 2016 30.72-49.09 Descending VH and VV 2.33-13.93 65
07 July 2016 30.72-49.11 Descending VH and VV 2.33-13.93 65
31 July 2016 30.72-49.11 Descending VH and VV 2.33-13.93 65

24 August 2016 30.72-49.11 Descending VH and VV 2.33-13.93 65
1Incidence angle from near to far range 2Range and azimuth resolutions

Different Sentinel-1 dual polarimetric SAR parameters including linear polarization

backscattering coefficients, H-A-α decompositions, polarization intensity ratios

(VH/VV, VV/VH and VV-VH/VV+VH), Radar Vegetation Index (RVI), intensity

54



arithmetic calculations and crop variables (crop height and CC) are investigated. Mean

backscattering coefficient values for each sample site for different crops are defined

and the correlation between the in situ measurements are analyzed. The results show

that responses of polarimetric SAR parameters to the crop variables (crop height and

CC) vary for different crop types at different phenological stages of the crops. For

maize, SAR backscatter coefficient is more sensitive to crop height at the early stage

of crop growth compared to the later stage, while the same situation is not true for

sunflower and wheat.

6.1.5 SAR Parameters and Their Correlation with Crop Height

Almost in all visited fields, the mean backscatter values indicated similar tendency

in four stages of crop growth. In Figure 6.8, mean backscatter coefficient (σV V and

σV H and VV+VH) values of each sample site are determined and the correlation

between the field measurements are presented. It is observed that the maize had

high sensitivity at the beginning but starts to decrease when the maize height is

higher than 150 cm at inflorescence emergence and heading stages. Sunflower is not

sensitive to the crop height only when the sunflower height is greater than 90 cm. At

the end of flowering and the inflorescence, it shows low sensitivity compared to its

early and later stages. In comparison with maize and sunflower, wheat had relatively

good sensitivity at the end of heading. Regarding wheat full inflorescence which is

varying in different heights, the correlation between SAR backscattering (VV+VH

and σ0
V V ) and wheat height is considerably less as in inferred from Figure 6.10 g,h in

growing stage.

Table 6.3 gives the coefficient of determination (R2) between Sentinel-1 dual

polarimetric SAR parameters and measured crop height for maize, sunflower and

wheat. Both σ0
V V and σ0

V H showed high correlation (R2 = 0.81 and 0.80 respectively)

and VV+VH had highest correlation (R2 = 0.82) with maize height at the early stage.

Whereas the correlation between SAR parameters to sunflower height is very low (R2=
0.31) at the same stage. Almost all SAR parameters show relatively good correlation

at the early stage of wheat. For instance, a good negative correlation with VH/VV

intensity ratio and σ0
V H are obtained at the early stage of wheat (R2 = 0.66, and 0.65

respectively). However, all of the crops have very weak correlation or even they are

not correlated and sensitive to plant height in the later stage.

Amongst the H-Alpha decomposition parameters, Alpha (α) decomposition parameter

represents the highest correlation (R2 = 0.67) with wheat height during the early

growth stage. The maize height is relatively correlated with H-Alpha decomposition
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Figure 6.7 Flowchart of Sentinel-1 dual polarization SAR data processing
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Figure 6.8 Correlation between (a) intensity arithmetic calculation of VV+VH, (b)
σ0

V V backscatter, and (c) σ0
V H backscatter values of maize with its height during

growing stages
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Figure 6.9 Correlation between (d) intensity arithmetic calculation of VV+VH, (e)
σ0

V V backscatter, and (f) σ0
V H backscatter values of sunflowe with its height during

growing stages
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Figure 6.10 Correlation between (g) intensity arithmetic calculation of VV+VH, (h)
σ0

V V backscatter, and (i) σ0
V H backscatter values of wheat with its height during

growing stages
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Table 6.3 Coefficient of determination (R2) between crop height and Sentinel-1 SAR
parameters

SAR Parameters Maize (H)1 Sunflower (H) Wheat (H)
H<150 H>150 H<92 H≥92 H <53 H≥53

Linear Polarization
C11_Intensity (VH) 0.80 -0.1 0.31 -0.06 -0.65 0.03
C22_Intensity (VV) 0.81 -0.2 0.17 -0.19 0.62 -0.01

H-Alpha Decomposition
Entropy (H) 0.53 0.20 0.01 0.20 -0.61 0.06

Anisotropy (A) -0.54 -0.23 0.00 -0.18 -0.65 -0.05
Alpha (α) -0.52 -0.19 -0.05 -0.17 0.67 -0.07

Radar Vegetation Index
RVI 0.53 0.21 0.11 0.18 -0.65 0.03

Intensity Ratio
VH/VV 0.52 0.21 0.11 0.17 -0.66 0.05

(VV-VH)/(VV+VH) -0.53 -0.21 -0.11 -0.18 0.65 -0.05
Intensity Arith. Oper.2

VH-VV 0.77 -0.21 -0.14 0.20 0.63 -0.03
VV+VH 0.82 -0.18 0.19 -0.18 0.61 0.00

1The height measurement unit is centimeter. 2Intensity Arithmetic Operation. The
minus indicates negative correlation.

parameters at the early stage, although no considerable correlation is observed during

the early stage of sunflower and at the later stage of wheat. Figure 6.11 shows the

correlation between the H-Alpha decomposition parameters and crops height of maize,

sunflower and wheat.

