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TIME SERIES FORECASTING 
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Advisor: Assoc. Prof. Dr. Atıf A. EVREN 

Co-advisor: Prof. Dr. Müjgan TEZ 

 

Forecasting future values of a time series is a widespread problem for researchers. 

There are a lot of methods for these kinds of problems. While some of these are 

probabilistic, some of them are non-probabilistic methods. For probabilistic methods, 

autoregressive integrated moving average and exponential smoothing methods are 

commonly used. For non-probabilistic methods, Artificial Neural Networks (ANN) and 

fuzzy systems have been commonly used.  There are numerous fuzzy systems methods. 

While most of these methods are rule-based, there are a few methods which do not 

require rules, such as type-1 fuzzy functions approach. While it is possible to encounter 

with a model such as AR model integrated to T1FF, there has not been proposed any 

model including type-1 fuzzy functions and moving average model in one algorithm. 

Our intuition is to get better forecasting results taking into account the disturbance 

terms.   

The input data set is organized with the following variables. First, lagged values of the 

time series are used for the AR(p) part. Second, FCM algorithm is used to cluster the 

inputs. The degree of memberships and centers are stored. Third, for the MA(q) part, 

fuzzy functions' residuals are used. So, AR(p), MA(q), and degree of memberships of 

the objects are restored in the input data set. Since the function we have is not a 

derivative function, particle swarm optimization algorithm is preferred to obtain 

estimations of the coefficients. Australian beer consumption (ABC) data set, Istanbul 

stock exchange (BIST100) data sets from 2009 to 2013, and Taiwan stock exchange 

(TAIEX) data sets from 1999 to 2004 are used to evaluate the performance of the 

proposed method. The outcomes show that the proposed method outperforms the other 

methods for 12 real-world time series data sets. 
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ÖZET 

 

ZAMAN SERİLERİ ANALİZİNDE GERİ BESLEMELİ 1. TİP 

BULANIK FONKSİYON YAKLAŞIMI 

 

Nihat TAK 

 

Istatistik Anabilim Dalı 

Doktora Tezi 

 

Adviser: Assoc. Prof. Dr. Atıf A. EVREN 

Co-adviser: Prof. Dr. Müjgan TEZ 

 

Zaman serileri analizinde öngörü yapmak araştırmacılar tarafından incelenilen yaygın 

bir problemdir. Daha iyi öngörü elde edebilmek için önerilmiş birçok yöntem 

bulunmaktadır. Bunlardan bazıları olasılık tabanlı iken, bazıları olasılıksal olmayan 

yöntemlerdir. Otoregresif hareketli ortalamalar ve üstel düzleştirme yöntemleri 

olasılıksal, yapay sinir ağları ve bulanık çıkarım sistemi yöntemleri ise olasılıksal 

olmayan yöntemlerden en yaygın olarak kullanılanlardır. Bulanık çıkarım sistemlerinin 

bir çoğu kural tabanlı yöntemlerken, 1. tip bulanık fonksiyon kural tabanlı bir yöntem 

değildir. Literatürde 1. tip bulanık fonksiyon yöntemini otoregresif modeller ile 

birleştiren yöntemlere rastlamak mümkün olmala beraber, 1. tip bulanık fonksiyonu 

hareketli ortalamalar ile birleştiren bir yöntem henüz önerilmemiştir. Bu tez 

çalışmasının amacı 1. tip bulanık fonksiyon yaklaşımını otoregresif hareketli 

ortalamalar modeli ile birleştirerek zaman serilerine ilişkin daha iyi öngörüler elde 

etmektir. 

Çalışmada, girdi matrisinin oluşturulması şu şekilde olmuştur: İlk olarak zaman 

serisinin gecikmeli değerleri modelin otoregresif kısmı için bağımsız değişkenler olarak 

alınmıştır. İkinci olarak, bulanık c-kümeleme yöntemi kullanılarak girdiler 

kümelenmiştir ve üyelik dereceleri ile küme merkezleri hafızada tutulmuştur. Son 

olarak önerilen yöntemin hareketli ortalamalar kısmı için bulanık fonksiyonun hataları 

kullanılarak kalıntı terimleri elde edilmiştir. Böylece, AR(p), MA(q) ve üyelik 

dereceleri girdi matrisinde toplanmıştır. Amaç fonksiyonumuz türevlenebilir bir 

fonksiyon olmadığından bu değeri minimum yapma amacı ile parçacık sürü 

optimizasyon yöntemi kullanılmıştır. Önerilen yöntemin performansını test etmek için 
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Avusturalya bira tüketim verisi (ABC), 1999-2004 yılları arası Taiwan borsası verisi ve 

2009-2013 yılları arası İstanbul Borsası günlük verileri uygulama veri seti olarak 

kullanılmıştır. Elde edilen sonuçlara göre, önerilen yöntemin diğer kıyaslanan 

yöntemlere göre daha iyi sonuçlar verdiği gözlemlenmiştir. 

Anahtar Kelimeler: Otoregresif modeli, öngörü, hareketli ortalamalar modeli, lineer 

olmayan zaman serileri, parçacık sürü optimizasyonu, 1. tip bulanık fonksiyon. 
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CHAPTER 1 

INTRODUCTION 

 Literature Review 1.1

A time series is defined as a variable whose observations are determined in a time 

interval. This time interval can be hourly, daily, weekly, monthly, seasonally, yearly, or 

etc. In order to do forecasts for these kinds of data sets, a lot of methods have been 

studied by researchers in the recent decades. These methods are called as time series 

forecasting methods. Time series forecasting methods are collected in two categories: 

probabilistic models and non-probabilistic models. Probabilistic or stochastic methods, 

also called traditional methods, put some assumptions on time series. Stationarity is an 

important assumption in probabilistic time series forecasting methods. This assumption 

requires that the time series has constant mean, variance, and covariance function. One 

of the most widely used model for probabilistic time series forecasting is the 

autoregressive integrated moving average (ARIMA) model. This model is organized 

systematically to get the best ARIMA (p,d,q) model by Box- Jenkins [1]. In other 

words, Box-Jenkins made contribution to the model organization process using ARIMA 

models.  However, ARIMA models assume a linear structure among the time series 

values. So, if a time series has a non-linear structure, ARIMA models are not capable of 

dealing with it. Nevertheless, in applications, most of the data sets do not satisfy the 

assumption of stationarity or linearity of the time series. Therefore, a lot of researchers, 

in recent years, have been studied alternative methods. For example, artificial neural 

networks (ANN) and fuzzy inference systems (FIS) have been widely used by 

researchers for forecasting problems. Some of the fuzzy inference systems are given in 

details in Chapter 2.  After the paper on fuzzy set theory was published by Zadeh [2], 

Zadeh [3] has introduced another paper on linguistic variables and fuzzy systems. Later, 

several researchers also combined fuzzy set theory with inference systems and proposed 
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fuzzy inference systems. Some well-known fuzzy inference systems are Mamdani and 

Assilian [4] FIS, Takagi and Sugeno [5] FIS, adaptive-network FIS proposed by Jang 

[6], and type-1 fuzzy functions proposed by Turksen [7].  

While the systems, proposed by Mamdani and Assilian [4], and Takagi and Sugeno [5] 

are rule based systems, the system, proposed by Turksen [7] is not a rule based system. 

Since the detection of rules is an important problem, T1FF approach has a big 

advantage. At the beginning, fuzzy inference systems have been designed for 

classification problems. They were not used in time series forecasting problems. Fuzzy 

time series forecasting methods were first proposed by Song and Chisom [8] in 1993. 

Song and Chisom [9, 10] have given the definition of fuzzy time series forecasting 

process that is we encounter with three stages: fuzzification, determination of the rules, 

and deffuzification. After Song and Chisom [9, 10] gave the definition of fuzzy-time-

series forecasting process, the expansion of time series forecasting methods with the 

help of FIS is conducted by the following researchers. Chen [11] has proposed a high-

order fuzzy time series model for forecasting problems in 2002.  ANN was used to 

forecast fuzzy time series by Huarng and Yu [12].  These two studies and many more 

studies have been conducted by researchers for the determination of the fuzzy relations 

of fuzzy time series and to obtain better forecasts. Some of the studies using artificial 

intelligence techniques and the fuzzy set theory are listed below. Genetic algorithm has 

been used for time series forecasting problems and numerous purposes for their 

forecasting problems by Kuo et al. [13], Chen and Chung [14], Kim et al. [15], Egrioglu 

[16], and Bas et al. [17]. Multivariate fuzzy time series forecasting methods have been 

studied by Egrioglu et al. [18], Chen and Tanuwijaya [19], Jilani at al. [20], and Huarng 

[21]. Particle swarm optimization algorithm in fuzzy time series methods have been 

used by Chau [22], Park et al. [23], Kuo et al. [24], Aladag et al. [25], and Huang et al. 

[26]. Time series forecasting methods based on fuzzy inference systems have been 

studied by Catalao and et al. [27], Chabaa et al. [28], Chang [29], Chen and Ma [30], 

Chen and Zhang [31], Egrioglu et al. [32].   

The fuzzy functions approach was first used in time series forecasting by Beyhan and 

Alici [33]. Aladag et al. [34] studied type-1 fuzzy functions approach for time series 

forecasting as well.  On one hand probabilistic or linear models can deal with time 

series when the linear part of the time series overcomes the non-linear part, on the other 

hand when the non-linear part of the time series overcomes the linear part, non-linear 
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models produces acceptable outcomes. However, since the most of the real world time 

series contain both parts in their nature, hybrid models are proposed by researchers. 

These models are invented in order to deal with both linear and non-linear part of the 

time series.  Seasonal autoregressive integrated moving average model and multilayer 

perceptron ANN (MLP-ANN) are hybridized by Tseng et al. [35].  Some of methods in 

which adapt both the linear part and the non-linear part have been introduced by Bas et 

al. [36], Lee and Tong [37], Chen and Wang [38], Pai and Lin [39], Zhang [40], 

BuHamra et al. [41], Jain and Kumar [42], Yolcu et al. [43]. 

 Objective of the Thesis 1.2

The methods that have been proposed so far, in terms of type-1 fuzzy functions 

approach, has not included disturbance terms as inputs in their nature. The objective of 

this thesis is to propose a new method taking into account the disturbance terms.  

 Hypothesis 1.3

Type-1 fuzzy functions approach is preferred in this study rather than classic inference 

systems. The proposed method in this paper is a model that combines an autoregressive 

model, a moving- average model, and type-1 fuzzy functions approach in one algorithm. 

Disturbance terms are determined by using the residuals of type-1 fuzzy function. In 

order to minimize the objective function (SSE), Particle Swarm Optimization (PSO) is 

used. In literature, there is no proposed method that includes disturbance terms and 

type-1 fuzzy functions in one algorithm. Our hypothesis is that including the 

disturbance terms into the model will give more accurate forecasting results. 
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CHAPTER 2 

FUZZY SET THEORY AND FUZZY INFERENCE SYSTEMS 

There are a lot of uncertain and imprecise concepts in the world. Because of the lack of 

classic logic for modeling these kinds of concepts, the idea of fuzzy logic was first 

introduced in 1965 by Lotfi A. Zadeh [2], a professor at the University of California at 

Berkely. Fuzzy logic is not presented as a control or decision mechanism, but as a way 

of presenting data by allowing an object having partial set membership rather than crisp 

set membership. So, the very first contribution of Zadeh to the set theory is that he 

generalizes the classic set theory and calls it fuzzy set theory.    

In classic set theory, either an element belongs to a set or it does not. For example, 

either an integer is even or it is odd, or either a person is male or female etc. How about 

an example of a person being short or tall, or good and bad etc.? The concepts 

introduced in the first example are precise so there is no confusion there. However, the 

concepts in the second example are fuzzy in nature. For some people tallness might 

mean different thing. For example, a person with 1.80 cm height might mean short for a 

basketball player. How we can formulate these kinds of concepts will be shown below 

starting with some basic definitions in fuzzy set theory. 

 Fuzzy Sets and Definitions 2.1

In the fuzzy set theory, the first step is defining the degree of membership function and 

the sets with the degree of memberships. Some definitions about fuzzy sets are given 

below [44]. 

Definition 1: Let X be a nonempty set. A fuzzy set A in X is characterized by its 

membership function  

μA : X [0,1]              (2.1) 



  

5 

 

and μA(x) is interpreted as the degree of membership of element x in fuzzy set A for 

each x ϵ X. It is clear that A is completely determined by the set of tuples 

A= {(u, μA(u)) | u ϵ X }.            (2.2) 

Definition 2: (Normal fuzzy set) A fuzzy subset A of a classical set X is called normal 

if there exists an x ϵ X such that A(x) = 1. Otherwise A is subnormal.  

 Operations in Fuzzy Sets  2.2

Definition 3: (Intersection) The intersection of A and B is defined as  

(A∩B)(x)= min[{A(x),B(x)} = A(x) ˄ B(x),          (2.3) 

 for all x ϵ X. 

 

Figure 2.1 Intersection of A and B 

Definition 4: (Union) The union of A and B is defined as  

(AUB)(x)= max{A(x), B(x)} = A(x) ˅ B(x),          (2.4) 

 for all x ϵ X. 

