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ABSTRACT 

 

 
Estimating the Band Gap of Materials with Machine 

Learning Methods 

Aydın EROL 

 

Department of Physics 

Master of Science Thesis 

 

Supervisor: Assoc. Prof. Dr. Seçkin Dündar GÜNAY 

 

Methods of machine learning have shown significant progress in the last decade. 

The number and quality of applications of these methods in various fields of 

physics are also increasing. Machine learning algorithms are mathematical models 

that can learn patterns in a data set and estimate the values of the target label 

afterward. The selection and optimization of a learning algorithm depend on the 

problem and the structure of the used data set. Processing this data set and 

selecting features before training a model is also important. 

Predicting the band gap of different types of materials with machine learning 

methods while investigating methods that are used for model optimization is the 

main objective of this thesis. Knowing the band structures is especially important 

in environmental technologies, such as solar panels or light-emitting diodes. They 

consist of semiconductor devices, and like all semiconductor materials, their band 

gap determines their conductivity. Forecasting material properties in physics is 

challenging because of the long work hours and computational resources required 

to dedicate to related experiments or simulations. Machine learning can offer a 

solution to these problems and increase overall efficiency by decreasing 
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workloads. The proposed random forest model was developed and optimized in 

Python programming language. A custom feature selector algorithm that utilizes 

multiple metrics as a feedback tool to select optimal features also improves the 

performance of the final model. Results show that the optimized random forest 

model can predict band gaps of the materials in the Citrine and Matminer data 

sets with less than the mean absolute error value of 0.500 eV and an R2 score 

higher than 0.800. 

Keywords: Band gap, random forest, machine learning, solar cell, semiconductor 
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ÖZET 

 

 

Malzemelerin Bant Aralığının Makine Öğrenmesi 

Yöntemleriyle Tahmin Edilmesi 

Aydın EROL 

 

Fizik Anabilim Dalı 

Yüksek Lisans Tezi 

 

Danışman: Doç. Dr. Seçkin Dündar GÜNAY 

 

Makine öğrenmesi yöntemleri son on yılda kayda değer ilerleme göstermiştir. Bu 

yöntemlerin fiziğin çeşitli alanlarındaki uygulamalarının sayısı ve niteliği de ayrıca 

artmaktadır. Makine öğrenmesi algoritmaları bir veri setindeki örüntüyü 

öğrenebilen ve sonrasında hedef alınan etiketin değerlerini tahmin edebilen 

matematiksel modellerdir. Öğrenebilen bir algoritmanın seçilmesi ve en iyi hale 

getirilmesi, probleme ve kullanılan veri setinin yapısına bağlıdır. Bir modeli 

eğitmeden önce bu veri setinin işlenmesi ve özelliklerin seçilmesi ayrıca önemlidir. 

Makine öğrenmesi yöntemleri kullanılarak materyallerin bant aralığını tahmin 

ederken modeli en iyileştirmede kullanılan yöntemlerin incelenmesi bu tezin ana 

amacıdır. Bant yapılarının bilinmesi, güneş panelleri veya ışık yayan diyotlar gibi 

çevresel teknolojiler için ayrıca önemlidir. Bu gibi teknolojiler yarı-iletken 

materyallerden oluşur ve tüm yarı-iletkenler için geçerli olduğu üzere 

materyallerin bant aralıkları bu materyallerin iletkenliğini belirler. Materyal 

özelliklerinin tahmin edilmesi, ilgili simülasyonlara veya deneylere uzun mesai 

saatlerinin ve bilgisayar kaynaklarının ayrılmasını gerektirmesi nedeniyle 

zorlayıcıdır. Makine öğrenmesi bu problemler için gereken iş yükünü azaltarak 
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genel verimin artması için bir çözüm sunabilmektedir. Bu tez çalışmasında 

önerilen rastgele orman modeli Python programlama dili kullanılarak geliştirilmiş 

ve en iyi hale getirilmiştir. Birden çok hata ölçüsünü bir geri bildirim aracı olarak 

kullanan özel yapım özellik seçici algoritma son modelin performansını 

iyileştirmiştir. Sonuçların gösterdiği üzere Citrine ve Matminer veri setlerindeki 

materyallerin bant aralıkları, en iyileştirilmiş rastgele orman modeli tarafından 

0.500 eV'tan az bir ortalama mutlak hata ve 0.800’den yüksek R2 puanı ile tahmin 

edebilmektedir. 

Anahtar Kelimeler: Bant aralığı, rastgele orman, makine öğrenmesi, güneş hücresi, 
yarı-iletken 

 

  

                                                                             

YILDIZ TEKNİK ÜNİVERSİTESİ  
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1 
INTRODUCTION 

 

1.1  Literature Review 

Machine learning (ML) is a relatively new research field that became popular in 

the last decade. As the name itself suggests, ML algorithms recognize patterns in 

the data by learning the relationship between the features. This process is called 

training, and training is satisfied over a given set of data. The number of research 

for the applications of ML methods in various science fields is significantly 

increased in the last decade, parallel to the rise in computational power and many 

competitions in computer science. On the other hand, applications of these 

methods in different fields of physics escalating in the last years. ML algorithms 

act as a predictor, and they estimate a value or values depending on the given 

data. These algorithms learn from the features in the data to predict values. The 

result of a learning algorithm tends to diverge from optimal results when there 

are radical data points. The impact of outliers creates an overdependency on clean 

and numerous data. There is no skeleton key in ML –yet– and a single algorithm 

won’t yield the best results for every problem. ML models have parameters that 

optimize the model to compensate for the issues regarding performance. There 

are various algorithms–such as random forest [1] (RF) and multilayer perceptron 

[2] (MLP)–which offer practical solutions to different real-world problems. These 

problems can vary for each discipline–classifying a tumor for medicine [3], making 

a steering decision according to road curves for self-driving cars [4], [5], 

estimating the absorbed radiation dose of passengers in a flight [6]–which all 

represent a prediction problem for ML. 

In physics, a solid material has different features such as shear modulus, 

electronegativity, or band gap. Most of these features have a specific method or a 

simplified formula to calculate them or a simple algorithm to range their values. 

In condensed matter and material physics, ML methods can be and are used to 
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predict different experiment results like bulk modulus, elastic modulus, or the 

band gap of a solid [7], [8], [9]. 

In material physics, researchers try to generate a material that yields maximum 

efficiency for the task at hand. This process, however, has unpredictable costs such 

as time and money due to the methods and computational burden of the whole 

process. ML methods can learn the relation between the material features and 

construct a generalizable model applicable to different materials with similar 

characteristics. Therefore, utilizing ML methods can reduce the time required to 

produce a material compared to conventional trial & error methods. 

