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ABSTRACT

Integration of Optical and Synthetic Aperture Radar
Imagery for Improving Crop Mapping

Rouhollah NASIRZADEHDIZAJI

Department of Geomatic Engineering
Doctor of Philosophy Thesis

Advisor: Prof. Dr. Fiisun BALIK SANLI
Co-advisor: Prof. Dr. Ziyadin CAKIR

Land use/cover mapping is one of the main application fields of the remote sensing
data and thus is well suited for mapping of seasonally changing variables such as
agricultural areas. Since, crops are characterized by their typical spatial patterns,
temporal dynamics and changing radiation reflecting and scattering behavior due to
crop phenology and plant status, hence applying time series of remote sensing data

within a short revisiting time would be a beneficial method for agriculture monitoring.

The aim of this thesis therefore, centered on the monitoring and investigation of
the agriculture activities over the time in terms of estimation of the biophysical
parameters, crops phenological development and different growth stages, the
identification of certain types of crops, and providing useful information about crops
status in the study region located in the Konya basin central Anatolia Turkey. In this
work, Synthetic Aperture Radar (SAR) and optical as two different remote sensing
systems were applied to investigate and evaluate the temporal and spatial variability
of agricultural activities more precisely. The focus of this thesis is two-fold: (1) to
evaluate the use of SAR, Polarimetric SAR (PolSAR) and Interferometric SAR (InSAR)
techniques in estimation and monitoring of crop variables and parameters, and discuss
their potential relationship with remotely sensed data and field observations (2) to
investigate the integration of optical and SAR imagery for improving crop mapping,
and discuss the performance of the sensors backscatter and reflectance for temporal

crop type mapping with combination of the optical and SAR data.
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For these purposes as a first work, the sensitivity of 10 parameters derived from
multi-temporal C-band Sentinel-1 SAR data, to crop height and canopy coverage (CC)
of maize, sunflower, and wheat in the study area were analyzed. The coefficient
determination (R?) of 0.82 indicates that there is a strong relationship between the
maize height and SAR parameters of VV + VH, during the early growing stage. The
maize CC is well correlated with VV parameter (R* = 0.73), however, it is observed
that at the later growing stage the correlation became weaker. This means that the
sensitivity decreases with increasing vegetation cover growth. The sensitivity of SAR
parameters to wheat variables is often good at the early stage. The sunflower’s CC
shows a relatively higher correlation with VV polarization (R> = 0.46) at the early
stage while no considerable correlation is observed at the later stage. The sunflower
height also had an insignificant correlation with the majority of SAR parameters. It is
found that Sentinel-1 SAR data has a high potential for estimation of crop height and
CC of the maize as a broad-leaf crop. The same is not true for sunflower as another

broad-leaf crop.

The next step was the application of Sentinel-1 multi-temporal data for crop
monitoring and mapping and thereby extracting useful information, such as crops
status, estimating irrigation and harvesting time according to the changes made in
backscatters. From the backscattering analysis, it was observed that each similar crop
type in different test fields due to the distinct methods of irrigation and fertilization
has shown different intensity values. It has indicated that the homogeneity between
SAR backscatters is high for each field with the same crop type in descending pass
direction with VH polarization. In contrary, high-intensity values are recorded in VV
polarization for entire crop types. It is also observed that polarimetric composite
images for a different date are useful to roughly identify crop types, and validated

with the application of classification methods in the study area.

Later on, two different Sentinels data types in the same period of time and the same
scene have been selected to describe how to get information from combined optical
and SAR data. Hereby, to discriminate different land use/cover categories of the study
area, the potential of remotely sensed image analysis to merge multi-spectral and SAR
images within a hierarchical classification framework was evaluated. Multi-temporal
Sentinel-1, C-band VV, and VH polarized SAR data and Sentinel-2 optical data were
acquired simultaneously by in-situ measurements to investigate the performance of
the sensors backscatter and reflectance for temporal crop type mapping and the
sustainable management of agricultural activities for the study area. Results showed
that the combination of the radar and optical data indices caused to enhance crop
classification methodology and classification accuracies were improved results (5%)

using combinations of sensors and reached 93% in this study.
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Finally, the correlation between different phenological stages (sowing, growth, and
harvesting) of the crops and radar coherence were studied. Within the context of
this work, the relationship between the interferometric coherence calculated from the
different pass directions and multi-track of 12 and 6-day Sentinel-1 SAR image pairs
and the different crop type’s growth stages (i.e. sowing, growing and harvesting)
were investigated. For this purpose, field surveys were conducted for validation of
the correlation between the coherence and crop growth status. For interferometric
coherence analysis to monitoring the time evolution of different crop fields, 31 SAR
images in ascending and 31 in descending orbit direction were acquired throughout
the same growth season of the subject area. The results showed that coherence values
were high before plowing and seeding and had sharp coherence decrease with starting
the growing the crops. During the growth stage of crops the values stay low and
slightly similar for each field and crop type. The coherence values were significantly
higher after crop harvesting and reaping the remnants of the crops. In comparing
with ascending pass direction it has indicated that coherence value is high for each

field with the same crop type in descending orbit.

This dissertation emphasizes the potentialities of the remote sensing data - the
methodology of SAR, PolSAR and InSAR time-series analysis and integrated use of SAR
and optical data to efficiently evaluate the crop variables and parameters at different
phenological stages and crop map as an agricultural monitoring and management
strategies. To the better interpretation of the sensitivity of SAR parameters to the crop
biophysical variables most precise field observations are needed and as the further
work high spatial resolution SAR data would be efficient to achieve more accurate
information regarding agricultural activities and crop studying.

Keywords: Agricultural monitoring, Sentinel-1 SAR backscatter, polarimetric and

interferometric SAR, crop variables, crop mapping

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

Uriin Deseni Haritas1 Uretimini Iyilestirmek Uzere
Optik Ve Sentetik Aciklikli Radar Goriintiilerinin
Entegrasyonu

Rouhollah NASIRZADEHDIZAJI

Fotogrametri Anabilim Dali
Doktora Tezi

Danigsman: Prof. Dr. Fiisun BALIK SANLI
Es-Danigman: Prof. Dr. Ziyadin CAKIR

Arazi kullanimi/06rtiisti haritasi iiretimi, uzaktan algilama verilerinin ana uygulama
alanlarindan biridir ve tarimsal alanlar gibi mevsimsel olarak farklilik gosteren
degiskenlerin haritalanmasi icin ¢ok uygundur. Tarim alanlarn tipik mekansal
Ozellikleri ile karakterize edildiginden bitki fenolojisi ve bitki durumuna bagh
olarak paternler, zamansal dinamikler ve degisen 1simimin yansima ve sacilma
davraniglarindan dolay1 uzaktan algilama sistemleri ile izlenebilmektedir. Uydularin
kisa araliklarla tekrarli gegisleri sayesinde elde edilen zaman serisi verileri ile tarim
alanlarinin izlenmesinde cok faydali bir method olarak kabul edilmektedir. Bu
nedenle, bu tezin amaci, zaman igerisinde bitkilerin biyofiziksel parametrelerinin
tahmini, bitkilerin fenolojik gelismeleri ve farkli bliylime asamalari, bitki tiirlerinin
belirlenmesi ve bu konuda bitkilerin statiisii ile ilgili yararl bilgiler verilmesi acisindan
Tiirkiyenin Konya havzasinda bulunan calisma bolgesinde ekili alanlarin tarimsal
faaliyetlerin izlenmesi ve arastirilmasi konusuna odaklanmistir. ~Bu calismada,
tarimsal faaliyetlerin zamansal ve mekansal degiskenligini daha kesin ve dogru
olarak arastirmak ve degerlendirmek icin Sentetik Aciklik Radar1 (SAR) ve optik
sistemler iki farkl uzaktan algilama veri kaynagi olarak kullanilmistir. Bu tezin iki
temel odag1 vardir: (1) SAR, Polarimetric SAR (PolSAR) ve Interferometric SAR
(InSAR) tekniklerinin bitki degiskenleri ve parametrelerinin tahmini ve izlenmesinde
kullanimini degerlendirmek ve uzaktan algilanan verilerle arazi gozlemleri arasindaki

potansiyel iliskiyi analiz etmek; (2) iirtin deseni haritalarinin iyilestirilmesi i¢in optik
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ve SAR goriintiilerinin entegrasyonunu arastirmak ve ayni zamanda optik ve SAR
verilerini birlestirerek yansima ve sacilma degerlerinin zamansal iiriin deseni harita

tiretimindeki performansini analiz etmektir.

Bu amagclar icin ilk calismada, ¢cok zamanli C-bant Sentinel-1 SAR verilerinden elde
edilen 10 parametrenin, calisma alanindaki misir, aycicegi ve bugday bitkilerinin
yiksekligi ve topragi ortme oranina (CC) olan duyarliligi analiz edildi. Korelasyon
katsayis1 degerleri, ilk bliylime asamasinda muisir icin yiiksek bir korelasyon oldugunu
gostermektedir. Saptama katsayis1 (R*> = 0.82), ilk biiyiime asamasinda, VV +
VH’nin musir yiiksekligi ile SAR parametreleri arasinda yiiksek bir iliski oldugunu
gostermektedir. Misirin topragi Ortme orani, VV parametresi ile iyi korelasyonludur
(R? = 0.73), ancak son biiyiime evresinde korelasyonun zayiflastig1 gériilmektedir.
Yani bitki ortlisiiniin bliylimesi arttikca duyarliginin azaldigi anlamina gelir. SAR
parametrelerinin bugday degiskenlerine duyarliigi ilk asamada genellikle iyidir.
Ayciceginin toprag ortme orani, ilk asamada VV polarizasyonu (R*> = 0.46) ile
nispeten daha yliksek bir korelasyon gosterirken, sonraki asamada Onemli bir
korelasyon gozlenmemistir. Aycicegi yiiksekligi, SAR parametrelerinin ¢cogunlugu ile
anlamli olmayan bir korelasyona sahiptir. Sentinel-1 SAR verilerinin, genis yaprakl
bir bitki olarak misirin topragi 6rtme orani ve boyunu tahmin etmek icin yiiksek bir
potansiyele sahip oldugu bulunmustur. Aynist durum diger bir genis yaprakli bitki

olan aygicegi icin gecerli degildir.

Bir sonraki adim, Sentinel-1 ¢ok-zamanli verilerinin kullanilmasiyla iirtinlerin
izlenmesi ve haritalarinin {iretilmesi ve boyleyce geri sacilmalarda olusan
degisikliklere gore bitkinin durumu, sulama ve hasat zamani gibi yararl bilgilerin
cikarilmasiyla ilgilidir. ~ Geri sacilma analizinden, farkli sulama ve giibreleme
yontemleri nedeniyle farkli test alanlarindaki benzer bitki tiirlerinin farkli yogunluk
degerlerin elde edildigi goriilmiistiir. SAR geri sacilmalar1 arasindaki homojenligin,
VH polarizasyonu ile alcalan gecis yoniinde ayni bitki tipinde olan her alan icin yiiksek
oldugunu gostermistir. Ancak yliksek yogunluk degerleri tiim iiriin tipleri icin VV
polarizasyonunda kaydedilmistir. Farkl tarihlerde elde edilen polarimetrik kompozit
goriintiilerin bitki tiplerini kabaca tanimlamak icin yararli oldugu gézlemlenmistir ve

calisma alaninda siniflandirma yontemlerinin uygulanmasiyla dogrulanmustir.

Daha sonraki asamada, ayni zaman dilimine ve ayni alana ait Sentinel 1 ve Sentinel
2 verileri SAR ve optik verilerin birlestirilmesi ile nasil bilgi elde edilecegi amaciyla
secilmistir. Boylelikle, calisma alaninin farkli arazi kullanimi/ortiisii kategorilerini
ayirt etmek icin, hiyerarsik bir siniflandirma cercevesi icinde ¢ok bantli optic ve
SAR goriintiilerini birlestirmek iizere uzaktan algilama goriintii analizi potansiyeli

degerlendirilmistir. Arazi calismalar ile aymi tarihte alinan ¢cok zamanl Sentinel-1,
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C-band VV ve VH polarizasyonlu SAR verileri ve Sentinel-2 optik verileri, sensorlerin
geri sacilma ve yansima performansi zamansal iiriin deseni harita iiretimi ve tarimsal
faaliyetlerinin siirdiiriilebilir yonetimininde kullanilsabilirligini arastirmak amaciyla
incelendi. Sonuclar, radar ve optik verilerin kombinasyonunun bitki siniflandirma
dogrulugunun artmasini sagladig1 (5%) ve bu calismada toplam dogrulugun 93%’e

ulastigini gosterdi.

Son calisma, bitkilerin farkli fenolojik asamalar1 (ekim, biiyiime ve hasat) ve radar
tutarlilig1 (coherence) arasindaki iliskiyi incelemektedir. Bu calisma kapsaminda,
farkli gecis yonlerinden hesaplanan interferometrik tutarlilik ile 12 ve 6 giinliik farkl
izlerde alinan Sentinel-1 SAR goriinti ¢iftlerinin farkli iriin tiirleri icin biiytime
asamalar (yani ekim, yetistirme ve hasat) arasindaki iliski arastirilmistir. Bu amacla,
tutarlilik ile bitki biiyiime durumu arasindaki korelasyonun dogrulanmasi icin arazi
calismalar1 yapilmistir. Farkli bitki alanlarinin zaman evrimini izlemeye yonelik
interferometric tutarlilik analizi i¢in, s6z konusu alanin ayni biiyiime mevsimi boyunca
ylikselen ve algalan yoriinge yoniinde 31 SAR goriintiisii kullanilmistir. Sonuclar,
tarlalarin siiriilmesi ve tohumlanmasindan 6nce korelasyonun yiiksek oldugununu
ve bitkilerin biiylimeye basladiginda korelasyonun keskin bir sekilde azaldigini
gostermistir.  Bitkilerin biiyiime asamasinda, degerler her bir {irlin tipi icin diisiik
ve az da olsa benzer kaldig1 gozlemlenmistir. Tutarlilik degerleri, bitkinin hasadi
ve bitkilerin kalintilarinin toplanmasindan sonra 6énemli 6lciide yiiksek degerde elde
edilmistir. Yiikselen gecis yoniiyle karsilastirildiginda, alcalan yoriingede ayni bitki

tipinde olan her alan icin tutarlilik degerinin yiiksek oldugu gézlemlenmistir.

Bu tez calismasi, uzaktan algilama verilerinin zaman serisi analizi ve farkli fenolojik
asamalardaki iiriin degiskenleri ve parametreleri icin — SAR, PolSAR ve InSAR ve de
SAR ve optik verilerin entegre kullanilamasinda ve ayrica tarimsal izleme ve yonetim
stratejileri olarak iiriin deseni haritasini etkin bir sekilde degerlendirmesinde ki
potansiyelini vurgulamaktadir. SAR parametrelerinin bitki biyofiziksel degiskenlerine
duyarliliginin daha iyi yorumlanmas: icin hassas arazi gozlemleri gereklidir ve bir
sonraki calismada tarimsal faaliyetler hakkinda daha dogru bilgi elde etmek iizere

ylksek mekansal ¢oziiniirliiklii SAR verileri degerlendirilecektir.

Anahtar Kelimeler: Tarimsal izleme, Sentinel-1 SAR geri sacilmasi, polarimetrik ve

interferometrik SAR, iiriin degiskenleri, lirtin deseni haritasi iiretimi
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Introduction

1.1 Literature Review

Crops as food resources have a substantial importance in socio-economic issues of
societies in terms of sustainable management. In this regard, sustainable food
security is dependent on precise agricultural activities monitoring and the collection
of accurate farming information [1]]. Accordingly, agriculture is amongst important
activities that have played a key role in providing food security to a growing
population of the world [[2]. Precision agriculture is a management strategy that
integrates information and communication technologies with the agricultural industry.
Therefore, the information of each component of the small area in a farm is used to
adapt the type and amount of inputs in those areas in order to evaluate and manage
the temporal and spatial variability more precisely. Spatio-temporal observing and
evaluation of crop type as an agricultural monitoring system is a critical step regarding
estimate the area allocated to each crop type, computing statistics for crop control of
area-based subsidies or crop production forecasting, environmental impact analysis
and some other applications. In fact, targeting and monitoring programs are designed

to promote economic and environmental sustainability as an agricultural management

policy [13].

Land use/cover mapping is one of the main application fields of the remote sensing
data and thus is well suited for mapping of seasonally changing variables such
as agricultural areas. Since, agricultural lands are characterized by their typical
spatial patterns, temporal dynamics and changing radiation reflecting and scattering
behavior due to crop phenology and plant status, hence applying time series
of remote sensing data within a short revisiting time can be utilized for better
discrimination and identification of different crops, investigating crop variables (
e.g. crop height, canopy coverage and water content) for improvements in crop
growth monitoring, crop disaster prediction and providing accurate information to
precise farming. Thus, decision-makers can have accurate and updated information

regarding crop management; agricultural production planning, food security stability



promotion, crop trading market, etc. Besides, farmers also benefit from obtaining
timely information about crop phenological development as well as yield estimation.
Therefore, Satellite data are widely used to study and investigate agriculture activities
changes as dynamic phenomenon over the time and in terms of quantitative and
qualitative agricultural products, estimation of the planted area, the identification of

certain types of crops, the growth stages and crops tragedy prevision [4].

