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ABSTRACT

A MEDICAL DECISION MAKING SYSTEM FOR BRAIN
TUMOR IDENTIFICATION FROM MAGNETIC

RESONANCE IMAGES USING MACHINE LEARNING
TECHNIQUES

Zahraa Abd Al Rahman Mohammed AL-SAFFAR

Department of Electronics and Communications Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Tülay YILDIRIM

Brain tumor is an abnormal and uncontrolled growth of the cells. Early brain tumor

detection is essential to save lives. In fact, brain tumors are difficult to diagnose,

requiring specialized equipment and training. A medical decision making system

facilitates diagnostic process by visualizing the data produced by a classification

system, allowing doctors to make a right diagnosis.

This study proposes an automated system for segmentation and classification the brain

tumor grades in MRI into three classes: normal, LGG and HGG. In the proposed

system, a new segmentation method named LDI-Means algorithm (Local Difference

in Intensity-Means algorithm) is used. It is a clustering technique based on the

difference in the intensity level of one pixel than another. Furthermore, a new

approach in selecting the sub-significant set of attributes is used, denoted MI+SVD

(Mutual Information + Singular Value Decomposition). The robust features are later

used as an input to the classifier. The new network structure called simplified RNN

(Residual Neural Network) is also offered by this study.

The proposed automated system has six stages; the pre-processing, clustering by

LDI-Means, feature extraction, feature selection and dimension reduction by MI+SVD,

and classification by simplified RNN.

The experimental findings at the end of the segmentation stage presented an

approximate match of 99.02% with the hand-labeled images. In addition, in

comparison to the original feature space and two standard dimension reduction

xiv



methods, PCA and SVD, the MI+SVD algorithm offered a more efficient result

for improving the classification process to achieve a satisfied grading of brain

tumors. Furthermore, using a simplified RNN as a classifier provides a high level

of effectiveness to the proposed system. In comparison with other published studies,

it is found that the proposed system is very sufficient to offer a meaningful real-time

estimation for identification the brain tumor grades.

Keywords: Medical decision making system, brain image classification, brain tumor

segmentation, clustering, image processing, machine learning, mutual information

(MI), principal component analysis (PCA), singular value decomposition (SVD),

support vector machine (SVM), artificial neural network (ANN), residual neural

network (RNN).

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

Makine Öğrenimi Tekniklerini Kullanarak Manyetik
Rezonans Görüntülerinden Beyin Tümörünün
Belirlenmesi için Tıbbi Karar Verme Sistemi

Zahraa Abd Al Rahman Mohammed AL-SAFFAR

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Tülay YILDIRIM

Beyin tümörü, hücrelerin anormal ve kontrolsüz büyümesidir. Erken beyin tümörü

tespiti, hayat kurtarmak için çok önemlidir. Aslında, beyin tümörlerinin teşhis

edilmesi zordur, özel ekipman ve eğitim gerektirir. Tıbbi bir karar verme sistemi,

bir sınıflandırma sistemi tarafından üretilen verileri görselleştirerek teşhis sürecini

kolaylaştırır ve doktorların doğru tanı koymasına olanak tanır.

Bu çalı̧sma, MRG’deki beyin tümörü derecelerini 3 sınıfa ayırmak ve sınıflandırmak

için otomatik bir sistem önermektedir: normal, LGG ve HGG. Önerilen sistemde

LDI-Ortalamalar algoritması (Yoğunluk Ortalamalarında Yerel Fark algoritması) adlı

yeni bir segmentasyon yöntemi kullanılmı̧stır. LDI-Ortalamalar, bir pikselin yoğunluk

seviyesinin diğerinden farklı olmasına dayanan bir kümeleme tekniğidir. Ayrıca, MI +
SVD (Karşılıklı Bilgi+ Tekil Değer Ayrı̧sımı) olarak adlandırılan alt anlamlı öznitelikler

kümesinin seçilmesinde yeni bir yaklaşım kullanılır. Sağlam özellikler daha sonra

sınıflandırıcıya girdi olarak kullanılır. Basitleştirilmi̧s RNN adı verilen yeni ağ yapısı

da bu çalı̧smada sunulmaktadır.

Önerilen otomatik sistemin altı aşaması vardır; ön i̧sleme, LDI-Ortalamalar ile

kümeleme, özellik çıkarma, özellik seçimi ve MI + SVD ile boyut küçültme ve

basitleştirilmi̧s RNN ile sınıflandırma.

Segmentasyon aşamasının sonundaki deneysel bulgular, elle etiketlenmi̧s görüntülerle

yaklaşık 99,02%’lik bir eşleşme sunarak güvenilir bir beyin tümörü segmentasyon

süreci ile sonuçlanmı̧stır. Ek olarak, orijinal özellik uzayına ve standart PCA ve

SVD boyut indirgeme yöntemlerine kıyasla; MI+SVD algoritması, beyin tümörlerinin
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tatmin edici bir derecelendirmesini elde etmek için sınıflandırma sürecini iyileştirmede

kesin ve daha verimli bir sonuç sunmuştur. Ayrıca, basitleştirilmi̧s bir RNN’yi

sınıflandırıcı olarak kullanmak, önerilen sisteme yüksek düzeyde etkililik sağlar.

Yayınlanmı̧s diğer çalı̧smalarla karşılaştırıldığında, önerilen sistemin beyin tümörü

derecelerinin belirlenmesi için anlamlı bir gerçek zamanlı tahmin sunmak için çok

yeterli olduğu bulunmuştur.

Anahtar Kelimeler: Tıbbi karar verme sistemi, beyin görüntüsü sınıflandırması,

beyin tümörü segmentasyonu, kümeleme, görüntü i̧sleme, makine öğrenimi, karşılıklı

bilgi (MI), temel bileşen analizi (PCA), tekil değer ayrı̧stırma (SVD), destek vektör

makinesi (SVM), yapay sinir ağı (YSA), artık sinir ağı (RNN).

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Literature Review

In recent years, there have been many studies that have presented different methods

for segmentation, detection, and classification of the tumor area using brain magnetic

resonance images (MRIs). Here, it is important to remember that there is no such an

ideal technique and it is necessary to keep researching for new methods to achieve

better outcomes by reducing the limitations of the methods mentioned in this section.

Some of the published works in the field of brain tumor segmentation and classification

are discussed as follows:

1.1.1 Brain Tumor Segmentation

Dhanachandra et al. [1] presented a technique to compute the initial value of

cluster centres using subtractive algorithm for accurate segmentation. Their algorithm

involved the use of partial contrast stretching, k-means clustering and median filter.

The contrast stretching algorithm was employed to improve the quality of the image.

Later, the subtractive clustering algorithm was implemented to find the centroids,

based on the image potential value. These centres were used as the initial values

in k-means algorithm.

Vishnuvarthanana et al [2] proposed an effective way for identification and

segmentation of brain tumor. A new method was used for segmentation, combining

a self-organizing map (SOM) and fuzzy k-means (FKM). Their method needs the user

to choose three different tissues within the brain. Despite the efficiency of the results,

their way was complex and not easy to apply.

A novel density computation of data points is defined in the study of Abubaker et al [3]
to overcome some of the limitations of K-means algorithm. Their algorithm depended

on two versions of K- nearest neighbor. In the first version, they used the kn (the

number of nearest neighbors) and k (the number of clusters) as inputs. Later, a group

of points is checked until the number of centroids attain a certain k. The other version

uses one input, kn. Then, k and the centroids are obtained. By using this technique,
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K-means algorithm can find the accurate number of clusters.

Soltaninejad et al. [4] classified the tumor grades by using SVM. The segmentation

process was based on a super-pixel method. In their study, the comparison between a

manual segmentation and the proposed method can be found.

An automated detection and segmentation system based on the super-pixel technique

using only one modality of MRI was proposed in the study of Soltaninejad et al [5]. By

grouping the voxels with similar properties and extracting features from superpixels,

the accuracy of feature extraction as well as the computation time has been improved.

Javadpour et al [6] suggested a valuable method to enhance the segmentation process.

they used a region growth and genetic algorithm. By thresholding the initial points are

selected , each one represents the required segmented area. Later the other points are

checked. Then the Genetic algorithm is applied by using Fitness function to find the

difference between the segmented area and the image resulted from region growth.

Their method may be used for huge dataset of images.

Angulakshmi et al [7] presented an unsupervised algorithm to detect tumor. Their

method has 3 steps: firstly, finding the tumor slices by using bilateral asymmetry

property of the brain. Secondly, finding the ROI (region of interest) by using quad-tree

decomposition. Lastly, using spectral clustering to perform the segmentation.

Bahadure et al [8] investigated a Berkeley wavelet transformation (BWT) for brain

tumor segmentation. The relevant features that were extracted from each segmented

tissue were used as an input to the SVM for the classification process.

Cabria et al [9] proposed an algorithm named Potential Field Segmentation (PFS).

in order to find a fused segmentation, they used a combination between the findings

obtained by PFS and other methods. They exploited the potential criterion to perform

segmentation. For each pixel in the MRI, the potential field is computed. They used

22 images only and it is not sufficient to estimate the segmentation accuracy.

Corso et al. [10] introduced a technique of combining two approaches to performing

automatic segmentation: a generative model-based technique and a graph-based

affinities method. Then, the resulting model was integrated into multi-level

segmentation by applying a weighted aggregation algorithm (SWA).

Dong et al. [11] presented an automated system for brain tumor detection depending

on the U-Net-based deep convolutional neural network. A set of data augmentation

methods were applied. Their network architecture consisted of an encoding (down

sampling) and decoding (up sampling).

1.1.2 Brain Tumor Classification

R. Battiti [12] presented a method to select features based on the mutual information

theory called MIFS. This method calculates the relationships between each feature
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with all other features and between each feature with all classes. Later, a new subset

of attributes is created by picking up a feature which gives a high rate of information

about the class label.

Also, based on the MI theory, H. Peng et al. [13] proposed a technique called mRMR.

They applied mRMR to increase the relevancy and decrease the redundancy among

features.

Vinod Kumar et al. [14] suggested a Principal Component Analysis - Artificial Neural

Network (PCA-ANN) system for multiclass brain tumor classification. It has 4 stages:

Gradient Vector Flow (GVF), feature extraction, feature reduction by using PCA and

classification by using ANN.

Also, a multiclass brain tumor classification using PCA-ANN is proposed in the study

of J. Sachdeva et al. [15]. The 856 of ROIs are found by using Content-based active

contour (CBAC). Then more than one experiment are performed in this study in order

to obtain the accuracy by using ANN with and without and PCA.

The study of L. Fang et al. [16] calculated the value of MI by using the Kozachenko

Leonenko information entropy estimation algorithm for obtain a significant attributes.

later, it factorized the feature matrices. Their method can successfully decrease the

multidimensional time series dimensions of clinical data.

N. Hoque et al. [17] described a new method for feature selection depend on

Fuzzy MI with a non-dominated solution. The features are selected according to the

fuzzy mutual information between each feature and classes as well as between each

feature and the others. Also, they presented a k-nearest neighbor (KNN) classifier

modification to classify inputs according to the distance.

A diffusion tensor imaging (DTI) algorithm is used by T. L. Jones et al. [18] to find

the tumor VOIs according to the isotropic and anisotropic properties of the diffusion

tensor. Later, diffusion-based segmentation (D-SEG) spectra are considered within

each VOI. By using SVM, the classification using D-SEG spectra is applied.

More than one test was carried out in the work of Zacharaki et al. [19]. Their

proposed system consists of ROI definition, feature extraction, feature selection and

classification. For feature subset selection, SVM with recursive feature elimination

(RFE) was applied, whereas for classification three methods were investigated: LDA

with Fisher’s Discriminant Rule, k-nearest neighbour (kNN), and nonlinear SVM. A

multiclass classification was performed using a one versus all voting scheme.

Zollner et al. [20] offered the comparative investigation to find an optimal method of

feature reduction for improving SVM-based classification in order to achieve a brain

glioma grading.

In the research of Khawaldeh et al.[21], a convolution neural network was presented

to perform brain tumor classification by using data set from The Cancer Imaging

Archive (TCIA). In their results the MR brain images were classified into 3 classes.
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A CAD system was proposed by Hsieh et al [22]. Their system was developed to

identify the malignancy of diffuse brain gliomas. The classification performances was

calculated by using local features, global features, and both groups. The results were

achieved 83%, 76%, and 88%, respectively.

The essential step for MR brain tumor images classification is the extraction of

significant features. Many researches have presented various methods for feature

extraction in order to classify the tumor in the brain MRI scans such as the research of

Hasan et al. [23] where an interesting deep learning feature extraction algorithm was

proposed to extract the relevant features. A modified grey level co-occurrence matrix

(MGLCM) method combined with deep features (DF) learning were used to improve

the classification performance of MR brain scans. Later, for binary classification, SVM

was implemented.

In the study [24], Bakas et al. offered an overview to the various machine learning

techniques used for MR brain tumor images processing of the International Brain

Tumor Segmentation (BRaTS) challenge from 2012 to 2018.

In a survey by Litjens et al. [25], the use of deep learning for medical image

classification, abnormal tissue detection, segmentation, registration, and other tasks

was established. Their paper reviewed the major deep learning models used in

medical image processing and summarized over 300 contributions in this field, most

of which appeared before and during 2016.