6.1.6 SAR Parameters and Their Correlation with Crop Coverage

The CC measured in field includes measuring the row and plant cover by steel tape

in unit area. For validation of the CC calculated from measured data, photographs

were taken using the camera in downward position and perpendicular to the ground

with 100 cm distance from the camera lens. The CC extraction process is done by

application of Python glob image processing package [132]. The photos are first

converted to HSV (Hue, Saturation, and Value) model and used as a detector for the

type and shape and to do color constancy processing by grouping or classifying the

image. Following the HSV conversion green mask is applied to slice the green areas

as white ratio and black to the bare soil. The sample classified green area for wheat

is given in Figure 6.14. The unit area from the photograph is calculated using the

ground sampling distance (GSD) formula and setting calibration derived from images.

The contributing parameters for determination of ground resolution are the camera’s

height above the ground, the camera’s pixel size, and the lens’ focal length.
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Figure 6.11 Correlation between Entropy (a), Anisotropy, (b) and Alpha (c)
decompositions of maize with its height during growing stages
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Figure 6.12 Correlation between Entropy (d), Anisotropy, (e) and Alpha (f)
decompositions of sunflower with its height during growing stages
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Figure 6.13 Correlation between Entropy (g), Anisotropy, (h) and Alpha (i)
decompositions of wheat with its height during growing stages
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Figure 6.14 Canopy coverage extraction from in-situ photo taken using python
image processing packages. Left panel is the original photo and the right panel
shows white ratio calculated as green areas and black to the bare soil in wheat

sample field

The coefficient of determination (R2) between Sentinel-1 polarimetric SAR parameters

and the measured CC for maize, sunflower and wheat for early and later growing

stages are given in Table 6.4. According to the principle growth stage [133] when the

maize reaches to the end of its stem elongation, leaves completely unfold and have

full size. When the BBCH-scale is greater than 39 for maize, CC is measured 75%.

The CC for sunflower and wheat is measured as 85% and 60%, respectively when the

BBCH-scale is greater than 51 and 49.

Considering Sentinel-1 dual polarimetric SAR parameters and measured CC, the

highest correlation is obtained for the VV polarization (R2 = 0.73) and VV+VH (R2

= 0.73) when the CC is lower than 75% for maize while with increasing CC the

correlation decreased (R2 = 0.49) for both crops. This is contrary to the findings

of Liao et al. [57] where the sensitivity of RADARSAT-2 polarimetric SAR and its

correlation with fractional vegetation cover (FVC) in HV polarization is high for

maize, and they suggest that VV polarization is not a useful parameter for monitoring

broad-leaf crops. Their findings may have conflict with our results due to the sensors

properties. Regarding the sunflower, in its early stage (i.e., CC < 85%), again the

higher coefficient of determinations are obtained for VV polarization (R2 = 0.46)

and VV + VH (R2 = 0.47). However, comparing the maize and the sunflower as

two different broad-leaf crops in our study, R2 of the sunflower is lower than the

maize. The discrepancy in correlations might be due to the difference in leaves

geometry of maize and sunflower. In other respects, similar to the findings of Liao

et al. [57], no correlation is observed for wheat at both stages in our study. This

may be due to the wheat structure and leaves geometry as narrow-leaf crop. Wheat

can reach its full development at early stage and penetrating from biomass occurs

due to narrow leaves, stem affectation and contributing of underlying soil resulting
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attenuation of SAR backscatter [134]. Figure 6.15 depicts the parameters which have

highest correlation with CC during the growth stage for maize and sunflower.

The results show that responses of polarimetric SAR parameters to the crop variables

(crop height and CC) have variation in different crop types at different phenological

stages of the crops. Among the SAR parameters, VV+VH and VV indicated a strong

correlation with maize height by means of the coefficient determination (R2) of 0.82

and 0.81, respectively. The maize CC with VV parameter showed high correlation

(R2=0.73) at the early growing stage, but the correlation became weaker at the later

stage while the sunflower height correlation with the majority of SAR parameters

was insignificant. The wheat height represented high correlation with the Alpha

(α) decomposition parameter. The sensitivity of SAR parameters to the wheat and

sunflower’s CC are good at the early stage while no significant correlation is observed

at the later stage.

Table 6.4 Coefficient of determination (R2) between CC and Sentinel-1 SAR
parameters

SAR Parameters Maize (CC)1 Sunflower (CC) Wheat (CC)
CC<75 CC≥75 CC<85 CC≥85 CC <60 CC≥60

Linear Polarization
C11_Intensity (VH) 0.25 -0.41 0.07 0.18 -0.01 -0.15
C22_Intensity (VV) 0.73 -0.49 -0.46 0.09 0.10 -0.06

H-Alpha Decomposition
Entropy (H) -0.28 0.36 -0.06 -0.01 -0.09 -0.01

Anisotropy (A) 0.30 -0.31 0.06 0.01 0.05 0.02
Alpha (α) 0.29 -0.32 0.07 0.00 0.07 0.04

