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ABSTRACT 

 

Drug Repurposing Effort for the Novel 

Acetylcholinesterase and Butyrylcholinesterase 

Targets: A Combined in silico and in vitro Study 

Hind ALJANABI 

 

Department of Chemistry 

Doctor of Philosophy Thesis 

 

Advisor: Prof. Dr. Barbaros NALBANTOĞLU 

Co-advisor: Prof. Dr. Serdar DURDAGI 

 

Alzheimer's disease (AD) is a central nervous system chronic condition that causes 

a decrease in cognitive control and language capacity. AD is associated with 

cholinergic deficiency, and various cholinesterase inhibitors, including naturally 

derived inhibitors, synthetic analogs, and hybrids have been developed to treat 

AD. The drugs available for AD are currently mainly cholinesterase inhibitors. 

However, the efficacy of these drugs was limited, as they can cause adverse side 

effects and are unable to stop the progression disease entirely. 

Initially, in the current study, 7922 small compounds were retrieved from NIH 

Chemical Genomics Center (NCGC) pharmaceutical collection (NPC) library to be 

screened through QSAR model developed from targets against AD. The molecules 

with higher AD therapeutic activity values (>0.75) were then used in the 26 

different toxicity-QSAR models. Binary QSAR models resulted in 10 hits that have 

high AD therapeutic activity and no toxicity. The selected hits were then screened 

against acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) targets 

using standard precision docking (SP), induce fit docking (IFD) and quantum 
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mechanics-polarized ligand docking (QPLD). Top IFD docking poses for five 

compounds were used in, initially, short (50 ns), and then long (100 ns) molecular 

dynamics (MD) simulations. Molecular Mechanics/Generalized Born Surface Area 

(MM/GBSA) binding free energy calculations were performed for the five top 

compounds. A similar protocol was also applied for three of the known AChE and 

BuChE inhibitors. Finally, based on MM/GBSA scores and their corresponding 

docking scores, three compounds were ordered, and their in vitro tests were 

performed. All compounds showed nM-level inhibition for both AChE and BuChE 

targets. The outcomes of this study may open a new perspective for the 

development of novel drugs with reduced toxicity and preserved pharmacological 

activity against AD. 

 

Keywords: Alzheimer disease, acetylcholinesterase, butyrylcholinesterase, 

molecular docking, MD simulations. 
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ÖZET 

 

Yeni Asetilkolinesteraz ve Butirilkolinesteraz 

Hedefleri için İlaç Yeniden Konumlandırma 

Çabası: Bir Birleşik in siliko ve in vitro Çalışma 

Hind ALJANABI 

 

Kimya Bölümü 

Doktora Tezi 

 

Danışman: Prof. Dr. Barbaros NALBANTOĞLU 

Eş-Danışman: Prof. Dr. Serdar DURDAGI 

 

Alzheimer hastalığı (AH) bilişsel kontrol ve konuşma kapasitesinde düşüşe sebep 

olan kronik bir merkezi sinir sistemi rahatsızlığıdır. AH kolinerjik yetersizlik ile 

ilişkilendirildiğinden, doğal bileşik türevleri, sentetik analoglar, hibrit molekülleri 

de içeren bir çok kolinesteraz inhibitörleri geliştirilmiştir. Ancak, bu moleküllerin 

etkinliği kısıtlıdır, çünkü bu moleküllerin hastalığın ilerlemesi tamamen 

durduramadığı gibi, olumsuz yan etkilere de olmaktadır.  

NIH Kimyasal Genomik Merkez (NKGM) dan elde edilen 7922 moleküle sahip 

farmasötik molekül koleksiyonu (NPC) kütüphanesi AH’a karşı kantitatif yapı-

aktivite ilişkisi (KYAİ) modelleriyle sanal olarak taranmıştır. Bu moleküllerden AH 

terapötik aktivitesi 0,75’ ten büyük olan moleküller, bir sonraki aşamada 26 farklı 

toksisite-KYAİ modelleriyle analiz edilmişler ve toksisite gösterip göstermedikleri 

tahmin edilmiştir. İkili KYAİ modelleri, AH terapötik aktivite değerleri yüksek ve 

toksisite göstermeyen 10 hit molekülü tahmin etmiştir. Bu 10 molekül, asetilkolin 

esteraz (AKE) ve butirilkolin esteraz (BKE) enzimlerine standard hassasiyetli (SH) 
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kenetleme, indüklenmiş uyum (IU) kenetleme ve kuantum polarized ligand (KPL) 

kenetleme yöntemleriyle bağlanmalarının enerjileri ölçülmüştür.  

En yüksek IU kenetleme pozları öncelikle 50 nanosaniyelik (ns) kısa, ardından 100 

ns lik uzun moleküler dinamik (MD) simulasyonlarına tabi tutulmuşlardır. 

Moleküler mekanik genelleştirilmiş Born yüzey alanı (MM/GBYA) bağlanma 

enerji hesaplamaları seçilen 5 molekül için yapılmıştır. Son olarak, moleküler 

kenetleme ve MMGBYA enerji skorlarına göre 3 molekül sipariş edilmiş, ve bu 

moleküllerin AKE ve BKE enzimlerine bağlanmaları in vitro testlerle belirlenmiştir. 

Her iki hedef için de, seçilen moleküller nanomolar (nM) afinite göstermişlerdir. 

Bu tez çalışmasının sonuçları, AH’ na karşı azaltılmış toksisite ve bunun yanında 

korunmuş farmakolojik aktiviteye sahip yeni ilaçların geliştirilmesi için yeni bir 

perspektif açabileceği düşünülmektedir. 

 

Anahtar Kelimeler: Alzheimer hastalığı, asetilkolinestaz, butirilkolinesteraz, 

moleküler yerleştirme, MD simülasyonları. 

 

 

 

 

 

 

 

 

 YILDIZ TEKNİK ÜNİVERSİTESİ  

FEN BİLİMLERİ ENSTİTÜSÜ 

 



 

1 

 

1 
INTRODUCTION 

 

 1.1 Literature Review 

Alzheimer's disease (AD) is a type of irreversible brain disease that creates 

memory, consideration, and behavior problems. AD affects around 50 million 

people worldwide and gets worse with severe behavioral and psychological 

symptoms over the long term [1, 2]. Symptoms firstly appear in most people with 

AD in their mid-60s [3]. Scientists keep sorting out the complicated brain 

alterations involved with AD onset and progress. It seems that brain alterations 

may start a decade or more before memory and other cognitive problems emerge. 

Through this pre-clinical stage of AD people seem devoid of symptoms, even while 

toxic changes occur in the brain. Neurological changes associated with AD include 

sediments of abnormal, stable, and insoluble protein throughout the brain. These 

sediments will congeal into what are known as amyloid plaques, and tau tangles 

and healthy neurons will cease to function, lose connections, and die in the 

presence of other neurons [3, 4]. It is also believed that numerous additional 

complicated brain alterations will play a part in the development of Alzheimer's 

disease. So far, scientists could not predict what the actual causes (i.e., exact 

etiology) behind AD are; however, the disease exhibits some associations with a 

combination of factors related to genetics, environment, and lifestyle. In the USA, 

Alzheimer's disease (AD) is presently classified as the sixth greatest cause of death, 

but new estimates indicate that it may really be the third biggest cause of mortality 

for older people, after heart disease and cancer [5].  AD is generally characterized 

via a deficiency in the amount of neurotransmitter acetylcholine (ACh) in the 

brain. Therefore, inhibitors of cholinesterase (ChE) are the 1st-line 

pharmacological agents used to treat AD [3]. Damage to the cholinergic 

neurotransmission that produces ACh has been shown to be related to memory 

disorders in patients with AD. Some of the cognitive habits were correlated with 

ACh existing in the brain cortex and plasticity [6, 7]. The enzyme class of ChE 
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consists primarily of 2 target proteins, namely, acetylcholinesterase (AChE, E.C. 

3.1.1.7) and butyrylcholinesterase (BuChE, E.C. 3.1.1.8). The sequence identity 

between the AChE and BuChE is very high (nearly 84%); thus, the responses they 

give each other match[8]. They are found mainly in the central nervous system 

and in vertebrate cholinergic synapses [9].  

AChE plays a key role in regulating several physiological reactions via hydrolyzing 

the ACh into cholinergic synapses. BuChE is expressed in neuroglia, on the other 

hand, and is located in the stomach, liver, heart, kidney, lungs, and serum. It plays 

a significant role in compound-containing ester metabolism. AChE may also be 

hydrolyzed, and its level does not decrease, or it can even rise in AD. AChE is 

usually prevalent in the brain, but BuChE activity increases when AChE activity 

stays unchanged or decreases in AD patients. The cessation of cholinergic 

signaling via hydrolyzing AChE is responsible for both enzymes. Therefore, a 

medication that inhibits both AChE and BuChE can be preferable to selective 

inhibitors of AChE or BuChE.  

So far, the US Food and Drug Administration (FDA) has approved five medications 

for treating AD. Four of them (tacrine, donepezil, rivastigmine, and galantamine) 

are AChE antagonists, and memantine is the N-Methyl-D-Aspartate (NMDA) 

receptor antagonist [10]. Such licensed AChE inhibitors block metabolite products 

from forming in ACh.  Insufficient levels of the neurotransmitter ACh at the 

synaptic cleft contribute to AD. Nevertheless, current ChE inhibitors have some 

drawbacks due to the side effects, including bradycardia, syncope, nausea, 

diarrhea, anorexia, migraine, insomnia, and muscle cramps [11, 12]. The current 

therapies only prolong the development of AD-related symptoms. Hence, the need 

for effective treatment is crucial. The current therapies only prolong the 

development of AD-related symptoms. Hence, the need for effective treatment is 

crucial. Recent development in computational biology approaches and molecular 

modeling techniques lead new opportunities for the detection, diagnosis, and 

design/development of more effective treatments against both common and rare 

diseases. Many data types, including molecular, medical, and epidemiological 

data, are becoming publicly available at comparable rates. It is possible to use 
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these databases including small molecule libraries against specific target proteins 

to find new uses for existing therapies [13]. Naturally derived and synthesized 

compounds as AChE and BuChE inhibitors are a promising area of interest. many 

hybrids are also being developed. Some hybrids utilize completely new materials, 

while others depend on existing AChEI materials and are attempting to improve 

upon their performance. Several researches have been conducted on the actions 

of AChE and BuChE inhibitors that are employed in the treatment of Alzheimer's 

disease [14], [15], [16], [17], [18-20] and other neurodegenerative diseases. 

 1.2 Objective of the thesis 

The target of this research is to reveal the potential use of new small known 

molecules against AD which were previously used for different purposes. For this 

aim, a small molecule library which has approved drugs and compounds tested in 

clinical phase studies is virtually screened initially in ligand-based AD model, then; 

the binding sites of AChE and BuChE were identified as essential targets in the 

therapy of AD. Not only we focused on identifying the therapeutic compounds 

targeting AChE and BuChE, but the search also established pharmacokinetic and 

toxicity profiles of selected hit ligands. Selected hits based on the multiscale ligand 

and structure-driven methods contribute to discovering new hits that are closely 

related to AChE and BuChE targets. The identifying hit compounds were then 

tested via in vitro experiments.  

 1.3 Hypothesis  

Treatment with AChE and BuChE inhibitors is commonly one aspect of the 

package of care required for AD patients. Therefore, investigating the effects of 

molecules via inhibiting or activating on esterase activities of AChE and BuChE is 

essential for drug design used to treat AD diseases. At the same time, the drugs 

may inhibit or activate other enzymes that belong to the same group lead to 

disease as an unknown side effect of used drugs. Therefore, the findings of this 

study may be led to consider these drugs as new inhibitors for AChE and BuChE 

via in vitro esterase activity. However, other in vivo investigations are also 

required to understand these enzymes' inhibition activity. 
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2 
ALZHEIMER’S DISEASE 

 

 2.1 Overview of Alzheimer’s Disease 

Alzheimer's disease (AD) is a kind of irreversible brain illness that causes memory, 

decision-making, and behavioral difficulties in affected individuals. AD affects 

millions of individuals across the globe and worsens with time, causing severe 

behavioral and psychiatric symptoms [4]. In the globe, about 50 million 

individuals are affected via Alzheimer's disease, with more than 10 million new 

cases being identified each year. With an aging population, it is projected that the 

number of Alzheimer's sufferers would exceed 130 million via 2050, resulting in 

significant implications for healthcare [21]. The majority of Alzheimer's patients 

have their 1st symptoms in their mid-60s [4]. 

 Scientists are still trying to figure out the complicated brain changes that occur 

Through the development and course of Alzheimer's disease. It seems probable 

that brain alterations begin a decade or more before memory loss and other 

cognitive problems manifest themselves. When people are at this preclinical stage 

of Alzheimer's disease, they do not seem to be experiencing any symptoms, despite 

the fact that harmful changes are occurring in the brain [3]. In recent years, 

estimates have shown that the Alzheimer's disease (AD) condition may be the third 

largest cause of mortality in older adults, after heart disease and cancer [5]. The 

goal of this research is to discover more about Alzheimer's disease, including its 

history, symptoms, diagnosis, and chances for a cure, in order to better understand 

it. 

 2.2  History of Alzheimer’s Disease 

Alzheimer's disease was first discovered in 1906, but it wasn't until around 70 

years ago that it was recognized as a common cause of dementia and a significant 

cause of mortality [22]. When Alois Alzheimer firstly met Auguste Deter in 1901, 
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he had no way of knowing that her tragic tale would one day become his name 

a familiar word all over the globe. Auguste was barely 50 years old when her 

husband became aware of her deteriorating memory. It was essential to admit 

her to a mental institution when she was 51 years old because she had become 

more afraid, paranoid, and violent. She remained there as an inpatient until she 

died there in 1906. 

Ms. Deter's brain was microscopically examined via Dr. Alzheimer, who worked 

on the autopsy in his capacity as a neuropathologist. New stains were used to 

examine Ms. Deter's brain, when it was determined that she suffered from 

"cerebral atrophy" (brain degeneration), "senile plaques" (protein deposits), and 

"neurofibrillary tangles" (abnormal filaments in nerve cells), all of which are 

typical path Alzheimer's disease becomes a significant study topic only when this 

occurs [23]. The studies that followed have shown a great deal, including that 

Alzheimer's disease starts years ere Alzheimer's signs are present. However, there 

are also many to understand about the exact biological of AD changes that 

contribute to its symptoms, why the disease symptoms are progressing more 

rapidly in some cases than others, which and how areas responsible for language, 

reasoning, and social behavior are affected via Alzheimer's disease (see Figure 

2.1) and how the AD can slow down, halted, or reversed [4].  

Alzheimer's and other kinds of dementia are now among the world's top ten causes 

of death, ranking 3ed in 2019 in both the USA of America and Europe. Men are 

less susceptible to this disease than women. Almost 2-thirds of Americans with 

Alzheimer's are women. A woman's lifetime chance of acquiring Alzheimer's 

disease is 1 in 6 at age 65, which corresponded with almost 1 in 11 for a man. 

Moreover, women have been disproportionately affected: women account for 65% 

of deaths from Alzheimer's and other forms of dementia globally[24, 25](Figure 

2.2). 
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Figure 2. 1 Areas of brain affected by Alzheimer’s 

 

Figure 2. 2 Alzheimer and Dementia death rate per 100,00 

 2.3 “Alzheimer’s Dementia” what is it? 

Dementia is a condition characterized via disturbance in the brain's different 

functions, including memory, perception, orientation, understanding, calculation, 

ability to learn, language, and judgment. Consciousness is not overcast[26]. The 

impairments in cognitive function are generally followed via regression of 

emotional regulation, social activity, or motivation, and sometimes preceded via 

it. The common prevalent kind of dementia is AD, likely leading to 60-70% of 

states and still today an incurable degenerative disease that is incurable today [27, 

28]. The progression of the disease is categorized into five stages (preclinical AD, 

mild cognitive impairment (MCI) may be classified into three levels: mild, 
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moderate, and severe, with a progressive pattern of cognitive and functional 

dysfunction [29] (Figure 2.3). Mild cognitive impairment (MCI) was described as 

a stage of cognitive decline between normal aging and Alzheimer's disease (AD) 

(MCI). Patients with MCI have a higher degree of memory loss than would be 

anticipated for their age, but do not satisfy the currently recognized clinically 

probable Alzheimer's disease criteria [30]. Biomarkers that identify the presence 

or absence of the disease may assist clinical diagnosis. In the future, this will 

become much more important as new Alzheimer's disease drugs become available. 

 

 

 

 

 

 

 

Figure 2. 3 Alzheimer's disease (AD) continuum. *MCI: mild cognitive 
impairment 

AD is a developing global healthcare illness, and it is a sort of brain disease like 

coronary arteries is a type of heart failure disease. It is also a degenerative 

condition, which means that it gets worse over time [4]. AD is a progressive 

neurodegenerative illness (neurodegeneration is the growing loss of structure or 

function of neurons, including their death) that typically begins slowly and 

steadily worsens over time as the global population ages [31]. AD affects a 

patient's cognitive ability, especially the episodic memory system (see Figure 2.4). 

The episodic and semantic memories are information retrieval systems. Episodic 

memory is the term used to describe the ability to recall events and circumstances 

that have occurred in one's own life consciously. It is one of the most important 

mental (cognitive) abilities made possible via the brain's wiring [32]. 
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It is the memory of everyday events (such as location geography, time, associated 

sentiments, and other contextual information) that can be explicitly declared or 

conjured. Episodic memory helps us learn about specific personal events that occur 

in our everyday lives and recall knowledge [33]. Patients may forget these events 

when episodic memory deteriorates due to AD or fail to remember them later 

[22]. It is another kind of declarative memory that relates to broad world 

knowledge that we have acquired throughout our lives and that is known as 

semantic memory. It is based on cultural traditions and interwoven with 

experience to form this broad knowledge (facts, ideas, meaning, and 

concepts)[34].  

The medial temporal lobe (MTL), an area of the brain that includes the 

hippocampus, supports episodic memory. The hippocampus makes it possible for 

us to encode, store, and recover events in our daily lives. Unfortunately, in patients 

with AD, this brain area experiences significant damage caused via an aggregation 

of beta-amyloid plaques andneurofibrillary tangles[35]. 

 

Figure 2. 4 Comparison of episodic vs semantic memory 

 2.4 Alzheimer's Disease Signs 

Scientists are currently unraveling the complex brain alterations involved with the 

onset and progression of Alzheimer's disease. While individuals seem to stay 

symptom-free throughout the preclinical stage of Alzheimer's disease, catastrophic 

changes in the brain are happening. Individuals with Alzheimer's disease have a 

broad variety of symptoms, and there may be subtle distinctions between normal 

cognitive changes associated with aging and early signs of Alzheimer's dementia 
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that vary with time. These symptoms [30] provide insight into the degree to which 

neurons in various areas of the brain have been damaged. 

➢ Signs of Mild AD: It is possible for someone to look healthy at this stage, 

but he or she will have increasing difficulties making sense of the world 

around him or her. Memory difficulties, poor decision-making, loss of 

spontaneity and feeling of initiative, taking longer to accomplish regular 

daily chores, asking the same questions over and again, and other issues 

are all possible. Through this stage of the illness, Alzheimer's disease is 

often discovered. 

➢ Signs of Moderate AD: Through this period, more intense monitoring 

and care are required, which may be difficult for many spouses and families 

to provide. Progressive memory loss and disruption, frustration with 

regulating thoughts and thinking logically, difficulties realizing family and 

friends, failure to learn new things, difficulties with language, reading, 

writing, and working with numbers, hallucinations, delusions, paranoia, 

and occasional muscle twitches are some of the signs and symptoms of 

Alzheimer's disease. 

➢ Signs of Severe AD: People suffering from severe Alzheimer's disease 

are unable to communicate and are completely reliant on others to provide 

for their basic needs and requirements. The individual may spend the most 

of their time in bed while their body shuts down. The following are some 

of their most frequent symptoms: loss of bowel and bladder control, 

inability to talk, weight loss, convulsions, skin illnesses, difficulty chewing, 

moaning and grunting, and an inability to sleep longer periods. 

Individuals' rates of progression from mild to moderate to severe symptoms 

vary (see Table 2.1)[31]. 
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Table 2. 1 Signs of Alzheimer’s compared with typical age-related changes 

Signs of Alzheimer’s or other dementias Typical age-related changes 

❖ Memory loss that disrupts daily life: One of 
the most common signs of Alzheimer’s is memory 
loss, especially forgetting recently learned 
information. Others include forgetting important 
dates or events, asking for the same information 
over and over, and increasingly needing to rely on 
memory aids (for example, reminder notes or 
electronic devices) or family members for things 
that used to be handled on one’s own. 
 

Sometimes forgetting names or appointments,  but 
remembering them later. 

❖ Challenges in planning or solving 
problems: Some people experience changes in 
their ability to develop and follow a plan or work 
with numbers. They may have trouble following a 
familiar recipe, keeping track of monthly bills or 
counting change. They may have difficulty 
concentrating and take much longer to do things 
than they did before. 

 

Making occasional errors when balancing a checkbook. 

❖ Difficulty completing familiar tasks at 
home, at work or at leisure: People with 
Alzheimer’s often find it hard to complete daily 
tasks. Sometimes, people have trouble driving to 
a familiar location, managing a budget at work 
or remembering the rules of a favorite game. 

 

Occasionally needing help to use the settings on a 
microwave or record a television show. 

❖ Confusion with time or place: People with 
Alzheimer’s can lose track of dates, seasons and the 
passage of time. They may have trouble 
understanding something if it is not happening 
immediately. Sometimes they forget where they are 
or how they got there. 

Getting confused about the day of the week but figuring  
it out later. 

 

 

 

❖ Trouble understanding visual images 
and spatial relationships: For some people, 
having vision problems is a sign of Alzheimer’s. 
They may have difficulty reading, judging 
distance and determining color or contrast, 
which may cause problems with driving. 

 

Vision changes related to cataracts, glaucoma or age-
related macular degeneration. 

❖ New problems with words in speaking or 
writing: People with Alzheimer’s may have 
trouble following or joining a conversation. They 
may stop in the middle of a conversation and 
have no idea how to continue or they may repeat 
themselves. They may struggle with vocabulary, 
have problems finding the right word or call 
things by the wrong name (e.g., calling a watch 
a “hand clock”). 

 

Sometimes having trouble finding the right word. 

❖ Misplacing things and losing the ability to 
retrace steps: People with Alzheimer’s may put 
things in unusual places, and lose things and be 
unable to go back over their steps to find them again. 
Sometimes, they accuse others of stealing. This may 
occur more frequently over time. 

 

Misplacing things from time to time and retracing steps 
to find them. 
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Table 2. 2 Signs of Alzheimer’s compared with typical age-related changes 
(continued) 

❖ Decreased or poor judgment: People with 
Alzheimer’s may experience changes in judgment 
or decision-making. For example, they may use 
poor judgment when dealing with money, giving 
large amounts to telemarketers. They may pay less 
attention to grooming or keeping themselves clean. 

 

Making a bad decision once in a while. 

❖ Withdrawal from work or social 
activities: People with Alzheimer’s may start to 
remove themselves from hobbies, social 
activities, work projects or sports. They may have 
trouble keeping up with a favorite sports team or 
remembering how to complete a favorite hobby. 
They may also avoid being social because of the 
changes they have experienced. 

 

Sometimes feeling weary of work, family and social 
obligations. 

❖ Changes in mood and personality: The 
mood and personalities of people with 
Alzheimer’s can change. They can become 
confused, suspicious, depressed, fearful or 
anxious. They may be easily upset at home, at 
work, with friends or in places where they are out 
of their comfort zones. 

 

Developing very specific ways of doing things and 
becoming  irritable when a routine is disrupted. 

 

 2.5 Causes of Alzheimer’s Disease 

Till now, scientists could not predict what the actual causes (exact etiology) 

behind Alzheimer's disease are; however, the disease exhibit some associations 

with a combination of factors related to genetics, environment, and lifestyle[5]. 

There are multiple conflicting theories attempting to understand the disease 

causes: 

➢ Genetic Hypothesis 

➢ Cholinergic Hypothesis 

➢ Amyloid Cascade Hypothesis 

➢ The Tau Hypothesis  

➢ Inflammatory Hypothesis 

➢ Other Hypothesis 
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 2.5.1   Genetic Hypothesis  

Alzheimer's disease (including memory components) has a genetic heritability of 

between 49 and 79%, according to twin and family studies. Around 0.1 percent of 

cases are familial autosomal dominant inheritance variations (not sex-related) 

that manifest before the age of 65. Knowledge epistemic relationships may be 

critical for improving our understanding of complicated illnesses such as 

Alzheimer's disease, diabetes, and cardiovascular disease., and cancer. Numerous 

scientists discovered in the early 1990s that a gene called apolipoprotein E4 was 

linked with an increased chance of developing Alzheimer's disease. However, 

scientists observed that possessing one or 2 copies of apolipoprotein E4 

significantly enhances one's chance of developing Alzheimer's disease. Not all 

carriers of apolipoprotein E4 acquire this illness, suggesting that other genes or 

gene-gene interactions were involved in the disease's genesis. Alzheimer's disease 

is classified into 2 types: early-onset and late-onset. Both kinds include genetic 

material.  

