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Yildiz Technical University

Prof. Dr. Fikret ÇALIŞKAN, Member
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ABSTRACT

Visual Assisted Formation Control of Distributed UAV
Swarm

Onur ÖZTÜRK

Department of Mechatronics Engineering

Master of Science Thesis

Advisor: Assoc. Prof. Dr. Aydın YEŞ̇ILDİREK

In recent years, unmanned aerial vehicles have been used effectively in many military

and civilian areas. Because of it provides many advantages areas of surveillance,

imaging, mapping, search and rescue etc. It has become an almost indispensable part

of them.

The use of more than one unmanned aerial vehicle in the performance of the tasks

saves time and cost compared to a single vehicle, while allowing the completion of

tasks that cannot be done with a single vehicle. For example, in missions where a

certain area is required to be imaging or mapping, a single drone takes longer to scan

the entire area than multiple drones. Since the airtime of small unmanned aerial

vehicles is relatively short, a battery replacement will interrupt the task and increase

this time even more. Using large-sized unmanned aerial vehicles that can stay in

the air for a longer time can make the same task too costly. The use of unmanned

aerial vehicles swarms allows different tasks to be performed by using methods such

as triangulation or back azimuth that cannot be done with a single vehicle.

Success of swarming often depends on preserving swarm formation. It is critical for

all swarm members to maintain their position in the formation to successfully perform

certain tasks, such as triangulation. In order to achieve this, each swarm member must

precisely determine its relative position with respect to other agents.

In this study a swarm of UAVs has been created by using method which relative position

of UAVs determined by using only a monocular camera and IMU sensor, without

xii



GPS, VICON, LIDAR etc. which are external dependent or high-cost systems. UAVs

are estimates the relative position between them by intersecting areas in the camera

images and IMU acceleration measurements they send to each other. In formation

acquisition, flocking and formation maneuver simulations, the swarm agents managed

to create a swarm by staying within %5 error zone.

Keywords: UAV swarm, sensor fusion, extended kalman filter

YILDIZ TECHNICAL UNIVERSITY
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ÖZET

Dağınık İHA’ların Görsel Destekli Formasyon Kontrolü

Onur ÖZTÜRK

Mekaronik Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Danı̧sman: Doç. Dr. Aydın YEŞ̇ILDİREK

Son yıllarda insansız hava araçları birçok askeri ve sivil alanda etkin olarak

kullanılmaktadır. Gözetleme, görüntüleme, haritalama, arama kurtarma vb. alanlarda

birçok avantaj sağlaması nedeniyle bu alanların neredeyse vazgeçilmez bir parçası

haline gelmi̧stir.

Görevlerin yerine getirilmesinde birden fazla insansız hava aracının kullanılması

tek bir araca göre zaman ve maliyet açısından kazanç sağlarken, tek araçla

yapılamayacak görevlerin başarılmasına olanak sağlamaktadır.Örneğin belirli bir

alanın görüntülenmesi veya haritalanması istenen görevlerde tek bir insansız hava

aracının alanın tamamını taraması birden fazla araca göre daha uzun sürmektedir.

Küçük boyutlu insansız hava araçlarının havada kalma süreleri nispeten kısa olduğu

için batarya deği̧simi görevi kesintiye uğratıp bu süreyi daha da arttıracaktır.

Daha uzun süre havada kalabilen büyük boyutlu insansız hava aracı kullanmak

ise aynı görevi fazla maliyetli hale getirebilir. İnsansız hava araçlarının sürü

halinde kullanılması tek bir araçla yapılamayacak nirengi veya geriden kestirme gibi

yöntemlerin kullanılarak farklı görevlerin yerine getirilmesine imkan sağlar.

Sürü olma başarası genellikle sürü diziliminin korunmasına bağlıdır. Tüm sürü

bireylerinin dizilim içerisindeki yerlerini korumaları, geriden kestirme gibi belirli

görevlerin başarılı bir şekilde yerine getirilmesi için kritik öneme sahiptir. Bunu

başarabilmek için ise her sürü bireyinin diğer bireylere göre bağıl pozisyonunu hassas

bir şekilde belirlemesi gerekmektedir.

Bu çalı̧smada insansız hava araçlarında konum belirlemek için kullanılan
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yöntemlerden olan GPS, VICON, LIDAR vb. dı̧sa bağımlı veya yüksek maliyetleri

sensörlere ihtiyaç duymaksızın yalnızca monoküler bir kamera ve IMU yardımı ile

İHA’lar arasındaki bağıl konum hesaplanarak İHA sürüsü oluşturulmuştur. İHA’lar

birbilerine gönderdikleri kamera görüntülerindeki kesi̧sen alanlar ve IMU ivme

ölçümleri ile birbirleri arasındaki bağıl konumu tahmin ederler. Gerçekleştirilen

formasyon oluşturma, sürü halinde uçuş ve formasyon manevrası simulasyonlarında

sürü bireyleri %5 hata bölgesi içinde kalarak sürü oluşturmayı başarmı̧slardır.

Anahtar Kelimeler: Sürü İHA, sensör füzyonu, extended kalman filtresi

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Literature Review

Global positioning system GPS which is used to determine the position cannot provide

the desired sensitivity in some cases and cannot be used in indoor areas.Odometry

applications have been developed as an alternative to GPS. Odometry is the estimation

of the robot’s position by continuously measuring the changes in the robot’s motion

with various sensors in small time intervals. The predicted position is relative to the

starting position of the robot, not to a global reference. For example, using the number

of turns of the wheel of the vehicle[1], the position relative to the starting point can be

found. In the odometry application that Zhang and Singh[2] created using the lidar

sensor, they also mapped the areas passed and determined the position of the robot.

In addition the method which camera motion is calculated with the previous frames is

called visual odometry. The features in the images are detected with feature detection

algorithms [3–9] and matched with the features in the previous image. Nister et al. In

their work [10], they determined the relative motion of the camera by detecting the

features in each frame with the Harris Corner Detector [3] and matching the features

in the previous frame. In this way, the route can be found by following the camera

movement. Davidson and Reid [11], Klein and Murray [12] calculated the position

of the camera by mapping the region as well as calculating the camera movement.

In their recent study, Mur-Artal and Montiel [13] closed the loop when they passed a

point again and corrected the accumulated errors.

One dimension is lost because cameras project 3D space to 2D space.Therefore, the

actual lengths cannot be calculated because the scale is not known in visual odometries

using a single camera. If two cameras are used, the distance between the cameras

must also be large to measure relatively long distances. In recent years, a pair of

cameras and IMU sensors have been used to calculate the scale that cannot be obtained

using a single camera. Weiss and Siegwart [14] calculated the metric scale using the

IMU sensor to find the camera position using the previous frames.Visual odometries
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developed by using camera and IMU sensor have been used in studies with land

vehicles [15] and air vehicles[16–18].

For robotic swarms, the correct determination of each individual’s position within the

swarm is critical to the preserving the formation.Different sensors and methods are

used to achieve this. Rivard et al.’s[19] study in 2008 determined the relative position

between robots by placing transmitters and receivers that emit ultrasonic sound waves

and detect them on each robot, using the duration of the sound waves in the air. F.