Radar Vegetation Index
RVI -0.29 0.29 -0.07 0.01 -0.08 -0.03

Intensity Ratio
VH/VV -0.30 0.28 -0.07 0.00 -0.06 -0.05

(VV-VH)/(VV+VH) 0.29 -0.29 0.07 0.00 0.07 0.04
Intensity Arith. Oper.2

VH-VV -0.69 0.48 -0.41 -0.07 -0.15 0.02
VV+VH 0.73 -0.49 0.47 0.10 0.05 -0.11

1The CC is based on percent (%). 2Intensity Arithmetic Operation. The minus
indicates negative correlation.
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Figure 6.15 Correlation between σ0
V V (a), and VV+VH (b), backscatter values of

maize, and VV+VH (c) backscatter value of sunflower with their CC during growing
stages
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6.2 Integration of radar and optical datasets for crop mapping im-

provment

Combining data from different sources of remote sensing data such as optical and

radar datasets offer unique spectral and textural information for land use/cover

evaluations, characterizing land use changes and generating information with higher

quality than the individual datasets [6]. Optical data is limited by cloud cover, sensor

spatial and temporal resolutions while Synthetic Aperture Radar (SAR) sensor has

capability to collect data in different weather and day-or-night. Space-borne SAR

data due to their high spatial and temporal resolution help to perform field-level

crop classification and monitoring activities [36, 37]. In addition, SAR sensor has

a capability to differentiate crop types due to its sensitivity to the crop structure and

water content. Crop structure and water content are variables that varying in respect

with crop type, growing stage and crop conditions [38].

For various land cover features, SAR products provide the feasibility of estimating

crop height, crop type and crop condition mapping which are valuable information

for different agricultural applications and marketing of agricultural yields [39]. Object

characteristics such as orientation, material constituents, configuration, and dielectric

properties can be estimated using SAR Polarimetry [109]. Scattering SAR data can be

obtained in different wavelengths and polarizations. Texture measures, multi-sensor

fusion, multi-polarization data, multi- temporal data and polarimateric data are

techniques which is used to classification of the vegetation type [46, 47]. Different

crop types at each phenological stage show different bio-physical characteristics [36].
Plant water content, roughness, leaf size, and vegetation greenness level that are

related to the bio-physical characteristics of the features represent the amount of

reflectance. Hence, optical sensors are beneficial for crop mapping and reliable

applicants for agricultural land use monitoring as they measure reflectance from

targets in the electromagnetic spectrum (reflectance in visible and shortwave infrared

and thermal spectrum). However, success in crop identification with optical data

mainly depends on the acquisition of image during key crop phonological stages. The

accuracy of the classification decreases during these critical periods if optical data are

used [3]. When added to the broad land use/cover classes’ information provided by

the optical data, the surface roughness and moisture information which are provided

by SAR sensor allow one to extract more detailed specification of land surface and

features [6].

In this section, the potential of discriminating crop types using polarimetric SAR

(Sentinel-1) in integration with useful optical (Sentinel-2) indices is demonstrated.

In order to map agricultural land management regimes of different intensities, it
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is required to develop an approach to assess the patterns and rates of agricultural

land use. Hereby, to discriminate different land use/cover categories of the study

area, the potential of remotely sensed image analysis to merge multispectral and SAR

images within a hierarchical classification framework were evaluated. The conceptual

methodology of crop classification is shown in Figure 6.16. Main objectives of the

study would be:

• Analyzing how to improve land use/cover mapping to better separation of land

management regimes,

• Combination of the multi-spectral optical image and multi-temporal polarimetric

SAR data to assess how to enhance crop classification methodology in the study

area.

Figure 6.16 Crop classification methodology

6.2.1 Ground truth data acquisition

Field observation data are required to train the supervised classification models as well

as to assess the accuracy of produced maps. In order to digitize the selected locations

of the spectrally homogeneous Regions of Interest (ROIs) information obtained from

field surveys is needed [135]. Crop information is collected on a field by field basis

through an in-situ survey. In-situ measurements for under investigation site was

conducted in the spring-summer agricultural season of the year 2016 for Potato,

Sunflower, Maize, and Wheat fields. During the different field surveys, crop type,
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crop height, canopy coverage of the crop, soil moisture and irrigation practices data

were collected. The in-situ measurement periods were arranged regarding the general

growth stages of the crops accordingly defined by the Biologische Bundesanstalt,

bundessortenamt und CHemische industrie (BBCH) [133].

6.2.2 Datasets

In this study, high resolution multi-temporal optical (Sentinel-2) and dual polarimetric

(VV and VH) C-band radar data (Sentinel-1) are used for the investigation area.

The Sentinel-2 Multispectral Instrument (MSI) wide-swath, high- resolution imaging

mission is equipped with 13 spectral bands: four bands at 10 m, six bands at 20 m and

three bands at 60 m spatial resolution. It consists of a 12-bit radiometric resolution.

6.2.3 SAR Image Pre-processing

Sentinel-1 images were acquired in ascending orbit direction, Interferometric Wide

swath (IW) mode Level-1 C-band Ground Range Detected (GRD) product that consist

of focused SAR data which has been detected, multi-looked and projected to ground

range using an earth ellipsoid model such as World Geodetic System 1984 (WGS84)

(Table 6.5). Pre-processing steps such as Thermal Noise Removal, Apply Orbit

File, Radiometric Calibration, Speckle Filtering, Range-Doppler Terrain Correction

using SRTM 3-arc-second data and co-registration were performed with open source

tools of Sentinel Application Platform (SNAP) software [136]. The work flow of

multi-temporal mapping is shown in Figure 6.17. As a last step of the pre- processing

chain, pixel digital numbers were converted to sigma nought in decibel (dB). A RGB

(Red, Green and Blue) color composite of multi-temporal SAR image of study area is

shown in Figure 6.18.