Early-onset Alzheimer’s disease occurs in individuals between the ages of 

30 and 60. While some instances of early-onset Alzheimer's disease are unknown, 

the majority are inherited, a condition known as Familial Alzheimer's Disease 

(FAD). The majority of autosomal dominant FADs are caused via mutations in one 

of three genes: the amyloid precursor protein (APP) or the presenilins PSEN1 and 

PSEN2[4, 35, 36]. Multiple single-gene mutations on chromosomes 1, 14, and 21 

cause FAD. All of these mutations result in the formation of aberrant proteins (see 

Table 2.2). A kid whose parents have the FAD gene mutation has a 50/50 chance 

of acquiring it, and the child will almost certainly acquire FAD [22].  

Late-onset Alzheimer’s disease the majority of cases are of late onset, 

occurring beyond the age of 60. The reasons of late-onset Alzheimer's disease 

remain unknown. They very certainly involve a mix of genetic, environmental, and 

behavioral variables that contribute to an individual's chance of getting the illness 

[22]. 
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Table 2. 3 Genetic factors associated with Alzheimer’s disease 

Chromosome 
Defective 

gene 
Onset Putative mechanisms 

1 PSEN-2 Early Altered Aβ metabolism 

14 PSEN-1 Early Increased production of Aβ 

19 APOE 4 Late 
Tau hyperphosphorylation Impaired 

production/ polymerization/ clearance of Aβ 

21 APP Early Increased production of Aβ 

 

Note: APP: amyloid precursor protein; Aβ: beta amyloid protein; APOE: apolipoprotein; PSEN: 

presenilins.  

 

 2.5.2   Cholinergic Hypothesis 

The oldest hypothesis proposes that AD is generally characterized via a deficiency 

in the amount of neurotransmitter acetylcholine (ACh) in the brain; therefore, 

cholinesterase inhibitors (ChE) are the 1st-line pharmacological agents used to 

treat this disease. The damage of the cholinergic neurotransmitter produces Ach, 

which is relevant to memory disorders in AD patients. Several of the cognitive 

habits were correlated with ACh existing in the brain cortex (see Figure 2.5)[37, 

38]. After signaling, acetylcholine is released from receptors and broken down by 

acetylcholinesterase to be recycled in a continuous process. 

 

Figure 2. 5 Principle of cholinergic hypothesis 
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 2.5.3   Amyloid Cascade Hypothesis 

In 1991, the amyloid hypothesis proposed that plaques consisting of a peptide 

called beta-amyloid (Aβ) are primary brain characteristics with AD [39](Figure 

2.6). Neurological changes due to sedimentation of abnormal, stable, and 

insoluble protein in the brain associated with Alzheimer's disease force healthy 

neurons to cease functioning, lose connections, and die in association with other 

neurons (Figure 2.7). Numerous additional complicated brain alterations are also 

believed to have a role in Alzheimer's[40, 41].  

 

 

Figure 2. 6 Beta-amyloid aggregation as the cause of AD 
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Figure 2. 7 Distribution pattern of amyloid deposits 

 

Stage A: Initial deposits can be found in basal portions of the isocortex; Stage B: The next stage 
shows amyloid in virtually all isocortical association areas. Stage C: In the end-stage deposits can 
be seen in all areas of the isocortex including sensory and motor core fields. Increasing density of 
shading indicates increasing numbers of amyloid deposits[42]. 

 

 2.5.4   The Tau Hypothesis  

In Alzheimer's, tau protein abnormalities, according to the tau hypothesis, start 

the disease cascade [43]. Hyperphosphorylated tau has 7-10 moles of phosphate 

per mole of protein, whereas normal tau has 3 moles of phosphate per mole of 

protein. Hyperphosphorylated τ can cause to detach from microtubules, resulting 

in the development of soluble tau aggregates and insoluble paired helical 

filaments, which eventually form neurofibrillary tangles within nerve cell bodies. 

When this happens, the microtubules disintegrate, weakening the cytoskeleton's 

structure and causing the neuron's transport mechanism to fail. This could lead to 

problems with biochemical communication between neurons and, eventually, cell 

death. The aim of anti-phosphorylated strategies (kinase inhibitors) is to stop 

these processes from happening. Aggregation inhibitors may be able to prevent 

the formation of soluble tau aggregates and tangles (see Figures 2.8 and 2.9)[44]. 
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Figure 2. 8 Schematic of the tau hypothesis as the cause of AD 

 

 

 

Figure 2. 9 Alzheimer's disease (AD) hyperphosphorylated tau protein in the 
brain forms neurofibrillary tangles 
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 2.5.5  The Inflammatory Hypothesis of Alzheimer's  

Inflammatory stimuli (beta-amyloid, neurofibrillary tangles (NFTs), and neuron 

fragments) stimulate glial cells, resulting in the production of pro-inflammatory 

mediators and inflammatory response proteins. These products may activate glial 

cells, which in turn promotes the synthesis of P-tau, A42, and other pro-

inflammatory cytokines, thus perpetuating the cycle. The cycle increases 

neurodegeneration and other diseases associated with Alzheimer's disease. 

persistent inflammation as a result of oxidative stress [45]. Oxidative stress is 

likely to develop in the brain, since the brain consumes up to 20% of the body's 

inspired oxygen. Additionally, the brain contains high quantities of 

polyunsaturated fatty acids, which are susceptible to lipid peroxidation. 

Amorphous proteins such as beta-amyloid and tau proteins function as free 

radicals, causing further damage (see Figure 2.10)[46, 47]. 

 

Figure 2. 10 Inflammatory hypothesis of AD 
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 2.5.6 Other Hypothesis  

With the exception of 1-2 percent of instances in which deterministic genetic 

variants have been identified, the etiology of the majority of Alzheimer's illnesses 

remains unclear [36]. There are several conflicting theories attempting to explain 

the disease's cause: 

➢ A neurovascular theory It has been hypothesized that a dysfunctional 

blood–brain barrier may be involved [46]. 

➢ Smoking is a significant risk factor for Alzheimer's disease[48]. 

➢ Innate immune system markers are associated with an increased 

chance of developing late-onset Alzheimer's disease [49]. 

➢ Glucose hypometabolism is the prodromal stage of AD's early 

pathogenic case and is associated with cognitive and functional 

deterioration. Early therapeutic intervention before to irreversible 

deterioration has become a condition of consent in the treatment of 

Alzheimer's disease. As a result, alleviating glucose hypometabolism 

became an appealing approach for treating AD [50, 51]. 

➢ There is some indirect evidence that air pollution can play a role in 

developing Alzheimer's disease [52, 53]. 

➢ In 2019, a report found no increase in dementia overall in people with 

celiac disease, but 2018 research discovered a link to a variety of types 

of dementia, including Alzheimer's disease [54, 55]. 

➢ Mutation by Osaka: Since 2008, when the Osaka mutation was 

originally discovered, it has been related to Alzheimer's disease [56]. A 

deletion mutation at codon 693 of the amyloid precursor protein (APP) was 

associated with familial Alzheimer's disease in a Japanese pedigree. Only 

homozygous bearers of this mutation are affected via AD[57]. This 

mutation accelerates Å oligomerization, but does not result in the 

formation of amyloid fibrils, suggesting that Å oligomerization, rather than 

fibrils, may be the source of disease [58]. 
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 2.6 Clinical Criteria for Alzheimer’: Labeling and Imaging   

The clinical examination of AD is presented in a sequential fashion:  

➢ The 1st stage involves obtaining the patient's history and pertinent 

information about prior illnesses from an informant.  

➢ The 2nd stage includes a mental state examination and a confirmatory 

cognitive function test. 

➢ The 3rd and most critical stage is a physical examination, which should 

emphasize vascular and neurological symptoms and should be 

accompanied via investigation [59]. 

Dementia assessment is a two-steps procedure. To begin, it is critical to distinguish 

dementia syndromes from other diseases that mimic them: depression, delirium, 

and moderate cognitive impairment. 2nd, once the dementia syndrome is 

recognized, the identification of the dementia subtype is critical because it aids in 

the selection of potential treatments for the illness. A timely and correct 

identification of AD is critical for the advancement of dementia research. 

Numerous diagnostic procedures must be undertaken in order to diagnose AD: 

➢ A complete medical history. 

➢ Mental status examinations. 

➢ A comprehensive physical and neurological examination, as well as CT 

(computed tomography) and MRI (magnetic resonance imaging) may all 

be used to diagnose AD. 

➢ Blood tests and MRI images of the brain [60].  

A biomarker is a biological component that may be used to determine the presence 

or absence of a disease, a person's likelihood of contracting an illness, or the 

development of a disease. It is essential to identify reliable biomarkers for pre-

symptomatic Alzheimer's disease in order to determine the exact etiology of the 

disease. Several Alzheimer's disease-related biomarkers, including the levels of 

beta-amyloid and abnormal tau in the brain as determined via positron emission 

tomography (PET) imaging, the levels of specific proteins in fluid (for example, 
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beta-amyloid and tau levels in cerebrospinal fluid and specific protein groups in 

the blood), and the level of glucose metabolism in the brain are all being 

investigated.. A novel blood test has been developed that may correctly predict 

whether an otherwise healthy person will develop MCI or AD three years before 

cognitive impairment begins[61]. The test is based on the identification of 10 lipid 

biomarkers in the blood that are predictive of both diseases. 

Changes in the breakdown of brain cell membranes result in the circulation of 10 

distinct lipids, or metabolites. Two of the ten metabolites in particular show 

significant associations with the neuropathology of AD, suggesting the possibility 

of developing early treatment options for AD, when medication may be more 

successful at delaying or even avoiding disease onset. Ten proteins have been 

identified in the blood that may signal the beginning of Alzheimer's disease. A 

simple blood test may be able to predict whether a patient may develop AD even 

before symptoms manifest. The test was reported to be capable of predicting AD 

with an accuracy of 87 percent. It was discovered that 26 proteins are associated 

with Alzheimer's disease, 10 of which may be used to predict the illness. If those 

protein levels were examined, it could be predicted correctly in almost 9 out of 10 

cases[62] whether a patient will acquire AD (see Figure 2.11). For patients, 

doctors, and scientists, developing a reliable and accurate test, such as a blood 

test, to identify AD would be ideal. A study is being conducted to create such a 

test. 

 

Figure 2. 11 Diagnosing of Alzheimer’s disease 
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 2.7 Changes in the Brain 

The brain shrinks somewhat with healthy aging but, surprisingly, does not lose a 

substantial number of neurons. Alzheimer's disease impairs neuronal connections, 

metabolism, and repair processes. Numerous neurons cease to function and lose 

contact with neighboring neurons, resulting in extensive damage [63]. The loss of 

mass has a profound effect on almost all of the brain's functions: 

➢ The brain shrinks, impairing cognition, planning, and memory. 

➢ The shrinkage of the hippocampus has an effect on the development of new 

memories. 

➢ Ventricles have grown in size when they are filled with cerebrospinal fluid. 

Alzheimer's disease progressively erodes a person's capacity to live and 

function independently.  

At the end of the day, the illness is fatal over time, a person with Alzheimer’s 

gradually loses his or her ability to live and function independently[64] (see 

Figure 2.12). 

 

Figure 2. 12 Comparison of Alzheimer's affected brain and normal brain 
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 2.8 Pathophysiology of Alzheimer’s Disease 

Various histological and molecular alterations characterize AD. The 

pathophysiology of AD has been largely hypothesized based on evidence produced 

via (immune) chemical analysis of the disease's most prominent brain hallmarks 

(amyloid plaques and neurofibrillary tangles). AD is usually regarded as a disease 

characterized via progressive neuronal loss, and synapses occur in various 

anatomical locations, resulting in distinct phenotypes [65]. AD may be classified 

into 2 subtypes: those with an early start and those with a late onset. Early-onset 

AD, also known as familial AD (FAD), affects people under the age of 65 and 

accounts for only 3–10% of overall AD cases. This kind of AD is caused via 

mutations in amyloid precursor protein (APP), presenilins 1 (PSEN1), and 

presenilins 2 (PSEN2) (PSEN2). Although late-onset AD is considered sporadic 

(SAD), genetic risk factors, notably the apolipoprotein E gene (APOE), have been 

identified [66, 67]. Regardless of the form of AD, this illness is associated with 

distinct pathologies, including extracellular plaques composed of insoluble 

amyloid beta peptides (A) and neurofibrillary tangles (NFTs). Recently, AD has 

been linked to mitochondrial dysfunction, decreased energy metabolism, synaptic 

loss, altered Wnt signaling, and inflammation [68]. The pathophysiology of AD is 

summarized in (Figure 2.13). 

 

Figure 2. 13 Hypothesis for pathophysiology of Alzheimer’s disease 
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 2.8.1 Neuropathology of Alzheimer’s Disease  

The loss of neurons is a key pathogenic feature of Alzheimer's disease's 

neuropathology. Because Alzheimer's disease is classified as a neurodegenerative 

disease, its clinical manifestations are associated with neuronal loss and atrophy 

in the temporal and frontal cortex, resulting in an increase in the appearance of 

monocytes and macrophages in the cerebral cortex, as well as activation of 

microglial cells in the parenchyma [69](Figure 2.14).  

A variety of variables may play a role in the neuronal degeneration that occurs in 

Alzheimer's disease. For example, investigations have shown that A is linked with 

the development of Alzheimer's disease (AD) as a result of its cytotoxicity. 

Additionally, mitochondrial dysfunction and oxidative stress have been shown to 

substantially contribute to neuronal death. Neuronal death, regardless of the 

source, is a key characteristic of Alzheimer's disease [70, 71]. 

 

Figure 2. 14 The neuropathological diagnosis of Alzheimer’s disease 
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 2.8.2 Biochemistry of Alzheimer’s Disease 

2.8.2.1 Amyloid Precursor Protein 

The amyloid βprotein (Aβ) accumulation in plaques and the walls of cerebral 

blood vessels is the primary characteristic of AD pathogenesis. Numerous genetic 

and environmental variables may result in the deposition of Aβ. Aβ is a 39–43 

amino acid peptide that was synthesized through proteolysis from a more 

important and essential precursor molecule known as the amyloid precursor 

protein (APP) (see Figure 2.15) [72].  

APP is a type I transmembrane glycoprotein that has 695-770 amino acids and is 

found in a variety of cells. It is encoded via a gene on chromosome 21. Proteolytic 

processing of APP may occur in 2 ways: through a non-amyloidogenic route 

(normal state, which prevents the production of Aβ) or via an amyloidogenic 

pathway (diseased state). The physiological functions of APP are yet unknown. 

APP has been shown to regulate cell survival, growth, and motility, as well as 

neurite outgrowth and other activities associated with the release of soluble 

ectodomain following proper APP cleavage. It produces a variety of polypeptides 

through alternate splicing, glycosylation, phosphorylation, or complicated 

proteolysis. APP produces amyloidogenic fragments in a sick state through 

differential cleavage via enzymes [73]. 

 

Figure 2. 15 An overview of the Aβ-pathogenesis hypothesis 

 

Note: Amino-acid sequence of the Aβ fragment and location of action of α-, β-, and γ-secretases 
in diseased neurons within a diseased amyloid genic pathway. 
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The α-secretase cleaves APP between residues 16–17 of the Aβ domain and 

secretes wide soluble ectodomain nonpathogenic precursors APPs into the media 

near the cleavage site. Simultaneously, the C-terminal fragment C83 is maintained 

in the membrane and cleaved at residue 711 via -secretase, releasing P3 peptide. 

P3 peptide is soluble and plays a part in normal synaptic transmission, although 

its precise activities remain unknown [74]. The α processing of the -secretase 

results in the release of large soluble ectodomain APPsα, which serve as a 

neuroprotective factor and play a role in cell–substrate adhesion (see Figure 2.16).  

 

Figure 2. 16 Formation of βeta-amyloid plaque 

 

Note: Cleavage of APP by α- and γ-secretases in normal state and alternative cleavage by β- and γ- secretases 
in diseased state. The Aβ fragment is crucial in the formation of amyloid plaques in AD. 

 

APPs are required for biological synaptic signaling and plasticity, as well as for 

learning, memory, emotional activity, and neuronal survival. Additionally, 

sequential processing liberates the APP intracellular domain, which translocates 

into nuclei and promotes nuclear signaling, as well as gene expression and control. 

In a sick condition, APP is cleaved differentially; -βsecretase conducts irregular 

cleavage, releasing shortened APPsβ, while the C-terminal fragment C99 stays in 

the membrane and is subsequently cleaved via -secretase, resulting in the release 

of insoluble Aβ peptides. The intracellular domain of APP is released into the 

cytoplasm upon cleavage of both C83 and C99 via soluble -secretase and 

translocates to nuclei for subsequent gene expression operation [75, 76]. The 1st 

and most important step is the cleavage of β-secretase, which cuts the N-terminus 



 

26 

 

of Aβ. It removes the bulk of the extracellular component of the protein, leaving 

just the  

C-terminus of APP, which is subsequently cleaved at the C-terminus of Aβ, leading 

in the production of Aβ oligomers, which eventually polymerize to form 

aggregated plaques (see Figure 2.17)[77]. 

 Aβ40 and Aβ42 are the 2 major Aβ polymer types that have a substantial effect on 

plaque development and neurotoxicity. Aβ40 is more plentiful and less neurotoxic 

than Aβ42, which is less abundant, extremely insoluble, neurotoxic, and resistant 

to accumulation, and functions as a hazardous building component of 

Aβ assembly. Aggregation of Aβ40/Aβ42 results in blocked ion channels, disrupted 

calcium homeostasis, increased mitochondrial oxidative stress, and decreased 

energy metabolism and glucose regulation, all of which contribute to the 

degeneration of neuronal health and ultimately, neuronal cell death[78].  

 

Figure 2. 17 Amyloid precursor protein (APP) processing 

 

Abbreviations: amyloid precursor protein (APP), secreted APP derivative (sAPPβ), amyloid 
beta (Aβ), β-Secretase-Derived C-Terminal Fragment (CTFβ), APP intracellular domain (AICD), 
β-APP-site cleaving enzyme (β-Sec), γ-Secretase (γ-Sec), ER (endoplasmic reticulum). 
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Increased neuronal synthesis of Aβ, reduced activity of Aβ degrading enzymes, or 

alterations in the transport mechanisms that transport Aβ over the blood-brain 

barrier may all contribute to Aβ aggregating and accumulating in the brain. 

Amyloid fibrils obliterate and alter neural circuits, while Aβ oligomers impair 

synaptic function[79]. Aβ oligomer interacts with the membranes and receptors 

on the surface of cells, modifying signaling pathways, affecting neuronal activity, 

and triggering microglia to produce neurotoxic mediators (resident immune cells). 

Vascular abnormalities impede the delivery of nutrients and metabolic wastes, 

induce micro-infarcts, and increase astrocyte and microglia activation. The lipid-

carrier protein apoE4 increases the amount of Aβ produced while reducing its 

clearance. Similar to intracellular Aβ, when apoE4 is produced in stressed 

neurons, it is cleaved into neurotoxic fragments that disrupt the cytoskeleton and 

impair mitochondrial function [80]. 

2.8.2.2 Hyperphosphorylation of Tau (τ) and Alzheimer’s Disease 

The AD area is dominated via studies focused on plaques. Numerous studies have 

focused on neurofibrillary tangles (NFTs). AD is defined via the presence of NFTs. 

Tau is usually unphosphorylated in differentiated cells and interacts with 

microtubule cytoskeleton components. This is in contrast to undifferentiated cells, 

which lack a persistent cytoskeleton composed of microtubules and tau and are 

phosphorylated tau. Tangles form as a consequence of hyperphosphorylation of 

the tau protein linked with microtubules[81]. Tau is mostly expressed in neurons 

and its unphosphorylated form is present exclusively in axons. Previous study on 

tau has shown that certain forms of phosphorylation may alter the protein's 

structure, impairing its capacity to polymerize tubulin [82](Figure 2.18). Tau, for 

instance, dissociates from microtubules as a result of phosphorylation at Thr231, 

Thr214, and Ser235 [83, 84]. Additionally, tau self-aggregation is induced via C-

terminal phosphorylation.  Phosphorylated tau may have a role in the 

development of NFTs. NFTs are a subset of protein filaments that are paired and 

helically coiled in the cytoplasm of neurons and their processes [85].  

Tau is a microtubule-binding protein that interacts with tubulin to create matured 

and stable microtubules. It has the ability to stabilize microtubules and create 
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linking bridges between adjacent microtubules, thus forming a stable ne2rk and 

tethering them together. Due to the excess of Aβ in the environment, when the 

tau protein comes into touch with the released kinases, it becomes 

hyperphosphorylated. 

It has been shown that soluble Aβ regulates the cleavage and phosphorylation of 

to produce NFTs. It is oligomerized as a result of its hyperphosphorylation[86]. As 

a consequence of the dissociation of tubule subunits, the tubule becomes unstable, 

converting into large pieces of filaments that cluster and include improperly 

configured, overly phosphorylated NFTs. These NFTs are straight, fibrillary, and 

extremely insoluble patches inside the neuronal cytoplasm that disrupt 

communication and signal processing between neurons, resulting in neuronal 

death (Figure 2.19). Additionally, tau gene mutations are linked with familial 

frontotemporal dementia, particularly when parkinsonism and tangle histology 

coexist[87]. Additionally, many kinases, notably Glycogen Synthase Kinase 3 

(GSK3) and cyclin-dependent kinase 5 (CDK5) triggered via extracellular A, 

control the phosphorylation of τ  [88]. 

 

Figure 2. 18 Transmission of tau pathology in the brain of Alzheimer's disease 

(AD)[89] 
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Figure 2. 19 Neuron-to-neuron transfer of tau  

 

Note: The processes involved in tau propagation can be divided into three basic steps: (1) the 
pathological form of tau is released into the extracellular space from the donor cell; (2) the 
pathological tau released into the extracellular space is taken up by recipient cells; and (3) the 
pathological tau taken up into the recipient cells forms new intracellular aggregates. 

 

2.8.2.3 Oxidative Stress and Alzheimer’s disease 

Oxidative stress is a condition produced via an imbalance between pro-oxidants 

and antioxidants, which results in an increase in reactive oxygen and nitrogen 

species (ROS and RNS)[90]. The electron transport chain (ETC) is composed of 

complexes I, II, III, IV, and V that catalyze the conversion of adenosine 

diphosphate (ADP) to adenosine triphosphate (ATP) [91]. The proton gradient 

from complexes I, III, and IV through complex V generates ATP. This decrease of 

O2 sometimes results in the formation of a small number of superoxides. These 

superoxides are among of the most powerful oxidants known as reactive oxygen 

species (ROS) (Figure 2.20) [91, 92].  

Mitochondria are the main source of potentially harmful free radicals, which are 

produced Through normal cellular respiration. Neurons are high-energy cells that 

rely on mitochondria to perform a variety of tasks, including action potential 

generation, neural transmission, and axonal transport. Mitochondria generate 

more than 90% of all ATP generated[93]. Numerous studies demonstrate that 

mitochondrial dysfunction is a critical factor in the development of AD (Figure 

2.21). For example, cells treated with Aβ accumulate Aβ in the mitochondria, 

resulting in cell death. Additionally, research has shown that APP accumulates in 
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mitochondrial import channels, resulting in an increase in H2O2 [94]. Under 

typical circumstances, about 1–5% of oxygen is transformed to reactive oxygen 

species (ROS). The main causes of mitochondrial ROS are 2 factors: a high 

NADH/NAD ratio in the matrix and a substantially reduced coenzyme Q in the 

presence of a strong proton gradient and no ATP synthesis [95]. Significantly, 

although different enzymes may neutralize ROS, if the number of free radicals 

produced exceeds the capacity of neurons, oxidative stress, mitochondrial 

damage, and neuronal damage can result [96]. Additionally, protein oxidation 

and nitration are oxidative stress-induced changes. These modifications may have 

an effect on metabolic enzymes found inside the ETC [92]. These changes in 

enzymes may impair the function of neurons and result in neurodegeneration. The 

buildup of Aβ and NFTs is linked with oxidative damage in AD. Lipids are well-

studied oxidative stress targets. Aβ has been found to promote lipid peroxidation 

in cells [97, 98]. Apart from lipid oxidation, AD has investigated protein oxidation. 