A valuable review on the recent segmentation and tumor grade classification

techniques of brain MR images was also found in the survey of Mohan et al. [26].
This survey clarified the methodologies used up to and including year 2017 for

segmentation and grading of brain tumors. These methods can be included in the

standard imaging procedures. In addition, a vital assessment of the state-of-the-art,

upcoming developments and trends was offered. In particular areas, feature selection

has been successfully used in medical applications. It can diminish the dimensionality

and provide a better understanding of the causes of a disease.

The survey of Remeseiro et al. [27] described some basic theories used in many

medical applications and offered some background concepts on feature selection. The

survey also presented a review of the current and useful feature selection methods

utilized in different medical problems.

Finally, the study of Jalali et al. [28] should be included in this section. It has been

published in November 2020. Their study illustrated works of different researchers

using medical imaging for automatic brain tumor identification. In addition, they

analyzed the results of these studies in term of accuracy, specificity, and sensitivity

parameters and provided a valuable overall comparison tables.
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The literature survey above offers a clear view to the methods that have been

invented to obtain region of interest, extract features, and train / test features to

perform classification. It is apparent that segmentation methods need to be more

accurate and an effective classification combining feature selection and dimensionality

reduction has not been achieved. This study is therefore intended to design a medical

decision-making system to perform brain tumor segmentation and classification which

will be more reliable, or takes less time or costs, or easier to implement than the current

methods.

1.2 Objective of the Thesis

The main objective of this study is based on the following general motivation:

1. To take advantage of clinical information and databases of patients for

discovering and diagnosing their diseases in order to provide decision support

to medical specialists. This study is expected to design some models can help

doctors in grouping patients in useful patterns based on various risk factors,

and how machine learning algorithms can recognize such patterns. This can

have a great role in detecting early onset of the disease and its stage, as well as

providing a suitable plan of care.

2. To deal with large number of attributes and features, and finding the importance

of some features over others. A large number of features can cause a curse of

dimensionality, and can make a machine learning algorithm limited in terms of

specificity, sensitivity accuracy and time.

Thus , this study aimes to design and implement a medical decision making system for

an automated segmentation and grading able to classify the tumors into normal, low

grade glioma and high grade glioma using brain tumor MRIs. The designed system

will aid physicians to identify the disease, prevent misdiagnosis, and decrease a patient

waiting time.

1.3 Hypotheses and Problem Statement

The quantities and complexities of current patient data make medical decisions

more difficult for doctors and other carers than ever. This case involves the use of

computational methods to process data and make suggestion in order to help the

decision makers. Over the past two decades, it has become very necessary to design,

implement, and use systems in the form of computer-aided decision support. For this

5



study the medical decision making system is designed to recognize the benign and

malignant tumors. In order to reduce erroneous diagnostic interpretation of brain

tumors in MRI scans and workload, as well as helping the clinicians to ignore the MRI

brain scans of the patients who have normal brain quickly and focus on those who

have pathological brain, the following research questions need to be addressed:

Question 1: How to design an appropriate brain tumor detection system that classifies

the MRI brain images into a normal or abnormal brain more effectively than the

available systems?

Question 2: Does using the current algorithms will provide a better outcomes for

proper diagnosis and treatment in terms of classification accuracy and tolerance to

noise?

Question 3: Which pre-processing methods that should be used to improve the

classification accuracy of tumors in brain MRI?

Question 4: How to identify the exact tumor location in brain MRI?

Question 5: How to find a new way to increase the segmentation accuracy which can

automatically finds the ROI (tumor) in MRI?

Question 6: How to identify the most effective features which will describe the

input data in a best possible way, in order to distinguish the tumor types by using

a learning-based classification and data mining techniques?

Question 7: Which methods that should be used to discriminate data set features

by finding the robust features to improve prediction in context of the right medical

decision?

Question 8: To what degree this research will be able to achieve a satisfactory criteria

such as computational cost and speed, in addition to accuracy?

1.4 General View

In clinical routine, clinicians spend an increasing time in diagnosing and interpreting

medical images due to the increased utilization of diagnostic imaging. High levels

of experience are required to carry out manual and accurate delineation and

classification of these medical images [29]. Due to the improvement in scanner

resolutions and the decreasing in slices’ thickness, a much more number of slices

can be produced than before. Therefore, clinicians need more time to manage the
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image set of each patient because of these huge number of data. Coupled with the

increase in patient numbers, this puts pressure on resources and services resulting in

significant delays to both diagnosis and treatment [30]. Thus, an automated tumor

segmentation and classification have attracted a considerable attention in the past two

decades, and various algorithms have developed for interactive, semi-automated, and

full automated segmentation and classification of brain tumors.

1.4.1 Medical Decision Making Systems

Medical decision making systems can play an important role in the medical

environment. Physicians are prone to making some mistakes in their medical

decisions, because of the complexity of medical problems and due to cognitive

limitations [31]. Computer-based aids aim to reduce physician’s errors by providing an

appropriate support for decision making. When the decisions being made can have a

profound impact upon the patient, it is of the ultimate importance that diagnosticians

have the relevant information presented to them in the most effective manner possible

[32]. A typical decision making process contains the knowledge discovery process.

Many researchers consider data mining programs as a way to make decision making

tools intelligent. The importance of using computer-based tools to eliminate the

problems of medical decision-making is realized half a century ago [24]. Medical

decision making systems are computer tools for the integrated Decision Support

System, which is intended to aid doctors and other health professionals in making right

medical decisions, such as evaluating patient data for better diagnosis [32]. A working

definition has been suggested by Dr. Robert Hayward of the Centre for Health Evidence

"Clinical Decision Support Systems link health observations with health knowledge

to influence health choices by clinicians for improved health care". This description

has the benefit of giving the Clinical Decision Support its functional impression [33].
The possible advantages of using support systems for clinical decisions fall into three

different areas:

1. Patient safety improvement, by decreasing the medication errors and enhancing

the tests ordering.

2. Treatment quality improvement, by increasing the available time of specialists’

for direct care, enhancing the implementation of clinical pathways and

recommendations, and promoting the use of up-to-date clinical data. Also, by

providing better clinical reporting and patient satisfaction.

3. Efficiency of healthcare delivery improvement, by lowering costs through

decreasing the number of the required tests and modifying the medication
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prescription patterns.

1.4.2 Medical Imaging

Medical imaging can be described as a technique used to generate images for

diagnosis, treatment, and clinical studies. One of the medical imaging system is a

Magnetic Resonance Imaging (MRI). It exploits the properties of magnetic fields for

capturing images and provides very useful tissue measurements, including anatomical,

structural, and functional details [33]. According to its excellent contrast of soft tissues

and its precise resolution, MRI is common method for imaging a growth of brain

tumor and detecting its location [34]. The classification of brain images and tumor

identification are still depend mainly on direct human examination of the images. This

visual assessment and analysis by clinicians are biased by their point of view, also,

it is time-consuming and subject to mistakes or inattention [35]. Hence, a medical

decision making system for automated brain tumor identification and grading using

images from MRI system has been developed to improve the physicians’ diagnostic

skills and decrease the time needed.

1.4.3 Segmentation

An MR brain image includes three areas, the gray matter, cerebrospinal fluid, and

white matter. Actually, it will be very beneficial for an accurate diagnosis of brain

diseases, if it is possible to separate each of these regions than others. The separation

process in image analysis called segmentation which is not an easy task because of

the similarity in the biometric features of brain [6]. Many studies have therefore

been carried out on MRI segmentation and it remains an open area for more. There

are several methods perform the segmentation process in MR images. For example

cluster-based, neural network-based, edge-based and threshold-based. Clustering is

the most effective method. There are several kinds of clustering algorithms. For

example mountain, K-means, subtractive, and Fuzzy C-means [36]. This study tries

to establish a cluster-based segmentation algorithm which is more effective and easier

to implement than the current ones.

1.4.4 Classification

The essential goal of the brain tumor classification is to accurately identify which

type of tumor the patient suffer from. Glioma is the brain tumor with the highest

death rate and incidence. These neoplasms can be graded into Low-Grade Gliomas

(LGG) and High-Grade Gliomas (HGG) in term of being infiltrative and aggressive.

[37]. A brain tumor management depends on the size of tumor, its type, and its
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developing level. In computational methods, the classification process is known as

a supervised learning task which determines a relation between the attributes of the

dataset (input) and the targets (output). A large number of inputs almost can cause

some challenges such as over-fitting, or high computational complexity [38]. To get

better outcomes, a medical decision-making systems industry has begun to use data

mining techniques to detect and identify tumors. Therefore, physicians can let a brain

tumor detection system to be as a second opinion as well as their view to finding the

proper brain tumor diagnosis and treatment [37]. In machine learning, the input data

quality has a direct effect on the output quality, e.g. accuracy. The input data for

any algorithm used in machine learning approach is almost represented by number

of features displaying the properties of the problem. Hence, the quality of the feature

space has an important role in solving any problem [4]. This study tries to improve

the classification process to get more effectively and high accuracy results with respect

to the published methods. The required three classes are: healthy, low-grade glioma

(LGG) and high-grade glioma (HGG).

1.5 Research Phases

This study included four phases of research; requirement collecting, system designing,

implementation, and evaluation. As shown in Fig.1.1.

1.6 Thesis Organization

This thesis has been structured as:

• Chapter two explains some concepts and terminologies.

• Chapter three describes the material and method.

• Chapter four involves the experimental results as well as the analysis of the

proposed feature selection and classification techniques.

• Chapter five addresses the conclusion of this study and future enhancement.
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Figure 1.1 Research phases of the proposed system
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2
CONCEPTS AND TERMINOLOGIES

2.1 Brain Tumors

Tumor is a mass of abnormal tissues can be solid or fluid filled. It can be classified

into primary and secondary. The growth of Primary type is very slow whereas the

secondary tumor can be spread quickly. Hence, secondary tumors are caused by cancer

cells. Thus it is inferred that all tumors are not cancer, but all cancers are definitely

tumors [39]. Brain and spinal cord are both the human Central Nervous System. The

command center of human beings is the brain. Brain and spinal cord are made of more

than one type of cells such as nerves and glial cells. Glial cells surround and support

neuron cells. There are many more glial cells than neurons. Gliomas are cancers of

glial cells [40]. Regarding to the WHO grading system, cancers are grouped into 4

grades:

• Grade I implies that the cells of the cancer appear almost normal. Most patients

with grade I gliomas stay a live for a long time.

• Grade II implies that the cancer cells appear a little bit abnormal. After

treatment, Some patients with grade II return as a higher grade glioma.

• Grade III implies that the cancer cells appear abnormal. Cells of grade III

increase in number rapidly.

• Grade IV implies that the cancer cells appear clear abnormal. Cells of grade IV

grow and increase in number very rapidly.

Gliomas are almost represented as either high grade cancers or low grade cancers.

LGG means grades I (astrocytomas) and II (oligoastrocytoms). HGG means grades III

(ependymomas) and IV (Glioblastoma Multiform) [41].
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2.2 Medical Imaging Techniques

In radiology, computerized techniques for diagnostic imaging have widely applied

to medicine more than any other field for diagnosing injuries, illnesses and other

conditions. Computers are important tools for handling data and documents that are

downloaded and read out by a central computer bank from various scanning devices.

Using such a technology has created computer graphics and anatomical color pictures,

has altered diagnostic practices, and has produced a more precise diagnostic images to

medical specialists that saves time. Furthermore, assisting doctors to see clear images

of the body with no need to surgery is the most significant contribution of imaging

technology [42]. Brain imaging techniques can broadly be classified according to the

source of energy for the procedure as follows: [43]

• Computed Tomography (CT): uses x-rays to take a several images from different

angles to a part of the body.

• Magnetic Resonance Imaging (MRI): uses a magnetic field and radio waves to

make images. It provides structural and anatomical information.

• Positron Emission Tomography (PET): in this type of scan a radio-tracer will

first be injected into body. Later, by using a special camera the radio-tracer is

scanned throughout the procedure. Cancer cells appear brighter than normal

cells because they use the radiotracer more quickly.

Brains are often scanned by two-dimensional images (slices). These slices are usually

one of the three orthogonal planes: sagittal, coronal and horizontal (axial) as in

Fig.2.1. Also, Fig.2.2 shows the three planes by using MRI.

The MRI scanner has two strong magnets which are the major components of the unit.

The human body is primarily made up of water molecules or oxygen and hydrogen

atoms. At the core of each atom is an even smaller part, it is a proton, that acts as

a magnet and it is responsive to any magnetic field. Typically, the water molecules

in the body are distributed uniformly, but through MRI scan, the first magnet makes

the water molecules to align in a single direction, south or north. Later the second

magnetic field is turned on and off to give fast pulses. Hence each hydrogen atom

will change its orientation when it is "on" and then very fast turn back to its original

relaxing state when it is "off". Also, passing electricity through the gradient coils causes

coils vibrating, produces a magnetic field causing a special noisy sound. While the

patient can not feel all these changes except the sound, these changes can be identified

by the scanner and a cross-section picture for the radiologist can be generated in

accordance with the computer [44]. The MRI imaging process can be shown in Fig.2.3.
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Figure 2.1 The axes of brain imaging [44].

Figure 2.2 The MRI planes [45].