Table 6.5 Specifications of Sentinel-1 and Sentinel-2

Characteristics
of Sensor

Acquisition
Date

Satellite: Sentinel-1 01 July 2016
Wavelength: C-band 13 July 2016

Imaging mode: IW-GRD 25 July 2016
Orbit: Ascending

Resolution: 19.93 (Rg. and Az)
Polarization: VH and VV

Satellite: Sentinel-2 11 July 2016
Imaging mode: MSI-Level-1C
Resolution: 10 m (B8-B4-B3)
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Figure 6.17 Flowchart of multi-temporal mapping
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Output values of radiometric calibration indicated by Sigma0 as a parameter for

backscattering value. It means that if there is reflectance value in the optical data,

there is similar value in the radar data as a backscatter that is measured by a parameter

called Sigma0. It has value between 0 and 1 where the higher backscatter the

higher Sigma0 values and close to 1. As Sentinel-1 produces dual polarimetric data

(VV and VH) the calibration operator will produce a single Sigma0 band for each

polarization (Sigma0_V V, Sigma0_V H). Geometric correction is next step of SAR

data per-processing where SAR geometric distortions would be corrected and using a

Digital Elevation Model (DEM) and producing a map projected and geocoded product.

The output map projection is Geographic Latitude/Longitude. In order to clean up

some of the speckle inherent in SAR images and to normalize the high frequencies

and De-speckling, a low pass filter is applied.

Figure 6.18 RGB color composite of Sentinel-1, (R: 2016.07.01_VH_dB, G:
2016.07.13_VV_dB, B: 2016.07.25_VH_dB)
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6.2.4 Optical Image Pre-processing

For geometric correction of Sentinel-2 data, one needs to define the coordinate system

just by opening the sentinel-2 data in the Environment for Visualizing Images (ENVI)

software [137] environment and then exporting of data would specify its coordinate

system. This method is not a usual procedure for specification of coordinate system,

since ENVI is not able to open XML data format of the Sentinel then this help to

store XML data for data file. Hence for layer stacking of different Sentinel-2 bands

in ENVI following method would be useful. Therefore, each selected band is saved as

ENV I .dat format which could be used in layer stacking stage for create Sentinel-2

datasets.

In I MG_DATA file into the Sentinel-2 data three bands; Near-Infrared (band 8), Red

(band 4) and Green (band 3) selected as basis for geometric correction. Then each

selected band is saved as ENVI data format. Data in .dat format could be used in

layer stacking stage for create Sentinel-2 datasets. It is necessary to note that in

layer stacking, bands should be reordered from short wavelength to long wavelength

(1.Near-Infrared, 2.Red and 3.Green) respectively.

Sentinel-2 Level-1C product is Top of Atmosphere (TOA) reflectance image and for

classification purposes it is required to atmospheric reflectance correction to obtain

Bottom of Atmosphere (BOA) reflectance image (Level-2A product). In order to

produce BOA reflectance images, ENVI provides the FLAASH Module [138] that

corrects wavelengths in the visible through near-infrared and shortwave infrared

regions.

6.2.5 Combination of SAR and optical data

Concepts of data combination and data fusion are aligned to each other whereas they

are not exactly coinciding each other. In combination process, data are unified so

that integrated data can be used together as a dataset for the different post-processing

purposes. While in fusion process, the images are merged into each other and as a

result of this merging, a new image is produced that containing the information of the

two merged images.

This study describe how to get information from combined optical and SAR data (of

Sentinel satellites). For this reason, two different Sentinels data types in a same

period of time and same scene has been selected. Per-processing and preparation

of each optical and SAR data and combination of per-processed data are two steps

implemented to the Sentinels data combination. Combined datasets have been used as

input data for different processing purposes such as data analysis, data interpretation,
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modelling biophysical variables, classification etc.

To create a combined dataset, Sentinel-1 (V V_dB, V H_dB) and Sentinel-2

(Near-Infrared, Red and Green) data as two different data files, for geographical

similarity should be resizing from a specific location. Each dataset should be resized

separately to produce spatial subset. Finally, both resized datasets would be combined

by applying layer stacking operator to create unique dataset combination including

optical and SAR data (Figure 6.19). It must be considered that in this case which

two Sentinels data were combined, as both data have been collected from same

generation sensors with many similarities in terms of their imaging geometries so that

co- registration process was not necessary. However, if combination of two datasets

acquired from two different satellites (for example combining Landsat and Sentinel

datasets) to be considered as the data are provided from two different sensor types due

to their distinct imaging geometries and different angle of view then co-registration

would be important to avoid any spatial deviation between optical and radar data.

6.2.6 Crop Mapping

Pixel based image classification is conducted to map the multi temporal coverage of

the seasonal crops. Morphological features are created by applying appropriate bands

selections and pre-classification is implemented and followed by pixel-level inputs in

traditional classification algorithms (e.g., Maximum Likelihood Classification (MLC)).

Results were analyzed comprehensively and comparatively. Figure 6.20 shows the

crop classification map resulted from the combined SAR and optical dataset as an input

data by applying the MLC supervised classification method. QGIS Semi-Automatic

Classification plugins (SCP) [139] is applied for post-processing and classification of

combined Sentinels image.

