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ABSTRACT

SPECTROSCOPY OF CHARMED SIGMA AND LAMBDA BARYONS IN 
LATTICE QUANTUM CHROMODYNAMICS

Fatih ILGIN

Department of Physics

M.Sc. Thesis

Adviser: Assoc. Prof. Dr. Taylan YETKİN

Co-Adviser: Prof. Dr. Güray ERKOL

Quantum Chromodynamics (QCD) is the theory of strong forces. In low-energy regions 
we need non-perturbative methods to study hadron properties.

Lattice QCD is a numerical and non-perturbative approach to QCD. This method is for-
mulated on a 4-D discretized Euclidean space-time and starts directly from the QCD 
Lagrangian .

In this thesis, we have used 323 × 64 and 2 + 1 flavor l attices t o c alculate t he effective 
mass values for Λc and Σc baryons which are in agreement with experimental result and 
with those of other collaborations.

Keywords: QCD, lattice qcd, effective mass spectrum, Λc and Σc baryons.
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ÖZET

TILSIMLI LAMDA VE SİGMA BARYONLARININ ÖRGÜ KUANTUM RENK 
DİNAMİĞ İNDE KÜTLE HESABI

Fatih ILGIN

Fizik Anabilim Dalı

Yüksek Lisans Tezi

Tez danışmanı: Assoc. Prof. Dr. Taylan YETKİN

Tez eş-danışmanı: Prof. Dr. Güray ERKOL

Kuantum Renk Dinamiği (KRD) güçlü nükleer etkileşimleri açıklayan bir teoridir. Ayrıca 
düşük enerjili durumlarda hadronlarla çalısabilmek için pertürbatif olmayan yöntemlere 
ihtiyacımız vardır.

Örgü KRD ise pertürbatif olmayan ve nümerik bir KRD çözüm yöntemidir. Bu yöntem 
dört boyutlu kesikli Öklit uzay zamanında tanımlanmıştır. Bu yöntemde hesaplamalar 
KRD Lagrangian’ından başlar.

Bu tezde, 323 × 64 ve 2 + 1 çeşnili örgüler kullanarak, Λc ve Σc baryonlarının efektif 
kütlelerini, deney sonuçlarıyla uyumlu şekilde bulduk.

Anahtar Kelimeler: Örgü krd, efektif kütle spektrumu, Λc ve Σc baryonları.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

In Elementary Particle Physics, particles are classified in two different groups. These are

f ermions which have half-integer spin quantum number (s = 1/2,3/2), obeying Fermi-

Dirac statistics, and bosons which have integer spin quantum number (s = 0,1,2) and

obeying Bose-Einstein statistics.

Fermions are classified in three quark families, three lepton subsegments or families

which have six members and their corresponding anti-particles. Quarks are named as

up, down, charm, strange, top, bottom (respectively u, d, c, s, t, b ) and leptons are

named as electron, muon, tau and corresponding neutrinos (e, µ , τ , νe, νµ , ντ ). They

can be observed as an elementary particle or a composite particle which are named as

hadron where baryons have three quarks and mesons have a quark-antiquark content.

Bosons can be observed as elementary particles (i.e.gauge bosons: photon, gluon, W±, Z0

or scalar boson : Higgs boson) or a composite particle as mesons which belong to hadron

family, having a quark and anti-quark couple(i.e.pseudoscalar mesons: π , K, D or vector

mesons: ρ , ω , ψ ).

In addition to these, we can identify some quantum numbers for elementary or composite

particles to separate them from each other. All fermions and bosons have quantum num-

Table 1.1 Elementary Particles [4].

u c t g H
d s b γ

e µ τ Z
νe νµ ντ W±

1



bers. Some of these are electric charge, spin, isospin, parity, C parity, hypercharge, lepton

number, baryon number, angular momentum and color charge. We can understand from

these quantum numbers the interaction type. For example, all quarks and gluons have a

color charge. It means that quarks and gluons interact strongly with each other. Because

of that interaction we get a new property : colorlessness. We name these colorless objects

as hadrons and classify them with respect to their quark content as baryons which have

three quark and mesons which have one quark-antiquark pair.

1.2 Objective of the Thesis

In nature, there are four fundamental forces. They are electromagnetic force, weak nu-

clear force, strong nuclear force and gravitational force. Electromagnetic and gravita-

tional forces have an infinitely long range as their mediators are photon and graviton. But

gravitational force is a negligible force at atomic scale. In this section we will consider

only other three forces.

Force Theory Mediator Strength
Gravitational Geometrodynamics Graviton 10−42

Weak Flavordynamics W± and Z0 10−13

Electromagnetic Electrodynamics Photon 10−2

Strong Chromodynamics Gluon 10

Table 1.2 Fundamental Forces of increasing strength [4].

Electromagnetic force acts between electrically charged particles and it is the most ob-

served force in daily life. Before Maxwell, electric and magnetic forces were accepted

as different forces. But they have been unified as electromagnetic force by Maxwell. In

particle physics, a theory has been developed called Quantum Electro Dynamics (QED)

as well. It is Relativistic Quantum Field Theory of electrodynamics. Actually it explains

how matter and photon interact. It is constructed on U(1) Abelian gauge group.

The Weak nuclear force or interaction helps us understand the nuclear β decay. As the

name suggests, it takes place in nucleus of atom and has a small range. Moreover this

force changes the flavor of quarks. From this perspective, this interaction is named as

flavor dynamics as well. For weak interactions mediator particles are W± and Z0 bosons.
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In 1968, electromagnetic and weak forces were unified by Glashow, Salam and Weinberg

and this unified force has been named as electro-weak force [4].

Strong nuclear force led by color charge can be seen as quark-quark, quark-gluon or

gluon-gluon interaction. Because of the strong interaction, protons and nucleons are con-

fined in nucleus of atom. But the range of this interaction is so short (it is equal to radius

of nucleus, 1fm) compared to electromagnetic force, and energy scale for this interaction

is about 1 GeV. The mediator particle for strong interaction is gluon. They are vector

bosons whose spin quantum number is one (s = 1) [4]. Gluons have color charge, too. It

means that gluons can interact with each other strongly.