Roberts et al. [20], In their study in 2012, placed infrared receivers and transmitters

around flying robots and calculated the relative position between robots with the

differences in the strength of the signals. Oliveira et al.[21] Calculated the relative

positions of the robots from differences in RSSI power in the communication channel

in their 2014 study.

Merino et al. [22] conducted the first study in 2006, which determined the relative

positions of two unmanned aerial vehicles from intersecting fields of view. In the study,

each of the unmanned aircraft calculates its relative position using the intersecting

areas on its own image and the image taken from the other. However, since only one

camera was used, the height information was obtained by a laser sensor. Achtelik et

al. [23] using a single camera and IMU in each unmanned aircraft to determine the

position of the vehicles in relative to each other from the intersection of the images

in real time. This method has only recently been used in cameras and IMUs [24, 25]
and is increasingly gaining popularity.

1.2 Objective of the Thesis

It is aimed to calculate the relative position of each individual unmanned aerial vehicle

by comparing the image taken from the other aget with the image taken from its own

sub camera. With these camera measurements and taken IMU measurements are fused

to determine the relative position between agents. In this way, each individual will

maintains its position relative to its connected agents and all swarm member will be

able to move with the desired formation. By choosing an agent as leader, all swarm

can be controlled together without deterioration in formation.

1.3 Hypothesis

The main contribution of the study compared to other studies [23–25] is that it

performs the tasks by creating a formation and preserving it. With the help of images

taken from other swarm members using only the camera and the IMU pair, each

2



individual will be able to maintain its position in the formation with a formation

control algorithm. Each agent runs its own formation control algorithm to maintain

its position in the swarm without any dependence of central control unit.

3



2
BACKGROUND

In this section, the models and methods used in the thesis will be mentioned. After

giving the quadrotor model and controller used in the study, the methods by which

image measurements are obtained will be briefly mentioned. Next, the basics of

Kalman Filter and Extended Kalman Filter adapted to nonlinear systems will be shown.

2.1 Quadrotor Dynamics

The quadrotor model and controller used in simulation were obtained from the study

of Mishra [26].

We will begin with Newton Euler Equation which combines Euler’s two laws of motion

for a rigid body to a single matrix form equation. This equation consist of six coupled

second-order differential equations for the position of the center of mass and for the

angular orientation of the rigid body. Newton Euler Equation shows that change in

the angular momentum about the center of mass is equal to the total moment of all

the forces about the center of mass [27].

Newton Euler Equation for quadrotor as follows:

�

F

τ

�

=

�

13m 03

03 I3

��

a

α

�

+

�

0

ω× I3ω

�

(2.1)

Where:

F : Total force applied to the quadrotor.

τ: Total torque.

m: Quadrotor mass.

I : Moment of inertia.

ω : Angular velocity.

a: Linear acceleration.
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α: Angular acceleration.

The rotation matrix R transforms the body coordinates to the world cooridantes. The

rotation matrix represents a rotation by an angle about a fixed axis that lies along the

unit vector.

W RB =







c(ψ)c(θ )− s(φ)s(ψ)s(θ ) −c(φ)s(ψ) c(ψ)s(θ ) + c(θ )s(φ)s(ψ)
c(θ )s(ψ) + s(φ)c(ψ)s(θ ) c(φ)c(ψ) s(ψ)s(θ )− c(θ )s(φ)c(ψ)

−c(φ)s(θ ) s(φ) c(φ)c(θ )






(2.2)

Where :

φ: Roll angle (Angle of rotation about x axis).

θ : Pitch angle (Angle of rotation about y axis).

ψ: Yaw angle (Angle of rotation about z axis).

c(·) and s(·) stands for cos(·) and sin(·).

Angular velocity components of the robot in the body frame defined as:

WωB = pxB + qyB + rzB (2.3)

Where p,q and r are angular velocities. These angular velocities are related to the

derivatives of roll, pitch and yaw angles with following equation:







p

q

r






=







cos(θ ) 0 −cos(φ)sin(θ )
0 1 sin(φ)

sinθ 0 cos(φ)cos(θ )













φ̇

θ̇

ψ̇






(2.4)

Linear motion equation of the quadrotor in the world frame xW yW zW :

ml̈ =







0

0

−mg






+W RB







0

0

F1 + F2 + F3 + F4






(2.5)

5



Figure 2.1 Free body diagram of quadrotor

Angular motion equation of the quadrotor in the body frame xB yBzB:

I







ṗ

q̇

ṙ






=







L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4






−







p

q

r






× I







p

q

r






(2.6)

2.2 Quadrotor Control

PD controller is used for quadrotor control. Dynamic equations for the quadrotor are:

ml̈ =







0

0

mg






+ R







0

0

u1






(2.7)
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Where u1 is the thrust input.

I







ṗ

q̇

ṙ






= u2 −







p

q

r






× I







p

q

r






(2.8)

Where u2 is the moment input. From (2.4)







φ̇

θ̇

ψ̇






=







cos(θ ) 0 sin(θ )
sin(θ )tan(φ) 1 −cos(θ )tan(φ)
− sin(θ )

cos(φ) 0 cos(θ )
cos(φ)













p

q

r






(2.9)

Desired trajectory defined as

lT =











xdes

ydes

zdes

ψdes











(2.10)

If we define position error as:

ep = lT − l (2.11)

Similarly, velocity error as:

ev = l̇T − l̇ (2.12)

Sufficient condition k > 0 to guarantee that error goes exponentially to zero is:

l̈T − l̈c + kd,l ev + kp,l ep = 0 (2.13)

Where r̈c is the command acceleration, calculated by the PD controller. If we assume

approximations below, to linearize the dynamics at the hover configuration:

u1 ≈ mg

θ ≈ 0

φ ≈ 0

ψ≈ψ0

u2 ≈ 0

p ≈ 0

q ≈ 0

r ≈ 0
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We get following equations

φc =
1
g
(l̈1,csin(ψdes)− l̈2,ccos(ψdes)) (2.14)

θc =
1
g
(l̈1,ccos(ψdes)− l̈2,csin(ψdes)) (2.15)

ψc =ψdes (2.16)

l̈3,c = l̈3,des + kd,3(l̇3,des − l̇3) + kp,3(l3,des − l3) (2.17)

Control laws can be written as

u1 = m(g + l̈3,c) (2.18)

u2 = I







kp,φ(φdes −φ) + kd,φ(pdes − p)
kp,θ (θdes − θ ) + kd,θ (qdes − q)

kp,ψ(ψdes −ψ) + kd,ψ(rdes − r)






(2.19)

2.3 3D Reconstruction of Cameras

In this section, some methods[28] used to determine the relative positions of two

cameras with intersecting field of view will be discussed.

Many visual odometry and SLAM applications have been made by calculating the

relative positions of the camera from the intersecting field of view. In visual odometry

applications, the camera movement is calculated by comparing the previous image

of the moving camera with the current image. Thus, the movement and position

of the agent to which the camera is attached is determined [10, 29–31]. In SLAM

applications, while 3D mapping, the position of the camera according to the starting

position is also determined [11, 32, 33]. In this study, the method is used to calculate

the relative positions of multiple cameras connected to multiple agents in real time,

instead of calculating the change in the motion of the camera connected to an agent.