 

Figure 2.2 Union of A and B 
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Definition 5: (Complement) The complement of a fuzzy set A is defined as  

A̅(x) = 1 – A(x).             (2.5) 

Definition 6: (Empty set) A fuzzy set is empty if and only if its membership function 

identically zero on X. 

Definition 7: (Equal sets) Two fuzzy sets A and B are equal, written as A = B, if and 

only if μA(x) = μB(x) for all x in X. 

Definition 8: (Containment) A is contained in B (or, equivalently, A is a subset of B) if 

and only if μA <  μB .  

 Fuzzy C-Means Algorithm  2.3

Clustering is widely used techniques in the field of data mining. Hathaway and Bezdek 

[45] have given the definition of clustering as “the objective of cluster analysis is the 

classification of objects according to similarities among them, and organizing of data 

into groups.” The motivation of clustering is to detect the underlying structure in data.  

Fuzzy c-means algorithm was introduced by Bezdek [46] in 1981. The main difference 

between hard clustering and fuzzy clustering is that in fuzzy clustering, we release the 

requirement that each data object belongs to one cluster. So, now, each data object can 

belong to more than one cluster with a certain degree, which is called the degree of 

membership in the concept of fuzzy sets. Fuzzy clustering methods are very useful for 

imprecise concepts such as good, bad, short, tall, young, old, and so on so forth; because 

these kinds of concepts differ one to another. While, the fuzzy c-means algorithm has 

exactly same steps with the k-means algorithm, the equations are slightly different. The 

steps of fuzzy c- means algorithm are given below.     

Step 1 Initialize 𝜇 = [𝜇 ij] matrix, determine the number of clusters and initial cluster 

centers. 

Step 2 Calculate the membership value µ with the formula 

𝜇𝑖𝑘 = [∑ (
𝑑(𝑧𝑘,𝑣𝑖)

𝑑(𝑧𝑘,𝑣𝑗)
)

2

𝑓𝑖−1𝑐
𝑗=1 ]

−1

,            (2.6) 

under the constraint; ∑ 𝜇𝑖𝑘
𝑐
𝑖 = 1. 

where Z the data matrix, v the cluster centers, d(.) stands for Euclidean distance 

function, c is the number of clusters, and 𝑓𝑖  fuzzy index value. 
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Step 3 Calculate the new cluster centers. 

𝑣𝑖 =
∑ (𝜇𝑖𝑘)𝑓𝑖𝑧𝑘

𝑛
𝑘=1

∑ (𝜇𝑖𝑘)𝑓𝑖𝑛
𝑘=1

             (2.7) 

Step 4 Repeat Step 2 and Step 3 until the difference of clusters between two iterations 

drops under some threshold or the number of iterations that the researcher wants is 

achieved.  

2.3.1 Distance Functions  

Distance function d: X x Y  R calculates the distances or differences between two 

solutions x, y into real numbers R. The distance function must follow the following 

axioms of the metric space,  

d(x,y) >= 0                  (2.8) 

d(x,y) = 0 if x=y, otherwise d(x,y)>0               (2.9) 

d(x,y) = d(y,x)                (2.10) 

d(y,z)=< d(x,y) + d(y,z) (triangle inequality)          (2.11) 

The Euclidean distance function is given in the form of  𝑑(𝑧𝑘, 𝑣𝑖) = ‖𝑧𝑘 − 𝑣𝑖‖ . 

 Fuzzy Inference Systems  2.4

Fuzzy inference system (FIS) is a widely used computing framework based on the 

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning [47]. Researchers 

use fuzzy inference systems in a wide variety of fields, such as automatic control, data 

classification, pattern recognition, clustering analysis, time series prediction, decision 

analysis, and so on so forth [48]. Because of its multidisciplinary nature, the fuzzy 

inference systems are also known as fuzzy-rule based systems, fuzzy expert system, and 

simply fuzzy systems [49]. 

Before Zadeh [2] published his first paper on fuzzy set, he was working in the field of 

systems. While he was studying on system analysis, he came to the realization that 

methods and techniques that were developed were not that suitable for humanistic 

systems. So, he came up with the idea of fuzzy logic. In 1965, he published his first 
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paper on Fuzzy Logic, called Fuzzy sets. Eight years later in 1973, he introduced 

another paper [3], called “Outline of a New Approach to the Analysis of Complex 

Systems and Decision Processes”, introducing linguistic variables and characterization 

of simple relations between variables by fuzzy conditional statements.  

Zadeh [3], in his latter paper, defines that “a linguistic variable is defined as a variable 

whose values are sentences in a natural or artificial language. Thus, if tall, not tall, very 

tall, very very tall, etc. are values of height, then height is a linguistic variable”. He also 

introduces the concept of fuzzy conditional statements, which is “expression of the form 

IF A THEN B, where A and B have fuzzy meaning, e.g., IF x is small THEN y is large” 

[4]. After these definitions were given, many researchers started studying on fuzzy 

inference systems. 

 

Figure 2.3 Fuzzy Inference Systems 

Using linguistic terms, the aim of fuzzy inference systems is to define relationships 

between input and output variables of a system [50]. The basic structure of a fuzzy 

inference system consists of three components: 

 Fuzzification: Each crisp input variable is transformed into a membership grade. 

 Inference System: The inference system conducts the fuzzy reasoning process by 

applying the appropriate fuzzy operators in order to obtain the fuzzy set to be 

accumulated in the output variable. 
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 Defuzzification: The fuzzy output is transformed into a crisp output by applying 

a specific defuzzification method. 

Widely used three inference systems are Mamdani and Assilian [4] fuzzy inference 

system, Takagi and Sugeno [5] fuzzy inference system, and Adaptive Neuro Fuzzy 

Inference System (ANFIS). The main difference between Mamdani FIS and Sugeno FIS 

is the specification of the consequent part. In the Mamdani [4] method, the consequents 

are fuzzy sets, and if we want to have a crisp output, we can use one of the several 

defuzzification methods to get the final crisp output. In contrast, in the Sugeno [5] 

method, consequents are real numbers, which can be either constant or linear. The final 

output is the weighted average of each rule’s output [51]. 

Sugeno, in his paper, has pointed out that “multidimensional fuzzy reasoning where we 

can reduce the number of implications.” So his main focus was on this and as well as 

“identification of a system using its input-output data. Identification is divided into two 

parts: structure identification and parameter identification” [5].  

Jyh-Shing Roger Jang [6] has introduced in his paper Adaptive-Neuro Fuzzy Inference 

System, having a better and systematic approach to Sugeno’s fuzzy inference system in 

1993. He has proposed that there are some basic aspects of Sugeno’s approach which 

are in need of better understanding. These aspects: 

 There is no such method that converts human experience into the rule base and 

data base of a fuzzy inference system. 

 There is need for effective methods for tuning the membership functions so as to 

minimize the output error measure or maximize performance index.  

In this perspective, his aim was to build a fuzzy inference system, “which can serve as a 

basis for constructing a set of fuzzy if-then rules with appropriate membership functions 

to generate the stipulated input-output pairs” [6]. 

2.4.1 Mamdani Fuzzy Inference System  

Mamdani fuzzy inference system, which is proposed by Mamdani and Assilian [4] in 

1975, is the most commonly used methodology in literature. Mamdani type fuzzy 

inference system takes crisp data and fuzzifies it, and goes through the rule structure 

step, and finally gets a fuzzy output. A Mamdani fuzzy inference system example is 

given in Figure 2.4 [52]. 
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Figure 2.4 Mamdani Fuzzy Inference Sytem 

In order to obtain the output of Mamdani fuzzy inference system, one must follow the 

steps given below. 

 Determining fuzzy rules,  

 Fuzzifying the inputs using membership functions,  

 Establishing a rule strength with combining the fuzzified inputs according to the 

fuzzy rules,  

 Finding the consequence of the rule, 

 Combining the consequences to get an output distribution, and 

 Deffuzifying the output distribution in a case that a crisp output is needed. 

 Creating Fuzzy Rules 2.4.1.1

Fuzzy rules are basically collection of linguistic terms which are defined by experts. 

They describe how the fuzzy inference system should make a decision. Fuzzy rules are 

written in the form given below. 

IF (input1 is MembershipFunction1) AND/OR (input2 is MembershipFunction2) 

AND/OR ……. , THEN outputn is outputMembershipFunctionn  

 Fuzzification 2.4.1.2

Input values are fuzzified using specified membership function. 
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These input functions can represent fuzzy concepts such as “large” or “small”, “old” or 

“young”, “hot” or “cold”, etc. 

 Fuzzy Combinations 2.4.1.3

In order to define a fuzzy rule, the concept of “and”, “or”, sometimes “not” are used. 

The most common definitions of these fuzzy combination operators are given below. 

Fuzzy combinations are also called as “T-norms”.  

The fuzzy “and” is written as UA∩B = T(UA(x) ,  UB(x))  

There are many ways to compute “and”. The most common two ones; 

 Zadeh’s - min(µA(x) ,  µB(x)) 

 Product - µA(x)  *  µB(x) 

The fuzzy “or” is written as µAUB = T(µA(x) ,  µB(x))  

 Zadeh’s - max(µA(x) ,  µB(x)) 

 Product - µA(x)  +  µB(x) – (µA(x)  *  µB(x)) 

 Consequence 2.4.1.4

Using two steps given below, the consequence of a fuzzy rule is computed: 

 First, by combining the fuzzified inputs, we compute the rule strength.  

 Clipping the output membership function at the rule strength.  

2.4.1.5 Combining Outputs into an Output Distribution 

In order to obtain one fuzzy output distribution, the outputs of all of the fuzzy rules 

must be combined. This is usually done by using the fuzzy “or”.  In order to get the 

output distribution, the output membership functions are combined using the fuzzy “or”.  

 Deffuzzification of Output Distribution 2.4.1.6

In many cases, a single crisp output is desired to come up with. Two common ways for 

deffuzziying is given below.  

 Center of Mass takes the output distribution obtained in 2.4.1.5 and it takes its 

center for a crisp number.  
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 Mean of Maximum takes the output distribution obtained in 2.4.1.5 and it finds 

its mean of maxima for a crisp number. 

2.4.2 Sugeno Fuzzy Inference System  

 

Figure 2.5 A two input, two rule Sugeno FIS with crisp inputs 

Sugeno fuzzy inference system was proposed by Takagi and Sugeno [5] in 1985. 

Sugeno inference system is quite similar to Mamdani fuzzy inference system. The main 

difference is that the output consequence is in the form of constant or linear equation 

instead of in the form of output distribution. In fact, in Sugeno fuzzy inference system 

there is no output function. Instead, the output is a crisp number computed by 

multiplying each input by a constant and then summing up results.  A typical form of a 

fuzzy rule in a Sugeno fuzzy inference system is given below.  

IF x is A AND y is B THEN z= f(x,y) , 

where A and B are fuzzy sets, z = f(x, y), is a crisp function. An example of Sugeno 

fuzzy inference system is given in Figure 2.5 [53]. 

2.4.3 Adaptive-Neuro Fuzzy Inference System  

Adaptive Neuro Fuzzy Inference System (ANFIS) was proposed by Jang [6] in 1993. 

Because it has been one of the most commonly used and studied algorithm, it is very 

important tool for fuzzy learning society. Celikyilmaz and Turksen [51] points out that 
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“ANFIS is a neuro-fuzzy technique that brings learning capabilities of neural networks 

to fuzzy inference systems.” 

An adaptive network consists of nodes and directional links. 

Let us assume that we have the fuzzy system with two inputs x1 and x2 and one output 

variable y and two fuzzy rules. The graphical representation of this fuzzy system is 

given in Figure 2.6. The most used structure of ANFIS is Sugeno type fuzzy inference 

system, which is defined as follows: 

Rule 1: IF x is A1 AND y is A3 THEN f1= p1x + q1 y + r1  

Rule 2: IF x is A2 AND y is A4 THEN f2= p2x + q2 y + r2  

As we can see from the Figure 3 that ANFIS consists of 5 layers. 

Figure 2.6 A two input, two rule ANFIS 

Layer 1: (Fuzzification) We fuzzify the inputs in this layers, as it is described in 

Sugeno FIS or we can use fuzzy-C means (FCM) algorithm to convert the data into 

linguistic terms. 

Layer 2: (Aggregation of Antecedents) Also called as product layer, every node in this 

layer is a fixed node. The output is the product of the all the incoming signals. Output 

can ben formalized as in Equation 2.12.  

wi = µAi(x) *  µBi(y), i=1,2            (2.12) 

In this layer, each node represents the fire strength of the rule.  
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Layer 3: (Normalization of Degrees of Fire) Every node in this layer is a fixed node. 

The i
th

 node calculates the ratio of i
th 

rulet’s firing strength to the sum of all rulet’s firing 

strengths. Outputs are called normalized firing strengths.  

w̅i =  
wi

w2+w1
  ,  i = 1,2          (2.13) 

Layer 4: (Implication) Every node in this layer is an adaptive node with a node 

function given in Equation 2.14.  

w̅ifi = w̅i(pix+ qiy + ri)           (2.14) 

Where w̅i is the normalized firing strength from layer 3, {pi , qi, ri}is the parameter set of 

this node. These are called to as consequent parameters. 