Remote sensing technologies that generating satellite data, are known as the most
unique and important source of information about the earth and other planets in
the space. The applicability of the satellite data is unlimited, providing various
and multi-fold advantages of the global, regional and local scale. Earth observation
satellites that transmit electromagnetic spectrum (EMS) energy and collect data
(reflecting and radiating) of the earth’s characteristics, in terms of their passive
or an active imaging instrument mode are two different remote sensing systems.
Different sensors measuring various wavelength portion (e.g. visible, near-infrared
or microwave) of the EMS. The remote sensing systems that their measurements
depend upon the external energy source, such as sun are known as passive and which
the transmitted energy from the sensor provided by system’s itself referred to active
remote sensing systems [|5]. Optical (passive) and SAR (active) are two different
sources of remote sensing systems that can be applied separately or integrated,
offering unique spectral and textural information for land use/cover evaluations,
changes and generating information with higher quality [|6]. The sensors that
functioning in the optical region of wavelength spectrum obtaining information on
visible, near-infrared and shortwave infrared wavelengths. Images obtained in the
optical spectrum from multi-spectral sensors due to their high spectral and spatial
resolutions and therefore, their straightforward interpretability are preferred data
sources in the case of favorable weather conditions. However, during the persistent
and long-lasting period of cloud cover in the rainy season and in the darkness, the use
of optical sensors are limited for the continuous monitoring of the earth surface and

characteristics [|7]].

One of the first remote sensing studies in vegetation monitoring is related to the year
1973, one year after the launch of the ERTS-1 satellite (Earth Resources Technology
Satellite)- the first series of Landsat (Landsat 1) satellites, where Rouse et al. [|8]] have
been developed a method for quantitative measurement of vegetation conditions over
wide areas using ERTS-1 MSS (Multi Spectral Scanner) data. The main objectives were
to evaluating of the application of the ERTS-1 spectral bands 5 and 7 data to compute
a Band Ratio Parameter (correlation of the Band Ratio Parameter above-ground
green biomass and vegetation water content) for measuring the vegetation type,

amount, and condition of rangeland vegetation to provide a new data source for
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regional basis agro-economic applications. Their project resulted that the proposed
method using ERTS-1 MSS data had good potential for mapping vegetation conditions
and for providing growth information in the test area. Different multispectral
and hyperspectral optical data for various purposes are used in the agriculture
domain. It has been achieved for many applications such as vegetation indices (e.g.
Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Normalised
Difference Water Index (NDWI), Enhanced Vegetation Index (EVI), Pasture Index
(PI), Ratio Vegetation Index (RVI), and etc. [|8-13], nitrogen management [|14-18]],
pasture management [|19]], identification of different crop types, crop’s development
monitoring and mapping [20-27]], crop acreage estimation [[28], yield and production

forecasting [29~32], and other applications.

The role of active remote sensing systems including SAR, polarimetric SAR (PolSAR)
and interferometric SAR (InSAR) in agricultural activities was investigated in different
previous studies. SAR sensors are an active system independent of illumination
sources, equipping the microwave region of the EMS with long wavelengths to
collection of data in day-or-night and in different weather conditions with a constant
observation of earth surface from the polar orbit [2, [33]]. Microwaves can penetrate
through clouds where the cloudy sky is a serious obstacle to the application of optical
images particularly in a rainy climate. The SAR system has sensitivity to the physical
morphology and the geometrical characteristics of the land surface and cover (soil
roughness, moisture, vegetation structure, etc.). Therefore, radar sensors collect the
echoes of the backscattered signal in a sequential way thus very different to that
of optical satellite data, which measure reflected solar light in visible and infrared
wavelengths [[34]. The SAR technique has become increasingly an effective method
of providing seasonal agricultural monitoring [|1, |2]]. The superiority of radar remote
sensing techniques and capabilities of SAR technology have convinced researchers
and government officials to apply it as a widely used, practical and efficient tool in
such applications. The SAR system is sensitive to the vegetation biophysical variables
and dynamical characteristics of plant targets, and underlying soil parameters such
as moisture content, soil surface roughness, deflection and irregularity, geometric
property, and due to its high spatial and temporal resolution help to perform field-level
crop classification and monitoring activities [4, 35437]]. In addition, SAR sensor has
a capability to differentiate crop types due to its sensitivity to the crop structure and
water content. Plant water content, roughness, leaf size, and vegetation greenness
level that are related to the bio-physical characteristics of the features represent the
amount of reflectance. Crop structure and water content are variables that varying in
respect with crop type, growing stage and crop conditions [38]]. Different crop types

at each phenological stage show different bio-physical characteristics [36]]. Therefore,



for various land cover features, SAR products provide the feasibility of estimating
crop height, crop type and crop condition mapping which are valuable information

for different agricultural applications and marketing of agricultural yields [39].

Optical sensors are beneficial for crop mapping and reliable applicants for agricultural
land use monitoring as they measure reflectance from targets in the electromagnetic
spectrum (reflectance in visible and shortwave infrared and thermal spectrum).
However, success in crop identification with optical data mainly depends on the
acquisition of image during key crop phonological stages. The accuracyof the
classification decreases during these critical periods if optical data are used [3]. When
added to the broad land use/cover classes’ information provided by the optical data,
the surface roughness and moisture information which are provided by SAR sensor
allow one to extract more detailed specification of land surface and features [2].
Integrating both optical (reflectance) and Synthetic Aperture Radar (backscatter)
multi- temporal features provides some advantages in terms of a more reliable crop
map. Combining data from different sources of remote sensing data such as optical
and radar datasets offer unique spectral and textural information for land use/cover
evaluations, characterizing land use changes and generating information with higher
quality than the individual datasets [|6]. The high potential of inegration of the SAR
and optical datasets can meet various observational needs for land research activities

such as agriculture monitoring [[40-45|].

Scattering SAR data can be obtained in different wavelengths and polarizations.
Texture measures, multi-sensor fusion, multi-polarization data, multi-temporal data
and polarimateric data are techniques which is used to classification of the vegetation
type [46, [47]]. In agricultural studying, interactions between radar configuration
(frequency, wavelength, polarity, and incident angle) with each other, as well as its
interaction with the plant variables, has made the use and interpretation of radar
data useful but complicated [48-50]. In this regard, radar parameters such as
polarization which affect the signal scatter and target parameters that influence the
signal propagation is subject to study. Object characteristics such as orientation,
material constituents, configuration, and dielectric properties can be estimated using
SAR Polarimetry (PolSAR) [51, 52].

Previous studies have demonstrated the sensitivity of polarimetric SAR to crop
variables such as crop leaf area index (LAI), and crop biomass [[53-55]]. Processing and
analyzing of the radar signals indices at different wavelengths, frequencies, incident
angles, and polarization are amongst the techniques used in the studies of the crop
biophysical characteristics [6]. In a study of monitoring and estimating wheat yield,

Mattia et al. [|55]] investigated the sensitivity of multi-temporal C-band, polarizations



(HH and VV) to biophysical parameters, and the relationship between the radar and
biophysical measurements on the wheat development stages. In order to maximize
the sensitivity of SAR sensors for the maize growth cycle monitoring and mitigating
the soil moisture impact on the signal and in SAR time series, Blaes et al. [56]
developed a model by simulating the signal in all possible configurations (polarization
and incidence angles at C-band) for ENVISAT, RADARSAT, and ERS SAR images and
they found that dual polarizations indices are more sensitive to maize growth and
less sensitive to soil moisture variations. Ruiz et al. [35[] utilized multi-polarized
RADARSAT-2 data to set up indicators of crop condition and yield estimation for
corn crop growth stages by obtaining polarization signatures from radar data, and
applying related crop parameters and vegetation indices in Central Mexico. The results
indicate that the application of RADARSAT-2 polarimetric SAR data isoperational in
the agricultural activities. Liao et al. [[57] investigated the sensitivity of RADARSAT-2
polarimetric SAR (C-band) data using sixteen parameters to crop height and fractional
vegetation cover (FVC) variables of corn and wheat. They explored that the corn
height and FVC are strongly correlated with SAR parameters at the early growing stage
but the correlation is low at the later growing stages. Furthermore, they observed
that the sensitivity of SAR parameters to wheat variables (height and FVC) is very
low. The study concluded that RADARSAT-2 polarimetric SAR (C-band) data has high
potential in crop variables estimation for broad-leaf crops. Some other studies have
also investigated the potential use of PolSAR technique as an agricultural monitoring
method such as using backscatter intensities of TerraSAR-X, ASAR/ENVISAT, and
PALSAR/ALOS data to the detection of sugarcane harvesting events [58]], analysing
the COSMO-SkyMed X-band, ENVISAT ASAR, and ALOS PALSAR backscatter values
relationship to the vegetation indices [|59]] and the sensitivity of C-band and X-band
PolSAR to grasslands mowing events [60, [61]].

Regarding the different agricultural applications of SAR system and based on the
analysis of backscatter intensities, InNSAR approach has also shown the potentiality
for monitoring and management practices and vegetation change detection. As the
first applications of InSAR-based technique in vegetation parameters assessment were
abrupt changes detection in vegetation in the forest region [62]] and deforestation
observations [63]. The InSAR-based approach has been applied for agricultural
monitoring in terms of comparing interferometric coherence for mowed grasslands
with grasslands covered by vegetation [|64, 65]], ploughed bare fields and vegetation
with low height [66, |67]], and the importance of the meteorological effects in the
interpretation of interferometric coherence [|68-70]]. The relationship between the
repeat pass temporal interferometric coherence C-band SAR and grasslands mowing

events, and also temporal decorrelation affected by precipitation in Central Estonia



were investigated by [|71]] and resulted the feasibility of interferometric coherence for
mowing detection and the source of factors that affect the coherence such as farming

activities and meteorological conditions were determined.

On this purpose it is aimed to research different remote sensing systems including
optical, SAR, PolSAR and InSAR in agricultural activities to crop monitoring,
management and mapping in the selected test area in the konya basin, Turkey. In this
study, the goal is application of the remote sensing system’s potential to provide useful
information during growing stages of different crop types and seasonally changing
variables and hence, the information of each component of the small area in a farm is
used to adapt the type and amount of inputs in those areas in order to evaluate and

manage the temporal and spatial variability more precisely.

1.2 Objective of the Thesis

Agriculture in Turkey as one of the top ten largest agricultural producer in the world
plays a critical role in socio-economic terms of the country. Due to its great variety in
geomorphology, topography and climate, therefore, a large percentage of the country
is allocated to the agricultural land, and hereby a great number of the population is
employed in agriculture. The conventional agricultural survey and management, and
crop condition monitoring which mainly based on field observations on small scale
and being non-real-time, thus used to be time and labor-consuming and expensive.
Whereas the plant biological and biophysical parameters which are measuring from
the field surveys, can also be derived from remotely sensed data, freely or at a very
low cost, in high frequency and more precisely at a very wide range of scales, from the
micro-level to global surveys. On the other hand, for precision agriculture, real-time
basis information and reliable data leading to better response times and allowing to
take on time and appropriate actions. Therefore, remote sensing systems provide
the actual synoptic view of large region at a time, frequently and accurate for those

purpose, which is not possible to obtain from conventional survey methods.

This thesis attempted to investigate different remote sensing techniques and
applications in crop monitoring and mapping in the study area. The main objective
is to assess the sensitivity of remote sensing data to the crop variables (i.e. crop
height and canopy coverage) of different crops and comparing the finding with the
data acquired from field observation during the crop growing season. Moreover, the
potential of the remote sensing data in crop condition estimation and the integration
use of different sensors data to discriminate the different crop types were investigated.
Therefore, the intention of this study is two-fold: (1) to highlight the potential use



of SAR, PolSAR and InSAR systems in crop variables and parameters estimation and
assessment of the relationship with remotely sensed data and field observations in
agricultural studying (2) to investigate the optical and radar data integration approach
to the enhancement of crop mapping, and the performance of the sensors backscatter
and reflectance for temporal crop type discrimination with a combination of the optical
and SAR data. In order to evaluate the capability and efficiency assessment of the
sensors, the datasets were acquired parallel to the field surveys in 2016 in the study

area. The summary of the main contributions of this work is as follows:

1. To evaluate the sensitivity of different dual polarimetric SAR parameters to crop
height and CC of maize, sunflower and wheat, and to investigate the changes in SAR

backscatter arising from crop height and CC during crop phenological stages.

2. To investigates the potential of polarimetric SAR backscatter data in an agricultural
area for growth monitoring of different crop types (maize, sunflower, wheat and
potato) and crop mapping using that polarimetric composite of images which are

produced from multi-temporal analysis.

3. To demonstrate the potential of discriminating crop types using polarimetric SAR

(backscatter) in integration with useful optical (reflectance) indices.

4. To studying the relationship between the interferometric coherence calculated from
the different pass directions and multi-track SAR image pairs and the different crop

type’s growth stages (i.e. sowing, growing and harvesting).

1.3 Hypothesis

To indicate the sensitivity of the SAR Parameters to Crop variables the research

hypotheses were that:

- There is correlation between the SAR backscattering values with each crop in the

different growing stages and SAR parameters are most correlated with crop variables.

- The different crop types from the same leaf category show the similar correlation

between SAR parameters and crops variables.

To show the potentiality of the time-series analysis of the SAR polarimetry in growth

monitoring and the temporal backscatter changes for different crop types and crop

mapping:

- Useful information about crop status can be extracted from SAR backscattering values



during growing stages where polarity can affect intensity values.

- The classification of the polarimetric composite of the images can help to identify

crop types.

To illustrate the advantages of the integration of the optical and SAR datasets:

- The integrated use of the optical and SAR data and a combination of different datasets

can improve the crop classification results.

To assess the interferometric coherence capability to crop growth monitoring using

InSAR repeated-pass approach:

- The interferometric coherence calculated from the multi-track and different pass
directions of the SAR image pairs indicates the high correlation with crop growth

status.



2

General Overview of Satellite Remote Sensing Systems

The events or objects that are being observed with remote sensing sensors, the
information needs a physical carrier to move from the events/objects to the sensors
via an intervening environment. The output of the obtained information from the
scene being observed is an image that is required the additional steps of processing
and analyzing to make the interpretation possible. In general, electromagnetic waves
are as an information carrier in remote sensing systems. Electromagnetic waves are
energy that transported through space in the form of periodic disturbances of electric
and magnetic domains at the same speed as commonly known as the speed of light
(Figure 2.1).

Electric flﬂld Wavelength

Figure 2.1 Electric and magnetic fields of the electromagnetic wave

An electromagnetic wave is specified by a frequency and a wavelength and these two
quantities are related to the light speed and is shown as the equation 2.1.

speed of light (c) = frequency (v) x wavelength (1) (2.1)

The frequency and therefore, the wavelength of an electromagnetic wave depend
on the energy source. In our physical world there is a wide range of frequency
encountered, beginning from the low frequency (long wavelength) of the radio waves
of the electric waves created by the energy transmission lines and end to the very
high frequency (very short wavelength) of the gamma rays originating from the

atomic nuclei. This broad frequency domain of electromagnetic waves forms the
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Electromagnetic Spectrum (EMS). Figure 2.2 shows several wavelength (frequency)
regions of the EMS.
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Figure 2.2 The EMS different wavelength (frequency) regions

From the wide range of electromagnetic radiation, only a narrow band of the EMS
ranging from 400 to 700 nm is visible to the human eyes. Regarding the boundary
between the EMS regions, it should be considered that the boundaries are approximate
and two adjacent portions can be overlapped. Therefore, earth observation satellites
in terms of their sensors’ capabilities of using different parts of the EMS and also their
energy source are categorized into two distinct optical and microwave remote sensing
systems.

2.1 Optical Remote Sensing Systems

Optical sensors detect solar radiation (sunlight) reflected and/or emitted from the
surface features of earth and targets on the ground to form images of the earth’s
surface and characteristics (Figure 2.3). The sensors that functioning in the optical
region of wavelength spectrum obtaining information on visible, near-infrared and
shortwave infrared wavelengths. Different features such as constructions, vegetation,
water, cloud, road, and soil reflect visible and infrared radiation in different ways
(Figure 2.4). The radiation after being emitted from its energy source (e.g. sun) and
before used for remote sensing has to travel distances through the earth’s atmosphere
to reaches the earth’s surface. The incoming electromagnetic radiation to the sensor
due to the mechanisms which are known as scattering and absorption caused to be

attenuated and redirected from its original pathway. These mechanisms are related to
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the existence of particles or large gas molecules in the atmosphere and the interaction
of light or radiation with these particles or gases. Therefore, the amount of scattering
and absorption can be changed depending on the the distance the light travels through
the atmosphere, the wavelength of the radiation, and the redundancy of particles or
gas molecules.
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Figure 2.3 An illustration of optical remote sensing system (Image source: Sun et.
al.)
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Figure 2.4 Spectral characteristics of typical surface features (Image source: crisp)
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The rest of the radiation that is not scattered or absorbed in the atmosphere and
reaches the ground can interact with the targets and the earth’s surface. The Target
Interactions when the energy hits or is incident (I) upon the surface are normally
happening in three forms including absorption (A); transmission (T); and reflection
(R) as shown in Figure 2.5. With regard to the wavelength, the substance and the
condition of the features, the proportions of each interaction will differ and hence, the
collected incident energy will interact with the ground in one or more of these three
forms.