6.2.7 Accuracy Assessment

Land use map were produced after pixel-based image classification first for SAR

color composite and then for the combined SAR and Optical datasets. Accuracy

assessment was conducted on the classified crop map with a total of 38 fields by

comparing the final results with reference data obtained from the field campaign

to evaluate the quality of the map. Overall accuracy, producer’s and user’s accuracy

were computed for each class from the SAR only and the combined SAR and Optical

dataset classification maps. Kappa statistics were calculated from confusion matrix

(Figure6.21 and 6.22). ArcMap as an Esri’s ArcGIS [140] component application for

geospatial processing programs, is used for computing the accuracy assessment.
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Figure 6.19 Sentinels combined dataset (R: Near − In f rared, G: Red, B:
2016.07.25_V H_dB)
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Figure 6.20 Crop classification of combined dataset (MLC)
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An overall accuracy of 93% and Kappa value of 0.91 was achieved for the classification

map of the combined dataset while for the SAR only classification map, overall

accuracy and Kappa value were obtained 88% and 0.86, respectively. The results

indicate that combinations of microwave with optical data improved the results (5%).

Figure 6.21 Producer, User and Overall accuracies and Kappa coefficient assessment
of only Sentinel-1 SAR data

Figure 6.22 Producer, User and Overall accuracies and Kappa coefficient assessment
of combined dataset
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6.3 Multi-temporal data analysis for crops growth monitoring and

identification of different crop types

The application of SAR data is very useful in agricultural monitoring due to the

sensitivity of the microwave wavelength to the several characteristics of the crops.

The SAR system has sensitivity to the physical morphology and the geometrical

characteristics of the land surface and cover (soil roughness and moisture, vegetation

structure, etc.). This study investigates the potential of Sentinel-1 polarimetric SAR

backscatter data in an agricultural area for growth monitoring of different crop types

(maize, sunflower, wheat and potato) and crop mapping using that polarimetric

composite of images which are produced from multi-temporal analysis.

In-situ measurements for under investigating site was conducted for maize, sunflower

wheat and potato fields in the springng-summer agricultural season of the year 2016.

Among the various agricultural products in the study area due to their different

structures maize, sunflower, wheat and potato are four investigated crops patterns.

Maize, sunflower and potato based on filed measurements, generally are cultivated

at the beginning of April to mid-May and harvested in August or the beginning

of September in this study area. Winter wheat is seeded in previous October and

harvested in July. During the field work, crop variables and parameters that indicate

the growth rate of the crops including crop height and canopy coverage are recorded.

In addition, field characteristics such as soil properties and irrigation status were

collected in the field surveys. The in-situ measurements were conducted according

the four main development periods including leaf development, stem elongation,

heading and flowering stages of the crops that has been defined under Biologische

Bundesanstalt, bundessortenamt und CHemische industrie Sacle (BBCH- Sacle) [133].
Figure 6.23 indicates the crop calendar for maize, sunflower, wheat and potato in the

study area.

Figure 6.23 Seasonal maize, sunflower, wheat and potato calendar in the study area
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6.3.1 Sentinel-1 SAR data statement and processing

Sentinel-1 Interferometric Wide swath (IW) mode images were acquired in both

ascending and descending orbit pass directions. We used Level-1 C-band Ground

Range Detected (GRD) products that consist of focused SAR data which has been

detected, multi-looked and projected to ground range using an Earth ellipsoid model

such as WGS84. The satellite obtains data with dual-polarization (VV and VH)

backscatter. For the intensity analysis of SAR backscatter to crops, a time series of

24 remotely sensed Sentinel-1 SAR data in ascending and 23 data in descending pass

direction were acquired starting from 02 May to 24 September in 2016. Processing

steps as radiometric calibration, speckle filtering, topographic correction using SRTM

second data and co-registration were performed with open source tools of Sentinel

Application Platform (SNAP) software [136]. As a last step, pixel digital numbers were

converted to sigma nought in decibel (dB). Spatial subset operation is applied to resize

the images to reduce the amount of processing time. Flowchart of multi-temporal

Sentinel-1 SAR data processing is shown in Figure 6.24. As a post-processing step,

Figure 6.24 Workflow of multi-temporal SAR analysis

Maximum Likelihood Classification (MLC) method is used for crop classification of

SAR dataset to map the multi-temporal coverage of the seasonal crops in the study

area. Six different classes consist of Potato, Sunflower, Maize, Wheat, Uncultivated

and Bare Soil used to provide reliable crop map. Overall accuracy and kappa

coefficient are calculated from confusion matrix to evaluate the quality of the crop

map. Classification process was performed using Semi- Automatic Classification
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Plugin (SCP) [139] as free open source plugin for QGIS [141].

6.3.2 SAR backscattering analysis

The backscatters of individual pixels were determined and the correlation between

the field measurements was evaluated by analysing multi-temporal SAR images for

each field with different crop types. Then the backscatter signature of the selected

individual pixels for all patterns in the same plot as well as backscattering value

changes for each crop types with different fields during the timeframe of the study

were interpreted. Figures 6.25 and 6.26 show the variation of the mean backscatter

value of each pattern in the timeframe of the study in ascending and descending orbit

pass modes in VH and VV polarizations. While the mean backscatter values of selected

pixels for each crop types change between -11dB and -26dB in VH polarization in

ascending orbit direction, the values vary between -4dB and -19dB in VV polarized

images in the same orbit pass. These values show variation between -11dB and

-27dB in VH and -4dB and -18dB in VV polarizations in descending pass mode. The

backscatter results show that the satellite orbit pass directions did not affect the

intensity values; whereas, in different polarizations change in values is considerable.