Layer 5: (Aggregation of Consequents) The single node in this layer is a fixed node 

labeled sum, which computes the overall output with the equation given below. 

∑ w̅ifi 𝑖 = 
∑ wi fi𝑖

∑ wi 𝑖
             (2.15) 

2.4.4 Type-1 Fuzzy Functions Approach 

Many methods for modelling uncertainty with fuzzy logic have been introduced in 

literature. Some of them are given above, such as Mamdani Fuzzy Inference System, 

Sugeno Inference System, Adaptive Neuro Fuzzy Inference System, which are rule 

based systems. Turksen [51] has introduced type-1 fuzzy functions, which is free of rule 

base, in 2008. This is an important advantage for modelling. Now, there is no need for 

an expert opinion to define the rules. The system can obtain the rules itself. Beside 

fuzzy functions method has been introduced for modelling regression and classification 

problems, it has been recently used for time series problems by many researchers. The 

steps of Type-1 Fuzzy Functions (T1FF) using fuzzy C-means (FCM) are given below 

[51].      

Step 1 The number of fuzzy clusters, fuzzy index value (fi), the number of iterations, 

and the center of clusters are determined. Inputs are lagged variables of time series. 

𝑣𝑖 =
∑ (𝜇𝑖𝑘)𝑓𝑖𝑧𝑘

𝑛
𝑘=1

∑ (𝜇𝑖𝑘)𝑓𝑖𝑛
𝑘=1

            ,   i=1,2,..,c         (2.16) 

𝜇𝑖𝑘 = [∑ (
𝑑(𝑧𝑘,𝑣𝑖)

𝑑(𝑧𝑘,𝑣𝑗)
)

2

𝑓𝑖−1𝑐
𝑗=1 ]

−1

,   i=1,2,…,c ;  k=1,…n      (2.17) 
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where matrix Z is composed of both inputs and output of the system, d(z,v) is the 

Euclidian distance and is calculated as below, and 𝜇𝑖𝑘 is degree of belongingness of k
th

 

observation to i
th

 cluster.  

𝑑(𝑧𝑘, 𝑣𝑖) = ‖𝑧𝑘 − 𝑣𝑖‖            (2.18) 

Step 2 We can calculate the membership values of the input space as below. 

𝜇𝑖𝑘 = [∑ (
𝑑(𝑥𝑘,𝑣𝑖)

𝑑(𝑥𝑘,𝑣𝑗)
)

2

𝑓𝑖−1𝑛
𝑗=1 ]

−1

, i=1,2,…,c ;  k=1,…n       (2.19) 

where x consists of only inputs which are generated for lagged variables.  

Step 3 Original inputs and membership values of each input data sample (𝜇𝑖𝑘) are 

combined for each cluster i. Then, we obtain the i
th

 fuzzy function from 𝑌(𝑖) =

𝑋(𝑖)𝛽(𝑖) + 𝜀(𝑖) multivariate regression model. For example, the number of inputs is p, 

X
(i)

 and Y
(i)

 matrices are as follows:                

𝑋(𝑖) =

[
 
 
 
 
 
𝜇𝑖1 𝑥11 . . . 𝑥2𝑝

𝜇𝑖2 𝑥21 . . . 𝑥2𝑝

. . . . . .

. . . . . .

. . . . . .
𝜇𝑖𝑛 𝑥𝑛1 . . . 𝑥𝑛𝑝]

 
 
 
 
 

  ,  𝑌(𝑖) =

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

 

Celikyılmaz and Turksen [51] has proposed that mathematical transformations, such as 

exponential or logarithmic, of membership values might cause better results. 

Step 4 By using the results obtained from fuzzy functions output values of system are 

calculated as follows: 

𝑦̂𝑖 =
∑ 𝑦̂𝑖𝑘𝜇𝑖𝑘

𝑐
𝑖=1

∑ 𝜇𝑖𝑘
𝑐
𝑖=1

    , k=1,2,…,n          (2.20) 
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CHAPTER 3 

FORECASTING 

Sequence of data points is called as a time series. These data points are consisted of 

measurements of over a time interval. Some widely used time series examples are stock 

exchange data, passengers of an airplane firm, data of crisis, and etc. There are a lot of 

proposed techniques for modeling these kinds of concepts and the most commonly used 

models are Autoregressive Integrated Moving Average (ARIMA) and Exponential 

Smoothing in literature. Time series are analyzed under two roofs, probabilistic and 

non-probabilistic approaches. Probabilistic approaches will be discussed in this chapter. 

However, some of the non-probabilistic approaches were given in chapter two; such as 

ANFIS, Mamdani FIS, and Sugeno FIS. 

 Autoregressive Integrated Moving Average Models 3.1

ARIMA models are regression models. They use lagged values of the dependent 

variable and/or random disturbance terms as explanatory variables. ARIMA models rely 

on the autocorrelation pattern in the data.   

ARIMA models are combination of Autoregressive (AR) and Moving Average (MA) 

Models and “I” stands for integration. Three basic ARIMA models for a stationary time 

series [54]; 

 Autoregressive model of order p (AR(p)) 

𝑦𝑡 =  𝛿 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡        (3.1)  

i.e. 𝑦𝑡 depends on its p previous values. 

 Moving Average model of order q (MA(q)) 

𝑦𝑡 =  𝛿 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞           (3.2) 

i.e. 𝑦𝑡 depends on its q previous random error terms. 
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 Autoregressive- Moving Average model of order p and q (ARMA(p,q)) 

𝑦𝑡 =  𝛿 + 𝜑1𝑦𝑡−1 + ⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞      (3.3) 

i.e. 𝑦𝑡 depends on its p previous values and its q previous random error terms. 

The random disturbance term 𝜀𝑡 is assumed to be white noise which means it is 

independently identically distributed with mean 0 and a common variance for all terms.  

Box-Jenkins [1] has proposed an algorithm for modeling ARIMA models. The Box-

Jenkins method is widely used method for time series. Researchers often prefer the Box-

Jenkins approach because it combines set of procedures such as stationarity, identifying 

and estimating time series. The method consists of three steps . 

3.1.1 A three-step Iterative Process 

Step 1 Identification 

Step 2 Estimation  

Step 3 Diagnostic Checking and Forecasting  

Step 1 Identification 

The most important property of almost all time series models is stationarity. If a time 

series 𝑦𝑡 satisfies the following conditions, then 𝑦𝑡 is said to be stationary.  

 E(𝑦𝑡) =  𝑢𝑦 for all t             (3.4) 

 Var(𝑦𝑡) =  E((𝑦𝑡 − 𝑢𝑦)2) = 𝜎𝑦
2 for all t           (3.5) 

 Cov(𝑦𝑡, 𝑦𝑡−𝑘) = 𝛾𝑘 for all t.           (3.6) 

If the time series 𝑦𝑡 is not stationary, one must follow some procedures to make 𝑦𝑡 

stationary. These procedures may include taking log, differencing, integration, and etc. 

Once 𝑦𝑡 is stationary, the next step is to identify whether the process follows AR, MA, 

or ARIMA. In order to do that we can look at autocorrelation function (ACF) and partial 

autocorrelation function (PACF).  

Step 2 Estimation 

After we identify the model, we estimate the parameters of the model. The most 

common two methods for estimating the parameters of the model are the least squares 

and maximum likelihood estimators. If a moving average process does not exist in the 

model, we can use the least squares method. A moving average model cannot be 
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estimated with the least square estimators like autoregressive processes. Under the 

assumption of normality of the error term, the covariance matrix of the error term can be 

estimated using maximum likelihood estimators.  

Step 3 Diagnostic Checking and Forecasting 

Often, it is not possible to determine a single model that explains the data. Therefore, 

we should pursue a set of procedures to get best model that represents the data set. 

These procedures include coefficients significance, residual analysis, and model 

selection criteria. Also, in order to check whether the model can explain the series or 

not, we can test autocorrelation coefficients whether they are significant or not, and 

error terms whether they are normal or not. 

 Exponential Smoothing Methods 3.2

The idea of exponential smoothing method is to smooth the time series. If a time series 

has a deterministic or stochastic trend, then an exponential smoothing method is an 

alternative method in order to forecasting problems of a time series. Exponential 

smoothing methods are covered under three methods: simple exponential smoothing 

method, Holt’s exponential smoothing method, and Winter’s exponential smoothing 

method [55].  

The simple exponential smoothing method is used when the time series is around its 

mean. Weights of the time series decline exponentially and most recent observations are 

weighted most in this method. In order to forecast the time series, the equation given 

below is used. 

𝐹𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝐹𝑡                  (3.7) 

where: 

 𝐹𝑡+1 = forecast value for period t+1  

 𝑦𝑡 = actual value for period t 

  𝛼 = alpha (smoothing constant) 

Holt exponential smoothing method, also called double exponential smoothing method, 

is used when the time series has trend. In this case, second smoothing constant is 

accounted for trend. 
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𝐿𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1)  (level)          (3.8) 

𝑏𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1    (trend)          (3.9) 

𝐹𝑡+1 = 𝐿𝑡 + 𝑏𝑡                                   (forecast)       (3.10) 

for 0 0 ≤ 𝛼 ≤ 1,0 ≤ 𝛽 ≤ 1. 

Winter exponential smoothing method, also called triple exponential smoothing method, 

takes into accounts both trend and seasonality.  

𝐿𝑡 = 
𝑌𝑡

𝑆𝑡−𝑠
+ (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) (level)        (3.11) 

𝑇𝑡 =  𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1)  (trend)        (3.12) 

𝑆𝑡 = 𝛾𝑌𝑡
𝐿𝑡

 + (1 − 𝛾)𝑆𝑡−𝑠  (seasonal)         (3.13) 

𝐹𝑡+𝑝 = (𝐿𝑡 + 𝑝𝑇𝑡)𝑆𝑡−1+𝑝 (forecast)         (3.14) 

where s is the length of the seasonal cycle, for 0 0 ≤ 𝛼 ≤ 1,0 ≤ 𝛽 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝛾 ≤ 1.
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CHAPTER 4 

PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is a method for optimization problems. The method 

was first introduced by Kennedy and Eberhart [56] in 1995. The purpose of this method 

was to optimize continuous nonlinear functions. The main idea behind PSO was animal 

social behavior in fish school or a bird flock. An individual`s experience can provide 

some information to the flock or, in another words, an individual in a flock can benefit 

from the rest of the flock`s experience during the search of food. So, the idea behind 

particle swarm optimization was to provide communication among members in the 

flock.  

Kennedy and Eberhart [56] have introduced in their algorithm that each particle in a 

swarm has a random position and from that position they are searching for the optimum. 

Since each particle is moving to the optimum, they also have their own velocities. Each 

particle remembers its best position between iterations and it is called personal best 

(pbest). The best of personal best values is defined as the global best value (gbest). 

Using the personal best, the global best values and the velocities for each particle, 

Kennedy and Eberhart [56] have given the algorithm below. 

Particle Swarm Optimization algorithm is an iterative algorithm. In each iteration, 

algorithm searches for the personal best value of each particle, and the global best value 

among all particles. 

Each particle`s value and velocity are stored in the vectors given below. 

𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑀)             (4.1) 

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑀)              (4.2)  

In order to obtain the global best, fitness values corresponding to the particles are 

compared and the particle having the maximum or minimum fitness value is assigned to 
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global best. Personal best values and global best value are stored in a vector given 

below. 

𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑀)          (4.3) 

 𝑔𝑏𝑒𝑠𝑡 = (𝑝1, 𝑝2, … , 𝑝𝑀)          (4.4) 

The equation in (4.5) is used to get velocities of particles. 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑚
𝑘+1 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑚

𝑘 + 𝑐1. 𝑟1
𝑘. (𝑝𝑏𝑒𝑠𝑡𝑖𝑚

𝑘 − 𝑝𝑖𝑚
𝑘 ) +  𝑐2. 𝑟1

𝑘. (𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑝𝑖𝑚
𝑘 )   (4.5) 

where, m=1,2, …,M, M is dimension, k is the number of iterations, 𝑟1
𝑘 and 𝑟1

𝑘 are 

random numbers from uniform distribution, 𝑐1 and 𝑐2 are acceleration coefficients. 

Although there are a number of ways to specify acceleration coefficients, c1 and c2 are 

taken as 2 most of the time by researchers. We do not go into details for specifying 

acceleration coefficients because we also take 𝑐1 = 𝑐2 = 2 in our proposed method.  

After updating the velocity of a particle the next step is to update the positions of the 

particle. In order to that the equation given below is used. 

𝑝 = 𝑝𝑖𝑚
𝑘 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑚

𝑘+1            (4.6) 

These updates are repeated until for the number of iteration times.  

4.1     Algorithm  

Step 1 Each particle’s positions are randomly initialized.  

𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀)               (4.7) 

Step 2 Velocities corresponding to each position are randomly initialized. 

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑀)              (4.8) 

Step 3 Using the evaluation function, pbest and gbest values are updated. 