Figure 2.5 The interactions of the radiation with targets on the earth’s surface

Among these three ways of interaction, the most interesting form in remote sensing is
the reflection (R) and when the radiation bounces off from the object and redirected.
Depending on the surface characteristics two types of radiation reflection occur,
specular reflection and diffuse reflection (Figure 2.6). When a surface is smooth,
approximately all the energy that reaches the ground is directed off from the surface
in a single direction, and therefore, specular or mirror-like reflection occurs. Whereas,
diffuse reflection happens when the surface is rough and the energy is reflected nearly

in a uniform manner in different orientations.

Figure 2.6 Two different types of radiation reflection; specular reflection (left) and
diffuse reflection (right)
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Depending on the target roughness and the incoming radiation wavelength, surface
features mostly lie somewhere in the perfectly specular, perfectly diffuse reflectors
or somewhere in between. This means that, once the wavelengths are considerably
smaller than the surface properties variations or the dimension of the pieces that
form the surface, the diffuse reflection would dominate. The interactions of
some of the targets surface feature with incoming radiations at the visible and
infrared wavelengths can be explained through some examples. For instance, in
vegetation when chlorophyll pigment (a chemical compound that provides energy
for photosynthesis with the absorption of light) is maximum at plants in summer,
leaves appear greenest,and when the chlorophyll is less in autumn leaves appear red
or yellow. This is due to that in summer, the chlorophyll strongly holds radiation
in the red and blue wavelengths but reflects green wavelengths, whereas there is
excessive green radiation absorption in autumn because of the less chlorophyll in the
leaves and therefore, more reflection of the red wavelengths occurs. If the internal
structure of leaves is healthy then leaves act as perfectly diffuse reflectors to the
near-infrared wavelengths. Hence, as a one way to determine how healthy vegetation
is the measuring of the near-infrared reflectance. Water as another example is the
strong reflector of shorter visible wavelengths (e.g. blue) and absorbs radiation
with longer wavelengths (e.g. near-infrared). Since water reflects radiation in the
blue wavelength, it usually looks blue or blue-green but darker if observed at red or
near-infrared wavelengths. Figure 2.7 shows the interactions of different visible and

infrared wavelengths with vegetation leaves and water.

G IR
|R iR [=4

®CCRS/CCT
Figure 2.7 Visible and infrared wavelengths interactions with vegetation leaves (left)
and water (right)

v

However, the existence of algae in the water can make confusion in terms of reflection
because the chlorophyll in algae causes to reflects radiation in the green and absorbs
more of the blue wavelengths and, making the water look greener in color. Moreover,

water surface characteristics such as water surface roughness, suspended materials
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and oil spills, due to their different reflection properties, therefore, can also make
the water-related interpretation more complicated. Accordingly, to indicate spectral
responses for the different objects over a variety of different wavelengths and to
correctly evaluate the interaction of the surface properties with electromagnetic
radiation, knowing the factors which influence the spectral response is critical.
Therefore, a spectral response for the specific target can be build up by measuring the
reflected (or emitted) amount of electromagnetic energy by the targets over a variety
of different wavelengths. Figure 2.8 illustrates the vegetation and water spectral
response at different wavelengths.
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Figure 2.8 Spectral responses of the vegetation and water over a variety of different
wavelengths

2.2 Microwave Remote Sensing Systems

This remote sensing system uses the long-wavelength radiation region of the
electromagnetic spectrum and measures the microwave portion of the EMS which is
ranging from approximately 1 mm to 1 m in wavelength of the spectrum. Microwave
frequency is ranging from 0.3 GHz to 300 GHz corresponding to the 1 mm to 1 m in
wavelength, respectively (Figure 2.9). Microwave sensors are typically active remote
sensing systems that detect and record echos (backscatters) reflected from transmitted
microwave radiation incident upon the features on the surface [73]]. In compare to
the active microwave remote sensing system, passive sensor utilizes a broad range
of microwave radiation. The microwave bandwidths are commonly known as the
K, X, C, L and P bands that are employed the microwave band ranges in the active
microwave sensors (Figure 2.10) [72]. In order to proceed active microwave, the

sensor integrates several pieces of microwave equipment for imaging (i.e. SAR sensor)
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and non-imaging including radars (RAdio Detection And Ranging), scatterometer,
and altimeter. Radar sensor transmits a signal (microwave radio) upon the target
and records the backscattered part of the signal. The round trip time delay between
the signals (transmitted and reflected pulses) defines the distance (or range) to the
object and therefore, the intensity (which is related to the surface characteristics and
incidence angle) of the backscattered signal is measured to separate different targets
on the ground. SAR as an imaging sensor is used for measuring and imaging the
surface variations in microwave backscattered signal such as surface roughness and
surface moisture. Non-imaging scatterometers are used to detect variations in a wide
range area, for example, estimating ocean wind speed by measuring the variations
in the surface roughness. The elevation of the earth’s surface is measured by the
altimeters that are fixed below the platform viewing the ground straight down at nadir.
In fact, non-imaging microwave sensors are one linear dimension profiling devices

while imaging sensors take measurements in two-dimensional.
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Figure 2.9 Parts of the electromagnetic spectrum

Given that active microwave remote sensing carrying its own energy source and
independent of the sun as source of illumination and hence, can be operated

day-or-night. In addition, microwave radiations with long wavelengths are not prone
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Figure 2.10 Microwave bandwidth ranges and specifications ||

to atmospheric scattering and therefore, enables radar pulses to penetrate through
cloud cover, haze, smoke, dust, and all rainy climate but the heavy rainfall .
Consequently, These properties of microwave energy allow collecting data at any time,

different weather and environmental conditions.

The focus of this thesis is solely on imaging radar active microwave remote sensing
systems. The basic principles of Synthetic Aperture Radar (SAR), Polarimetric SAR

and Interferometric SAR is discussed in the next chapter.
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3

Radar Bachground

3.1 Synthetic Aperture Radar

Imaging radar can be generally divided into two distinct categories: Side Looking
Aperture Radar or Side Looking Radar (SLAR or SLR ) and Synthetic Aperture Radar
(SAR). SLAR radar is the classical radar system that is well-known as Real Aperture
Radar (RAR) with a real aperture antenna (a physical antenna) in limited length. The
SLR imaging system is equipped to a straight lengthy antenna mounted on the aircraft
or satellite platform that its longitudinal axis parallel to the flight direction. Parallel
direction to the flight track is called the azimuth direction (along-track) and the
direction of the radar Line-Of-Sight (LOS) is called the range direction (across-track).
Detail of the imaging geometry of the side-looking monostatic radar in a straight
flight line over the flat terrain at altitude H is illustrated in Figure 3.1. The radar
platform is on motion with velocity v, and the radar antenna emits microwave energy
pulses perpendicularly to the platform flight direction and towards to the targets on
the ground. The pulses after reaching to the ground and depending on the targets
characteristics are scattered usually in different directions as well as the direction of
the antenna. The return pulses ( the backscattered echoes) are received by the antenna
at different times based on the distance between the antenna and different objects on
the ground and the recorded backscatters of the echoes are used in the construction
of the radar image. Radar is basically a ranging device that measures range (distance)
to targets located within the beam footprint [74]]. In any microwave remote sensing
systems, a transmitter, an antenna, a receiver, and a recorder are basic devices in the
configuration of the radar sensors. The size of the antenna is the principle for the
footprint (beam width) and therefore, for the radar imagery resolution. The ground
resolution of a real aperture SLAR system (i.e. spatial resolution; range and azimuth
resolution) is related to the slant range and azimuth direction which depending on the
length (aperture length) and the antenna beamwidth and is defined as the capability
of the device to differentiate between two objects on the ground [75]]. The slant range
and range resolution of a RAR are displayed in Figure 3.2 and Figure 3.3, respectively.
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Figure 3.1 Geometry of RAR, side looking aperture radar [|74]

The ground range resolution of a RAR is assigned as p, in Figure 3.3 and is given as

equation 3.1.

cT

p
= 3.1
Pg 2sin0 (3.1)

Where 7, is indicates the pulse length and c is the speed of light. In fact, the range
resolution is based on the pulse width and look angle but it is independent from
the height. The coefficient of two is related to the round-trip of the radar pulse
(sent out from and return to the radar). Since there are practical limits on peak
transmitter energy and, in practice, the radar pulses cannot be made short arbitrarily
thus, sufficient microwave energy required to be delivered to lightening the target
in order to gain the needed Signal-to-Noise-Ratio (SNR). Therefore the maximum
transmitter energy and required SNR determine the length of the pulse [74]. Azimuth
resolution which is parallel to the flight direction of the platform is defined by the
minimum distance on the ground in which two objects can be separately imaged.
Hence, two objects at the same slant range can be distinguished only if they are not
at the same time in the radar beam. Thus, the azimuth resolution (p,) can be written

as equation 3.2, where the 6, the angular spread of the radar beam in the azimuth
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direction is equal to wavelength (A4) divided by antenna lenght (I).

po=ROy = RTA (3.2)
There is an inverse proportional between the footprint and the size of the antenna,
thereby the longer antenna has a narrow footprint and hence, high spatial resolution
in azimuth direction. The resolution in terms of the slant range is defined with the
distance that two objects on the ground have to be away from each other to give two
different waves (echoes) in the return signal to avoid overlap of the incoming signals.
This means that if two objects (e.g. A and B objects in Figure 3.2) are separated by at
least half a pulse length then they can break down in the range direction.
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Figure 3.2 Exemplification of the slant range [[76]
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Figure 3.3 RAR range resolution [|75]
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The interaction between the several components of the radar imaging system is that
the transmitter generates the microwave energy and transmits the energy to the
antenna from where it is emitted upon to the target. After the energy hits and interacts
with the target, the receiver accepts the backscattered energy (signal) as received by
the antenna, and the received signal is filtering and amplifying by the receiver as it
required for recording and the recorder then stores the signal [76]. Radar imaging
principles and the systematic interactions between its components is shown in Figure
3.4.

SAR Antenna

Look angle, &

Radiated Pulse

Figure 3.4 Geometry of imaging radar [|75]

Given that it is not feasible for a RAR system platform (aircraft or spacecraft) to carry
a very long physical antenna which is required for getting useful and high spatial
resolution imaging of the earth surface, therefore, SAR was developed to overcome this
limitation of the RAR system and thus, to improve spatial resolution with synthesizing
the large antenna from the small antenna (RAR real antenna) by taking advantages
of the motion of the platform to emulate a longer antenna [[76]. As shown in the
Figure 3.5, SAR principally, operates by simulating long antennae and this virtual
implication is achieved through the Doppler effect that allows the small real antennae
with a limited beam width (D) to forward microwave beams at different time intervals

along with the beamwidth [72]]. During the time that radar transmits the microwave
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signals to the object, SAR continues to receive the return pulses. Meanwhile with
the movement of the platform the relative distance between the radar and the object
changes which causes a Doppler effect to dampen a chirp modulation of the received

return pulses.

In the imaging radar, due to the earth’s rotation and because of the radar moves
along its flight direction the relative speed between the radar and each scatterer
changes, hence, the Doppler frequency shift corresponding to each point scatterer
on the ground is different, and this causes the received signals to have a fading
characteristic. Therefore, Doppler frequency shifts can more easily be perceived when
applying higher frequency due to that the proportion of frequency shift would be
larger. However, there would be a slight angle called the squint angle, ws of the
radar platform [|79]]. Thus, the Doppler frequency for a specific target, based on the
squint angle and platform speed Vs (the sensor-target velocity), and look angle can

be written as equation 3.4.

fo= % sin w, sin 0 (3.3)
When the sensor is in the closest position to the target and the center frequency of
the sequence of a target through the radar beam is in zero Doppler position ((i.e.
t = 0) it is called the Doppler centroid frequency. It is assumed that the Doppler
frequency first is positive in zero Doppler position and decreases down to zero, and
then becomes increasingly negative as the movement of the frequency of the sequence
of a target through the antenna beam. The changes of the Doppler frequency composes
the Doppler bandwidth By,,,, where f3, is the azimuth beamwidth of the antenna and
the v, is the relative speed of the platform and is given by the equation 3.5.

_ 2P

Bpy, = A (3.4)

The total Doppler frequency turn is from —v/L to v/L, thus describing the Doppler

bandwidth as the following equation.

2
Af, = Tv (3.5)

The resolution in the azimuth direction of a SAR focused image related to Doppler
bandwidth and the relative speed of the platform is shown in equation 3.6.
v

AA =5 —_
g Bpoy 2 (3.6)

Therefore, the azimuth resolution of a SAR is only a function of the length of the
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physical antenna and not depend on imaging distance or wavelength. In order to
increase the azimuth resolution of azimuth direction, a matched filter proportional to
the reverse characteristics of chirp modulation called azimuth compression is intended
as shown Figure 3.6. On the Doppler frequency shift assessment, it is considered that
the Doppler shift when the target is moving away from the radar system is negative

(opening range) and when the target is moving toward the radar it is positive (closing

range).
a) Process of the illumination by SAR b) Change of Doppler frequency of SAR
until the beam passes by the point target A
) illuminated area
Time=t1 by the beam frequency
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Figure 3.6 Synthetic aperture processing, basic theory including the Doppler effect,
matched filter, and azimuth compression [|80]]

An image acquired by the radar contains a digital number for each pixel which
indicates the strength of the received backscattered energy from the ground. The
received energy from the each transmitted radar signal can be represented by the
physical parameters and illumination geometry using radar equation as shown in
equation 3.7 [[81]]. The bistatic radar equation is extracted as with monostatic radar
(transmitter and receiver is at the same platform) and solely the grouping of terms is
different.
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Figure 3.7 Radar Transmission scheme and coordinate system [|82] [|83]
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Where

P, = received energy,

P, = transmitted energy,

R, = distance from the transmitter to the object,

Ry = distance from the receiver to the object,

G = transmitter gain,

Gy = receiver gain,

A = wavelength,

R = range from the sensor to the object, and

o = bistatic Radar Cross Section (RCS) of the target and it is depending

on the target properties and the extent of the illuminated terrain.

In fact, the radar equation demonstrates the basic relationship between the
radar system parameters, the received energy, and the target’s characteristic [82]].
Measurement of the intensity of the received signal is the critical objective made
by the radar that allows various subjects are differentiated in microwave remote
sensing systems. Accordingly, measuring the angle and distance to a target is made
by recording the arrival time of the received signals to discriminate among different
targets. For distributed targets with the bistatic radar equation 3.7 can be extended by
integrating the backscattered energy over the illuminated terrain surface and modified
it as equation 3.8.

Py :PTJ (Gin—f?i)aodA (3.8)
A (47)FR
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Where (A;;;) is the illuminated surface area, G,,, is the radar antenna gain and o? is

ant
the unitless backscattering coefficient that indicates the return backscattered per unit
surface area. The radar equation can be used to estimate the energy backscattered
by the target if the characteristics of the radar system and the imaging geometry are
specified. The intensity of the backscattered radar turn back from the pointlike target
is described by the RCS (o) through the equation 3.7 (radar equation) in the units of
area (m?). In general, RCS mostly depends on the shape of the scatterer, its dielectric
constant, imaging geometry (orientation of the scatterer), and the used wavelength
than the size of the object in the real-world [84]]. Similar to the RCS, the proportion
of the backscattered energy compared with the incident energy on the scene for
distributed targets obtained from equation 3.7, is described by the backscattering
coefficient which is unitless and normalized by the illuminated surface area using the

incidence angle 6;, assumed in flat terrain and can be expressed by equation 3.9.

O_()_ ﬁO

N Sil’l 91‘ (3 9)

Where f3, is the estimated backscattered energy (brightness estimate) aquired by
the radar in slant-range geometry that is not related the incidence angle and local
topography [85]. However, if the local terrain topography is recognized for normalize
the backscattered energy properly, the local incidence angle 6, ,.,, should be used
in equation 3.9. According to the published works recommendation, the o is used
only in connection with calibrated radar systems [|84]. The o is often represented in

decibels and is given as equation 3.10.
09, =10log,,(c®) (3.10)

Because of the normalisation of o and ¢° the backscattering coefficient in decibels
023 properly defines the orientation of the scattering which O dB refers to isotropic
scattering, positive and negative values to scattering are representing that energy

focuses towards or away from the radar respectively.