In Figures 6.25 and 6.26, mean backscatter value of all crop types at the early stages of

the crops present a relatively homogeneous intensity values. Whereas in the growing

stages (mid stage) of the crops, due to differences in physical structure of the crops

and the sensitivity of the SAR to the geometrical characteristics of the patterns, each

crop types has high differences in backscatter values. It can be interpreted that in

later stages of the crops there is a similarity in the backscatter value. According

the field measurements, this point shows the end of the heading and beginning of

the harvesting time. Time-series backscatter analysis gives very useful information

when one crop type in various fields is intended to be observed in terms of the

monitoring programs and management practices. The results also indicate that there

is relationship between Sentinel-1 SAR backscatter values and crop variables such as

crop height and crop coverage during the different phonological stages [142].

6.3.3 Crop mapping

In addition to the multi-temporal SAR backscattering analysis, polarimetric composite

of the images of the different polarization over time without classification methods

may also provide beneficial information regarding the identification of crop types.

Figure 6.27 displays the polarimetric color composite images of Sentinel-1 in three

observation times and each pin in the image represents one crop type. Identification

of crop types is validated with the application of classification methods in the study
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Figure 6.25 The backscatter value of maize, sunflower, wheat and potato on
multi-temporal Sentinel-1 images, in ascending pass direction with VH (top) and VV

(bottom) polarization
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Figure 6.26 The backscatter value of maize, sunflower, wheat and potato on
multi-temporal Sentinel-1 images, in descending pass direction with VH (top) and

VV (bottom polarization
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area.

Figure 6.27 RGB color composite using multi-temporal Sentinel-1 SAR data in
descending pass direction (R: 2016.05.15_V H_dB, G: 2016.06.01_V V_dB, B:

2016.07.31_V H_dB)

6.3.4 Accuracy assessment of crop classification

The classification has been done based on SAR backscatter values and their temporal

changes in each class. Confusion (error) matrix (Table 6.6) was applied to evaluate

the accuracy of the multi-temporal SAR-derived crop map and determination of

the accuracy of the classification process. The confusion matrix just compares

the reference points (test data) to the classified points (training data). Overall,

produce and user accuracies, Kappa coefficient, the commission error and the

omission error for each class were calculated from confusion matrix (Table 6.7).

Crop map were produced after pixel-based image classification for multi-temporal

SAR color composite image (Figure 6.28). The results showed that high overall

accuracy of 88% and Kappa coefficient of 0.83 has been obtained (Figure 6.29).
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Figure 6.28 Crop classification of SAR dataset (MLC)
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Table 6.6 Maximum Likelihood classification confusion matrix

Class Potato Sunflower Maize Wheat Uncult.1 Bare 2 Total

Potato 279 1 36 0 0 1 317
Sunflower 27 105 56 1 0 0 189

Maize 39 18 375 0 1 7 440
Wheat 0 1 1 170 9 72 253

Uncult.1 0 0 5 10 141 33 189
Bare 2 70 0 3 2 4 1384 1393
Total 345 125 476 183 155 1497 2781

1Uncultivated 2Bare Soil

Table 6.7 Percentages of errors of omission, errors of commission, Producer’s and
User’s accuracies for each class

Class Omission Commission Producer Accuracy User Accuracy

Potato 11.99 19.13 80.87 88.01
Sunflower 44.44 16 84 55.56

Maize 14.77 21.22 78.78 85.23
Wheat 32.81 7.11 92.9 67.19

Uncultivated 25.4 9.03 90.97 74.6
Bare soil 0.65 7.55 92.45 99.35

Figure 6.29 Producer’s, User’s and Overall accuracies and Kappa coefficient
assessment of multi-temporal Sentinel-1 SAR data (percentages are rounded to the

nearest decimal)
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6.4 Interferometric coherence analysis to crop growth monitoring

Sentinel-1 (A and B) satellites with the same generation of sensors and having many

compatibilities as to their imaging geometries and the common orbital plane with

a 180◦ phase difference along with small orbital baselines, offer a 6-day interval to

formation of the interferometric SAR (InSAR) data pairs for precise surface monitoring

and coherent change detection appication. Single Look Complex (SLC) products in

the Interferometric Wide swath operation mode (IW) with dual polarization (VV and

VH) were acquired for this study. Data is obtained in both ascending and descending

orbit pass directions, which means that subject fields could be evaluated from two

independent perspectives. From two different tracks in each pass direction in total, 62

SAR data were processed to produce image pairs to obtain interferometric coherence

values in relation to crops growth evaluation on the agricultural fields of the study

area. Prior to positioning Sentinel-1B in orbit, data were obtained every 12 days for

each orbit in the study area, but since end of September, due to its placement into

orbit, this period is reduced to 6 days. An overview of datasets with relative orbit

number is given in Table 6.8. The images acquisition dates for each orbit from April to

September are given in Table 6.9. Two datasets also were obtained for different orbits

in October.