Proteins that have been oxidized may undergo conformational changes, resulting 

in the loss of structural and functional activity. Specifically, Aβ has been shown to 

enhance protein oxidation [99]. A proteomic study revealed that glyceraldehyde-

3-phosphate dehydrogenase is oxidized in neurons treated with Aβ. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 20 Oxidative stress in Alzheimer's disease 

Note: Oligomeric Aβ induced ROS production results in oxidative damage and mitochondrial dysfunction, 
in which hyperphosphorylated tau protein and NFTs produce through an imbalance of various protein kinases 
and phosphatases. The accruing of oxidative stress may, in turn, promote cellular dysfunction, injury, and 
inflammatory responses[100, 101]. 
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Figure 2. 21 Mitochondrial dysfunction in Alzheimer’s disease 

 

Note: The main mitochondria-related mechanisms proposed to be involved in the pathogenesis of AD. A 
defective mitochondrial functioning is supported by various findings, including altered mitochondrial 
morphology and reduced glucose and oxygen consumption in patients’ brains. Impairment of respiratory 
chain activity, in particular complex IV, has been detected in the disease. Extracellular Aβ and intracellular 
tau protein accumulation, prominent neuropathological findings in AD, have been proposed to be bi-
directionally linked to mitochondrial dysfunction. Mitochondrial DNA alterations have also been detected in 
the disease [102]. 

 

Oxidation of these proteins may result in many of the most well-known AD 

changes, including NFTs and glucose hypometabolism [103]. In the resting awake 

state, the brain uses about 25% of total body glucose [104]. Carbohydrates are a 

predominant substrate for oxidative metabolism in the brain. In the brain, 

carbohydrates constitute the primary substrate for oxidative metabolism. Glucose 

is often regarded as the brain's primary energy substrate [105] (Figure 2.22). 

Glucose transport and intracellular oxidative catabolism both contribute to the 

total glucose metabolism in the cerebral cortex. The blood-brain barrier (BBB) and 

glucose transporters are required for glucose transfer [106]. 

Alzheimer's disease is known to cause a decrease in the brain metabolic rate of 

glucose. Reduced glucose levels may lead to a decrease in mitochondrial ATP 

production. The decrease in glucose metabolic rate in the brain is also seen in pre-

symptomatic patients who have autosomal dominant FAD mutations [107, 108]. 
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Figure 2. 22 Carbohydrate metabolism in the healthy brain (on the left) and a  
Alzheimer’s brain (on the right) 

 

The healthy brain on the left shows strong glucose availability and metabolism, 

while the impaired brain on the right reflects the characteristic hypometabolism 

state induced initiated in the peripheral tissues leading to excess insulin and 

declining glucose transport across the BBB [109]. 

2.8.2.4 Dysregulated Homeostasis of Metals and Heme with 

Alzheimer’s Disease 

Significant evidence indicates that (iron (Fe), copper (Cu), and zinc (Zn)) were 

involved in a dysregulated metal brain homeostasis and accelerated oxidative 

stress in both AD and PD [110]. The BBB maintains a strict control on the 

concentrations of Fe, Cu, and Zn. However, it has been shown that AD brains have 

elevated levels of these trace components. Recent meta-analyses of reported AD 

(compared to age-matched controls) revealed considerable disagreement over 

whether Fe and Cu are substantially elevated, although many studies highlighted 

metals' uncontrolled homeostasis in AD. Numerous studies demonstrate that 

particular A plaques include copper, iron, and zinc, and that individual 

intracellular metal levels in the brain may vary [111].  
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Additionally, Aβ may convert Fe(III) or Cu(II) to form H2O2, adding to the 

oxidative stress associated with AD [112] (Figure 2.23). Zinc does not, but has 

been linked to being a perfect aggregator of A plaques and an inducer of tau 

hyperphosphorylation. Zinc may also impede the iron-export ferroxidase activity 

of APP. Heme is another iron-containing molecule that has been linked to AD. 

Heme, also known as iron-protoporphyrin IX, is a necessary nutrient that plays a 

role in a variety of physiological and pathological processes [113]. According to 

Faux et al. [114] individuals with AD had significantly lower hemoglobin levels, 

mean cell hemoglobin concentrations, and packed cell volume than healthy 

controls. This study's participants demonstrated a significant correlation between 

anemia and AD, suggesting that hemoglobin production may be impaired in AD 

patients. Similarly, a research published in 2013 showed that anemia is linked 

with an increased risk of acquiring dementia among 2552 older people[115]. 

 

Figure 2. 23 Trace metals interactions with APP, Aβ, and tau 
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 2.9 Pharmacologic and Nonpharmacologic Therapies for 

Alzheimer’s Disease 

There is currently no cure for AD, and medical treatment for the illness is in its 

infancy. The medications prescribed for the treatment of AD provide control over 

the disease's symptoms, but they do not slow or reverse the disease's development. 

Thus, complete AD treatment requires both nonpharmacologic and pharmacologic 

interventions [116](Figure 2.24).  

 

In most cases, nonpharmacological interventions are used to address behavioral 

difficulties (such as task simplification, environmental modification, and minimal 

excess stimulation) and cognitive impairment (such as treating comorbid medical 

conditions, minimizing or eliminating the use of drugs with adverse mental side 

effects) [117]. Individuals suffering from Alzheimer's disease may benefit from 

nonpharmacological therapies that assist them enhance their quality of life (QOL). 

A large number of well-conducted randomized controlled studies have 

demonstrated that various nonpharmacological treatments for individuals with 

Alzheimer's disease, such as cognitive training, cognitive rehabilitation, and 

cognitive stimulation therapy, provide small but significant benefits in the 

treatment of cognitive symptoms[118]. Additionally, when taken with 

cholinesterase inhibitors, there may be additional advantages. For instance, many 

age-related sleep and wakefulness issues may be the result of a dampening of 

circadian rhythm amplitudes.  

Figure 2. 24 Pharmacologic and nonpharmacologic therapies for Alzheimer’s 
disease [1] 
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On the other hand, nonpharmacological modulation of circadian rhythms through 

a variety of external cues (such as physical exercise and music) significantly 

improves sleep and cognitive performance in older adults and Alzheimer's disease 

patients[119]. 

Pharmacologic treatments have mostly focused on modulating neurotransmitters 

that are associated with disease. When it comes to clinical trial outcomes, although 

both asymptomatic and neuroprotective pharmacologic therapies may have 

similar features, the most important difference is that neuroprotective medicine 

has a cumulative impact that lasts even after therapy has been discontinued [120]. 

As of right now, symptomatic therapy options include medications such as 

cholinesterase inhibitors (ChEIs) and N-Methyl-D-Aspartate (NMDA) receptor 

antagonists, which have been shown to reduce clinical development symptoms 

across cognitive, behavioral, and functional domains [120]. The initial 

pharmacological treatment for Alzheimer's disease was based on the "cholinergic 

hypothesis," which suggested that increasing cholinergic transition in the brain 

would be beneficial. Preventing acetylcholine breakdown via reducing 

acetylcholinesterase (AChE) activity has been proven to be the most effective 

strategy for increasing synaptic acetylcholine (ACh) levels among the many 

methods tested too far. Because of the presence of plaques and tangles in the 

brains of Alzheimer's patients, it may be possible to improve cholinergic 

transmission via inhibiting the enzyme butyrylcholinesterase (BuChE), which is 

present in minimal quantities in normal brains but increased in the brains of 

Alzheimer's patients. Current pharmacological treatments for Alzheimer's disease 

(AD) are effective in alleviating symptoms but do not change the illness's main 

clinical characteristics. As a consequence, it is essential to develop medicines that 

are both efficacious and innovative [121]. 

There are currently just four medications that are approved and available for the 

treatment of Alzheimer's disease-associated dementia, and their effectiveness is 

limited. Three of these medications, donepezil, galantamine, and rivastigmine, act 

on cholinergic pathways in the central nervous system (CNS) to produce their 

effects [122]. Each of the three medicines inhibits cholinesterase, while 
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galantamine, a natural product alkaloid, acts as an allosteric modulator of 

nicotinic acetylcholine receptors. These medications are currently available in 

generic forms and are authorized for the treatment of moderate to severe 

dementia, but they are often prescribed for patients in early pre-dementia stages 

who have substantial progressive memory deterioration on cognitive tests. 

Memantine is the most recently authorized AD medication in the USA, and it is 

notable for being the 1st AD medication to specifically target the N-methyl-d-

aspartate (NMDA) receptor and glutaminergic pathways. Both medications, 

memantine and donepezil, are authorized for monotherapy. They are impacted 

because to their authorized indications for treating AD symptoms. Both 

Memantine and donepezil have distinct and complementary modes of action, and 

when used in combination, they provide extra and beneficial effects to the patient. 

Clinical trial results in healthy volunteers established the possibility of safely 

combining memantine and donepezil. When memantine is used in conjunction 

with a steady ChEI treatment, it has a favorable safety profile in individuals with 

AD [121, 123]. 
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3 
      CHOLINESTERASE ENZYMES    

 

 3.1 Esterase Enzymes 

In biochemistry, a cholinesterase enzyme family is a form of esterase enzyme that 

lysis choline-based esters, some of which are neurotransmitters. Cholinesterases 

differ in terms of substrate selectivity and sensitivity to different inhibitor classes 

[26]. They were classified into 2 kinds as a result of these variances: 

• Acetylcholinesterase (AChE, E.C. 3.1.1.7), also referred to as choline 

esterase I or erythrocyte cholinesterase, is more abundant in chemical 

synapses and red blood cell membranes. AChE catalyzes the hydrolysis of 

acetylcholine (ACh), and it is the most prevalent type of this enzyme 

[124](Figure 3.1).  

• Butyrylcholinesterase (BuChE, E.C. 3.1.1.8), also known as choline esterase 

II or plasma cholinesterase, is the other form that is often present in blood 

plasma which can hydrolyze larger molecules, such as butyrylcholine 

[125](Figure 3.1).  

Both cholinesterase enzymes belong to a large protein family containing the α/β 

hydrolase fold.  

 

Figure 3. 1 Breakdown of different substrate by cholinesterase enzymes[126] 
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 3.2 Acetylcholine (ACh) as Neurotransmitter 

Acetylcholine (ACh) is a neurotransmitter that is extensively distributed 

throughout the central nervous system (CNS) and peripheral nervous system 

(PNS) of a variety of species, including humans [127]. It was the 1st identified 

neurotransmitter. It was discovered in 1914 via Henry Hallett Dale, and Otto 

Loewi subsequently confirmed its existence. The term acetylcholine derives from 

the structure of the compound. It is a chemical compound composed of choline 

and acetic acid. Acetylcholine is transmitted via cholinergic synapses [128]. ACh 

is a critical neurotransmitter that the brain and body need to function properly. 

As a result, changes in the release and action of this neurotransmitter may result 

in serious problems with memory and movement[129](Figure 3.2). 

 

Figure 3. 2 Acetylcholine (ACh) is a neurotransmitter that helps nerve 
functions such as memory and muscle control 

 

Ach is generated via neurons that contain the choline acetyltransferase enzyme 

(ChAT). This enzyme is responsible for converting Acetyl-CoA to choline via 

transferring an acetyl group. Acetyl CoA is synthesized from pyruvate produced 

through glycolysis, while choline enters the terminals through a Na+dependent 

transporter. This enzyme has 2 binding sites: one for the choline molecule is 

located inside the enzyme, while the other for the Acetyl-CoA molecule is located 

on the surface (Figure 3.3). 
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Figure 3. 3 Synthesis and breakdown of acetylcholine by cholinesterase[130] 

 

When ACh is released at a neuromuscular junction, a cholinergic neuron has been 

activated and causes a muscle contraction. After a cholinergic neuron has been 

activated, these reactions are required to enable it to return to its resting state. 

Therefore, in order for the muscle to relax afterward rather than remain stressed, 

the acetylcholine must be broken down via a choline esterase. AChE enzyme 

catalyzes the hydrolysis of these ACh and breaking into choline and acetic acid 

(weak organic acid).  

The membrane protein choline transporter then transports the breakdown product 

choline back into the presynaptic terminal [131, 132](Figure 3.3). It was not until 

years later those further studies were performed to discern the function of 

acetylcholine in the body entirely and precisely how it is recycled. Through this 

time, acetylcholinesterase was discovered, and their role in the function of ACh 

was more elucidated. More extensive work has been completed in more recent 

years to look at the medical implications of acetylcholinesterase and, more 

importantly, how inhibitors of it could be used as a symptomatic treatment in 

some diseases and significantly have an essential function in the treatment of 

AD[133]. 
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 3.3 Acetylcholinesterase (AChE) 

Acetylcholinesterase (AChE, EC 3.1.1.7) is an essential enzyme involved in the 

cholinergic nervous system, including the PNS and the CNS [134]. Serum 

cholinesterase has a half-life of about eight days, while erythrocytes have a half-

life of between 2 and three months. AChE is a serine hydrolase with an ellipsoidal 

structure. AChE is the primary enzyme responsible for the metabolization of 

acetylcholine. The enzyme is present on both nerve terminals and the post-

junction or post-synaptic membrane at cholinergic synapses or junctions, 

according to electron microscope investigations using histochemical techniques. 

This enzyme, also known as substantial cholinesterase, hydrolyzes ACh the 

quickest of all the choline esters. Additionally, it may hydrolyze methacholine but 

not benzoylcholine[134]. J. Sussman 1st characterized the structure of AChE in 

1991, after successfully crystallizing it from the electric ray device Torpedo 

californica (TcAChE) [135]. AChE is a glycoprotein that may take on a variety of 

forms. Due to the chemical structural difference, certain types of AChE are 

hydrophobic, while others are hydrophilic. Generally, the hydrophilic species act 

inside the cell to degrade excessive intracellular ACh concentrations. However, 

the lipid-linked (hydrophobic) variants are the main agents of ACh inactivation, 

acting at the neuromuscular junction's synaptic cleft to break ACh. To guarantee 

rapid inactivation of ACh, hydrophobic species of AChE are buried inside the post-

synaptic membrane and positioned strategically near to post-synaptic receptor 

molecules [136]. 

 3.3.1 Acetylcholinesterase Functions  

AChE is the primary enzyme responsible for acetylcholine metabolism and has an 

AChE has an extremely high catalytic activity; one molecule of AChE may degrade 

25000 molecules of ACh per second [137](Figure 3.4). Additionally, it has been 

shown to be beneficial in modulating cerebral blood flow, β-amyloid aggregation, 

activation, and production of the APP protein, τ protein phosphorylation, and 

inflammatory processes. Additionally, it interacts with β-amyloid, forming 

permanent complexes and senile plaques[130]. 



 

41 

 

 

Figure 3. 4 Schematic diagram of the AChE active site canyon interaction, 
where acetylcholine hydrolysis catalyzed by the enzyme occurs[138] 

 

 3.3.2 Acetylcholinesterase Structure 

A monomer of the enzyme is formed of 531 amino acids and contains 12 mixed        

β-sheets encircled via 14 α-helices [137](Figure3.5). The active site of AChE is a 

substantial hydrophobic cavity and consists of 2 subsites: i) the anionic substrate 

binding site (AS) and ii) The esteratic subsite (ES); both subsites are significant in 

the function of the enzyme[137]. The peripheral anionic site of AChE is liable for 

allosteric inhibition in the catalytic site via cationic ligand interactions. Changeux 

et al., in 1966 who suggested this area as a possible connection between agents 

such as propidium and leftovers along the gorge's brink. Additionally, this 

peripheral anionic area may contribute to the catalytic process via inhibiting 

substrates. The enzyme contains one somewhat remarkable feature, a deep and 

narrow gorge that is ~20Å long and ~5Å wide penetrating halfway into the 

enzyme called the catalytic triad (CT), consisting of Ser203, Glu334, and His447. 

The hydrolysis reaction takes place in the CT site of the enzyme. As a part of the 

CT, Ser203 is effective for the hydrolysis of choline esters via proton transfer 

[139].  
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Figure 3. 5 Schematic diagram of the topological secondary structure of the 
α/β hydrolase folding 

 

Note: The α-helices are shown as red cylinders, the β-strands as turquoise arrows, and the three 
residues making up the active site are shown as green circles (the labels of Ser, Glu and His 
correspond to the catalytic-triad residues found in the AChE active site). 

 

There are 14 aromatic residues made up of phenylalanine (Phe), tyrosine (Tyr), 

or tryptophan (Trp), and several anionic residues near the bottom of the gorge 

that leads to the active site. These residues are critical in AChE operations since 

they are highly conserved across all species that rely on them[137](Figure 3.6). 

The cation-π interaction is present between these aromatic amino acids and the 

positively charged of quaternary ammonium of Ach and the acceleration of 

binding of the cationic ligands. Trp86 is the essential aromatic amino acid for the 

AChE-ACh interaction is inhibited when alanine is substituted, resulting in a 

3,000-fold reduction in reactivity. Apart from these locations, AChE has a (acyl 

pocket) that imparts substrate selectivity, as well as a (oxyanion hole) that 

interacts with negative oxygen ions Through catalysis, thus increasing AChE's 

catalytic effectiveness. There is an additional peripheral binding site within AChE 

which is distinct from the primary acetylcholine binding site. This additional site 

serves as a binding site for uncompetitive inhibitors separate from the site 

occupied via competitive inhibitors. Therefore, this is the additional binding site 

thoroughly studied via pharmaceutical companies developing AChE inhibitors to 

treat several diseases[140](Figure 3.7) and (Figure 3.8). 
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Figure 3. 6 The 3D structure of AChE (PDB:4EY7) is displayed as a ribbon 
diagram 

 

 

 

 

 

 

 

 

 

Figure 3. 7 Schematic diagram of active sites in AChE canyon [141] 
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Figure 3. 8 The active site gorges of human acetylcholinesterase (hAChE)[142] 

 

 3.3.3 Acetylcholinesterase Inhibitors (AChE-Is) 

Alzheimer's disease (AD) is the most common kind of adult-onset dementia and is 

characterized via a progressive decline in cognitive skills and behavioral features. 

Because cholinergic deficits are a constant and early finding in AD, 

acetylcholinesterase has been validated as the most promising treatment target for 

symptomatic improvement in AD [140].  

The most often used medicines to treat AD are acetylcholinesterase 

(AChE)/cholinesterase inhibitors (ChE-Is). The ChE-I mechanism entails an 

increase in cholinergic transmission across the central nervous system, with 

impairments affecting memory and cognitive disorders (Figure 3.9). Tacrine was 

the 1st ChE-I agent to get FDA approval for the symptomatic treatment of 

Alzheimer's disease. Only cholinesterase inhibitors, such as donepezil, 

rivastigmine, and galantamine, and N-Methyl-D-aspartate (NMDA) antagonists, 

such as memantine, have been authorized and are available. Due to tacrine's 

hepatotoxicity, it is no longer used[143]. AChE-Is or anti-cholinesterases block the 

ChE enzyme from degrading ACh, thus enhancing the amount and duration of 

neurotransmitter activity. 
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Figure 3. 9 Efficacy of acetylcholinesterase inhibitors in AD[143] 

 

AChE-Is may be classified into 2 classes based on their mechanism of action [11] 

(Figure 3.10):  

➢ Reversible inhibitors: They are categorized as either competitive or 

non-competitive inhibitors, with the majority of them having therapeutic 

use. Reversible AChE-Is are critical for manipulating the enzyme's activity 

pharmacologically. These inhibitors are composed of several functional 

groups (carbamate, quaternary, or tertiary ammonium) and have been 

used to diagnose and treat a variety of illnesses, including AD[144]. 

➢ Irreversible inhibitors: The hazardous consequences are associated 

with irreversible inhibitors of AChE activity. AChE-Is that being irreversible 

are organophosphorus chemicals (OPs). They are phosphoric, phosphonic, 

phosphinic, or phosphor amide acid thiols or esters. The OPs primarily 

exert their toxicological effects in the CNS through irreversible 

phosphorylation of esterases. The acute toxicity is due to AChE's 

irreversible inactivation. OPs are substrate analogs of ACh that, like 

natural substrate, covalently attach to the serine –OH group in the active 

site. As with acetylation, OP is divided into 2 molecules and the enzyme is 

phosphorylated[145, 146]. 
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Figure 3. 10 Mechanisms actions of AChE-Is 

 

(A) the normal ephemeral (microseconds) covalent acetyl-enzyme complex formed as an 
intermediate step in the hydrolysis of acetylcholine. (B) A schematic of a competitive inhibitor 
binding reversibly the catalytic site (C) The longer-lasting covalent bond formed between pseudo-
irreversible inhibitors and the enzyme (D) Example of the irreversible sulfonyl-enzyme covalent 
complex (no spontaneous hydrolysis, no recovery) permanently excluding acetylcholine binding 
and hydrolysis[147].  

 

Tacrine, donepezil, and galantamine are categorized as intermediate-acting and 

rivastigmine as pseudo-irreversible agents. Overall, the efficiency of the three ChE-

Is available in the market is similar, and the benefit of administering these 

compounds is mild. Their therapeutic effect is based on maintaining ACh level 

through slowing down its hydrolysis rate. Because of these medications' 

gastrointestinal adverse and other side effects, medicinal chemistry and 

pharmaceutical delivery research has investigated many solutions to develop the 

pharmacological activity of these compounds. However, it has been shown in 

recent years that cholinesterases may affect a variety of other processes, including 

-amyloid aggregation, owing to the presence of a peripheral anionic site (PAS) 

structure [135]. These findings rekindled interest in cholinesterases as a critical 

target for Alzheimer's disease treatment, and many research organizations have 

conducted studies on the design and manufacture of novel inhibitors. Despite their 

limited effectiveness, ChE-Is remain a pharmaco-therapeutic option for treating 
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Alzheimer's disease while more effective techniques are developed[140, 143]. 

AChE-Is have been studied extensively as a treatment medication for AD. In the 

USA, all of the current 1st-line therapies are AChE-Is. Natural AChE-Is is also a 

potential field of research. In China, HupA is the medicine of choice[148]. Many 

hybrids are also being formed. Some hybrids are made wholly of new materials, 

while others improve on the older AChE-I. Because these AChE-Is are proven, 

symptomatic treatment with a known target, these medication's class will continue 

to be developed. The drugs in this class have a track record of CNS permeability, 

a well-known side effect profile, and demonstrated efficacy (Figure 3.11). Because 

the FDA has already authorized donepezil, rivastigmine, and galantamine, the risk 

of developing novel ChE-Is will need to be more effective. The focus of future 

research in this class should be on whether ChE-Is directly impact the pathogenesis 

of AD[149]. 

 

Figure 3. 11 The use of cholinesterase inhibitors in patients with Alzheimer’s 
disease 
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 3.4 Butyrylcholinesterase (BuChE) 

Butyrylcholinesterase (BuChE, E.C. 3.1.1.8) is a serine hydrolase that is 

structurally similar to acetylcholinesterase (AChE). This enzyme is the 2nd kind 

of cholinesterase., also called pseudocholinesterase. BuChE is also an                        

α-glycoprotein with a biological half-life of about 12 days (human) and can be 

found in central and peripheral tissues. BuChE is present in plasma and numerous 

vertebrate tissues, and it is essential because of its ability to hydrolyze choline 

esters molecules[150]. BuChE is not found in synapses; therefore, unlike AChE 

that plays a crucial role in terminating the action of ACh in the cholinergic system, 

no direct involvement of BuChE in the cholinergic system has been demonstrated 

(breaks down ACh more slowly). However, BuChE may be a surrogate for AChE 

in deficiency of this enzyme[151](Figure 3.12). 

 

Figure 3. 12 Hydrolysis of acetylcholine by AChE and BuChE 

 

BuChE is the enzyme that degrades the choline ester butyrylcholine the quickest; 

therefore, it is called BuChE. The 1st research on BuChE shown that inhibiting the 

enzyme resulted in an increase in brain ACh levels. Additional gene investigations 

indicated that it is involved in the control of -amyloid, a harmful brain protein, 

and its amount rises in AD patients (Figure 3.13). As such, it is an intriguing target 

for neurological diseases such as Alzheimer's disease. BuChE's substrate range was 
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recently expanded to include cocaine and ghrelin, the "hunger hormone"[152]. It 

is noted that BuChE's pharmacological effect evolved in lockstep with each 

published result. Thus, not only is the enzyme now regarded as a critical 

pharmaceutical target, but it is also emerging as a critical tool for studying the 

molecular processes involved in a variety of diseases [153]. 

 

Figure 3. 13 Butyrylcholinesterase and Alzheimer’s disease 

 

Note: BuChE in plaques (red arrows) and tangles (blue arrows) in the cerebral cortex of a patient 
with Alzheimer’s disease (AD). Many tangles and plaques in the brains of AD patients contain 
BuChE activity[154]. 

 

 3.4.1 Butyrylcholinesterase Functions 

BuChE’s function act as a natural scavenger in the bloodstream. It is utilized to 

catalyze the hydrolysis of choline esters such as butyrylcholine, succinylcholine, 

and acetylcholine, albeit with a lower efficiency than AChE [155]. 

Additionally, it has been shown that it catalyzes the hydrolysis of various esters, 

including cocaine, acetylsalicylic acid, and heroin [156, 157]. Additionally, BuChE 

is involved in the scavenging of naturally occurring (physostigmine) and 

manufactured anticholinesterases (organophosphate) [155].  
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The implications of BuChE in AD, as well as supporting research, were discussed:  

➢ The modulator of β-amyloid plaques in the positive direction: 

Accumulation of BuChE in plaque deposits in post-mortem human AD brain tissues 

and an induced AD mouse model [158, 159]. Plaque formation is reduced in male 

BuChE-deficient mice [160]. 