MRI provides a very good soft tissue contrast than CT and that because the intensities

of the proton signals are depended on both the water distribution and the nuclear

magnetic resonance relaxation properties of the water proton called relaxation times

T1 and T2. The tissue molecular composition affects on the value of T1 and T2. The

manner in which the image is created can be used to maximize the effect of T1 or T2 for

making the intensity of signal more respond to particular aspects of tissue composition.

Also, the signal is affected by diffusion. Thus, by changing some acquisition factors the

image can be more respond to the diffusion of water molecules [6] . The images of MRI

can be as a number of two-dimensional slices or three-dimensional. The thickness of

slice is almost much greater than the in-plane resolution; hence, the multi-slice images

have less resolution in 1-dimension. Images of three-dimension can be captured with

isotropic image resolution but that need more time. In addition, it often have a

1mm resolution. Actually these limitations in resolution are not important for brain

tumors imaging. The brain MRI is very adequate for diagnostic purposes, radiotherapy

targeting, and biopsies management [46]. An acquired image of brain by using MRI

system contains three areas. These are cerebrospinal fluid, gray matter, and white
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Figure 2.3 Acquisition process by MRI. This image available online at
ht tp : //www.sprawls.or g/mripmt/MRI09/index .html

matter as shown in Fig.2.4.

Four factors by which the intensity of MRI signal can be determined: Density of proton,

T1-weighted, T2-weighted, and Flow. In T1 or T2 scans, the middle of the brain

tends to be lighter and have darker colors around it. In FLAIR scans, the middle

of brain tends to be darker and have lighter shades around it. In T1-weighted scans,

tissues of high amount of fat appear brighter and areas of high amount of water appear

darker. This type of scan is used to obtain the useful information about an anatomical

properties. While in T2-weighted scans, the opposite will appear and this type of scan

is used to obtain the useful information about an pathological properties but of course

not all tumors tend to be associated with an increase in water content [47].

These different acquisition image formats can be shown in Fig.2.5 . Each format

highlights different tissue. As seen, cerebrospinal fluid and edema are darker in

T1-weighted images and brighter in T2-weighted images, while gray matter is not

as dark in T1 and not as bright in T2.

2.3 Digital Images

Generally, the medical images are digitally stored in the form of matrix representation.

Let is assumed I is a digital image [49]. It can be represented as shown in Fig 2.6.

The variables i and j are denoting the row and column starting from zero until m

and n, respectively to identify each pixel position within the image whereas m and
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Figure 2.4 The regions of MR brain image [48].

Figure 2.5 The MRI acquisition image formats [45].
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Figure 2.6 The matrix representation of digital image

n are denoting the maximum number of pixels in each row and column. The value

of each pixel represents its intensity. For example if I is a grey scale image of 8-bit,

and I(2,1)= 255. That means the pixel in the third row and second column has an

intensity of white.

Digital Imaging and Communications in Medicine (DICOM) services presents an

interface for transmitting medical images and information in the DICOM industrial

standard. Thus, most medical images files (CT, MRI, PET, and Nuclear Medicine) are

received in DICOM file format. In addition to the image data, a single DICOM file

contains patient’s name, scan type, image dimensions, and other such like information.

In MATLAB the dicomread function can read this type of files.

2.4 Image Filtration

The brain images of MRI are almost very noisy due to some acquisition errors. In

addition, some errors appear due to image registration. Hence the images need some

smoothing techniques before any statistical analysis to get an optimal results. There

are many methods of image filtration or noise removing such as Median and Gaussian

filter [49]. Median Filters eliminate the high frequency signals from the image and

keep on edges. This method involves sorting all pixel by size, later calculating the
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Figure 2.7 Gaussian Transfer function [49], (a) Gaussian Low pass filter, (b) Radial
cross section.

median value to be a new pixel value according to following equation:

f (x , y) = median(i, j) ∈Wm,n {g(x + i, y + j)} (2.1)

where f is the output (filterd image), g is the input (original image), and Wm,n is a

sliding window of m× n in size [7].

Gaussian filter is a common smoothing tool in brain imaging [50]. The spread of

kernel is usually measured in terms of the full width at the half maximum (FWHM) of

Gaussian kernel Kσ. The n-dimensional Gaussian kernel can be described as n× 1D

kernel . Let is assumed a = (a1, . . . , an) ∈ Rn. Thus the n-dimensional kernel is given

by the following equation:

Kσ(a) = Kσ(a1)Kσ(a2)...Kσ(an) =
1

(2π)n/2σn
ex p

1
2σ2

n
∑

i=1

a2
i (2.2)

where σ is the standard deviation and by putting σ=D, it is obtained the following

expression in terms of the cutoff parameter D0 as shown in Fig.2.7.

H(u, v) =

¨

0 D(u, v)> D0

D(u, v) D(u, v)≤ D0

(2.3)

2.5 Image Segmentation

A single image can be defined as a number of different pixels. A segmentation process

means that pixels of similar features are grouped together.
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Cancer is a dangerous and can be a deadly illness. Identifying cancerous cell(s) as early

as possible can potentially help in saving people’s lives. The sizes of cancer cells can

play an important role in deciding the severity of cancer. Here, the image segmentation

process have a significant influence. It produces more positive outcomes by segment

the abnormal cells [43]. A several techniques can be used for segmentation, such as

edge-based, threshold-based, neural network-based and cluster-based methods. The

most effective method of these different approaches is clustering. Clustering technique

has many algorithm, such as Fuzzy C-means, K-means, mountain and subtractive [1].
In 1967, K-means algorithm is presented by MacQueen. It is one of the simplest

unsupervised learning algorithms [51]. The steps of K-means algorithm is shown in

Fig.2.8. On local minimal, K-means clustering algorithm often have to converge but a

number of measurements must be firstly performed for finding distances and centers of

the required clusters. K-means algorithm tries to find the minimum distances between

all points to ensure that data points will be separated to make as most variant clusters

as possible. In other words, no other iteration could have a lower average distance

between the centroids and the data points found within them. To update the centroids,

the iterations number increases or decreases according to the initial value of cluster

centers [52]. Thus, the K-Means algorithm performance depends highly on the initial

value of the cluster centers. This randomization in selection is one of the limitations of

using K-means [53]. The other limitation is specifying the required number of clusters

(K) and this involves some kind of experience to select a a suitable value which is often

not be estimated easily [54]. K-means clustering is an unpredictable algorithm that

produces various results each time. Furthermore it works well if the number of clusters

increases, but it takes longer. From the above, it is concluded that K-means clustering

algorithm is an unstable and provides a different output every time. Additionally its

performance will be better when the value of k increases, but that definitely takes

time.

There is another common segmentation method, it is a Watershed algorithm which

proposed by Beucher 1979 [55]. The Watershed algorithm can be defined by high

points and ridge lines that descend into lower elevations and stream valleys. For using

the watershed principle in image segmentation, a local minima of the gradient of the

image may be chosen as markers, in this case an over-segmentation is produced and a

second step involves region merging. Watershed algorithm [36] involves the following

steps:

• Calculate the gradient. The gradient used to determine the objects contours in

the image as a pre-processing step. It is the lower part of the pixel values in the
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Figure 2.8 K-means algorithm of clustering.
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gray scale image. It can be expressed as seen in Eq. 2.4:

G( f ) =

�

�

∂ f
∂ x

�2

+
�

∂ f
∂ y

�2�
1
2

(2.4)

The gradient will be equal to the ratio of the G(f), if f is continuously changing.

• Extract the local minima. The obtained gradient is compared with the pixel next

to it and the gradient of the lowest value is selected to be the marker. The marker

initialization is described by the following expression:

X l min = {p ∈ D | f (p) = lmin}= Tl min (2.5)

Where lmin = min { f (r) | f (r)< f (p), r ∈ G(p)} and G(p) is the next pixel. Now

by taking pixels one by one and checking them with GN , the local minima can

be found.

• Segment by local minima. The segmentation can be done by the flooding which

extends the region of high gradients at lower gradients.

2.6 Feature Selection by using Mutual Information

One of the major goals in machine learning is to discover some relations between

output and input. Generally, there is a huge number of features but not all of them

are required. Sometimes the output is not defined by using the whole input features

space but is decided instead by only a subset of features. This type of decreasing

in features number is called feature selection which is used to choose a subset of

features to capture the relevant information [56]. Filter feature selection techniques

can be categorized into four types (filter, embedded, wrapper, and hybrid) based on

their selection mechanisms [17]. Filter feature selection are very interesting methods

because they are simple with high computational efficiency. One of the most popular

filters is those which uses MI for estimating the relations between each feature and

target (mutual relevancy), and between each other (mutual redundancy) [23].
Mutual information can be defined as a statistical method measures the relation

between two random variables. In average, it measures how much information does

each variable have about the other variable [17]. For instance, let is assumed X

and Y are independent, that means X has no information about Y . Hence, mutual

information between X and Y is zero. Whereas the mutual information will be as

same as the information of X (or Y ) if X and Y are same. [57]. It is needed to define

entropy, joint entropy and conditional entropy for a better understanding of the terms

of mutual information, as shown in Fig.2.9.
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The amount of information needed to define any random variable is known as the

entropy of that variable which is a measure of its uncertainty. The entropy of the

discrete random variable Z = z1, z2, ..., zN is denoted by H(Z) as found in Eq. 2.6

[56]:
H(z) = −

∑

P(z)logP(z) (2.6)

Where P(z) the probability mass function. When another variable c is introduced,

hence the conditional entropy is the amount of uncertainty left in z. Therefore, the

entropy of both variables more than the conditional entropy [38] which is equal to

entropies if, and only if, the two variables are independent. The conditional entropy

between z and c is defined in Eq. 2.7.

H(z | c) = −
∑∑

P(z, c)logP(z, c) (2.7)

The relationship between the conditional and the joint entropies is found in Eq. 2.8

[17]:
H(z, c) = H(z) +H(c | z) = H(c) +H(z | c) (2.8)

And,

H(z, c)≤ H(z) +H(c) (2.9)

The MI between any two variables means the amount of information that these

variables share as in the equation below:

I(z; c) = H(c)−H(c | z) (2.10)

Symmetry is one of MI properties, therefore,

I(z; c) = I(c; z) (2.11)

Hence,
I(z; c) = H(z)−H(z|c)

= H(z) +H(c)−H(z, c)
(2.12)

The theoretical description of the mutual information of two random variables X and

Y and their joint distribution is P(X,Y) is given by algorithm (1), as shown in Fig.2.10,

that shows how the Mutual Information can be computed between X and Y .

2.7 Dimensionality Reduction

The inputs for any machine learning algorithm is represented by features covering

various characteristics of the issue. Consequently, the features quality is the key in
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Figure 2.9 Venn diagram to show the relationships between MI and entropies [58].

Figure 2.10 Mutual information algorithm.
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solving any classification problem [31]. In the field of machine learning, the efficiency

of learning data and the analysis of the relationship between features and data are

affected by the excessive data dimensions. Sometimes a large feature space leads to

over-fitting, high processing sophistication, and poor final model interpretability [38].
However, in some cases it is appropriate to use a special techniques to minimize the

dimensions of the data. PCA and SVD are the most common methods for performing

dimension reduction, or in the other words for finding matrices with fewer columns.

Fundamentally, there is a difference between the feature selection and the dimension

reduction methods as shown in Fig.2.11.

2.7.1 Principal Component Analysis (PCA)

In image analysis, the feature extraction stage is used for specifying acceptable features

from data set [11]. The extracted features will be inputs to a next stage. In order to

diminish the input dimensions, a principal component analysis method is used. In

general, a PCA is a statistical technique helps to define the main directions in which

the data are updated. For instant, let is assumed there is a number of variables within

a certain data set represented by two original axes X and Y in Fig.2.12 (a). The same

variables can be represented by other two axes U and V and it is clear from Fig.2.12

(b), that the main direction in which the variables can modify is U and the second

direction which is orthogonal to U is V . Hence, the variables can be represented by

one axis U . In other words, by using a PCA procedure it can select a new coordinate

system described by the main direction of the variables [59, 60]. The U and V axes in

Fig.2.12 (b) are called the principal components. If each variable in X Y − coordinate

is transformed into its corresponding value in UV − coordinate, the whole variables

in the data set will be de-correlated or the covariance value between the U and V will

be zero.

Fig.2.13 shows a geometric description of the PCA in two dimensional coordinate

system [61]. By using all points of the data set, it can find the mean value of the

variables (µx1,µx2) and the co-variance matrix Σ which is a 2×2 matrix in this case.

If the eigenvectors of the covariance matrix is calculated, the direction vectors ∅1 and

∅2 is obtained. By putting the two eigenvectors as columns in the matrix∅= [∅1,∅2],
a transformation matrix is formed. It will take the points from the [x1, x2] coordinate

system to create the [∅1,∅2] coordinate system be using the following equation:

P∅ = (Px −µx).∅ (2.13)
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Figure 2.11 The dimension reduction (PCA and SVD) versus feature selection
methods [27].

Figure 2.12 Principal Component Analysis in (a) original feature space and (b)
reduced dimension space [56].

Figure 2.13 PCA data projection [61].

24



Where Px is a point in [x1, x2] coordinate system, (µx1,µx2) is the mean value, and

P∅ is the corresponding point in the [∅1,∅2] coordinate system. The steps of PCA

algorithm can seen in Fig.2.14.

The parameter K in the PCA represents the number of the components, or the number

of dimensions required to reach it. There are two essential factors needed to select K.