3.2 Radar image distortions

SAR imaging with the side-looking viewing geometry is achieved by sweeping the
ground through the antennae in an orthogonal direction to the platform flight
direction (azimuth direction). The sweeping width is a function of the magnitude
of the off-nadir angle. Radar is measuring the distance to targets in slant range
rather than the ground range (real lateral distance) along the ground thus slant-range

distortion appeared which causes variations in scale (caused by slant range to ground
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range conversion) that change from near to far range in the image [86]. Therefore,
due to the terrain elevation, SAR images in the natural coordinates (range and
azimuth) is limited by the presence of geometric distortions (caused by slant range to
ground range conversion) inherent to the range imaging mode. Figure 3.8 illustrates
the SAR geometry in the plane perpendicular to the azimuth track with a side-looking
antenna that illuminates the planarity (ground range plane) area in slant range
directions. A constant resolution (Ay) on the ground range corresponding to a
constant resolution (Ar) in the slant range direction of a target within the near and
far range can be derived from the equation 3.11.
Ar

Ay = 3.11
Y sint ( )

Where the incidence ¥ angle variation from near to far range causes to reduce the
ground range resolution Ay; meaning that features in the near range are compressed
with regard to the features at far range. These results also are relevant to the ground

range pixel (resolution cell) dimension. Similarly to the distortions encountered in
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Figure 3.8 SAR geometry in the plane indicating slant range versus ground range
resolutions [|80]]

the planar area, radar imagery are also exposure to geometric distortions due to
relief displacement. In considering the effects of the surface slope a, the resolution
of the ground is determined by the local incidence angle ¥; = ¥ - a and related to
the terrain topography on the slant range direction of radar. foreshortening, layover
and shadows are three consequences that are resulted from relief displacement as
depicted in Figure 3.9. As previously mentioned radar measures distance in slant
range, and hence, foreshortening that depends on the angle that surface slope makes

in relation to the incidence angle, is responsible to the dilation or compression of the
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Figure 3.9 Geometric distortions in radar images due to relief displacement ||

pixel in the radar image with respect to the radar beam with the slope on the ground.
Different foreshortening effects in terms of slant range and slop (—9<a <) are shown
in Figures 3.10 to 3.13. foreshortening occurs when the radar beam hits the base of

5 O<a <9

Figure 3.10 Foreshortening effect when 0<a <1, where the pixel on the ground is

highlighted [[80]
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tall features (e.g. hills or mountains) and back towards the radar before it arrives
at the peak. When the radar beam is orthogonal to the slope such that the slope,
the base, and the peak are imaged simultaneously, then maximum foreshortening
occurs. The slopes in the mountainous terrain with intensive foreshortening effects
appear as bright features on the image and therefore, the length of the slope not

represented correctly. Layover happens when the radar beam hits the peak of a hill

\ -9 <a <0

. \\ ", WITHOUT SLOPE

Figure 3.11 Foreshortening effect when —#<a<0, where the pixel on the ground is
highlighted [80]

or mountain before it arrives at the base, where the return pulse from the peak of
the hill or mountain is received before the pulse from the bottom and resulting to
the compression of the area with the slope into a single pixel in the radar image.
It causes where the incidence angle is smaller than the slope angle In the image it
appears bright features. This is similar to what happens in foreshortening but layover
is extremely severe for small incidence angles in the near range and in very steep
slope mountainous. In the case of, targets in the valley have a larger slant range than
related mountain peak, then the foreslope is "reversed" in the slant range image and
therefore, the ordering of surface features in the radar image is the inverse with the

ordering on the ground.

Radar shadow results from foreshortening and layover. In the case, that radar beam is
not able to illuminate the surface and the region does not generate any backscattered
signal thus radar shadow occurs and behind vertical features or slopes with steep sides

appear dark in the radar image due to the absence of the backscattered energy.
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Figure 3.13 Shadow effect when a + U > 90 [80]]
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Besides its characteristic slant range geometry, radiometric distortion is also subjects
of the side-looking SAR sensor which is related to the spectral anomalies arise from
the sensor itself imaging geometry (non-systematic errors). As backscattered energy
is received in the slant-range, therefore, the collected energy coming from a slope
facing the sensor is recorded in a diminished space in the image, meaning that it
is compressed into fewer image pixels than should be the case if acquired in-ground
range geometry [[76]]. Because the obtained energy from different features is combined
thus this results in high digital numbers and hence, the slops projecting the radar
appear extremely bright. Therefore, it is essential to correct SAR images geometrically
and radiometrically so that the pixel values truly and directly represent the radar
backscatter of the reflecting surface. For proper interpretation of the images, due
to the inherent radar geometry and radiometric distortions, a postprocessing step is
necessary to generate SAR images with uniform and earth-fixed grids to represent
the images in a standard map projection, for example, the Universal Transverse
Mercator (UTM). Thereby, the images are corrected and transformed into ground
range geometry that is usually referred to as geocoding. SAR images also have
inherent salt and pepper like texturing called speckle-effect nose, due to the hardware
or the erratic radiation from other sources (constructive and destructive interference)
resulting in dark and bright pixels in the image. The quality of the image decreases
with the appearance of speckle noise and the interpretation of the features be more
difficult. To reduce speckle nose effects either multilook processing or spatial filtering
can be applied.

3.3 Microwave polarizations

An electromagnetic wave polarization in the field of radar remote sensing applications
has a substantial function. In respect to the direction of the transmitted and received
microwave signal, different backscattering values and consequently different radar
images resulting from it. In fact, radar systems are capable to transmit the EM wave
horizontally and receive it again horizontally (HH), vertical transmission and vertical
reception (VV) and cross-polarized transmit and receive (HV or VH). In respect to the
direction of the transmitted and received microwave signal, different backscattering
values, and consequently different radar images result. The principles of the
transmitted and received radar wave in the linear (horizontal-vertical) combination
of two perpendicular fields are shown in Figure 3.14. Accordingly, a wave strikes,
out of +00 (orientation of propagation z), on a target, then the incident electric field
registers as a superposition of two linear, orthogonal polarized waves in the linear
reference system. The polarization transformation state represented in terms of polar-

ization ellipse, [87]]. It describes a curve, which the real part of the electrical field
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vector passes through if either the position of the propagation orientation is held
steady and the time runs or the time is held constant and the position of propagation

direction changes [|76]]. Figure 3.15 illustrates the direction of propagation a wave
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Figure 3.14 Schematic of polarization pulse traveling from the radar and wave
interactions [|88]]
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Figure 3.15 EM wave polarization represented in combination of two orthogonal
electric fields and direction of propagation a wave with a circularly polarized wave
(left) and polarization ellipse (right)[87]]

in electric fields with a circularly polarized wave as a sum of two linearly polarized
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elements 90° out of phase and polarization ellipse. The orientation angle (1) and the
ellipticity angle (y) are two angular parameters that the polarization ellipse can be
represented. The EM wave is fully determined by the parameters of its electric vector

E(#,t) including magnitude, phase, and direction given by equation 3.12.
E(fF,t)=EX+E,y (3.12)

Where (E) is corresponding components of the real vector Real(E) and 7(x,y,2) is
related to the position of a vector that illuminated of a point in the space by the wave
characterized by the wave vector [89].

3.4 Radar data formats

The primary obtained SAR data are in a raw data format which their spatial resolution
depending on the radar system imaging characteristics. Raw data include the
backscatter of targets on the ground viewed at different points in the sensor trajectory.
The received backscatter signals from the targets are sampled and separated into two
components including information about the amplitude and the phase of the detected
signal are stored in different layers, together forming a complex number. Different
products derived from the raw data such as intensity images, geocoded images, and
phase-containing data are generated after being processed with a SAR processor.
Based on each pixel’s range and unique Doppler shift information the raw data are
compressed meaning that many backscatters of a point are merged into one pixel in
complex format which has information of the returned microwave. It should be noted
that the highest possible spatial resolution for compressed data is still maintained.
For each pixel, the phase and amplitude information is calculated from the complex
number.

When all backscattered information (both phase and amplitude) of a point is used
in the compression, then the Single Look Complex (SLC) format data is the output
data. In the case of multi-look processing, the whole range of the orbit in that an
object can be seen is separated into multiple components which each component
provides a look at the object. With making an average of these multiple looks, the
output image that acquired is a Multi-look image that is still in complex format but
with reduced spatial resolution. However, multiple looks averaging also reduces the
effects of the speckle-noise in the image. In order to produce an image to use for
visual interpretations, the SLC or Multi-look data require to be processed to change
the complex format into the Intensity image. The number of looks that are used in the

compression step, has a direct effect on the spatial resolution of the intensity image.
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3.5 Radar signal and object interactions

The received energy rate by the radar antenna is a function of the illuminating signal
strength and the characteristics of the illuminated object [76]]. The transmitted energy
rate for illuminating the object on the ground is related to the surface characteristics
of the illuminated object such as surface roughness, shape, orientation, and dielectric
constant. On the other hand, illuminating signal (microwave energy) strength which is
in relation to radar system parameters such as wavelength, polarization, and imaging
geometry vary depending on the sensor types which has been explained in previous
sections. Surface roughness is the terrestrial property that most strongly influenced
the intensity of the radar backscatters such that a smaller scale also affects radar return
pulses. It is inferred by the wavelength of the radar (usually between 5 and 40 cm)
comparable with textural elements such as leaves and twigs of vegetation, gravel, and
sand. In terms of the radar wave interactions, a distinction needs to be taken between
the surface roughness and topographic relief. Surface roughness happens in the radar
wavelength range and between centimeters to decimetres while this range is between
meters to kilometers that topographic relief takes place [76]. A smooth surface acts as
a mirror (specular scattering), reflecting the radar wave at an angle equal and opposite
to the incidence angle which causes that the energy reflected away from the sensor
and thus a smooth surface appears black in the SAR image due to the no signal return
to the radar antenna. A surface is considered smooth with the Rayleigh roughness
criteria as written in below.

A

h=—
8sinn

(3.13)

Where h is mean height of surface roughness feature, A is radar wavelength and 7 is
incidence angle [90]. The electrical properties of surface materials is measured by the
the complex dielectric constant which is related to the reflectivity of the microwave
consist of two part including permittivity and conductivity of a medium [91]]. These
two properties are strongly related to the moisture or liquid water content of a medium
(e.g. soil moisture) in which an object with high dielectric coefficient has a strong
surface reflection. The distinguish of the two surfaces with equal roughness and the
equal radar return intensity for two surfaces, is detected by the difference in their
dielectric properties. Radar backscatter depends also on to the orientation of the target
relative to the radar antenna and also the local incidence angle. Natural surfaces
(e.g. vegetation canopy, forested area, grasses, variable soil surface, etc.) which are
composed of different mediums are generally inhomogeneous and thereby usually
depending on the wavelength of the radar and the permittivity of the media, resulted
in both surface scattering and volume scattering. Usually the high backscatter is caused

by the corner reflection ( e.g. the dihedral corner reflector) in point objects with
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limited size (manmade features, such as buildings, transmission towers, trunk of trees)
which gives a very strong radar return. The interactions of radar waves with the point
objects resulted double bounced scattering. Different radar backscatter behaviours over

the various objects on the ground is depicted on the Figure 3.16.

Volume scattering\, Double bounced scattering',
corner reflection corner reflection

Forest Urban area

Rough surface scattering\,

. Specular scatterin
Volume scattering P &

Grass land or Bare soil Flooded condition

Figure 3.16 Schematic illustrations of radar wave backscatter over various surface
cover conditions [

3.6 Historical Background

SAR system first operational time is believed to be the X-band (3 cm wavelength)
sensor built in 1957 by Willow Run Laboratories of the University of Michigan for
the U.S. Department of Defense. NASA started to support the development of SAR
systems for civilian programs. The SEASAT-A developed by Environmental Research
Institute of Michigan (ERIM) and Jet Propulsion Laboratory (JPL) convinced NASA in
1978 to launch it as the earliest earth based radar remote sensing satellite that was
included an L-band (23cm wavelength) SAR sensor [. Although, The SEASAT-A
operational time was short and limited to 100 days due to damage occurred in the
system, the achieved results significantly shown the importance of the SAR system.
NASA approved the Shuttle Imaging Radar (SIR) series following the SEASAT-A
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mission and in years 1981 and 1984 the SIR-A and SIR-B series were launched
respectively. The L-band SIR space shuttles designed for monitoring of glacial
movements, oceanography and terrestrial analysis applications. The first S-band
SAR satellite was launched in 1987 by the former Soviet Union called as spacecraft
Cosmos 1870. The ALMAZ-1, second S-band HH-polarized satellite with 15 m ground
resolution was launched in 1991. Same year European Space Agency (ESA) launched
first European Remote Sensing satellite (ERS-1) with C-band (5.6 cm wavelength)
VV-polarized sensor and aim for 10 years data acquisitions. In 1992 the first Japanese
Earth Resources Satellite (JERS-1) L-band HH-polarized satellite was launched with
6 years operational mission until 1998.

In 1994 a four-polarization C-band and L-band system that has been integrated with an
X-band SIR-C sensor jointly developed by Germany and Italy. So far the SIR-C/X-SAR
was representing a unique spaceborne sensor due to its capabilities of simultaneously
acquire different bands and polarizations. ERS-2 was as a second mission which
overlapped with the ERS-1, and was launched in 1995. TANDEM orbit mission, was
offered to compose and the joint use of the two sensors (ERS-land ERS-2) which
allowed a repeat orbit of the sensor with 1 day temporal baseline, and therefore, this
approach was provided different opportunities such as repeat pass SAR interferometry.
Canada Space Agency (CSA) in 1995, operated Radarsat-1, a multimode C-band HH
polarization satellite. NASA's Shuttle Radar Topography Mission (SRTM) that in 2000
was released, used C and X band to compose Digital Elevation Model (DEM) outfitted
with two radar antennas with 60 m baseline between. The SRTM was designed to
moved the temporal decorrelation of repeat pass satellites and hence to implement a

single pass interferometry.

ESA was launched the Environmental Satellite (ENVISAT) in 2002, to study on earth
as land, ocean and atmosphere with ten different equipments. Japan, following the
JERS-1 and in 2006, has launched the second L-band equipped satellite called the
Advanced Land Observing Satellite (ALOS). In 2007 the other SAR new generation
satellites including COSMO-SkyMed in 8th of June, TerraSAR-X in June 15th, and
Radarsat-2 in the 14th of December were launched. The Italian COSMO-SkyMed
satellite series provides very short temporal baseline due to the constellation of the
four satellites equipped with X-band SAR sensor. The German TerraSAR-X satellite
has X-band and an 11 day revisit time. Canadian C-band Radarsat-2 satellite has left
and right looking operation systems. Since 2012 the SEOSAR/PAZ as an X-band SAR
satellite, is based on the TerraSAR-X platform operated by Spanish Earth Observation
Program as a dual-use (civil/defense) mission. ESA, in 2014 and 2016 has been
launched Sentinel-1 (Sentinel-1A/B) as a constellation of two satellites orbiting 180°

apart with the main goals of land and ocean monitoring and also to provide C-band
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SAR data continuity following the retirement of the ERS-2 and end of the Envisat
mission. Sentinel-1 offers dual-polarized (HH+HYV, VV+VH) products with a different
spatial resolution (down to 5 m) and coverage (up to 400 km) and high temporal
resolution (6 days repeat frequency) in four exclusive imaging operational mode which
enables to map the entire world (land and ocean). The expected operational life of
each SENTINEL-1 satellite to transmit earth observation data is at least 7 years and
have fuel on-board for 12 years. ESA has ensured the continuation of the Sentinel-1 by
ordering two more radar satellites i.e. Sentinel-1 C and -1D that will be launched from

2021 onwards to extend the operational monitoring at least until the end of 2030.
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4

Interferometric SAR

Interferometry is a procedure enables precise quantitative measurements of the terrain
heights and is among the principal applications of the SAR technology which is
typically represented by the SAR interferometry (InSAR) technique [93, 94]. It
essentially relies on the ability to measure the phase difference of radar waves in
interactions with a scattering objects from different passes made with the same sensor,
or even from different sensors and/or at a different time interval. InSAR technique
can be employed either to represent variations in height to generate a Digital Elevation
Model (DEM), referred as InNSAR-DEM or an interferogram of the ground topography
and/or to obtain very accurate terrain surface height (sub-centimeter) changes
information (surface deformation) after the events (e.g. earthquake or volcanic
activity). InSAR is categorized into two groups as Cross-Track-InSAR (CT-InSAR)
and Along-Track-InSAR (AT-InSAR) depending on the measurable quantities (Figure
4.1). Repeat-pass CT-InSAR (also known as two-pass CT-InSAR) including DInSAR

pass 1 antenna |

pass 2 antenna 2

L)

land surface

Figure 4.1 Geometry of repeat-pass CT-InSAR (left) and AT-InSAR (right) [77]

(Differential InSAR), in which a single antenna forming two complex images (SLC
images) of the same area on land in different times and/or passes and a complex
interferogram is generated by multiplying of the first complex image (i.e. typically
referred to as master image) and the complex conjugate of the second image (i.e.,
the so-called slave image). Hence, from the measuring of the exact phase variation
between the two backscatters within an accuracy of the sequence of the wavelength

(i.e., centimeters) and also with the knowledge of the precise position of the antennas
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with respect to the earth’s surface from Global Navigation Satellite Systems (GNSS)
and the position of the pixel including its elevation the difference in the path length
can be estimated [72]. Figure 4.2 shows the repeat-pass interferometry and the
configuration of the InSAR geometry. In the AT-InSAR system a complex interferogram
is produced by using a satellite outfitted with two radar antennas with 60 m baseline
in between (e.g. SRTM sensor) by implementing single-pass interferometry. The
produced interferogram includes the interferometric phase, ¢ (InSAR phase) and
coherence information (InSAR coherence). In addition to the radar wavelength and
antenna separation, the InSAR phase 1 also depends on the ground-range distance
and surface elevation. The v that depends on the ground-range distance is referred to
as the orbital or the flat phase and the relevant interferometric fringes are termed as
the orbital fringes. The 1) that related to the surface elevation is the topographic phase
to produce topographic fringes. In order to estimate the topographic phase, the flat
phase should be removed from the v). Since for computing the complex interferogram,
the complex conjugate of the second image is used then InSAR phase v is folded or
“wrapped” about (0, 27] at each 27 and therefore, 1) is so-called the wrapped phase
and the unwrapped phase ¢ is subjected as the true phase, absolute phase [77]].