➢ Acetylcholine is hydrolyzed, resulting in cholinergic depression: 

BuChE-deficient animals have enhanced cognitive capacity and cholinergic 

activity [161]. 

➢ Inhibitor of the production of amyloid-beta fibrils: 

In vitro experiments with recombinant BuChE, fibril formation was suppressed. In 

vitro, it was discovered that a synthetic C-terminal peptide from BuChE inhibits 

fibril formation [162]. According to genotyping research, the BuChE-K mutation 

at the C-terminal of BuChE may confer risk for AD [163]. 

 3.4.2 Butyrylcholinesterase Structure 

Human BuChE is a glycoprotein constituted of four analogous subunits and each 

with 574 amino acid residues and nine polysaccharide chains [164]. Between the 

2 human cholinesterases, AChE and BuChE, there is an 84 percent amino acid 

sequence homology. As a result, they are structurally and functionally linked. 

AChE and BuChE are members of the -fold family of proteins due to the presence 

of a core -sheet surrounded via -helices (Figure 3.14). BuChE is similarly 

ellipsoidal in form, with a 20-deep gouge that contains a peripheral anionic site, 

a choline-binding site, an oxyanion hole, an acyl-binding site, and a catalytic triad 

site, as shown in several studies[153](Figure 3.15).  

In-depth investigations using site-directed mutagenesis of the cholinesterase 

enzymes showed the critical role of particular amino acids in the active core, 

highlighting the distinction between the 2 cholinesterase enzymes. These 

structural studies explain the molecular basis for the selectivity between the active 

center and the ligand, as illustrated in Table 3.1[165].  
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In hBuChE, the catalytic triad consists of three conserved residues: Ser198, 

Glu325, and His438; in hAChE, the catalytic triad consists of Ser203, Glu334 and 

His447[18].  

At the molecular level, the primary distinction is the acyl-binding pocket, which is 

one of the component domains in the gorge responsible for accommodating the 

acyl moiety of substrates Through hydrolysis. BuChE has six less aromatic amino 

acids than AChE in the gorge. Additionally, one important distinction between 

AChE and BuChE is the substitution of aromatic residues in the active region of 

AChE for aliphatic residues in BuChE, resulting in enzyme selectivity. 

Radić et al. [166] used site-directed mutagenesis to identify three domains: the 

peripheral anionic site, the choline-binding site, and the acyl pocket that imparts 

selectivity on AChE and BuChE. The main substrate difference between AChE and 

BuChE was found via replacing six of the fourteen aromatic amino acids that 

surround the active site gorge in AChE with aliphatic residues. Due to the presence 

of these aromatic amino acid residues (Tyr72, Tyr124, Phe295, Phe297, and 

Tyr337) in AChE, they have been replaced with aliphatic amino acid residues 

(Asn72, Gln124, Leu286, Val288, and Ala337) to provide a less structurally 

restricted pocket in BuChE (Figure 3.16). (Table 3.1). 

As a consequence, it lacks - solid bonding, which allows for the binding of bigger 

inhibitor molecules and substrates such as butyrylcholine and succinylcholine to 

BuChE. Both enzymes have the same catalytic triad of amino acids, which classifies 

them as serine hydrolases. Serine is activated via the adjacent histidine, forming 

a nucleophile that attacks the substrate's electrophilic carbon, forming an acyl-

enzyme intermediate and cleaving the ester link. The cleaved substrate is then 

released through nucleophilic substitution via the hydroxyl group of water, 

forming an acid [167]. 
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Figure 3. 14 3D structure of BuChE (PDB:5DWY) displayed as a ribbon 
diagram 

 

 

 

Figure 3. 15 Schematic view of the active site of gorge of BuChE[154] 
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Figure 3. 16 Active site gorges of human butyrylcholinesterase (hBuChE)[142] 

 

Table 3. 1 Tabulation of the key amino acids in the active center of AChE and 
BuChE 

Sites in Active Center 

Amino Acid Residues Involved 

AChE BuChE 

Peripheral anionic site Tyr72, Asp74, Tyr124, Trp286 Asp70, Asn72, Gln124 

Choline-binding site Trp86, Tyr337 Trp86, Ala337 

Oxyanion hole Gly121, Gly122, Ala201 
Gly116, Gly117, 

Ala199 

Acyl-binding site Phe295, Phe297 Leu286, Val288 

Catalytic triad Ser203, Glu327, His447 
Ser198, Glu325, 

His438 
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 3.4.3 Butyrylcholinesterase Inhibitors (BuChE-Is) 

For a lengthy period of time, researchers concentrated their efforts on the 

development of AChE inhibitors for the treatment of AD. However, a small number 

of BuChE-targeted compounds have been identified on purpose. Existing BuChE 

inhibitors were discovered mostly as a result of the research of AChE inhibitors. 

As a result, these drugs exhibit dual-target inhibitory activity. 

 In recent years, as research into AD pathogenesis has progressed, the critical 

function of BuChE has become more clear. As a result, the efficacy of BuChE 

inhibitors in the treatment of AD has already gained widespread recognition[168]. 

Numerous good reviews have examined a variety of nonselective and selective 

ChEs inhibitors. BuChE is considered a potential therapeutic target due to its 

increased levels and activity in the late stages of AD [154]. 

Additionally, the literature has many research demonstrating that BuChE may 

restore the cholinesterase function in the absence of AChE. This result is consistent 

with previous studies indicating that the relative expressions of AChE and BuChE 

invert Through AD development. Furthermore, BuChE knockout animals have no 

physiological detriment, while human patients with silent BuChE mutations 

exhibit a slower rate of cognitive decline [153].  

As a result, inhibiting BuChE is anticipated to help AD patients in the same manner 

as AChE inhibition does. In vivo evidence supporting this hypothesis includes the 

observation that specific BuChE inhibitors can restore ACh levels in mice and 

improve cognitive performance in mice treated with the amyloid-peptide while 

avoiding peripheral (para-sympathomimetic) adverse effects that have been 

shown to limit the dosing of AChE inhibitors [150](Figure 3.17). 
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BuChE inhibition may be divided into 2 types according to its mechanism of 

action: 

➢ Reversible inhibition: BuChE is capable of binding a broad range of 

amine and quaternary ammonium compounds. Monofunctional ligands 

temporarily attach to the peripheral anionic site (PAS) and then glide 

down the gorge to interact with the cation binding site. These ligands are 

either competitive inhibitors, non-competitive inhibitors, or inhibitors of 

mixed kind. Bifunctional ligands, such as decamethonium, may bind to 

both the PAS and the cation site concurrently. The interaction of the PAS 

and the active center may result in complicated inhibitory kinetics, such as 

partial nonlinear inhibition; in certain instances, an inhibitor may convert 

to an activator, depending on the substrate type and concentration range 

[169, 170]. Medical researchers are interested in specific reversible 

inhibitors of BuChE. 

➢ Irreversible or progressive inhibition: Via interacting with the 

catalytic serine (Ser198), carbamyl, organosulfonyl, and 

organophosphorus-esters induce gradual inhibition of BuChE. The 

mechanism via which these chemicals inhibit cholinesterase has been 

extensively investigated [171].  

Rivastigmine, a carbamate, has been approved as an anti-Alzheimer 

medication; it has a similar IC50 for human BuChE and AChE. Cymserine 

and its derivatives, such as tetrahydrofurobenzofuran cymserine 

(THFBFC), boost acetylcholine and improve cognition in rats without the 

adverse effects associated with AChE inhibitors. As a result, targeted 

carbamylation of BuChE may offer a novel therapeutic strategy for AD 

[172].  

Numerous organophosphates (Ops) have been extensively employed as 

pesticides (coumaphos, paraoxon, and so forth) and pharmaceuticals 

(echothiophate, cyclophosphamide). Additionally, certain OPs are very 

effective chemical warfare agents (tabun, sarin, soman, VX). Nucleophilic 

chemicals may be used to reactivate phosphorylated cholinesterases. 
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 As a result, a number of selective BuChE inhibitors have been discovered, the 

most powerful of which are the carbamate analogs of cymserine and isosorbide, 

which block the enzyme irreversibly[173, 174]. 

 

Figure 3. 17 Cartoon image depicting possible mode of inhibitors action on 
cholinesterase enzymes[175] 
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4 
     COMPUTER-AIDED DRUG DESIGN 

 

 4.1 Theoretical Background of Computer-Aided Drug 

Design (CADD) 

Hypothetically, a drug is used to cure a specific disease. A drug is considered to 

be the ligand, replacing the natural substrate of a protein. Launching a new drug 

to the market is a costly affair that involves considerable time and money. The 

underlying reason may be that the process of finding a suitable, relatively non-

toxic drug for a specific disease is a time-consuming, arduous, and costly process. 

It has been estimated that the average research and development investment 

needed to get a new drug approved and on the market would cost approximately 

10-14 years and $2.7 billion USD on average[176]. Ever since the development of 

Viracept in 1997, derived from the target structure HIV protease, computational 

tools for drug design have become a pillar in drug discovery. To assist the 

discovery process, a mix of sophisticated computer methods, biological research, 

and chemical synthesis was developed, and this combined approach increased the 

size of discovery [177].  

The term computer-aided drug design (CADD) was eventually used to refer to the 

use of computers in drug development. CADD has substantially shortened the time 

required to advance a drug candidate from more than 10 years to a few years 

[178]. Additionally, it has been shown that via using CADD methods, we may 

decrease the cost of drug discovery and development via up to 50%. CADD is any 

method that utilizes a computer program to create a standard for relating activity 

to structure [179](Figure 4.1). Advanced computational applications are useful 

tools, and they have resulted in noteworthy achievements. CADD is a specific field 

of study in which various computational techniques are used to model the 

interactions of receptors and medicines in order to estimate binding affinities. 

However, the technique is not limited to the study of chemical interactions and 
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the prediction of binding affinity; it has a plethora of other applications, ranging 

from the design of compounds with desired physicochemical properties to the 

management of compound digital repositories [180].  

 

Figure 4. 1 Traditional process of drug discovery and development versus 
CADD timeline 

Via displaying the three-dimensional structures of proteins, ligands, and protein-

ligand interactions, computational techniques may offer the most useful 

information (Figure 4.2). Finding an active leading molecule is the cornerstone of 

the new medication development process (Figure 4.3). As a result, the advantages 

of CADD screening bioactive chemicals become the jumping-off point and critical 

stage in novel drug development. CADD has recently been widely used to the 

creation and identification of novel pharmacological drugs because to its better 

hit rate of novel compounds when compared to conventional high-throughput 

screening (HTS) and combinatorial chemistry [181].  

CADD is often used for three main objectives in practice: 

1. Filter large compound libraries into smaller sets of predicted active 

compounds, which can reduce experimental workloads. 

2. Optimize lead compounds via increasing their affinity or optimizing their 

drug metabolism and pharmacokinetics (DMPK) characteristics. 

3. Create new compounds via "growing" functional groups on beginning 

molecules or putting together pieces. 
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Figure 4. 2 (A) Schematic diagram of CADD process. (B) Comparison of 
traditional and computer-aided drug development in terms of time and cost 

investment[182] 

 

 

Figure 4. 3 General principle for drug design through CADD[176] 
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Computer-Aided Drug Design (CADD) is an effective technique for discovering 

new medicines to prevent or cure Alzheimer's disease. There are primarily 2 

methods. for drug design through CADD as following[42] (Figure 4.4): 

➢ The direct approach to drug design, or structure-based drug design 

(SBDD). 

➢ The indirect method, often referred to as ligand-based drug design 

(LBDD). 

The 1st approach, which incorporates Molecular Dynamics (MD), Quantum 

Mechanics (QM), and Linear Interaction Energy (LIE), is conceptually similar to 

high-throughput screening (HTS) in that structure information for the protein and 

ligand is required to identify novel hit chemicals from virtual compound libraries 

using docking simulation tools [182].  

The 2nd approach, which includes pharmacophore modeling, quantitative 

structure-activity relationship (QSAR) analysis, and matched molecular pairs 

(MMP) search, among others, uses only ligand information to predict activity 

based on its similarity/dissimilarity to previously known active ligands [182] 

(Figure 4.4).  

 

Figure 4. 4  Overview of computer-aided drug design (CADD) process[183] 
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Recently, CADD has become an increasingly essential technique in the 

identification of new AD drugs, allowing for substantial cost savings and 

accelerated development cycles in drug research [184]. Numerous research 

groups have successfully used CADD to produce inhibitors of the cholinesterase 

enzyme, beta secretases, and gamma secretases, as well as additional AD 

treatment and diagnostic compounds [182, 184-186]. In (CADD), the energy of 

the systems is calculated using either Molecular Mechanics (MM) or Quantum 

Mechanics (QM). Since each particle is referred to as a wave function or a function 

of the state, the state of each particle is determined using Schrödinger's time-

dependent wave function. Although QM may predict molecular orbital energies, 

it is not utilized for docking or MD simulations, since this would contradict CADD's 

"convenience" approach[187]. 

For large systems, MM computations offer rapid, empirical energy calculations. 

However, MM employs straightforward equations based on classical physics, and 

atoms are regarded as harmonic spheres. As a result, MM methods may be used 

to compute non-electronic molecule characteristics. Force fields are MM energy 

functions that are used to determine the system's potential energies. This potential 

energy function entails a number of parameters, including inter- and  

intramolecular forces, bond lengths, bond angles, bond torsions, and non-bonded 

interactions such as the Lennard-Jones potential (van der Waals interactions) and 

the Coulombic potential (electrostatic interactions)[188]: 

ϑ(rN)=∑
𝐾𝑖

2𝑏𝑜𝑛𝑑𝑠  ( li - li,0)
2 + ∑

𝐾𝑖

2𝑎𝑛𝑔𝑒𝑙𝑠  ( θi – θi,0 )
2 + ∑

𝑉𝑛

2𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠  (1+ cos(nω – γ))                         

+ ∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
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𝜎𝑖𝑗
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)
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 ] +  
𝑞1𝑞2

4 𝜋𝜀0𝑟𝑖𝑗

𝑁
𝑗=𝑖+1

𝑁
𝑖=1 )                  (4.1) 

Such that ϑ(rN) is the potential energy function, as the function of position (r) and 

of number of particles (N). ∑bonds 
𝐾𝑖

2
 (li – li,0) is the energy function for bonded 

atoms, where (l) is the length of the bonds. ∑angels 
𝐾𝑖

2
 (θi – θi,0) is the function for 

the potential energy related to the deviations of the bond angles, and ∑torsions 
𝑉𝑛

2
(1+ 

cos(nω − γ)) is the rotational potential energy of a bond. The last term accounts 

for non-bonded interactions between atoms, such as van der Waals and 
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electrostatic interactions. Thus, CADD may be divided into 2 broad categories: 

structure-based and ligand-based drug design. When combined with the increased 

availability of various chemical databases, these cost-effective structure- or ligand-

based methods substantially enhance drug discovery efficiency and provide new 

vistas and potential pathways for the treatment of life-threatening illnesses. The 

process for CADD is shown in Figure 4.5. 

 

Figure 4. 5 Traditional workflow of structure-based drug design (SBDD) and 
ligand-based drug design (LBDD) 
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 4.1.1  Structure – Based Drug Design (SBDD) 

Structure-based drug design is a technique that makes use of three-dimensional 

(3D) structural information from proteins to create novel biologically active 

compounds. Thus, the main 1st step in SBDD is selecting a target molecule and 

determining its structure. When the 3D structure is known, it is possible to 

carefully analyze the binding site and its topology and steric and electronic 

properties[189](Figure 4.6). Applications such as molecular docking (MD) 

simulations are used in SBDD to examine the conformational changes acquired in 

the binding pocket of the target and to inspect how the protein and ligand behave 

together when both are allowed to move, respectively. For example, the specified 

target may be an enzyme associated with a disease of interest. Then, based on 

binding affinity determinations, potential compounds are determined, which 

attenuates the activity of the target via its inhibition[190]. Thus, SBDD utilizes 

information about a biological target and identifies possible new medications; 

therefore, SBDD constitutes a marked advancement in the computational 

techniques used in biophysics, medicinal chemistry, statistics, biochemistry, and 

other fields. In addition, scientific advances have resulted in a large number of 

methods for predicting protein structures. These state-of-the-art technologies 

enable the determination of the forms of large numbers of proteins via using Cryo-

electron microscopy (CryoEM), nuclear magnetic resonance (NMR), X-ray 

crystallography, and computational methods like homology modeling and 

molecular dynamic (MD) simulation[191](Figure 4.7). 

 

Figure 4. 6 Steps involved in structure – based drug design (SBDD) 

 



 

64 

 

 

Figure 4. 7 Layout of structure – based drug design (SBDD)[176] 

 

4.1.1.1 Molecular Docking (MD) 

Molecular docking is a computational technique for predicting the location of tiny 

molecules or ligands inside the active region of a target protein (receptor) (Figure 

4.8). It is mostly utilized to determine the most advantageous binding mechanisms 

and bioaffinities of ligands for their receptor. At the moment, it is widely used in 

virtual screening for the optimization of lead compounds. The technique of 

molecular docking is primarily concerned with three interrelated objectives: 

➢ Prediction of the entanglement posture 

➢ Biological affinity 

➢ Virtual examination 

The search algorithm and scoring algorithms used in molecular docking are critical 

tools for generating and evaluating ligand conformations [192]. For novel drug 

molecule discovery, molecular docking is used to predict the spatial arrangements 

of the drug molecule in question within the vicinity of the binding cavity of the 

target structure. The primary yield of molecular docking is the ‘docking score’ and 

a ‘docking pose,’ which aids with predicting the biologically active or bioactive 

conformation the molecule will most likely adapt when in physiological 
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conditions. In many molecular docking simulation algorithms, the ligand is 

exclusively given conformational flexibility, while only some residues in the 

binding pocket are allowed restricted flexibility. The reason behind this lies in the 

fact that if both the ligand and protein were allowed flexibility, excessive 

computational resources would be needed. 

 

Figure 4. 8  Process of docking[183] 

Molecular docking predicts free energy of binding ΔG (Gibbs free energy-docking 

score), which corresponds to the sum of all these non-bonded terms. Low docking 

score (i.e., high ΔG values) corresponds to the unfavorable binding pose, and low 

ΔG corresponds to the favorable binding conformation at the binding pocket. Due 

to computational costs, most docking programs only take ligand flexibility into 

account while neglecting protein flexibility[193]. 
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When calculating the binding free energy of a ligand, the following 

approximations are taken into consideration; 

1stly,  

∆𝐺 =  ∆𝐻 −  𝑇∆𝑆                                         (4.2) 

As it is considered, the change in entropy (∆S) is assumed zero since the addition 

of a ligand relatively very small compared to the protein may not cause a 

substantial change in entropy, 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆                                    (4.3) 

2ndly; 

∆𝑈 =  ∆𝐻 + 𝑃∆𝑉                                          (4.4) 

As it is considered, the volume change, again, is assumed not to be affected via     

adding a ligand that is considerably smaller than the protein itself,    

∆𝑈 =  ∆𝐻 + 𝑃∆𝑉                                          (4.5)                                                    

Therefore, since; 

∆𝐻 = ∆𝑈                                                (4.6) 

then  

∆𝐺 =  ∆𝑈                                               (4.7) 

This indicates that the binding free energy can be estimated from internal energy 

[194]. The internal energy consists of: 

A) Bonded Energies  

➢ 2-body covalently bonded atoms 

➢ 3-body covalently bonded atoms 

➢ 4-body covalently bonded atoms 

B) Non-bonded energies   

➢ van Der Waals (Lennard Jones)  

➢ Electrostatic Potential 
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These components are included in the experimental docking function; 

∆Gbind = ∆G0 + ∆GH-bonds ∑ 𝑓(∆𝑟, ∆𝛼)𝐻−𝑏𝑜𝑛𝑑𝑠  + ∆Gionic ∑ 𝑓(∆𝑟, ∆𝛼)𝑖𝑜𝑛𝑖𝑐  + 

∆Garom ∑ 𝑓(∆𝑟, ∆𝛼) 𝑎𝑟𝑜𝑚  + ∆Glipo ∑ |𝐴𝑙𝑖𝑝𝑜|𝑙𝑖𝑝𝑜  + ∆𝐺𝑟𝑜𝑡𝑁𝑟𝑜𝑡            (4.8) 

where ΔG0 is a constant term, not dependent of the system. The terms ∆GH-bonds, 

∆Gionic, ∆Garom, and ∆Glipo are the contributions from ideal hydrogen bonds, ionic 

interactions, aromatic interactions and lipophilic interactions, respectively. These 

terms are multiplied via f (Δr, Δα), which is a penalty function. ΔGrot accounts for 

the loss of free energy that occurs when a rotatable bond in the ligand is frozen 

for binding, and it is multiplied via Nrot, which is the number of rotatable bonds in 

the ligand[194]. Various docking algorithms and programs are available like 

DOCK, AutoDock, Auto-Dock Vina, FlexX, GOLD, HADDOCK, Glide, etc.[195-

198]. Each of these programs has its algorithm to search different conformations 

of ligands at the binding site and to score functions to rank molecules according 

to their binding affinities. In Maestro molecular modeling package, a Glide 

docking algorithm with different precisions is available, namely, starting from the 

most complicated one quantum-polarized ligand docking (QPLD), induced-fit 

docking (IFD), extra precision (XP), standard precision (SP), and high throughput 

virtual screening (HTVS). Millions of compounds can be screened against a 

specific target in silico using HTVS (Schrödinger, 2010). The main differences 

between SP and XP algorithms are their scoring functions and penalties like de-

solvation and charge. XP uses more complicated scoring functions and applies 

charge and de-solvation penalties. In this thesis, the Glide SP docking, IFD, and 

QPLD algorithm were considered, using a hierarchical filter to predict bioactive 

ligands conformations at the binding pocket. 

In the IFD algorithm, initial docking is performed using SP or XP mode, then 

generated poses are refined using the Prime module of Maestro to provide 

flexibility to the surrounding residues at the binding pocket. This enables active 

site residues to adopt more favorable orientations to maximize ligand-protein 

interactions. Finally, refined protein-ligand complexes are used to re-dock ligands 

back to the binding pocket and scored.  
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Although QPLD is the algorithm that provides one of the most reliable bioactive 

poses and docking scores, it is one of the most time-consuming docking protocols 

compared to the others. This algorithm combines quantum mechanics QM 

calculations which provide high-level accuracy, and molecular mechanics (MM), 

which enables speed. Docking algorithms and programs provide the static picture 

of protein-ligand complexes and do not contain physiological conditions such as 

temperature. Since all biological processes are dynamic and occur in physiological 

conditions, these conditions are required to represent the nature of dynamical 

cellular processes correctly. Therefore, this can be acquired via using molecular 

dynamic (MD) simulations. 

4.1.1.2 Molecular Dynamic (MD) Simulations 

In order to study the conformations and dynamic behaviors of biomolecules on a 

long-timescale, molecular dynamics (MD) simulation is a suitable theoretical 

method that offers atomic-level insight into the regulating mechanism[199]. MD 

simulation uses Newton's law of motion to calculate the potential energy of each 

atom. Potential energy term calculated via considering non-bonded interactions, 

bond angles and lengths, and dihedral angles (Figure 4.9). MD method enables to 

calculate of atomic positions and give insights into the dynamic nature of protein-

ligand complexes within a specific time, yielding MD trajectories. 

 

Figure 4. 9 The components of the force field, representing bonded and non-
bonded interactions [200] 
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MD simulations start with an equilibrium phase, where the whole system is 

relaxed to a more lifelike arrangement. Temperature is kept near zero for the 

equilibrium run and is increased at the production run step of the MD 

simulation[201]. To keep the system progressing, numerical integration of 

Newton’s 2nd law of motion is done via a set of algorithms known as “integrators.” 

Solving the Newtonian equation for each particle will provide the system with 

physical attributes, such as volume and energy. However, additional attributes or 

variables termed “extended degrees of freedom” can improve the system[202]. 

The calculations are broken down into a sequence of equations for short time steps 

denoted via δt, which are generally determined via the fastest action in the system. 

This is generally the vibration of bonds, which are at femtosecond frequency. A 

trajectory file can be collected at the end of an MD simulation, interpreting all the 

dynamic variables and their change with time. The trajectory includes Every 

parameter that was generated Through each step movement of atoms is listed 

here. The following are some of the structural parameters that may be utilized to 

evaluate the findings. 