The average square projection and the total variation in the data set [62]. These two

factors can be obtained by using the following equations:

1
m
=

m
∑

i=1








x (i) − x (i)approx .










2
(2.14)

1
m
=

m
∑

i=1





x (i)






2
(2.15)

By dividing the above two equations on each other, it is obtained:

1
m =

∑m
i=1








x (i) − x (i)approx .










2

1
m =

∑m
i=1 ‖x (i)‖

2 ≤ 0.01 (2.16)

From the above equation, the difference between the original feature and the reduced

features, divided by the whole feature space should be less than or equal to 0.01.

Usually, K have to be a value within this condition.α= 0.01 leads to 99 of the variance

can be recovered [63]. In Matlab , a S matrix (a diagonal of eigenvalues) will be found

and if α = 0.01 that means the summation of the K selected eigenvalues divided by

the summation of all eigenvalues have to be greater than or equal to 99 as is shown

in the following equation: [59]

0.99≤

∑k
i=1 Sii

∑m
i=1 Sii

(2.17)

2.7.2 Singular Value Decomposition (SVD)

In data mining, the Singular value decomposition (SVD) is one of the most common

unsupervised algorithm which is mainly used in high dimensions data. It is

represented one of the most proper tool for mapping the data of high dimensions

to other less dimensions [64]. Of course, the fewer the dimensions that have been

chosen, the less accurate will be the approximation. For instance, let is assumed (X ) is

a (m×n)matrix of rank (r), where r of any matrix is the maximum number of linearly

independent column or row vectors in that matrix [65]. r is equal to the number of
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Figure 2.14 PCA algorithm.

non zero singular-value (Σ) of X . The matrices U , Σ, and V can be obtained as shown

in Fig. 2.15. The mathematical description of the SVD can be defined in the following

equation [66, 67]:

X = UΣV T (2.18)

where U is m × m matrix and the columns represents the eigenvectors of X X T , V is

n×n matrix and the columns of the V represents the eigenvectors of the X T X , and Σ is

the diagonal eigenvalues and also called entities or diagonal sigma’s values Σ1, . . . ,Σ2

which are computed based on the square roots of the non-zero eigenvalues of the X X T

or X T X matrix. Both of them are the singular values of matrix X and they fill the first

r places in the main diagonal of Σ [65, 66]. According to the following two equations,

the X X T and X T X can be described.

X X T = (UΣV T )(UΣV T )T = (UΣV T )(VΣU T ) = UΣ2U T (2.19)

X T X = (UΣV T )T (UΣV T ) = (VΣU T )(UΣV T ) = VΣ2V T (2.20)

Where U is the eigenvector matrix of X X T , the Σ is the eigenvalue matrix and the

eigenvalues are λ1 = σ2
1, . . . ,λr = σ2

r . At the same way, V is the eigenvector matrix for
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Figure 2.15 (a) The singular-value decomposition matrices, (b) up-ward Σ and (c)
down-ward Σ

X T X . The diagonal matrix Σ has the same property [λ1 = σ2
1,λ2 = σ2

2, . . . ,λr = σ2
r ]

[65]. The steps of SVD algorithm are described in Fig.2.16.

There are some important properties of the Singular Value Decomposition [67, 68]:

1. U is a m× r orthogonal matrix which each of its columns is a unit vector, and

for any two columns the result of dot product is zero.

2. V is a n× r orthonormal matrix. V T is always used which each of its rows is a

unit vector.

3. Σ is a diagonal matrix which means the all elements not on the main diagonal

are zero.

SVD can present a low rank approximation by considering the highest singular value

that bundles most of the energy included in the image. The approximation of a matrix

(X) can be represented as truncated matrix (Xk) of a specific rank r where k is smaller

than r [65].

X =
k
∑

i=1

UiSiV
T

i ' u1s1vT
1 + u2s2vT

2 + ...+ ukskvT
k (2.21)

where Eq. 2.21 shows that the partial sum can capture as much energy of X as possible

by the truncated matrix Xk [69] i.e., the rank r of X is the non-zero elements of S. For

a better understanding, Fig.2.17 shows Eq. 2.21 graphically.

Simply, the value of k is 1≤ k ≤ min(m, n) and a proper k can be taken based on the
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Figure 2.16 SVD algorithm.

Figure 2.17 Singular value decomposition of matrix X based on the summation of k
rank one-matrices.
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content of energy measurement Ek as shown in Eq. 2.22 [68].

Ek =
‖Xk‖F

‖X‖F
(2.22)

Where is the frobenius norm of the truncated matrix which can be calculated for any

matrix X as follows:

‖X‖F =

√

√

√

m
∑

i=1

n
∑

j=1

x2
i, j =

√

√

√

m
∑

i=1

n
∑

j=1

diag(X T X ) (2.23)

In this study, Ek ≥ 0.95 to ensure the 95% of the variance of the original matrix will

be recovered.

2.8 Image Classification

Classification helps to place data into groups. A classifier model is first created based

on training samples; then it is used to classify new testing samples, whereas a set

of features characterizes each sample. Classification can be defined basically as the

process of finding the best boundary between classes. Classification is a machine

learning technique used to predict a group membership for data instances. Developing

a classifier consists of choosing an analysis method, choosing a set of features, a

classifier training, a classifier validating, and evaluating potential classification errors.

Each step presents opportunities to introduce bias and error through the process

[70]. There are many algorithms can be used for classification purposes such as using

artificial neural networks and support vector machine.

2.8.1 Artificial Neural Network (ANN)

In the human being, the human mind is the main motor for making decisions. It

consists of billions of nerves that are interconnected in a very complex structure. The

artificial neural network (ANN) is an intelligent mathematical algorithm have been

found to mimic the function and structure of the human brain neurons network [71].
It consists of three main parts: input layer, hidden layer, and output layer. Basically, the

input layer is a non-processing layer in which the information is directly transmitted

without any changes. The performance of the neural network model can be greatly

affected by the processing operations that takes place inside the hidden layers. The

output layer is the last layer and it is responsible to generate the final output after

a series of checking with the desired output [72]. There are several kinds of ANNs

are developed to manage a wide range of problems in many fields such as signal

processing, pattern recognition, object recognition, classification and robotics [45].
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Figure 2.18 A general structure of a feed-forward multi-layer perceptron [75].

ANN applications in CAD systems are the mainstream of computational intelligence.

Feed forward networks are particularly proper for medical imaging applications. In

ANN, the input / output vectors offer a perfect basis for in a supervised way [73].
A multilayer perceptron (MLP) which is a special type of feed forward network

employing more than two layers. It is uses a training algorithm to learn the data set

by modifying the weights of neurons according to error rate between the actual and

desired output. The typical structure of MLP can be shown in Fig.2.18. In general, MLP

uses the back propagation algorithm (supervised learning) as a training algorithm to

learn the data sets as shown in Fig.2.19. The most popular one which used an iterative

descent method for minimizing mean squared error between the actual and the desired

output [74]. There is a range of activation functions used to process weights and bias.

The four basic functions that widely found for medical image analysis are shown in

Fig.2.20.

2.8.2 Support Vector Machine (SVM)

SVM is a discriminative classifier which requires a training step to find a separating

boundary for the feature space. This best decision boundary is called a hyperplane.

SVM can be used to solve linear and non-linear problems [76]. SVMs are developed

from the theories of statistical learning and structural risk minimization. In linear or

non-linear cases, a new decision surface is computed. Then, the input space is mapped

by a φ function in which samples are separable. In non-linear problem, the mapping

process is achieved by applying a non-linear kernel function over each pair of vectors
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Figure 2.19 The back propagation learning algorithm.

Figure 2.20 Four basic activation functions [73].
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Figure 2.21 The typical structure of SVM.

[77].
The output of SVM can be formulated as follows:

yi = si gn
N
∑

j=1

�

α j y jK(d j, di) + b
�

(2.24)

where N is the number of samples, d j is the input, y j is its class label and K(d j, di) is

the kernel. α j can be obtained by solving the following equations:

maximize
N
∑

j=1

α j −
1
2

N
∑

j,i=1

α jαiK(d j, di) (2.25)

sub jec t to
N
∑

j=1

α j y j = 0, 0≤ α j ≤ C , j = 1, 2, ..., N (2.26)

The attractive aspect of using SVMs is the possibility of using a kernel function [78].
Polynomial and Gaussian Radial Basis Function (RBF) kernels are two widely used

functions for non-linear problems [76]. The mathematical equation of the Gaussian

kernel is found in Eq. 2.27.

KGaussian(d j, di) = e
‖d j−di‖2

2σ (2.27)

where σ is the Gaussian sigma (kernel width). The typical structure of SVM is shown

in Fig.2.21.

For non-linear data, it is impossible to draw a straight line to separate between classes.
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Hence, one more dimension has to be added [79]. It can be calculated as:

z = x2 + y2 (2.28)

where z is the new dimension, and (x , y) are the original dimensions.
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3
MATERIAL AND METHOD

3.1 Data sets

In this study, two types of data set were used to evaluate the effectiveness of the

proposed system. The two data sets are:

• The main data set;

A standard data set were used. It is one of the most reliable data sets shared by

The Cancer Imaging Archive (TCIA) [80, 81]. There are axial plane MR images

of 160 patients. All images are FLAIR, RGB, of size 256× 256 pixels and 8 bit.

Samples are shown in Fig.3.1 (a), (b), and (c). Many studies preferred using

one acquisition format, FLAIR, to validate their proposed system [5, 21, 82].

Three classes of MR brain images were classified: normal, HGG, and LGG. For

each class, the same number of images was randomly selected as shown in Table

3.1. It is necessary to keep in mind that each subset included patients from

various classes to guarantee the validity of the classifier performance.

• The secondary data set;

A real data set collected from the Iraqi Center for Research and Magnetic

Resonance of Al-Kadhimain Medical City in Iraq [23] was used to check the

validation of the proposed system. There are 322 (axial plane) MR images of

107 for both normal and abnormal patients. The images are mixed FLAIR and

T2-weighted, RGB, of different sizes. Samples are shown in Fig.3.1 (d), and (e).

The slices were separated into two groups based on the experience of the center

specialists. Two classes were classified: normal and abnormal.

The data set was divided into training and testing sets of size 80% and 20%,

respectively. It is necessary to keep in mind that each subset included patients from

various classes to guarantee the validity of the classifier performance. The training set

was divided into five folds. Each time, one of these folds was used as a validation set,
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Figure 3.1 Three samples from the standard data set, a) normal, b) LGG, and c)
HGG. Also, two samples from the real data set, d) normal, and e) abnormal

and the remaining four folds were used as training set as shown in Fig.3.2. Later, the

performance of the trained classifier is evaluated by the votes collected from each fold.

Using MATLAB permits the selection of the optimal scaling via a heuristic procedure

automatically by sub-sampling [83, 84]. After that, the testing set was fed to the

classifier. Basically when a classification method has been validated using a standard

cross-validation scheme, an unbiased predictor can be produced. But running a model

on an independent and separated data set for testing can provide a more reliable

assessment. This method called cross-validation and testing approach [85, 86].

Once again, in this study, the data set was divided into two separate sets

(cross-validation set and test set) for only one time . Firstly, different models were

trained and validated with five-fold cross-validation. Hence the best set of parameters

was decided. The accuracy of prediction and the selected parameters were evaluated

on the test set. The division of the selected can be seen in the Table 3.1.

3.2 Software

MATLAB version 15a was used as the platform for programming and experiments

in this study since MATLAB demonstrates a high level of performance in integrating
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Figure 3.2 Data set division.

Table 3.1 The division of the main standard data set.

Class Total Training (80%) Testing (20%)
Training (80%) Validation (20%)

Normal 137 88 22 27
HGG 137 88 22 27
LGG 137 88 22 27
Total 411 264 66 81

computation, visualization and programming. It was installed on Windows 8, Intel R

core i7-4500U of CPU 2.40 GHz and RAM 16.0 GB.

3.3 Framework of the Proposed System

This study presented an intelligent model that has six stages. A block diagram which

describes these stages can be seen in Fig. 3.3.
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Figure 3.3 Block diagram of the proposed system.
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3.3.1 Stage 1: Pre-processing

Several steps were employed on the data set at this stage to make it more proper for

next processes. Firstly, the standard data set was converted from .dicom to . jpg format

by using MATLAB conversion tool. Furthermore, due to the inhomogeneity, noise, and

variety of the intensity ranges and contrast, some pre-processing steps were required

to improve the resolution of the images and prepare them for the next stage [49].
Several de-nosing techniques can be used such as median smoothing filter.

In the proposed system, a neighbourhood of 5×5 has been used because if an outsized

neighbourhood is selected, a severe smoothing is produced. In addition, skull removal

is an important process in brain image analysis and this is required for an efficient

examination of brain tissues. The removal of non-brain tissues such as bones, eyes,

fat, etc. from the MRI scans helps to increase the accuracy and speeds up the tumor

segmentation process [87]. There are various techniques for skull stripping such as

by using image contour or histogram analysis [88, 89]. Here, the skull stripping was

performed by using threshold value method [8]. Lastly, the intensity level of the image

pixels in each channel have to be adjusted which is an essential step for applying

LDI-Means clustering algorithm in the next step. The block diagram of pre-processing

steps is shown in Fig.3.4.