𝑝𝑏𝑒𝑠𝑡𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑀)          (4.9) 

 𝑔𝑏𝑒𝑠𝑡 = (𝑝1, 𝑝2, … , 𝑝𝑀)        (4.10) 

Step 4 Let 𝑐1 and 𝑐2 to be equal to two. 

Step 5 Velocities and positions in the swarm are updated with the equations given in  

(4.5) and (4.6) respectively. 
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CHAPTER 5 

PROPOSED METHOD 

Type-1 fuzzy functions approach was designed as a fuzzy inference system in 2008 by 

Turksen [51]. Since the classic fuzzy inference systems are rule based, Turksen [7] 

proposed type-1 fuzzy functions approach in the need of a non-rule based system. This 

is a big advantage over classic fuzzy inference systems since they need an expert 

opinion for defining the rules. At the beginning, type-1 fuzzy functions approach was 

proposed for classification and regression problems. Therefore, T1FF is needed to be 

redesigned. T1FF approach was first adapted to time series by Beyhan and Alici [33] in 

2010. Later, Aladag et al. [34] adapted T1FF to time series forecasting problems as well 

in 2015.  Beyhan and Alici [33] used an ARX model structure in their study. This 

structure is not able to choose the best model. In other words, the structure was not 

capable of searching the best model. Therefore, Aladag et al. [34] proposed fuzzy time 

series function method to search for the best model. They adapted autoregressive model 

into their algorithm. Eventually, they have gotten better forecasting results than Beyhan 

and Alici.  Among the conventional probabilistic time series models autoregressive 

models are the most important models as well as moving average models. Aladag et al. 

[34] used autoregressive model in their approach. In the proposed method, moving 

average model is also taken into consideration. The inputs are taken as the lagged values 

of the time series, the lagged values of the disturbance terms and the degree of 

memberships obtained from fuzzy c-means clustering method. Disturbance terms are 

obtained from residuals of the fuzzy functions. Since the objective function of the fuzzy 

functions is not derivative particle swarm optimization algorithm is adapted to the 

proposed method to obtain the estimation of coefficients that minimizes the objective 

function, and hence the sum of squared errors (SSE).  
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5.1 Flow Chart 

The flow chart of the proposed method is given in Figure 5.1.   

 

Figure 5.1 Flow chart of the proposed method 
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5.2 Algorithm 

Step  1   The data set is divided into two groups: Test and training data sets. 

Step 2 Model inputs are selected as the lagged variables of the data set and 

disturbances. Inputs are clustered using FCM algorithm. 

Step 3 Lagged variables, degree of memberships, and the functions of degree of 

memberships are combined into the training data set. So that, the input matrix (X) is 

obtained. The dimension of the input matrix is 𝑛 ∗ 𝑝 ∗ 𝑐 ∗ 𝑘,  n: number of observations, 

p: number of parameters, c: number of clusters, k: number of particles. 

𝑌(𝑖)(𝑗) = 𝑥(𝑖)(𝑗) ∗ 𝛽(𝑖)(𝑗)  +  𝑒(𝑖)(𝑗)     ,      𝑖: 1,2,… , 𝑐          (5.1) 

         𝑗: 1,2, … , 𝑘 
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Step 4 The degrees of memberships are obtained for the training data set using fuzzy c-

means algorithm. The centers of clusters are also obtained for the training data set. In 

this case, by using these centers, the degrees of memberships for the test data set are 

obtained for each observation using the formula below. 

𝜇𝑡𝑒𝑠𝑡𝑖𝑘
= [∑ (

𝑑(𝑋𝑡𝑒𝑠𝑡,𝑐𝑒𝑛𝑡𝑒𝑟𝑖)

𝑑(𝑋𝑡𝑒𝑠𝑡,𝑐𝑒𝑛𝑡𝑒𝑟𝑗)
)

2

𝑓𝑖−1𝑐
𝑗=1 ]

−1

          (5.2) 

Step 5  𝜇𝑡𝑒𝑠𝑡𝑖
 and 𝑋𝑡𝑒𝑠𝑡 are combined for each cluster and particle.  

For example, for i
th

 cluster and j
th

 particle the input matrix; 

𝑋𝑡𝑒𝑠𝑡 =

[
 
 
 
 
𝐶 𝜇𝑡𝑒𝑠𝑡 𝑙𝑜𝑔𝜇𝑡𝑒𝑠𝑡 𝜇𝑡𝑒𝑠𝑡

2 𝑌𝑡−1 𝑌𝑡−2 … 𝑌𝑡−𝑝 𝜖𝑡−1 𝜖𝑡−2

1 . . . . . … . . .
1 . . . . . … . . .
. . . . . . … . . .
1 . . . . . … . . . ]

 
 
 
 

  

Step 6 The parameters C1 and C2, the number of particles, and the number of iterations 

are specified for particle swarm optimization algorithm. The number of positions in  

each particle is (𝑝 + 𝑞 + 4) ∗ 𝑐. p: number of lags for AR, q: number of lags for MA. c: 

number of clusters, 4 stands for the first four columns in the input matrix, 𝑋𝑡𝑒𝑠𝑡. 
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Step 7 Initial positions for each particle are generated randomly from standard normal 

distribution. The coefficients (𝛽), i,e,  𝑌(𝑖)(𝑗) = 𝑥(𝑖)(𝑗) ∗ 𝛽(𝑖)(𝑗)  +  𝜖(𝑖)(𝑗), represent the 

possible solutions in the regression model.  

For example, for the first particle, assuming p=4, q=2, and c=2, the number of positions 

is (4+p+q)*2 = (4+4+2)*2=20. 

Table 5.1 The positions for the first particle:   

c μ1 log(μ)1 μ2
1 𝑌𝑡−1 𝑌𝑡−2 𝑌𝑡−3 𝑌𝑡−4 𝑒𝑡−1 𝑒𝑡−2 

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 

 

c μ2 log(μ)2 μ2
2 𝑌𝑡−1 𝑌𝑡−2 𝑌𝑡−3 𝑌𝑡−4 𝑒𝑡−1 𝑒𝑡−2 

𝛽10 𝛽11 𝛽12 𝛽13 𝛽14 𝛽15 𝛽16 𝛽17 𝛽18 𝛽19 

Initial velocities corresponding to the positions are generated randomly from 𝑢𝑛𝑖𝑓(0,1) 

distribution.  

Step 8 Initial personal best (pbest) values are assigned to as initial positions. Initial 

global best (gbest) value is obtained by using fitness value. 

Step 9 For each particle, 𝑒𝑡−𝑞 values are calculated using formulas below.    

   Step 9.1 𝑌̂𝑖
(𝑗)(𝑘)

= 𝑋𝑖,.
(𝑗)(𝑘)

 . 𝛽𝑇
𝑖,.

(𝑗)(𝑘)
            (5.3) 

   Step 9.2 𝑌∗̂
𝑖
(𝑘)

= 𝑌̂𝑖
(𝑗)(𝑘)

 . 𝜇𝑇
𝑖,.

(𝑗)
             (5.4) 

   Step 9.3 𝜖𝑖
𝑘 = 𝑌𝑖 − 𝑌∗̂

𝑖
(𝑘)

              (5.5) 

   Step 9.4 𝑋𝑖+1,𝑝
(.)(𝑘)

= 𝑒𝑖
𝑘              (5.6) 

In Step 9.1, 𝑌̂𝑖
(𝑘)

 stands for the predicted value of the time series for i
th

 cluster, 𝑋𝑖,.
(𝑗)(𝑘)

  

stands for the input matrix and 𝛽𝑇
𝑖,.

(𝑗)(𝑘)
  stands for the position obtained via PSO for i

th
 

cluster.  

For example, 

𝑋1,.
(1)(1)

= [𝐶 𝜇 𝜇2     𝑌𝑡−1 𝑌𝑡−2 𝑒𝑡−1]1𝑥6, 
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𝛽1,.
(1)(1)

= [𝑃1 𝑃2 𝑃3     𝑃4 𝑃5 𝑃6] 1𝑥6 , 

𝑌∗̂
𝑖
(𝑘)

= [   .   ]1×1  

Step 9.1 is repeated for the number of clusters times (j) and the values of  𝑌̂𝑖
(𝑗)(𝑘)

=

[… . . .⏞]
𝑐

 are obtained for c clusters. 

For i
th 

fuzzy function, 
 𝑌̂𝑖

∗(𝑘)
  is calculated in Step 9.2.  

For example, for the first object and k
th

 particle, 

𝑌∗̂
1
(.)

= 𝑌̂1
(.)(𝑘)

 . 𝜇𝑇
1,.

(.)
    

=  [𝜇1
1 … 𝜇1

𝑐]  1×𝑐   x   [
𝑌̂1

(1)(𝑘)

.

𝑌̂1
(𝑐)(𝑘)

]

𝑐×1

 

𝑌∗̂
1
(.)

=  [   .   ]1×1 

 𝜖𝑖
𝑘 value is obtained in Step 9.3. 𝜖𝑖

𝑘 is the same value for each cluster. Substructing 

 𝑌∗̂
𝑖
(𝑘)

 value from𝑌𝑖 , 𝜖𝑖
𝑘 is obtained. The equation is given below. 

𝜖𝑖
𝑘 = 𝑌𝑖 − 𝑌∗̂

𝑖
(𝑘)

  

For example,  

𝜖1
1 = 𝑌1 − 𝑌∗̂

1
(1)

  

In Step 9.4,  𝜖𝑖
𝑘 value is assigned to X data set for each cluster. 

For example,  

𝑋2,𝑝
(.)(1)

= 𝜖1
1,  p: number of parameters. 

Step 10 After repeating Step 9.1 for the number of cluster times, Step 9.2, Step 9.3 and 

Step 9.4 are calculated. These steps are proceeded for the number of observations (n) 

times one by one.  

Step 11 Step 9 and Step 10 are repeated for the number of particle times.  

Step 12 Gbest, which is obtained for the training data set, and the equations in Step 9 

are used to get 𝜖𝑡 for the test data set. The equations are given below  
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   Step 12.1 𝑌𝑡𝑒𝑠𝑡̂𝑖

(𝑗)
= 𝑋𝑡𝑒𝑠𝑡𝑖,.

(𝑗) . 𝛽𝑡𝑒𝑠𝑡
𝑇

𝑖,.

(𝑗)
            (5.7) 

   Step 12.2 𝑌𝑡𝑒𝑠𝑡
∗̂
𝑖
= 𝑌𝑡𝑒𝑠𝑡̂𝑖

(𝑗)
 . 𝜇𝑡𝑒𝑠𝑡

𝑇
𝑖,.

(𝑗)
            (5.8) 

   Step 12.3 𝜖𝑡𝑒𝑠𝑡𝑖
= 𝑌𝑡𝑒𝑠𝑡𝑖

− 𝑌𝑡𝑒𝑠𝑡
∗̂
𝑖
            (5.9) 

   Step 12.4 𝑋𝑡𝑒𝑠𝑡𝑖+1,𝑝
(.) = 𝑒𝑡𝑒𝑠𝑡𝑖

            (5.10) 

 𝛽𝑡𝑒𝑠𝑡
𝑇

𝑖,.

(𝑗)
   are the coefficients that are obtained as gbest values in Step 9, Step 10, and 

Step 11 ; 𝜇𝑡𝑒𝑠𝑡
𝑇

𝑖,.

(𝑗)
, are the the degree of memberships of the objects which are 

calculated in the Step 4; 𝑌𝑡𝑒𝑠𝑡𝑖
 are  the original time series values; 𝑌𝑡𝑒𝑠𝑡

∗̂
𝑖
  are the 

forecasts.  

Step 12.1 is repeated for the number of cluster times, then Step 12.2, Step 12.3, and 

Step 12.4 are proceeded and these steps are repeated for each observation one by one.   

Step 13 r1 and r2 are randomly generated from the standard normal distribution and new 

positions and velocities are updated using the formulas below. 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑑
𝑘+1 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑑

𝑘 + 𝑐1. 𝑟11
𝑘. (𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑝𝑖𝑑
𝑘 ) +  𝑐2. 𝑟21

𝑘. (𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑝𝑖𝑑
𝑘 ) (5.11) 

𝑃𝑖𝑑
𝑘+1 = 𝑃𝑖𝑑

𝑘 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖𝑑
𝑘+1             (5.12) 

Step 14 Pbest and gbest values are updated using the fitness value. 

Step 15 The steps 9, 10, 11, 12, 13, and 14 are repeated for the number of iteration 

times.  

Step 16 Lastly, by using the equations below, gbest value ( 𝛽𝑡𝑒𝑠𝑡
𝑇

𝑖,.

(𝑗)
  ) is used to 

forecast future values of the time series.  

𝑌𝑡𝑒𝑠𝑡̂𝑖

(𝑗)
= 𝑋𝑡𝑒𝑠𝑡𝑖,.

(𝑗) . 𝛽𝑡𝑒𝑠𝑡
𝑇

𝑖,.

(𝑗)
              (5.13) 

𝑌𝑡𝑒𝑠𝑡
∗̂
𝑖
= 𝑌𝑡𝑒𝑠𝑡̂𝑖

(𝑗)
 . 𝜇𝑡𝑒𝑠𝑡

𝑇
𝑖,.