2.3.1 Relative Positions and Orientations of Two Cameras

Suppose there are 2 cameras C0 and C1 seeing the same P point from different positions

and angles. See Figure 2.2

If we draw beams from P to cameras C0 and C1, the projection of the P point on the

camera planes will be the points p0 and p1. These two cameras and the point P form

the C0C1P epipolar plane. The line connecting the two cameras is called C0C1 base
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Figure 2.2 Epipolar geometry

line. In epipolar geometry, the vectors ~C0C1, ~C0p0 and ~C1p1 are on the same plane.

Based on this, we can write the following relation:

~C0p0 · ( ~C0C1 × ~C1p1) = 0 (2.20)

One could remember that cross product of two coplanar vectors results perpendicular

vector to them. If we express the points p0 ve p1 as vectors:

p0 is defined in the reference system C0

p0 =







x0

y0

1






(2.21)

p1 is defined in the reference system C1

p1 =







x1

y1

1






(2.22)
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If we want to define the point p1 in reference system C0, we can use the relation Rp1.

So (2.20) can be written as follows:

p0 · (t × Rp1) = 0 (2.23)

With t:translation matrix from C0 to C1 and R: rotation matrix from C0 to C1.

t × Rp1
can be represented as [t]×Rp1. Therefore (2.23) can be rewritten as:

pT
0 [t]×Rp1 = 0 (2.24)

Where [t]× is skew-symmetric matrix that:

[t]× =







0 −t3 t2

t3 0 −t1

−t2 t1 0






(2.25)

Let define E = [t]×R called essential matrix which is a 3 × 3 matrix. Then (2.24)

becomes:

pT
0 Ep1 = 0 (2.26)

Essential matrix relates the image of a point in camera C0 to its image in camera C1,

given a translation and rotation. Our goal is to find the essential matrix elements and

get the translation matrix t and rotation matrix R.

Essential matrix is a 3×3 matrix with 9 unknowns. So we need at least 8 equations to

calculate the essential matrix [34]. These equations are obtained from known points

on two camera planes.

If we expand (2.26):

�

x0 y0 1
�







E11 E12 E13

E21 E22 E23

E31 E32 E33













x1

y1

1






= 0 (2.27)

Expanding (2.27) again :

E11 x0 x1+E12 x0 y1+E13 x0+E21 y0 x1+E22 y0 y1+E13 y0+E31 x1+E32 y1+E33 = 0 (2.28)
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Finally, if it is written in the matrix form:

�

x0 x1 x0 y1 x0 y0 x1 y0 y1 y0 x1 y1 1
�



































E11

E12

E13

E21

E22

E23

E31

E32

E33



































= 0 (2.29)

And having multiple known points enable us to obtain matrix equation Ax = 0 to solve

this equation, the A matrix must consist of at least 8 rows.

We will use Singular Value Decomposition to find solution:

A= U DV T (2.30)

The solution x is the column of V corresponding to the only the null singular value

of A. This is the rightmost column of V .

One should note that the translation matrix obtained here is a unit vector.

2.3.2 Finding Points on Images

Since we cannot manually select the points that need to be determined in order to

calculate the essential matrix in automated systems, we need methods to extract them

from the picture.Camera relative attitude maybe extracted from the essential matrix.

To obtain such common points maybe achived through special points. These methods

are called feature extraction. Features are interesting parts of images and generally

they are edges and corners. A good feature detection algorithm should not be affected

by rotation, scale and illumination changes. Some of the most recent and popular

algorithms will be mentioning in the following.

In Figure 2.3, the features in the images taken from the sub-cameras of two UAVs in

different orientations and positions were extracted and matched.
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Figure 2.3 Features are extracted by ORB and matched with Brute-Force algorithm

2.3.3 Harris Corner Detector

Harris Corner Detector as it is said, a mathematical method to find the corners in

images. It was introduced by Chris Harris and Mike Stephens in 1988[3]. Harris

Corner Detector popularity comes from its independence of scale, rotation and

illumination variations.

In Figure 2.4 1, 2, 3 squares are called kernels which are used to determine corners

by moving them all directions. If we move 1. kernel on the flat surface any direction

there will be no gradient changes. So it can’t be specify any interesting point on the

image and can’t repeatedly refer to same point. Also if we move 2. kernel along the

line there will be no gradient change and it is not useful. If we move 3. kernel any

direction on the image there will be significant gradient change occur. Harris Corner

Detector scans the image this way to determine corners.

This operation can be written mathematically as

E(u, v) =
∑

x ,y

w(x , y)[I(x + u, y, v)− I(x , y)]2 (2.31)

Where

E(u,v) : Differences produced by shifting (u,v).

u : Kernel displacement in x direction.

v : Kernel displacement in y direction.

w(x,y) : Kernel at (x,y) position.

I(x,y) : Intensity of the image.
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Figure 2.4 Harris Corner Detection

To find corners we should maximize the function E(x , y). This is done by maximizing

the term
∑

x ,y

[I(x + u, y, v)− I(x , y)]2 (2.32)

To do that we will be expanding the term above with Taylor Series and ignore the

higher order terms

E(u, v)≈
∑

x ,y

[I(x , y) + uIx + vI y − I(x , y)]2 (2.33)

With Ix and I y are gradient in x and y. If we expand square

E(u, v)≈
∑

x ,y

u2I2
x + 2uvIx I y + v2I2

y (2.34)

We will write above equation matrix form

E(u, v)≈
�

u v
�∑

�

I2
x Ix I y

Ix I y I2
y

��

u

v

�

(2.35)

Now, we define A for simplicity as

A=
∑

w(x , y)

�

I2
x Ix I y

Ix I y I2
y

�

(2.36)
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(2.35) becomes

E(u, v)≈
�

u v
�

A

�

u

v

�

(2.37)

For each kernel we will find the eigenvalues of matrix A

R= detA− k(traceA)2

detA= λ1λ2

traceA= λ1 +λ2

Using eigenvalues λ1, λ2 and R we can decide whether kernel in a region of corner,

edge or flat. If both λ1 and λ2 are small kernel is in a flat region. λ1 or λ2 significantly

large kernel is in an edge. If λ1 and λ2 has large values kernel is in a corner.

2.3.4 SIFT (Scale-Invariant Feature Transform)

The algorithm proposed by D.Lowe [5] in 2004 which extract keypoints from image

and computes its descriptors. To do that, scale-space is generating with a function

L(x , y,σ). Scale-space consist of different scales of the original image. Each scaled

image progressively blured with Gaussian Blur operator. For each pixel following

operation applied

L(x , y,σ) = G(x , y,σ)þ I(x , y) (2.38)

G(x , y,σ) =
1

2πσ2
e−(x

2+y2)/2σ2
(2.39)

Where

G : Gaussian Blur operator.

I : Image itself.

σ : Scale factor.

Difference of Gaussians (DoG) is generating using these scaled and blurred images

differences. A representation of DoG can be seen below

After generating DoG all images are scanned to find local extrema. A pixel is compared

with 8 pixels in its neighbourhood and 9 pixels in the previous and next scale. If

this pixel is local extrema, it means it is possible keypoint. The keypoints found are

eliminated by a threshold value and the best matching ones remain. In order not to

be affected by orientation changes, orientation is assigned to keypoints. For this, 36

14



Figure 2.5 Difference of Gaussians[5]

bins orientation histogram covering 360 degrees around the keypoint is created. The

highest value and over % 80 values in the created histogram are using to calculate the

orientation. Descriptors for keypoints will be calculated after assigning the position,

scale and orientation of each keypoint extracted from the image. By creating a 16x16

window around each keypoint, this window is divided into 16 sub-blocks of 4x4

size. All subblocks have an orientation histogram of 8 bin. Thus, 128 bin values

are obtained.