Table 6.8 Characteristic parameters of acquired Sentinel-1 datasets

Orbit
Number

Satellite
Pass

Acquisition
Time (UTC)

Swath
Incidence
Angle (◦)

Resolution (m)

S. Range1 Azimuth
87 Ascending 15:42 IW3 43.1 3.5 22.6
65 Descending 03:58 IW1 32.9 2.7 22.5

160 Ascending 15:49 IW3 43.1 3.5 22.6
167 Descending 03:50 IW3 43.1 3.5 22.6

1Slant Range

Generic Mapping Tools Synthetic Aperture Radar (GMTSAR) developed by [143] is

used as an open code radar interferometry processing system. The main components

of GMTSAR processing system include: 1) a preprocessor for different sensor data

type to convert the original data format and its orbital information into a common

configuration; 2) an InSAR processor to set the stacks of images for co-registration

to eliminate the topographic phase and form the complex interferogram; and

3) a post-processor, based on Generic Mapping Tools (GMT) [144] system, to

filter the interferogram and establishment of the interferometric products of phase,

amplitude and coherence; to convert the interferometric phase into line-of-sight (LOS)

displacement and a geocoding processing to convert the radar image coordinates into

geographic coordinates [122].
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Table 6.9 Datasets acquisition dates for different orbits

Orbit No. April May
87 3 15 27 9 21
65 2 14 26 8

160 8 20 2 14 26
167 9 21 3 15 27

Orbit No. June July
87 8 20 2 14
65 1 13 7 19 31

160 7 1 13 25
167 8 2 14 26

Orbit No. August September
87 1 13 25 6 18 30
65 12 14 24 5 17 29

160 6 18 30 11 231 29
167 7 19 31 12 241 30

1From these date on for 160 and 167 orbit numbers acquisitions were made every 6
days in September and for all orbits from October

Different-pass Sentinel-1 SAR data was used to calculate interferometric coherence

values for agricultural field with different crop types. Figure 6.30 illustrates the

acquired Sentinel-1 images locations with related track numbers and satellite orbit

pass direction and its LOS position. In this study the correlation between different

phenological stages (sowing, growth and harvesting) of the crops and radar coherence

were investigated. The results showed that coherence values was high before plowing

and seeding and had sharp coherence decrease with starting the growing of the crops.

During the growth stage of crops the values stay low and slightly similar for each fields

and crop types. The coherence values were significantly higher after crop harvesting

and reaping the remnants of the crops. In comparing with ascending pass direction

it has indicated that coherence value is high for each field with the same crop type in

descending orbit.

6.4.1 Coherence estimation and its relation with crop growth

For each crop type and totally for 20 crop fields vegetation parameters including

sowing, growth, and harvesting stages were recorded in the different field

measurements. Due to the simultaneous planting of maize and sunflower in the

study area, the coherence value was in the highest for both crops at the end of

March and early June after plowing the fields and seeding the crop. The value is

started to decrease with the growth of the plants. At the beginning of July, once

the ground covered by the plant and hence the soil affects eliminated from the radar

backscatter, it reaches the lowest value. The coherence again started to get higher
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in late September and October for sunflower and maize, respectively, when the crops

is reaching to their harvesting time. Since winter wheat is seeded in previous and

Figure 6.30 Sentinel-1 imagery locations. The colored boxes with T indicate the
tracks and perpendicular arrows represent satellite propagation direction and its LOS

with longer and short arrows respectively and yellow box shows the study area

late October, and interferometric coherence analysis for the wheat is related to the

beginning of the April when the crop is its heading stage, therefore, coherence values

were low until the harvesting time and after that there is a sharp increases in estimated

coherence at the end of June and early July. However, before the crops reaching

their harvesting time, an increase observed in the coherence value for maize and

sunflower that can be resulted from the changes in weather conditions such as wind,

moisture or precipitation. Mean coherence values for maize (9 fields), sunflower

(6 fields) and wheat (5 fields) for ascending and descending pass directions in four

different tracks for VH and VV polarization are given through Figures 6.30 to 6.35,

respectively. In compared with the ascending pass direction, descending represented

high interferometric coherence values in all crop types. Between the VV and VH

polarization much better coherence values were estimated using VV polarization.
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Figure 6.31 Mean Coherence values of 9 maize fields during the seasonal growth
stages in the ascending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph

88



Figure 6.32 Mean Coherence values of 9 maize fields during the seasonal growth
stages in the descending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph
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Figure 6.33 Mean Coherence values of 6 sunflower fields during the seasonal growth
stages in the ascending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph
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Figure 6.34 Mean Coherence values of 6 sunflower fields during the seasonal growth
stages in the descending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph
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Figure 6.35 Mean Coherence values of 5 wheat fields during the seasonal growth
stages in the ascending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph
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Figure 6.36 Mean Coherence values of 5 wheat fields during the seasonal growth
stages in the descending pass direction for VH and VV polarization in two different
tracks. The date of images used for coherence pair formation is represented in the

x − axis of the graph
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7
Results And Discussion

In application of PolSAR technique for crop monitoring, three different crop types

that have “broad” and “narrow” leaves were selected to investigate the sensitivity of

the Sentinel-1 dual polarimetric SAR parameters to plant height and canopy coverage

(CC). Maize and sunflower is selected as broad leaf and wheat as narrow leaf crop.

The reason for studying two broad-leave crops was to validate the high sensitivity of

SAR polarimetric data to early stages of broad-leave crops and then comparing the

findings for wheat as narrow-leave crop. We demonstrate that maize presents higher

correlation during the early stages of the crop growth when the crop height is less

than 150 cm. It is strongly correlated with the SAR parameters including VV+VH (R2

= 0.82), VV (R2 = 0.81), and VH (R2 = 0.80). Besides, CC of maize was well correlated

with VV polarization (R2 = 0.73) at the early stage before the heading stage although

at the later growing stage the correlation becomes weaker after the heading stage.