Second pass

,,,,,,,,,,,,,

Figure 4.2 Configuration of the InSAR geometry [|95|]

The complex pixel (C,) value which is calculating from the two complex images and

the phase difference (¢) are expressed by the equations 4.1 and 4.2, respectively.

C, =A,A, o8 +ising =A,e® 4.1)
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o} =¢1—¢2=—4%AR (4.2)

Where A;, A, and ¢1, ¢2 respectively, are representing amplitude and phase
components of two SAR images for the same pixel, AR is the range difference of two
SAR observations (displacement in the Line Of Sight (LOS)), the orientation angle of
the baseline (B) is a. Regarding that AR can not be derived directly from the geometry
because of the orbital inaccuracies and also the 27t phase ambiguity (because of the
atmospheric condition changes between the two radar observations), thus AR can be
expressed through the equation 4.3 and 4.4 and thereby, the target height H, can be
written as equation 4.5.

(R, + AR)* =R,*+B*+2R;Bsinf —a (4.3)
AR~ Bsin(6 —a) (4.4)
H,=H—R,cosf (4.5)

Therefore, Interferometric phase (A¢) is influenced by four factors consist of
topographical distortions caused by slightly different imaging angles of the two sensors
directions (t) atmospheric impacts (a) resulting in the wavelength distortions, any
range displacement of the radar target (AR), and decorrelation effects (noise). Among
these four contributions, the decorrelation effects when the noise amount is low are
negligible and due to the local topography is accurately compensated (errors in the
DEM) the phase contribution is also negligible and therefore A can be simplified as
equation 4.6.
4

Ap = TAR +a (4.6)
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5)

Methodology

5.1 Polarimetric SAR Backscatter

Several studies on the processing of radar data indicate that the phenological stages
of the plant have an effect on the backscatter of the signal, and there is a significant
correlation between the biophysical parameters of the plants, including height, leaf
area index, vegetation mass, plant water content, and radar signal backscatter [50,
58, 96]. Radar backscattering from vegetation is a function of both wavelengths
polarization and frequency. Different frequencies and polarizations enable one to infer
various and supplementary information from the single object. In agricultural radar
applications, combination of polarizations (co-polarization and cross-polarization)
allows analyst to extract extra information about crop characteristics. The polarization
of backscattering microwaves indicates the target structural properties and visualizes
scattering characteristics of observed features [[35,97]]. A majority of the space borne
radar systems often transmit only one polarization and receives both polarization
giving rise to dual polarimetric SAR data (e.g., Sentinel-1 with VH and VV
polarizations), while some collecting full polarimetric so-called quad polarization
(HH, VV, HV, and VH) imagery (e.g., PALSAR, TerraSAR-X, and RADARSAT-2). Fully
polarimetric SAR data is acquired using the H and V polarizations which extracted
from SLC data and can be represented by a 2 x 2 scattering matrix S (Equation 5.1)

including polarimetric information for each individual resolution cell [|98, 99]].

o [SHH SHV] 5.1

SVH SVV

Scattering matrix which depends on incident and the scattered field, has four
components, each representing the received and transmitted polarizations [[100, 101]].
The scattering matrix consists of information on the nature and characteristic of the
observed media and features. Full polarimetric SAR data set which is described
as scattering matrix is foundation for several coherent polarimetric decomposition

and analysis. For polarimetric analysis an alternative procedure is derived from a
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covariance matrix (C;) that represents the average polarimetric information extracted
from a set of neighboring pixels to produce the mean polarimetric response. The
covariance matrix C;, (Equation (5.2)), is determined from the outer element of
the vector form of the scattering matrix with its Hermitian conjugate, K. [[57, 102].
The averaged target vector (covariance matrix) for fully polarimetric data is given by
Equation 5.3.

€y Cp Cys
C;= Kc-Kc*T = |Cy Cyp Gy,
C3p Csp Gy

(C)run = (SS(D), (5.2)

(SuuSun™) (SuuSuv™)  (SurSvv™)
= (SVHSHH*> (SHVSHV*> <SVHSVV*)
(SyvSun™)  (SyvSve™)  (SvvSyv™)

2 * *
|t V2SuSuy SnSvy
2
= | V28, Sun” 2[Suy | V281, Syy* (5.3)
% 2
SyvSuu 28y (Suy —Syv ) |SVV|

Where ensemble averaging is shown by the | | represents the modulus, the * indicates
complex conjugation and the complex conjugate transpose shown by superscript H. For
natural targets, in case and transmitted polarization (r, t € {h,v}) for horizontal and
vertical polarization and the scattering matrix is defined by three-element complex
target vector, K, = [SHH x/ESHVSVV]T, where superscript T indicates the matrix
transpose [100, [101]. In the covariance matrix, diagonal elements (C; = o9,),
Cyy = 0y,), and Cy3 = 0y, ) define backscattering coefficients and the upper or lower
triangular components represent complex numbers. The backscattering coefficients

have correlation with the structural characteristics of the features [|57,(103]].

In comparison to the quad polarization, dual polarimetric SAR sensors collect a
fraction of total (precisely half of the scattering matrix components) polarimetric
information involved in fully polarimetric imagery [102]. It means that each
resolution cell at each time point is defined by a 2 x 2 covariance matrix (C,) that

is obtained from C;. The resulting covariance matrix which is for dual polarization
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(e.g., Sentinel-1) is represented by Equation 5.4.

C C
Cz — |: 11 12:| )
C21 C22
(SyvSyv™) <SWSVH*>]
(SVHSVV*> <SVHSVH*)

(5.4)
<C>dual = |:

Since dual polarization has only diagonal elements, the matrix with off-diagonal
components are set to zero and do not follow a complex Wishart distribution; however,
the two diagonal blocks (1 by 1) do [[101}, 104].

Polarimetric Synthetic Aperture Radar (PolSAR) technique has resulted many different
investigations and improvements in crop growth monitoring, yield estimation, crop
disaster prediction and prevention and in more general terms providing accurate
information for precision farming. PolSAR products, such as Entropy (H), Alpha
(a) and Anisotropy (A) decompositions are calculated from the covariance matrix.
The H-a-A decompositions are used to extract average parameters from experimental
data suggested by Cloude and Pottier [[105]]. This approach is based on second-order
statistics using a smoothing algorithm [[106]]. Natural measure of the inherent
reversibility of the backscattering data is defined by entropy (H), and indicates the
randomness of the scatter, while the underlying average scattering mechanisms,
scattering type (surface, double-bounce and volume scattering) can be identified using
Alpha parameters. The relative power the second and third eigenvectors is described
by Anisotropy (A), which represents being of different properties in different directions
when measured along different axes [[105, 107]. The Entropy (H) decomposition
parameter has more sensitivity to the crop parameters and the density and randomness

of some vegetation canopy than Alpha and Anisotropy [[99, [108]].

In agricultural radar monitoring, Radar Vegetation Index (RVI) is a method for
observation of the level of the vegetation growth in time series data analysis as an
alternative to NDVI (Normalized Difference Vegetation Index) method used in optical
image processing studies [[109]]. Ranging between 0 and 1, RVI is used for measuring
the randomness of scattering in microwave signal [[110]. It is close to O for a smooth
bare surface and as vegetation grows the value increases till the crop reaches to the
end of growth cycle and it is affected by vegetation water content and sensitive to the
biomass [[111]]. RVI calculation needs quad-polarized data, thus for full polarization,
RVI is retrieved by the Equation 5.5.
8c¢

RVI = HV (5.5)
ody+od, +20%,
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where O'?IH and 03\/ are co-polarized backscattering coefficients and agv is
cross-polarized backscattering coefficient in power units.  According to the
. 0 ~ 0 .
Charbonneau et al. [112]] the assumption that supposes o},;; ~ o, then Equation
5.5 can be reduced to the form as Equation 5.6.
409
RVIpgy = ——— (5.6)
Opg+O0py
Melanie et al. [|113]] studied the RVI and concluded that RV, is useful when just
two polarizations are available and can be an appropriate approximation of the surface
scattering if the interaction between the surface plane and vegetation is insignificant.
Since Sentinel-1 is dual polarization and has VH and VV polarizations, following
Charbonneau et al. [[112]] assumption of possibility to modification of RVI in case of
availability of two polarizations we assume an alternative to RVI for dual polarization

as shown in Equation 5.7.

0

40
RVI=—"— (5.7)
Oyy T Oyy

5.2 Interferometric Coherence

A digital SAR image is consist of rows and columns of small picture elements called
pixels and each pixel is representing a small area of the earth’s surface known as a
resolution cell. Each pixel is achieved by summing the complex numbers along a
constant range which contains amplitude (the strength of the reflected signal) and
phase (the position of a point in time on a waveform cycle) information about the
microwave reflected signals toward the satellite antenna by the objects (scatterers)
such as rocks, vegetation and buildings within the corresponding resolution cell
projected onto the surface of the earth. Coherence, as a complex quantity and its
absolute value, is considered as a critical analytical parameter which provides a useful
measure of the interferogram quality (SNR: signal-to-noise ratio) and evaluating the
quality of the two complex SAR images [[114-118]. To obtain Interferometric synthetic
aperture radar (InSAR) coherence image and interferogram generation it’s necessary
to input Single Look Complex (SLC) image pair referred to as ‘master’ and ‘slave’ that
are focused complex SAR data in full resolution and that preserve both amplitude and
phase information for each pixel. Equation 5.8 indicates the general expression of the
SLC image [|119].

C(x) = A(x)e!*™ (5.8)
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Where C(x) (a complex value) is represented by A(x) amplitude, and e Euler’s number
of exponential function wherein i is an imaginary number and equals to v—1 and ¢ (x)
is phase. Since SLC image is composed of a regular grid, then x can be replaced by
(p, @) which p is the range and a is the azimuth. Equation 5.8 can be replaced with
Equation 5.9 [|119].

C(p,a) =A(p,a)e?® (5.9)

The complex interferogram is the product of two registered SLC images acquired
at different times and consists of backscatter amplitude and phase differences
between the acquisitions. The complex interferogram is achieved by pixel-by-pixel
cross-multiplication of the first the image with the complex conjugate of the second
(80,194,120, 121] and it can be written as Equation 5.10 [[119, 122].

C,C" = A1Azei(¢2_¢l) =R(p,a)+I(p,a) (5.10)

Where C; and C, are refer to the master (the reference) and slave (the repeat) SLC
images, Al and A2 are master and slave amplitudes and ¢, and ¢, are master
and slave phases, respectively. The asterisk (*) denotes complex conjugation. R is
the real and I represents the imaginary component of the complex interferogram.
As it can be inferred from the Equation 5.10, that the amplitude multiplication
of the first and second images produces the interferogram amplitude whereas the
interferometric phase is the phase difference between the images [[118]]. The phase
of the interferogram is extracted in usual manner and can be expressed as Equation
5.11.

(¢2—¢1)=tan_1(é) (5.11)

Considering complex SAR image pair that contain both amplitude and phase
information, the correlation between the two radar complex signals can be evaluated
by calculating the interferometric phase noise. In fact, the coherence is the
cross-correlation coefficient of an InSAR pair estimated over a small window with
a specific size (a few pixels in range and azimuth) [[123, |124]]. The interferometric
coherence (y) between two complex co-registered images can be defined as Equation
5.12 [[125].

(€, G|
\/((Clcl*) <C2C2*>)

y= (5.12)
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Where | | indicates absolute value, * indicates complex conjugation and angle brackets
() are the averaging operation to the statistical estimation with a rectangular filter
(also known as the window size). The filter is applied for the extra reduction of the
difference in radar impulse response perceived by sensor path from the same piece
of ground [|94]]. To enhance the quality of the amplitude image of the single-look
Sentinel-1 that has 5 m resolution in range and 20 m in azimuth, and to obtain a spatial
averaging coherence, different window sizes (e.g. 3 x 3 or 5 x 5 pixels) is applied
based on the corresponding spatial resolution of the image [|[119]]. The magnitude of
the coherence ranges from 0 in the case of decorrelation (the interferometric phase
is just noise), and 1 if the two signals are entirely correlated (complete absence of
phase noise and a meaningless phase measurement). When the position and physical
properties of the scatterers within the averaging window are the same for the two
observations the coherence reaches to the maximum value [[126]. In contrast, any
differences in the position or properties of the scatterers in the interval between the
two observations cause the phase difference of two signals backscattered by targets
and thereby cause the coherence value to decrease. The phase difference of two
signals backscattered by scatterers to the sensor is represented by an image called
interferogram and the phase is given modulus 27 and revealed in the image by fringes
[1271.

5.2.1 Decorrelation Sources

A decrease of the coherence magnitude or decorrelation can have several sources
such as physical changes in the terrain and changes in the position or charachteristics
of the scattereres of the surface caused the non-conformity of the properties of the
two acquisitions and expressed by the temporal terrain decorrelation (Y remporar) [79]-
The difference in the incidence angles between the two observations give rise to
the geometric or spatial baseline decorrelation (y;,4,). Thermal or system noise
decorrelation (¥ ;ermat) OF (Ysngr) due to the charachteristics of the system e.g., antenna
charachteristics and gain factor, the volume decorrelation (y,,;) which results by
volume scattering, (ypc-) Doppler centroid decoreelation raised by the differences
in the Doppler centroids between the two observations, the processing induced
decorrelation (Y ,,ocessing) that is the error eventuates from the selected algorithms
for example for co-registration and interpolation, and the bias decorrelation caused
by the averaging window size (y,;,,)- The total correlation or coherence (y,y1q1)
which is calculated from Equation 5.12 is corresponding of the multiplication of the

aforementioned correlation terms [|63]] and is defined as the equation 5.13.

Ytotal = Ytemporal Yspatial Y thermalY vol Y DC Yprocessinngias (5 . 13)
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To obtain the Interferometric coherence this study only focused on the temporal
decorrelation due to rapid changes in the scattereres over the agricultural fields
during the crop growth season between the acquisitions and the other sources of
the decorrelation (including geometric decorrelation, given the small differences
in the incidence angles and the baselines between the Sentinel-1 interferometric
acquisitions) was Ignored. However, due to that the absolute value of the coherence
|}/| which varies between 0 and 1, is alternatively demonstrated as a function of the
Signal-to-Noise-Ratio (SNR) [|63, 116, (128]] and the sensitive interaction between
C-band signal and vegetation therefore, the system noise decorrelation (ygyg) is also

considered in this study and is defined in Equation 5.14.

SNR
[rl= SNR+1 (5.14)

Since the noise (n) and signal (C) are uncorrelated then:

[l = L (5.15)
" +n|

2

C
Given that the thermal Signal-to-Noise-Ratio (SNR) is J—Ig, then the Equation 5.15

n

may be equivalently written as Equation 5.16 [63].

1 1

YSNR= T onon OF = 5.16
YT 14+ SNR (L +SNR_L )(1+SNR_] (5.16)

satl sat2

Where SNR,,, the Signal-to-Noise-Ratio for each images is calculated in the

interferometric pair and can be defined using Equation 5.17.

0° —NESZ,,
SNR = = —— (5.17)

sat

Where o?  is the backscattering coefficient for different acquisitions, and NESZ,,,
(Noise Equivalent Sigma Zero) that can be estimated suing look-up tables which is

available in the Sentinel-1 metadata.