Calculating the band gap of a material is a complex problem that doesn’t have a 

simplified formula. One of the methods that are used to estimate materials’ band 

gap is Density functional theory (DFT). DFT is a mathematical model developed 

in 1964 [10] and consists of different mathematical methods which describe a 

quantum-mechanical system. Some of the experiments and simulations in the 

literature utilize DFT to calculate atomic properties or electronic structure 

successfully, thus making a significant contribution by enlarging the data set for a 

material [11]. Although DFT is successful when calculating various physical 

properties, some reports indicate that it may miscalculate the band gap of 

materials by a certain degree [11], [12], and calculations take time. 

DFT can be combined with different approximations such as local density 

approximation (LDA) [13], generalized gradient approximation (GGA), or 

Perdew-Burke-Ernzerhof (PBE) approximation [14], which are also successful 

when estimating material properties. These approximations, however, may 

underestimate or overestimate the band gap when used separately [12], [15], 

[16], [17], [18]. In literature, ML and mathematical approximations blended to 

determine the band gap [16], [19], [20], [21] for various material-based 

problems, such as lithium-ion batteries [22], light-emitting diodes, or solar cells 

[23]. 

Chemical compounds of a solar cell material that may yield high power conversion 

efficiency can also be estimated using ML methods [24]. According to Raccigulia 

et. al. [25], failed material production experiments can be predicted and recycled 
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via ML. A support vector machine (SVM) model, a method of ML, was used to 

predict the necessary conditions for a chemical reaction experiment to achieve 

success and yield a product. A C4.5 decision tree algorithm from the WEKA library 

was used to enhance the SVM. The developed model predicted experimental 

results with an accuracy of 78%, and the experiments using these new conditions 

met a success rate of 89%.  

In the past years, quantum computer technology has been utilized to solve physics 

problems effectively and to compute complex ML operations, where the resource 

of a classical computer became insufficient to solve. Reinforcement learning (RL) 

is a form of ML. Unlike most ML methods, where the algorithm explicitly told how 

to solve the problem, RL algorithms find the optimum way by traditional trial and 

error method to yield a solution for the task at hand. RL algorithms converge 

towards a maximized numerical reward signal after each action in training [26]. 

Like the ML, RL is also applicable to quantum computers, but the learning process 

still takes time. According to Saggio et al. [27]–which is just one example of 

interdisciplinary work between computer science and quantum physics–required 

learning time can be reduced using the superposition principle in quantum 

mechanics. This new learning protocol allows the algorithm to switch from 

classical to quantum epoch to receive active feedback during learning and check 

whether it performs better or worse. It does not limit the algorithm to evaluate 

action at the end of the epoch. 

1.2 Objective of the Thesis 

The main purpose of this thesis is to estimate the band gap values of various 

materials by utilizing machine learning methods. Investigating the performance 

of the models is executed by comparing the scores of different metrics. The 

algorithm libraries that are capable of finding optimal parameters and the 

methods that manage feature selection will also be in the aspect of this thesis. The 

second objective of this thesis is to develop a custom feature selector algorithm 

that maximizes final model performance. The contribution of the findings to the 

literature will be reported. Another aim of this thesis is to design a program in 

Python language depending on the codes in Machine Learning Lab Module [7] 
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and Materials Simulation Toolkit for Machine Learning (MAST-ML) [28] in the 

NanoHub. Codes will also be published to contribute to the growth of open-source 

programming on cloud platforms, such as Kaggle and NanoHub. 

1.3 Hypothesis 

The main hypothesis of this thesis is an ML model can be developed to be trained 

in minutes and predict band gaps in a data set within seconds without 

discriminating the type of materials – whether it’s a semiconductor or an insulator. 

The second hypothesis of this thesis is that the developed feature selector 

algorithm depends on specific statistical measures that can list the optimal 

features and can overperform popular feature selector algorithms in the literature 

for the band gap prediction task. 
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2 
GENERAL INFORMATION 

 

2.1 Machine Learning 

The concept of learning depends on the feedback obtained during a search for a 

pattern in data. Patterns exist in different parts of life, like this paragraph having 

an intro and an outro to keep the multiple texts attached to the whole page. Living 

beings such as humans, dogs, or bugs can learn the pattern of an event by 

processing neurological signals originating from organic sensors. Depending on 

the temperature, touching a pan on a stove can be painful or harmless. If the 

temperature is high, the brain receives a signal indicating pain, which acts as a 

negative reward. Treating food to pets acts as a feedback instrument and 

corresponds to a positive reward for the action. Any learning process, including 

ML, can be induced by a simple algorithm: whether the reward for action is 

positive, which promotes repetition of the behavior, or the reward multiplier can 

be 0 or negative, which means no logical reason to continue acting the same. 

People are good at generating alternative actions based on feedback. As human 

life starts in the womb, so does data mining in the brain. During the course of life, 

the human brain receives and processes a continuous flow of data obtained 

through the senses. 

 

Figure 2.1 Hierarchical description of the relation between computational 

methods. 
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Figure 2.2 Optimum model achieved with balanced learning and tuned 

hyperparameters. 

Mathematical algorithms that can mimic some of the brain's capabilities–learning, 

decision making, and acting–are called artificial intelligence (AI). ML is a 

subsection of AI, as illustrated in Figure 2.1. Since humans have various methods 

to learn and obtain knowledge, so does ML. Learning is essentially a mathematical 

process where features are weighted or biased depending on their relevance in the 

pattern to achieve the best fit. Fit is a mathematical line used to represent a model. 

Overfitting and underfitting are the most common problems of ML that decrease 

the performance of a model. Both these problems address how a model fails to 

match the data. Overfit or underfit decreases the accuracy of predictions. Overfit 

expresses the poor performance on the unseen data even though the model 

overperforms on the training data. Models that overfit are complex, and their 

generalizability is compromised. Underfit occurs when the fit is not descriptive 

enough to match all the data. It refers to the poor model performance both in the 

training and the testing due to insufficient learning. These problems can occur 

depending on the variance or bias of the model. Variability of a model prediction 

can also be referred to as variance. Variance and bias are inversely proportioned. 

Model bias changes the accuracy of predictions obtained by a model while 
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disregarding or heavily weighting some of the data. An ideal ML model has a 

balance between its variance and bias, as shown in Figure 2.2. Some algorithms 

are more robust to underfitting characteristically. Parametric algorithms such as 

linear regression have a higher bias with a lower variance while algorithms that 

are flexible enough, such as RFs, yield lower bias and higher variance when 

compared with the decision tree and linear regression.  

 

Figure 2.3 Workflow for machine learning model. 

Training a machine is a process with many limits, mainly due to a lack of data. 

The main goal of model training is to create a model that accurately predicts a set 

of values. Predictions are outputs of a learning algorithm that completes a learning 

cycle, also called an epoch. Obtaining relevant data is the starting point of ML 

workflow, as shown in Figure 2.3. 