(𝑗)
            (5.14) 

As a result, 𝑌𝑡𝑒𝑠𝑡
∗̂
𝑖
 values are the predictions that we want to forecast.  
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CHAPTER 6 

APPLICATIONS 

To evaluate the performance of the proposed method, 12 real world time series data are 

analyzed by using R, statistical programming language [57]. Stock exchange forecasting 

problems have been commonly studied by researchers. Therefore, most of the data sets 

we used are stock exchange data sets. The first data set is Australian beer consumption 

data. The objects of this data set are quarterly observed from 1956 to 1994. The next 5 

data sets are from Turkey’s stock exchange market index (BIST100). The elements of 

BIST100 data sets are daily observed between 2009 and 2013. The last six data sets are 

from Taiwan’s stock exchange market from 1999 to 2004.  These data sets are chosen to 

be able to compare the performance of the proposed method with the other methods 

which used the same data sets previously. Methods are evaluated by using root mean 

squared error (RMSE) and mean absolute percentage error (MAPE) given in Equation 

(6.1) and Equation (6.2). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑡 − 𝑥̂𝑡)2𝑛

𝑡=1            (6.1)  

𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝑥𝑡− 𝑥̂𝑡

𝑥𝑡
|𝑛

𝑡=1              (6.2) 

The number of observations of the original data sets, the number of observations of the 

test data sets, the number of lags for autoregressive model, the number of lags for 

moving average model and the number of clusters used are listed in Table 6.1.  

The applications will start with Australian Beer Consumption (ABC) data set. Second, 

Istanbul stock exchange data sets year by year will be performed. Lastly, Taiwan stock 

exchange data sets from 1999 to 2004 will be used to evaluate the performance of the 

proposed method. 
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Table 6.1 Summary of data sets and selections of the parameters for the simulation 

No Series/Year Number of 

Observations 

Order 

of AR 

Order of 

MA 

Number 

of Cluster 

ntest 

1 ABC 147 1-10 1-2 2-10 16 

2 BIST100/2009 103 1-5 1-2 2-5 7,15 

3 BIST100/2010 104 1-5 1-2 2-5 7,15 

4 BIST100/2011 106 1-5 1-2 2-5 7,15 

5 BIST100/2012 106 1-5 1-2 2-5 7,15 

6 BIST100/2013 106 1-5 1-2 2-5 7,15 

7 TAIEX/1999 266 1-4 1-2 2-5 45 

8 TAIEX/2000 271 1-4 1-2 2-5 47 

9 TAIEX/2001 244 1-4 1-2 2-5 43 

10 TAIEX/2002 248 1-4 1-2 2-5 43 

11 TAIEX/2003 249 1-4 1-2 2-5 43 

12 TAIEX/2004 250 1-4 1-2 2-5 45 

6.1 Application of Australian Beer Consumption (ABC) Data 

In the first application, Australian beer consumption data set is taken into consideration. 

This data set consists of 148 observations, which are quarterly observed from 1956 to 

1994. The line plot of the ABC data set is given in Figure 6.1. 

 

Figure 6.1 ABC data set 

In order to compare the results of the proposed method, Seasonal Autoregressive 

Integrated Moving Average (SARIMA) model, Winter`s Exponential Smoothing 

method, Multilayer Perceptron Artifical Neural Network (MLP-ANN), Adaptive Neuro 

Fuzzy Inference System (ANFIS), and Modified Adaptive Neuro Fuzzy Inference 
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System (MANFIS) values are taken from the study of Egrioglu and et al. [58] and they 

are compared with the proposed method. 

The algorithm searched for the best model when the number of clusters varied from two 

to ten, the number of lags for AR part varied one to ten, and the number of lags for MA 

part varied from one to two. The number of particles and the number of iterations are set 

to 35 and 100 respectively. Under these conditions the minimum RMSE and MAPE 

values are obtained when the number of clusters is five, the number of lags for AR part 

is seven, and the number of lags for MA part is one. Looking at the RMSE and MAPE 

values in Table 6.2, it is obvious that the minimum RMSE and MAPE values are 

obtained from the proposed method. 

Table 6.2 Results obtained for ABC test data set when ntest=16 

 

 

 

 

 

 

 

 

 

 

 

 

 

The line plot of the forecasts of the proposed method and the original observations are 

given in Figure 6.2. 

Test 

Data 
WMES SARIMA MLP-ANN ANFIS MANFIS 

ARMA-

T1FF 

430,50 453.91 452.72 453.88 446.71 445.23 442.82 

600,00 575.22 578.29 557.81 553.73 575.63 554.44 

464,50 502.32 487.71 497.52 482.07 494.07 477.33 

423,60 444.73 446.28 437.39 434.19 434.56 443.47 

437,00 459.66 456.77 449.01 438.55 444.69 422.46 

574,00 582.48 583.51 569.01 559.01 575.42 571.21 

443,00 508.64 492.13 471.08 472.52 481.28 463.85 

410,00 450.31 450.36 424.33 427.57 414.44 410.47 

420,00 465.4 461.01 448.87 445.01 430.31 420.02 

532,00 589.74 588.96 560.04 562.94 565.18 551.34 

432,00 514.96 496.77 447.01 459.14 452.05 436.37 

420,00 455.89 454.64 408.64 416.16 392.14 390.61 

411,00 471.15 465.46 428.11 431.71 419.33 398.69 

512,00 597 594.71 537.69 544.98 536.88 517.62 

449,00 521.28 501.67 438.43 444.31 446.32 430.76 

382,00 461.46 459.17 420.58 426.01 406.64 408.27 

RMSE 53.33 47.04 24.11 25.05 21.37 19.21* 

MAPE 0.1072 0.0949 0.0476 0.0467 0.0401 0.0333* 
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Figure 6.2 Line plot of forecasts and the test data for ABC data set (ntest=16) 

6.2 Application of Istanbul Stock Exchange Data 

In the applications of BIST100, the data sets between 2009 and 2013 are taken. The 

outcomes of ARIMA, Exponential Smoothing (ES), Multilayer Perceptron Artifical 

Neural Network (MLP-ANN), Type-1 Fuzzy Functions (FF), Fuzzy Time Series 

Network (FTS-N), and Type-1 Recurrent Fuzzy Functions (ARMA-T1FF) are 

compared and listed in the tables below. The outcomes of ARIMA, ES, MLP-ANN, FF, 

and FTS-N are taken from Bas and et al. [36].  

The best results are obtained by using the Box-Jenkins procedure for the ARIMA 

procedure. Holt and Winter’s exponential smoothing methods are used and the best 

results are chosen. For the MLP-ANN method, hidden layer neurons and the number of 

inputs are specified from 1 to 5 and the best model is chosen. While performing FF, the 

number of clusters and the model order varies from 5 to 15 and from 1 to 5 respectively. 

The best outcomes are selected. For the results of FTS-N, the model order (p) varies 

from 1 to 5 and the number of clusters varies from 5 to 15. The best results are listed in 

the tables given in Chapter 6.2.   
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In order to obtain the best results for the proposed method, the number of clusters varies 

from 2 to 5, the number of lags for AR part varies from 1 to 5, and the number of lags 

for MA part varies from 1 to 2. 

6.2.1 Istanbul Stock Exchange Data for 2009 

Observations, for 2009 Istanbul stock exchange data, are collected daily from 1.2.2009 

to 5.29.2009.  The line plot of data is given in Figure 6.3. 

 

Figure 6.3 Line plot of Istanbul stock exchange data for 2009 

The best results for the proposed method are obtained for 2 clusters, 2 lags for AR part, 

2 lags for MA part, and the number of observations for ntest equals to 7.  The results are 

given in Table 6.3. From Table 6.3, it can be seen that the proposed method outperforms 

the others in terms of RMSE and MAPE values.  

Table 6.3 Results obtained for BIST2009 when ntest-7 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

34721 35140 35139.5968 35179.4149 35217.7252 34564.7192 34243.38 

35015 34721 34720.5793 34803.4364 35038.9821 34835.5466 35080.42 

35408 35015 35014.4794 35114.3825 35127.3924 34869.0244 35583.52 

34861 35408 35407.6524 35406.9209 35733.4937 35216.5658 35150.24 

35169 34861 34860.5983 34965.8835 35190.8515 35017.0478 35144.41 

35021 35169 35168.7084 35245.7189 35401.2361 35014.0874 35172.88 

35003 35021 35021.0203 35097.5295 35399.2696 35032.1007 35141.54 

RMSE 344.91 344.93 325.1011 445.5147 266.6011 235.96* 

MAPE 0.0087 0.0087 0.0083 0.0101 0.0058 0.00541* 
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The line plot of the forecasts of the proposed method and the original observations are 

given in Figure 6.4.  

 

Figure 6.4 Line plot of forecasts of the proposed method and the test data for BIST100-

2009 (ntest=7) 

The proposed method reaches the best forecast values at 3 clusters, 2 lags for AR part, 

and 2 lags for MA part when ntest equals to 15. The results are listed in Table 6.4. It is 

again obvious that ARMA-T1FF method has the minimum RMSE and MAPE value. 

Thus, the proposed method shows the best forecasting performance.  

Table 6.4 Results obtained for BIST2009 when ntest-15 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

32806 32843 32842.6108 33061.3111 33178.6227 33356.2365 33141.94 

32203 32806 32805.7200 33159.0326 33102.0975 32907.7447 32324.43 

33043 32203 32203.0606 32531.0429 32618.4834 32452.1009 31989.47 

32829 33043 33043.2791 33338.9176 33314.4016 32699.2677 32932.85 

33095 32829 32828.9002 33031.0147 33192.8211 32940.2821 33480.57 

33485 33095 33094.9197 33356.0601 33350.4122 33084.7639 33603.53 

33666 33485 33484.5196 33651.2007 33790.4828 33347.1154 33671.1 

35140 33666 33666.0798 33794.6528 33960.6677 33661.6902 33851.14 

34721 35140 35139.6985 34926.1540 35353.4672 34559.3495 34676.64 

35015 34721 34720.5504 34547.2221 35065.6569 34999.7232 35140.3 

35408 35015 35014.4997 34887.2350 35247.6082 35042.1766 35396.82 

34861 35408 35407.6796 35108.2379 35720.9339 35257.9318 35186.02 

35169 34861 34860.5605 34727.4115 35196.8809 35186.0090 34850.95 

35021 35169 35168.7296 35002.2839 35444.5058 35103.9510 34719.4 

35003 35021 35021.01015 34844.72488 35369.7569 35103.3650 34799.38 

RMSE 540.21 540.2087 525.7264 534.1345 514.5627 478.1365* 

MAPE 0.012 0.012 0.0114 0.0438 0.0112 0.0093* 
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The line plot of the forecasts of the proposed method and the original observations are 

given in Figure 6.5.  

 

Figure 6.5 Line plot of forecasts of the proposed method and the test data for BIST100-

2009 (ntest=15) 

6.2.2 Istanbul Stock Exchange Data for 2010 

 

Figure 6.6 Line plot of Istanbul stock exchange data for 2010 

Observations are daily determined between 4.1.2010 and 31.5.2010 for Istanbul stock 

exchange data set. The line plot of the observations is given in Figure 6.6. 
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For the BIST2010 data set, ARMA-T1FF with 3 clusters, 2 lags for AR part, 2 lags for 

MA part and the alternative methods are compared, the best result, in terms of RMSE 

value, is obtained from fuzzy time series network (FTS-N) when ntest equals to 7. 

However, in terms of both MAPE and RMSE values, the proposed method has the 

second best result. The line plot of the forecasts obtained by ARMA-T1FF and test data 

are given in Figure 6.7. 

Table 6.5 Results obtained for BIST100-2010 when ntest=7 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

54112 54450 54519.9728 54249.1522 54349.0364 53724.46 54882.7 

54558 54112 54123.0381 54460.1322 54031.7912 54316.22 54471.58 

52257 54558 54545.9726 54750.9949 54601.6229 54515.04 54235.21 

54104 52257 52321.1798 53127.2583 52430.3252 53164.05 52663.39 

54498 54104 54053.5790 54013.4820 54110.8198 53774.49 54454.25 

55234 54498 54485.5036 54714.6329 54561.3348 54475.41 54378.89 

54385 55234 55212.7243 55031.5905 55099.6774 55032.93 55091.35 

RMSE 1221 1208.1 1077.4 1179.9 1049.5* 1057.097 

MAPE 0.0183 0.0185 0.0143* 0.0179 0.0159 0.0157 

 

 

Figure 6.7 Line plot of forecasts of the proposed method and the test data for BIST100-

2010 (ntest=7) 

For BIST100-2010, ARMA-T1FF method achieved the best performance when the 

number of clusters is 5, the number of lags for AR part is 1, and the number of lags for 

MA part is 1, and ntest equals to 15. It is obvious from Table 6.6 that the minimum 

RMSE and MAPE values are obtained from the proposed method.  
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Table 6.6 Results obtained for BIST100-2010 when ntest=15 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

56448 52687 52687.0376 52671.4839 51770.5326 54619.4282 56147.56 

56462 56448 56447.9172 56424.4092 56908.1789 55442.8972 56265.68 

57976 56462 56461.7197 56438.4080 56108.9606 55794.0364 55005.73 

57930 57976 57976.4266 57902.0523 57735.3283 56291.3273 56693.63 

55748 57930 57929.6510 57859.4106 57827.3571 56251.8566 56421.07 

56071 55748 55747.9280 55718.0677 54773.4417 56069.5756 56587.04 

56978 56071 56071.0828 56045.3497 55595.0758 55922.8268 58431.59 

54450 56978 56978.2300 56949.4656 56677.4691 56545.4899 55571.79 

54112 54450 54449.9356 54397.9510 53543.0067 55431.5277 52984.81 

54558 54112 54111.6074 54057.7081 53788.6813 54495.6420 54419 

52257 54558 54558.1501 54507.2257 54475.0417 54629.5540 53166.65 

54104 52257 52257.1206 52274.9258 51697.3757 53634.9310 51463.42 

54498 54104 54103.4593 54049.6925 54377.8428 53584.4442 54183.15 

55234 54498 54497.9413 54446.4890 54445.1352 53960.8837 54071.15 

54385 55234 55233.6638 55194.7477 55221.3386 54360.6331 55612.92 

RMSE 1611.5 1611.5 1603 1852 1357.4 1332.159* 

MAPE 0.0220 0.022 0.0220 0.0264 0.0202 0.019* 

The actual values and the forecasts are drawn in Figure 6.8. 