Standard Model is constructed on gauge groups SU(3)×SU(2)×U(1). Here SU(n) de-

notes Special Unitary n× n matrices. A special matrix whose determinant is unity and

Unitary matrix means that its inverse is equal to its Hermitian conjugate.

SU(2)×U(1) correspond to the electroweak interaction in Standart Model. SU(3) is re-

lated to Quantum Chromodynamics (QCD) and generates strong interactions. QCD is a

non-abelian theory.

With the advent of new types of observation techniques and sensor technology, after the

mid fifties, plenty of hadrons have been observed. But it was understood that hadrons are

not elementary particles. Although scientists have observed leptons and bosons, any free

quark and gluon have not been observed so far. This is because all quarks and gluons

have a color charge (have three different values) except spin and electric charge quantum

number, differently from leptons.

1.3 Hypothesis

To understand the strong interaction,firstly we should explain strong coupling constant’s

behavior [7]. If we look at the Figure 1.1, we can see that in high energy vicinity (momen-

tum transfer Q→ ∞), strong coupling constant goes to zero. This behavior is named as

asymptotic f reedom. It means that there is not any interaction between quarks and gluons

in this high energy regime. To be more precise, if there is a high energy reaction, quarks

and gluons interact with weak force and they create a quark gluon plasma.
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Another specific property native to QCD is con f inement. It denotes that when you apply

a force to separate two quarks, another quark-antiquark pair would be created. It means a

free quark will never be observed.

Figure 1.1 Strong coupling constant (αs) as a function of momentum transfer [1].

According to the Figure 1.1, at small Q value, strong coupling constant has large val-

ues. So, perturbation theory breaks down in this vicinity. So if we study low-energy re-

gion, we need a non-perturbative procedure to understand the hadron structure [8, 9]. We

have various non-perturbative methods which have been developed to probe the Hadron

structure, for instance QCD Sum Rules (QCDSR) [10, 11], Chiral Perturbation Theory

(χPT) [12, 13] and Lattice QCD (LQCD) [14, 15, 16].

In this thesis, we use Lattice QCD which is a promising non-perturbative method. For

this method, we need a starting point. It is QCD Lagrangian which we need to model the

strong interactions in 4D discretized Euclidean space-time:

LQCD = ψi(i(γµDµ)i j−mδi j)ψ j−
1
4

Gα
µνGµν

α , (1.1)

where ψi denotes quark field, Aµ is gluon field, γµ is Dirac matrix, and Gα
µν represents

4



gluon field strength tensor. The Gluonic Strength tensor is given as

Gα
µν = ∂µAα

ν −∂νAα
µ +g f abcAb

µAc
ν . (1.2)

Here f abc denotes structure constant.

Lattice QCD method has been so successful to understand running coupling constant’s

behaviour and to calculate the spectroscopy of hadrons accurately. The spectrum results

are consistent with experiments as shown in Figure 1.2.

Figure 1.2 Lattice QCD results of hadron spectroscopy. (Points show lattice results and
lines are experimental results) [2]
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CHAPTER 2

LATTICE QCD

Quantum Chromo Dynamics is a formulation of strong interactions in terms of quarks and

gluons. As we mentioned in Chapter 1, we are interested in Hadronic scale (∼1 GeV).

So perturbative methods are not applicable in this regime (αs ∼ 1 ). At low energy vicin-

ity, lattice QCD is the only non-perturbative method that starts directly from the QCD

lagrangian. In this section we summarize the method of lattice QCD.

2.1 Path Integral on the Lattice

This section is dedicated to explaining the path integral formalism and we will use Gattringer-

Lang notation [3]. Here Euclidean path integral is used to create quantized fields. Path

integral will be introduced simply and two basic equations for lattice will be derived. First

basic equation is

lim
T→∞

1
ZT

< O2(t)O1(0)>T= ∑
n
< 0|Ô2|n >< n|Ô1|0 > e−tEn . (2.1)

We can see here summation of exponents and each of them corresponds to an energy level.

Here ZT denotes the normalization factor. It is given with

ZT = tr[e−T Ĥ]. (2.2)

Left part of (2.1) is the Euclidean correlator for Ô1 and Ô2 operators, Ĥ denotes the Hamil-

tonian for system. The right hand side in Euclidean correlator is given as a summation on

6



eigenstates of Hamiltonian operators tagged with n. In this summation there are matrix

elements of Ôi operators between vacuum state |0〉 and any physical state |n〉. Moreover

there is a weight factor on the righ side, e−tEn, which contains the energy eigenvalues En

for system [3]. It can be written in path integral form

< Ô2(t)Ô1(0)>=
1

ZT

∫
D[ψ]e−Se[ψ]O2[ψ(−→x , t)]O1[ψ(−→x ,0)]. (2.3)

Here Ô2(t) and Ô1(0) denote the Euclidean operators, En is the hadronic energy state,

SE[ψ] is the discretized action. On the right hand side, there is an integral over all proba-

ble forms of ψ . SE denotes Euclidean action and ZT is the partition function [21]

ZT =
∫

D[ψ]e−Se[ψ]. (2.4)

Ô1(0) is an operator which creates a particle from vacuum state |0〉 and another Ô2(t)

operator annihilates this particle at time t. So, it can be said that for an hadronic state

there is a creation-annihilation loop on lattice. Here we apply a trick called, named as

Wick rotation, to solve correlation function numerically. So we transform our correlation

function from Hilbert space to Euclidean space.

By doing Wick rotation from real time to an imaginary time t→iτ , we can get two impor-

tant advantages. Firstly, weight factor e−SE does not sharply oscilate in Euclidean space,

secondly by doing this rotation we can make use of similarities between quantum f ield

theories and statistical f ield theories. This trick gives some advantages to use statistical

techniques such as Monte Carlo method where weight factor transforms to eSE .