From the backscatter analysis, the same result is not observed in the sunflower. The

sunflower height has very low correlation with the most of SAR parameters. Only VH

polarization shows slightly better sensitivity when its height is below 92 cm before

the ending of flowering and the inflorescence reaches to full size. The sunflower CC

is relatively correlated with VV polarization at the early stage (during the flowering

stage) while any considerable correlation between SAR parameters and sunflower

height and CC is observed at the later stage. The sensitivity of SAR parameters to

wheat variables is often low compared to maize and sunflower. The high, but negative

correlations are related to the VH/VV intensity ratio and VH polarization. However,

Alpha (α) decomposition parameter shows highest correlation at the beginning stage

and represents absence of SAR parameters sensitivity with wheat height at the later

growing stage and CC at both stages. The results we have obtained reveals that

Sentinel-1 dual polarimetric SAR (C-band) has a high potential for identifying growth

stages and estimation of crop height, canopy coverage of maize as a broad-leaf crops.

However, this is not proven for sunflower, that may be due to the crop structure and

leaves geometry since they may change the SAR backscatter value in any stages of

crops. This study also demonstrates that Sentinel-1 dual polarimetric SAR data can
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be a good alternative to other commercial data which enables users to access freely

available of a constant long-term data archive for applications requiring long-range

time series.

Although the use of single orbit direction (descending) provides possibility of

monitoring and investigating agricultural growth stages, future studies should

use both the ascending and descending orbits to have independent results from

different angles of view. In addition, the relationship between backscatter values

of multi-temporal Sentinel-1 data and vegetation variables will be incorporated to

improve the crops mapping and classification accuracy as a future work.

Combinations of microwave remote sensing data with optical data considerably

improved the results (5%), achieving the excellent classification of croplands and

allowed to discriminate the crops for the accurate assessment. Although high spatial

resolution and unique color combination are the strengths of optical spectral bands,

the application of optical images in a climate condition with a cloudy sky and

particularly in rainy weather causes a serious obstacle in monitoring of agricultural

activities during most of the growing season. In contrast, a SAR sensor utilizes the

microwave portion of the spectrum, which enables radar pulses to penetrate clouds

and rain. In addition, radar has capability to collect data in day-or-night. Therefore,

in case of optical images being not applicable due to the weather conditions, the

integrated use of SAR and optical data is the most suitable option. Moreover, data from

the optical and microwave provide complementary information and the combined

use, either simultaneously or at different times, can provide important additional

information of terrain surface and vegetation canopies.

In multi-temporal data analysis, backscatter values for each crop types (i.e., maize,

sunflower, wheat and potato) over the time were determined and the relation between

the intensity values and the data obtained from filed campaign was evaluated. Due

to the different methods of irrigation and fertilization and the differences in crops

physical geometry during the growing stages, different backscatter values are observed

for different types of crops. However, at the later stages of the crops growth, due to

reaching the harvesting time, similar backscatter values are observed. Moreover, the

backscatter signature in timeframe varies considerably over different areas and thus

it may not be possible to drive a unique backscatter signature. That is valid for the

same crop in all areas although this distribution gives an indication of the differences in

backscatter for different crop over time. Regarding the relationship between ascending

and descending pass directions with VH and VV polarization, it was demonstrated

that early and later stages of crops growth have relatively similar correlation in

backscatter values and opposite to this, mid stages showed lower similarity due to
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geometrical characteristics of the different crop types. In addition, it has indicated

that the homogeneity between SAR backscatters is high for each field with the same

crop type in descending pass direction with VH polarization. In conclusion, using the

multi-temporal Sentinel-1 SAR data for the agriculture monitoring system which may

play an important role for the accurate crop assessment is an ideal preference due to

its free availability and a constant long-term data archive.

Interferometric coherence values that calculated from the multi-track repeat-pass

SAR data for the agricultural field with different crop types in dealing with acquired

information from the field measurements, a very strong correlation between different

phenological stages (sowing, growth, and harvesting) of the crops and radar

coherence is indicated in the study area. The results declared that before plowing

and after seeding the coherence values were high but had sharp coherence decrease

with starting the growing the crops. During the growth stage of crops the values

stay low and slightly similar for each field and crop type. The coherence values were

significantly higher after crop harvesting and reaping the remnants of the crops. In

comparing with ascending pass direction it is observed that coherence value is high

for each field with the same crop type in descending orbit pass. The increase of values

for VV polarization was higher in compared with the VH polarization for different

crop types. It can be inferred from the interferometric coherence analysis that several

factors and agriculture activities such as plowing, seeding, and precipitation before

image acquisitions affect the values.

This study employed remote sensing data which acquired by Sentinel-1 as SAR

data and Sentinel-2 as optical images for the different investigation purposes such

as sensitivity analysis of the multi-temporal Sentinel-1 SAR parameters to the crop

variables, utilizing the multi-temporal Sentinel-1 SAR imagery and Sentinel-2 optical

datasets to improve the crop mapping by combination of the datasets, application of

Sentinel-1 radar data for time-series analysis to investigate the temporal backscatter

changes for different crop types and also Sentinel-1 interferometric coherence analysis

to crop growth monitoring. The results demonstrate the high potentialities of

the Sentinel-1 dual polarimetric SAR data and multi-spectral Sentinel-2 data due

to provide useful information and access freely available of a constant long-term

data archive for applications requiring long-range time series such as agricultural

activities monitoring and mapping are ideal preference and a good alternative to other

commercial data.
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