2.3.5 ORB (Oriented FAST and Rotated BRIEF)

Oriented FAST and Rotated BRIEF algorithm proposed by Ethan Rublee in 2011 [9].
It is alternative to SIFT or SUFT which are patented and not free to use for everyone.

ORB uses FAST[35] for keypoint detector and BRIEF[8] as descriptor. There are

modifications were made on these algorithms to improve performance and to make it

orientation invariance.

To achieve scale invariance, the ORB algorithm uses an image pyramid with a reduced

resolution at each level of the original image. It determines keypoints on each scale

using the FAST algorithm. Then it determines orientations by detecting intensity

changes using the intensity centroid.
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BRIEF algorithm converts keypoints detected with FAST into binary vector form. The

BRIEF algorithm selects a random pair of pixels, called a patch, around the keypoint.

One of the pixels is taken from Gaussian Distribution with standard deviation sigma

around the keypoint.The other is taken in the same way as two sigma. If the first

selected pixel is bigger than the other, a value of 1 is assigned.

Since there is no orientation in the BRIEF algorithm, ORB offers the rBRIEF method.

ORB scans all patches for this, and creates the vector T by testing each patch according

to their distance to mean of 0.5. It then looks for all possible tests with high variance

and means close to 0.5.

2.3.6 Matching Detected Features

After the features are extracted from the images, these features that are in the same

position in the two images must be matched. Thus, points can be detected and the

relative position between cameras can be calculated as in the Section 2.3.1.

2.3.7 Brute-Force Matcher

The simple Brute-Force Matcher algorithm tries to determine the features that are the

same in two images by calculating the distance between features. For this, it calculates

the distance between all the features in the second image with a distance calculation

function for all the features extracted from the first image. This distance function can

be calculated with the following methods:

Sum of Squared Differences (SSD):

d( fi, f j) =
n
∑

k=1

( fi,k − f j,k)
2 (2.40)

Sum of Absolute Differences (SAD):

d( fi, f j) =
n
∑

k=1

| fi,k − f j,k|2 (2.41)

Here, the distance between the feature fi in the first image and all the features in the

second image is calculated and the feature f j with the minimum distance between

them is matched. In case the feature fi in the first image is not found in the second

image, a σ threshold value is defined. Matching is made if the distance between

features is less than si gma threshold.

16



2.3.8 FLANN Based Matcher

FLANN proposed by Muja and Lowe in their paper Fast Approximate Nearest

Neighbours With Automatic Algorithm Configuration[36]. FLANN is a library that

contains many algorithms. This library automatically chooses the best algorithm and

optimum parameters according to the data provided. This library which developed for

large datasets and high-size features, gives better results than Brute-Force Matcher in

large datasets.

2.4 Kalman Filter

Kalman filter used in many systems [37] allows to predict unmeasurable states from

inaccurate and uncertain noisy measurements. It is an algorithm consists set of

equations that allow the process to predict future states form the previous state. The

algorithm consists of two steps and these steps are repeated continuously. In the

Prediction step, the future state of the system is estimated together with the model and

uncertainty of the system. When each measurement arrives, in the second step which

is correction, the states are predicted in the previous step are updated using weighted

average. Here the weight depends on the accuracy of the model or measurement. In

this section, Kalman Filter will be briefly mentioned. Later, extended Kalman filter,

which is adapted to nonlinear systems, will be mentioned. One can found more

information about kalman filter in [38]

2.4.1 System Model

The system estimating with Kalman Filter is defined by the following linear difference

equation:

xk = Axk−1 + Buk−1 +wk−1 (2.42)

Where

x ∈ IRa : State vector.

u ∈ IRp : Input vector.

w : Process noise.

A : a× a System matrix.

B : a× c Input matrix.

The expression (2.42) represents the model of the system. Kalman Filter uses this
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model to make predictions in the next step. In practice it is not possible to know the w

system noise. This noise indicates the change of the system over time due to external

factors.

The measurement equation is as follows

zk = H xk + nk (2.43)

Where

z ∈ IRb: Measurement vector.

H : b× a Measurement matrix.

n : Measurement noise.

The random variables wk and nk assumed to be zero-mean Gaussian with the

covariances Q and R as

p(w)∼N (0, Q) (2.44)

p(n)∼N (0, R) (2.45)

Where

Q : Process noise covariance.

R : Measurement noise covariance.

We use process covariance matrix Q because estimation process is not exact. In

practice, predicted states and real states may not be equal. This situation is caused by

noise and other external factors. Measurement covariance matrix R represents errors

in the measurement. There may be a difference between the measured states and the

actual states when making measurements. This situation is caused by uncertainties in

the sensors and external factors.

We will call some variables priori i.e x̂− with “super minus” and posteriori i.e x̂ without

“super minus” and x̂ with “hat” means estimated variable.

We define Pk error covariance matrix at time step k as

Pk = E[(xk − x̂k)(xk − x̂k)
T ] (2.46)
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2.4.2 Prediction Step

In this step priori state vector and error covariance matrix will be estimated. System

model (2.42) will be used to estimate the priori state vector. The priori state vector is

the prediction made using only the system model before the actual prediction made

in the correction step.priori state is calculated as follows:

x̂−k = Axk−1 + Buk−1 (2.47)

The priori error covariance matrix representing errors in state estimation will be used

to calculate Kalman gain Kk in the correction step. priori error covariance matrix is

calculated as follows:

P−k = APk−1AT +Q (2.48)

Prediction step will be executed until measurement arrives.

2.4.3 Correction step

This step begin with calculating the Kalman Gain Kk :

Kk = P−k HT (HP−k HT + R)−1 (2.49)

After calculating the Kalman gain, posteriori state is updated

x̂k = x̂−k + Kk(zk −H x̂−k ) (2.50)

The Kalman gain actually weights the term (zk − H x̂−k ) known as innovation or mea-

surement residual in (2.50).

If (2.49) is examined, the measurement error covariance matrix R approaches zero

while your kalman gain weighs more on measurement residual. Thus, the estimator

will be more confident in the incoming measurements.

lim
Rk→0

Kk = H−1 (2.51)

On the other hand, priori estimated error covariance P−k approaching zero while your
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kalman gain K will weighs less the measurement residual.

lim
P−k →0

Kk = 0 (2.52)

Finally postererirori error covariance Pk is updated in the correction step.

Pk = (I − KkH)P−k (2.53)

2.5 Extended Kalman Filter

While Kalman filter enables the estimation in linear systems, extended Kalman filter is

used in systems where the system or measurement is nonlinear. For this, the system or

measurement function is linearized at the current state of the system. Since EKF will

be applied to nonlinear systems, instead of linear system and measurement in (2.42)

and (2.43), the nonlinear system function is as follows:

xk = f (xk−1, wk−1) (2.54)

And nonlinear measurement function is:

zk = h(xk, nk) (2.55)

Since it is not possible to know of wk and nk noise values at all time steps in practice,

we will use following approximations:

x̃k = f ( x̂k−1, 0) (2.56)

and

z̃k = h( x̃k, 0) (2.57)

To linearize the system function we will expand the function f (.) in Taylor Series about

x̃k−1

f (xk−1)≡ f ( x̂k−1) + A(xk−1 − x̂k−1) +H.O.T (2.58)
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where A is the jacobian of function f (.) with respect to x which is

A=
∂ f
∂ x
=







∂ f1
∂ x1

∂ f1
∂ x2

· · · ∂ f1
∂ xa

...
...