Intelligent creatures can try different actions by instinct. Since machines lack 

human instincts, they must be enforced to try different settings to avoid getting 

stuck in an endless loop of a non-resulting action that doesn't yield a satisfactory 

result. One way of forcing the machine to search for different patterns is using 

randomization methods. Algorithms create consistent results after fixing the 

randomization to a specific numeric value, named seed. The importance of seed 

becomes evident when comparing different results obtained for models by 

changing their configurations or changing training data which alters model 

parameters. 

ML algorithms that discover patterns to predict values can be addressed in three 

different groups depending on the data used to train a learning algorithm: 

reinforcement, unsupervised, and supervised learning [29]. The supervised 
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learning method calculates the mathematical relation and the mapping function 

using input variables and an output variable. Supervised learning tasks can be 

examined in two subsections: classification and regression. Classification is a 

problem of predicting the values of at least two discrete labels, such as looking at 

a set of pictures and guessing which resembles a bicycle more than a car or 

motorbike. Regression, on the other hand, is a problem of predicting continuous 

label values in a data set, such as prices, years, etc. Classification problems consist 

of more than one regression. There are different algorithms for regression: SVM 

regression, linear regression, or RF regression. 

The data set must be processed and cleansed from missing or irrelevant elements 

before being fed into a learning algorithm since it affects the model performance 

significantly. Even small changes in the handling of data may affect the results. 

Pre-processed data should decrease the model errors and increase the efficiency 

of the training when fed to any learning algorithm. There are different parts of 

pre-processing, such as data cleaning, data transformation, or data reduction. 

Missing values in the data set should either be excluded or filled manually during 

the data cleaning process. Data transformation describes the process of 

normalization or scaling values within a specific range. Learning can also be 

affected by having too much irrelevant data. Reduction in the dimensions of the 

data set leads to fewer parameters, which consequently reduces the computational 

burden. Principal Component Analysis (PCA) is an old but widely used ML 

algorithm for dimensionality reduction problems. Identifying and dropping the 

highly correlated features also increases model performance. 

One other step of data pre-processing is splitting the data. Testing the model with 

the data that the model has already trained on would be unreliable. A processed 

data set must be divided into two or three subsets before the training of any ML 

algorithm: training, validation, and testing data sets. Splitting the data into 

training and validation sets can be satisfied by using a ratio of 75:25 or alike. 

Using seed, one can obtain the same data splits. Training and validating multiple 

algorithms using the same data split is crucial when comparing the results of 

different models. 
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Model evaluation represents the generalizability of the final model. ML models 

are validated by evaluating how the model behaved when tested with an 

independent set containing unseen data. One of the popular techniques in ML is 

k-fold cross-validation, and it allows training and testing a model using different 

subsets created k-times. Predictions obtained using cross-validation data sets can 

be averaged, contributing to a better balance between variance and bias. 

Performance evaluation metrics demonstrate the model performance. 

Models that use their default configurations may not perform optimally enough 

during or after training. ML models have hyperparameters that allow customizing 

the model to improve its performance. This process is named hyperparameter 

tuning and is one of the steps for obtaining an ML model that performs well. 

Hyperparameters differ from the learning parameters calculated by the model on 

the training process. Hyperparameters act as coefficients and are set manually to 

lead the model during learning. Algorithms may share the same hyperparameters 

depending on the similarities between them. While tree-based models share the 

same hyperparameter for the number of trees, neural network-based models share 

the number of hidden layers. Searching for the best set of hyperparameters in the 

search space is called hyperparameter tuning. Each dimension in search space 

volume represents a hyperparameter, and each point represents a model 

configuration. Hyperparameter tuning aims to find the vector that represents the 

most optimal point that produces minimum error after the training. Searching for 

optimal parameters is an exhaustive process to be executed manually. Various 

optimization algorithms and libraries can optimize models by tuning a dictionary 

of hyperparameters. Random search and grid search are two popular algorithms 

for model optimization. 

2.2 Regressors 

2.2.1 Linear Regression 

Linear regression (also known as ordinary least-squares) is an old mathematical 

analysis method for analyzing the relation between numerical input and output 

values. Depending on the number of input variables, linear regression is referred 

to as simple linear regression or multiple linear regression. Linear regression 
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models are implemented in the ML because the idea of linear regression itself is 

trivial. Many real-life problems can be explained using a linear relation, such as 

the increase in fuel consumption depending on the throttle position, grades of a 

student depending on work hours, or density of a semiconductor material 

depending on volume. Depending on the independent value (or feature) x, linear 

regression can predict dependent variable y. 

y=β
0
+β

1
x (2.1) 

Here the intercept (value of y when x=0) is represented by the β
0
, and β

1
 stands 

for the slope coefficient for the line. 

β
0
=y̅-β

1
x̅ (2.2) 

β
1
=
∑ (xi-x̅)(yi

-y̅)n
i=1

∑ (xi-x̅)2n
i=1

 (2.3) 

Here y̅ represents the mean of prediction values y
i
, and x̅ is the mean value of 

independent variables. 

2.2.2 Kernel Ridge Regression 

Being one of the models developed based on linear regression, Kernel ridge 

regression (KRR) merges the ordinary linear least squares method with the l2-

regularization and a kernel–which is a matrix. KRR adds an error term to Equation 

(2.1). This error term corresponds to a value needed to correct predicted values 

and penalize errors. Error term also adds bias to the least-squares line, thus 

reducing variance. KRR is applicable when there are a few features, and these 

features correlate enough to explain prediction values. The type of kernel or 

strength of regularization (alpha) can be adjusted when tuning hyperparameters. 

2.2.3 Decision Tree 

The decision tree is an ML algorithm developed by Ross Quinlan [30], and they 

construct a tree of rules to predict label values for classification or regression 

problems. A decision tree starts with a root node. Then, it creates an inductive tree 

of rules, evaluating the relationship between the features in a data set. Each non-

terminal node in the tree is associated with a feature value. The data set is 
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processed starting from the root node. Nodes create rules by discriminating 

features one by one. Decision nodes connect via branches until leaf nodes. The 

decision tree algorithm forms multiple nodes for each possible outcome until it 

reaches a leaf node. Leaves of a decision tree represent a terminal node, which 

yields outputs of the algorithm and represents class or classes. 

2.2.4 Random Forest 

An RF algorithm consists of multiple decision trees combined with bootstrap 

aggregating or bagging for short [31]. As the name implies, the bagging method 

randomly resamples the data into smaller bags to train trees with a lower variance. 

Then, bootstrapping distributes the features to most of the trees so that the 

averaged results aggregate into a single prediction. The predicted class or value is 

obtained by averaging the values of bootstrapped aggregated decision trees. 