➢ RMSD 

➢ RMSF 

➢ Radius of Gyration 

➢ Protein–Ligand Contacts 

➢ SASA 

➢ Particle Swarm Optimization (PSO) or Essential Dynamics (ED) 

➢ The Analysis of secondary Structures 

The root mean square deviation (RMSD) is the most important ad first metric to 

consider while analyzing the MD trajectory's trajectory. The root mean square 

deviation (RMSD) of a protein is used to quantify the variance between its 

backbones from its initial structural conformation to its final location. The 

variations generated through the MD modeling process [203] may be used to 

specify the stability of the protein in relation to its conformation.  
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The relative mean squared deviation (RMSD) is computed in relation to the 

reference native conformation rref using the following formula: 

 

Where M=∑imi and ri(t) represent the atom, i position at the time t after least 

square fitting the structure to a reference structure. It is possible to compute the 

root mean square deviation (RMSD) for all residues, the backbone, the side chains, 

and the C atoms. The root mean square fluctuation (RMSF) method is the most 

effective method for analyzing the residue-wise fluctuation of the protein derived 

from the MD trajectory of the protein. The variation of each residue or domain in 

a protein is represented via this value. The RMSF may be displayed as RMSF (nm) 

vs residue number[203] which is a linear function. The RMSF of a protein is 

defined as the difference between the location of particle i and its reference 

position, where T denotes the passage of time and riref denotes the position of 

particle i in the reference position. 

 

The RMSF of well-organized and rigid structures, such as helix and sheets, is low, 

while the RMSF of loosely organized and flexible structures, such as bends and 

coils, is high. This is because atoms may cause more fluctuation in bends and coils 

than in helix and sheet. 

4.1.1.3 Molecular Mechanics / the Generalized Born Solvent                  

Accessible Surface Area (MM/GBSA) Calculation 

MM/GBSA calculation is a popular approach used to predict free-energy changes 

upon binding ligands to biological molecules such as proteins. Free energy 

calculations of biomolecular systems hold great importance since free energy is 

associated with all molecular operations, namely protein folding and molecular 

catabolism, and anabolism. MD simulations are currently one of the most 

advanced techniques in simulating biomolecular systems[204].  
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End-point free energy calculations are used to calculate the binding energies since 

they are computationally more efficient. End-point free energy calculations take 

into account the “final state” of the system, just like docking algorithms. However, 

they are more accurate than the latter[205]. The MM/GBSA calculation approach 

1st considers the protein and ligand individually and then as a complex. The 

individual free energies are subtracted from the free energy of the complex. There 

are 2 parts involved in the computation of a MM/GBSA score, the MM approaches 

and the implicit solvation approaches that calculate the polar and non-polar 

contributors. MM/GBSA calculations can be expressed as basically. As a rule, 

ligand-based methods are based on the pharmacophore approach and 

quantitative-structure activity connections, respectively (QSARs). In LBDD, it is 

believed that molecules with structural similarities also have biological activities 

and interactions with the target protein that are similar[206]. 

 4.1.2 Ligand – Based Drug Design (LBDD) 

Although the 3D structure of the target protein is unknown (either because it has 

not been crystallized or due to the inability of homology modeling to accurately 

represent it), the knowledge of ligands that bind to the desired target location is 

known [207]. It is possible to enhance a pharmacophore model or a molecule that 

already has all of the necessary structural properties for binding to a target active 

site with the help of these ligands. Generally speaking, ligand-based methods are 

as follows: 

➢ pharmacophore-based approach  

➢ quantitative-structure activity relationships (QSARs).  

According to LBDD, substances that are structurally similar to one another also 

have the same biological activity and interact with the same target protein [208] 

see (Figure 4.10). In this method, functional groups on each ligand set are aligned 

on a template molecule to obtain a universal pharmacophore model. Further, the 

generated pharmacophore model can be validated using another set of ligands 

with known experimental binding data. Where the 3D structure of the protein is 
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not revealed, this method allows the discovery of new molecules capable of 

binding on the same target. 

 

Figure 4. 10 Outline of process involved in ligand-based drug design[209] 

 

    4.1.2.1 Pharmacophore Modelling 

After a century of researches, pharmacophore methods have become one of the 

most potent tools in drug creation. For better pharmacophore modeling, a variety 

of ligand-based and structure-based methods have been developed. They have 

been used in 3D chemical databases, virtual screening, ligand profiling, de novo 

design, and biological activity prediction for lead optimization with great success. 

Each atom or group in a molecule that shows specific properties linked to 

molecular recognition can be reduced to a pharmacophore trait[210]. Ligands 

with the best fitness to the model will identify as having higher biological activity. 

The six different pharmacophore characteristics are used to define functional 

groups of studied molecules: 

➢ Hydrogen bond donors  

➢ Hydrogen bond acceptors 

➢ Cationic group 

➢  Anionic group 

➢ Aromatic rings 

➢  Hydrophobic sites, and any possible combinations.  
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Different compounds may be compared at the pharmacophore level; this method 

is referred to as “pharmacophore fingerprints”[211] and is often used. 

4.1.2.2 Quantitative Structure – Activity Relationship (QSAR) 

Hansch and Fujita 1st coined the term QSAR in 1964 to describe the correlation 

between biological activity and chemical structure [212]. Molecular descriptors 

are the essence of QSAR, and they can range from 1D (molecular formula), 2D 

(structure), 3D (conformational spatial arrangements), and more. 

 QSAR investigations are widely used in contemporary chemistry and 

biochemistry, and they have a wide range of applications. Quasi-static regression 

(QSAR) models are developed to provide an understanding of the relationship 

between the chemical structure and biological activity, to aid in the design of novel 

compounds with enhanced biological activity profiles, and to predict the biological 

activity of compounds in silico[213] (Figure 4.11).  

It is necessary to examine physicochemical parameters such as partition coefficient 

and the presence or absence of certain chemical characteristics. QSAR may be 

binary or categorical in nature, in which case they specify a variable such as 

harmful or not toxic, active or not active, and so on. Furthermore, they may be 

statistical and continuous in nature [214] depending on the pIC50, Ki, or other 

factors. QSAR directs the process of lead optimization, and it is also used as a 

screening and enrichment technique to eliminate compounds that do not exhibit 

drug-like characteristics or those are anticipated to be hazardous from the pool of 

compounds. 

For QSAR analysis, a variety of techniques are developed that are dependent on 

the following criteria or variables relevant to the study [215]: 

➢ Molecular structural characteristics or parameters that are generated from a 

sequence of molecules 

➢ The mathematical approach that was utilized to determine the connection 

between the structural characteristics and biological activity was described in 

detail below. 
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Figure 4. 11 QSAR methodology, mathematical models, and validation 
procedures[215] 

4.1.2.3 MetaCore™/MetaDrug™ 

The MetaCore™ /MetaDrug™ platform is an online tool provided via Clarivate 

Analytics to obtain an extensive profile of the pharmacokinetics and 

pharmacodynamic properties for a selected compound or a set of compounds. 

Mainly, there are 25 common diseases binary QSAR models and 26 toxicities 

binary QSAR models, which can give the Tanimoto Prioritization (TP) value of a 

compound depending on how similar it is to the training and test set of the QSAR 

models. In the "therapeutic activity prediction" function, it is possible to forecast 

whether or not a chemical has therapeutic action[216].  

Indications of possible therapeutic action are shown via a projected QSAR value 

(between 0 and 1) higher than 0.5. The Cooper statistics parameters (specificity, 

sensitivity, accuracy, and Matthews Correlation Coefficient) are used via the 

MetaCore platform to assess the model's performance on the MetaCore platform 

(MCC). Sensitivity, specificity, and accuracy are measures of the proportion of 

properly predicted positives, correctly predicted negatives, and the degree to 

which anticipated characteristics (such as the inhibition constant value, IC50) are 

near to the actual values of expected attributes [70].  
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The closer the value of these coefficients is to one hundred percent, the higher the 

quality of the model is considered to be. MCC is a correlation coefficient between 

observed and predicted values, with values ranging from -1.00 to +1.00 (+1.00 

representing perfect prediction and -1.00 representing inverse prediction). 

Model with the greatest values of those parameters was chosen as the winner. 

Tanimoto prioritization [217] is used to identify the applicability scope of a model. 

• Sensitivity = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                                           (4.9) 

• Specificity = 
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                                         (4.10) 

• Accuracy = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃)
                                                                 (4.11) 

• MCC = 
(𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)∗(𝑇𝑃+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)
                                             (4.12) 

where 

• TP – true positive,  

• FN – false negative, 

• TN – true negative, 

• FP – false positive. 

 4.1.3 Virtual Screening 

Virtual screening has evolved as a key technique in the search for new drug-like 

compounds, and it has become one of the most widely used. Virtual screening has 

been shown to be the most convenient method available today for identifying the 

most promising bioactive compounds with the assistance of information about the 

protein target or known active ligands, among other things (Figure 4.12).  

Since its inception, virtual screening has gained widespread recognition as a 

revolutionary alternative to high-throughput screening, primarily in terms of cost-

effectiveness and the likelihood of identifying the most suitable new hit via 

filtering through huge libraries of compounds [218]. Virtual screening methods 

may be divided into 2 categories: structure-based virtual screening (SBVS) and 
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ligand-based virtual screening (LBVS) (LBVS). In contrast to the SBVS technique, 

which is based on the structure of the target protein active site, the LBVS method 

is based on an estimate of computed similarity between the known active and 

compound sites that are derived from databases of known active sites. According 

to the lead–target interaction, i.e., binding free energy and interacting amino acid 

residues through non-covalent bonding (hydrogen and hydrophobic bond) for 

further validation [219], it makes it easier for researchers to select appropriate 

molecule(s) as a lead from the available chemical compounds database for further 

validation. 

 

Figure 4. 12 Overview of virtual screening process[220] 

 

 4.2 Advantages of Computer-Aided Drug Design 

We can identify the most promising drug candidate in the shortest amount of time 

and at the lowest possible cost using computer-aided drug design (CADD), which 

is an efficient technique in drug discovery and development. It always offers a ray 

of optimism for progress in the field of drug development. With the present 

accomplishments, there is a bright future for CADD in terms of assisting in the 
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development of many more curative drugs in the near future. Through CADD, we 

can reduce synthetic and biological testing efforts. Through CADD, we can reduce 

synthetic and biological testing efforts[221]. 

➢ Via using in silico filters, it is possible to identify the most promising 

medication candidate via removing molecules with undesirable 

characteristics (such as low effectiveness, weak ADMET, and so on) [222]. 

➢ A cost-effective, time-saving, rapid, and automated method is used. 

➢ We can learn about the pattern of drug-receptor interactions via CADD. 

➢ When compared to conventional high throughput screening, it provides 

compounds with high success rates via exploring large libraries of 

compounds in silico [223]. 

➢ These methods help to reduce the likelihood of failures at the final phase. 

 

 4.3 Computer-Aided Drug Design for Identifying Anti-

Alzheimer’s Disease Drug Candidates 

Without a question, Alzheimer's disease (AD) is one of the most difficult human 

illnesses to cure, not only because of its widespread prevalence among older 

people throughout the globe, but also because there is presently no effective 

therapy available. Several symptomatic medicines have been approved for use, but 

there is still a significant need to identify chemicals that target the complex 

processes that impact the brain and contribute to Alzheimer's disease (AD). 

Computational methods have shown to be helpful in the search for novel 

medicines, and the use of in silico methodology is common in many drugs 

discovery programs, particularly those conducted via businesses seeking to 

introduce new products to the pharmaceutical market. 

 The relevance of CADD methods to drug development is becoming more apparent 

with each passing day (Figure 4.13). As a result of recent advances in drug design, 

it is now possible to rationally develop powerful treatments with multi-targeting 

effects, increased efficacies, and reduced side effects, particularly in terms of 

toxicity (Figure 4.13).  
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The use of computer algorithms was used in this research to analyze a large 

collection of medicines (about 7900 small molecules) in order to discover 

compounds that have potential therapeutic effectiveness in the treatment of 

Alzheimer's disease (AD).  

We have concentrated our efforts on 2 enzymes that are prospective targets and 

have a particular role in the treatment of Alzheimer's disease, namely, 

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). 

 

Figure 4. 13 Neurodegenerative disease drug development based on computer-
aided drug design[180] 
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5 
      MATERIALS AND METHODS    

 

 5.1 Screening of Anti-Alzheimer’s Disease Molecules 

from Databases 

Small-molecule complexes that have been authorized for use as medicines may be 

"repurposed" to serve new purposes, and their mechanisms of action can be 

investigated to determine the reasons of their positive and harmful effects. The 

pharmaceutical database (NPC) of the National Institutes of Health Chemical 

Genomics Center (NCGC) [224] (retrieved on July 2018 from 

https://tripod.nih.gov/npc) contains an assembly of recognized and registered 

medicines (about 7922 small molecules) that has been assembled. The NCGC 

Pharmaceutical Collection (NPC) is an extensive, publicly available collection of 

approved and investigational drugs for high-throughput screening that serves as a 

valuable resource for validating new disease models and better understanding 

disease pathology and intervention. The NCGC Pharmaceutical Collection (NPC) 

is a valuable resource for validating new disease models and better understanding 

disease pathology and intervention. Systemic human disease repurposing would 

be made possible via NPC's extensive collection of all human-approved small-

molecule drugs, which would be especially beneficial for rare and neglected 

diseases, for which the cost and time required to develop a new chemical entity 

are often prohibitively expensive [224].   

 5.2 MetaCoreTM/MetaDrugTM Analysis 

In order to determine if the structures have therapeutic efficacy against 

Alzheimer's disease, the clarivate analytics MetaCoreTM/MetaDrugTM platforms 

were used to screen the structures. This integrated platform integrates 

quantitative structural analysis and systems biology techniques to predict 

pharmacokinetics and pharmacodynamics profiles of small molecules. This feature 

lets you predict the probability of anti-Alzheimer’s activity a compound might 
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have. The input compounds are screened based on how similar they are to 

compounds with known high anti-Alzheimer’s activity. The “The “Therapeutic 

Action Prediction” function predicts whether or not a chemical will have potential 

therapeutic activity. The anticipated QSAR values (between 0 and 1) are in the 

range of 0.5 to 1.0, with values less than 0.5 indicating inactivity and higher than 

0.5 indicating possible therapeutic action. In our analysis, the AD QSAR model 

was used with a cut-off TAV of ≥ 0.75 to screen molecules. 1338 out of 7900 

molecules were found to have a larger TAV of 0.75 in the QSAR model.  The 

toxicity QSAR models for these compounds were then tested using 26 different 

MetaCoreTM/MetaDrugTM. Each toxicity model has a threshold value, and the 

toxicity of compounds is determined based on how different they are from the 

threshold value. We observed that only ten molecules out of 1338 showed no 

toxicity, and these compounds were selected for structure-based studies. The 

model performance in MetaCoreTM/MetaDrugTM was evaluated using Cooper 

statistics parameters: training set: N=261, test set: N=44, specificity: 0.82, 

sensitivity: 0.91, accuracy: 0.86, and Matthews Correlation Coefficient (MCC): 

0.73 [216]. 

 5.3 In Silico Studies 

 5.3.1 Ligand Preparation 

In order to optimize the geometrical properties of the ten selected hit small 

molecules, the LigPrep module of maestro was used in conjunction with the OPLS 

2005 force field (OPLS_2005)[216].  This process generates a large number of 

ligand molecules from each drug, each with a unique set of stereochemical 

features, ionization states, ring conformations, and tautomeric properties. 

Molecular states in aqueous solution at pH 7.4 were generated using the 

Schrodinger Epik module; a wide pH range was considered due to the activity 

range of AChE and BuChE enzymes[11, 225], which allowed for the generation of 

ionization and tautomeric states for molecules in aqueous solution at pH 7.4.  The 

optimized potentials for the OPLS_2005 force field liquid simulations were 

utilized for the optimization, which resulted in the formation of the ligands' low-

energy conformer. 



 

81 

 

OPLS_2005 force field liquid simulations following the synthesis of the ligands, a 

total of 120 compounds were produced. Finally, these 120 bioactive and nontoxic 

ligands have been docked into the binding pocket of the AChE and BuChE 

enzymes[226, 227]. 

 5.3.2 Protein Preparation 

First, the crystal structure of enzymes was retrieved from the protein data bank 

(PDB) server, AChE (ID: 4EY7), and the resolution of the structure is 2.35 Å [228], 

and BuChE (ID: 5DYW) and its resolution of the structure is 2.5 Å [229]. The 

amino acid sequences of AChE and BuChE were obtained from UniProt in order 

to cross-check and repair the incomplete residues in the crystal structures, which 

were discovered throughout the research. 

The Crosslink Proteins method developed via Maestro was used in an imagined 

solvent environment to fill in the amino acid residues that were lacking. Next that, 

the "A" chain of each crystal structure was used in the following steps: When it 

comes to protein synthesis, the three critical stages are preprocessing, 

optimization, and minimization. The protein is first preprocessed, and then bond 

orders are given to the various amino acids. Crosslink proteins, a tool from the 

Biologics Suite [230] that is implemented in the Schrodinger molecular modeling 

program, was used to replace the missing residues in the protein (for example, 

hydrogen atoms and missing atoms) of the third intracellular loop. Water particles 

in the vicinity of 5 of the ligands were maintained, while other water particles 

were removed from the solution. Secondly, at pH (7.4), the protonation state and 

protonation constant (pKa) of ligands were predicted [230, 231]. To modify 

amino acid protonation states, PROPKA [232] was utilized, and Epik [233] was 

used to predict the ionization and tautomeric states of the co-crystallized ligand 

at the physiological pH of the solution (7.4). For systems including an OPLS_2005 

(Optimized Potentials for Liquid Simulations 2005) force field, it was possible to 

accomplish limited minimization with 0.30 root mean square deviation heavy 

atom convergence [234]. The new AChE and BuChE structures were created with 

the help of the Protein Preparation Wizard, which is included in the Schrodinger 

software suite.  
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We have taken into account the various protonation states of binding pocket 

residues in this study since the formation of the protein-ligand complex may result 

in variations in the protonation states of the ionizable groups in the protein. 

 5.3.3 Receptor Grid Generation 

Prepared protein structures were used in grid generation for molecular docking. 

Grid centers were -14.07, -43.93, and 27.92 and -5.33, 10.63, and -12.73 for x, y, 

and z coordinates, for AChE (4EY7) and BuChE (5DYW) respectively. Glide sets 

inner box to 10x10x10 and outer box respect to the ligand size. The outer box 

dimensions were 27.82x27.82x27.82 and 25.18x25.18x25.18 for AChE (4EY7) 

and BuChE (5DYW) respectively. 

 5.3.4 Re-Docked Pose in Docking Models 

The effectiveness of molecular docking procedures in predicting the optimum 

binding mode of ligands in the binding pocket of the receptor is determined via 

re-docking co-crystallized molecules (E20) and (5HF) into the binding site of the 

AChE and BuChE crystal structures, respectively. The E20 and 5HF molecules are 

withdrawn from the binding pocket of their targets, and docking is conducted with 

no constraints. The docking poses obtained via various docking methods are 

compared to the hole complex structure (i.e., the conformer of E20 and 5HF small 

molecules at the AChE and BuChE X-ray structures), and the root mean square 

deviation (RMSD) values are calculated (Table 6.8). Values less than 2.0 usually 

suggest that the bioactive conformation of the ligand was properly identified 

throughout the experimental process. All docking values obtained were less than 

2.0 for both AChE and BuChE[235]. These findings demonstrate that docking 

algorithms may accurately anticipate the bioactivity of ligands in the E20 and 5HF 

binding sites. The ligand’s calculated binding posture is well matched with the X-

ray structural conformation in all docking methods employed (Glide/SP, IFD, and 

QPLD) (Figure 5.1). RMSD values less than 2 may suggest that the used 

methodology is capable of accurately predicting the ligand’s bioactive 

confirmation at the protein's binding site. Thus, docking algorithms may be 
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utilized to predict the bioactive conformation of ligands inside the AChE and 

BuChE receptor binding pockets[235]. 

 

Figure 5. 1 Redocked poses of the native ligand with three protocols, SP, IFD, 
and QPLD, respectively 

 5.3.5 Docking Analysis of Selected Molecules 

Three distinct docking methods (Glide/Standard Precision (SP), Glide/Induced 

Fit Docking (IFD), and Quantum Mechanics-Polarized Ligand Docking (QPLD)) 

were used using Maestro Glide docking tools to chosen active and benign 

compounds from MetaCoreTM/MetaDrugTM. Glide SP docking software was first 

used to establish the predicted binding poses of the studied ligands to AChE and 

BuChE proteins [236, 237]. Utilization of computational techniques, the docking 

procedure predicts the preferred conformational matching of ligands in the 

binding site of target proteins[233, 234]. 

The goal of molecular docking is to predict the optimum binding orientation as 

well as the structural stability of complexes of interacting molecules. The docking 

software usually consists of three parts: (1) Illustration of a protein structure; (2) 

Compound poses are created using a scanning algorithm; (3) A scoring method 

for evaluating the binding interactions of the docking complexes that have been 

produced[238]. All ligands were docked into the AChE and BuChE binding 
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pockets using the Maestro molecular modeling program's grid-based docking 

method (Glide), and 20 docking poses were required for each ligand.  

Secondly, the IFD method contributes to increased conformational sampling of 

both target and ligand structures. While conventional virtual docking studies 

assume a rigid receptor, many receptors change their binding location to the shape 

and binding mode of the ligand. This is referred to as induced-fit docking, and it 

is one of the most important aspects challenging product design that is structure-

dependent. It is in charge of the following protocols: I) using Glide/SP, all 

inhibitors were docked into the catalytic domains of AChE and BuChE, and then 

complexes with high docking scores were chosen for the following stage; II) 

utilizing the Maestro's Prime module, the amino acids of the complexes containing 

five docked ligands were refined. III) Finally, utilizing the Glide/XP docking 

technique, all ligands were re-docked into the improved receptor [238, 239]. All 

ligands were docked into the AChE and BuChE binding pockets, and each ligand 

needed a minimum of 20 docking poses.  

Thirdly, the QM-Polarized Ligand Docking procedure attempts to enhance the 

partial charges on the ligand atoms in the receptor area of a Glide docking run via 

substituting quantum mechanical charges. Thus, the receptor takes into 

consideration the polarization of the ligand’s charges, and redocking the ligands 

with these new charges contributes to improved docking accuracy [240]. The 

method works via selecting a subset of the highest-scoring postures for each 

ligand, measuring charges using QSite, redocking each of these positions, and 

selecting the best poses from the list. All ligands were docked into the AChE and 

BuChE binding pockets, and each ligand needed a minimum of 20 docking poses. 

 5.3.6 Molecular Dynamics (MD) Simulations and Molecular 

Mechanics Generalized Born Surface Area (MM/GBSA) Free 

Energy Calculations 

MD simulations at short (50-ns) and long (100-ns) time scales were performed 

using the Desmond force field and OPLS_2005 to examine the structural and 

functional properties of ligands in the target protein binding pocket for top-
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induced fit docking poses based on ChemScore [241] (i.e., for eight compounds 

in the binding pockets of AChE and BuChE, totaling 2400 ns MD simulations). 

Top-IFD poses were submerged in an orthorhombic water box (with a minimum 

distance of 10 between the box of edges and the complex). Initially, the systems 

were all specific water molecule (SPC) models; subsequently, the systems were all 

neutralized, and the solvent systems' concentrations were adjusted using an ionic 

concentration of 0.15 M NaCl solution[241]. Prior to initiating the MD simulations 

for manufacturing, relaxation methods for equilibration of the enzyme-ligand 

complexes were employed. Through development simulations, the starting 

temperature was set to 310 K and controlled using the Nose-Hoover thermostat 

[242, 243]. The pressure was set at 1.01325 bar and was originally constrained 

via the Martyna–Tobias–Klein system [244] The systems were modeled using an 

isothermal–isobaric (NPT) ensemble. Other default values were utilized.  

MD simulations of chosen chemicals were run for 50 ns. Post-process analysis was 

performed on the trajectory frames acquired from MD simulations. We determined 

the root mean square deviation (RMSD) of selected structures. RMSD measures 

the average shift in the modification of chosen atoms in the studied structure 

through simulations using a reference trajectory system. This cycle is repeated for 

each frame's stored trajectories throughout the simulation phase. When complex 

structure swings between well-defined mean locations, RMSD may be called 

RMSF. Because the amount of this variation is quantifiable, it may be used to 

characterize changes in the local protein chain. The binding free energies of 

chosen ligands were calculated using the MM/GBSA method implemented in 

Schrodinger's Prime module[245] (i.e., eight compounds). Throughout the MD 

simulations in MM/GBSA, derivative trajectory frames were used. The primary 

advantage of the MM/GBSA method is that it allows for the analysis of the protein-

ligand complex's conformational stability via the use of a collection of 

configurations (snapshots or frames). Several performance characteristics of the 

MM/GBSA have been examined in recent experiments, including the length of MD 

simulations [246, 247]. The MM/GBSA system is widely used in the measurement 

of free energy, and it outperforms docking [248]. The MM/GBSA system finds 
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extensive use in the measurement of free energy, and MM/GBSA produces better 

performance than docking [249]. For the MM/GBSA tests, eight impact 

compounds were utilized. The rescoring of ligand-protein interactions was 

performed using MM/GBSA, which has been shown to be the most accurate 

technique for rescoring hits after docking in many articles. 