∂ fa
∂ x1

∂ fa
∂ x2

· · · ∂ fa
∂ xa






(2.59)

and W is jacobian of f (.) with respect to w

W =
∂ f
∂ w
=







∂ f1
∂ w1

∂ f1
∂ w2

· · · ∂ f1
∂ wi

...
...

∂ fi
∂ w1

∂ fi
∂ w2

· · · ∂ fi
∂ wi






(2.60)

If we neglect the higher order terms (H.O.T), the final equation becomes

xk ≈ x̃k + A(xk−1 − x̂k−1) +Wwk−1
(2.61)

Next we will linearize the measurement function h(.) by expanding Tylor Series about

x̃k

h(xk)≡ z̃k +H(xk − x̂ x−1) + Vvk
+H.O.T (2.62)

where H is the jacobian of function h(.) with respect to x which is

H =
∂ h
∂ x
=







∂ h1
∂ x1

∂ h1
∂ x2

· · · ∂ h1
∂ xa

...
...

∂ hn
∂ x1

∂ ha
∂ x2

· · · ∂ ha
∂ xa






(2.63)

and V is jacobian of f (.) with respect to v

V =
∂ f
∂ v
=









∂ f1
∂ v1

∂ f1
∂ v2

· · · ∂ f1
∂ v j

...
...

∂ f j

∂ v1

∂ f j

∂ v2
· · · ∂ f j

∂ v j









(2.64)

Neglecting higher order terms (H.O.T) resulting following equation

zk ≈ z̃k +H(xk − x̃k) + Vvk
(2.65)
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Similar to Section 2.4 prediction and correction steps will be executed.

2.5.1 Prediction Step

Using (2.56) we will estimate the priori state and priori error covariance matrix

x̂−k = f ( x̂k−1, 0) (2.66)

P−k = AkPk−1AT
k +WkQk−1W T

k (2.67)

2.5.2 Correction Step

As Section 2.4 in correction step we will calculate the kalman gain

Kk = P−k HT
k (HkP−k HT

k + VkRkV T
k )
−1 (2.68)

Then update the estimated state while weighting the measurement residual with

calculated kalman gain Kk

x̂k = x̂−k + Kk(zk − h( x̂−k , 0)) (2.69)

Finally update the process error covariance matrix

Pk = (I − KkHk)P
−
k (2.70)

To maintain the symmetry of Pk is preferred for computational considerations.
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3
RELATIVE POSITION ESTIMATION

In order to create a swarm and maintain formation, the positions of unmanned aerial

vehicles in central or decentralized controllers must be known relative to each other

or to a fixed reference. GPS, which provides positioning with respect to a fixed

reference, is widely used in unmanned aerial vehicles. However, it is insufficient for

some applications due to the low refresh rate of GPS and low accuracy in motion.

Systems such as VICON, on the other hand, allow working in a very limited area.

In this section, the proposed method for determining the relative positions of swarm

members consisting of unmanned aerial vehicles will be mentioned by fusing only IMU

and camera sensors.

3.1 Problem Statement

Agents sends camera images and IMU measurements to each other to calculate their

position relative to other agents to which they are connected. The relative position

between the two cameras is calculated from the intersecting areas of the image taken

from its own image and its connected agents. However, since cameras projects 3

dimensions to 2 dimensions, 1 dimension, i.e. depth information, is lost. Therefore,

the relative position from image measurements is a unit vector. The scale factor

must be known to determine the actual position. IMU measurements are used to

determine the scale factor. Scale ambiguity problem which vision measurement

suffered eliminated by the IMU measurements and error accumulation problem arising

from IMU measurements is eliminated by image measurements. This way, the two

sensors eliminate each other’s weaknesses and allow accurate position estimation.

An example of the system is shown in Figure 3.1. Here, agents i, j and k take IMU

measurements and camera images of the agents they are following. All agents send

their own accelerometer sensor measurements and camera data to the agents they

are connected to in the formation. Using the intersecting field of view and relative

acceleration, agents calculate the distance between the agents to which they are
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Figure 3.1 System representation

connected.

The swarm formation can take many different forms than the simple representation

in Figure 3.1. Apart from the formation formed only in 2 dimensional plane, different

formations such as 3 dimensional sphere, cube, pyramid can be easily created as long

as the image areas of interconnected agents intersect. As the flight height of the swarm

increases, the view areas will increase, so larger volumes of swarm can be created.

3.2 System Model

We will use a discrete time kinematic model to define the system. Scale factor λ added

to the model for absolute scale estimation[39]. The scale factor λwill be continuously

updated by Kalman Filter with incoming measurements.

We define the system model consisting of the relative position, velocity, acceleration
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and scale factor lambda of the agents as follows:

xk =











~pk

~vk

~ak

λk











=











13 T13
T2

2 13 0

03 13 T I3 0

03 03 13 0

0 0 0 1





















~pk−1

~vk−1

~ak−1

λk−1











(3.1)

The following notation will be used in the rest of the work:

1n : n×n Identity matrix

0n : n×n Zero matrix

System states are:

i
j~pk: i. agent position relative to j. agent.
i
j~vk : i. agent velocity relative to j. agent.
i
j~ak = ~a j − ~ai : i. agent acceleration relative to j. agent.
i
jλk :Scale factor of i. and j. agents.

To simplify the representation, xk will be used instead of i
jxk.

Nonlinear difference equations of the system:

xk = f (xk−1, wk−1) (3.2)

zk = h(xk, nk) (3.3)

Where:

x ∈ IR10×1 : State vector.

w ∈ IR10×1 : Process noise vector.

z ∈ IR3×1 : Measurement vector.

n ∈ IR3×1 : Measurement noise vector.

Agents keep in their memory (3.2) and (3.3) state and measurement vectors for each
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Figure 3.2 Agents state and measurement vectors

agent they connected. For example, if we examine the Figure 3.2, agent 1 keeps 1
2~x ,

1
3~x , 1

4~x systems in its memory for each agent in the set of its connected agents {2,3, 4}
and continuously update the measurements 1

2~zv,
1
3~zv,

1
4~zv,

1
2~zi,

1
3~zi,

1
4~zi.

3.3 Vision Measurements

Image measurements are obtained from the intersecting field of view of the two agents.

To simplify models and calculations, the camera will be assumed to be at the center

of agents.

In order to obtain image measurements, first, features are extracted from images taken

from the sub cameras of both agents using one of or similar methods mentioned in

Sections 2.3.3, 2.3.4, 2.3.5. Features extracted from both images are matched using

one of or similar methods mentioned in Sections 2.3.7,2.3.8. Then we recover the

relative position between cameras by calculating homograpy and essential matrix as

mentioned in 2.3. It should be noted that the relative position between cameras

obtained in this way is a unit vector and indicates only the direction. This can be

seen on ~zv measurement vectors on the left side of the Figure 3.2.