Figure 5.1 shows the general overview of satellite data processing in this thesis. A

more detail workflow has been provided in each related subsection.
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6

Optical, SAR, PolSAR and InSAR Applications in Crop
Monitoring and Mapping

6.1 Sensitivity of Multi-Temporal SAR Parameters to Crop vari-
ables

The SAR technique has become increasingly an effective method of providing seasonal
agricultural monitoring. SAR is a coherent radar system that generates high-resolution
remote sensing imagery. A SAR sensor has capability to collect data in different
weather conditions where the cloudy sky in most time of the growing season
(particularly in rainy climate) is a serious obstacle to the application of optical
images. Moreover, it can acquire data in day-or-night; exclusivity makes it suitable for
long-term and multi-seasonal agricultural monitoring. The SAR system is sensitive to
the vegetation biophysical variables and dynamical characteristics of plant targets, and
underlying soil parameters such as plant water content, geometric property, deflection
and irregularity, soil surface roughness and moisture content. The Polarimetric
Synthetic Aperture Radar (PolSAR) technique has provided various opportunities
and challenges in agricultural activities mainly on crop management. This study
investigates the potential of Sentinel-1 dual polarimetric SAR in estimation and
monitoring of crop parameters, namely crop height and canopy coverage (CC) in
an agricultural area. The objective of this study is to evaluate the sensitivity of
different Sentinel-1 dual polarimetric SAR parameters to crop height and CC of maize,
sunflower and wheat, and to investigate the changes in SAR backscatter arising from

crop height and CC during crop phenological stages.

6.1.1 Materials and methods

Within this framework, we have investigated the sensitivity of 10 parameters including
linear polarization backscattering coefficients, H-A-a decompositions, polarization
intensity ratios (VH/VV , VV/VH and VV-VH/VV+VH), Radar Vegetation Index
(RVI) and intensity arithmetic calculations (VH-VV and VV+VH) derived from
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multi-temporal C-band Sentinel-1 SAR data, to crop height and canopy coverage (CC)
of maize, sunflower, and wheat. For this purpose, field measurements were carried out
simultaneously with SAR data acquisitions. For backscattering analysis four Sentinel-1
SAR images in descending orbit direction were acquired throughout the same growth

season of the study area.

6.1.2 Study Area

The Konya basin (38° 40’ N, 32° 26’ E) in central Turkey is selected for field
measurements and satellite images collection (Figure 6.1). The terrain of the study
area is partly flat with a gently sloping (2%-6%) and, the smallest field area of
approximately 0.5 and the largest 18 hectare in size. According to the Ministry of
Agriculture and Forestry of Turkey, the distribution of major soils in the study region
is Reddish Brown and Brownish soils Figure 6.2. The soil texture in the study area
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Figure 6.1 The location map of the study area; general overview (left) and
Sentinel-2 RGB image of the study site (right)

consists of clayed loam and loamy (medium structure), slightly alkaline, salt-free, and
low contents of organic matter (1.30-2.08%). The region has an arid to semi-arid
predominant weather conditions. The land use type is mainly agricultural land in the
study site (Figure 6.3). Therefore, the demand for water consumption for irrigation is
increasing due to the extent and dense of agricultural activities. Maize, sunflower, and
wheat are three investigated crops patterns as they have different structures. Maize
and sunflower based on field campaign, generally are planted at the beginning of May,
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and harvested at the end of August or the beginning of September in this study area.
Winter wheat is seeded in previous November and harvested at the end of July.

6.1.3 Field Surveys

In situ measurements were conducted for maize, sunflower and wheat fields in
the spring—summer agricultural season of the year 2016. Crop variables and
parameters which indicate the growth rate including crop height and CC were
collected simultaneously with the SAR data acquisition, and recorded during the field
works. Field data collection includes measuring the row and plant cover by still tape
in unit area, taking photographs by the camera and recording field characteristics such
as soil properties and irrigation status. For calculating CC, photographs were taken
in downward position and perpendicular to the ground with 100 cm distance from
camera and canopy outmost in the tillering stage when the crop height was less than
100 cm. Considering the study area, 36 test fields that consist of 19 maize, 6 sunflower
fields, and 11 wheat fields were dedicated for this research.
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Figure 6.2 Soil map of the study area

The variability of development stages for maize, sunflower and wheat has been defined
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by applying the “Biologische Bundesanstalt, Bundessortenamt, and CHemische”
(BBCH) [20] indicator for each field that generally consist of vegetative and

reproductive stages. Seasonal maize, sunflower, and wheat crop calendar of the study

area is presented in Figure 6.4.

Sowing Jointing Mik  Mature
Emergence Heading and filing Harvesting
Sowing Jointing Mik  Mature
Emergence Heading and filing Harvesting
Jointing Milk Mature Sowing
Emergence Heading and filing Harvesting
1 Early 2 Mid [ Late

Figure 6.4 Seasonal maize, sunflower and wheat calendar of the region

According to the defined height and CC thresholds, derived from SAR backscattering
and BBCH-scale, we call two stages for crops growth season; season; the early stage

and the later stage.

Four field surveys were conducted to obtain accurate ground measurements in late
May-mid June, early July, late July, and late August 2016. General growth stages
categories (leaf development, stem elongation, heading and flowering), are defined
according to the BBCH-scale (Table 1). For calculating the crop height of each test
site, five height measurements were obtained and their mean value was calculated to
represent the crop height of the relevant test field. From the test sites, plant cover and
row were measured and also photographs were captured to determine and evaluate
the CC percentage. A synopsis of the maize, sunflower and wheat of different growing

stages is given in Figure 6.5.

Table 6.1 Biologische Bundesanstalt, Bundessortenamt, und CHemische
(BBCH)-identification keys for field measurements and Synthetic Aperture Radar
(SAR) data acquisitions of the study area

Field Surveys Crop Growth Stages (BBCH) SAR Acquisitions Dates
19 May-12 June 2016 leaf development 13 June 2016
01-02 July 2016 stem elongation 07 July 2016
31 July 2016 heading'| 31 July 2016
24-25 August 2016 flowering 24 August 2016

!Due to variation in wheat growth conditions in different fields, in general heading stage starts at
late May and lasts until mid-June.
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Maize

Sunflower

Wheat

Figure 6.5 Different growth stages of crops in the study area

In this study site, the BBCH-scale is considered as 53 when the maize height was in
range of 120-150 cm. This growth stage of the maize is at the inflorescence emergence
and heading stage. When maize height was greater than 220 cm, the BBCH-scale was
69 and represented the end of flowering. Once the sunflower height was greater
than 92 cm, the BBCH-scale is found as 79, indicating the end of flowering and the
inflorescence reaches full size. The BBCH-scale is considered as 59 after that wheat
height reached to 53 cm and inflorescence fully emerged. We observed that different
wheat height could have the similar wheat BBCH due to variation of wheat growth
conditions which cause to distinction even though they are at the same phenology, in
agreement with the study of Liao et al. [[57]]. Figure 6.6 (a-c) shows the relationship
between crop height and the BBCH-scale corresponding to the each crop principal

growth stages.

Scatterplots (d-f) in Figure 6.6 show the relationship between crop height and CC.
Note that the correlation between CC of three different crops has been changed in
different height in each crop. For maize, the variation of correlation was determined
when the maize CC threshold is 75%. This threshold is 85% and 60% for sunflower
and wheat respectively.

6.1.4 Sentinel-1 Dual Polarimetric SAR Data Statement and Processing

We used Single Look Complex (SLC) Sentinel-1A interferometric wide swath (IW) data
in descending pass direction (Table 2). Sentinel-1 satellites are equipped with C-band
sensor with an incidence angle range between 29.1° and 46.0° at 5405 MHz radar
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Figure 6.6 BBCH-scale relationship with crop height (a—c), and Correlation between
canopy coverage (CC) and crop height (d-f) for maize, sunflower, and wheat

frequencies. The satellite obtains data with dual polarization (VV and VH) backscatter
where electromagnetic waves have polarized vertically (V) for transmission and H/V
for reception [|130]]. Data can be acquired in both ascending and descending orbit
pass directions, which means that any object on the earth surface can be evaluated
as two independent sights. The difference is that due to steeper incident angle of the
ascending orbit therefore the mean backscatter values are rather higher in compare
with descending orbit [[131]]. For time series analysis of SAR backscatter, four C-band
polarimetric SAR data during the growth stages of the selected crops from mid-June
to late August were acquired for investigation of the sensitivity of Sentinel-1 data to
the crops. Figure 6.7 shows the flowchart of Sentinel-1 dual polarimetric SAR data
processing.

Table 6.2 Specifications of acquired Sentinel-1 datasets over Konya basin, Turkey

Acquisition Incidence Satellite Polarization Nominal Orbit
Date Angle (°)|T| Pass Res.(m)|7| No
13 June 2016  30.72-49.09 Descending VHand VV  2.33-13.93 65
07 July 2016  30.72-49.11 Descending VHand VV  2.33-13.93 65
31 July 2016  30.72-49.11 Descending VHandVV  2.33-13.93 65
24 August 2016 30.72-49.11 Descending VHand VV  2.33-13.93 65

ncidence angle from near to far range 2Range and azimuth resolutions

Different Sentinel-1 dual polarimetric SAR parameters including linear polarization
backscattering coefficients, H-A-a decompositions, polarization intensity ratios
(VH/VV, VV/VH and VV-VH/VV+VH), Radar Vegetation Index (RVI), intensity

54



arithmetic calculations and crop variables (crop height and CC) are investigated. Mean
backscattering coefficient values for each sample site for different crops are defined
and the correlation between the in situ measurements are analyzed. The results show
that responses of polarimetric SAR parameters to the crop variables (crop height and
CC) vary for different crop types at different phenological stages of the crops. For
maize, SAR backscatter coefficient is more sensitive to crop height at the early stage
of crop growth compared to the later stage, while the same situation is not true for
sunflower and wheat.

6.1.5 SAR Parameters and Their Correlation with Crop Height

Almost in all visited fields, the mean backscatter values indicated similar tendency
in four stages of crop growth. In Figure 6.8, mean backscatter coefficient (o, and
oy and VV4+VH) values of each sample site are determined and the correlation
between the field measurements are presented. It is observed that the maize had
high sensitivity at the beginning but starts to decrease when the maize height is
higher than 150 cm at inflorescence emergence and heading stages. Sunflower is not
sensitive to the crop height only when the sunflower height is greater than 90 cm. At
the end of flowering and the inflorescence, it shows low sensitivity compared to its
early and later stages. In comparison with maize and sunflower, wheat had relatively
good sensitivity at the end of heading. Regarding wheat full inflorescence which is
varying in different heights, the correlation between SAR backscattering (VV+VH
and 09 ) and wheat height is considerably less as in inferred from Figure 6.10 g,h in

growing stage.

Table 6.3 gives the coefficient of determination (R?) between Sentinel-1 dual
polarimetric SAR parameters and measured crop height for maize, sunflower and
wheat. Both 07, and o), showed high correlation (R* = 0.81 and 0.80 respectively)
and VV+VH had highest correlation (R? = 0.82) with maize height at the early stage.
Whereas the correlation between SAR parameters to sunflower height is very low (R? =
0.31) at the same stage. Almost all SAR parameters show relatively good correlation
at the early stage of wheat. For instance, a good negative correlation with VH/VV
intensity ratio and G?,H are obtained at the early stage of wheat (R*> = 0.66, and 0.65
respectively). However, all of the crops have very weak correlation or even they are

not correlated and sensitive to plant height in the later stage.

Amongst the H-Alpha decomposition parameters, Alpha (a) decomposition parameter
represents the highest correlation (R*> = 0.67) with wheat height during the early
growth stage. The maize height is relatively correlated with H-Alpha decomposition
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Table 6.3 Coefficient of determination (R*) between crop height and Sentinel-1 SAR
parameters

SAR Parameters Maize (H)H Sunflower (H) Wheat (H)
H<150 H>150 H<92 H>92 H <53 H>=53

Linear Polarization
C11 Intensity (VH) 0.80 -0.1 0.31 -0.06 -0.65 0.03

C22 Intensity (VV) 0.81 -0.2 0.17  -0.19 0.62 -0.01

H-Alpha Decomposition
Entropy (H) 0.53 0.20 0.01 0.20 -0.61 0.06
Anisotropy (A) -0.54 -0.23 0.00 -0.18 -0.65 -0.05
Alpha (a) -0.52 -0.19 -0.05 -0.17 0.67 -0.07

Radar Vegetation Index
RVI 0.53 0.21 0.11 0.18 -0.65 0.03

Intensity Ratio

VH/VV 0.52 0.21 0.11 0.17 -0.66 0.05
(VV-VH) /(VV+VH) -0.53 -0.21  -0.11 -0.18 0.65 -0.05

Intensity Arith. Oper
VH-VV 0.77 -0.21  -0.14  0.20 0.63  -0.03
VV+VH 0.82 -0.18 0.19 -0.18 0.61 0.00

!The height measurement unit is centimeter. 2Intensity Arithmetic Operation. The
minus indicates negative correlation.

parameters at the early stage, although no considerable correlation is observed during
the early stage of sunflower and at the later stage of wheat. Figure 6.11 shows the
correlation between the H-Alpha decomposition parameters and crops height of maize,

sunflower and wheat.

6.1.6 SAR Parameters and Their Correlation with Crop Coverage

The CC measured in field includes measuring the row and plant cover by steel tape
in unit area. For validation of the CC calculated from measured data, photographs
were taken using the camera in downward position and perpendicular to the ground
with 100 cm distance from the camera lens. The CC extraction process is done by
application of Python glob image processing package [[132]. The photos are first
converted to HSV (Hue, Saturation, and Value) model and used as a detector for the
type and shape and to do color constancy processing by grouping or classifying the
image. Following the HSV conversion green mask is applied to slice the green areas
as white ratio and black to the bare soil. The sample classified green area for wheat
is given in Figure 6.14. The unit area from the photograph is calculated using the
ground sampling distance (GSD) formula and setting calibration derived from images.
The contributing parameters for determination of ground resolution are the camera’s

height above the ground, the camera’s pixel size, and the lens’ focal length.
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Figure 6.14 Canopy coverage extraction from in-situ photo taken using python

image processing packages. Left panel is the original photo and the right panel

shows white ratio calculated as green areas and black to the bare soil in wheat
sample field

The coefficient of determination (R*) between Sentinel-1 polarimetric SAR parameters
and the measured CC for maize, sunflower and wheat for early and later growing
stages are given in Table 6.4. According to the principle growth stage [[133]] when the
maize reaches to the end of its stem elongation, leaves completely unfold and have
full size. When the BBCH-scale is greater than 39 for maize, CC is measured 75%.
The CC for sunflower and wheat is measured as 85% and 60%, respectively when the
BBCH-scale is greater than 51 and 49.

Considering Sentinel-1 dual polarimetric SAR parameters and measured CC, the
highest correlation is obtained for the VV polarization (R* = 0.73) and VV+VH (R?
= 0.73) when the CC is lower than 75% for maize while with increasing CC the
correlation decreased (R*> = 0.49) for both crops. This is contrary to the findings
of Liao et al. [57]] where the sensitivity of RADARSAT-2 polarimetric SAR and its
correlation with fractional vegetation cover (FVC) in HV polarization is high for
maize, and they suggest that VV polarization is not a useful parameter for monitoring
broad-leaf crops. Their findings may have conflict with our results due to the sensors
properties. Regarding the sunflower, in its early stage (i.e., CC < 85%), again the
higher coefficient of determinations are obtained for VV polarization (R* = 0.46)
and VV + VH (R? = 0.47). However, comparing the maize and the sunflower as
two different broad-leaf crops in our study, R* of the sunflower is lower than the
maize. The discrepancy in correlations might be due to the difference in leaves
geometry of maize and sunflower. In other respects, similar to the findings of Liao
et al. [57], no correlation is observed for wheat at both stages in our study. This
may be due to the wheat structure and leaves geometry as narrow-leaf crop. Wheat
can reach its full development at early stage and penetrating from biomass occurs

due to narrow leaves, stem affectation and contributing of underlying soil resulting
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attenuation of SAR backscatter [[134]]. Figure 6.15 depicts the parameters which have
highest correlation with CC during the growth stage for maize and sunflower.

The results show that responses of polarimetric SAR parameters to the crop variables
(crop height and CC) have variation in different crop types at different phenological
stages of the crops. Among the SAR parameters, VV+VH and VV indicated a strong
correlation with maize height by means of the coefficient determination (R?) of 0.82
and 0.81, respectively. The maize CC with VV parameter showed high correlation
(R?=0.73) at the early growing stage, but the correlation became weaker at the later
stage while the sunflower height correlation with the majority of SAR parameters
was insignificant. The wheat height represented high correlation with the Alpha
(a) decomposition parameter. The sensitivity of SAR parameters to the wheat and
sunflower’s CC are good at the early stage while no significant correlation is observed
at the later stage.