 5.4 In Vitro Studies  

 5.4.1 Chemicals and Devices 

For the measurement the activity of AChE and BuChE enzymes, chemicals used 

in the present study are listed below in Table 5.1. 

Table 5. 1 Chemicals, solutions, and kits used 

 

Name GAS Number Company 

Acetylcholinesterase from 

Electrophorus electricus 

(electric eel) 

C3389-500UN SIGMA 

Butyrylcholinesterase from 

equine serum 

C1057-1KU SIGMA 

5, 5’-Dithiobis (2-

nitrobenzoi acid) (DTNB) 

D21,820-0 ALDRICH 

Acetylthiocholine iodide A5751-5G SIGMA 

S-butyrylthiocholine 

iodide 

B3253-5G ALDRICH 

DimethylSulfoxide(DMSO) 67-68-5 Thermo Scientific 

Nelfinavir A128893-001 AmBeed 

Ocaperidone A367930-002 AmBeed 

Risperidone AALH021148 BioFarma 
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Devices used in the present study are listed below (Table 5.2): 

Table 5. 2 Experimental devices 

Name Company Series/Code 

Multiskan Go 
Spectrophotometer 

ThermoScientific / 
Japan 

51119200 

Automatic pipettes Eppendorf 1.0µl/2.5µl/20µl/200µl/1000µl 

 

 5.4.2 Biological Activity Test for Cholinesterase Enzymes 

Since we found that 5 out of 10 selected hit compounds show promising binding 

free energy results at both AChE and BuChE targets, in vitro tests were considered 

for these compounds. Two of the selected compounds (cafedrine and isosulpride) 

were not considered, that they were too expensive to purchase. Thus, we ordered 

three identified hits in silico drug repurposing study (i.e., ocaperidone, 

risperidone, and nelfinavir) from the available small molecule library.  

Selected three hit compounds were used in in vitro tests against AChE and BuChE 

targets. The inhibitory activities were calculated according to Ellman's method 

[250] (Figure 5.2). For this study, donepezil, neostigmine, and rivastigmine, as 

reference compounds, AChE inhibitors were utilized. The stock solutions for the 

compounds used in this research were produced via dissolving 1 milligram of each 

drug in one ml dimethyl sulfoxide (DMSO) to a concentration of 1 mg/ml and 

then diluting with clean water to get the desired concentrations. The inhibitors' 

cholinesterase inhibitory activity was determined using six consecutive dilutions. 

The reaction system consisted of 10–60 µL inhibitor, 200 µL buffer (1 M, pH 8.0: 

Tris-HCl buffer for the AChE assay and phosphate buffer for the BuChE assay), 50 

µL DTNB (0.5 µM), 50 µL acetylthiocholine iodide/S-butyrylthiocholine iodide (10 

µM), and 2 µL enzyme (0.28 units µL for the AChE assay and 0.32 units µL for the 

BuChE assay) (Table 5.3 and 5.4). 

The reaction had begun with the addition of the enzyme, and the reaction system 

was constructed in a quartz cuvette at room temperature. The blank reading 
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consisted all of substances other than the inhibitor. Within three minutes of 

initiating the reaction, the absorbance of the reaction mixture at 412 nm was 

measured using a Thermo Scientific Multiskan GO spectrophotometer (Thermo 

Fischer Scientific, Japan). Three times within 3 minutes after enzyme application, 

the absorbance of each reaction mixture was measured, and the findings are 

expressed as mean standard deviation (SD). Additionally, inhibitory properties 

such as IC50 values are given, which were determined visually using log inhibitor 

concentration vs percent inhibition (percent%) curves.  

As a consequence, the IC50 values represent the inhibitor concentration required 

to block 50% of the enzyme for a certain amount of time was calculated [14, 251, 

252]. Figure 5.3 summarizes all of the virtual screening procedures used in this 

study. 

 

Figure 5. 2 Schematic illustration of the principle of Ellman's method 
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Table 5. 3 Cuvette ingredient that used for measuring the effect of investigated 
drugs on esterase activity of AChE 

 

Distilled 
water μl 

Substrate1 

μl 

Substrate2 

μl 

Buffer 

μl 

AChE 

μl 

Inhibitor 

μl 

Total 
volume 

μl 

645 50 50 200 2 0 947 

645 50 50 200 2 10 957 

645 50 50 200 2 20 967 

645 50 50 200 2 30 977 

645 50 50 200 2 40 987 

645 50 50 200 2 50 997 

645 50 50 200 2 60 1007 

 

Table 5. 4 Cuvette ingredient that used for measuring the effect of investigated 
drugs on esterase activity of BuChE 

 

Distilled 
water μl 

Substrate1 

μl 

Substrate2 

μl 

Buffer 

μl 

BuChE 

μl 

Inhibitor 

μl 

Total 

volume 
μl 

645 50 50 200 2 0 947 

645 50 50 200 2 10 957 

645 50 50 200 2 20 967 

645 50 50 200 2 30 977 

645 50 50 200 2 40 987 

645 50 50 200 2 50 997 

645 50 50 200 2 60 1007 
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All applied procedure for virtual screening in this study has been summarized in 

(Figure 5.3). 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Prediction of therapeutic activity value (TAV) of compounds from NPC database by MetaCore/MetaDrug (7922 compounds) 

Filter out 

these 

molecules 

NO 

1340 compounds have therapeutic activity prediction for AD 

Yes 

Filter out 

these 

molecules 

Yes 

Protein preparation and Ligand preparation of 10 compounds and 3 known positive control compounds 

Molecular-Docking poses of 10 compounds compare with positive 3 control compounds 

Induced Fit Docking poses of 10 compounds compare with positive 3 control compounds 

 

Quantum Polarized Ligand Docking poses of 10 compounds compare with positive 3 control compounds 

 

Short MD Simulation (50 ns) of highest 5 IFD score 

compounds compare with positive 3 control compound 

Selected of 3 compounds and 3 control compounds for in vitro studies 

10 compounds have no toxicity 

NO 

TAV value ≥0.75                                

for Alzheimer’s 

 

Any toxicity using 26 

different toxicity QSAR 

models 

          

 

Long MD Simulation (100 ns) of highest 5 IFD score 

compounds compare with positive 3 control compound 

MM/GBSA analysis and compare to positive control compounds 

 

    Figure 5. 3 Conducted virtual screening workflow 
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6 
RESULTS AND DISCUSSION 

 

Although the pathophysiology of Alzheimer's disease has not been entirely 

explained, the reduced rates of acetylcholine and butyrylcholine found in 

Alzheimer's patients' brains are one of the most significant hypotheses. As a result, 

inhibiting the enzymes AChE and BuChE, which hydrolyze the neurotransmitters 

ACh and BuCh, can be used as a therapeutic strategy. Of this cause, the inhibitory 

function for certain enzymes implicated in Alzheimer's pathogenesis has been 

studied via several study groupings [13, 252]. Repurposing/repositioning 

medicines has become more frequent in recent years, since developing new 

therapies requires time and money. We evaluated substances that have previously 

been authorized via the FDA as well as compounds that are now undergoing 

clinical trials in this study. We purchased the NPC small molecule library, which 

included 7922 compounds [224]. Along with identifying new hit compounds from 

the FDA-approved small molecule library, our objective was to discover and 

evaluate small hit ligands with novel scaffolds for AChE and BuChE inhibition. 

6.1 In Silico Results and Discussion 

 6.1.1 MetaCoreTM/MetaDrugTM Analysis 

MetaCoreTM/MetaDrugTM is an integrated software package that is used to predict 

the pharmacokinetic and toxicity properties of the molecules under investigation 

using a comprehensive system biology analysis package with the help of existing 

ADME, disease, and toxicity-QSAR models. After the screening of the NPC 

database with MetaCoreTM/MetaDrugTM, 1340 compounds where potential 

therapeutic molecules against Alzheimer's disease have predicted activity values 

of equal or higher than (0.75). These selected compounds were then subjected to 

MetaCoreTM/MetaDrugTM for toxicity test QSAR models in which we observed that 

only ten compounds pass the 26-different toxicity test, (within these 10 molecules 

[251], 2 of them was found as approved drugs, nelfinavir used for HIV and 
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risperidone is a second-generation antipsychotic (SGA) medication). (Table 6.1) 

shows these selected compounds.  

Table 6. 1 MetaCoreTM/MetaDrugTM predicted therapeutic activity and 2D 
structure for top ten nontoxic selected molecules against AD 

Name Formula 2D Structure Prediction of 
therapeutic 
activity with 

AD 

Nelfinavir C32H45N3O4S 

 

0.89 

Montirelin C17H24N6O4S                       

 

0.88 

Tubulozole   R 
46846 

C23H23Cl2N3O4S 

 

0.88 

Zolasartan C24H20BrClN6O3 

 

0.82 

Risperidone 

 

 

 

 

C23H27FN4O2 

 

0.82 
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Table 6. 1 MetaCoreTM/MetaDrugTM predicted therapeutic activity and 2D 
structure for top ten nontoxic selected molecules against AD (continued) 

 

Ocaperidone C24H25FN4O2 

 

 

0.81 

Podilfen C18H23N3O2S 

 

0.78 

Mafoprazine C22H28FN3O3 

 

0.77 

Isosulpride C15H23N3O4S 

 

 

0.76 

Cafedrine C18H23N5O3 

 

0.76 

 

Note: Potential activity against Alzheimer's disease. Cutoff is 0.5. Values higher than 0.5 indicate 
potentially active compounds. Training set consists of approved drugs, drug candidates in clinical 
trials and preclinical compounds with in vivo activity. Model description: Training set N=261, 
Test set N=44, Sensitivity= 0.91, Specificity=0.82, Accuracy=0.86, MCC=0.73. Reference: 
Clarivate Analytics. 

https://pubchem.ncbi.nlm.nih.gov/#query=C24H25FN4O2
https://pubchem.ncbi.nlm.nih.gov/#query=C18H23N3O2S
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While (Table 6.2) shows toxicity properties of 5 compounds were studied with 26-

different toxicity QSAR models compare with references molecules (donepezil, 

neostigmine, and rivastigmine). All five compounds did not show any high toxicity 

risks. Correspondingly the toxicity data for donepezil were found in five models 

(cardiotoxicity, genotoxicity, liver cholestasis, liver necrosis, and liver weight 

increase). Table 6.3 compares predicted pharmacokinetic profiles (ADME QSAR 

and Protein Binding QSAR Models) of five compounds with permitted drugs 

donepezil, neostigmine and rivastigmine. Three molecules (isosulpride, 

ocaperidone and risperidone) pass the BBB while 2 molecules (nelfinavir and 

cafedrine) did not pass comparison with donepezil. The compounds show high 

Lipophilicity, and they do not obstruct the hERG (human ether a-go-go-related 

gene) channel.  They also show moderate human serum protein binding profiles, 

while nelfinavir and cafedrine showed lower binding profiles. The calculated 

criteria are all believed to be pivotal to explore the drug-like properties of these 

ligands. The data suggested that the ligands can be studied as hit molecules with 

low side effects in the human body.
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Table 6. 2 Prediction of toxicity values using MetaCoreTM/MetaDrugTM results are compared with positive control molecules 

 

Property Donepezil Neostigmine Rivastigmine Ocaperidone Cafedrine Isosulpride Risperidone Nelfinavir 

AMES (1) 0.35 0.44 0.42 0.29 0.31 0.29 0.34 0.32 

Anemia (2) 0.17 0.29 0.17 0.27 0.13 0.50 0.27 0.23 

Carcinogenicity (3) 0.08 0.38 0.33 0.02 0.04 0.27 0.02 0.03 

Carcinogenicity Mouse Female (4) 0.11 0.61 0.23 0.05 0.08 0.24 0.05 0.06 

Carcinogenicity Mouse Male (5) 0.12 0.61 0.20 0.04 0.07 0.27 0.05 0.09 

Carcinogenicity Rat Female (6) 0.02 0.72 0.22 0.02 0.09 0.25 0.02 0.03 

Carcinogenicity Rat Male (7) 0.03 0.81 0.16 0.08 0.03 0.28 0.05 0.04 

Cardiotoxicity (8) 0.75 0.78 0.78 0.15 0.24 0.20 0.15 0.27 

Cytotoxicity Model, -log GI50 (M) (9) 5.21 4.88 5.29 4.80 4.94 4.97 4.84 5.85 

Epididymis Toxicity (10) 0.04 0.41 0.14 0.05 0.09 0.21 0.05 0.02 

Genotoxicity (11) 0.58 0.72 0.62 0.21 0.31 0.44 0.29 0.31 

Hepatotoxicity (12) 0.14 0.78 0.27 0.18 0.19 0.29 0.18 0.40 

Kidney Necrosis (13) 0.06 0.70 0.14 0.04 0.15 0.19 0.04 0.15 
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Table 6. 2 Prediction of toxicity values using MetaCoreTM/MetaDrugTM results are compared with positive control molecules 
(continued) 

Kidney Weight Gain (14) 0.09 0.62 0.19 0.01 0.18 0.09 0.01 0.04 

Liver Cholestasis (15) 0.62 0.57 0.56 0.19 0.27 0.41 0.20 0.34 

Liver Lipid Accumulation (16) 0.29 0.57 0.38 0.21 0.28 0.15 0.25 0.37 

Liver Necrosis (17) 0.78 0.97 0.31 0.24 0.16 0.34 0.27 0.12 

Liver Weight Gain (18) 0.54 0.94 0.35 0.08 0.11 0.14 0.10 0.04 

MRTD 
(19) 0.22 0.69 0.37 -0.13 0.34 0.46 0.07 0.39 

Nasal Pathology (20) 0.04 0.37 0.22 0.06 0.11 0.26 0.06 0.15 

Nephron Injury (21) 0.38 0.79 0.33 0.07 0.11 0.24 0.04 0.04 

Nephrotoxicity (22) 0.12 0.27 0.08 0.05 0.23 0.20 0.05 0.27 

Neurotoxicity (23) 0.18 0.92 0.38 0.10 0.18 0.41 0.14 0.15 

Pulmonary Toxicity (24) 0.37 0.55 0.46 0.04 0.10 0.18 0.04 0.09 

Skin Sens, EC3 (25) 21.85 3.46 32.04 42.96 12.56 24.76 34.58 39.15 

Testicular Toxicity (26) 0.04 0.48 0.03 0.04 0.08 0.25 0.05 0.05 
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1. Potential to be mutagenic (AMES positive), range from 0 to 1. A value of 1 is AMES positive (mutagenic), and a value of 0 is AMES negative (non-mutagenic). Cutoff is 0.5. 
Values close to zero are preferable. The AMES assay is based upon the reversion of mutations in the histidine operon in the bacterium Salmonella enterica vs. Typhimurium. 

2. Potential for causing anemia. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing anemia in vivo. 
Model organisms: human. Model description: Training set N=324, Test set N=51, Sensitivity= 0.82, Specificity=0.90, Accuracy=0.86, MCC=0.72.  

3. Potential for inducing carcinogenicity in rats and mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs 
causing carcinogenicity in vivo. Model organisms: mouse, rat. Model description: Training set N=1210, Test set N=185, Sensitivity= 0.96, Specificity=0.90, Accuracy=0.93, 
MCC=0.86. 

4. Potential for inducing carcinogenicity in female mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs 
causing carcinogenicity in vivo. Model organisms: female mice. Model description: Training set N=640, Test set N=94, Sensitivity= 0.90, Specificity=0.93, Accuracy=0.92, 
MCC=0.83. 

5. Potential for inducing carcinogenicity in male mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs 
causing carcinogenicity in vivo. Model organisms: mouse male. Model description: Training set N=584, Test set N=93, Sensitivity= 0.91, Specificity=0.88, Accuracy=0.89, 
MCC=0.78.  

6. Potential for inducing carcinogenicity in female rats. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs 
causing carcinogenicity in vivo. Model organisms: female rat. Model description: Training set N=667, Test set N=120, Sensitivity= 0.90, Specificity=0.96, Accuracy=0.93, 
MCC=0.86.  

7. Potential for inducing carcinogenicity in male rats. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing 
carcinogenicity in vivo. Model organisms: male rat. Model description: Training set N=715, Test set N=117, Sensitivity= 0.92, Specificity=0.88, Accuracy=0.90, MCC=0.79. 

8.  Potential for inducing cardiotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing cardiotoxicity 
in vivo. Model organisms: mouse, rat, human. Model description: Training set N=143, Test set N=30, Sensitivity= 0.80, Specificity=1.00, Accuracy=0.90, MCC=0.82. 

 9. Growth inhibition of MCF7 cell line (human caucasian breast adenocarcinoma), pGI50. Cutoff is 6. Values from 6 to 8 correspond to a toxic metabolite, values less than 6 are 
preferable, values less than 3 are more preferable and less toxic. Model description: N=1474, R2=0.9, RMSE=0.05.  

10. Potential for inducing epididymis toxicity. Training set consists of chemicals and drugs causing epididymis toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. 
Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=252, Test set N=42, Sensitivity= 0.90, Specificity=0.86, Accuracy=0.88, 
MCC=0.76.  

11. Potential for inducing genotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing genotoxicity 
in vivo. Model organisms: mouse, rat. Model description: Training set N=372, Test set N=86, Sensitivity= 0.75, Specificity=0.84, Accuracy=0.79, MCC=0.59.  

12. Potential for inducing hepatotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing 
hepatotoxicity in vivo. Model organisms: mouse, rat, human. Model description: Training set N=1380, Test set N=231, Sensitivity= 0.73, Specificity=0.88, Accuracy=0.81, 
MCC=0.62.  

13. Potential for inducing kidney necrosis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing renal 
necrosis in vivo. Model organisms: mouse, rat, human. Model description: Training set N=221, Test set N=42, Sensitivity= 0.96, Specificity=1.00, Accuracy=0.98, MCC=0.95. 
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 14. Potential for inducing kidney weight gain. Cutoff is 0.5. The values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing 
kidney weight gain in vivo. Model organisms: mouse, rat. Model description: Training set N=240, Test set N=49, Sensitivity= 0.95, Specificity=1.00, Accuracy=0.98, MCC=0.96.  

15. Potential for inducing liver cholestasis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing cholestasis 
in vivo. Model organisms: mouse, rat, human. Model description: Training set N=218, Test set N=35, Sensitivity= 0.79, Specificity=0.67, Accuracy=0.74, MCC=0.46. 

16. Potential for inducing liver lipid accumulation. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing 
lipid accumulation in vivo. Model organisms: mouse, rat, human. Model description: Training set N=172, Test set N=28, Sensitivity= 0.80, Specificity=0.85, Accuracy=0.82, 
MCC=0.64.  

17. Potential for inducing liver necrosis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing hepatic 
necrosis in vivo. Model organisms: mouse, rat, human. Model description: Training set N=300, Test set N=57, Sensitivity= 0.91, Specificity=0.91, Accuracy=0.91, MCC=0.82.  

18. Potential for inducing liver weight gain. Cutoff is 0.5. Values higher than 0.5 indicate potential liver weight changing compounds. Training set consists of chemicals and drugs 
causing liver weight gain in vivo. Model organisms: mouse, rat. Model description: Training set N=292, Test set N=52, Sensitivity= 1.00, Specificity=1.00, Accuracy=1.00, 
MCC=1.00. 

19. Maximum Recommended Therapeutic Dose, log mg/kg-bm/day, range is from -5 to 3. Cutoff is 0.5. Chemicals with high log MRTDs can be classified as mildly toxic compounds, 
chemicals with low log MRTDs as highly toxic compounds. Model description: N=1209, R2= 0.86, RMSE=0.42.  

20. Potential for causing nasal pathology. Training set consists of chemicals and drugs causing nasal pathology in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values 
higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=246, Test set N=47, Sensitivity= 1.00, Specificity=0.93, Accuracy=0.96, MCC=0.92.  

21. Potential for inducing nephron injury. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing nephron 
injury in vivo. Model organisms: mouse, rat, human. Model description: Training set N=598, Test set N=109, Sensitivity= 0.91, Specificity=1.00, Accuracy=0.96, MCC=0.93.  

22. Potential for inducing nephrotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing 
nephrotoxicity in vivo. Model organisms: mouse, rat, human. Model description: Training set N=847, Test set N=154, Sensitivity= 0.90, Specificity=0.84, Accuracy=0.87, 
MCC=0.74.  

23. Potential for inducing neurotoxicity. Training set consists of chemicals and drugs causing neurotoxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values 
higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=175, Test set N=34, Sensitivity= 0.94, Specificity=0.94, Accuracy=0.94, MCC=0.88. 

24. Potential for inducing pulmonary toxicity. Training set consists of chemicals and drugs causing pulmonary toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. 
Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=482, Test set N=87, Sensitivity= 0.89, Specificity=0.88, Accuracy=0.89, 
MCC=0.77.  

25. Skin sensitization potential expressed as effective concentration 3, EC3 %. Values higher than 10 indicate weak and moderate sensitizers. Model description: N=89, R2=0.67, 
RMSE=22.56. 

26. It consists of chemicals and drugs causing testicular toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic 
compounds. Model description: Training set N=439, Test set N=88, Sensitivity= 0.81, Specificity=0.85, Accuracy=0.83, MCC=0.66. 
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Table 6. 3 ADME-QSAR and protein binding QSAR models predictions using MetaCoreTM/MetaDrugTM Results are compared with 
positive control molecules 

Property Donepezil Neostigmine Rivastigmine Ocaperidone Cafedrine Isosulpride Risperidone Nelfinavir 

BBB, log ratio (1) 0.05 0.17 0.22 0.01 -0.57 0.05 -0.02 -0.50 

G-LogP (2) 4.10 -2.29 1.81 4.23 1.12 2.36 3.78 2.38 

Prot-bind, % (3) 79.13 39.00 45.45 91.39 43.76 65.44 90.93 85.23 

Prot-bind, Log t (4) 0.24 -0.44 -0.12 0.23 -0.26 0.01 0.22 -0.06 

W Sol, log mg/L (5) 1.03 4.19 2.83 1.5 2.71 2.48 1.48 1.83 

hERG-inh, pKi (6) 0.42 -0.51 -0.42 0.01 -0.07 -0.05 -0.05 0.01 

1. Blood brain barrier penetration model. The data is expressed as log values of the ratio of the metabolite concentrations in brain and plasma. Cutoff is -0.3. Larger values indicate that the metabolite 

is more likely to enter the brain. Model description: N=107, R2=0.89, RMSE=0.26. 

2. Lipophilicity, log of compound octanol water distribution. Cutoffs are -0.4 to 5.6. Values greater than 5.6 correspond to overly hydrophobic compounds. Model description: N=13474, R2=0.95, 

RMSE=0.21. 

3. Human serum protein binding, %. Cutoff is 50%. A value of more than 95% is highly bound, less than 50% is a low binding metabolite. Model description: N=265, R2=0.909, RMSE=10.11. 

4. Affinity to human serum albumin, log value of the retention time. Cutoff is 0. Positive values correspond to higher protein binding, negative values to lower protein binding. The model is based on 

retention times of compounds assayed by HPLC using an immobilized HSA column. Values are expressed as log values of the retention time. Model description: N=95, R2=0.904, RMSE=0.2. 

5. Water solubility at 25oC, log mg/L. Cutoffs are from 2 to 4. An acceptable level of solubility is project dependent. Model description: N=2871, R2=0.91, RMSE=0.54. 

6. Human hERG (human ether a-go-go-related gene) channel inhibition, pKi (uM). Cutoff is -1.7. The higher the value, the higher the inhibition activity. Lower values are preferable. Model description: 

N=196, R2=0.93, RMSE=0.23.
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 6.1.2 Ligand Binding Domain Analysis and MM/GBSA Results 

Ten bioactive and nontoxic compounds were collected to identify the potential 

ligand-bound poses of implied AChE and BuChE inhibitors. Three-dimensional 

structures were created using these chemicals (using the Ligand Preparation 

module of the Maestro molecular modeling package). After ligand synthesis, the 

total number of compounds reached 120 due to the stereochemistry, tautomer, 

and different protonation states of the studied ligands. These ligands were docked 

using three different molecular docking techniques, Glide/SP, Glide/IFD, and 

QPLD, to determine the potential AChE and BuChE inhibitors' likely ligand binding 

poses, and the top docking poses of five molecules with higher scores than the 

reference molecules were presented in (Table 6.4). 