3.3.2 Stage 2: Clustering by using LDI-Means for Segmentation

Image segmentation is one of the vital tools in medical image analysis. It is important

for extracting the ROI from the background. Medical images are segmented using

different techniques and the processed outputs are almost used for the further analysis

such as classification. A new method named local difference in intensity - Means

(LDI-Means) of clustering algorithm has been used for this stage. This algorithm

produces a very stable and precise clusters in less processing time compared with

the k-means [48]. The flowchart of LDI-Means is shown in Fig.3.5. It involves finding

some factors such as the range value, the increment value, the initial value of each

cluster centroid, the absolute value of the difference and the mean value by using the

following equations:

Range = max .Int.value−min.Int.value (3.1)

Where, max .Int.value and min.Int.value are the maximum and minimum values of

image intensity, respectively.

Increment value = Range/N (3.2)
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Figure 3.4 Block diagram of pre-processing stage.
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Figure 3.5 The flowchart of the LDI-Means algorithm.
40



where N is the number of clusters.

C1 = 1× Increment value

C2 = 2× Increment value

:

CN = N × Increment value

(3.3)

where C1, C2, ..., CN are the initial values for the clusters.

Di f f erence = |P(i)− Cn| (3.4)

where, P(i) is the intensity value of pixel, Cn is the center of the cluster n and n =
1,2, . . . , N .

M =

∑

P(i)
I

(3.5)

where, M is the mean value, P(i) is the intensity value of pixel in each cluster, I is the

total number of the pixels in each cluster.

Let is assumed an image I(x×y) needs to be clustered into N, which is the number of

clusters. And let p (x, y) be the an input pixel to be clustered and Cn be the cluster

centroid of n. where n= 1,2, . . . , N. The steps involved in the LDI-Means clustering

algorithm are as following:

1. Select N (number of clusters).

2. Find the maximum and minimum values of the image intensity.

3. Use Eq. (3.1) to calculate the range and Eq. (3.2) to find the increment value.

4. Specify the initial centroid value for each cluster (c1, c2, . . . , cN ) based on Eq.

(3.3).

5. Calculate the difference between the selected centre and each image pixel of by

using Eq. (3.4).

6. Assign all the pixels based on the absolute difference value to a cluster which

has minimum difference in intensity.

7. After setting all the pixels, recalculate the new centroid value using Eq. (3.5)
where the mean value of each cluster will represent the new centroid.

8. Repeat the steps 5, 6, and 7 until it meets the tolerance.
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9. Reconstruct the image from each set of cluster pixels.

10. Find the segmented tumor (ROI) in the last cluster for sure.

3.3.3 Stage 3: Tumor Detection and Localization

This stage involves using some mathematical functions to find the location of the

tumor within the brain image in terms of (x,y) and finding the tumor to brain tissues

ratio as well as the tumor metric size. Firstly, based on the obtained binary tumor

image from previous stage (clustering stage) the center of the irregular shape is

computed by using some built-in functions in MATLAB. Later, a boundary box is

drawn around the lesion area in the original image by using edge detection and shape

factor analysis functions in MATLAB. Then, the image of tumor area is cropped to be

used in the next stage.

The first three stages of the proposed system can be shown in Fig.3.6 as a block

diagram.

3.3.4 Stage 4: Feature Extraction

In general, the image can be transformed into a number of features which describe

its main characteristics. Texture is one of the main properties used to identify ROI

in an image. Hence, gray level co-occurrence matrix (GLCM) has been presented by

Haralick at al. [90] to describe some easily computable textural features in images.

GLCM is a statistical method for several properties that are calculated in four directions

0, 45, 90, and 135 [15, 91, 92]. However, the mean and the standard deviation of

the feature vector for the four directional features within the distance of one pixel

were computed in this study. For feature extraction, the GLCM technique has been

employed in two steps: firstly, computing the GLCM, and then, calculating the texture

features based on the GLCM [8]. Two types of features, intensity based and GLCM

based, were extracted as found in Fig.3.7. The total number of extracted features in

this study is 40.

3.3.5 Stage 5: MI+SVD

This stage is the key part of the proposed system. It involves using MI+SVD. It is a

novel approach that has been implemented by using a combination of two techniques:

feature selection method based on mutual information (MI) theory and dimension

reduction method based on singular value decomposition (SVD). Furthermore, this
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Figure 3.6 Stage 1, 2 and 3 of the proposed model [48].
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Figure 3.7 Mathematical description of the extracted features [93].
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combination produces some development of the ordinary SVD to work in accelerating

mode, by exploiting the selection of multi-eigenvalue theory. In the field of machine

learning and data mining for brain tumor identification, this novel approach has not

been previously described.

The main objective of MI+SVD algorithm is to decrease the space of features and

identify a group of meaningful features that allow a valid classification model to be

built. MI+SVD is accomplished in two steps:

• Reranking all the extracted features by using MI theory. MI is a model free

method with no parameters used for scoring a set of attributes, in which the high

MI between a feature and a class label refers to the relevance of that feature.

A subset of features is therefore selected based on the previously specified

threshold. The obtained relevant features is ready for the next step.

• Applying accelerating SVD. This step is based on a multiple eigenvalues selection

to find such a non-biased value for the robust k which the number of required

dimension.

A mathematical MI model has been developed by this study to examine the entire

feature space. This model specified the threshold value of MI to sort the inputs. It

is possible to think of MI as a reduction in uncertainty about one random variable

given knowledge of another. In a particular sense, mutual information one of many

quantities that measures how much one random variable tells us about another [57].
In general, let is assumed Yi and Yj are two variables. Their joint distribution is

H(Yi|Yj) and their MI is denoted by I(Yi; Yj), which can be defined by Eq. 3.6:

I(Yi; Yj) = H(Yi)−H(Yi|Yj)
= H(Yj)−H(Yj|Yi)
= I(Yj; Yi)

(3.6)

Fundamentally, the range of MI value can be obtained by using Eq. 3.7:

0≤ I(Yi; Yj)≤ min(H(Yi)−H(Yj)) (3.7)

In this study, MI was performed based on two different calculations; one of them is

based on the probability value and the other is based on the distance metric.

1. Probability-Based MI

The mutual information quantity I(Yi, YJ) is non-negative value and can be
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obtained based on the Eq. 3.6 as follows:

H(Yi)≥ H(Yi|Yj) (3.8)

and

I(Yi; Yj) = H(Yi) +H(Yj)−H(Yi, Yj) (3.9)

The joint MI is defined as in equations below:

I(Yi; Yj|Yk) = H(Yi|Yj)−H(Yi|Yj, Yk) (3.10)

and,

I(Yi, Yk; Yj) = I(Yi; Yj|Yk) + I(Yk; Yj) (3.11)

Interaction information is the amount of information included in all features,

but it cannot be found in any subset of features [94]. It can be defined as in

Eq.3.12.

I(Yi, Yk; Yj) = I(Yi; Yk)− I(Yi; Yk|Yj) (3.12)

High interaction information means a large amount of information given by

the three variables together. In general it can be zero, positive or negative.

Furthermore, the positivity for Markov chain can be approved as found in the

Eq.3.14.
I(Y ; Y, Y ) = H(Yi)−H(Yi|Yk, Yj)

= H(Yi)−H(Yi|Yk)
= I(Yi; Yk)

(3.13)

Thus,
I(Yi; Yk; Yj) = I(Yi; Yk)− I(Yi; Yk|Yj)

= I(Yi; Yk, Yj)− I(Yi; Yk|Yj)
= I(Yi; Yj)≥ 0

(3.14)

In the proposed approach, after the normalization process, the MI scoring

became in the range of [0,1]. Also, the cumulative distribution function

(CDF) was applied on the whole normalized MI scoring to get the probability

distribution of the features instead of population. Later, the positive values were

selected, whereas the negative values were neglected based on the uncertainty

theory of MI, which is explained in the mathematical equations above.

2. Distance-Based MI

By definition, for independent variables, MI converges towards 0. MI is not a

distance as well as not bounded. But MI can be bounded distance by normalizing

its value, then subtracting it from 1. There are two different methods for
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normalization. Either by the maximum possible MI of two variables as in the

Eq. 3.15:

dC R(Yi, Yj) = 1−
I(Yi, Yj)

min(H(Yi), H(Yj))
(3.15)

Thus,

0≤ dC R(Yi, Yj)≤ 1 (3.16)

or by the maximum entropy of both variables as shown in Eq. 3.17:

dC L(Yi, Yj) = 1−
I(Yi, Yj)

max(H(Yi), H(Yj))
(3.17)

Thus,

1−
min(H(Yi), H(Yj))

max(H(Yi), H(Yj))
≤ dC L(Yi, Yj)≤ 1 (3.18)

For classification purposes, the distance function dC L can be better choice than

dCR because it satisfies the triangle inequality.

dC L can be written as :

dC L(Yi, Yj) = max

�

H(Yi | Yj)

H(Yi)
,
H(Yj | Yi)

H(Yj)

�

(3.19)

This is closely related to the similarity metric which proposed by Kolmogorov

complexity which has been proven to satisfy triangle inequities up to a constant

additive term [95]. By applying the chain rule twice for three variables Yi, Yj,

and Yk it will obtain the following equations:

H(Yi | Yj) = H(Yk, Yj) +H(Yi | Yj, Yk)−H(Yk | Yi, Yj) (3.20)

Hence,

H(Yi | Yj)≤ H(Yk, Yj) +H(Yi | Yk) (3.21)

In order to achieve a small value of distance metric between the selected

features, which is called the closed-interval feature score (semi-closed interval).

The empirical distribution function is used to project the final MI-based distance

score and find the final feature space by setting the threshold value to 0.5 and

less. CDF is a cumulative distribution function of a real-valued random variable

X as shown in Eq. 3.22.

FX (X ) = D(X ≤ x ∈ Iv ≤ 0.5) (3.22)

where D(X ≤ x) represents the distance of the whole feature space X , which
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Figure 3.8 The MI algorithm based on the distance metric [96].

selects only the values for which the MI score is less than or equal to x . The

distance of X in the semi-closed interval is shown in Eq.3.23.

Selec t ionthreshold = ∀X FX (a)FX (b) = D(a < x ¶ b) (3.23)

In Eq. 3.23, the “less than or equal” sign illustrates the convention of the closest

discrete distribution features falling between the lower bound distance score,

which is 0 (“very close or the same”), and the upper bound score, which is 0.5

(“fairly close”).

After performing MI scoring, the SVD is developed to work in an acceleration mode

by estimating a non-biased threshold for the required dimension as shown in Fig.3.9.

The following steps explain the MI+SVD algorithm in detail:

1. Load the matrix Xm,n , where m is number of variables, n is number of attributes.

2. Initialize an empty set R.

3. For all features f (i) ∈ F , compute the first equation for P-based MI and the
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second one if the approach is D-based MI:

I( f , c) =
∑∑

P( f , c)log
P( f , c)

P( f )p(c)

or,

D( f , c) = max
�

H( f | c)
H( f )

,
H(c | f )

H(c)

�

where f and c represent feature and class, respectively.

4. Rank the features according to their scores and store them in the set R.

5. Repeat until using up all variables in the whole features space.

6. Normalize the MI scores.

7. Apply the empirical CDF.

8. Keep the positive values only.

9. Form a new matrix of Xm,n. Its columns will include the selected group of

features, in which the first column contains the features of the highest MI value

and so on.

10. Check the following condition:

I f
variables no.
f eatures no.

≥ 1

11. Compute the covariance matrix:

Y ← X X T

12. Find the eigenvalues and the left eigenvectors (V) of Y.

13. Sort the eigenvalues in descending order.

14. Order the eigenvectors of V based on their corresponding eigenvalues.

15. Calculate the :
p

the eigenvalues o f X X T

16. Form a diagonal matrix S based on the previous step.

17. Compute matrix D using element-by-element multiplication between each

column in V and its corresponding eigenvalues of power -1.

18. Find the left singular decomposition (U).

49



19. Form a new dataset matrix using the obtained V, Σ, and U.

20. Calculate the frobenius norm and check the Ek .

21. Repeat until convergence.

3.3.6 Stage 6: Classification

In this study, three classifiers were used. These are: MLP, SVM, and simplified RNN.

1. MLP

A multilayer perceptron (MLP) which is a special type of feed forward network

employing three layers was used in this study through the assistance of Neural

Network Toolbox for MATLAB. Its structure is shown in Fig.3.10. Output nodes

number represent the classes number and they are three in the proposed MLP.

Whereas the input nodes number was changeable based on the number of

features. Also, based on the inputs, the nodes of hidden layer was selected.

In neural networks, the activation function is one of the main components. It is

used to take the decision for generating suitable output to a given set of inputs.

There are many types of activation functions but the ones in the hidden and the

output layers, which were used in this study, can be found in Table 3.2.

Table 3.2 The activation functions used in the proposed MLP network.

Layer Layer Activation Mathematical
No. Type Function Description

Layer Hidden Sigmoid f (x) = 1
1−e−x

2 Layer

Layer Classification SoftMax f (x i) =
exi

Σexi

3 Output

Learning the proposed structure is one of the difficulties in the neural network

field. It is the way by which the neural network can learn to do things. Using

learning algorithms makes the network able to understand a pattern in different

sets of data. This is done based on some mathematical equations that are used to

adjust the parameters of the network to their optimum values for a specific task.