In following section we try to understand and discuss the naive discretization o f f ermions,

Wilson gauge action and enhanced discretization techniques.

2.2 Naive Discretization for Space-time

In this part, we utilize Gattringer-Lang notation [3] and present discretization of space and

time. Firstly, continuum space-time will be put in place with 4D discrete lattice space-

time. Λ denotes 4D lattice space

7



Λ={n = (n1,n2,n3,n4)|

n1,n2,n3=0,1,2,3...N−1; n4 = 0,1,2..Nt−1}.

Here NT denotes time steps, N denotes all the spatial steps and n ∈ Λ shows positions in

space time seperated by lattice constant a.

In our discrete space-time, now we have spinors located at these lattice points, and they

represent our fermionic particles as

ψ
f (x)αc, ψ

f (x)αc, n ∈ Λ. (2.5)

Here x denotes space-time, Dirac indices are denoted by α = 1,2,3,4 color indices by

c = 1,2,3 (red, green, blue) and flavor indices by f which give quark’s flavor (up, down,

charm, strange, top, bottom). So, each spinor ψ f (x) has 12 constituents. For notational

convenience, we use n for lattice position of fermions, and it corresponds to real space-

time position x = an. Here a is lattice spacing. But we generally drop it for clarity.

Furthermore, gauge fields for gluons are denoted by

Aµ(x)cd. (2.6)

Here x is again space-time argument such in fermions, c, d = 1, 2, 3 denote color index

and µ (µ = 1, 2, 3, 4) is Lorentz index. Also this Aµ(x) field is a traceless and hermitian

3×3 matrix.

In continuum space Aµ is used to show the gauge fields, but on the lattice we would

rather use Link variables Uµ than Aµ . Morover there is an exponential relation between

continuum gauge field Aµ and Uµ [2],

Uµ(n) = exp(iaAµ(n)). (2.7)

These link variables make a connection between the lattice points. It is convenient to

separate the continuum or discrete QCD action into a fermionic part and a gluonic part.

8



Fermionic part contains quark fields and interaction term. Gluonic part defines propaga-

tion and interaction between the gluons.

We try to simulate infinite space time with finite discretized space time. Therefore, we

confront some problem on this process about boundaries. For this purpose we choose

periodic boundary conditions to conserve the symmetry.

We write continuum QCD action firstly. Then we will separate it two part as fermionic

and gluonic action in continuum QCD. Secondly, we discretize the space and time. In

continuum space, QCD action is given as

S[ψ,ψ,A] =
N f

∑
n=1

∫
d4xψ

f (x)αc[/∂ + ig/A(x)+m( f )]ψ( f )(x)αc +
1
2

∫
d4xTr[FµνFµν ].

(2.8)

Here individually ψ( f )(x)αc and ψ
( f )(x)αc denotes Dirac spinors for fermions and anti-

fermions, α denotes Dirac index, c and d denote color indices. /A and /∂ show the Feynman

slash notation and it is related to gauge field and derivative by a gamma matrix multipli-

cation

/A = γ
µAµ , (2.9)

/∂ = γ
µ

∂µ . (2.10)

Here, Aµ denotes gauge field, g is strong coupling constant and Fµν gives Field strength

tensor

Fµν = ∂µAν(x)−∂νAµ(x)+ ig[Aµ ,Aν ]. (2.11)

If we write the gauge field with color components

Aµ(x) =
8

∑
i=1

Ai
µ(x)Ti. (2.12)

9



By using this information about gauge field, we can write again field strength tensor as

Fµν(x) =
8

∑
i=1

{
∂µAi

ν(x)−∂νAi
µ(x)−g f jkiA

j
µAk

ν

}
Ti. (2.13)

Here Ti denotes Gell-Mann matrices and f jki indicates structure constant. Finally, we can

write the QCD action again as follows

S[ψ,ψ,A] =
N f

∑
n=1

∫
d4xψ

f (x)αc[/∂ + ig/A(x)+m( f )]ψ( f )(x)αc−
1
4

8

∑
i=1

∫
d4xF i

µν(x)F
µν

i (x).

(2.14)

The indices are written here clearly and it can be seen that there are eight combinations

for gluons.

We now separate the fermionic and gluonic action.

2.2.1 Fermion Action

For a free fermion (Aµ=0), in continuum space, the action S0
F is given as

S0
F [ψ,ψ] =

∫
d4xψ(x)(γµ∂µ +m)ψ(x). (2.15)

In this action, the space-time integral and derivative have to be discretized. This dis-

cretization is executed as a summation upon Λ. Firstly, we show how the partial derivative

is discretized as

∂µψµ(x)→
1

2a
(ψ(n+µ)−ψ(n−µ)). (2.16)

So, in discrete space-time, our free fermionic particle’s action in lattice becomes

S0
F [ψ,ψ] = a4

∑
n∈Λ

ψ(n)

(
4

∑
µ=1

γµ

ψ(n+µ)−ψ(n−µ)

2a
+mψ(n)

)
. (2.17)

10



From this equation, we can see whether this action is gauge invariant or not under SU(3)

gauge transformations

ψ(n)→ ψ
′
(n) = Ω(n)ψ(n), (2.18)

ψ(n)→ ψ
′
(n) = ψ(n)Ω†(n). (2.19)

Here Ω(n) denotes a phase in SU(3) gauge. Similarly if we try to do gauge transformation

on link variables

Uµ(n)→U
′
µ(n) = Ω(n)Uµ(n)Ω†(n+µ). (2.20)

Finally we can get a gauge invariant fermionic action by using these transformation

SF [ψ,ψ,U ] = a4
∑
n∈Λ

ψ(n)
[ 4

∑
µ=1

γµ

Uµ(n)ψµ(n+µ)−U†
µ(n−µ)ψ(n−µ)

2a
+mψ(n)

]
.

(2.21)

2.2.2 The Gluon Action

In this section, we show how to discretize the gauge action. For this process we introduce

a gauge invariant object. It is called Link variable (Uµ(n)) which makes a connection

between lattice points n. It connects lattice point n to n+µ .