 

Figure 6.8 Line plot of forecasts of the proposed method and the test data for BIST100-

2010 (ntest=15) 
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6.2.3 Istanbul Stock Exchange Data for 2011 

Observations are daily determined between 3.1.2011 and 31.5.2011 for Istanbul stock 

exchange data set. The line plot of the observations is given in Figure 6.9. 

 

Figure 6.9 Line plot of Istanbul stock exchange data for 2011 

In the application of BIST2011, ARMA-T1FF has the best forecasting results when the 

number of clusters is 5, the number of lags for AR is 3, the number of lags for MA is 1 

and ntest equals to 7. The outcomes are listed in Table 6.7. When the outcomes are 

compared with the other methods, the proposed method has better results than the 

others.  

Table 6.7 Results obtained for BIST2011 when ntest=7 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

63210 63299 63300.0961 63005.5729 63466.9715 63912.8711 64884.84 

64561 63210 63210.1907 63518.9317 63119.9928 64013.4641 64650.51 

63609 64561 64556.7450 64354.6129 64592.1226 64045.7269 63935.44 

63755 63609 63612.5739 63558.6571 63495.1485 63348.6914 63559.22 

62407 63755 63754.8581 63924.8197 64037.9655 63184.7404 62723.25 

61492 62407 62412.0619 62532.2333 62458.0164 63006.9784 62175.9 

63046 61492 61494.8806 62142.8242 61844.8620 62827.6759 62834.91 

RMSE 1057.6 1057 919.9204 1083.2 765.07 714.1724* 

MAPE 0.0144 0.0144 0.0128 0.0153 0.0105 0.0079* 

The line plot of actual values and the forecasts are given in the Figure 6.10. 
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Figure 6.10 Line plot of forecasts of the proposed method and the test data for 

BIST100-2011 (ntest=7) 

The outcomes for BIST100-2011 when ntest equals to 15 are shown in Table 6.8. In 

order to get the best performance from the proposed method, the number of clusters is 

taken as 3, the number of lags for AR is taken as 2, and the number of lags for MA is 

taken as 1. Looking at the RMSE and MAPE values, the best outcomes are obtained 

from FTS-N, whereas the second best outcomes are obtained from the proposed 

method.  

Table 6.8 Results obtained for BIST2011 when ntest=15 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

67260 67956 67956.4910 67986.4979 67989.915 67256.2727 67130.36 

65643 67260 67260.0415 67387.0789 67104.3432 66767.8572 66591.77 

66535 65643 65643.4596 65827.6542 65662.2549 65618.5737 65451.57 

64585 66535 66535.0640 66423.4340 66567.4146 65591.3056 65160.04 

65418 64585 64585.3642 64643.7671 64011.6970 64776.3059 64523.64 

65385 65418 65417.8583 65291.1844 65548.5084 64607.1340 64096.48 

63733 65385 65385.3824 65105.5561 64751.7222 64865.8440 64412.71 

63299 63733 63733.2822 63647.0510 63734.6339 63912.4009 63559.76 

63210 63299 63298.6121 63615.3071 63500.6678 63120.6522 62597.67 

64561 63210 63209.8865 63782.2304 63121.8594 62925.9354 62356.36 

63609 64561 64561.2999 64968.5387 64690.3811 63661.8660 63079.91 

63755 63609 63609.3804 63569.8332 63565.9730 63571.0872 63262.51 

62407 63755 63755.3392 64074.4171 64245.5920 63339.1152 62956.39 

61492 62407 62407.5197 62966.4493 62360.5299 62617.4991 62324.37 

63046 61492 61491.7777 62465.2460 61782.2044 61648.5591 61212.24 

RMSE 1129.6 1129.7 1095.7 1145.6 916.5411* 1017.41 

MAPE 0.015 0.015 0.0146 0.0156 0.0121* 0.0134 
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The line plot which includes the actual values and the outcomes of the proposed method 

are given in Figure 6.11. 

 

Figure 6.11 Line plot of forecasts of the proposed method and the test data for 

BIST100-2011 (ntest=15) 

6.2.4 Istanbul Stock Exchange Data for 2012 

Observations are daily collected from 2.1.2012 to 31.5.2012 for Istanbul stock exchange 

data set. The line plot of the observations is given in Figure 6.12. 

 

Figure 6.12 Line plot of Istanbul stock exchange data for 2012 
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For the proposed method, 4 clusters, 3 lags for the AR part, and 2 lags for the MA part 

are specified. For the BIST100-2012 data set, the optimum results are obtained when 

ntest equals to 7 is shown in Table 6.9. It can be seen that the best forecasts are obtained 

from the proposed method in terms of RMSE value and the best forecasts are obtained 

from ARIMA, ES, and FTS-N in terms of MAPE value.  

Table 6.9 Results obtained for BIST2012 when ntest=7 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

55734 57079 57079.43 57327.82 57613.6733 56543.5124 56252.41 

54917 55734 55734.45 55898.05 56208.7363 55914.2919 54934.57 

54810 54917 54916.68 55115.84 55545.8026 54972.0851 54262.19 

54844 54810 54809.95 55051.55 55577.9826 54633.4822 54414.4 

55450 54844 54843.93 55094.09 55556.8610 54617.8677 54486.92 

55125 55450 55449.46 55732.83 56044.2703 54993.1450 54954.94 

55099 55125 55125.32 55353.34 55689.9261 55002.5204 54478.25 

RMSE 650.56 650.7387 774.6103 1034.2 590.3545 547.13* 

MAPE 0.0084* 0.0084* 0.0111 0.0162 0.0084* 0.0085 

The line plot of the actual values and the forecasts of the proposed method are given in 

Figure 6.13. 

 

Figure 6.13 Line plot of forecasts of the proposed method and the test data for 

BIST100-2012 (ntest=7) 

For the BIST100-2012 data set, the parameters of the proposed method, the number of 

clusters, the number of lags for the AR part, and the number of lags for the MA part are 

taken as 3,2, and 1 respectively when ntest equals to 15. The minimum RMSE and 
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MAPE values among the methods in the Table 6.10 are obtained from the proposed 

method.  

Table 6.10 Results obtained for BIST2012 when ntest=15 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

58873 58821 58820.75 59066.53 59213.7731 58263.3548 58256.19 

57854 58873 58872.62 59084.72 59269.9821 58520.0566 58303.12 

57453 57854 57853.87 58090.3455 58184.8034 57910.4045 57465.81 

58101 57453 57453.05 57737.36 57895.7200 57352.4403 57116.75 

57331 58101 58100.84 58396.97 58637.9425 57625.5809 57618.03 

56936 57331 57331.18 57603.89 57869.0021 57352.9884 57099.44 

56540 56936 56935.76 57240.52 57463.1991 56874.2661 56555.45 

57079 56540 56539.64 56855.13 57239.9156 56509.5018 56063.19 

55734 57079 57079.46 57421.46 57781.0406 56717.8621 56461.83 

54917 55734 55734.35 56014.45 56433.7639 56055.8249 55329.15 

54810 54917 54916.62 55218.22 55638.0920 55140.4222 54546.99 

54844 54810 54809.94 55143.91 55762.3794 54823.2672 54533.63 

55450 54844 54843.93 55185.19 55733.9022 54811.1181 54731.61 

55125 55450 55449.5 55823.22 56244.4720 55193.6584 55193.92 

55099 55125 55125.29 55452.13 55899.0899 55181.5927 55460.04 

RMSE 620.7892 620.829 783.3547 1037.6 581.71 529.69* 

MAPE 0.0088 0.0088 0.0117 0.0161 0.0087 0.0076* 

The line plot of the actual values and the forecasts are given in Figure 6.14. 

 

Figure 6.14 Line plot of forecasts of the proposed method and the test data for 

BIST100-2012 (ntest=15) 
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6.2.5 Istanbul Stock Exchange Data for 2013 

Observations are daily collected from 2.1.2013 to 31.5.2013 for Istanbul stock exchange 

data set. The line plot of the observations is given in Figure 6.15. 

 

Figure 6.15 Line plot of Istanbul stock exchange data for 2013 

For the BIST100-2013 data set, the best performance of the proposed method is 

observed when the number of clusters is 5, the number of lags for AR is 2, and the 

number of lags for MA is 1. When the proposed method is compared with the other 

methods, the minimum RMSE and MAPE values are obtained from the proposed 

method.  

Table 6.11 Results obtained for BIST2013 when ntest=7 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

91351 93179 93179 91863.3837 93690.6620 91237.5541 91132.14 

91016 91351 91351 91859.8407 91551.1456 90535.9969 91013.62 

90547 91016 91016 91201.0054 91026.1888 89889.0609 89887.33 

89916 90547 90547 90361.1494 90740.4976 89507.4975 89455.98 

87175 89916 89916 90306.7637 90092.2830 88989.4408 89049.92 

87170 87175 87175 86568.6308 86997.2777 87064.3989 87459.45 

85990 87170 87170 86566.4256 86875.9782 86413.8639 86082.61 

RMSE 1361.6 1361.6 1314.9 1511.6 786.13 783.9803* 

MAPE 0.0116 0.0116 0.0109 0.0131 0.0065 0.0058* 

The line plot of the forecasts and the actual values are given in Figure 6.16. 
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Figure 6.16 Line plot of forecasts of the proposed method and the test data for 

BIST100-2013 (ntest=7) 

For the BIST100-2013 data set, the best performance of the proposed method is reached 

when the number of clusters is 2, the number of lags for AR is 1, the number of lags for 

MA is 1 and ntest equals to 15. When the results are compared, the best forecasts are 

observed by the proposed method in terms of RMSE. In terms of MAPE, however, the 

best forecasts are observed by both the proposed method and FTS-N.  

Table 6.12 Results obtained for BIST2013 when ntest=15 

Test Data ARIMA ES MLP-ANN FF FTS-N ARMA-T1FF 

89765 89569 89568.93 89442.7721 89271.3321 89472.338 90698.97 

91287 89765 89765.16 89691.9695 89372.3950 90876.544 90816.47 

92112 91287 91286.96 91255.3193 91224.7881 90571.870 92388.22 

91947 92112 92111.98 91926.1694 92010.3770 91438.080 93165.47 

91925 91947 91946.76 91671.0437 91559.0460 91567.412 93011.24 

90165 91925 91924.84 91666.6506 91268.3629 91575.096 92631.52 

91191 90165 90165.35 89848.3890 89383.7758 90315.959 91031.24 

93179 91191 91190.69 91113.1438 90378.4375 90726.661 91964.58 

91351 93179 93178.63 92989.5045 92726.4317 92195.589 93229.75 

91016 91351 91351.62 90946.0403 90939.8585 91328.657 91016.63 

90547 91016 91016.35 90802.1309 90135.1729 90894.023 89626.58 

89916 90547 90546.81 90351.8423 89724.7111 90388.258 89066.75 

87175 89916 89916.48 89741.0422 89296.9503 89837.628 88445.05 

87170 87175 87174.87 86848.7707 86321.8485 87750.943 85757.44 

85990 87170 87170.23 87165.4927 86173.7953 87223.693 85778.08 

RMSE 1268.7 1268.7 1232.5 1278.6 1207.9 1159.598* 

MAPE 0.0109 0.0109 0.0107 0.0108 0.0106* 0.0106* 
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The line plot of the actual values and the forecasts are given in Figure 6.17. 

 

Figure 6.17 Line plot of forecasts of the proposed method and the test data for 

BIST100-2013 (ntest=15) 

For Istanbul stock exchange data sets, the results given above show that the proposed 

method outperforms the other methods overall in terms of RMSE and MAPE values.  