3.4 Relative Position Estimation With Extended Kalman Filter

In order to determine the relative positions in true scale, we will use Extended Kalman

Filter [38], which is an adaptation of the famous Kalman Filter [37] for nonlinear

systems. In Section 3.4 brief explanation and equations of Extended Kalman Filter

can be found.Although our system function (3.2) that we will use in EKF is a linear
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model, our measurement function (3.3) is nonlinear.

Figure 3.3 State diagram for Extended Kalman Filter

Each agent performs the steps in Figure 3.3 to determine its position relative to the

agents to which it is connected with the Extended Kalman Filter. The agent predicts

the states for next time step with the model (3.1) every T time. The prediction process

continues until the vision or IMU measurement arrives. When any of the vision or IMU

measurements arrive, predicted state is updated and the prediction process continues.

3.4.1 Prediction of States

In prediction step, using (3.1) the states of the system predicted at time step k using

states at time step k− 1. This step is repeated continuously until any of the vision or

IMU measurements arrive.

Since the model is linear, the state prediction is made as follows:

x̂−k = f ( x̂k−1, 0) (3.4)

After the state is predicted, the error covariance matrix is calculated.
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Error covariance matrix:

P−k = AkPk−1AT
k +WQW T (3.5)

Where;

W= ∂ f
∂ w

Q : Process noise covariance matrix

When calculating P−k , W and Q matrices are taken as constant.

Matlab implementation for prediction step :

1 func t ion p r e d i c t (T)

2 % P r i o r i s t a t e p r e d i c t i o n

3 x_ = [x (1:3)+x (4:6) ∗T+T^2/2∗x (7:9) ;

4 x (4:6)+T∗x (7:9) ;

5 x (7:9) ;

6 x (10) ] ;
7

8 % System matr ix

9 A = [ eye (3) T∗eye (3) T^2/2∗eye (3) zeros (3 ,1) ;

10 zeros (3) eye (3) T∗eye (3) zeros (3 ,1) ;

11 zeros (3 ,6) eye (3) zeros (3 ,1) ;

12 zeros (1 ,9) 1 ] ;
13

14 % P r i o r i e r ro r covar iance matr ix

15 P_ = A∗P∗A ’ + W∗Q∗ .W’ ;

16 end

3.4.2 Correction Step

Correction step will be calculated separately for each vision measurement and

acceleration measurement. IMU measurement comes with higher rate than the

vision, when the vision measurement arrives, the errors accumulated in the IMU

measurements are corrected and the scale factor is updated.

For example, if we examine the position change of agent j relative to agent i from

time step k to k + 5, ~̂p is updated with the IMU measurement ~zi received each step,

this noisy measurement causes an accumulation of errors up to time step k + 5. The

measurement of ~zv from the vision at k + 5 corrects these accumulated errors. If we

examine it from the vision side, all of the incoming ~zv measurements come in the form

of a unit vector due to the use of a monocular camera and the scale factor λ must be

known in order to determine the actual ~̂p length. The λ is updated at time step k+ 5
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because the incoming IMU measurements give the actual dimensions.

Figure 3.4 Measurement vectors

3.4.3 Correction Step for Vision Measurements

The nonlinear measurement function zv will be used since the values from the vision

measurements will come as an unscaled unit vector:

ẑvk
= hv( ~̂xk

−
) (3.6)

ẑvk
=
�

1
λ13

�

~̂pk
−

(3.7)

To get the Hv matrix, we calculate the jacobian of the hv function with respect to x:

Hvk
=
∂ hv

∂ x
=
�

1
λ13 03 03 −

p
λ2

�

(3.8)

The kalman gain Kv is calculated for the image measurement:

Kvk
= P−k HT

vk
(Hvk

P−k HT
vk
+ Rv)

−1 (3.9)

Where Rv ∈ IR3×3 is the image measurement covariance matrix. In the next, the
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predicted states are updated:

x̂k = x̂−k + Kvk
(zvk
− hv( ~̂xk

−
)) (3.10)

Then the process covariance matrix is updated:

Pk = (I10 − Kvk
Hvk
)P−k (3.11)

Matlab implementation of correction step for vision measurements :

1 func t ion update_v i s ion ( vis ion_measurements )

2 Hv = [1/x_ (10) 0 0 0 0 0 0 0 0 =x_ (1)/x_ (10)^2;

3 0 1/x_ (10) 0 0 0 0 0 0 0 =x_ (2)/x_ (10)^2;

4 0 0 1/x_ (10) 0 0 0 0 0 0 =x_ (3)/x_ (10)^2];
5

6 % Update kalman gain

7 Kv = P_∗Hv ’ / ( Hv∗P_∗Hv ’ + Rv) ;

8

9 es t imate = [ x_ (1)/x_ (10) ; x_ (2)/ t h i s . x_ (10) ; x_ (3)/x_ (10) ] ;
10

11 % Make s t a t e c o r r e c t i o n

12 c o r r e c t i o n = Kv ∗ ( vis ion_measurements = es t imate ) ;

13 x = x_ + c o r r e c t i o n ;

14

15 % Update e r ro r covar iance matr ix

16 P = ( eye (10) = Kv∗Hv)∗P_ ;

17 end

3.4.4 Correction Step for IMU Measurements

hi will be a linear function since the acceleration measurement directly gives the

position vector ~x . Thus Hi is:

Hi =
�

03 03 13 03

�

(3.12)
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Kalman gain is calculated for this step:

Kik = P−k HT
i (Hi P

−
k HT

i + Ri)
−1 (3.13)

Where Ri ∈ IR3×3 is the acceleration measurement covariance matrix. In the next step,

the states are updated:

x̂k = x̂−k + Kik(zik −Hi x̂
−
k ) (3.14)

Process covariance is updated,

Pk = (110 − Kik Hi)P
−
k (3.15)

In Figure 3.5, the state diagram of the equations can be seen for each connected agent.

Figure 3.5 Kalman state diagram with equations
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Matlab implementation of correction step for IMU measurements :

1 func t ion update_imu ( se l f_acce lera t ionMeasurement ,

other_accelerat ionMeasurement )

2 Hi = [ zeros (3 ,6) eye (3) zeros (3 ,1) ] ;
3

4 % Cal cu la t e kalman gain

5 Ki = P_∗Hi ’ / ( Hi∗P_∗Hi ’ + Ri ) ;

6

7 % Make s t a t e c o r r e c t i o n

8 c o r r e c t i o n = Ki ∗( other_accelerat ionMeasurement =

se l f_acce le ra t ionMeasurement = Hi∗x_ ) ;

9 x = x_+ c o r r e c t i o n ;

10

11 % Update e r ro r covar iance matr ix

12 P = ( eye (10) = Ki∗Hi )∗P_ ;

13 end
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4
FORMATION CONTROL

The method described in the Section 3 has been used to create UAV swarms and

maintain their position in the formation. With the formation to be created by the

Graph Theorem, 3 different swarm movements have been studied. This section will

show the methods used to create and maintain the formation.

4.1 Formation Properties

Cube-shaped formation consists of 9 agents. 8 agents are located at the corners of

the cube and 1 agent is located in the center of the cube. One edge of the cube is 20

meters long. The formation and the connection between agents can be seen in Figure

4.1.