Figure 2.1 Link variables [3].

As shown in figure 2.1, Uµ(n) corresponds to link variable from n to n+ µ and U−µ(n)

11



corresponds the link variable from n to n−µ . We also have

U†
−µ(n−µ)≡U−µ(n). (2.22)

Morover, it is important to define the shortest and closed loop of link variables on the

lattice. It is called plaquette. By using four Link variables we create a plaquette variable

Uµν(n) as shown in figure 2.2.

Figure 2.2 The Plaquette Uµν(n) is constructed by four Link variables [3].

Uµν(n) =Uµ(n)Uν(n+µ)U−µ(n+ν +µ)U−ν(n+ν). (2.23)

Equivalently, we can write again this equation by using Eq. 2.22

Uµν(n) =Uµ(n)Uν(n+µ)U†
µ(n+ν)U†

ν (n). (2.24)

After this introduction of plaquette, we can define Wilson gauge action which is formu-

lated firstly in lattice gauge theory and after that we show how to approach the continuum

limit (a→ 0). The Wilson gauge action can be calculated by doing a summation over

all plaquettes. We can do this summation over all lattice points n which are located on

plaquettes [3]. So, our Wilson gauge action is

SG[U ] =
β

3 ∑
n∈Λ

∑
µ<ν

ReTr[1−Uµν(n)]. (2.25)
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This summation is made over Lorentz indices µ and ν

1≤ µ < ν ≤ 4. (2.26)

In this equation, β denotes the lattice coupling and there is an inverse proportion between

strong coupling and lattice coupling, β = 6
g2 . In continuum limit a→ 0, wilson gauge

action would be equal to the gauge action in continuum space:

SG[A] =
1

2g2

∫
d4xTr[Fµν(x)Fµν(x)]. (2.27)

If we want to extend the link variables for small lattice spacing values in Eq. 2.9, we

come across a limit problem. To overcome this problem we use Baker Campel Housedorf

formulation for product of exponentials of matrices

exp(A)exp(B) = exp
(
A+B+

1
2
[A,B]+ ..

)
. (2.28)

Here A and B are random matrices, and if we insert Eq. 2.25 to Eq. 2.9 and Eq. 2.25, we

get a new iterative plaquette equation:

Uµν(n) = exp
(
iaAµ(n)+ iaAν(n+ µ̂)− a2

2
[Aµ(n),Aν(n+µ)]

− iaAµ(n+ ν̂)− iaAν(n)−
a2

2
[Aµ(n+ ν̂),Aν(n)]

+
a2

2
[Aν(n+ µ̂),Aµ(n+ ν̂)]+

a2

2
[Aµ(n),Aν(n)]

+
a2

2
[Aµ(n),Aν(n+ ν̂)]+

a2

2
[Aν(n+ µ̂),Aν(n)]+O(a3). (2.29)

In this equation, we have Aµ gauge fields, and Taylor Expansion of this fields is

Aν(n+ µ̂) = Aν(n)+a∂µAν(n)+O(a2). (2.30)

By using this expansion, many terms will be cancelled and we get the continuum plaquette

equation

Uµν(n) = exp
(
ia2(∂µAν(n)−∂νAν(n)+ i[Aµ(n),Aν(n)])O(a3)

)
= exp

(
ia2Fµν(n)+O(a3)

)
. (2.31)
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Now we can use this form in Eq. 2.27, and by expanding the exponential term in Eq. 2.33,

we get the continuum wilson gauge action equation

SG[U ] =
2
g2 ∑

n∈Λ

∑
µ<ν

ReTr[1−Uµν(n)] =
a4

2g2 ∑
n∈Λ

∑
µ,ν

Tr[F2
µν(n)]+O(a2). (2.32)

Thus we get a discretized QCD formula. It was formulated by K. Wilson in 1974 [14].

When we try to approach from a discretized action to continuum action , we are con-

fronted with some errors. Although it seems that there are no errors when it is taken

continuum limit a→ 0, in practice we cannot calculate with zero lattice spacing, so, there

are always systematic errors.

Because of these systematic errors, some corrections are necessary. There are some dif-

ferent gauge actions to solve these error problems.
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CHAPTER 3

HADRON SPECTROSCOPY

Because of the spin, parity, flavor, etc. quantum numbers and their combinations, there

are many hadrons which we know. One of the basic quantities of hadrons that can be

computed using Lattice QCD is their mass value. These mass values have been measured

experimentally. So lattice calculations can be thought as complementary for QCD. We

can achieve high precision in lattice calculations, and good agreement with experiment.

In this chapter we introduce some basic knowledge about hadron spectroscopy calcula-

tions and hadron correlation function. Firstly we summarize operators and their correla-

tion functions and then we show calculation methods for quark sources and propagators.

Finally we analyze hadron propagators and show how to get hadron masses [2]. Interpo-

lators could be defined as Euclidean correlators of hadron interpolators O(nt) and O(0).

For hadron spectroscopy calculations, first step is to understand the interpolators which

are constructed with quarks and gluons.

3.1 Hadron Interpolators and Correlators

Here we discuss how to carry out hadron spectroscopy calculations. So, firstly we com-

pute quark propagators for all combinations. Then we use them to establish hadron prop-

agators and we find an average value for all gauge configurations. So we can estimate the

hadron propagators.

In spectroscopy calculations, firstly we should identify the hadron interpolators O, O

which conform in Hilbert space to operators (Ô and Ô† ) for annihilation and creation of

particles. By using these interpolators (O(nt) and O(0)) placed at time slices n4 = nt and
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n4 = 0, we get an Euclidean correlator of Hadron interpolators1

< O2(t)O1(0)>T=
1

ZT
Tr[e(T−t)ĤÔ2e−tĤÔ1]. (3.1)

The interpolators what we need for hadron spectroscopy which include quarks and glu-

ons, are gauge invariant color singlets. For example, these interpolators or operators for

mesons can be written as

OM(n)≡ ψ(n)Γψ(n). (3.2)

A meson has a quark and an antiquark and a baryon has three quarks. Morover, we can

extend this method to get exotic color singlet combinations of quarks and anti-quarks for

tetraquark (ψψψψ) and pentaquark (ψψψψψ). Extended interpolators involve terms

like ψ(n)Uµ(n)ψ(n+µ) for mesons. Similarly it can be extended for baryons.