Table 6.4 Coefficient of determination (R?) between CC and Sentinel-1 SAR
parameters

SAR Parameters Maize (CC)H Sunflower (CC) Wheat (CC)
CC<75 CC>75 CC<85 CC=85 CC<60 CC=60

Linear Polarization
C11 Intensity (VH) 0.25 -0.41 0.07 0.18 -0.01 -0.15
C22 Intensity (VV) 0.73 -0.49 -0.46 0.09 0.10 -0.06

H-Alpha Decomposition
Entropy (H) -0.28 0.36 -0.06 -0.01 -0.09 -0.01
Anisotropy (A) 0.30 -0.31 0.06 0.01 0.05 0.02
Alpha (a) 0.29 -0.32 0.07 0.00 0.07 0.04

Radar Vegetation Index
RVI -0.29 0.29 -0.07 0.01 -0.08 -0.03

Intensity Ratio

VH/VV -0.30 0.28 -0.07 0.00 -0.06 -0.05

(VV-VH) /(VV+VH) 0.29 -0.29 0.07 0.00 0.07 0.04
Intensity Arith. Oper
VH-VV -0.69 0.48 -0.41 -0.07 -0.15 0.02
VV+VH 0.73 -0.49 0.47 0.10 0.05 -0.11
The CC is based on percent (%). Z2Intensity Arithmetic Operation. The minus
indicates negative correlation.
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6.2 Integration of radar and optical datasets for crop mapping im-
provment

Combining data from different sources of remote sensing data such as optical and
radar datasets offer unique spectral and textural information for land use/cover
evaluations, characterizing land use changes and generating information with higher
quality than the individual datasets [|6]. Optical data is limited by cloud cover, sensor
spatial and temporal resolutions while Synthetic Aperture Radar (SAR) sensor has
capability to collect data in different weather and day-or-night. Space-borne SAR
data due to their high spatial and temporal resolution help to perform field-level
crop classification and monitoring activities [36, 37]]. In addition, SAR sensor has
a capability to differentiate crop types due to its sensitivity to the crop structure and
water content. Crop structure and water content are variables that varying in respect

with crop type, growing stage and crop conditions [|38]].

For various land cover features, SAR products provide the feasibility of estimating
crop height, crop type and crop condition mapping which are valuable information
for different agricultural applications and marketing of agricultural yields [39]. Object
characteristics such as orientation, material constituents, configuration, and dielectric
properties can be estimated using SAR Polarimetry [[109]. Scattering SAR data can be
obtained in different wavelengths and polarizations. Texture measures, multi-sensor
fusion, multi-polarization data, multi- temporal data and polarimateric data are
techniques which is used to classification of the vegetation type [|46, |47]. Different
crop types at each phenological stage show different bio-physical characteristics [36]].
Plant water content, roughness, leaf size, and vegetation greenness level that are
related to the bio-physical characteristics of the features represent the amount of
reflectance. Hence, optical sensors are beneficial for crop mapping and reliable
applicants for agricultural land use monitoring as they measure reflectance from
targets in the electromagnetic spectrum (reflectance in visible and shortwave infrared
and thermal spectrum). However, success in crop identification with optical data
mainly depends on the acquisition of image during key crop phonological stages. The
accuracy of the classification decreases during these critical periods if optical data are
used [[3]]. When added to the broad land use/cover classes’ information provided by
the optical data, the surface roughness and moisture information which are provided
by SAR sensor allow one to extract more detailed specification of land surface and

features [|6]].

In this section, the potential of discriminating crop types using polarimetric SAR
(Sentinel-1) in integration with useful optical (Sentinel-2) indices is demonstrated.

In order to map agricultural land management regimes of different intensities, it
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is required to develop an approach to assess the patterns and rates of agricultural
land use. Hereby, to discriminate different land use/cover categories of the study
area, the potential of remotely sensed image analysis to merge multispectral and SAR
images within a hierarchical classification framework were evaluated. The conceptual
methodology of crop classification is shown in Figure 6.16. Main objectives of the

study would be:
e Analyzing how to improve land use/cover mapping to better separation of land
management regimes,

e Combination of the multi-spectral optical image and multi-temporal polarimetric

SAR data to assess how to enhance crop classification methodology in the study

area.

c e .
N v = T

«__Multi-spectral Optical Images

S

Crop Classification

Figure 6.16 Crop classification methodology

6.2.1 Ground truth data acquisition

Field observation data are required to train the supervised classification models as well
as to assess the accuracy of produced maps. In order to digitize the selected locations
of the spectrally homogeneous Regions of Interest (ROIs) information obtained from
field surveys is needed [[135]]. Crop information is collected on a field by field basis
through an in-situ survey. In-situ measurements for under investigation site was
conducted in the spring-summer agricultural season of the year 2016 for Potato,

Sunflower, Maize, and Wheat fields. During the different field surveys, crop type,
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crop height, canopy coverage of the crop, soil moisture and irrigation practices data
were collected. The in-situ measurement periods were arranged regarding the general
growth stages of the crops accordingly defined by the Biologische Bundesanstalt,
bundessortenamt und CHemische industrie (BBCH) [|133]].

6.2.2 Datasets

In this study, high resolution multi-temporal optical (Sentinel-2) and dual polarimetric
(VV and VH) C-band radar data (Sentinel-1) are used for the investigation area.
The Sentinel-2 Multispectral Instrument (MSI) wide-swath, high- resolution imaging
mission is equipped with 13 spectral bands: four bands at 10 m, six bands at 20 m and

three bands at 60 m spatial resolution. It consists of a 12-bit radiometric resolution.

6.2.3 SAR Image Pre-processing

Sentinel-1 images were acquired in ascending orbit direction, Interferometric Wide
swath (IW) mode Level-1 C-band Ground Range Detected (GRD) product that consist
of focused SAR data which has been detected, multi-looked and projected to ground
range using an earth ellipsoid model such as World Geodetic System 1984 (WGS84)
(Table 6.5). Pre-processing steps such as Thermal Noise Removal, Apply Orbit
File, Radiometric Calibration, Speckle Filtering, Range-Doppler Terrain Correction
using SRTM 3-arc-second data and co-registration were performed with open source
tools of Sentinel Application Platform (SNAP) software [136]. The work flow of
multi-temporal mapping is shown in Figure 6.17. As a last step of the pre- processing
chain, pixel digital numbers were converted to sigma nought in decibel (dB). A RGB
(Red, Green and Blue) color composite of multi-temporal SAR image of study area is

shown in Figure 6.18.

Table 6.5 Specifications of Sentinel-1 and Sentinel-2

Characteristics Acquisition
of Sensor Date

Satellite: Sentinel-1 01 July 2016

Wavelength: C-band 13 July 2016

Imaging mode: IW-GRD 25 July 2016
Orbit: Ascending
Resolution: 19.93 (Rg. and Az)
Polarization: VH and VV

Satellite: Sentinel-2 11 July 2016
Imaging mode: MSI-Level-1C
Resolution: 10 m (B8-B4-B3)
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Figure 6.17 Flowchart of multi-temporal mapping
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Output values of radiometric calibration indicated by SigmaO as a parameter for
backscattering value. It means that if there is reflectance value in the optical data,
there is similar value in the radar data as a backscatter that is measured by a parameter
called Sigma0. It has value between O and 1 where the higher backscatter the
higher SigmaO values and close to 1. As Sentinel-1 produces dual polarimetric data
(VV and VH) the calibration operator will produce a single SigmaO band for each
polarization (Sigma0O VV,Sigma0O _VH). Geometric correction is next step of SAR
data per-processing where SAR geometric distortions would be corrected and using a
Digital Elevation Model (DEM) and producing a map projected and geocoded product.
The output map projection is Geographic Latitude/Longitude. In order to clean up
some of the speckle inherent in SAR images and to normalize the high frequencies
and De-speckling, a low pass filter is applied.

Potato

*hgt J‘
'l;

1
'

Uncultivated

Figure 6.18 RGB color composite of Sentinel-1, (R: 2016.07.01 VH _dB, G:
2016.07.13_VV_dB, B: 2016.07.25 VH_dB)
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6.2.4 Optical Image Pre-processing

For geometric correction of Sentinel-2 data, one needs to define the coordinate system
just by opening the sentinel-2 data in the Environment for Visualizing Images (ENVI)
software [|137]] environment and then exporting of data would specify its coordinate
system. This method is not a usual procedure for specification of coordinate system,
since ENVI is not able to open XML data format of the Sentinel then this help to
store XML data for data file. Hence for layer stacking of different Sentinel-2 bands
in ENVI following method would be useful. Therefore, each selected band is saved as
ENVI.dat format which could be used in layer stacking stage for create Sentinel-2

datasets.

In IMG_DATA file into the Sentinel-2 data three bands; Near-Infrared (band 8), Red
(band 4) and Green (band 3) selected as basis for geometric correction. Then each
selected band is saved as ENVI data format. Data in .dat format could be used in
layer stacking stage for create Sentinel-2 datasets. It is necessary to note that in
layer stacking, bands should be reordered from short wavelength to long wavelength

(1.Near-Infrared, 2.Red and 3.Green) respectively.

Sentinel-2 Level-1C product is Top of Atmosphere (TOA) reflectance image and for
classification purposes it is required to atmospheric reflectance correction to obtain
Bottom of Atmosphere (BOA) reflectance image (Level-2A product). In order to
produce BOA reflectance images, ENVI provides the FLAASH Module [138] that
corrects wavelengths in the visible through near-infrared and shortwave infrared

regions.

6.2.5 Combination of SAR and optical data

Concepts of data combination and data fusion are aligned to each other whereas they
are not exactly coinciding each other. In combination process, data are unified so
that integrated data can be used together as a dataset for the different post-processing
purposes. While in fusion process, the images are merged into each other and as a
result of this merging, a new image is produced that containing the information of the

two merged images.

This study describe how to get information from combined optical and SAR data (of
Sentinel satellites). For this reason, two different Sentinels data types in a same
period of time and same scene has been selected. Per-processing and preparation
of each optical and SAR data and combination of per-processed data are two steps
implemented to the Sentinels data combination. Combined datasets have been used as

input data for different processing purposes such as data analysis, data interpretation,
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modelling biophysical variables, classification etc.

To create a combined dataset, Sentinel-1 (VV_dB,VH dB) and Sentinel-2
(Near-Infrared, Red and Green) data as two different data files, for geographical
similarity should be resizing from a specific location. Each dataset should be resized
separately to produce spatial subset. Finally, both resized datasets would be combined
by applying layer stacking operator to create unique dataset combination including
optical and SAR data (Figure 6.19). It must be considered that in this case which
two Sentinels data were combined, as both data have been collected from same
generation sensors with many similarities in terms of their imaging geometries so that
co- registration process was not necessary. However, if combination of two datasets
acquired from two different satellites (for example combining Landsat and Sentinel
datasets) to be considered as the data are provided from two different sensor types due
to their distinct imaging geometries and different angle of view then co-registration

would be important to avoid any spatial deviation between optical and radar data.

6.2.6 Crop Mapping

Pixel based image classification is conducted to map the multi temporal coverage of
the seasonal crops. Morphological features are created by applying appropriate bands
selections and pre-classification is implemented and followed by pixel-level inputs in
traditional classification algorithms (e.g., Maximum Likelihood Classification (MLC)).
Results were analyzed comprehensively and comparatively. Figure 6.20 shows the
crop classification map resulted from the combined SAR and optical dataset as an input
data by applying the MLC supervised classification method. QGIS Semi-Automatic
Classification plugins (SCP) [[139] is applied for post-processing and classification of

combined Sentinels image.

6.2.7 Accuracy Assessment

Land use map were produced after pixel-based image classification first for SAR
color composite and then for the combined SAR and Optical datasets. Accuracy
assessment was conducted on the classified crop map with a total of 38 fields by
comparing the final results with reference data obtained from the field campaign
to evaluate the quality of the map. Overall accuracy, producer’s and user’s accuracy
were computed for each class from the SAR only and the combined SAR and Optical
dataset classification maps. Kappa statistics were calculated from confusion matrix
(Figure6.21 and 6.22). ArcMap as an Esri’s ArcGIS [[140] component application for
geospatial processing programs, is used for computing the accuracy assessment.
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Figure 6.19 Sentinels combined dataset (R: Near —Infrared, G: Red, B:
2016.07.25 VH_dB)
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Figure 6.20 Crop classification of combined dataset (MLC)
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An overall accuracy of 93% and Kappa value of 0.91 was achieved for the classification
map of the combined dataset while for the SAR only classification map, overall
accuracy and Kappa value were obtained 88% and 0.86, respectively. The results

indicate that combinations of microwave with optical data improved the results (5%).
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Figure 6.21 Producer, User and Overall accuracies and Kappa coefficient assessment
of only Sentinel-1 SAR data
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Figure 6.22 Producer, User and Overall accuracies and Kappa coefficient assessment
of combined dataset
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6.3 Multi-temporal data analysis for crops growth monitoring and
identification of different crop types

The application of SAR data is very useful in agricultural monitoring due to the
sensitivity of the microwave wavelength to the several characteristics of the crops.
The SAR system has sensitivity to the physical morphology and the geometrical
characteristics of the land surface and cover (soil roughness and moisture, vegetation
structure, etc.). This study investigates the potential of Sentinel-1 polarimetric SAR
backscatter data in an agricultural area for growth monitoring of different crop types
(maize, sunflower, wheat and potato) and crop mapping using that polarimetric

composite of images which are produced from multi-temporal analysis.

In-situ measurements for under investigating site was conducted for maize, sunflower
wheat and potato fields in the springng-summer agricultural season of the year 2016.
Among the various agricultural products in the study area due to their different
structures maize, sunflower, wheat and potato are four investigated crops patterns.
Maize, sunflower and potato based on filed measurements, generally are cultivated
at the beginning of April to mid-May and harvested in August or the beginning
of September in this study area. Winter wheat is seeded in previous October and
harvested in July. During the field work, crop variables and parameters that indicate
the growth rate of the crops including crop height and canopy coverage are recorded.
In addition, field characteristics such as soil properties and irrigation status were
collected in the field surveys. The in-situ measurements were conducted according
the four main development periods including leaf development, stem elongation,
heading and flowering stages of the crops that has been defined under Biologische
Bundesanstalt, bundessortenamt und CHemische industrie Sacle (BBCH- Sacle) .
Figure 6.23 indicates the crop calendar for maize, sunflower, wheat and potato in the

study area.

September |  October | Movember

Potato

B soving [ tontng [ i [ Matwre
D Emergence D Hear.lng- Harvesting

Figure 6.23 Seasonal maize, sunflower, wheat and potato calendar in the study area
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6.3.1 Sentinel-1 SAR data statement and processing

Sentinel-1 Interferometric Wide swath (IW) mode images were acquired in both
ascending and descending orbit pass directions. We used Level-1 C-band Ground
Range Detected (GRD) products that consist of focused SAR data which has been
detected, multi-looked and projected to ground range using an Earth ellipsoid model
such as WGS84. The satellite obtains data with dual-polarization (VV and VH)
backscatter. For the intensity analysis of SAR backscatter to crops, a time series of
24 remotely sensed Sentinel-1 SAR data in ascending and 23 data in descending pass
direction were acquired starting from 02 May to 24 September in 2016. Processing
steps as radiometric calibration, speckle filtering, topographic correction using SRTM
second data and co-registration were performed with open source tools of Sentinel
Application Platform (SNAP) software [[136]]. As a last step, pixel digital numbers were
converted to sigma nought in decibel (dB). Spatial subset operation is applied to resize
the images to reduce the amount of processing time. Flowchart of multi-temporal

Sentinel-1 SAR data processing is shown in Figure 6.24. As a post-processing step,

* Radiometric Calibration
* Speckle Filtering

Sentinal-1 Data '+ Geometric Correction
(Level 1 GRD) * Sigma Nought (¢?)
* Conversion to Non-linear (dB)
* Subset
Multi-temporal 'l’
. — ) X
Analysis Co-registration
Accuracy (
Assessment — Backscatter Analysis
Crop Mapping < Classification <———

Figure 6.24 Workflow of multi-temporal SAR analysis

Maximum Likelihood Classification (MLC) method is used for crop classification of
SAR dataset to map the multi-temporal coverage of the seasonal crops in the study
area. Six different classes consist of Potato, Sunflower, Maize, Wheat, Uncultivated
and Bare Soil used to provide reliable crop map. Overall accuracy and kappa
coefficient are calculated from confusion matrix to evaluate the quality of the crop

map. Classification process was performed using Semi- Automatic Classification

78



Plugin (SCP) [[139] as free open source plugin for QGIS [|141].