Bagging improves model performance by decreasing the variance of the model. 

RF models can be optimized through their hyperparameters, whether to be precise 

or to be fast. The number of trees (n_estimators) that are generated by the 

learning algorithm can be specified, or the randomization in the trees 

(random_state) can become consistent by passing a seed. 

2.2.5 Multilayer Perceptron 

The concept of a perceptron was firstly introduced by Rudolf Carnap in 1936 [32]. 

The mathematical theory of a perceptron has been developed by Frank Rosenblatt, 

inspired by biological (retina) neurons, in 1958 [2]. Both biological and artificial 

perceptrons (neurons) process the information in three steps: take the input, 

evaluate information in the neuron, and create an output signal. These steps are 

called layers: input layer, hidden layer, and output layer. A neural network is 

constructed after calculating the coefficient before passing the signal coming from 

the input layer to the output neuron. The correlation between neurons in layers is 

affected by bias and weight factor assigned to each connection [33]. Weight and 

bias values are randomly assigned before the training begins and updated as the 

learning progress. This optimization process is called stochastic gradient descent. 

The method that updates weights using backpropagation of errors is called 

backpropagation. Thus, each layer (except the input layer) has a correlation-based 
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mathematical calculation of weight and bias values for previous layers. Bigger 

weight values carry a significant influence on the change of the output. MLPs have 

become the fundamentals of artificial neural networks. 

y
j
=f(∑wjixi+bj

N

i=1

) (2.4) 

The output of the jth neuron layer with N number of neurons, y
j
, can be calculated 

using Equation (2.4). Here xi is the input vector from previous layer, wji is the 

weight factor, bj is the bias value assigned to the hidden layer, and f is an 

activation function. Adding bias to each weighted neuron changes the position of 

model fit by shifting it. The effect of the bias is similar to linear models, but neural 

network algorithms generally create non-linear models. The output neurons of the 

jth layer are calculated by multiplying the sum with an activation function 

(sigmoid, tangent, linear, or non-linear). 

Similar to other ML models, neural network models also have hyperparameters 

that can be used to optimize their performance. A few of these optimizable 

parameters are optimizer type, the number of hidden layers (hidden_layer_sizes), 

activation function (activation), learning rate, and momentum coefficient. Neural 

network models can be trained for a specified number of epochs or stopped earlier 

to decrease computational time loss when error metrics stop improving. The 

activation function also determines the shape of the output neuron or neurons. 

2.3 Metrics 

The performance and generalizability of an ML model are optimized and 

evaluated through metrics. Classification and regression are similar but different 

problems of ML. Performance metrics also cluster depending on the type of the 

problem. Root mean squared error (RMSE), mean absolute error (MAE), mean 

squared error (MSE), and coefficient of determination (R2) are just some of the 

metrics which commonly used to assess regression models. In supervised learning, 

targets in the data set are actual values and can be used for statistical calculations 

to evaluate how well the model performs for its predictions. Metrics are composed 

of statistical methods that calculate the variance between the actual values in the 
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data and the predicted values obtained by the ML model [17], as shown in Figure 

2.4. The relative relation between metric scores is illustrated in Figure 2.5. 

 

Figure 2.4 Illustration of the fit obtained by a linear regressor model. Metrics 

evaluate the model performance by calculating the residual ei. 

 

Figure 2.5 The relation between the prediction errors and error scores obtained 

using ML metrics. 
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2.3.1 Sum of Squares 

Before diving into the mathematics of widely used metrics mentioned above, it 

would be better to address fundamental statistical concepts first. The error is the 

difference between the actual and the expected value. In ML terms, the vector of 

residuals ei represents the variation between the estimated and the actual value 

of the target label. 

ei=y
i
-ŷ

i
 (2.5) 

Here ŷ
i
 represents the predicted value, and y

i
 is the actual value corresponding to 

the predicted variable. One can calculate the sum of errors for the n number of 

predictions using the following formula: 

SE=∑(y
i
-ŷ

i
)

n

i=1

 (2.6) 

The sum of squared errors (SSE) uses the squared difference between actual and 

predicted values. Penalization of larger errors is a benefit of squaring factor. SSE 

for prediction-actual value pairs averaged for n number of predictions is given by: 

SSE=∑(y
i
-ŷ

i
)

2
n

i=1

=∑ ei
2

n

i=1

 (2.7) 

The sum of squared residuals (SSR) represents the sum of squared deviation 
between the predicted data ŷ

i
 and the mean of actual values y̅: 

SSR=∑(y̅-ŷ
i
)

2
n

i=1

 (2.8) 
 

Total sum of the squares (TSS, or SST) is defined as a sum over all squared errors 

for the set of observations y
i
 and their mean y̅ [34]. 

TSS=∑(y
i
-y̅)

2
n

i=1

 (2.9) 

TSS can be rewritten as a combination of SSR and SSE: 

TSS=SSR+SSE (2.10) 
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2.3.2 Mean Absolute Error 

MAE represents the magnitude of the errors for continuous variables [35], and 

optimal prediction should be in the median. MAE is a simple and computationally 

lightweight error calculation method. It is also a linear metric that scales 

proportionally to the data. MAE is the sum of (positive) distances between 

predicted value ŷ
i
 and the observation value y

i
 averaged over n number of data: 

MAE=
1

n
∑|y

i
-ŷ

i
|

n

i=1

 (2.11) 

 

2.3.3 Mean Squared Error 

MSE is an average of the square of errors. Due to squaring, MSE penalizes large 

errors more than small ones. Ideal prediction lies in the median value. Squaring 

also makes MSE vulnerable to outliers or noisy data sets. MSE of a predictor 

algorithm is calculated by diving the SSE by n number of samples: 

MSE=
1

n
∑(y

i
-ŷ

i
)

2
n

i=1

=
1

n
∑ ei

2

n

i=1

=
SSE

n
 (2.12) 

 

2.3.4 Root Mean Squared Error 

The squaring factor of MSE shows a sensitivity for outliers. RMSE is calculated 

over the square root of the MSE to compensate for its downsides. RMSE is more 

robust to outlier values compared to MAE and MSE. RMSE is also one other metric 

that scales with the data like MAE, giving an error in units of the target variable. 

Hence the lower RMSE score may indicate a lower error. 

RMSE=√
1

n
∑(y

i
-ŷ

i
)

2
n

i=1

=√MSE (2.13) 
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2.3.5 R2 

R2
 is one of the widely used regression metrics, also referred to as the coefficient 

of determination, and ranges between -ꝏ and 1. R2 gauges the error in the fit of 

the regression line. If the R2 is close to 0, then fitted line is horizontal, which 

indicates that the model will not be able to predict the target variable. If R2 is close 

to 1, then the obtained fit may represent the model flawlessly. The goodness of fit 

can be evaluated via R2. R2 can be calculated using SSE and TSS. 