If we want to find some physical observables, we do a spectral decomposition for propa-

gators of interpolators

〈O(nt)O(0)〉= ∑
k
〈0|Ô|k〉〈k|Ô†|0〉e−ntaEk

= Ae−ntaEH (1+O(e−nta∆E))

. (3.3)

Here, A is a constant and EH is a ground state energy for |H〉 and 〈0|Ô|H〉 6= 0 and ∆E is

the energy difference between ground state and first excited state. From this equation we

can obtain energy EH for hadrons.

3.1.1 Meson Interpolators

In this section we show how to create a meson interpolator and give pion as an example.

Then we can extend this to other mesons. In this example, we know that a pion is con-

structed by an up and a down quark state. For up and down quarks, isospin (I), isospin

z-component (Iz) and elecrical charge values are respectively I = +1
2 ,+

1
2 , Iz = +1

2 ,−
1
2

and Q = 2
3e,−1

3e. If we take the charged pions, π+ and π−, they have 138 MeV mass

value and total spin is (J = 0), parity is negative (P = −1), isospin and isospin-z are

1We use "operator" and "interpolator" as equivalent words.

16



I = +1, Iz = ±1 and charge Q = ±1 again. By using these quantum numbers, we can

estimate the content of π±, so π+ = ud and π− = ud combinations. In the light of this

information we can create meson interpolators

Oπ+(n) = d(n)γ5u(n),

Oπ−(n) = u(n)γ5d(n).

Under parity transformation we find that

Oπ+(n,n4) = d(n,n4)γ5u(n,n4)

P−→ d(−n,n4)γ4γ5γ4u(−n,n4) =−d(−n,n4)γ5u(−n,n4)

=−Oπ+(−n,n4).

This result shows that Oπ+ interpolator has negative parity and parity operation transforms

spatial vector n to −n and If we apply charge conjugation, it gives

Oπ+(n) = d(n)γ5u(n) C−→−d(n)TCγ5C−1u(n)T =−d(n)T
γ

T
5 u(n)T

= u(n)γ5d(n) = Oπ−(n).

Here, C γ5C
−1=γT

5 , so this equation shows how charge conjugation transforms Oπ+ to

Oπ− and vice versa.

For π0 which is Iz = 0 component for iso-triplet

Oπo(n) =
1√
2

(
u(n)γ5u(n)−d(n)γ5d(n)

)
. (3.4)

Furthermore, we can extend these interpolator examples for η meson which is an iso-

singlet state (I = 0)

Oη(n) =
1√
2

(
u(n)γ5u(n)+d(n)γ5d(n)

)
. (3.5)

It could be seen easily here that the properties of Oπ0 and Oη are the same under parity

transformation like between interpolators Oπ+ and Oπ− . That is, they have negative

parity( P = −1). But they have positive charge conjugation value (C = +1). By using
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Table 3.1, which shows quantum numbers, the other interpolators can be constructed in

the same way.

State JPC Γ Particles
Scalar 0++

1, γ4 f0,a0,K∗0
Pseudoscalar 0−+ γ5, γ4γ5 π±, π0, η , K±, K0...

Vector 1−− γi, γ4γi ρ±, ρ0, ω , K∗, φ ...
Axial vector 1++ γiγ5 a1, f1...

Tensor 1+− γiγ j h1, b1...

Table 3.1 Quantum numbers of the most commonly used meson interpolators according
to the general form [2].

Due to different flavor content, parity and spin, mesons have different interpolators. For

example, we can model an interpolator for K+ meson on π+ meson by putting in place of

d quark with s quark

OK+(n) = s(n)γ5u(n). (3.6)

Morover, if there are different spin or parity values, different gamma matrices must be

used. For instance, we can get an interpolator for ρ+ vector meson (I = 1, Iz =+1, Q =

+e, J = 1, P =−1) from π+ meson’s interpolator by replacing γ5 with γi, i = 1,2,3

Oρ+(n)i = d(n)γiu(n), i = 1,2,3. (3.7)

Generally a meson interpolator can be defined

OM(n) = ψ
( f1)(n)Γψ

( f2)(n). (3.8)

Γ denotes the gamma matrices and fi denotes flavor indices. In Table 2, most commonly

used gamma matrices (Γ) are listed for different interpolators with corresponding quantum

numbers.

3.1.2 Meson Correlators

In the previous section we mention about euclidean correlator and interpolators. But now

we should find hermitian conjugate of a meson interpolator ψ̂
†
M which create a meson
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from vacuum state. If we take the hermitian conjugate of Eq. 3.3

(
ψ

( f1)Γψ
( f2)
)†

=−ψ
( f2)Γ†

ψ
( f1)†

=±ψ
( f2)Γψ

( f1). (3.9)

Here is a minus sign because of Grassmann variables changing and there are some basic

properties, ψ = ψ†γ4 and γ4Γ†γ4 = ±Γ. Finally we can write for meson interpolator on

m,n spatial coordinates

OM(n) = ψ
( f1)(n)Γψ

( f2)(n),

OM(n) = ψ
( f1)(m)Γψ

( f2)(m).

By using this interpolator we create correlator
〈
OM(n)OM(m)

〉
. There is a distinction

between for iso-triplet state correlator and iso-singlet state correlator. For an iso-triplet

state, the interpolator is OT = dΓu, and if we write all indices, we obtain

〈
OT (n)OT (m)

〉
F =

〈
d(n)Γu(n)u(m)Γd(m)

〉
F

=−Tr[ΓD−1
u (n|m)ΓD−1

d (m|n)].

Here Du and Dd denotes Dirac operators. By neglecting the small differences of quark

mass for u and d, we can get Dirac operators identical, Du=Dd .