6.3 Application of Taiwan Stock Exchange Data Set 

In order to evaluate the performance of the proposed method for Taiwan stock exchange 

data set the following methods are chosen: Chen(1996), Chen and Chang (2010), Chen 

and Chen(2011), and Chen et al. (2012). The results of the methods in Table 6.13 are 

taken from the paper of Bas and et al. [36]. 

Table 6.13 Results obtained for TAIEX  

   

RMSE 

    Methods 1999 2000 2001 2002 2003 2004 Mean 

Chen (1996) 120 176.32 147.84 101.18 74.46 84.28 117.34 

Chen and Chang (2010) 101.97 129.42 113.33 66.82 53.51 60.48 87.58 

Chen and Chen (2011) 112.47 123.62 115.33 71.01 58.06 57.73 89.7 

Chen et al. (2012) 99.87 119.98* 114.47 67.17 52.49 52.27* 84.37 

ANFIS (1993) 101.16 137.02 114.72 65.99 57.04 61.36 89.54 

MANFIS (2014) 101.94 124.92 112.47 62.57* 52.33* 53.66 84.64 

ARMA-T1FF 98.33* 128.18 106.48* 65.14 52.38 53.78 84.05* 
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For Taiwan stock exchange data sets from 1999 to 2004, the results obtained by using 

the proposed method are listed in Table 6.13. For 1999, the best forecasts are reached 

when the number of clusters is 3, the number of lags for AR part is 3, and the number of 

lags for MA part is 1. For 2000, the number of clusters is taken as 3, the model order for 

AR part is taken 1, and the model order for MA part is taken as 1. For 2001, the model 

reached the best forecasts when the number of clusters, lags for AR and MA part are 

3,1, and 1 respectively. For 2002, the best model is obtained when the number of 

clusters is 2, the numbers of lags for AR and MA parts are 1 and 1, respectively. For 

2003, the minimum RMSE value is obtained when the number of clusters is 2, the 

number of lags for AR part is 1, and the number of lags for MA part is 1. The best 

model for 2004 is reached when the number of clusters is 3, the number of lags for AR 

is 1, and the number of lags for MA part is 1. The number of iterations and the number 

of particles are set to 100 and 30 respectively for all the years. Under these conditions, 

the forecasting results from the proposed method and the other methods are compared in 

terms of the root mean squared errors. For 1999 and 2001, the best forecasting result is 

obtained from the proposed method. For 2002, 2003, and 2005, MANFIS outperforms 

the other methods. However, looking at the means of the years we see that the proposed 

method has the best forecasting result than others. The line plot of the proposed method 

and the other methods by years is given in Figure 6.18. 

 

Figure 6.18 Line plot of forecasts of the proposed method and the other methods from 

1999 to 2004. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

Fuzzy inference systems are widely used for time series forecasting problems which 

mostly rely on uncertain data. These systems are established on data and fuzzy cluster 

theory. Most of the fuzzy inference systems are rule based. Since it is difficult to define 

rules, Turksen [51] has introduced a novel fuzzy inference system, type-1 fuzzy 

functions, which is free of rules. In this thesis, a new method which uses type-1 fuzzy 

functions as autoregressive and moving average model terms is proposed. The proposed 

method is the first recurrent fuzzy functions approach. In order to estimate the 

coefficients of the model, particle swarm optimization method is preferred. The 

proposed approach has the following advantages:  

 Unlike most of the fuzzy inference systems, proposed method does not need 

rules to be defined. 

 The assumptions of classical time series forecasting methods are not needed for 

the proposed method. In other words, for recurrent type-1 fuzzy functions, there 

is no assumption on time series. 

 Since the function that is to be optimized is not a derivative, particle swarm 

optimization algorithm is preferred to estimate the coefficients of the model. The 

advantage of particle swarm optimization is that it is less likely to stick around 

the local optimum.  

 Recurrent type-1 fuzzy functions approach is the first method that uses recurrent 

learning approach.  

 The number of inputs is fewer than the other proposed methods because of the 

contribution of the moving average model.    

 The proposed method gives better forecasting results than the most of the 

methods in literature.    
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When we look at the results of the applications, recurrent type-1 fuzzy functions has 

overall better forecasting results than other methods. For Australian Beer Consumption 

(ABC) data set, we see that the proposed method outperforms the other methods in 

terms of Root Mean Squared Errors (RMSE) and Mean Absolute Percentage Error 

(MAPE). For Istanbul Stock Exchange data set from 2009 to 2013, recurrent type-1 

fuzzy functions approach, in terms of RMSE and MAPE, has better forecasting results 

most of the time. For TAIEX data set, the mean of the RMSE of the years is taken as the 

performance criteria of the models. Considering the mean of RMSE, the proposed 

method gives the best result. In summary, considering ABC, BIST100, and TAIEX data 

sets, recurrent type-1 fuzzy functions approach gives better forecasting results. 

Therefore, we are able to say that the proposed method gives satisfactory forecasting 

result for some time series. 

  



  

48 

 

REFERENCES 

[1] Box, G.E.P and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and 

Control, Holdan-Day, San Francisco, CA. 

[2] Zadeh, L.A. (1965). “Fuzzy Sets”, Information and Control, 8:338-353. 

[3] Zadeh, L.A., (1973). “Outline of a New Approach to the Analysis of Complex 

Systems and Decision Process”, IEEE Transactions on Systems, Man and 

Cybernetics, 3(1):28-44.  

[4] Mamdani, E.H. and Assilian, S. (1975) “An Experiment in Linguistic Synthesis 

with a Fuzzy Logic Controller” , Int J Man Math Stat, 7(1):1-13 

[5] Takagi, T. and Sugeno, M. (1985). “Fuzzy Identification of Systems and its 

Applications to modeling and control”, IEEE Transactions on Systems, Man 

and Cybernetics, 15(1):116-132. 

[6] Jang, J.S.R (1993). “ANFIS: Adaptive-Network-Based Fuzzy Inference 

System”, IEEE Transactions on Systems, Man and Cybernetics, 23(3):665-685 

[7] Turksen, I.B., (2008). “Fuzzy Functions with LSE”, Applied Soft Computing, 

8(3):1178-1188. 

[8] Song, Q. and Chissom, B.S. , (1993a). “Fuzzy Time Series and its Models”, 

Fuzzy Sets Systems, 54:269-277. 

[9] Song, Q. and Chissom, B.S. , (1993b). “Forecasting Enrollments with Fuzzy 

Time Series – Part I”, Fuzzy Sets Systems, 54:1-10. 

[10] Song, Q. and Chissom, B.S. , (1994). “Forecasting Enrollments with Fuzzy 

Time Series – Part II”, Fuzzy Sets Systems, 62(1):1-8. 

[11] Chen, S.M. (1996). “Forecasting Enrollments with Fuzzy Time Series”, Fuzzy 

Sets Systems, 81:311-319. 

[12] Huarng, K. and Yu, H.K. (2006). “The Application of Neural Networks to 

Forecast Fuzzy Time Series”, Physica A, 363:481-491. 

[13] Kuo, R.J., Chen, C.H., and Hwang, Y.C. (2001). “An Intelligent Trading 

Decision Support System Through Integration of Genetic Algorithm Based 

Fuzzy Neural Network and Artifical Neural Network , Fuzzy Sets and 

Systems”, 118:21-45. 

[14] Chen, S.M. and Chung, N.Y. (2006). “Forecasting Enrollments Using High-

Order Fuzzy Time Series and Genetic Algorithms”, International Journal of 

Intelligent Systems, 21:485-501. 

[15] Kim, D. and Kim, C. (1997). “Forecasting Time Series with Genetic Fuzzy 

Predictor Ensemble”, IEEE Transactions on Fuzzy Systems, 5(4):523-535. 



  

49 

 

[16] Egrioglu, E. (2012). “A New Time Invariant Fuzzy Time Series Forecasting 

Method Based on Genetic Algorithm”, Advances in Fuzzy System, 2012.  

[17] Bas, E., Uslu, V.R., Yolcu, U. and Egrioglu, E. (2014). “A Modified Genetic 

Algoirthm for Fuzzy Time Series to Find the Optimal Interval Length”, 

Applied Intelligence, 42(2):453-463. 

[18] Egrioglu, E., Aladag, C.H., Yolcu, U., Uslu, V.R. and Basaran, M.A. (2009). 

“A new Approach Based on Artificial Neural Networks for High Order 

Multivariate Fuzzy Time Series”, Expert Systems with Applications, 36:10589-

10594. 

[19] Chen, S.M. and Tanuwijaya, K. (2011). “Multivariate Fuzzy Forecasting Based 

on Fuzzy Time Series and Automatic Clustering Techniques”, Expert Systems 

with Applications, 38:10594-10605. 

[20] Jilani, T.A., Burney, S.M.A and Ardil, C. (2008). “Multivariate High Order 

Fuzzy Time Series Forecasting for Car Road Accidents”, International Journal 

of Computational Intelligence, 4:15-20. 

[21] Huarng, K.H (2007). “A Multivariate Heuristic Model for Fuzzy Time-Series 

Forecasting”, IEEE Transactions on System, Man and Cybernetics B, 

37(4):836-846. 

[22] Chau, K.W. (2006). “Particle Swarm Optimization Training Algorithm for 

ANNs in Stage Prediction of Shing Mun River”, Journal of Hydrology, 

329:363-367. 

[23] Park, F.I., Lee, D.J., Song, C.K and Chun, M.G (2010). “TAIEX and KOSPI 

Forecasting Based on Two-Factor High-Order Fuzzy Time Series and Particle 

Swarm Optimization”, Expert Systems with Applications, 37: 959-967. 

[24] Kuo, I.H., Horng, S.J., Kao, T.W., Lin, T.L., Lee, C.L. and Pan,Y. (2009). “An 

Improved Method for Forecasting Enrollments Based on Fuzzy Time Series 

and Particle Swarm Optimization”, Expert Systems with Applications, 

36:6108-6117. 

[25] Aladag, C.H., Yolcu, U., Egrioglu, E. and Dalar, A.Z. (2012). “A New Time 

Invariant Fuzzy Time Series Method Based on Particle Swarm Optimization”, 

Applied Soft Computing, 12:3291-3299. 

[26] Huang, C.M., Huang, C.J. and Wang, M.L. (2005). “A Particle Swarm 

Optimization to Identifying the ARMAX Model for Short-Term Load 

Forecasting”, IEEE Transactions on Power Systems, 20(2):1126-1133. 

[27] Catalao, J. P. S., Pousinho, H. M. I., and Mendes, V.M.F. (2011). “Hybrid 

Wavelet-PSO-ANFIS approach for Short-Term Wind Power Forecasting in 

Portugal”, IEEE Transactions on Sustainable Energy, 2(1):50-59.   

[28] Chabaa, S., Zeroual, A., and Antari, J. (2009). “ANFIS Method for Forecasting 

Internet Traffic Time Series”, IEEE Microwave Symposium, 7-12 June 2009, 

Boston. 

[29] Chang, B. (2008). “Resolving the Forecasting Problems of Overshoot and 

Volatility clustering using ANFIS Coupling Nonlinear Heteroscedasticity with 

Quantum Tuning”, Fuzzy Set and Systems, 159(23):3183-3200.   



  

50 

 

[30] Chen, B. and Ma, Z. (2009). “Short-Term Traffic Flow Prediction Based on 

ANFIS”, ICCSN `09, International Conference on Communication Software 

and Networks, 27-28 February 2009, Hvar.   

[31] Chen, D. and Zhang, J. (2005). “Time Series Prediction Based on Ensemble 

ANFIS”, Proceddings of the Fourth International Conference on Machine 

Learning and Cybermetics, 3552-3556.   

[32] Egrioglu, E. and Yolcu, U. (2014). “A new Adaptive Network Based Fuzzy 

Inference System for Time Series Forecasting”, Aloy Journal of Soft 

Computing and Applications, 2:25-32.   

[33] Beyhan, S. and Alci, M. (2010). “Fuzzy Functions Based ARX Model and 

New Fuzzy Basis Function Models for Nonlinear System Identification”, 

Applied Soft Computing, 10:439-444. 

[34] Aladag, C.H., Turksen, I.B., Dalar, A.Z., Egrioglu, E. and Yolcu, U. (2014). 

“Application of Type-1 Fuzzy Functions Approach for Time Series 

Forecasting”, Turkish Journal of Fuzzy Systems, 5(1):1-9. 

[35] Tseng, F.M., Yu, H.C. and Tseng, G.H. (2002). “Combining Neural Network 

Model with Seasonal Time Series ARIMA Model”, Technological Forecasting 

and Social Change, 69:71-87. 

[36] Bas, E., Egrioglu, E., Yolcu, U. and Aladag, C.H. (2015). “Fuzzy Time Series 

Network used to Forecast Linear and Nonlinear Time Series”, Applied 

Intelligence, 43(2):343-355. 

[37] Lee, Y.S. and Tong, L.I. (2011). “Forecasting Time Series Using a 

Methodology Based on Autoregressive Integrated Moving Average and 

Genetic Algorithm”, Knowledge-Based Systems, 24(1):66-72. 

[38] Chen, K.Y. and Wang, C.H. (2007). “A Hybrid SARIMA and Support Vector 

Machines in Forecasting the Production Values of the Machinery Industry in 

Taiwan”, Expert System Applications, 32(1):254-264. 