R2=
SSR

TSS
=1-

SSE

TSS
 (2.14) 

 

2.3.6 Adjusted R2 

When the number of terms increases, so does the R2 score. But this can be 

misleading because a model with more terms doesn’t necessarily yield better 

results when the model may not learn from new features. Adjusted R2 (Radj
2 ) 

recalculates the R2 considering the usefulness of an independent variable added 

to the model later. For example, atomic density has a linear relationship with the 

atomic mass because both variables are dependent and correlated, meaning any 

change in the atomic mass will affect density. A linear model can easily predict 

the density values depending on the atomic mass. Error in predictions using this 

model will decline even further when another variable that density depends on, 

such as atomic volume, is introduced to the model. In this case, both R2 and Radj
2  

would improve. However, R2 may still increase when the atomic electronegativity 

is added to the predictor model, even though the relation between two variables 

does not influence the training positively. Radj
2  only increases after adding useful 

features that contribute to real improvements. Radj
2  is a metric that can be used to 

estimate model performance depending on the variation of k amount of 

independent variables for n number of observations.  

Radj
2 =1-(

(1-R2)(n-1)

n-k-1
) (2.15) 
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2.4 WEKA 

Waikato Environment for Knowledge Analysis, WEKA, is a data mining software 

with ML tools [36]. WEKA is a powerful tool for ML since it can cover ML problems 

such as classifying, regression, clustering, and association. One can use it to 

analyze a data set in a short time and with different aspects: which models yield 

better metrics, the correlation between features, forecasting values, and such. 

Most of the hyperparameters of ML models can be changed and experimented 

with using WEKA. 

2.5 Band Gap 

Atoms in materials consist of discrete energy levels. When the distance between 

the number of atoms decreases, they form continuous energy levels named bands 

because atomic orbitals overlap with the orbitals of nearby atoms. Electrons in the 

outer orbitals of an atom are named valence electrons, and they create the valence 

band. The next energy band is called the conduction band. The energy gap 

between these two bands that no electron can occupy due to the Pauli exclusion 

principle is called the band gap. A material is said to be a conductor when the 

electrons jump from the valence band into the conduction band. The width of the 

band gap determines the electrical property of a material. Metals in the periodic 

table have overlapping bands, which means having no band gap for electrons to 

overcome. Material is an insulator if the gap is too large, and electrons cannot 

jump to the conduction band. The allowed energy bands of an insulator are either 

full or empty, and no electrons can be moved continuously by an electric field 

without disrupting the electronic structure. Semiconductor materials have a 

narrow band gap between two partially filled bands. Figure 2.6 shows a simplified 

illustration of the electronic bands mentioned above. 
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Figure 2.6 Illustration of band gaps for conductor, semiconductor, and insulator 

materials. Valence and conduction bands of materials at temperatures above 

absolute zero are filled with the relative number of electrons for each band 

structure. 

2.5.1 Semiconductors 

Devices like diodes, transistors, switches, detectors, and photovoltaic cells are 

based on semiconductors [37]. Materials like Silicon (Si), Germanium (Ge), 

Gallium (Ga), and Arsenide (As) are a few of the commonly used semiconductors 

in many daily life technologies like sensors, LEDs, or solar cells. Semiconductors 

can conduct electricity when an electron receives enough energy to overcome the 

band gap and move from the valence band into the conduction band. This 

influence that required for excitation of electron may be optical or thermal. When 

a negatively charged electron is excited into the conduction band, it leaves an 

empty valence orbital, a positively charged hole behind because of the absence of 

an electron. A hole can move in a crystal lattice in the opposite direction of the 

electron. This process is also reversible, which means that a conduction electron 
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can release energy to de-excite and recombine with a valence hole. Moving 

electrons and holes are charge carriers that conduct electricity. 

A semiconductor material with four valence electrons forms perfect covalent 

bonds with the other four neighboring atoms and creates a pure crystal lattice 

without any free electrons. Impurities or doping means intentionally decreasing 

the impurity of semiconductor material [37] and used to manipulate the material 

properties, such as band gap. When the impurity atom (donor) donates negatively 

charged carriers, it creates n-type doping semiconductors, while p-type doping 

semiconductors have positively charged carriers of acceptor atoms. Acceptors 

accept electrons from the valence band to create covalent bonds with neighboring 

atoms. 

2.5.2 Solar Cells 

Diodes are electronic components that transmit electrical current in one way. As 

the name implies, a di-ode consists of two electrical conductors (electrodes). 

Diodes are formed with a junction of p-type and n-type semiconductors. Holes that 

are concentrated on the p-side tend to diffuse and fill the crystal structure 

uniformly, while electrons diffuse from the n-side. Negatively charged electrons 

in the n-type region fill the positively charged holes in the p-type region in the 

depletion region. This charge transfer leaves positive donor ions on the n-side and 

negatively ionized acceptors on the p-side of the depletion region, as can be seen 

in Figure 2.7. The depletion zone acts as a buffer zone for the junction. Free 

electrons absorb enough energy to overcome the depletion zone to combine with 

holes. 

Photovoltaic (or solar) cells are a type of diode. Solar cells act as a diode in the 

absence of light, and they convert the radiation sourced from the sun into 

electrical energy using the photovoltaic effect. Each photon absorbed by the 

semiconductor creates an electron-hole pair. These charge carriers have an electric 

field opposite the built-in electric field of the p-n junction, thus creating a voltage 

barrier. Carriers diffuse into the depletion zone by absorbing photons to overcome 

barrier potential. The separation of these carriers in 
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Figure 2.7 Diagram for a semiconductor with a p-n junction. 

the depletion zone produces a forward voltage across the junction barrier [37]. 

Since different elements have different band gaps, so do the material compounds 

created using these elements. The band gap of solar cells changes with the crystal 

structure. Modifying the compounds of the material that solar cell is made of also 

modifies cell efficiency. The theoretical efficiency of a solar cell made from a single 

p-n junction is expressed as the Shockley-Queisser limit [38], which can be seen 

in Figure 2.8.  

 

Figure 2.8 Maximum theoretical efficiency of a solar cell made of a single p-n 

junction known as Shockley-Queisser limit.  
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3 
METHODOLOGY 

 

3.1 Data 

The quality of the data set is important for obtaining an ML model that can operate 

for different data sets. As mentioned in Section 2.1, ML models also require 

quantified clean data. Obtaining a data set is a prerequisite before advancing into 

other operations of ML. The number of databases compiled to support material 

research are increasing in recent years. A few of these publicly available databases 

are OQMD [39], AFLOW [40], Materials Project [41], and Citrine. 