As a result, we interpret that propagators D−1
d (m|n) propagate u and d quarks from m to

n point. We can extend this calculation for iso-singlet and iso-triplet (for Iz = 0) states’

interpolators to obtain correlators.

3.1.3 Baryon Interpolators and Correlators

In this section, firstly we write an interpolator for nucleons. Then accordingly we can

create for other baryons as we did for mesons in previous section. For example a proton

and a neutron have respectively +1
2 and −1

2 isospin-z values. So they are iso-doublet

states (I = 1
2 ). The proton is a uud state and neutron is a udd state and the simplest

19



interpolator for a uud type nucleon state is

ON(n) = εabcu(n)a
(
u(n)T

b Cγ5d(n)c
)
. (3.10)

Here a, b, c denote the color indices, C corresponds to charge conjugation and T is the

transpose. When we combine the u and the d quarks in parentheses with C and γ5, we

would create a diquark which has isospin I = 0 and spin J = 0 values.

Similarly we can write an interpolator for corresponding creation operator as follows

ON±(n) = εabc
(
u(n)αCγ5d(n)T

b
)
u(n)cP±. (3.11)

Here P± denotes the parity projector which is

P± =
1
2
(
1± γ4

)
. (3.12)

In conclusion, we can extract a nucleaon correlator by using these interpolators as noted

below (we use P2
± = P±)

〈ON±(n)αON±(m)α〉F = 〈ON±(m)αON±(n)α〉F

=−〈εabcεa′b′c′
(
u(m)αCγ5d(m)T

b
)
u(m)cP±u(n)c′

(
u(n)T

α ′Cγ5d(n)b′
)
〉F

= εabcεa′b′c′
(
Cγ5
)

α ′β ′
(
Cγ5
)

αβ
(P±)γγ ′D

−1
d (n|m)ββ ′×(

D(u)−1(n|m)α2αD(u)−1
γ ′γ −D(u)−1(n|m)α ′γD(u)−1(n|m)γ ′α

)
.

For octet baryon’s interpolating fields are given as in Table (3.2).

OΛ± = εabcP±ΓA(2sa[uT
b ΓBdc])+(da[uT

b ΓBsc])− (ua[dT
b ΓBsc])

OΣ± = εabcP±ΓAua[uT
b ΓBsc]

ON± = εabcP±ΓAua[uT
b ΓBdc]

OΞ± = εabcP±ΓAsa[sT
b ΓBuc]

Table 3.2 Interpolators for s-1
2 baryons.
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3.2 Extracting Hadron Masses

In this section, we present how to calculate the hadron masses by using correlators which

we explained in previous sections. In hadron correlator formula

〈O(nt)O(0)〉= ∑
k
〈0|Ô|k〉〈k|Ô†|0〉exp(−ntaEk)

Aexp(−ntaEH)
(
1+O(exp(−nta∆E))

)
.

Here we use lattice constant (a) as a factor for energy, mass and momentum. So we

get aE, am and ap as dimensionless values. Morover, we use operators Ô† and Ô for

creation and annihilation respectively. Namely, Ô† creates a hadron from vacuum and

Ô annihilates a hadron to vacuum state. If the annihilation or sink operator has zero

momentum, we write again correlation function as

C(nt)≡
〈
Õ(0,nt)O(0,0)

〉
= ∑

k
< 0|Ô|k >< k|Ô†|0 > e−ntEk .

In this calculation, we use a finite lattice. So Ek has a discretized value. If operators are for

a single particles, the mass value is equal to ground state energy (Ek = mk). But if there

are two or more particle states, the energy values correspond to mass and momentum.

Because of the exponential part of this equation, the relation can be seen between nt

values and energy states. That is, if we have large nt values, the lowest energy states are

dominant. On the contrary, for smaller nt values, C(nt) equation has many contributions

C(nt) = A0e−ntE0 +A1e−ntE1 + .... (3.13)

By using these equations, we can extract an e f f ective mass formula

me f f (nt +
1
2
) = ln

C(nt)

C(nt +1)
. (3.14)

When me f f has constant value, correlator C(nt) is dominated by minimum energy state

and graphic forms a plateau at me f f = E0.
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3.2.1 Techniques for Analyzing Data

In order to process our data, we used Jackknife method. It is a simple method to determine

the statistical errors of the fit results for the mass. This method is a resampling method

and very useful for extinguishing bias parameters. Assume that for a data set with size N

and θ are observables. And there is a computed observable value for original data set is

called θ̂ . So the variance value for θ is

σ
2
θ̂
=

N−1
N

N

∑
n=1

(
θN− θ̂

)2
. (3.15)

For finding the standard deviation of θ , we take the square root of this θ value. So we can

compute a bias estimator as 〈θ〉= θ̂ ±σ
θ̂

. Also the bias can be calculated from

θ̃ ≡ 1
N

N

∑
n=1

θn, (3.16)

which concludes to θ̃ − (N − 1)(θ̃ − θ̂) for the unbiased estimator for 〈θ〉. By using

Jackknife method determination the statistical errors for fitted quantity could be seen the

most important advantage in data analysis.

3.3 Simulation Details

We examine mass spectrum of charmed baryon using relativistic heavy quark action in

2+1 flavor PAC-CS configurations which are formerly generated on 323× 64 lattice [5].

Details of configurations are given in Table 3.2. We have used four different sets of config-

urations for light quark hopping parameters κ
u,d
sea = 0.13700, 0.13727, 0.13754, 0.13770

which conform to pion masses respectively 700, 570, 410, 300 MeV.
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Table 3.3 The details of the gauge configurations used in this work for Λc and Σc [5]. Ns
and Nt are spatial and time components of the lattice, N f is the number of flavors, L is
volume of the lattice, a is the lattice spacing, κ

u,d
val is hopping parameter with flavor u and

d, Ngc is number of gauge configurations.