[39] Pai, P.F. and Lin, C.S., (2005). “A Hybrid ARIMA and Support Vector 

Machines Model in Stock Price Forecasting”, Omega, 33(7):497-505. 

[40] Zhang, G. (2003). “Time Series Forecasting Using a Hybrid ARIMA and 

Neural Network Model”, Neurocomputing, 50:159-175. 

[41] BuHamra, S., Smaoui, N. and Gabr, M. (2003). “The Box-Jenkins Analysis 

and Neural Networks: Prediction and Time Series Modeling”, Applied 

Mathematical Modelling, 27(10):805-815. 

[42] Jain, A. and Kumar, A.M., (2007). “Hybrid Neural Network Models for 

Hydrological Time Series Forecasting”, Applied Soft Computing, 7:585-592. 

[43] Yolcu, U., Aladag, C.H. and Egrioglu, E. (2013). “A New Linear&Nonlinear 

Artifical Neural Network Model for Time Series Forecasting”, Decision 

Support Systems, 54(3):1340-1347. 

[44] Zimmermann, H. J., (2010). “Fuzzy Set Theory”, John Wiley&Sons, Inc. 

WIREs Computational Statistics, 2:317-332. 

[45] Hathaway, R.J. and Bezdek, J.C. (1993). “Switching Regression Models and 

Fuzzy Clustering”, IEEE Transactions on Fuzzy Systems, 1(3):195-204. 



  

51 

 

[46] Bezdek, J.C, Ehrlich, R. and Full, W. (1983). “FCM: The Fuzzy c-Means 

Clustering Algorithm”, Computers & Geosciences, 2(3):191-203. 

[47] Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997). Neuro-Fuzzy and Soft 

Computing: A Computational Approach to Learning and Machine Intelligence, 

First Edition, Prentice Hall, NJ. 

[48] Chennakesava, R.A. (2008). Fuzzy Logic and Neural Networks: Basic 

Concepts and Applications, New Age International Pvt Ltd Publishers, New 

Dellhi. 

[49] Nyugen, H. T. and Wu, B. (2006). Fundamentals of Statistics with Fuzzy Data, 

Springer, The Netherlands. 

[50] Fanelli, A. M., Pedrycz, W. and Petrosino, A. (2011). Fuzzy Logic and 

Applications, 9
th

 International Workshop, WILF 2011, Trani, Italy, Springer, 

Berlin. 

[51] Celikyilmaz, A. and Turksen, B. (2009). Modeling Uncertainty with Fuzzy 

Logic: with Recent Theory and Applications, Springer, Berlin. 

[52] Knapp, R. B., Fuzzy Sets and Pattern Recognition, 

http://hci.sapp.org/lectures/knapp/fuzzy/fuzzy.pdf, 26 October 2014. 

[53] Sugeno Fuzzy Models, http://www.bindichen.co.uk/post/AI/takagi-sugeno-

fuzzy-model.html, 26 October 2014. 

[54] Brockwell, P. J. and Davis, R.A. (2002).  Introduction to Time Series and 

Forecasting, Second Edition, Springer, Newyork. 

[55] Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate 

Methods, Second Edition, Pearson Education, Inc., USA. 

[56] Kennedy, J. and Eberhart, R. (1995). “Particle Swarm Optimization”, 

Proceedings of the IEEE International Conference on Neural Networks, IEEE 

press, Piscataway, NJ, 1942-1948. 

[57] R Core Team. R: A language and environment for statistical Computing, R 

Foundation for Statistical Computing, Vienna, Austria, http://www.R-

project.org/, 7 May 2016. 

[58] Egrioglu, E. and Aladag, C.H., Yolcu, U., Bas, E. (2014). “A New Adaptive 

Network Based Fuzzy Inference System for Time Series Forecasting”, Aloy 

Journal of Soft Computing and Applications, 2(1): 25-32.  

 

http://www.bindichen.co.uk/post/AI/takagi-sugeno-fuzzy-model.html
http://www.bindichen.co.uk/post/AI/takagi-sugeno-fuzzy-model.html
http://www.r-project.org/
http://www.r-project.org/


  

52 

 

APPENDIX-A 

THE R CODES OF THE PROPOSED METHOD 

The R codes of the proposed method are listed below. In the first algorithm, the codes 

of the evaluation function are given. In the second algorithm, the codes of the proposed 

method are given. 

Algorithm 1 

The codes of evaluation function for particle swarm optimization are given below. 

Inputs of the evaluation function 

x: Input matrix 

y: Original time series values 

B: coefficients of the regression equation 

c: number of cluster  

evalFunc<- function(x,y,B,c)  

{ 

  fitness<-numeric(c) 

  for (i in 1:c) 

  { 

    fitness[i]<- sum(  t(y -  x[,,i] %*% B[,i]) %*% (y -  x[,,i] %*% B[,i] ) ) #SSE  

  } 

  fit<-sum(fitness) 

  return(list(fit)) 

} 
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Algorithm 2 

R codes of recurrent type-1 fuzzy functions approach are given below. 

Inputs of the proposed method 

numberParticle: the number of particles  

c: the number of clusters 

da: data set 

iterasyon: the number of iterations 

lengthTest: the length of the test data set 

p: the number of lags for AR part 

T1FFPSOARMA <- function (numberParticle,c,da,iterasyon,lengthTest,p) 

{ 

  da<-as.matrix(da) 

  numberParam<-p+4 

  da1<-embed(da,p) 

  lengthTrain<-length(da1[,1]) - lengthTest 

  training<-embed( da,p)[1:lengthTrain, ]  

  constant<-rep(1,lengthTrain) 

  et1<-numeric(lengthTrain) 

  x1<-as.matrix(x1<-cbind( constant,training[,2:p],et1)) 

  y<-da[1:lengthTrain] 

  cc<-rep(1,lengthTest) 

  et2<-numeric(lengthTest) 

  test<-as.matrix(cbind(cc,da1[(lengthTrain+1):length(da1[,1]),2:p],et2)) 

  cl<-cmeans(x1,c,100,verbose=TRUE,m=2) # degrees of memberships and cluster 

centers are calculated 

  v<-cl$centers[,2] 
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  mu<-cl$membership 

  fore<-numeric(length(test[,1])*c) 

  fore<-matrix(fore,length(test[,1]),c) 

  dista<-numeric(length(test[,1])*c) 

  dista<-matrix(dista,length(test[,1]),c) 

  distaa<-numeric(length(test[,1])*c) 

  distaa<-matrix(dista,length(test[,1]),c) 

  sumdist<-numeric(c) 

  ##degrees of memberships are being calculated for test data set  

  for (i in 1:length(test[,1])) 

    for(j in 1:c) 

   { 

      dista[i,j]<-dist(rbind( v[j] , test[i,])) 

    }   

  for (i in 1:length(test[,1])) 

  { 

    for(j in 1:c) 

    { 

      for (k in 1:c) 

      { 

        sumdist[k]<-(dista[i,j]/dista[i,k])^2 

      } 

      distaa[i,j]<- 1 / sum(sumdist) # degrees of memberships for forecasts are being 

calculated. 

    }     

  }   



  

55 

 

  train<-array(0,dim=c(lengthTest,numberParam,c)) 

  for(i in 1:c) 

  train[,,i]<-as.matrix(cbind(distaa[,i],exp(distaa[,i]),distaa[,i]^2,test)) 

  ## training data set is being obtained. 

  x<-array(0,dim=c(length(training[,1]),numberParam,c,numberParticle)) 

  xx<-array(0,dim=c(length(training[,1]),numberParam,c)) 

  for(j in 1:numberParticle) 

    for(i in 1:c) 

    { 

      x[,,i,j]<-cbind(mu[,i],exp(mu[,i]),(mu[,i] ^2),x1) 

    } 

## initial positions and initial velocities are being generated 

  position<-

array(rnorm(numberParam*numberParticle*c),dim=c(numberParam,c,numberParticle)) 

  position1<-array(0,dim=c(numberParam,c,numberParticle)) 

  v<-

array(rnorm(numberParam*numberParticle*c),dim=c(numberParam,c,numberParticle)) 

  v1<-array(0,dim=c(numberParam,c,numberParticle))   

## initial personal bests are being obtained  

  pbest<-position 

  gbest<-pbest[,,1]    

  Ytah<-matrix(numeric(length(training[,1])*c), length(training[,1]),c) 

  Ytah1<-numeric(length(training[,1])) 

  ## initial disturbance terms (et) are being obtained. 

  for (k in 1:numberParticle) 

  { 

    et<-0  
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    for(n in 1:length(training[,1])) 

    {   

      x[n,numberParam,,k]<-et 

      for(j in 1:c)  

      { 

        Ytah[n,j]<-x[n,,j,k] %*% position[,j,k] 

      } 

      Ytah1[n]<-mu[n,]%*%Ytah[n,] 

      et<-y[n] - Ytah1[n]       

    }     

  }  

  ## initial global best value is being obtained 

  for (k in 1:numberParticle) 

  { 

    if ( evalFunc(x[,,,k],y,pbest[,,k],c)[[1]] < evalFunc(x[,,,k],y,gbest,c)[[1]] ) 

      gbest<-pbest[,,k]       

  } 

  ##disturbance terms are being obtained for test data set 

  Yfore<-array(0,c(length(train[,1,1]),c)) 

  Yfore1<-numeric(length(train[,1,1])) 

  ett<-numeric(c) 

  for(n in 1:length(train[,1,1])) 

  {   

    train[n,numberParam,]<-ett 

    for(j in 1:c)  

    { 
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      Yfore[n,j]<-train[n,,j] %*% gbest[,j] 

    } 

    Yfore1[n]<-mu[n,]%*%Yfore[n,] 

    ett<-da1[lengthTrain:length(da1[,1]),1][n] - Yfore1[n] 

    }      

  i<-0 

  repeat 

  { 

    i<-i+1 

    ## new positions and velocities are being calculated 

    for (k in 1:numberParticle) 

    { 

      r1<-runif(n=1,min=0,max=1) 

      r2<-runif(n=1,min=0,max=1) 

      for( j in 1:c) 

      {          

     v1[,j,k]<- v[,j,k] + 2*r1*(pbest[,j,k]-position[,j,k]) + 2*r2 * (gbest[,j] - position[,j,k])  

        for(l in 1:numberParam) 

          v1[l,j,k]<- max(-1,min(v1[l,j,k],1)) 

        position1[,j,k]<-position[,j,k]+v1[,j,k] 

      } 

    } 

    ## personal bests are being updated 

    for (k in 1:numberParticle) 

    { 

      if ( evalFunc(x[,,,k],y,position1[,,k],c)[[1]] < evalFunc(x[,,,k],y,pbest[,,k],c)[[1]] ) 
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        pbest[,,k]<- position1[,,k]    

    } 

    ##global best is being updated 

    for (k in 1:numberParticle) 

    {   

      if ( evalFunc(x[,,,k],y,pbest[,,k],c)[[1]] < evalFunc(x[,,,k],y,gbest,c)[[1]] ) 

      { 

        gbest<-pbest[,,k]   

        xx<-x[,,,k] 

      } 

    }    

    v<-v1 

    position<-position1 

    ## disturbance terms are being updated  

    for (k in 1:numberParticle) 

    { 

      et<-0  

      for(n in 1:length(training[,1])) 

      {   

        x[n,numberParam,,k]<-et 

        for(j in 1:c)  # forecast are being calculated for each cluster for training data set 

       { 

          Ytah[n,j]<-x[n,,j,k] %*% position[,j,k] 

        } 

        Ytah1[n]<-mu[n,]%*%Ytah[n,] 

        et<-y[n] - Ytah1[n]         
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      }     

    } 

    ########################### 

    ett<-0 

    for(n in 1:length(train[,1,1])) 

    {   

      train[n,numberParam,]<-ett 

      for(j in 1:c)  # forecasts are being calculated for each cluster for test data set 

      { 

        Yfore[n,j]<-train[n,,j] %*% gbest[,j] 

      } 

      Yfore1[n]<-mu[n,]%*%Yfore[n,] 

      ett<-da1[lengthTrain:length(da1[,1]),1][n] - Yfore1[n]       

    }      

    if (i==iterasyon) 

      break; 

  }    

##root mean squared error is being calculated 

  zz<-sqrt(sum((Yfore1-da1[(lengthTrain+1):length(da1[,1]),1])^2) / lengthTest)  

##mean absolute percentage error is being calculated 

  yy<-(1/lengthTest * sum(abs((da1[(lengthTrain+1):length(da1[,1]),1] - Yfore1) / 

da1[(lengthTrain+1) : length(da1[,1]),1]) )) 

  #### forecasts are being calculated 

  yytah<-array(0,dim=c(lengthTrain,c))   

  for (i in 1:c) 

  { 
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    yytah[,i]<-xx[,,i]%*%gbest[,i] 

  }   

  muu<-array(0,lengthTrain) 

  for (i in 1:lengthTrain) 

    round(muu[i]<-mu[i,]%*%yytah[i,]) 

  return(list(zz,yy,Yfore1)) 

} 
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