In this thesis, the Citrine data set is used for creating an ML model that can predict 

material band gaps. Then experimental band gap data set from Matminer [8] is 

used for additional testing. The band gap data set obtained from Citrine was 

compiled by Strehlow and Cook in 1973 [42]. This band gap data set covers 723 

material samples with four columns that contain different information about 

materials, such as the material’s chemical formula, crystallinity, color, and band 

gap. Using the compound formulas in the data set, one can generate additional 

features to improve the training process for the ML models via data augmentation.  

 

Figure 3.1 Distribution of the material band gaps for cleaned Citrine data set. 
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3.1.1 Pre-Processing 

Before generating additional features, the band gap data set is processed manually 

via the Python Data Analysis Library (Pandas). Color information had many 

missing values; hence it’s eliminated as the first step. Then, band gap values of 17 

compounds had uncertainties, and excluding 17 compounds from the data set is 

the next step for cleaning data. Among the materials in the Citrine dataset, not all 

are unique. Averaging the band gaps of reemerged materials in the list is the last 

step before feature generation. Figure 3.1 visualizes the counts left after cleaning. 

Figure 3.2 briefly shows the process. The cleaned data set covers 424 materials 

with a mean band gap of 2.236 eV, a minimum band gap of 0.008 eV, and a 

maximum band gap of 12.435 eV. 

 

Figure 3.2 Workflow for obtaining the final model using Citrine data set. 

3.1.2 Feature Generation 

MAST-ML [28] library can generate 87 atomic features in 5 types using Materials 

Agnostic Platform for Informatics and Exploration (Magpie). Magpie software was 

developed as a part of the OQMD to predict the properties of materials [43]. These 

features for chemical compounds are composition average, arithmetic average, 

maximum value, minimum value, and difference. One downside of the feature 

generator is being limited to three compounds and cannot generate features for 

materials that consist of four or more elements in one data set. The list of 87 

atomic features that Magpie have and their definitions are listed in Table A.1. 
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Using the elemental feature generator of MAST-ML, feature data is augmented by 

generating additional features in four types: composition average, difference, 

maximum value, and minimum value. The generated data set now has 349 

features for 424 materials. 

3.1.3 Feature Selection 

Feature selection is another major step in ML since features and their data have a 

significant role in overall model performance. There are different methods to 

select or eliminate features, such as correlation-based feature selection. 

Correlation affects the model variance and scales between -1 and 1. Having highly 

correlated features in training data creates a model that overfits. Selecting only 

one of the two highly correlated features would improve a model’s performance 

by decreasing the number of outliers. There are also several correlation types. 

Pearson is used commonly with linear models that need a decrease in outliers. 

Pearson’s correlation is a measure of the linearity between two features. Using the 

Pearson method, a set of features that are associated with more than %95 are 

excluded from the manually selected features data set. 

Table 3.1 23 selected features used for creating the final models. 

Selected Features 

Valence 
_difference 

ElectronAffinity 
_difference 

ElectronAffinity 
_max_value 

Polarizability 
_min_value 

SecondIonizationEnergy 
_max_value 

AtomicRadii 
_min_value 

HeatFusion 
_max_value 

IsRareEarth 
_composition_average 

GSbandgap 
_max_value 

ThirdIonizationEnergy 
_composition_average 

n_ws^third 
_composition_average 

NfValence 
_composition_average 

GSenergy_pa 
_max_value 

IsMetalloid 
_composition_average 

NValance 
_composition_average 

BCCfermi 
_min_value 

NpUnfilled 
_composition_average 

BCCfermi 
_composition_average 

IonicRadii 
_max_value 

NpValence 
_composition_average 

NValance 
_min_value 

SpaceGroupNumber 
_difference 

NdUnfilled 
_max_value 
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Figure 3.3 Correlation matrix with a color bar visualizes the correlation between 

23 selected features shown in Table 3.1. 

At first, among the atomic features generated via MAST-ML, only features that 

increase the Radj
2  score of the trained model are tried and selected manually one 

by one to investigate how the model performs under distinct features. Then, a 

custom algorithm is developed to automate this exhaustive process. The 

developed method evaluates the contribution of each feature to the model 

performance and creates an optimal list of the features using RMSE, MAE, R2, and 

Radj
2  metrics as feedback. This method also drops highly correlated features and 

scales the new data set using StandartScaler in each epoch until the feature list 

takes its final form when metric scores stop improving. Table 3.1 shows the list of 
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the selected features. Three manually selected features that initialize the feature 

selector algorithm are in the first row. Figure 3.3 is a visual representation of the 

Pearson correlation matrix calculated for selected features. 

3.2 Model 

3.2.1 Model Selection 

In ML, there is no best model. Selecting a model to work on is a problem of 

statistical modeling. An inquiry must be executed by evaluating a list of algorithms 

via methods such as cross-validation to determine which model to use. Metric 

scores obtained after training and validating the model can be used to conclude 

the inquiry. The bias and variance are a few measures that express the quality of 

an estimator, along with MAE and RMSE. In this thesis, model selection is 

executed based on the metric performance. Tools in WEKA were also used to 

reduce the time required for this inquiry about eliminating models that may 

perform poorly on the data set. RF model is selected mainly due to the predictive 

capabilities of the algorithm for the task subjected to this thesis. 

3.2.2 Hyperparameter Tuning 

Models trained using their default hyperparameters may yield unsatisfactory 

performance. Monitoring model performance using the validation set under 

different validation methods is essential to prevent the issues relating to 

performance. Poor performance can be determined by assessing metrics obtained 

right after model validation. As addressed above in Section 2.1 as the bias-variance 

trade-off, models tend to overfit when validation errors stop decreasing while 

training continues. There are different methods to improve the performance and 

metrics of a trained ML model. 

Hyperparameter optimization uses only training and validation sets. GridSearchCv 

algorithm in the Scikit-learn library can cross-validate models while searching for 

their best parameters Different parameters of models influence performance in 

different amounts. Searching for its optimal value for every parameter is a 

computationally expensive process. Only the parameters that affect a model more 

than others were the aspect of this search. Grid search can be optimized by 
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specifying a range of parameter values. Hyperparameter tuning is executed using 

5-fold cross-validation for all models. The search dictionary for model parameters 

is defined in Table 3.2. 

Table 3.2 Hyperparameters of regression models with their default values and 

range arrays in the parameter search dictionary. 