According to graph theory G = (V, E) ∈ IR3, n = 9, l = 26 Graphs are defined by

vertices and edges as G(V, E) where V is a set of all vertices in the graph and E is the

set of all the edges connecting the vertices by the pairs of E = {(vi, v j) : i, j ∈ V}. Any

graph topology may be defined by {G(V, E), n, l} with n the number of vertices and l

the number of edges.

Set of nodes:

V = 1,2, 3,4, 5,6, 7,8, 9

Set of edges:

E = {(1, 2), (1,4), (1,5), (1, 6), (1,8), (1, 9), (2, 3), (2,4), (2, 6),

(2, 9), (3,4), (3,6), (3, 7), (3,8), (3, 9), (4,8), (4,9), (5, 6),

(5, 7), (5,8), (5, 9), (6, 7), (6,9), (7, 8), (7,9), (8,9)}
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The set of edges shows agents connected together. Desired distances:

d = {20, 20,20, 20
p

2,20
p

2, 17.32,20, 20
p

2,

20, 17.32,20, 20
p

2, 20,20
p

2,17.32, 20,17.32, 20,

20
p

2,20, 17.32,20, 17.32,20, 17.32,17.32}

The desired distances show the distances to be maintained in the connection between

the agents given in the set E.

Figure 4.1 Swarm formation

The first order differential equation to be used according to the control rule proposed

in Queiroz [40]:

ẋ i = ui i = 1, ..9, (4.1)
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Where x i is position and ui is the control input for the agent i.

The control input ui for 3 different swarm movements are calculated in different ways.

Here, without a central controller, each agent calculates its control input only based

on the relative position of the agents to which it is connected. Thus, it can form a

swarm and move as a swarm without any external dependency.

4.2 Formation Acquisition

Here, agents will start at a random distance from their location and try to maintain

their position. Control rule for formation acquisition:

u= ua := −kvR
T (~p)z (4.2)

Accordingly, the equation to be used by each agent:

ui = −kv

∑

j∈Ni(E)

i
j~p

i
jz, i = 1, ..9, (4.3)

It was applied to the swarm consists of 9 agents. Each agent determines its position

in the swarm without central control.

Where:

kv > 0 : Control gain
i
je = ‖

i
j~p‖ −

i
jd

i
jz =

i
j e(ije+ 2i

jd)
R(~p) = 1

2
∂ φ(p)
∂ p : Rigidity matrix. Where φ(p) = [...,‖ j

i ~p‖
2, ...] (i, j) ∈ E.
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Matlab implementation of formation acquisition is as follows:

1 func t ion fo rmat ionAcqu i s i t i on

2 u = zeros (1 ,3) ;

3 f o r j = 1:9

4 % Check i s agent j connected

5 i f ~isempty ( f ind ( connected_agents == j , 1 ) )

6 % Get est imated d i s t a n c e s from

es t imator

7 p i j = norm( poseEst imator ( j ) . x (1 :3) ) ;

8 % Find e r ro r between est imated and

des i red d i s t a n c e s

9 e = p i j = f o rmat ion_d i s tances ( j ) ;

10 z = e∗( e+2∗ f o rmat ion_d i s tances ( j ) ) ;

11 % Cal cu la t e con t ro l input

12 u = u +kv∗poseEst imator ( j ) . x (1 :3) ’∗ z ;

13 end

14 end

15 s e t _ inpu t (u) ;

16 end

4.3 Formation Maneuvering

They performs the determined maneuver while maintaining the swarm formation. In

this method, the agent 9 from the center of the swarm will be the leader. The herd

will maneuver while maintaining the linear velocity of v(t) and the angular velocity

of ω(t). Control rule for formation maneuver:

u= ua + vd (4.4)

Accordingly, the equation each agent will use:

ui = −kv

∑

j∈Ni(E)

i
j~p

i
jz + v(t) +ω(t)× ~pin, i = 1, ..9, (4.5)

pin: Distance of i. agent to the leader agent n.

n= 9

kv and i
jz Defined in Section 4.2.
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Matlab implementation of formation maneuvering is as follows:

1 func t ion formationManeuvering

2 u = zeros (1 ,3) ;

3 maneuverVelocity = [1 cos (0.01∗ t h i s . t ) 0 ] ;
4 f o r j = 1:9

5 % Check i s agent j connected

6 i f ~isempty ( f ind ( connected_agents == j , 1 ) )

7 % Get est imated d i s t a n c e s from

es t imator

8 p i j = norm( poseEst imator ( i ) . x (1 :3) ) ;

9 % Find e r ro r between est imated and

des i red d i s t a n c e s

10 e = q i j = f o rmat ion_d i s tances ( i ) ;

11 % Cal cu la t e con t ro l input

12 z = e∗( e+2∗ f o rmat ion_d i s tances ( i ) ) ;

13 u = u +kv∗poseEst imator ( i ) . x (1 :3) ’∗ z ;

14 end

15 end

16 % Add maneuver v e l o c i t y

17 u = u + maneuverVelocity + c ro s s ( maneuverAngularVelocity ,

poseEst imator (9) . x (1 :3) ’ ) ;

18 s e t _ inpu t (u) ;

19 end

4.4 Flocking

Control rule for constant speed flight while maintaining swarm formation:

u= ua + v̂ (4.6)

˙̂vi = α
∑

j∈Ni(E)

( j
i v̂)−αbi(v̂i − v0), i = 1, ..9, (4.7)

Here,

bi =







1, If i ∈ V0

0, Otherwise,

v̂ : Agent velocity.

V0 : The set of agents that can access flight speed information,
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v0 : Flight speed,

α > 0 : Observer gain.

Matlab implementation of formation maneuvering is as follows:

1 func t ion f l o c k i n g C o n s t a n t V e l o c i t y

2 u = zeros (1 ,3) ;

3 v_sum = zeros (1 ,3) ;

4 f o r i = 1:9

5 % Check i s agent j connected

6 i f ~isempty ( f ind ( connected_agents == i , 1 ) )

7 % Get est imated d i s t a n c e s from

es t imator

8 p i j = norm( poseEst imator ( i ) . x (1 :3) ) ;

9 % Find e r ro r between est imated and

des i red d i s t a n c e s

10 e = p i j = f o rmat ion_d i s tances ( i ) ;

11 z = e∗( e+2∗ t h i s . f o rmat ion_d i s tances ( i ) ) ;

12 % Cal cu la t e con t ro l input

13 u = u +kv∗poseEst imator ( i ) . x (1 :3) ’∗ z ;

14 % Sum of agents r e l a t i v e v e l o c i t i e s

15 v_sum = v_sum + alpha∗poseEst imator ( i ) . x (4 :6) ’ ;

16 end

17 end

18 vdot = v_sum = alpha ∗( v e l o c i t y = f l o c k i n g V e l o c i t y ) ;

19 vhat = vhat + vdot∗dT ;

20 s e t _ inpu t (u+vhat ) ;

21 end
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5
SIMULATION

The proposed method was simulated in Matlab environment. A quadrotor model with

PD controller [26] in Simulink environment was used for each agent.

Figure 5.1 Simulation data flow

The data flow in the simulation can be seen in Figure 5.1. Each agent receives

noisy measurements from the quadrotor model and measurements of other agents.