6.3.2 SAR backscattering analysis

The backscatters of individual pixels were determined and the correlation between
the field measurements was evaluated by analysing multi-temporal SAR images for
each field with different crop types. Then the backscatter signature of the selected
individual pixels for all patterns in the same plot as well as backscattering value
changes for each crop types with different fields during the timeframe of the study
were interpreted. Figures 6.25 and 6.26 show the variation of the mean backscatter
value of each pattern in the timeframe of the study in ascending and descending orbit
pass modes in VH and VV polarizations. While the mean backscatter values of selected
pixels for each crop types change between -11dB and -26dB in VH polarization in
ascending orbit direction, the values vary between -4dB and -19dB in VV polarized
images in the same orbit pass. These values show variation between -11dB and
-27dB in VH and -4dB and -18dB in VV polarizations in descending pass mode. The
backscatter results show that the satellite orbit pass directions did not affect the
intensity values; whereas, in different polarizations change in values is considerable.
In Figures 6.25 and 6.26, mean backscatter value of all crop types at the early stages of
the crops present a relatively homogeneous intensity values. Whereas in the growing
stages (mid stage) of the crops, due to differences in physical structure of the crops
and the sensitivity of the SAR to the geometrical characteristics of the patterns, each
crop types has high differences in backscatter values. It can be interpreted that in
later stages of the crops there is a similarity in the backscatter value. According
the field measurements, this point shows the end of the heading and beginning of
the harvesting time. Time-series backscatter analysis gives very useful information
when one crop type in various fields is intended to be observed in terms of the
monitoring programs and management practices. The results also indicate that there
is relationship between Sentinel-1 SAR backscatter values and crop variables such as

crop height and crop coverage during the different phonological stages [[142].

6.3.3 Crop mapping

In addition to the multi-temporal SAR backscattering analysis, polarimetric composite
of the images of the different polarization over time without classification methods
may also provide beneficial information regarding the identification of crop types.
Figure 6.27 displays the polarimetric color composite images of Sentinel-1 in three
observation times and each pin in the image represents one crop type. Identification

of crop types is validated with the application of classification methods in the study
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Figure 6.25 The backscatter value of maize, sunflower, wheat and potato on
multi-temporal Sentinel-1 images, in ascending pass direction with VH (top) and VV
(bottom) polarization
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Figure 6.26 The backscatter value of maize, sunflower, wheat and potato on
multi-temporal Sentinel-1 images, in descending pass direction with VH (top) and
VV (bottom polarization
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area.

Figure 6.27 RGB color composite using multi-temporal Sentinel-1 SAR data in
descending pass direction (R: 2016.05.15_VH_dB, G: 2016.06.01 VV _dB, B:
2016.07.31 VH dB)

6.3.4 Accuracy assessment of crop classification

The classification has been done based on SAR backscatter values and their temporal
changes in each class. Confusion (error) matrix (Table 6.6) was applied to evaluate
the accuracy of the multi-temporal SAR-derived crop map and determination of
the accuracy of the classification process. The confusion matrix just compares
the reference points (test data) to the classified points (training data). Overall,
produce and user accuracies, Kappa coefficient, the commission error and the
omission error for each class were calculated from confusion matrix (Table 6.7).
Crop map were produced after pixel-based image classification for multi-temporal
SAR color composite image (Figure 6.28). The results showed that high overall
accuracy of 88% and Kappa coefficient of 0.83 has been obtained (Figure 6.29).
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Figure 6.28 Crop classification of SAR dataset (MLC)
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Table 6.6 Maximum Likelihood classification confusion matrix

Class Potato | Sunflower | Maize | Wheat UncultH Bare H Total
Potato 279 1 36 0 0 1 317
Sunflower 27 105 56 1 0 0 189
Maize 39 18 375 0 1 7 440
Wheat 0 1 1 170 9 72 253
Uncult/'| 0 0 5 10 141 33 | 189

Bare [ 70 0 3 2 4 1384 | 1393
Total 345 125 476 183 155 1497 | 2781

lUncultivated %Bare Soil

Table 6.7 Percentages of errors of omission, errors of commission, Producer’s and
User’s accuracies for each class

Class Omission | Commission | Producer Accuracy | User Accuracy
Potato 11.99 19.13 80.87 88.01
Sunflower 44.44 16 84 55.56
Maize 14.77 21.22 78.78 85.23
Wheat 32.81 7.11 92.9 67.19
Uncultivated 25.4 9.03 90.97 74.6
Bare soil 0.65 7.55 92.45 99.35

88

Potato Sunflower Maize Wheat Uncultivated  Bare Soil Overall Kappa
Accuracy Coefficient

® Producer Accuracy ®User Accuracy

Figure 6.29 Producer’s, User’s and Overall accuracies and Kappa coefficient
assessment of multi-temporal Sentinel-1 SAR data (percentages are rounded to the
nearest decimal)
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6.4 Interferometric coherence analysis to crop growth monitoring

Sentinel-1 (A and B) satellites with the same generation of sensors and having many
compatibilities as to their imaging geometries and the common orbital plane with
a 180° phase difference along with small orbital baselines, offer a 6-day interval to
formation of the interferometric SAR (InSAR) data pairs for precise surface monitoring
and coherent change detection appication. Single Look Complex (SLC) products in
the Interferometric Wide swath operation mode (IW) with dual polarization (VV and
VH) were acquired for this study. Data is obtained in both ascending and descending
orbit pass directions, which means that subject fields could be evaluated from two
independent perspectives. From two different tracks in each pass direction in total, 62
SAR data were processed to produce image pairs to obtain interferometric coherence
values in relation to crops growth evaluation on the agricultural fields of the study
area. Prior to positioning Sentinel-1B in orbit, data were obtained every 12 days for
each orbit in the study area, but since end of September, due to its placement into
orbit, this period is reduced to 6 days. An overview of datasets with relative orbit
number is given in Table 6.8. The images acquisition dates for each orbit from April to
September are given in Table 6.9. Two datasets also were obtained for different orbits

in October.

Table 6.8 Characteristic parameters of acquired Sentinel-1 datasets

Orbit Satellite  Acquisition Incidence .
Number Pass Time (UTC) Swath Angle (°) Resolution (m)
S. Range| Azimuth
87 Ascending 15:42 W3 43.1 3.5 22.6
65 Descending 03:58 W1 32.9 2.7 22.5
160 Ascending 15:49 IW3 43.1 3.5 22.6
167 Descending 03:50 IW3 43.1 3.5 22.6

!Slant Range

Generic Mapping Tools Synthetic Aperture Radar (GMTSAR) developed by [[143]] is
used as an open code radar interferometry processing system. The main components
of GMTSAR processing system include: 1) a preprocessor for different sensor data
type to convert the original data format and its orbital information into a common
configuration; 2) an InSAR processor to set the stacks of images for co-registration
to eliminate the topographic phase and form the complex interferogram; and
3) a post-processor, based on Generic Mapping Tools (GMT) [144] system, to
filter the interferogram and establishment of the interferometric products of phase,
amplitude and coherence; to convert the interferometric phase into line-of-sight (LOS)
displacement and a geocoding processing to convert the radar image coordinates into

geographic coordinates [[122].
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Table 6.9 Datasets acquisition dates for different orbits

Orbit No. April May

87 3 15 27 9 21

65 2 14 26 8

160 8 20 2 14 26

167 9 21 3 15 27
Orbit No. June July

87 8 20 2 14

65 1 13 7 19 31

160 7 1 13 25

167 8 2 14 26
Orbit No. August September

87 1 13 25 6 18 30

65 12 14 24 5 17 29

160 |6 18 30 11 2] 29

167 7 19 31 12 241 30

'From these date on for 160 and 167 orbit numbers acquisitions were made every 6
days in September and for all orbits from October

Different-pass Sentinel-1 SAR data was used to calculate interferometric coherence
values for agricultural field with different crop types. Figure 6.30 illustrates the
acquired Sentinel-1 images locations with related track numbers and satellite orbit
pass direction and its LOS position. In this study the correlation between different
phenological stages (sowing, growth and harvesting) of the crops and radar coherence
were investigated. The results showed that coherence values was high before plowing
and seeding and had sharp coherence decrease with starting the growing of the crops.
During the growth stage of crops the values stay low and slightly similar for each fields
and crop types. The coherence values were significantly higher after crop harvesting
and reaping the remnants of the crops. In comparing with ascending pass direction
it has indicated that coherence value is high for each field with the same crop type in

descending orbit.

6.4.1 Coherence estimation and its relation with crop growth

For each crop type and totally for 20 crop fields vegetation parameters including
sowing, growth, and harvesting stages were recorded in the different field
measurements. Due to the simultaneous planting of maize and sunflower in the
study area, the coherence value was in the highest for both crops at the end of
March and early June after plowing the fields and seeding the crop. The value is
started to decrease with the growth of the plants. At the beginning of July, once
the ground covered by the plant and hence the soil affects eliminated from the radar

backscatter, it reaches the lowest value. The coherence again started to get higher
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in late September and October for sunflower and maize, respectively, when the crops

is reaching to their harvesting time. Since winter wheat is seeded in previous and

2r 28 29 30° 31 32 33 34 35 36"

Figure 6.30 Sentinel-1 imagery locations. The colored boxes with T indicate the
tracks and perpendicular arrows represent satellite propagation direction and its LOS
with longer and short arrows respectively and yellow box shows the study area

late October, and interferometric coherence analysis for the wheat is related to the
beginning of the April when the crop is its heading stage, therefore, coherence values
were low until the harvesting time and after that there is a sharp increases in estimated
coherence at the end of June and early July. However, before the crops reaching
their harvesting time, an increase observed in the coherence value for maize and
sunflower that can be resulted from the changes in weather conditions such as wind,
moisture or precipitation. Mean coherence values for maize (9 fields), sunflower
(6 fields) and wheat (5 fields) for ascending and descending pass directions in four
different tracks for VH and VV polarization are given through Figures 6.30 to 6.35,
respectively. In compared with the ascending pass direction, descending represented
high interferometric coherence values in all crop types. Between the VV and VH

polarization much better coherence values were estimated using VV polarization.
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Figure 6.31 Mean Coherence values of 9 maize fields during the seasonal growth

stages in the ascending pass direction for VH and VV polarization in two different

tracks. The date of images used for coherence pair formation is represented in the
x —axis of the graph
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Figure 6.32 Mean Coherence values of 9 maize fields during the seasonal growth

stages in the descending pass direction for VH and VV polarization in two different

tracks. The date of images used for coherence pair formation is represented in the
x —axis of the graph
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Figure 6.33 Mean Coherence values of 6 sunflower fields during the seasonal growth
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tracks. The date of images used for coherence pair formation is represented in the
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Figure 6.34 Mean Coherence values of 6 sunflower fields during the seasonal growth
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tracks. The date of images used for coherence pair formation is represented in the
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Figure 6.35 Mean Coherence values of 5 wheat fields during the seasonal growth

stages in the ascending pass direction for VH and VV polarization in two different

tracks. The date of images used for coherence pair formation is represented in the
x —axis of the graph
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Figure 6.36 Mean Coherence values of 5 wheat fields during the seasonal growth
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7

Results And Discussion

In application of PolSAR technique for crop monitoring, three different crop types
that have “broad” and “narrow” leaves were selected to investigate the sensitivity of
the Sentinel-1 dual polarimetric SAR parameters to plant height and canopy coverage
(CC). Maize and sunflower is selected as broad leaf and wheat as narrow leaf crop.
The reason for studying two broad-leave crops was to validate the high sensitivity of
SAR polarimetric data to early stages of broad-leave crops and then comparing the
findings for wheat as narrow-leave crop. We demonstrate that maize presents higher
correlation during the early stages of the crop growth when the crop height is less
than 150 cm. It is strongly correlated with the SAR parameters including VV+VH (R?
=0.82), VV (R? =0.81), and VH (R? = 0.80). Besides, CC of maize was well correlated
with VV polarization (R* = 0.73) at the early stage before the heading stage although
at the later growing stage the correlation becomes weaker after the heading stage.
From the backscatter analysis, the same result is not observed in the sunflower. The
sunflower height has very low correlation with the most of SAR parameters. Only VH
polarization shows slightly better sensitivity when its height is below 92 cm before
the ending of flowering and the inflorescence reaches to full size. The sunflower CC
is relatively correlated with VV polarization at the early stage (during the flowering
stage) while any considerable correlation between SAR parameters and sunflower
height and CC is observed at the later stage. The sensitivity of SAR parameters to
wheat variables is often low compared to maize and sunflower. The high, but negative
correlations are related to the VH/VV intensity ratio and VH polarization. However,
Alpha (a) decomposition parameter shows highest correlation at the beginning stage
and represents absence of SAR parameters sensitivity with wheat height at the later
growing stage and CC at both stages. The results we have obtained reveals that
Sentinel-1 dual polarimetric SAR (C-band) has a high potential for identifying growth
stages and estimation of crop height, canopy coverage of maize as a broad-leaf crops.
However, this is not proven for sunflower, that may be due to the crop structure and
leaves geometry since they may change the SAR backscatter value in any stages of

crops. This study also demonstrates that Sentinel-1 dual polarimetric SAR data can
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be a good alternative to other commercial data which enables users to access freely
available of a constant long-term data archive for applications requiring long-range

time series.

Although the use of single orbit direction (descending) provides possibility of
monitoring and investigating agricultural growth stages, future studies should
use both the ascending and descending orbits to have independent results from
different angles of view. In addition, the relationship between backscatter values
of multi-temporal Sentinel-1 data and vegetation variables will be incorporated to

improve the crops mapping and classification accuracy as a future work.

Combinations of microwave remote sensing data with optical data considerably
improved the results (5%), achieving the excellent classification of croplands and
allowed to discriminate the crops for the accurate assessment. Although high spatial
resolution and unique color combination are the strengths of optical spectral bands,
the application of optical images in a climate condition with a cloudy sky and
particularly in rainy weather causes a serious obstacle in monitoring of agricultural
activities during most of the growing season. In contrast, a SAR sensor utilizes the
microwave portion of the spectrum, which enables radar pulses to penetrate clouds
and rain. In addition, radar has capability to collect data in day-or-night. Therefore,
in case of optical images being not applicable due to the weather conditions, the
integrated use of SAR and optical data is the most suitable option. Moreover, data from
the optical and microwave provide complementary information and the combined
use, either simultaneously or at different times, can provide important additional

information of terrain surface and vegetation canopies.

In multi-temporal data analysis, backscatter values for each crop types (i.e., maize,
sunflower, wheat and potato) over the time were determined and the relation between
the intensity values and the data obtained from filed campaign was evaluated. Due
to the different methods of irrigation and fertilization and the differences in crops
physical geometry during the growing stages, different backscatter values are observed
for different types of crops. However, at the later stages of the crops growth, due to
reaching the harvesting time, similar backscatter values are observed. Moreover, the
backscatter signature in timeframe varies considerably over different areas and thus
it may not be possible to drive a unique backscatter signature. That is valid for the
same crop in all areas although this distribution gives an indication of the differences in
backscatter for different crop over time. Regarding the relationship between ascending
and descending pass directions with VH and VV polarization, it was demonstrated
that early and later stages of crops growth have relatively similar correlation in

backscatter values and opposite to this, mid stages showed lower similarity due to
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geometrical characteristics of the different crop types. In addition, it has indicated
that the homogeneity between SAR backscatters is high for each field with the same
crop type in descending pass direction with VH polarization. In conclusion, using the
multi-temporal Sentinel-1 SAR data for the agriculture monitoring system which may
play an important role for the accurate crop assessment is an ideal preference due to

its free availability and a constant long-term data archive.

Interferometric coherence values that calculated from the multi-track repeat-pass
SAR data for the agricultural field with different crop types in dealing with acquired
information from the field measurements, a very strong correlation between different
phenological stages (sowing, growth, and harvesting) of the crops and radar
coherence is indicated in the study area. The results declared that before plowing
and after seeding the coherence values were high but had sharp coherence decrease
with starting the growing the crops. During the growth stage of crops the values
stay low and slightly similar for each field and crop type. The coherence values were
significantly higher after crop harvesting and reaping the remnants of the crops. In
comparing with ascending pass direction it is observed that coherence value is high
for each field with the same crop type in descending orbit pass. The increase of values
for VV polarization was higher in compared with the VH polarization for different
crop types. It can be inferred from the interferometric coherence analysis that several
factors and agriculture activities such as plowing, seeding, and precipitation before

image acquisitions affect the values.

This study employed remote sensing data which acquired by Sentinel-1 as SAR
data and Sentinel-2 as optical images for the different investigation purposes such
as sensitivity analysis of the multi-temporal Sentinel-1 SAR parameters to the crop
variables, utilizing the multi-temporal Sentinel-1 SAR imagery and Sentinel-2 optical
datasets to improve the crop mapping by combination of the datasets, application of
Sentinel-1 radar data for time-series analysis to investigate the temporal backscatter
changes for different crop types and also Sentinel-1 interferometric coherence analysis
to crop growth monitoring. The results demonstrate the high potentialities of
the Sentinel-1 dual polarimetric SAR data and multi-spectral Sentinel-2 data due
to provide useful information and access freely available of a constant long-term
data archive for applications requiring long-range time series such as agricultural
activities monitoring and mapping are ideal preference and a good alternative to other

commercial data.
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