Gradient Descent Back Propagation is one of the learning algorithms. There are

numerous suggested ways to enhance the convergence rate of Gradient Descent

50



Figure 3.9 The accelerated SVD algorithm [96].
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Figure 3.10 Architecture of the proposed MLP network.

Back Propagation algorithm such as choosing of initial weights and biases,

network topology, rate of learning, value of momentum, activation function and

its gain value [97]. In this study, the Gradient Descent Back Propagation with

an adaptive learning rate and momentum method is used to adjust biases and

weights [98].

2. RBF-SVM

For SVMs, the kernel and its parameters control on the complexity of the model.

In general, the RBF kernel is a good choice because it can deal with the nonlinear

relations between the features and class labels. In addition, the RBF kernel

has fewer hyperparameters and fewer numerical difficulties compared with the

polynomial kernel [99]. In this study, Gaussian RBF-SVM classification model

with (σ = 0.1) has been used.

3. Simplified RNN

In an ordinary feed-forward neural network, each layer transfers the parameters

to the next layer in one direction (forward direction). In other words, the data

passes through input nodes to feed the next layer until eventually it reaches the

output nodes [73]. The ANN is known as a universal function approximator

because it has the ability to learn weights that map any input to the output

and gradually increases the number of layers that are added to the structure

[71]. On the other hand, having a limited number of layers remains a critical

issue in any ANN design to achieve the desired balance between reducing

complexity while improving accuracy. Hence, in some cases, the increasing in

the dimension of layers in an ANN harms the ability of the universal learning

function [100]. Basically deep learning tends to increase the number of layers

with a simple learning function. But deep learning is not easy to implement and

these networks represents a black box for users. Researchers decide to add layers

when the output of model does not converge to predicted output. The proposed
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Figure 3.11 A single residual building block which proposed by He et al. [103].

simplified RNN tries to skip a connection or add a shortcut that enables data to

flow effectively from one layer to the layer that comes after the next avoiding

the full connection and the complex learning functions. Therefore, adding new

layers does not decrease the performance of the model but it may increase it

slightly due to the residual connection [101, 102].
By adding skip connections to the proposed network, rather than managing the

layers number and the significant parameters to tune, the network will be able to

skip training for not useful layers and do not add their value to overall accuracy .

The skip connections made the proposed network dynamic and it may optimally

tune the number of layers during training. In the study of He et al. [103], the

residual learning framework was presented to facilitate the network training

process. The building block of two weight layers can be shown in Fig 3.11. The

difference between the input and the output can be expressed by Eq. 3.24.

F(x) = O/P − I/P = H(x)− x (3.24)

where the O/P is the new set of weights to be the next layer input, and the I/P is

the old set of weights of the previous layer. Hence, the layers in the ordinary ANN

tends to learn the output H(x) only by tuning the weights, while the network

with residual blocks tends to learn the true output F(x).

The proposed simplified RNN focused on the behavior of the identity shortcut

connections in the He et al study [103]. The formulation of one hidden layer

network with shortcut connection is given in Fig.3.12 and the structure of the

proposed network is given in Fig.3.13. As a classifier, the simplified RNN was

implemented by using the gradient descent Back Propagation as a learning

algorithm, that has one input layer, three hidden layers, and one output layer.

The number of input nodes is dependent on the selected approach (PCA, SVD,
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Figure 3.12 One hidden layer network with shortcut connection.

Figure 3.13 The proposed simplified RNN structure.
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or accelerated SVD). It depends on the total number of measurements k. The

number of neurons was 22, 13, 8 in the three hidden layers, respectively. While

the total number of output nodes was the maximum number of class labels,

which is three. In the all three hidden layers, every neuron has a Sigmoid as

an activation function while So f tMax is the main activation function in the

output layer as shown in Table 3.3. In the multi-class classification problems,

So f tMax function transforms a vector of numbers into a vector of probabilities.

Each probability value is in the range [0-1], and the sum of the probabilities is

1. It can be defined as in the following Eq.:

f (S)i =
eSi

∑C
j=1 eS j

(3.25)

where f (S)i is the probability score (predicted) for each class. S is the

input vector, and C is the number of classes. In the proposed classifier, the

Table 3.3 The activation functions used in the proposed classifier

Layer Layer Activation Mathmatical
No. Type Function Expression

2 Hidden layer 1 Sigmoid f (x) = 1
1−e−x

3 Hidden layer 2 Sigmoid f (x) = 1
1−e−x

4 Hidden layer 3 Sigmod f (x) = 1
1−e−x

5 Output layer SoftMax f (x i) =
exi

Σexi

Optimization Cross entropy Loss = −log
�

eS
p

∑C
j=1 eS

j

�

cross-entropy loss was the main optimization function. It shows the distance

between what the model considers the distribution of output must be, and what

the original distribution actually is. In neural network, it is often used alternative

of squared error when the output is a probability distribution, i.e. when the

activation function is SoftMax in the output layer [104]. It can be expressed as:

Loss = −
C
∑

i=1

li log ( f (S)i) (3.26)

where li is the label of each class.
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For multi-class classification labelling, one-hot coding was used which makes it

possible to convey categorical data more expressively. In this case, only positive

classes (lp) remain in the loss function (main term) that allows for some extra

optimisation. One element in the loss function remains as the target vector

(label), is as follows:

li = lp (3.27)

Based on the target labels, the elements for which the summation is zero are

discarded. According to this assumption, the optimization loss function can be

written as follows:

Loss = −log

 

eS
p

∑C
j=1 eS

j

!

(3.28)

The proposed network was trained by using the following parameters:

• The initial learning rate parameter is 0.0001.

• The momentum factor is used to adjust the step size for the global minimum

coverage by setting it to 0.9.

• The learning patch size is 16.

• The epoch size is 20.

• The iteration number for each epoch is 500.

• The data set was augmented by pre-processing step using a Gaussian filter.

3.4 Evaluating Parameters

A confusion matrix can show the performance of a classification process by knowing

how many positive or negative cases are predicted truly or falsely [105, 106]. Table 3.4

shows five parameters used to evaluate the proposed system. For better clarification,

Fig. 3.14 shows how the five parameters are calculated for class 1 (the normal class).

Where TP is a true positive and it refers to the detection of positive events correctly,

FP is a false positive and it refers the detection of positive events incorrectly, TN is

a true negative and it refers the detection of negative events correctly, and FN is the

false negative and it refers the detection of negative cases incorrectly. The two other

classes follow the same procedure seen in class 1.

Ultimately, three values of three classes were obtained for each parameter. Later,

the overall averages were taken. In addition to the evaluating parameters seen

above, the computational time of the proposed method was also calculated because

time represents one of the most important factors for model evaluating. Moreover,

a receiver operating characteristics (ROC) graph is a technique for visualizing,
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Table 3.4 The evaluating parameters.

Parameters Mathematical Description

Accuracy T P+T N
T P+T N+F P+FN

Sensitivity T P
T P+FN

Specificity T N
T N+F P

Precision T P
T P+F P

Error rate F P+FN
T P+T N+F P+FN

Figure 3.14 The confusion matrix for 3 classes system.

organizing and evaluating the classifiers. The terms associated with ROC curves are

True Positive Rate (sensitivity) and False Positive Rate (1-specificity) [107, 108]. It

is important to note, there are several important points in ROC space. The lower left

point (0,0) indicates that the classifier does not record any false positive errors and at

the same time it does not gain any true positives. In contrary, the upper right point

(1,1) indicates that the classifier works randomly where as the point (0,1) indicates

the perfect classification as shown in Fig.3.15.
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Figure 3.15 The ROC space.
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4
ANALYSIS AND INTERPRETATION OF THE

EXPERIMENTAL RESULTS

4.1 Highlights of the Proposed System

Automatically extracting the brain tumors from magnetic resonance images and

classifying the tumor grades using medical decision making system is still a challenge.

This study offered a medical decision making system which has six stages as it is

mentioned in previous chapter, section 3.3 in details.

Once again, these stages will be listed here in terms of number of experiments that

were carried out to test the performance and the efficiency of the proposed system.

The stages are:

1. Applying Pre-processing steps. One experiment was performed in this stage.

2. Applying a new clustering method LDI-Mean to obtain a segmented tumor area.

The results of using LDI-Means were compared with two common methods

(K-Means and watershed). There were two experiments to test the effectiveness

of LDI-Means.

3. Applying some mathematical calculations to find the position of brain tumor in

terms of x and y. The results of this stage were obtained based on the previous

stage results. One experiment was performed.

4. Applying some mathematical expressions for feature extraction stage and no

results can be shown in this stage.

5. Applying the novel technique MI+SVD. This method exploited the mutual

information theory in two ways:

• MI based on Probability

• MI based on Distance metric.
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Later, SVD in its accelerated mode was used. The objective of using this method

is to decrease the dimensions of extracted feature space and ultimately improve

the classification process in the next step. Hence, there were no experiments may

be conducted to represent this stage but its robustness was tested in combination

with the classification stage.

Logically, using a similar and common algorithms such as PCA and SVD will

create a suitable environment for comparison. Therefore, PCA and SVD were

performed for the mentioned purpose.

6. Applying a simplified mode of RNN which is a modern approach. In order to

examine the performance of the classification with and without MI+SVD, there

were three experiments. These are:

• (a) (P-based MI + SVD) + Simplified RNN

• (b) (D-based MI + SVD) + Simplified RNN

• (c) All features space + Simplified RNN

In addition, there were four experiments to test the quality of using MI+SVD in

comparison with PCA and SVD:

• (d) PCA + Simplified RNN , using k=13 and k=26.

• (e) SVD + Simplified RNN , using k=13 and k=26.

Furthermore, two other classifiers, MLP and RBF-SVM, were used to find the best

classification performance.There were 14 experiments to cover all the scenarios.

• (f) (P-based MI + SVD) + MLP

• (g) (D-based MI + SVD) + MLP

• (h) All features space + MLP

• (i) PCA + MLP , using k=13 and k=26.

• (j) SVD + MLP , using k=13 and k=26.

• (k) (P-based MI + SVD) + RBF-SVM

• (l) (D-based MI + SVD) + RBF-SVM

• (m) All features space + RBF-SVM

• (n) PCA + RBF-SVM , using k=13 and k=26.

• (o) SVD + RBF-SVM , using k=13 and k=26.

Totally, 25 experiments were conducted by this study. The obtained results by using

the proposed system, from all the experiments mentioned above, were evaluated on

the basis of three criteria. These are:
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i. A comparison with the entire feature space using neither selection

feature nor dimension reduction methods; stage six exp.(c), (h), and

(m).

ii. A comparison with the SVD and PCA of two different values of k; stage

6 exp.(d), (e), (i), (j), (n), and (o).

iii. A comparison with some researches in the same field of study, as found

in Table 4.10.

4.2 Result of Pre-processing Stage

The result obtained by the proposed pre-processing is shown in Fig.4.1. This result

is of two images selected randomly from the data set as an example. The intensity

adjustment can be shown in Fig.4.2.

4.3 Result of Segmentation Stage

The result of the segmentation process by using LDI-Means algorithm is shown in Fig.

4.3, this result is of two images selected randomly from the dataset as an example.

The result of the segmentation process by using K-means clustering algorithm is shown

in Fig.4.4, this result is of same two images. It is necessary to mention that with the

help of one of the open annotation tools; named Labelme, 60 images from the data

set were hand-labeled by experts, and those images were stored in separate file. In

order to find the usefulness of the proposed technique, the obtained hand-labeled

images are considered for comparison with the segmented tumor images as ground

truth annotation.

From Fig.4.4, the brain tumor was clustered into Three clusters by using LDI-Means

and the last cluster represents the tumor binary image in both images. For the same

images, Fig.4.4 shows five clusters by using K-means. Definitely, the most important

cluster is the tumor cluster. The tumor cluster by using K-means appeared in the

second cluster for the first image whereas it appeared in the fifth cluster for the second

image.

By using LDI-Means, the tumor image can be easily seen in the third cluster which

is the last one. While the tumor image, by using K-means can be seen in any cluster.

Here, in the case of using K-means, it is important for users to manually select the brain

image cluster to be separately stored which will take a lot of time and effort whereas

in the case of LDI-Means, the segmented tumor was obtained in the last cluster for all

images in the data set. Therefore, specifying the brain tumor image was performed

automatically with no need to make selection by a user.
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Figure 4.1 The steps of pre-processing.
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Figure 4.2 Image contrast adjustment.

Figure 4.3 Clusters as a result of using LDI-Means algorithm.
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Figure 4.4 Clusters as a result of using standard K-means algorithm.
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Furthermore, K-means did not offer a sufficient segmentation result when the number

of clusters was set to be less than five clusters. In contrast LDI-Means worked properly

even if the number of clusters was less than five. Number of cluster is a significant

factor in clustering process. It is directly proportional to computational time, e.g. The

processing time increases as the number of cluster increases [53].
The comparative analysis of the effectiveness of both the LDI-Means and the standard

K-Means algorithms is shown in Fig.4.5 in terms of similarity with the ground

truth, Fig.4.6 in terms of accuracy, specificity and sensitivity, and Fig.4.7 in terms

of processing time. Fig.4.5 shows the tumor image which was obtained by using

LDI-Means tends to be more similar to its ground truth (hand-labeled image) than

the tumor image resulting from K-means algorithm. It must be noted that all steps of

the pre-processing stage were applied to images before clustering process, either by

LDI-Means or by K-means alike, for the comparison to be fair.