We examined the lowest binding energies (kcal/mol) of 120 AChE and BuChE 

complex ligands, as well as chemical interactions with known key binding pocket 

amino acids of enzymes. When five compounds' top docking postures were 

compared to the reference molecule, the top docking postures scored higher. In 

this section, we examined Glide/IFD. Donepezil's lowest binding G score indicates 

stronger binding interactions with AChE, while nelfinavir was shown to be the 

most effective inhibitor of BuChE. Additionally, the investigated compounds' 

ligand efficiency scores (LIE) are shown (ligand efficiency: GlideScore/number of 

heavy atoms). Rather than considering the affinity of the entire compound, it was 

recommended to consider the affinity of the heavy atoms in a molecule and to 

coin the term ligand efficiency (the average affinity contribution per atom is 

considered) in order to avoid affinity-based selection and optimization toward 

larger ligands. This enables the comparison of the affinity of molecules that have 

been adjusted for their size. In this instance, we calculated ligand efficiency scores 

using Glide/IFD scores. The isosulpride molecule exhibited the greatest LIE values 

in both AChE and BuChE (-0.747 and -0.487, respectively). 
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Table 6. 4 Glide SP, IFD, QPLD and ligand efficiency of selected 10 molecules 
and references compounds with AChE and BuChE 

Molecules 
Names 

AChE BuChE 

Glide/SP  

Kcal/mol 

Glide/IFD 
Kcal/mol 

QPLD  

Kcal/mol 

Ligand 
Efficiency 

Glide/SP  

Kcal/mol 

Glide/IFD 
Kcal/mol 

QPLD  

Kcal/mol 

Ligand 
Efficiency 

Donepezil 

 
  -14.101 -18.645 -19.797 -0.665 -7.882 -11.712 -9.962 -0.418 

Ocaperidone 

 
-12.312 -17.763 -15.260 -0.573 -8.722 -10.704 -8.719 -0.345 

Cafedrine 

 
-12.370 -17.593 -16.489 -0.676 -8.806 -9.266 -8.440 -0.356 

Isosulpride 

 
-11.202 -17.203 -15.207 -0.747 -7.603 -11.205 -8.997 -0.487 

Risperidone 

 
-10.225 -17.043 -17.253 -0.568 -8.938 -11.484 -9.113 -0.383 

Nelfinavir 

 
-9.773 -12.601 -11.783 -0.315 -9.801 -13.424 -10.757 -0.336 

Tubulozole 

 
-7.210 -12.372 -8.902 -0.375 -6.479 -9.232 -8.002 -0.280 

Zolasartan 

 
-5.116 -11.347 -6.075 -0.324 -7.059 -8.417 -8.518 -0.240 

Montirelin 

 
-6.051 -10.933 -8.822 -0.390 -7.896 -9.823 -8.458 -0.351 

Podilfen 

 
-9.098 -11.134 -9.312 -0.464 -7.160 -9.156 -7.465 -0.381 

Mafoprazine 

 
-7.791 -9.378 -9.731 -0.323 -6.703 -8.947 -8.455 -0.308 

Neostigmine 

 
-8.839 -12.029 -12.631 -0.752 -6.120 -6.371 -7.250 -0.400 

Rivastigmine 

 
-8.538 -10.980 -11.536 -0.610 -5.421 -6.566 -6.415 -0.365 

 

 

 

 

 

 



 

102 

 

The structure of AChE-ligand complexes determined via IFD computations was 

subjected to short (50-ns) and long (100-ns) molecular dynamics (MD) 

simulations to determine their structural stability on the nanosecond time scale. 

We assessed the 50-ns simulation and MM/GBSA techniques for five ligands and 

compared the findings to those obtained from reference medications, followed via 

100-ns MD simulations on the hit compounds (Table 6.5). When average 

MM/GBSA scores were compared, cafedrine and risperidone were found to be the 

most potent ones, for AChE, while cafedrine and nelfinavir for BuChE, 

respectively. However, when ligand efficiency scores were evaluated, cafedrine 

and nelfinavir were found to be the most potent ones for AChE and BuChE, 

respectively. Using MM/GBSA, the free binding energies were recalculated (Figure 

6.1, 6.2, 6.5 and 6.6). Consequently, the five hits found have comparable or even 

better average MM/GBSA scores than the FDA known drugs.   

Average MM/GBSA calculations in 50-ns and 100-ns with standard deviation, 

maximum and minimum values are given in Table 6.6 and 6.7, respectively. These 

values were used to construct a Box and Whisker plot of MM/GBSA scores that 

can be seen in (Figures 6.3, 6.4, 6.7, and 6.8). Outliers are given as dots above 

and below the average boxes. Among all hit compounds, cafedrine has the lowest 

average MM/GBSA score Through short and long simulations (-102.60 kcal/mol 

and -99.940 kcal/mol) for AChE and (-105.95 kcal/mol and -99.852 kcal/mol) for 

BuChE, respectively.  
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Table 6. 5 MM/GBSA scores for the 50 and 100 ns simulations and the 
averages of the studied ligands 

 

Molecules Names AChE BuChE 

MM/GBSA ∆G 
Kcal/mol 

Ligand 
Efficiency Score 

MM/GBSA ∆G 
Kcal/mol 

Ligand Efficiency 
Score 

Donepezil   50-ns -79.196 -2.828 -78.126 -2.790 

Donepezil 100-ns -81.122 -2.900 -70.153 -2.505 

Average 

 

      -80.159 -2.864 -74.140 -2.647 

Ocaperidone 50-ns -79.178 -2.045 -65.842 -2.124 

Ocaperidone 100-ns -80.614 -2.600 -63.203 -2.038 

Average 

 

-79.896 -2.322 -64.522 -2.079 

Cafedrine 50-ns -89.031 -3.424 -91.314 -3.512 

Cafedrine 100-ns -83.570 -3.214 -70.674 -2.720 

Average 

 

-86.300 -3.319 -80.994 -3.116 

Isosulpride 50-ns -60.021 -2.610 -57.466 -2.500 

Isosulpride 100-ns -64.815 -2.818 -60.542 -2.632 

Average 

 

-62.418 -2.714 -59.004 -2.566 

Risperidone 50-ns -86.920 -2.900 -69.652 -2.322 

Risperidone 100-ns -86.653 -2.888 -74.535 -2.485 

Average 

 

-86.786 -2.894 -72.100 -2.402 

Nelfinavir 50-ns -65.533 -1.632 -75.417 -1.885 

Nelfinavir 100-ns -71.043 -1.776 -72.933 -1.823 

Average 

 

-68.288 -1.704 -74.175 -1.854 

Neostigmine 50-ns -53.393 -3.337 -42.788 -2.674 

Neostigmine 100-ns -58.926 -3.683 -36.931 -2.308 

Average 

 

-56.160 -3.510 -39.860 -2.491 

Rivastigmine 50-ns -54.480 -3.026 -48.423 -2.690 

Rivastigmine 100-ns -59.182 -3.285 -49.101 -2.720 

Average -56.831 -3.155 -48.762 -2.705 
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Table 6. 6 Average MM/GBSA calculations in 50-ns with standard deviation, 
maximum and minimum values for AChE and BuChE 

Molecules 
Names 

AChE BuChE 

MM/GBSA ± STDEV  

(kcal/mol) 

Max. 

MM/GBSA 

Min. 

MM/GBSA 

MM/GBSA ± STDEV  

 (Kcal/mol) 

Max. 

MM/GBSA 

Min. 

MM/GBSA 

Donepezil 

 

-79.196 ± 4.698 -66.406 -87.051 -78.126 ± 9.538 -54.370 -95.224 

Ocaperidone 

 

-79.178 ± 5.614 -69.340 -94.242 -65.842 ± 8.531  -53.011 -93.266 

Cafedrine 

 

-89.031 ± 7,290 -71.908 -102.60 -91.314 ± 7.477 -70.716 -105.95 

Isosulpride 

 

-60.021 ± 4.462 -46.909 -70.030 -57.466 ± 5.775 -42.662 -70.957 

Risperidone 

 

-86.920 ± 3.545 -78.126 -94.388   -69.652 ± 6.452 -58.165 -88.801 

Nelfinavir 

 

  -65.533 ±11.936 -36.562 -98.106 -75.417 ± 9.049 -54.621 -97.772 

Neostigmine 

 

-53.393 ± 3.164 -47.665 -64.906 -42.788 ± 2.545 -34.966 -48.858 

Rivastigmine -54.480 ± 3.419 -47.590 -62.655 -48.423 ± 4.425 -35.053 -59.046 

Table 6. 7 Average MM/GBSA calculations in 100-ns with standard deviation, 
maximum and minimum values for AChE and BuChE 

Molecules 
Names 

AChE BuChE 

MM/GBSA ± STDEV  

(kcal/mol) 

Max. 

MM/GBSA 

Min. 

MM/GBSA 

MM/GBSA ± STDEV   

(Kcal/mol) 

Max. 

MM/GBSA 

Min. 

MM/GBSA 

Donepezil 

 

-81.122 ± 6.900 -59.512 -93.272    -70.153 ± 13.115 -49.301 -98.734 

Ocaperidone  

 

-80.614 ± 5.135 -66.400 -91.232 -63.203 ± 6.541 -51.787 -91.482 

Cafedrine 

 

  -83.570 ± 6.407    -59.462 -99.940 -70.674 ± 7.268 -52.340 -99.852 

Isosulpride 

 

-64.815 ± 9.021 -42.720 -82.872 -60.542 ± 5.219 -45.427 -76.057 

Risperidone 

 

-86.653 ± 5.536 -66.800   -98.991 -74.535 ± 6.872 -59.044 -92.526 

Nelfinavir 

 

   -71.043 ± 10.344 -44.330 -91.050 -72.933 ± 4.687 -59.612 -86.276 

Neostigmine 

 

   -58.926 ± 5.514 -38.487 -69.891 -36.931 ± 4.223 -25.406 -51.049 

Rivastigmine   -59.182 ± 5.604 -46.250 -72.230 -49.101 ± 4.825 -32.216 -61.064 
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Figure 6. 1 MM/GBSA free energy analysis of the studied molecules at the 
AChE binding pocket in the entire 50-ns MD simulation (MM/GBSA binding 

energy value in kcal/mol) 

 

 

 

 

Figure 6. 2 MM/GBSA free energy analysis of the studied molecules at the 
AChE binding pocket in the entire 100-ns MD simulation (MM/GBSA binding 

energy value in kcal/mol) 
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Figure 6. 3 Box and Whisker plot of AChE average MM/GBSA for 5 hit 
compounds and 3 references compounds for 50-ns 

For the 50-ns MM/GBSA results, the biggest interquartile range was observed for 

the Nelfinavir, with two minimum outliers, and the smallest interquartile range, 

again with the two minimum outliers was observed in neostigmine. 

 

Figure 6. 4 Box and Whisker plot of AChE average MM/GBSA for 5 hit 
compounds and 3 references compounds for 100-ns 

For the 100-ns MM/GBSA results, the biggest interquartile range was observed in 

nelfinavir. Interestingly, only nelfinavir and rivastigmine do not have any outliers 

compared to the other drugs. The smallest interquartile range was observed in 

risperidone with four maximums and one minimum outliers. 



 

107 

 

 

 

Figure 6. 5 MM/GBSA free energy analysis of the studied molecules at the 
BuChE binding pocket in the entire 50-ns MD simulation (MM/GBSA binding 

energy value in kcal/mol) 

 

 

 

Figure 6. 6 MM/GBSA free energy analysis of the studied molecules at the 
BuChE binding pocket in the entire 100-ns MD simulation (MM/GBSA binding 

energy value in kcal/mol) 
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Figure 6. 7 Box and Whisker plot of BuChE average MM/GBSA for 5 hit 
compounds and 3 references compounds for 50-ns 

For the BuChE 50-ns MM/GBSA scores, the biggest interquartile range was 

observed for the Donepezil with no outliers. The smallest interquartile range was 

observed for the neostigmine, with two maximum outliers. 

 

Figure 6. 8 Box and Whisker plot of BuChE average MM/GBSA for 5 hit 
compounds and 3 references compounds for 100-ns 

For the 100-ns BuChE MM/GBSA scores, the biggest interquartile range was 

observed for the Donepezil with no outliers similarly as observed in 50-ns 

trajectory. The smallest interquartile range was observed for the rivastigmine with 

5 maximums and 2 minimum outliers. 
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Protein-ligand complexes are stabilized via intermolecular hydrogen bonding and 

non-polar interactions between the protein and the investigated molecules. 

Figures 6.9 to 6.40 show 2D ligand interaction diagrams of top IF docking poses 

of 5 hit compounds and well-known inhibitors at the binding pocket of AChE and 

BuChE, as well as average interaction fractions and a timeline representation of 

contact residue interactions throughout MD simulations. All five compounds 

interact with AChE active site residues, including ASP74, TRP86, TRP286, 

PHE295, TYR337, and PHE338, as well as BuChE active site residues like TRP82, 

GLH197, PHE329, and TYR332. The protein-ligand complexes are stabilized via 

intermolecular hydrogen bonding and nonpolar interactions between the protein 

(enzyme) and the studied molecules. In IFD ligand interactions and MM/GBSA 

averages represent of top-docking poses of compounds ocaperidone, cafedrine and 

risperidone in addition well-known inhibitors at the binding pocket of AChE. 

In IF docking of donepezil with AChE (Figure 6.9), Piperidine nitrogen of the 

donepezil formed three pi-cation interactions with TRP86, TYR337, and PHE338. 

Also, TRP86 contributed to binding of donepezil with 2 more hydrophobic 

interactions (pi-pi stacking) with the phenyl ring of the inhibitor. Through MD 

simulations, the interactions between TRP86 and donepezil conserved over 92% 

and 83% with short and long simulations. Similarly, the pi-cation interactions with 

the Piperidine nitrogen and side chains of the TYR337 and PHE338, were 

consumed (97% and 58%, respectively). ASP74 formed a salt bridge interaction 

with Piperidine nitrogen of the donepezil. Carboxy group of indanone ring of the 

donepezil formed a hydrogen bond with PHE295 (consumed over 63% and 41% 

through the 50-ns and 100-ns MD trajectory respectively), another hydrogen 

interaction bond was not observed in the docking formed via water bridge and 

expended 82% of the trajectory frames between nitrogen of the Piperidine ring of 

the donepezil and TYR341 through 100-ns simulations. Aromatic ring of the 

indanone interacted with side chain of the TRP286. Moreover, methoxy group of 

the donepezil was interacted with around water molecule.  
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In IFD ligand interactions and MM/GBSA averages represent of top-docking poses 

of compounds cafedrine, risperidone and nelfinavir beside well-known inhibitors 

at the binding pocket of BuChE. In IF docking of donepezil with BuChE (Figure 

6.11), 2 pi-pi stacking interactions between the side chains of the TRP82 and 

TYR332 and the phenyl ring of the donepezil. However, TRP82 changed their 

interaction through simulations and formed pi-cation with the nitrogen of the 

Piperidine ring, which consumed (91% and 82%) of the trajectory frames through 

short and simulations, respectively. Similar to the docking interactions of the 

donepezil in AChE, nitrogen of the Piperidine ring of the donepezil, formed 2 pi-

cation interactions with the side chains of the PHE329 and TYR332. Through MD 

simulations, we didn’t recognize any interaction with TYR332, however PHE329 

was conserved more than half of the trajectory frames through 50-ns simulation 

(54%) and about (43%) through 100-ns. One of the methoxy group of the 

indanone ring of the donepezil, formed hydrogen bond with GLU197. Carboxy 

group of the indanone ring formed another hydrogen bond via water bridge 

interaction with the 2 Glycine residues around, namely GLY116 and GLY117.  

Other interactions that observed in molecular docking pose were lost through the 

MD simulations (note that if the interactions were not conserved over 20% of the 

trajectory frames, we did not take these interactions into account as essential 

interactions). 2 new hydrogen bond interactions were established between 

methoxy groups of the indanone ring of the donepezil and TYR128, and these 2 

newly established interactions were conserved 47% and 61% through 50-ns. 

Whilst through 100-ns simulations, 2 hydrogen bond interactions were established 

between methoxy groups of the indanone ring and TYR128 and GLY115, and both 

of them depleted 31% of the trajectory frames. Another new hydrogen bond via 

water bridge was formed between ALA328 and nitrogen atom of Piperidine in the 

donepezil and consumed (46% and 37%) through short and long simulations, 

respectively. 

The average interaction percentages of the contact residues diagram and a 

timeline depicting interactions and contacts (H-bonds, hydrophobic, ionic, and 

water bridges) through MD simulations of donepezil in the binding pocket of AChE 
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and BuChE are shown in Figures 6.10 and 6.12. The top panel displays the total 

number of unique interactions the protein has with the ligand, while the bottom 

panel displays which residues interact with the ligand throughout the simulations. 

Numerous residues allow for several direct contacts with the ligand, indicated on 

the map via a richer orange hue, according to the scale to the right of the picture. 

Donepezil constructs critical chemical interactions with residues TRP86, TRP286, 

TYR337, PHE338 and TYR341 which are stable throughout the simulation time. 

At the BuChE, TRP82, TYR128, ALA328, and PHE329 have corresponding 

interactions. Figures are also given for interactions that occur more than 30.0% of 

the time through the simulation.  

Figure 6.13 represents the average interaction percentages of the contact residues 

diagram and a temporal depiction of interactions and contacts (H-bonds, 

hydrophobic, ionic, and water bridges) through MD simulations of ocaperidone in 

the AChE binding pocket. Ocaperidone constructs critical chemical interactions 

with residues TRP86, TYR337 and TYR341 which are stable throughout the 

simulation time. In IF docking of ocaperidone with AChE (Figure 6.13), TRP86 

formed 2 pi-pi stacking interactions with benzoxazole of the inhibitor. Piperidine 

nitrogen of ocaperidone contributed to binding via three pi-cation interactions 

with TYR337, PHE338 and TYR341.  ASP74 formed a salt bridge interaction with 

the nitrogen of Piperidine. Carboxy group of the pyrimidine ring of inhibitor 

formed a hydrogen bond with PHE295. Furthermore, one interaction formed via 

water molecule between TYR72 and the nitrogen of pyrimidine. Through 

molecular dynamics (MD) simulations (Figure 6.14), the interactions between 

TRP86 and benzoxazole ring of ocaperidone depleted 77% and 60% Through the 

50 and 100-ns MD trajectory. TYR341 has formed 2 interactions, pi-cation with 

the Piperidine nitrogen which conserved 54% and 58% Through short and long 

simulation, the other pi-pi stacking with the pyrimidine that consumed 46% (this 

interaction that was not observed in the IFD docking). Another interaction that 

was not observed in the IF docking was formed between benzoxazole of 

ocaperidone and TYR337, which depleted 64% of the 50-ns trajectory frames. 

Hydrogen interaction bonds were observed in 100-ns MD simulation formed via 
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water bridge and expended 56% and 32% of the trajectory frames between 

PHE295 and SER125 with ocaperidone. Three new interactions were seen 

between ocaperidone and AChE Through long simulation TYR124(43%), 

TRP286(31%) and HIS447(31%).  

In IF docking of cafedrine with AChE (Figure 6.17), TRP86 contributed to binding 

with hydrophobic interactions (pi-pi stacking) with the phenyl ring of the inhibitor 

(consumed 72%, 43% Through short and long simulations respectively). A new 

interaction between TRP86 and nitrogen of amine was observed and consumed 

73% of the trajectory through 50-ns simulation (this interaction was not observed 

through IFD and long simulation). Nitrogen of amine in the cafedrine formed three 

pi-cation interactions through IFD with TYR337, PHE338 and TYR341. 

TYR337(60%, 76%) and TYR341 (63%, 82%) consumed through short and long 

simulations. PHE338 made a new interaction through 50-ns simulation with 

phenyl ring and expended 30% of the trajectory (we didn’t recognize this 

interaction through IFD and long simulation).  Purine ring of cafedrine formed 

three pi-pi stacking with TYR124, TRP286 and TYR341 through IFD. We didn’t 

see all these interactions through simulation just TRP286 (31% of the trajectory 

through 50-ns) and TYR341(78% Through 100-ns). Carboxy group of purine ring 

of the cafedrine formed a hydrogen bond with PHE295, we were observed in the 

simulations this interaction formed via water bridge and expended of the 

trajectory frames (81% and 75%) through short and long simulations, 

respectively.  

New interaction was observed between ASP74 and hydroxyl group of cafedrine 

through 50-ns simulations and consumed (38%).  Furthermore, methoxy group 

and nitrogen of purine ring were interacted with around water molecules in IFD.  

Many hydrogen interaction bonds were observed in the simulations formed via 

water bridge and expended of the trajectory frames between water molecule 

(38%), ASP74 (47%) and ARG296 (44%) through 50-ns simulations, while 

through 100-ns, we recognized ASP74 (57% and 41%). 

Through the IFD of the cafedrine with BuChE (Figure 6.19), three pi-pi stacking 

interactions between the TRP82 and purine ring of the ligand. These interactions 
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were reduced through 50-ns to one pi-pi stacking (68%), and 2 pi-pi interactions 

in 100-ns consumed (32% and 65%) of the trajectory frames. New pi-cation 

interaction was observed between TRP82 and nitrogen of amine through 100-ns 

(43%). Another 2 pi-pi stacking were seen through IFD among TRP231 and 

PHE329 with phenyl ring of cafedrine. This interaction was present through 50-ns 

and consumed (39% and 59%) of the trajectory (we lost these interactions in 100-

ns). ASP70 being 2 different interactions with the nitrogen of amine in the ligand, 

in IFD formed a salt bridge and converted to hydrogen bond interaction Through 

50-ns and consumed (40%) of the frame.  

Two hydrogen bond interactions were observed between ligand and side-chain 

residues through IF docking and 50-ns simulation, the first PRO285 with the 

hydroxyl group of propan which depleted (97%) of the frame, second GLU197 

with the carboxy group of purine cleanout (87%) from the trajectory. Moreover, 

through IFD, methoxy group of purine ring in cafedrine was interacted with 

around water molecule. New pi-cation interaction was observed through short and 

long simulations (we didn’t catch in IFD) between TYR332 and the nitrogen of 

amine group, depleted (77% and 79%), respectively. Cafedrine via itself formed a 

hydrogen bond between the amine group's nitrogen and carboxy of purine ring 

Through 50-ns and 100-ns, which cleanout (74% and 35%) of the trajectory, 

respectively. Figures 6.18 and 6.20 show a schematic showing average interaction 

percentages of contact residues and a timeline description of interactions and 

contacts (H-bonds, hydrophobic, ionic, and water bridges) Through simulations 

of cafedrine at the binding pocket of AChE and BuChE. Cafedrine constructs 

critical chemical interactions with residues ASP74, TRP86, PHE295, TYR337, 

PHE338 and TYR341 which are stable throughout the simulation time. 

Corresponding interactions at BuChE were constructed with TRP82, GLU197, 

PHE329, and TYR332. Figures represent interactions that occur more than 30.0% 

of the time through the simulation.  

In IF docking of risperidone with AChE (Figure 6.25), TRP86 formed three pi-pi 

stacking interactions with benzoxazole of the molecule. We didn’t recognize this 

interaction Through 50-ns simulation but it observed Through long simulation 
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with pyrimidine ring and consumed 88% of the trajectory. Piperidine nitrogen of 

risperidone contributed to binding via three pi-cation interactions with TYR337, 

PHE338 and TYR341. Pi-pi stacking interaction of TYR341 with pyrimidine ring 

of molecule also observed. Through MD simulations, we observed that TYR337 

made 2 interactions consumed through 50-ns (84% and 98%) and with 100-ns 

(36% and 94%) from the trajectory. TYR341 has showed interaction through short 

and long simulations (77% and 68%)  respectively.  Carboxy group of the 

pyrimidine ring of inhibitor formed a hydrogen bond with PHE295. Also, through 

simulations, we recognized the interaction between PHE295 and the oxygen of 

benzoxazole of risperidone, which consumed (60% and 71%). One hydrogen bond 

interaction formed via water molecule between TYR124 and the nitrogen of 

benzoxazole of the molecule. Four hydrogen interaction bonds were observed 

through 50-ns simulations formed via water bridge and expended of the trajectory 

frames between GLY82(47%), GLY121(43%), GLY122(56%) and SER203(61%), 

while through 100-ns, we recognized one bridge of water with SER125(30%). 2 

new interactions were observed between risperidone and AChE through short and 

long simulation, ASP74(49% and 55%) and ARG296(52% and 30%). 

In molecular docking of risperidone with BuChE (Figure 6.27), 2 pi-pi stacking 

interaction between the side chain of TRP430 and ring of benzoxazole was 

formed. The docking interaction of the nitrogen of Piperidine ring of the inhibitor 

formed pi-cation interactions with the side chains of the TRP82 and formed a salt 

bridge interaction with ASP70. Through long simulationsTRP82 changed their 

interaction (not recognized Through short simulation) and formed pi-pi stacking 

with the benzoxazole ring of molecule, which consumed (31%) of the trajectory 

frames. Carboxy group of the pyrimidine ring formed hydrogen bond via water 

bridge interaction with the 2 residues GLY116 and GLY117 respectively. These 

bridges were showed through 50-ns simulations and consumed (48% and 56%) 

of trajectory frames. 

PHE329 residue formed pi-pi stacking interaction with the pyrimidine ring and 

kept this interaction Through simulations and consumed (39% and 42%) through 

50 and 100-ns, respectively. New pi-cation interaction was observed through 50-
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ns and 100-ns simulations between TYR332 and the nitrogen of piperidine, which 

expended (64% and 35%), respectively. 2 hydrogen bonds via water bridge were 

formed between the side chain PRO230 and ASN397 and nitrogen atom of 

Piperidine in the donepezil and consumed (36% and 34%) through 50-ns, 

respectively.  