N3
s× Nt N f a[fm] a−1[GeV] L (fm)

323× 64 2+1 0.0907(13) 2.176(31) 2.90

κ
u,d
val 0.31700 0.13727 0.13754 0.13770

Ngc 100 100 199 316

3.4 Chiral Extrapolation

Because of technical issues in the discretization of the fermion action we cannot compute

values at physical quark masses and we are forced to extrapolate our unphysical values to

physical point (chiral point) to obtain a physical mass value (mq→ 0). So, we fit our data

to a linear function

Me f f = a1 +a2(amπ)
2. (3.17)

From this equation we can extract a fixed a1 value to extract an effective mass by ex-

trapolating to the physical mπ value. Secondly we can fit them to a quadratic function

as

me f f = a1 +a2(amπ)
2 +a3(amπ)

4.

Furthermore, there may be many sources of systematical errors from discretization. These

are finite volume effect and chiral extrapolation. Except these systematical errors, there

may be statistical errors from Monte Carlo sampling of observables. In order to get rid of

these errors and bias, we have employed Jackknife resampling method.

23



3.5 Charmed Baryons

Charmed baryons that include at least one charm quark were observed firstly in 1970’s.

Recently, many new charmed baryon states were observed by BaBar, BELLE [17],

CLEO [18] and LHCb [19] collaborations. We can classify the baryons according to

spins and flavors. In Fig.(3.1) and Fig.(3.2), we can show s = 1
2 octet state 8

⊕
1 and s=3

2

decuplet states.

Figure 3.1 Multiplet for baryon octet and singlet (Λ0) [2].
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Figure 3.2 Multiplet for s-3
2 baryon decuplet [5]

Spectroscopy of charmed baryons gives us a ground for understanding the dynamics of

the light quark sector in environment heavy quark sector [20]. Since 1975, 18 of charmed

baryons have been observed and there are four charmed baryons candidate which were

not confirmed.

In 1975, the first charmed baryon Λ+
c (udc) was observed [21]. Its mass was measured as

2286.46(14) MeV by BaBar [22]. This particle was observed with two different methods

as fixed target experiment and e+e− experiments by different collaborations.

In this thesis we considered Λc and Σc baryons that have same quark content. But their

flavor wavefunctions are different from each other. Furthermore, Σc is an isospin 1 par-

ticle. It means that there are three Σc particles. Because of the resolution problem of

detectors, firstly, doubly charged Σc was observed in around 1987. Then singly charged

one was observed in 1993 by CLEO [23]. All 18 charmed baryons and decay channels

are shown in the Figure 3.3 [24].
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Figure 3.3 Experimentally observed charmed baryons and decay channels [5].

There are eighteen charmed baryons which were observed. Four of them (Λc, Σc, Ωc, Ξc)

are waiting to be confirmed. In group theory, for SU(4) group, there must be 4
⊗

4
⊗

4 =

20
⊕

20
⊕

20
⊕

4 = 64 baryons. In addition, we can classify charmed baryons according

to their spin and flavor as we did in light baryons. But now, there is a charm quark besides

u, d, and s light quarks. So these are called SU(4) multiplets (Fig. 3.4). For having s=1
2

particles, the bottom layer of 20-plet is an SU(3) octet. 4-plet, an inverted tetrahedron are

also s = 1
2 baryons (Fig. 3.5). Moreover, for s = 3

2 baryons (Fig. 3.5), the bottom layer of

20-plet is a SU(3) decuplet. For Λc and Σc baryons’ interpolating fields are given in Table

3.4 .
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Baryon Quark content Interpolating field
O

Λ
+
c

udc 1√
6
εabc[2(uT

a Cγ5db)cc +(uT
a Cγ5cb)dc− (dT

a Cγ5cb)uc]

O
Σ
+
c

udc 1√
2
εabc[(uT

a Cγ5cb)dc +(daCγ5cb)uc]

Table 3.4 Interpolating fields for Λc and Σc baryons. C denotes charge conjugation matrix
[6].

Figure 3.4 SU(4) 20-plet for s-1
2 [5].

Figure 3.5 SU(4) 4-plet for s-1
2 [5].
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Figure 3.6 SU(4) 20-plet for s-3
2 [5].
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CHAPTER 4

MASS SPECTRUM AND RESULTS

4.1 Mass Spectrum

After describing the quark propagators as in the previous sections, we use them to obtain

the hadron correlators. Then, by using these correlators we can extract the corresponding

hadron masses.

Hadron correlation functions’ ratios are used to calculate mass spectrum of hadrons Σc

and Λc. So we get a ratio between correlation functions to take an effective mass value

(me f f ) from equation

me f f (nt +
1
2
) = ln

C(nt)

C(nt +1)
. (4.1)

When we plot graph by using these mass vs. correlation function relation, it could be seen

that the ground state energy dominates the correlator C(nt). So me f f becomes constant

and could be seen an e f f ective mass plateau at me f f = E0.

Because of that ratio values have tendency to stay constant according to time, we can get

fitted mass values by using these plateaus as in following me f f vs time graphs and the

corresponding fitted results are given in following graphs and tables.

In the following plots, e f f ective mass plateaus are plotted in different nt ranges in which

excited state contributions can be neglected and we can take simple form

C(nt) = A0e−ntE0 ,

C(nt +1) = A0e−(nt+1)E0.
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In the following figures, plateau ranges have been drawn with a line. We can find me f f

values in lattice units from this plateau. Moreover, converted values are shown in tables

in GeV units.

Figure 4.1 Effective mass vs. time graph of Λc for κ = 0.13700

It can be seen from the Fig. (4.1) that; between 9 and 24 in time, it shows the plateau

behavior for Λc. So we chose this interval to estimate ground state mass for κ = 0.13700.
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Figure 4.2 Effective mass vs. time graph of Λc for κ = 0.13727

In Fig. (4.2), we plotted the e f f ective mass to time dependence graph for Λc. This figure

depicts that a plateau region between 9 and 24 is reached for κ = 0.13727.