In addition to Fig.4.6 which shows the average value of accuracy, specificity and

sensitivity for all the images in data set graphically, there is Table 4.1 which shows

the values numerically that were calculated by using the following equations:

Average Accurac y =

∑N
n=1 Accurac y(n)

N
(4.1)

Average Speci f ici t y =

∑N
n=1 Speci f ici t y(n)

N
(4.2)

Average Sensi t ivi t y =

∑N
n=1 Sensi t ivi t y(n)

N
(4.3)

where n = 1, 2, ..., N (N is the number of images in the data set to be clustered) and

Accurac y(n), Speci f ici t y(n), and Sensi t ivi t y(n) are the accurac y , speci f ici t y

and sensi t ivi t y for image n, respectively. The mathematical equations of accuracy,

specificity and sensitivity can be found in section 3.4. But here TP, FP, TN and FN are

a little bit different according to the segmentation process. These are their meaning:

• TP (True Positive) indicates the pixel of tumor in the ground truth occurs in the

obtained image by clustering as a tumor pixel.

• FP (False Positive) indicates the pixel of non-tumor in the ground truth occurs

in the obtained image by clustering as tumor pixel.

• TN (True Negative) indicates the pixel of non-tumor in the ground truth occurs

in the obtained image by clustering as non-tumor.
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• FN (False Negative) indicates the pixel of tumor in the ground truth occurs in

the obtained image by clustering as non-tumor.

Generally, using a similarity measure between the image of segmented tumor and the

hand labeled ground truth is widely used in many published studies such as the Dice

coefficient (DC) which can be calculated by as follow:

DC =
2(X ∩ Y )

X + Y
(4.4)

where, X and Y are the obtained tumor image by using the segmentation and the

corresponding ground truth image, respectively. The value of DC has to be 1 for a

perfect segmentation [34]. It was found that the DC value for all the segmented

images by LDI-Means was 0.96 as shown in Table 4.1.

Table 4.1 The performance of clustering process by using K-means and LDI-Means.

Parameters K-means LDI-Means

Accuracy 91.65 % 99.02 %

Specificity 94.71 % 99.39 %

Sensitivity 65.44 % 82.85 %

DC ≥ 0.87 ≥ 0.96

By using LDI-Means, It was found that the required segmentation can be obtained in

less time than using standard K-means. The computational time can be defined as the

processing time that required to obtain the tumor images from all the input data set. It

was computed by seconds. Time used for comparison was calculated by using average

as below:

T =

∑

t(n)
N

(4.5)

where, T is the average time, t(n) is the required time to complete the clustering

process of image (n), N is the number of images in data set to be clustered, and

n= 1,2, ..., N .

From Fig.4.7, the average time to complete clustering by LDI-Means for one image is

about 1.5 seconds whereas by using K-means, it is about 18.9 seconds.
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Figure 4.5 The efficiency of tumor segmentation by using LDI-Means and ordinary
K-Means algorithm for only two images of the data set as an example.

Figure 4.6 The clustering performance by using LDI-Means and ordinary K-Means
algorithm.
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Figure 4.7 The computational time of LDI-Means and the ordinary K-Means
algorithm.

In conclusion, K-means algorithm selects K objects randomly from population and sets

them as the initial centers and because of this randomization, it mostly will not be able

to give a stable and true clustering. On the contrary the LDI-Means algorithm proves

its ability to produce very stable and precise clusters. LDI-Means offers an efficient

way for assigning pixels to the number of specific clusters in very short time. It can

give a better accuracy and shorter computational time than K-means algorithm.

4.4 Result of Tumor Localization Stage

The result of tumor localization is shown in Fig.4.8, this result is for only two images

in data set as an example. Also, this stage contained some calculations to find the ratio

of tumor size in respect to whole brain and the metric size of the tumor as shown in

Fig.4.9 and Fig. 4.10.

Depending on some functions such as edge detection and shape factor analysis in

MATLAB, a boundary box is drawn around the tumor in the original image and then

to be cropped as shown in Fig.4.9, the tumor image. The cropped tumor images were

stored in separated file to be used in the feature extraction stage. From the Fig.4.9,

the tumor to all brain tissues ratio can be obtained. This ratio could give indication

about how far the tumor has spread within the brain tissues.

It is very appropriate to compare the outcome of the proposed method with the

outcome of standard K-means and watershed since they are frequently used for

segmentation, for testing the effectiveness of LDI-Means. Fig.4.10 presents the value

of tumor metric size by using LDI-Means, K-means, and watershed segmentation
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Figure 4.8 The brain tumor position (x, y) for two images in data set.

Figure 4.9 The tumor to brain ratio and the tumor image for one image in data set.
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Figure 4.10 Tumor metric size as a result of using LDI-Means, standard K-Means and
watershed algorithms.

algorithms. From Fig.4.10, it was found that the value of tumor metric size using the

LDI-Means was closer to the value of tumor metric size calculated from the ground

truth, than the values of the other two algorithms.

4.5 Result of using MI+SVD

This study proposes using MI+SVD to improve the performance of the classifier by

finding the most meaningful features. Here, the MI is used to rerank the extracted

features. Later the new sorted features will be the input matrix of SVD and according

to the values of MI a series of calculations will take their way and end by allowing

SVD to select the robust K (number of the required dimension). As mention before,

the mutual information was performed based on two different values; probability

[93] and distance metric [96].

1. Using P-based MI+SVD

The result of new ranking features according to P-based MI+SVD is shown in

Table 4.2.

2. Using D-based MI+SVD
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Table 4.2 New sorting of features according to P-based MI + SVD

Feature Original Feature Name Ranking
No. Feature Score

1 11 Mean of the entropy 0.519892
2 16 Standard deviation of the contrast 0.507263
3 40 Standard deviation of the inverse difference normalized 0.506322
4 14 Standard deviation of the correlation 0.503251
5 29 Mean of the maximum probability 0.492930
6 19 Mean of the homogeneity 0.481151
7 36 Standard deviation of the sum variance 0.474483
8 21 Mean of the dissimilarity 0.430674
9 39 Mean of the inverse difference normalized 0.424282
10 34 Standard deviation of the sum entropy 0.420824
11 20 Standard deviation of the homogeneity 0.417607

The result of new ranking features according to D-based MI+SVD is shown in

Table 4.3.

Depending on Table 4.2, P-based MI+SVD algorithm was able to determined 11

features and considered them as the best features that could represent the inputs more

accurately than other features. While Table 4.3 shows 13 features was selected by

using D-based MI+SVD and considered them as the best features that could represent

input more accurately than other features.

In Tables 4.2 and 4.3, it was found some differences in result due to using two

values of MI; probability and distance metric. These differences can be interpreted

as the superiority of the second algorithm (D-based MI+SVD) over the first (P-based

MI+SVD). Fundamentally, this superiority would be because the first algorithm, which

is the standard measure of MI, only takes the intensity values of population into its

account and that leads to lack of concern on any spatial information which might be

occurred in the individual images. The second algorithm pays more attention to the

spatial information as it originally depends on the distance.

4.6 Result of Classification

This study presents a novel algorithm to improving the classifier performance and

proposes using an new network structure; named simplified RNN. Hence, to achieve

a fair comparative analysis, this study used two traditional classifiers (MLP and SVM)

in addition to the proposed classifier.

71



Table 4.3 New sorting of features according to D-based MI + SVD

Feature Original Feature Name Ranking
No. Feature Score

1 14 Standard deviation of the correlation 0.155009
2 16 Standard deviation of the contrast 0.155009
3 22 Standard deviation of the dissimilarity 0.152422
4 11 Mean of the entropy 0.150504
5 40 Standard deviation of the inverse difference normalized 0.146310
6 29 Mean of the homogeneity 0.144260
7 38 Mean of the difference entropy 0.143850
8 33 Mean of the sum entropy 0.140517
9 39 Mean of the inverse difference normalized 0.139570
10 36 Standard deviation of the sum variance 0.137944
11 20 Standard deviation of the homogeneity 0.134419
12 21 Mean of the dissimilarity 0.132471
13 34 Standard deviation of the sum entropy 0.130517

1. Using MLP.

The classification accuracy in both training and testing phases is shown in Table

4.4 and the other evaluating parameters values can be seen in Table 4.5.

2. Using SVM.

The classification accuracy in both training and testing phases is shown in Table

4.6. The other evaluating parameters values can be seen in Table 4.7.

3. Using simplified RNN.

The classification accuracy in both training and testing phases is shown in Table

4.8. The other evaluating parameters values can be seen in Table 4.9.

In Table 4.4, The first two rows show the classification accuracy using both versions

of MI+SVD; P-based MI+SVD and D-based MI+SVD, with MLP which achieved

88.23% and 89.71% on the training set, and 90.03% and 90.80% on the testing

set respectively. While the third row shows the classification accuracy of MLP

without using any dimension reduction methods which was 58.72% and 61.60% in

both phases respectively. Based on the values in the first three rows in the table,

it was found that MI+SVD succeed to improve the classification accuracy of MLP.

The last four rows show the accuracy of MLP combined with PCA and SVD in two

different values of k for each which was selected manually. According to the 13

features obtained by using MI+SVD, it was decided to select K=13 to be the required

reduction for PCA and SVD. PCA achieved an accuracy of 78.99% on the training
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Table 4.4 The Classification accuracy by using MLP in both training and testing
phases.

Approach Training (%) Testing (%) No. of Features

( P-based MI + SVD ) + MLP 88.23 90.03 11

( D-based MI + SVD ) + MLP 89.71 90.80 13

All features + MLP 58.72 61.60 40

PCA + MLP 78.99 79.95 13
69.07 70.82 26

SVD + MLP 76.82 78.20 13
67.04 67.84 26

set and 79.95% on the testing set, whereas SVD achieved an accuracy of 76.82%

on the training set and 78.20% on the testing set. Moreover, in terms of measuring

the performance of PCA and SVD, different numbers of features were used. It was

selected K=26; double of 13. For PCA, when using 26 features, the accuracy values

were 69.07% and 70.82% on training and testing respectively; whereas, they were

67.04% and 67.84% on training and testing respectively, for SVD. By using PCA

and SVD, the classification accuracy has increased in comparison with the value of

using the classifier without any dimension reduction method. But The increment in

accuracy, when using MI+SVD, was much higher than the increment that done due

to using PCA or SVD and that confirmed the efficiency of MI+SVD. It was also found

that D-based MI+SVD was better than P-MI+SVD in improving MLP.

Furthermore in Table 4.6, the first two rows show the classification accuracy using

both versions of MI+SVD; P-based MI+SVD and D-based MI+SVD, with RBF-SVM

which achieved 89.54% and 91.04% on the training set, and 91.02% and 92.21% on

the testing set, respectively. While the third row shows the classification accuracy of

MLP without using any dimension reduction methods which was 72.87% and 75.66%

in both phases, respectively. Once again, based on the values in the first three rows in

the table, it was found that MI+SVD succeed to improve the classification accuracy of
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Table 4.5 Classification performance of MLP in both training and testing phases.

Approach Criteria Training (%) Testing (%)

(P-based MI + SVD) Sensitivity 82.35 85.03
+ Specificity 90.19 93.51

MLP Precision 82.60 85.56
Error rate 0.110 0.099

(D-based MI + SVD) Sensitivity 85.13 85.92
+ Specificity 94.34 95.01

MLP Precision 86.03 88.32
Error rate 0.110 0.098

All features Sensitivity 73.22 74.62
+ Specificity 69.44 71.10

MLP Precision 69.91 70.05
Error rate 0.134 0.129

PCA Sensitivity 81.02 81.71
+ Specificity 80.16 80.92

MLP Precision 79.96 80.23
Error rate 0.122 0.120

SVD Sensitivity 80.34 80.82
+ Specificity 80.00 80.78

MLP Precision 78.10 79.23
Error rate 0.122 0.121

RBF-SVM. The last four rows show the accuracy of RBF-SVM combined with PCA and

SVD in two different values of k for each which was selected manually. According

to the 13 features obtained by using MI+SVD, it was decided to select K=13 to be

the required reduction for PCA and SVD. PCA achieved an accuracy of 80.78% on

the training set and 81.00% on the testing set, whereas SVD achieved an accuracy

of 77.24% on the training set and 80.10% on the testing set. Moreover, in terms of

measuring the performance of PCA and SVD, different numbers of features were used.

It was selected K=26; double of 13. For PCA, when using 26 features, the accuracy

values were 73.23% and 74.23% on training and testing, respectively. Whereas, they
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Table 4.6 The Classification accuracy by using SVM in both training and testing
phases.

Approach Training (%) Testing (%) No. of Features

(P-based MI + SVD ) + SVM 89.54 91.02 11

(D-based MI + SVD ) + SVM 91.40 92.21 13

All features + SVM 72.87 75.66 40

PCA + SVM 80.78 81.00 13
73.23 74.23 26

SVD + SVM 77.24 80.10 13
70.67 71.97 26

were 70.67% and 71.97% on training and testing, respectively, for SVD. By using PCA

and SVD, the classification accuracy has increased in comparison with the value of

using the classifier without any dimension reduction method. But the increment in

accuracy, when using MI+SVD, was much higher than the increment that done due

to using PCA or SVD and that confirmed the efficiency of MI+SVD. It was also found

that D-based MI+SVD was better than P-MI+SVD in improving RBF-SVM.