HIS438 residue formed water bridge with carboxy group of the pyrimidine ring 

through 100-ns (43%). The average interaction fractions of contact residues 

diagram and timeline representation throughout the simulations of risperidone at 

the bound pocket of AChE and BuChE were shown in Figures 6.26 and 6.28. 

Risperidone constructs critical chemical interactions with residues TRP86, 

PHE295, TYR337, PHE338 and TYR341 which are stable throughout the 

simulation time. Corresponding interactions were TRP82, PHE329 and TYR332 at 

BuChE.  

Through IFD of nelfinavir with BuChE (Figure 6.31), four hydrogen bond 

interactions were detected between the side chain residues and ligand, SER287, 

and ASN289, with the hydroxyl group of methyl benzoyl, TYR332 to carboxy 

group of benzoyl and the fourth one with a water molecule. Through short MD 

simulations, TYR332 built pi-pi stacking with the phenyl ring, which expended 

34% of the trajectory. GLU276 made a hydrogen bond with the hydroxyl of 

benzoyl (34%). We also observed three water bridges with GLN119, THR120, and 

SER198 depleted (60%, 35%, and 42%) of the trajectory, respectively. In long 

simulations, most hydrogen bond interactions have occurred across water 

molecules, ASP70 (40%), GLY116 (55%), THR120 (61%), SER198 (64%), 

LEU273 (75%) GLU276 (65%) and SER287 (84%). One direct H-bond interacted 

with ASN289 consumed (57%).  The average interaction fractions of contact 

residues diagram and timeline representation of the interactions and contacts 

throughout the simulations of nelfinavir at the binding pocket of BuChE was 

shown in Figure 6.32. Nelfinavir constructs critical chemical interactions with 

residues ASP70, GLN119, THR120, GLU276, SER287 and TYR332 which are 

stable throughout the simulation time.  
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The top-docking poses and MD simulations of the complex systems showed that 

the ligands interacted properly with known critical residue interactions. Other 

groups have shown the significance of TRP86 in ligand binding in the literature 

[253-255]. Radic et al. conducted a mutational scan and revealed the importance 

of TRP86 and showed that TRP86 provides the ligands' alignment into the active 

binding pocket correctly [254]. The significance of these 2 adjacents (TYR337 and 

PHE338) residues were highlighted in other computational studies [256, 257]. 

Kaplan et al. argued that TYR337 is one of the essential residues and the 2 

phenylalanine, namely PHE295 and PHE297 Cheung et al. have emphasized the 

importance of Tyr341 and Trp286 interactions for AChE inhibition in their 

research [228]. 

The residues ASP74, due to their significant interactions with the ligands, TRP86, 

TYR337, PHE338 PHE295 and TYR341 are recommended as possibilities for 

future experimental investigations of structure-function connections in drug 

creation. Through MD simulations, the pi-cation interaction between donepezil 

and PHE329 Gnatt et al. revealed that PHE329 mutations decreased inhibitor 

binding to the BuChE and highlighted its importance [258]. Biberoglu et al. 

conducted another mutation study., and successfully showed PHE329 is one of the 

critical residues residing active site of the BuChE [259, 260]. The importance of 

the TRP82 was shown successfully with experimental and computational studies 

[261-263]. Othman et al. investigated plant derivatives against inhibition of AChE 

and BuChE and identified TYR128 as an essential residue. The prominence of 

ALA328 was also shown via another experimental and modelling study [264]. 

 

 

 

 

 

 



 

117 

 

 

Figure 6. 9 (A) The two-dimensional IFD ligand interaction, and the average 
interaction score of contact residues diagram of donepezil throughout the MD 

simulation at the AChE binding pocket 

 ((B)50-ns, (C)100-ns) 
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Figure 6.11 The 2D IFD ligand interaction (A) and average interaction 
fractions of contact residues diagram throughout the MD simulations of 

donepezil at the binding pocket of BuChE. 

 ((B)50-ns, (C)100-ns). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 10 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of donepezil at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 11 (A) The two-dimensional IFD ligand interaction, and the average 
interaction scores of contact residues diagram of donepezil throughout the MD 

simulation at the BuChE binding pocket 

 ((B)50-ns, (C)100-ns) 
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Figure 6. 12 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of donepezil at the binding pocket of BuChE  

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 13 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

ocaperidone at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6.15 The 2D IFD ligand interaction (A) and average interaction 
fractions of contact residues diagram throughout the MD simulations of 
cafedrine at the binding pocket of AChE.  

((B)50-ns, (C)100-ns). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 

 

 

Figure 6. 14 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of ocaperidone at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 15 The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

ocaperidone at the BuChE binding pocket 

((B)50-ns, (C)100-ns 
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Figure 6. 16 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of ocaperidone at the binding pocket of BuChE 

 (top: 50-ns, bottom: 100-ns) 
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Figure 6. 17 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

cafedrine at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 18 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of cafedrine at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 19 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

cafedrine at the BuChE binding pocket 

 ((B)50-ns, (C)100-ns) 

A 

B 

C 



 

128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 20 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of cafedrine at the binding pocket of BuChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 21 (A) The two-dimensional  IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

isosulpride at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 22 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of isosulpride at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 23 (A) The two-dimensional  IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

isosulpride at the BuChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 24 : The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of isosulpride at the binding pocket of BuChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 25 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

risperidone at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 26  The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of risperidone at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 27 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

risperidone at the BuChE binding pocket 

 ((B)50-ns, (C)100-ns) 
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Figure 6. 28 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of risperidone at the binding pocket of BuChE  

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 29 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

nelfinavir at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 30 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of nelfinavir at the binding pocket of AChE 

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 31 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

nelfinavir at the BuChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 32 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of nelfinavir at the binding pocket of BuChE  

 (top: 50-ns, bottom: 100-ns) 
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Figure 6. 33 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

neostigmine at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 34 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of neostigmine at the binding pocket of AChE 

 (top: 50-ns, bottom: 100-ns) 
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Figure 6. 35 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

neostigmine at the BuChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 36 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of neostigmine at the binding pocket of BuChE 

 (top: 50-ns, bottom: 100-ns) 
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Figure 6. 37  (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

rivastigmine at the AChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 38 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of rivastigmine at the binding pocket of AChE  

(top: 50-ns, bottom: 100-ns) 
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Figure 6. 39 (A) The two-dimensional IFD ligand interaction and average 
interaction scores of contact residues diagram throughout the MD simulations of 

rivastigmine at the BuChE binding pocket 

((B)50-ns, (C)100-ns) 
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Figure 6. 40 The average interaction fractions of contact residues diagram and 
timeline representation of the interactions and contacts throughout the MD 

simulations of rivastigmine at the binding pocket of BuChE 

(top: 50-ns, bottom: 100-ns) 
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Our goal was to analyze the structural stability of the protein-ligand complexes 

and determine the primary and long-standing interactions between protein and 

ligands. Therefore, the structural and dynamic properties of the binding pocket 

need to be elucidated. Throughout the MD simulations, particularly for Cα atoms 

of protein structures, we have performed root mean square deviations (RMSD) 

calculations. We have also measured the RMSD of the ligand molecules via 

considering 2 distinct fitting modes: (fit on protein/LigFitProt) and (fit on 

ligand/LigFitLig).  

Using RMSD and RMSF plots, the residual deviations, and fluctuations in the 

complexes have been established. RMSD is managed to measure the average 

change in atoms' displacement for a particular frame or the ligand concerning a 

reference for a particular trajectory frame. To check the equilibrium of MD 

trajectories, RSMD is an essential parameter. It is calculated for all frames in the 

trajectory. RMSD plots of selected five hits are provided in (Table 6.8) and 

(Figures 6.41, 6.42, 6.43, and 6.44).  

RMSD-time graphs show that all systems under analysis have smaller structural 

changes (<2.5 Å) based on the initial protein-ligand complexes, and after 50-ns 

and 100-ns, all complex systems show structurally stability. Figure 6.41 and 6.42 

showed that donepezil had the largest increment in RMSD through 50-ns 

simulations and ocaperidone through 100-ns based on the graphs with AChE. 

While Figures 6.43 and 6.44 showed nelfinavir and risperidone with BuChE had 

the largest increment in RMSD Through 50 and 100-ns simulations based on the 

graphs and table results. 
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Table 6. 8 RMSD scores for the 50 and 100 ns simulations and the averages of 
the studied ligands 

Molecules 

Names 

AChE BuChE 

Cα RMSD 

(Å) 

LFPa 

RMSD (Å) 

LiFLb 

RMSD (Å) 

Cα 

RMSD 

(Å) 

LFPa 

RMSD (Å) 

LiFLb 

RMSD (Å) 

Donepezil50 1.950 1.328 0.582 1.369 2.973 2.074 

Donepezil100 1.689 1.213 0.675 1.517 3.753 2.285 

Average 

 

1.820 1.270 0.630 1.443 3.363 2.180 

Ocaperidone50 1.391 3.192 2.192 1.417 3.705 1.642 

Ocaperidone100 1.850 3.201 1.662 1.451 3.714 1.593 

Average 

 

1.620 3.200 1.927 1.434 3.710 1.638 

Cafedrine50       1.646 2.915 1.235 1.453 1.066 0.657 

Cafedrine100 1.688 1.795 1.379 1.368 4.212 1.587 

Average 

 

1.670 2.355 1.307 1.410 2.639 1.122 

Isosulpride50       1.641 4.471 1.728     1.397 2.208 1.681 

Isosulpride100       1.793 3.708 1.788     1.570 2.048 1.311 

Average 

 

1.717 4.089 1.758 1.483 2.128 1.496 

Risperidone50 1.660 2.072 1.107 1.463        2.827 1.215 

Risperidone100 1.426 1.653 0.984 1.691        3.378 2.107 

Average 

 

1.543 1.863 1.045 1.577 3.102 1.661 

Nelfinavir5- 1.653 5.683 2.211 1.464 3.442 1.832 

Nelfinavir100 1.558 7.729 2.233 1.618 2.085 0.976 

Average 

 

1.605 6.706 2.222 1.541 2.763 1.404 

Neostigmine50 1.400 2.416 1.171 1.471 5.187 1.062 

Neostigmine100 1.476 2.388 1.093 1.388 6.168 0.833 

Average 

 

1.438 2.402 1.132 1.430 5.677 0.947 

Rivastigmine50 1.642 2.523 0.660 1.304 4.142 1.640 

Rivastigmine100 1.779 4.254 0.766 1.439 3.641 1.711 

Average 1.710 3.388 0.713 1.371 3.891 1.675 
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Figure 6. 41 The protein RMSD graph of the Cα atoms of the AChE throughout 
50 ns MD simulations 

 

 

 

Figure 6. 42 The protein RMSD graph of the Cα atoms of the AChE throughout 
100 ns MD simulations 
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Figure 6. 43 The protein RMSD graph of the Cα atoms of the BuChE 
throughout 50 ns MD simulations 

 

 

 

Figure 6. 44 The protein RMSD graph of the Cα atoms of the BuChE 
throughout 100 ns MD simulations 
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With LigFitProt RMSDs estimates, ligands' translational movements were plotted 

at the binding pocket of both enzymes, (Figures 6.45, 6.46, 6.47 and 6.48). 

LigFitProt RMSD plots reflect a ligand’s RMSD when the protein-ligand complex 

is first aligned as a reference point on the protein backbone, and the RMSDs of the 

ligand’s non-hydrogen atoms is determined. Table 6.8 shows the average RMSD 

values. The findings revealed that the analyzed compounds presented elevated 

disruptions in their binding site of the target enzymes through the MD simulations. 

It can be seen that nelfinavir, isosulpride, and rivastigmine deviate from the initial 

RMSD values through 50 and 100 ns MD simulations with AChE showed an 

average LigFitProt RMSD of 6.706, 4.089 and 3.388 Å, respectively. At the same 

time, reference molecules neostigmine, rivastigmine and studied ocaperidone 

drugs divert from the initial RMSD values with BuChE within 50 and 100 ns MD 

simulations. Their average values were 5.677, 3.891 and 3.710 Å, respectively. 

However, other molecules are more structurally stable with the protein. Thus, 

these four molecules diffuse from the binding pocket, but other molecules stay at 

the binding pocket through the MD simulations.  
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Figure 6. 45 The LigFitProt RMSD graph for the 5 hits and reference 
compounds with AChE (50 ns) 

 

 

 

Figure 6. 46 The LigFitProt RMSD graph for the 5 hits and reference 
compounds with AChE (100 ns) 
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Figure 6. 47 The LigFitProt RMSD graph for the 5 hits and reference 
compounds with BuChE (50 ns) 

 

 

 

Figure 6. 48 The LigFitProt RMSD graph for the 5 hits and reference 
compounds with BuChE (100 ns) 
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Rotational motion of the ligands in the binding pocket of AChE and BuChE was 

also studied by using LigFitLig RMSD in (Figures 6.49, 6.50, 6.51, and 6.52). In 

LigFitLig RMSD plots, deviations of coordinates of non-hydrogen atoms of the 

ligand, based on initial conformations, are plotted. The average LigFitLig of the 

molecules analyzed was less than 3.0 Å, reflecting that the molecules tested do 

not significantly modify their rotational motion. Table 6.8 also displays the 

average values of LigFitLig RMSDs for the examined molecules. Nelfinavir, 

ocaperidone, and isosulpride show rotational motion however, other molecules 

are stable in the binding pocket of AChE through 50-ns and 100-ns MD 

simulations. At the binding pocket of AChE, all references compounds displayed 

very rigid behavior. Their total values were less than 1.5 Å. Nelfinavir showed the 

high average rotational motion of 2.211 and 2.233 Å, respectively. While with 

BuChE, throughout MD simulations, donepezil showed a high rotational motion 

of 2.074 and 2.285 Å, respectively.  
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Figure 6. 49 The LigFitLig RMSD graph for the 5 hits and reference 
compounds with AChE (50 ns) 

 

 

 

Figure 6. 50 The LigFitLig RMSD graph for the 5 hits and reference 
compounds with AChE (100 ns) 
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Figure 6. 51 The LigFitLig RMSD graph for the 5 hits and reference 
compounds with BuChE (50 ns) 

 

 

 

Figure 6. 52 The LigFitLig RMSD graph for the 5 hits and reference 
compounds with BuChE (100 ns) 
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Root mean square fluctuation (RMSF) values were also calculated to analyze the 

effect of the hits found on the target protein's backbone atoms' mobility, Figures 

(6.53, 6.54, 6.55, and 6.56). Generally, fluctuations are expected at the tail 

regions (N- and C- terminal). Furthermore, the α-helices and β-sheets are expected 

to remain relatively rigid through the simulation since they are secondary 

structural components. On the other hand, loops are expected to have more 

flexibility when compared. The RMSF of each amino acid residue's backbone 

atoms were created in complex analysis to identify the target structure's 

fluctuation regions. In RMSF figures through MD simulations, high RMSF values 

mean highly mobile areas, and low RMSF values reflect the studied system's low 

flexibility. All complexes’ residues showed fluctuation between 1 to 4 Å except 

risperidone and rivastigmine, which show a fluctuation range of 5 to 7 Å with 

AChE in 50 and 100-ns simulations. For BuChE, risperidone and the reference 

drug neostigmine showed a high fluctuation range of 6 Å. Overall all complexes 

were stable and in an acceptable range. 
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Figure 6. 53 The RMSF graphs for the 5 hits and reference compounds with 
AChE (50-ns) 

 

 

 

Figure 6. 54  The RMSF graphs for the 5 hits and reference compounds with 
AChE (100-ns) 
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Figure 6. 55 The RMSF graphs for the 5 hits and reference compounds with 
BuChE (50-ns) 

 

 

 

Figure 6. 56 The RMSF graphs for the 5 hits and reference compounds with 
BuChE (100-ns) 
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We have plotted the 3D of the Protein - Inhibitor complexes, 2D interaction maps, 

and surface filling model of the protein in Figures 6.57, 6.61, 6.65, 6.69, 6.73, 

6.77, 6.81, and 6.85 for AChE and in figures 6.59, 6.63, 6.67, 6.71, 6.75, 6.97, 

6.83, and 6.87 for BuChE (donepezil, ocaperidone, cafedrine, isosulpride, 

risperidone, nelfinavir, neostigmine, rivastigmine, respectively for AChE and then 

BuChE). Upper panel shows the details of 50-ns MD simulations, and the lower 

panel shows the details of 100-ns MD simulations.  

Figures 6.58, 6.62, 6.66, 6.70, 6.74, 6.78, 6.82, and 6.86 show the conformational 

changes throughout the MD simulations of AChE both for the protein and the 

ligand. Starting conformations depicted in red color, and the final conformations 

depicted in blue, trajectory colored in red-white-blue scale. Upper panels show the 

50-ns MD simulations and the lower panels show 100-ns MD simulations. Protein 

structures depicted in cartoon and ligands depicted in stick representation. Figures 

6.60, 6.64, 6.68, 6.72, 6.76, 6.80, 6.84, and 6.88 show the conformational 

changes for the BuChE systems. 
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Figure 6. 57 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of donepezil with AChE 

(up:50-ns; dowm:100-ns) 



 

164 

 

 

Figure 6. 58 Alignment  of donepezil conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 59 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of donepezil with BuChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 60 Alignment of dnepezil conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 61 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of ocaperidone with AChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 62 Alignment of ocaperidone conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

 (up:50-ns; dowm:100-ns) 
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Figure 6. 63 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of ocaperidone with BuChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 64 Alignment of ocaperidone conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 65 2D and 3D ligand interaction diagrams during MD simulation of 
top docking pose of cafedrine with AChE  

(up:50-ns; dowm:100-ns) 
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Figure 6. 66 Alignment of cafedrine conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 67 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of cafedrine with BuChE  

(up:50-ns; dowm:100-ns) 
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Figure 6. 68 Alignment of cafedrine conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 69 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of isosulpride with AChE  

(up:50-ns; dowm:100-ns) 
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Figure 6. 70 Alignment of isosulpride conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

 (up:50-ns; dowm:100-ns) 
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Figure 6. 71 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of isosulpride with BuChE  

(up:50-ns; dowm:100-ns) 
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Figure 6. 72 Alignment of isosulpride conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 73 2D and 3D ligand interaction diagrams during MD simulation of 
top docking pose of risperidone with AChE  

 (up:50-ns; dowm:100-ns) 
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Figure 6. 74 Alignment of risperidone conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 75 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of risperidone with BuChE during MD simulation 

(up:50-ns; dowm:100-ns) 
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Figure 6. 76 Alignment of risperidone conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 77 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of nelfinavir with AChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 78 Alignment of nelfinavir conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 79 2D and 3D ligand interaction diagrams during MD simulation of 
top docking pose of nelfinavir with BuChE  

(up:50-ns; dowm:100-ns) 
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Figure 6. 80 Alignment  of nelfinavir conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 

 



 

187 

 

 

Figure 6. 81 2D and 3D ligand interaction diagrams during MD simulation of 
top docking pose of neostigmine with AChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 82 Alignment of neostigmine conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 83 2D and 3D ligand interaction diagrams during MD simulation of 
top docking pose of neostigmine with BuChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 84 Alignment of neostigmine conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 85 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of rivastigmine with AChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 86 Alignment of rivastigmine conformations throughout the MD 
simulations with AChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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Figure 6. 87 2D and 3D ligand interaction diagrams during MD simulation 
of top docking pose of rivastigmine with BuChE 

(up:50-ns; dowm:100-ns) 
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Figure 6. 88 Alignment of rivastigmine conformations throughout the MD 
simulations with BuChE in a time-scale coloring (initial, red; end, blue) 

(up:50-ns; dowm:100-ns) 
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6.2 In Vitro Cholinesterase Activity Results and 

Discussion 

Since enzyme inhibitors demonstrate a wide variety of behaviors, newly 

synthesized compounds have recently been focused on in several studies. Three 

hit compounds were ordered to test and confirm molecular modeling predictions 

and in silico investigations based on combined ligand-dependent and target-driven 

methods. described in the simulations in silico, and in vitro binding assays were 

performed. The concentrations of three molecules (ocaperidone, risperidone, and 

nelfinavir) expected to inhibit 50% of the activation of AChE and BuChE were 

determined from different inhibitor concentrations, and the index of selectivity 

(SI) reported in Table 6.9 and Figures from (6.89 to 6.94). Both AChE and BuChE 

inhibitions are indicated via comparing the IC50 values of the three chosen 

molecules. Select compounds can synergistically impact both enzymes, which are 

known to be important in AD. The IC50 inhibitor values were in the range of 70.23 

to 89.22 nM for AChE and 36.06 to 49.37 nM for BuChE. Selected molecules 

showed inhibitor action in both enzymes, and their binding affinities are 

considered more reliable than the recognized drug neostigmine but less than 

rivastigmine. The best inhibition against AChE and BuChE was found with 

nelfinavir (IC50 = 70.23 nM and 36.06 nM), respectively, relative to neostigmine. 

Those compounds can thus be utilized as lead compounds, and with molecular 

tailoring experiments, their binding affinities can be strengthened. To obtain an 

indication of new compounds' selective cytotoxicity at an early stage in the 

screening procedure, we used the selectivity index (SI). A compound's SI is a 

widely accepted parameter used to express a molecule in vitro efficacy in 

inhibiting specific diseases. The higher the SI ratio, the theoretically more effective 

and safer a drug would be through in vivo treatment for a given AD. The in 

vitro selectivity index (defined as the ratio of the minimum inhibitory 

concentration of BuChE to that of the greatest inhibitory concentration of AChE) 

of currently used molecules were in the range of 0.24 to 0.65. Risperidone 

molecule was dual inhibitors of both AChE and BuChE, with high selectivity index 

toward both enzymes’ inhibition (IS = 0.65). 
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Table 6. 9 AChE and BuChE inhibition results (IC50 nM) of selected hit 
molecules and references drugs (*Selectivity Index: IC50 of BuChE/IC50 of AChE) 

 

Molecules Names AChE (IC50 nM) BuChE (IC50 nM) 
Selectivity 

index* 

Ocaperidone 

 
89.22 ± 2.67 49.73 ± 1.49  0.55 

Risperidone 

 
72.30 ± 2.17 46.70 ± 1.39 0.65 

Nelfinavir 

 
70.23 ± 2.10 36.06 ± 1.08 0.51 

Donepezil 

 
37.00 ± 2.00       2,311 ± 120 62.4 

Neostigmine 

 
     135.91± 1.12 84.00 ± 0.81 0.62 

Rivastigmine 

 
60.00 ± 3.11 14.10 ± 0.56 0.24 
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Figure 6. 89 Activity % versus ocaperidone concentration analysis graphs 
for AChE (up) and BuChE (down) 
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Figure 6. 90 Activity % versus risperidone concentration analysis graphs 
for AChE (up) and BuChE (down) 
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Figure 6. 91 Activity % versus nelfinavir concentration analysis graphs 
for AChE (up) and BuChE (down) 
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Figure 6. 92 Activity % versus donepezil concentration analysis graphs for 
AChE (up) & BuChE (down) 
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Figure 6. 93 Activity % versus neostigmine concentration analysis graphs 
for AChE (up) and BuChE (down)    
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Figure 6. 94 Activity % versus rivastigmine concentration analysis graphs 
for AChE (up) and BuChE (down) 
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6.3 Conclusion 

In this study, we used NPC approved and investigational drug library to repurpose 

existing drugs with less toxicity than the already used drugs in Alzheimer disease 

treatment. 7922 compounds first filtered using MetaCoreTM/MetaDrugTM server 

according to Alzheimer QSAR model. Then, 1340 compounds were obtained as 

possible ligands. These molecules were subjected to toxicity QSAR models in order 

to remove the most hazardous ones, and a final list of 10 compounds was 

produced. It was discovered that the studied compounds had less anticipated side 

effects than known inhibitors using the MetaCoreTM/MetaDrugTM system, which 

consists of 26 different toxicity QSAR models. Further evidence came from 

molecular modeling techniques such as docking, 50-ns, and 100-ns MD 

simulations, which suggested that the compounds cafedrine, risperidone, 

ocaperidone, and nelfinavir were conformationally stable within the binding 

cavity, owing to the formation of solid polar and non-polar interactions between 

the ligands and the active site amino acids. Both docking and MD simulations were 

carried out for known AChE and BuChE inhibitors, and the results showed that 

the studied compounds and the known inhibitors had essential amino acid profiles 

that were similar to one another. Among them, nelfinavir demonstrated strong 

inhibition of AChE and BuChE, with IC50 values of 70.23 and 36.06 nM, 

respectively, against both enzymes. All in all, these compounds have the potential 

to serve as novel chemotypes for the development of new ChEs inhibitors for the 

treatment of Alzheimer's disease. This is accomplished via properly altering the 

substitution pattern in the context of multifunctional anti-medicines of 

Alzheimer's. 
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