Model Hyperparameter Range Default 

RF 

n_estimators 50, 100, 150, 250, 500 100 

bootstrap True, False True 

criterion ‘mse’,’mae’,’poisson’ ‘mse’ 

MLP 

hidden_layer_sizes (1,):(21,), (70,), (170,) (100,) 

activation ‘tanh’,’relu’ ‘relu’ 

max_iter 500, 1000, 1500 500 

KRR 

kernel ‘linear’,’rbf’ ‘linear’ 

alpha [1:1.9,], [1:5] 1 
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4 
RESULTS AND DISCUSSION 

 

4.1 Results – Citrine Data Set 

Band gaps of various materials are estimated using ML methods. The performance 

of some optimized ML models, in terms of metric scores, is declared in Table 4.1. 

The set of features indicated in Table 3.1 is used for training the models. Both 

default and the optimized RF model trained using the same set of features 

performs with an MAE less than 0.5 eV, which proves the success of feature 

engineering. Figure 4.1 and Figure 4.3 shows the fit line for the RF model 

consisting of 500 decision trees. The confidence interval in the figures consists of 

the mean and variance for estimations. An estimated value should be in between 

the upper and lower bounds of the specified confidence interval, which is 95% in 

this case. Using RBF as a kernel for KRR, the KRR-version of Figure 4.1 is 

visualized in Figure 4.2 for comparison sake. The increase in error and divergence 

from the fit line can be observed when comparing these two figures. 

 

Figure 4.1 Scatter plot with a fit line obtained by RF model. 
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Figure 4.2 Scatter plot with a fit line for KRR model 

Table 4.1 Optimal hyperparameters of ML algorithms and their metric scores for 

5-fold cross-validation. 

Model 

Hyperparameter Metric 

Name Value MAE MSE RMSE R2 

R
F
 

n_estimators 500 

0.476 0.370 0.608 0.868 bootstrap True 

criterion ‘mse’ 

M
L
P
 

hidden_layer_sizes (170,) 

0.595 0.621 0.788 0.778 activation ‘relu’ 

max_iter 500 

K
R

R
 kernel ‘rbf’ 

0.551 0.567 0.753 0.797 

alpha 1.0 

 

RF model also predicts the band gap of 102 compounds among 424 materials with 

less than a 10% error rate, which corresponds to an accuracy of ~24% for the RF 
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model. The number of band gaps predicted with a low error rate (10%) went up 

to 108 (~26% accuracy) when investigating the effects of using different sets of 

features, but on the other hand, metric scores worsened. Table 4.2 shows the 

actual band gaps and their estimated values for 13 materials with less than a 1% 

error rate. 

Table 4.2 Materials in the Citrine data set, actual band gaps, and predicted band 

gaps by RF model with less than 1% error rate. 

Formula Actual Predicted Error Error (%) 
RuSe2 1.000 0.994 0.006 0.595 

Ge0.891Si0.109 1.126 1.134 -0.008 0.736 
GeSe 1.200 1.206 -0.006 0.488 

Eu3P2 1.200 1.201 -0.001 0.072 
Sb2Se3 1.213 1.221 -0.008 0.696 
Dy2O3 2.235 2.221 0.014 0.626 
As2S5 2.330 2.335 -0.005 0.208 
BiBr3 2.660 2.654 0.006 0.237 
TlBr 3.085 3.057 0.027 0.888 
GaN 3.420 3.404 0.016 0.459 
CBr4 3.700 3.680 0.020 0.532 
NaBr 7.371 7.367 0.004 0.054 
LiBr 7.725 7.694 0.031 0.400 

 



44 

 

Figure 4.3 Same fit line in Figure 4.1 with 95% confidence interval. Histograms 

show the distribution of both actual and predicted band gaps. 

4.2 Results – Matminer Data Set 

The difference between the RF model and other models emerges after testing these 

models using different features or data. Model performances are also evaluated 

using pre-processed features generated using the Matminer data set. Due to 

limitations of MAST-ML, only the materials that consist of 3 elements are included 

for feature generation, and the rest is discarded. Excluding materials that have a 

band gap less than 0.008 eV yields several advantages, such as a drastic decrease 

in prediction errors and improved model performance. After filtering operations, 

the data set used for model training covers 1480 materials with a maximum band 

gap of 11.700 eV and has a mean band gap of 1.830 eV. 
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Figure 4.4 Scatter plot with a fit line obtained for RF model. 

Table 4.3 Model performance for Matminer data set and metric scores for 5-fold 

cross-validation. 

Model 
Metric 

MAE MSE RMSE R2 

RF 0.453 0.599 0.774 0.800 

MLP 0.490 0.672 0.820 0.775 

KRR 0.586 1.114 1.056 0.627 

 

Results obtained under 5-fold cross-validation are shown in Table 4.3. Figure 4.4 

and Figure 4.5 visualizes model fit and predicted band gaps of the Matminer data 

set. The small difference between RMSE of default (0.771 eV) and optimized RF 

(0.774 eV) models having the same MAE proves that the optimized RF is 

applicable to different data sets. Errors for KRR increased parallel to the number 

of predictions. After comparing both the tables and the results obtained for two 

different data sets using the same features, one can suggest that RF models, 

whether optimized or not, are more robust to changes in the number of predictions 

than linear models. When the MSE of RF and MLP models slightly increased, the 

MSE of the KRR almost doubled. RF model predicts the band gap of 467 materials 

(~31%) with less than 10% error. 
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Figure 4.5 Same fit line in Figure 4.4 with 95% confidence interval and 

distribution histograms for both actual and predicted band gaps. 

4.3 Discussion 

ML is a game-changer for the forthcoming years. While software such as WEKA 

produces results with medium accuracy, a well-optimized model can estimate 

band gaps with little margin of error (results for various ML models obtained using 

WEKA without selecting any specific features are given in Table B.1, Table B.2, 

and Table B.3). Model optimization should not be limited to only hyperparameter 

tuning. Highly correlated features in the data set significantly affect the model 

performance. There are successful feature selectors, although they didn’t yield 

optimal results for the task subject to this thesis. Selecting and using the 30 best 

features obtained via algorithms such as SelectKBest or ExtraTreeRegressor yields 

MAE of 0.559 and 0.582, or RMSE of 0.783 and 0.844 for the RF model, 

respectively. Evaluating features and the model without using R2 along with Radj
2  
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is not viable. One can have high R2 scores while MAE and RMSE scores are not 

decreasing. Utilizing Radj
2  while selecting features improves the performance in 

both the feature selection and the model training. All the supplementary materials, 

such as codes and data files, are publicly accessible on GitHub [44]. 

4.4 Future Work 

This work is open for future improvement. This may come from additional feature 

engineering, using different functions for pre-processing, such as MinMaxScaler. 

The whole process can be developed as a software program with certain 

automation capabilities. The developed feature selector has room for 

improvement with a seed-based shuffling of features, better traction for metric 

scores, etc. Obtaining a simple mathematical formula generalizable to many 

materials and having competence in estimating the band gaps of materials 

depending on several atomic features is also possible.
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A  
APPENDIX – List of Features 

 

Table A.1 Definitions of the features generated via MAST-ML and Magpie 

obtained from Magpie source codes [45].  