Figure 4.3 Effective mass vs. time graph of Λc for κ = 0.13754
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As shown in Fig. (4.3), me f f vs. time graph for Λc, we chose time interval between 11

and 17 to show the plateau. It shows ground state values for κ = 0.13754.

Figure 4.4 Effective mass vs. time graph of Λc for κ = 0.13770

In Fig. (4.4) that me f f vs. time graph for Λc baryon is presented. We chose time interval

between 12 and 20 to depict the plateau and it shows ground state values for κ = 0.13770.

Table 4.1 The effective mass values for baryons in questions (Λc) for four different light
quark hopping parameter values

κ
u,d
val 0.13700 0.13727 0.13754 0.13770

MΛc(Latt) 1.270±0.020 1.161±0.009 1.126±0.016 1.083±0.036

MΛc(GeV) 2.765±0.045 2.527±0.019 2.450±0.034 2.356±0.080

Table 4.2 Extrapolated values to chiral limit (m2
π → 0) and compared values with other

collaborations for Λc

Chiral Point This Work PACS-CS [25] ETMC [6]

MΛc 2.268±0.051 2.333±0.122 2.286±0.027

Chiral Point Briceno et al. [26] Can et al. [27] Exp. [28]

MΛc 2.291±0.066 2.412±0.015 2.286±0.001
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Because of technical disadvantages, we are forced to use unphysical quark masses than

physical one. In order to determine the effective masses, we used extrapolation method

for our results from physical point to chiral point which means quark mass goes to zero

in this limit value (mq→ 0).

Figure 4.5 Effective mass vs. time graph of Σc for κ = 0.13700

It can be seen from the Fig. (4.5) that; between 9 and 22 in time, the it shows the plateau

behavior for Σc. So we chose this interval to estimate ground state mass for κ = 0.13700.
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Figure 4.6 Effective mass vs. time graph of Σc for κ = 0.13727

In Fig. (4.6), we plotted thee f f ective mass to time dependence graph for Σc. This figure

depicts that we chose plateau region between 9 and 22 to exhibit the ground state vicinity

and e f f ective mass for κ = 0.13727.
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Figure 4.7 Effective mass vs. time graph of Σc for κ = 0.13754

As shown in Fig. (4.7), me f f vs. time graph for Σc baryon, we chose time interval between

11 and 17 to show the plateau. It shows ground state values for κ = 0.13754.

Figure 4.8 Effective mass vs. time graph of Σc for κ = 0.13770
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It is presented in Fig. (4.8) that me f f vs. time graph for Σc baryon, we chose time interval

between 12 and 15 to depict the plateau and it shows ground state values for κ = 0.13770.

Additionally, when we look at the graphs which are shown above corresponding to four

hopping parameters, we observe that plateaus in effective mass plots for Λc are shorter

and noisier as compared to those for Σc. Because of flavor content of interpolating fields

for particles in question, there are more fluctuation on Λc particle’s plateau regions than

Σc ones. A similar behavior can also be observed in the case of octet Σ and Λ baryons

[19].

Table 4.3 The effective mass values for baryons in questions (Σc) for four different light
quark hopping parameters

κ
u,d
val 0.13700 0.13727 0.13754 0.13770

MΣc(Latt) 1.324±0.019 1.224±0.013 1.210±0.014 1.168±0.018

MΣc(GeV) 2.881±0.042 2.663±0.030 2.633±0.032 2.543.040

Table 4.4 Extrapolated values to chiral limit (m2
π → 0) and compared values with other

collaborations for Σc

Chiral Point This Work PACS-CS [25] ETMC [6]

MΣc 2.474±0.031 2.467±0.050 2.460±0.046

Chiral Point Briceno et al. [26] Can et al. [27] Exp. [28]

MΣc 2.481±0.004 2.549±0.072 2.453±0.001

Also we can fit them to a quadratic function,

me f f = a1 +a2(amπ)
2 +a3(amπ)

4

Finally, two different fit results are given in Table 4.3.

Table 4.5 Linear and quadratic extrapolation values

χ2− f it Linear f it Quadratic f it

E f f ective mass f or Λc 2.268±0.051 2.346±0.109

As it was stated before, we applied again linear and quadratic fit to our resultant data. So

we obtained effective mass values for two different kind of fit as in Table 4.6.
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Table 4.6 Linear and quadratic extrapolation values

χ2− f it Linear f it Quadratic f it

E f f ective mass f or Σc 2.474±0.031 2.558±0.067
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CHAPTER 5

RESULTS AND DISCUSSION

In this thesis we studied mass spectrum of Λc and Σc charmed baryons by employing

Lattice QCD method.

Throughout this work we discussed discretization of continuum space. Then we expa-

lined discretization procedure, the plaquette and link variable expressions were shown to

provide gauge invariance. Besides, we derived correlation function expression to extract

the mass spectrum of particles

C(nt)≡
〈
Õ(0,nt)O(0,0)

〉
= ∑

k
< 0|Ô|k >< k|Ô†|0 > e−ntEk ,

and finally to extract the effective mass value using

me f f (nt +
1
2
) = ln

C(nt)

C(nt +1)
.

The numerical calculation part was done by using an analysis technique to eliminate

the bias. The simulations were executed on 323× 64 sized lattice with lattice spacing

a = 0.0907(13) fm (a−1 = 2.176(31)) GeV and N f = 2+ 1 dynamical quarks. All cal-

culations were done on four different hopping parameters (gauge configurations) for light

quark hopping parameters κ
u,d
sea = 0.13700, 0.13727, 0.13754, 0.13770 which conform

to pion masses respectively 700, 570, 410, 300 MeV.

Eventually, we estimated effective mass values of Λc and Σc by using Chiral extrapolation

as

MΛc = 2.268±0.051 GeV,
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MΣc = 2.474±0.031 GeV,

which agree with experiment and consistent with other collaborations’ results.

In future works, by using these mass spectrum calculations we can investigate electromag-

netic form factors of particles which helps to understand the charmed baryon structure.

It will give us more prediction to explain the heavy quark structure and interactions. All

calculations were performed with Mathematica version 10.0.
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