It calculates the relative position with Extended Kalman Filter and then sends the

reference trajectory to the PD controller with the formation controller. Each agent adds

measurement noise to the output of its model and shares it with the connected agents

and uses it to simulate its own IMU and vision measurement. Agents use simulated

images and IMU measurements from others to estimate relative position as shown in

Section 3.4. After the relative position is calculated, it gives the reference trajectory

input to the simulink model to keep the position in the swarm with the control rules

shown in Section 4.

In Figure 5.2, the quadrotor model defined for each agent in Simulink environment

can be seen.
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Figure 5.2 Agent models in Simulink

5.1 Simulating Quadrotors

The quadrotor model and thr PD controller mentioned in Section 2.1 is simulated in

Simulink. PD controller takes the reference position as input and keeps the quadrotor

model at this reference position. See Figure 5.1. The quadrotor model and controller

used in simulation were obtained from the study of Mishra[26].

5.2 Simulating Measurements

To simulate IMU measurements, unbiased random white noise N (µ, σ2) was added

to the acceleration output of the quadrotor model. Similarly, in order to obtain vision

measurements, white noise was added to the relative position between the agents and

normalized. The equation from which the vision measurements are obtained is as

follows:

~x j
imeas
= ‖x jt rue

− x it rue
+ rand()‖ (5.1)

Figure 5.3 Agents updates own and connected agents measurements each step
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In Figure 5.3, random noise is added to the acceleration and vision output of

the simulink model of the agent to obtain its own measurement values. These

measurements are then sent to other agents connected to the agent.

Figure 5.4 True, measured and filtered accelerations of Agent2 relative to Agent1
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Figure 5.5 True and measured pose measurement of Agent2 relative to Agent1

Figures 5.4 and 5.5 show simulated IMU and image measurements. The

measurements values obtained by adding random white noise on the real values are

used by Kalman filter.
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6
RESULTS AND DISCUSSION

The results were obtained by applying the method suggested in simulations with

Matlab to different swarm flight algorithms. In the simulation, which was run for

300 seconds, the agents maintained their position in the formation by staying within

a maximum of ±%5 error zones.

6.1 Formation Acquisition Simulation Results

A non-moving swarm was simulated in which agents maintain their desired positions

in the formation. Since the relative acceleration between the agents is close to zero,

this is the simulation that forces the algorithm the most. The actual distance error

between agents in this simulation was below ±%5.

Figure 6.1 Estimated and true formation distance errors between agents on
formation acquisition simulation

The position predicted by the Extended Kalman Filter and the actual relative position

between agents is shown in Figure 6.2. With the proposed method the extended
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Table 6.1 Formation distances (meter) RMSE of agents on formation acquisition
simulation

Agents 1 2 3 4 5 6 7 8 9
1 - 0.29 - 0.43 0.35 0.59 - 0.69 0.33
2 0.29 - 0.53 0.65 - 0.51 - - 0.32
3 - 0.5 - 0.62 - 0.69 0.45 0.38 0.28
4 0.43 0.65 0.62 - - - - 0.24 0.4
5 0.35 - - - - 0.45 0.44 0.22 0.16
6 0.59 0.51 0.69 - 0.45 - 0.58 - 0.55
7 - - 0.45 - 0.44 0.58 - 0.61 0.41
8 0.69 - 0.38 0.24 0.22 - 0.61 - 0.47
9 0.33 0.32 0.28 0.4 0.16 0.55 0.41 0.47 -

Kalman filter correctly predicted the position with ±%2.5 errors.

Figure 6.2 Error between true and estimated positions on formation acquisition
simulation

In Figure 6.2, although the relative acceleration between agents is very low, the error

between the actual relative position and the position estimated by the Kalman filter

was below 0.5 m.

Table 6.1 shows the RMS errors of the desired distance between the agents in the

columns and the agents which they are connected in the rows.
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6.2 Flocking Simulation Results

In this simulation, which is flown as a swarm, the path followed by the agents is shown

in Figure 6.3. The flight speed of the swarm is v0 = (4,2, 0)m/s, and the set of agents

that can access the flight speed information is V0 = (1, 2,3, 4,5, 6,7, 8,9).

Figure 6.3 Agents paths on flocking simulation

Formation distance errors remained below 1 meter in this flight, where the relative

acceleration between agents is still very low.

Figure 6.4 Estimated and true formation distance errors between agents on flocking
simulation

The error between the actual relative position and the relative position predicted by

the Extended Kalman Filter was below 0.5 meters.
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Figure 6.5 Extended kalman filter error on flocking simulation

Table 6.2 Formation distances RMSE of agents on flocking simulation

Agents 1 2 3 4 5 6 7 8 9
1 - 0.41 - 0.47 0.35 0.31 - 0.45 0.51
2 0.41 - 0.35 0.32 - 0.35 - - 0.34
3 - 0.34 - 0.39 - 0.57 0.43 0.47 0.61
4 0.48 0.32 0.4 - - - - 0.32 0.16
5 0.35 - - - - 0.43 0.76 0.29 0.52
6 0.32 0.35 0.57 - 0.43 - 0.44 - 0.25
7 - - 0.43 - 0.76 0.45 - 0.62 0.9
8 0.45 - 0.46 0.32 0.28 - 0.62 - 0.45
9 0.49 0.33 0.6 0.16 0.5 0.24 0.88 0.44 -

6.3 Formation Maneuvering Simulation Results

Kalman filter made the best relative position estimation in this simulation since the

relative acceleration change between the agents is the highest in this simulation.

Thus, the formation errors were the lowest in this simulation. In this simulation,

the maneuver speed equations are v(t) = (1, cos(t), 0), ω(t) = (0,0, 0.1).

Figure 6.6 Agents paths on formation maneuvering simulation

In Figure 6.6, the path followed by the agents in this simulation can be seen.
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Figure 6.7 Estimated and true formation distance errors between agents on
formation maneuvering simulation

As can be seen in Figure 6.7, the error between the position estimated by the Kalman

filter and the actual position is below 0.2 meters.

Figure 6.8 Extended kalman filter error on formation maneuvering simulation

Kalman filter correctly predicted the position with ± 0.2 meter.
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Table 6.3 Formation distances RMSE of agents

Agents 1 2 3 4 5 6 7 8 9
1 - 0.12 - 0.11 0.23 0.09 - 0.1 0.18
2 0.12 - 0.18 0.13 - 0.15 - - 0.12
3 - 0.17 - 0.22 - 0.1 0.19 0.17 0.14
4 0.1 0.13 0.23 - - - - 0.2 0.16
5 0.23 - - - - 0.08 0.07 0.1 0.15
6 0.09 0.15 0.1 - 0.09 - 0.1 - 0.1
7 - - 0.19 - 0.07 0.1 - 0.12 0.08
8 0.1 - 0.17 0.2 0.1 - 0.12 - 0.07
9 0.18 0.12 0.14 0.16 0.15 0.1 0.08 0.07 -

6.4 Discussion

In this study, we have demonstrated that the relative position between agents can

be detected only with a monocular camera and IMU sensor, and a swarm can be

created without the need for external dependent systems like VICON, GPS etc. In

the simulations performed, it was observed that the errors were at an acceptable

level while the swarm was standing in a fixed position, flying as a swarm and

maneuvering. Unmanned aerial vehicles swarms to be created with the proposed

method can perform many tasks such as estimating the location of a radio broadcast

with triangulation, mapping or surveillance of large areas in a short time.
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