Name of Feature Definition 

AtomicNumber Atomic number 

AtomicRadii Atomic radii 

AtomicVolume Atomic volume 

AtomicWeight Atomic weight 

BCCefflatcnt Efficient lattice constant for BCC structure 

BCCenergy_pa BCC energy per atom 

BCCfermi BCC fermi energy 

BCCmagmom BCC magnetic moment per atom 

BCCvolume_pa Volume per atom for BCC structure 

BCCvolume_padiff Difference of volume per atom for BCC structure 

BoilingT Boiling temperature 

BulkModulus Bulk modulus 

Column Column of the atom on the periodic table 

CovalentRadii Covalent radii of atoms 

CovalentRadius Covalent radius of each element 

Density The density of the element at STP 

ElasticModulus Elastic modulus 

ElectricalConductivity Electrical conductivity 

ElectronAffinity Electron affinity 

Electronegativity Pauling electronegativity 

FirstIonizationEnergy 
Energy required to remove the first electron from an 
element 

GSbandgap DFT band gap energy of T=0K ground state 

GSenergy_pa 
DFT energy per atom (raw Vienna Ab Initio Simulation 
Package (VASP) value) of T=0K ground state 

GSestBCClatcnt 
Estimated BCC lattice parameter based on the DFT 
volume of the OQMD ground state for each element 

GSestFCClatcnt 
Estimated FCC lattice parameter based on the DFT 
volume of the OQMD ground state for each element 

GSmagmom DFT magnetic moment of T=0K ground state 

GSvolume_pa DFT volume per atom of T=0K ground state 

Group Group of atoms according to the periodic table 

HHIp Herfindahl-Hirschman Index (HHI) production values 

HHIr Herfindahl-Hirschman Index (HHI) reserves values 

HeatCapacityMass Heat capacity per mass at STP 
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Table A.1 Definitions of the features generated via MAST-ML and Magpie 

obtained from Magpie source codes [45] (continuing). 

HeatCapacityMolar Molar heat capacity at STP 

HeatFusion 
Enthalpy of fusion for elements at their melting 
temperatures 

HeatVaporization Vaporization temperature for an element 

ICSDVolume Volume per atom of ICSD phases at STP 

IonicRadii Radii of ion 

IonizationEnergy 
Energy required to remove the loosely bound electron from 
an element 

IsAlkali Whether an element is an alkali metal 

IsAlkalineEarth Whether an element is an alkali earth metal 

IsBCC Whether an element has a body-centered cubic structure 

IsBoron Whether an element is a boron 

IsCarbon Whether an element is a carbon 

IsChalcogen Whether an element is a chalcogen 

IsDBlock Whether an element is a d-block metal 

IsFBlock Whether an element is an f-block metal 

IsFCC Whether an element has a face-centered cubic structure 

IsHalogen Whether an element is a halogen 

IsHexagonal Whether an element has a hexagonal structure 

IsMetal Whether an element is a metal 

IsMetalloid Whether an element is a metalloid 

IsMonoclinic Whether an element has a monoclinic structure 

IsNonmetal Whether an element is a nonmetal 

IsOrthorhombic Whether an element has an orthorhombic structure 

IsPnictide Whether an element is a pnictide 

IsRareEarth Whether an element is a rare earth metal 

IsRhombohedral Whether an element is a rhombohedral metal 

IsSimpleCubic Whether an element has a simple cubic structure 

IsTetragonal Whether an element has a tetragonal structure 

IsTransitionMetal Whether an element is a transition metal 

MeltingT Melting temperature of element 

MendeleevNumber 
Mendeleev Number (position on the periodic table, 
counting column-wise starting from Hydrogen) 

MiracleRadius Assessed radii of elements in metallic glass structures 

NUnfilled Number of unfilled valence orbitals 

NValance 
Group of an atom according to periodic table-according to 
valence electron number 

NdUnfilled Number of unfilled d valence orbitals 

NdValence Number of filled d valence orbitals 

NfUnfilled Number of unfilled f valence orbitals 

NfValence Number of filled f valence orbitals 

NpUnfilled Number of unfilled p valence orbitals 
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Table A.1 Definitions of the features generated via MAST-ML and Magpie 

obtained from Magpie source codes [45] (continuing). 

NpValence Number of filled s valence orbitals 

NsUnfilled Number of unfilled s valence orbitals 

NsValence Number of filled s valence orbitals 

Number The atomic number of element 

Period 
Period of an atom according to periodic table–
row on the periodic table 

Polarizability Static average electric dipole polarizability 

Row Row on the periodic table 

SecondIonizationEnergy 
Energy to remove the second electron from an 
element 

ShearModulus Shear modulus 

SpaceGroupNumber The space group of T=0K ground state structure 

SpecificHeatCapacity Specific heat capacity at STP 

ThermalConductivity Thermal conductivity 

ThermalExpansionCoefficient Thermal expansion coefficient 

ThirdIonizationEnergy 
Energy to remove the third electron from an 
element 

n_ws^third 
Electron density at the surface of Wigner-Sietz 
cell (used in Miedema's model) 

phi 
Adjusted work function (used in the Miedema's 
model) 

valence Number of valence electrons 
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B  
APPENDIX – WEKA Results 

 

Table B.1 WEKA results obtained for various ML models for 5-fold cross 

validation. 

Model 
Metric 

MAE RMSE R2 

RandomForest 0.643 0.9493 0.9098 
RandomTree 0.8972 1.3665 0.8051 

REPTree 0.9056 1.3351 0.8088 
M5P 1.2896 11.8757 0.091 

DecisionStump 1.3383 1.7809 0.5945 

M5Rules 0.7952 1.2601 0.8285 

 

Table B.2 WEKA results obtained for various ML models for 10-fold cross 

validation. 

Model 
Metric 

MAE RMSE R2 

RandomForest 0.6414 0.9449 0.91 
RandomTree 0.974 1.4795 0.7739 

REPTree 0.8555 1.2183 0.8364 
M5P 1.2896 11.8757 0.091 

DecisionStump 1.3743 1.8541 0.5475 
M5Rules 0.8025 1.2023 0.8425 

 

Table B.3 WEKA results obtained for various ML models for 90:10 train-

validation split. 

Model 
Metric 

MAE RMSE R2 

RandomForest 0.7355 1.0626 0.8825 
RandomTree 1.4246 2.3675 0.4759 

REPTree 0.8118 1.1499 0.8621 
M5P 6.4764 37.5922 -0.1149 

DecisionStump 1.5339 1.9836 0.4854 
M5Rules 0.7267 1.0618 0.8848 
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