From Table 4.8, it was found, for the third time, the effectiveness of MI+SVD in

improving the accuracy of the third classifier. By making a comparison between

the first two rows, which represent using MI+SVD, with the third row of the same

table, which represents using simplified RNN with all the extracted features. Where

MI+SVD achieved 91.03% and 92.69% on the training set, and 93.10% and 94.91%

on the testing set, respectively. Whereas the classification accuracy of simplified RNN

without using any dimension reduction methods was 77.58% and 79.20% in both

phases, respectively. The last four rows show the accuracy of simplified RNN combined

with PCA and SVD in two different values of k for each which was selected manually.

According to the 13 features obtained by using MI+SVD, it was decided to select K =
13 to be the required reduction for PCA and SVD. PCA achieved an accuracy of 86.21%

on the training set and 88.02% on the testing set, whereas SVD achieved an accuracy
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Table 4.7 Classification performance of SVM in both training and testing phases.

Approach Criteria Training (%) Testing (%)

(P-based MI + SVD) Sensitivity 84.31 86.52
+ Specificity 91.66 94.26

SVM Precision 84.39 87.07
Error rate 0.101 0.089

(D-based MI + SVD) Sensitivity 85.61 87.01
+ Specificity 92.41 94.87

SVM Precision 86.21 87.89
Error rate 0.101 0.089

All features Sensitivity 74.31 75.25
+ Specificity 73.42 75.30

SVM Precision 69.01 69.92
Error rate 0.121 0.116

PCA Sensitivity 84.02 84.63
+ Specificity 83.16 83.64

SVM Precision 82.33 84.74
Error rate 0.113 0.111

SVD Sensitivity 82.86 81.14
+ Specificity 83.21 83.92

SVM Precision 82.34 83.87
Error rate 0.114 0.111

of 85.89% on the training set and 87.71% on the testing set. Moreover, in terms of

measuring the performance of PCA and SVD, different numbers of features were used.

It was selected K=26; double of 13. For PCA, when using 26 features, the accuracy

values were 75.22% and 76.17% on training and testing, respectively. Whereas, they

were 72.90% and 73.85% on training and testing, respectively, for SVD. By using PCA

and SVD, the classification accuracy has increased in comparison with the value of

using the classifier without any dimension reduction method. But The increment in

accuracy, when using MI+SVD, was much higher than the increment that done due

to using PCA or SVD and that confirmed the efficiency of MI+SVD. It was also found
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Table 4.8 The Classification accuracy by using simplified RNN in both training and
testing phases.

Method Training (%) Testing (%) No. of Features

(P-based MI + SVD) + Simplified RNN 91.0 93.1 11

(D-based MI + SVD) + Simplified RNN 92.69 94.91 13

All features + Simplified RNN 77.58 79.20 40

PCA + Simplified RNN 86.21 88.02 13
75.22 76.17 26

SVD + Simplified RNN 85.89 87.71 13
72.90 73.85 26

that D-based MI+SVD was better than P-based MI+SVD in improving simplified RNN.

In addition, It should be mentioned that the classification accuracy of the third

classifier were the highest among all the classifiers used in this study. Thus, using

simplified RNN adds an extra success to the entire proposed system.

In terms of the other evaluating parameters; sensitivity, specificity, precision, and error

rate, Tables 4.5, 4.7, and 4.9 show that the values of the three classifiers used in this

study with MI+SVD were better than the values without MI+SVD. It was also found

that the values of D-based MI+SVD with the simplified RNN were the best among all

the mentioned schemes.

Besides that, in Fig.4.11 the D-based MI + SVD + simplified RNN approach (blue loss

function line) achieved the lowest score during the training phase within 500 epochs

compared with the other dimensionality reduction approaches PCA and SVD, in grey

and orange, respectively, as well as in comparison with the all feature space, in purple.

In Fig.4.12 shows the error curve of training set versus the error curve of test set. It

is clear from Fig.4.12 the perfect match between training and validation sets during

the cross-validation of MI+SVD in comparison with PCA and SVD.

In order to assess the proposed system (D-based MI + SVD + Simplified RNN) ability
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Table 4.9 Classification performance of simplified RNN in both training and testing
phases.

Method Criteria Training (%) Testing (%)

(P-based MI + SVD) Sensitivity 95.61 95.93
+ Specificity 94.07 94.61

Simplified RNN Precision 87.40 88.35
Error rate 0.081 0.079

(D-based MI + SVD) Sensitivity 96.69 96.89
+ Specificity 96.70 96.37

Simplified RNN Precision 89.84 91.36
Error rate 0.081 0.078

All features Sensitivity 76.62 77.70
+ Specificity 77.12 78.17

Simplified RNN Precision 71.79 72.75
Error rate 0.121 0.117

PCA Sensitivity 86.45 86.53
+ Specificity 86.46 86.54

Simplified RNN Precision 83.56 85.33
Error rate 0.109 0.103

SVD Sensitivity 86.44 86.42
+ Specificity 86.34 86. 62

Simplified RNN Precision 83.25 85.02
Error rate 0.109 0.104

to distinguish among classes, a ROC curve for the three classes was plotted as shown

in Fig. 4.13.

In summary, from all the obtained results, it is clear that the proposed system (D-based

MI+SVD with the simplified RNN) has the highest classification accuracy compared

to using the other reduction algorithms, SVD and PCA, for two values of dimensions.

It is expected that for the standard SVD and PCA to have a low classification accuracy

because they do not take into consideration the relations between the class labels
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Figure 4.11 Loss function scores of the simplified RNN classification training phase
by using all features, D-based MI+SVD, PCA and SVD.

and the features. Actually, this is what inspired this study to consider the MI+SVD

algorithm, which includes two steps: ranking the extracted features based on MI

and using accelerating SVD. Using MI+SVD reduced the feature space and improved

the classifiers performance in relatively less time. Practically, it was found that the

decreasing number of inputs of the classifier causes an increase in the speed of training

phase compared to using all of the extracted features.

4.7 Comparison to Other State-of-the-Art Techniques

As can be seen from Table 4.10, the comparison with other published studies in

same field of study. According to the comparison, it was found that the classification

performance of the proposed system is suitable for providing a precise estimation of

brain tumor grade.
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Figure 4.12 The error curve of training vs validation sets of (a)D-based MI+SVD,
(b)P-based MI+SVD, (c)PCA, and (d)SVD.

Figure 4.13 The ROC curve of three classes by using simplified RNN.
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Table 4.10 Comparison between the results of the proposed system and the results of other published studies.

Study No. of Method Data set / Modality Specificity Sensitivity Accuracy
classes (%) (%) (%)

Zollner et al. 2 SVM + PCA Private data / T1-W and T2-W 84.0 87.0 85.0
[20]

E.I. Zacharaki et al. 2 SVM-RFE + SVM Private data set / Multi-modalities 95.5 84.6 87.8
[19]

T. Gupta et al. DWT + PCA + CART FORTIS Memorial Research 88 80 84.0
[82] 2 DWT + PCA + Random Forest Institute / FLAIR 96 80 88.0

DWT + PCA + KNN 80 80 80.0
DWT + PCA + Linear SVM 96 80 88.0

K.L. Hsieh et al. 2 Logistic Regression TCIA / T1-W 90 82 88.0
[22]

(Dice factor)
M. Soltaninejad et al. 3 Superpixel mRMR + SVM MICCAI BRATS 2012 83.7 82.7 0.83

[5] Superpixel mRMR + ERT / FLAIR 89.0 88.0 0.88

Khawaldeh et al. 3 ConvNets TCIA / FLAIR 91.7 92.0 91.1
[21]

J. Sachdeva et al. 6 CBAC + PCA + ANN PGIMER / T1-W N/A N/A 91.0
[15]

G. Yang et al. 2 D-SEG + SVM Private data set / Multi-modalities 90 94.4 91.6
[109]

T.L. Jones et al. 5 SVM + D-SEG spectra Private data set / Multi-modalities > 97 > 90 94.7
[18]

LDI-Means + (P-based MI + SVD) + MLP 93.5 85.0 90.0
LDI-Means + (P-based MI + SVD) + RBF-SVM 94.3 87.0 91.0

Proposed System 3 LDI-Means + (P-based MI + SVD )+ Simplified RNN TCIA / FLAIR 94.6 95.9 93.1
LDI-Means + (D-based MI + SVD) + MLP 93.3 86.5 90.8

LDI-Means + (D-based MI + SVD) + RBF-SVM 94.8 87.4 92.2
LDI-Means + (D-based MI + SVD) + Simplified RNN 96.3 96.8 94.9
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4.8 System Validation by using Real Data Set

The complexity of brain issues in MRIs made automated medical decision making

systems a difficult challenge. The existing methods are often limited to research

oriented organizations because they are not suitable for clinical use. Most of them

are designed to fit specific imaging modalities, or specific tumor types and tested on

a relative small set of data or even artificial data set as well as they take a long time

to implement.

Any design of automated MRI brain tumor segmentation / grading system should

consider the actual problems and be appropriate for regular use by the doctors. The

data set which used for training such systems should handle as many tumor grades

and imaging protocols as possible. In this field of study, The challenge is still for

state-of-the-art to fill the gap between research oriented software and the application

of real-world routine.

Proceeding from this principle, this study used a real data set taken from Iraqi MRI

testing center to check the validity of the proposed system. Al-Kadhimain Medical

city is one of the public hospitals in Baghdad / Iraq. Its capacity is approximately

812 beds. The MRI testing center of the hospital receives every day more than 100

cases for spine test, abdomen test and brain test, see Fig.4.14. In order to perform

the necessary examinations it is used 3 scanners of different spacial resolution; Philips

GY ROSCAN of 1.5 Tesla, Siemens AVAN TO 1.5 Tesla, and Philips ACHI EVA 3.0 Tesla.

The collected data are 322 images (Axial plane). 149 images of 60 normal patient

and 173 images of 87 abnormal patients. The slices are mixed between FLAIR and

T2-weighted, RGB, and of different sizes.

By applying the proposed system using this real data set, the LDI-Means clustering

algorithm faced some failure modes. The percentage of failure to successful cases

is 8%. That means from 173 images of abnormal brain, there are 14 images didn’t

give the segmented lesion properly. This percentage is represented a little bit high in

medical imaging processing.

In the following, some factors that affected on the obtained results:

1. The effect of the variations in intensity of each image because of the variation

in the acquisition formats, FLAIR and T2-W.

2. The effect of noises which may be occurred because of patient movement, such

as strong breathing due to fear or nervousness as well as due to some settings

of the device itself. The noises or interference produced by raido-frequency

signal occupy a predominant position in MRIs. Some MRIs need bias-field
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Figure 4.14 The Iraqi center for MRI studies and researches.
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Figure 4.15 Clusters by using LDI-Means

Figure 4.16 Tumor location in term of x and y.

correction. Bias-field is an intensity inhomogeneity caused by physical effects

during recording.

3. The effect of the difference in sizes because the images were collected from

different MRI scanners. Also, these images were acquired by more than one

operator. In a study of Foster et al. [70], the experimental results showed some

differences when using images acquired by two different operators.

The example of successful clustering result is shown in Fig.4.15 and the successful

tumor position identification is shown in Fig.4.16. The example of failure clustering

result is shown in Fig.4.17 and the unsuccessful tumor position identification is shown

in Fig.4.18.

It was carefully examined LDI-Means algorithm’s failure modes. While most cases are

segmented with almost 98.72% accuracy, failure modes will need to be solved before

the system is ready for the clinic, which is the objective of this study. To that end,
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Figure 4.17 Unsatisfied clustering by using LDI-Means.

Figure 4.18 The wrong identification for the tumor centre in term of x and y for two
samples.
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Table 4.11 The classification accuracy of the proposed method by using real data set

Approach Accuracy (%) No. of
Training Testing Features

(P-based MI + SVD) + Simplified RNN 93.86 95.20 12

(D-based MI + SVD) + Simplified RNN 94.75 95.83 15

All features + Simplified RNN 82.88 84.33 40

there are some proposed potential ways to repair them. The post-processing step could

be added to obtain better result. It is an additional step used to improve clustering

result for the failure modes. Here, The post-processing involved some morphological

operations to remove the non-circular area which were incorrectly labeled as tumor.

The morphological operation enhanced the segmentation by removing distortion and

to filter very small non-circular regions. These steps came after detecting the object

by using LDI-Means and it will comprises filling the holes, by opening and closing.

After the post-processing step the clustering of the 14 images was corrected as shown

in Fig.4.19.

The classification process provided a satisfied results by using the proposed system

based on the real data as shown in Table 4.11.

For the second time, the proposed system; the LDI-Means + (MI+SVD) + Simplified

RNN has achieved remarkable success when using a real data set. Based on the

feature values of real data set, D-based MI+SVD was able to pick up automatically

fifteen features from the entire feature space extracted throughout the feature

extraction stage of the proposed system. These 15 features was considered the most

significant features. Whereas P-based MI+SVD selected only 12 features to be the

most meaningful features.

It was found that the (D-based MI+SVD) + Simplified RNN with accuracy of 95.83%

achieved more satisfied result than (P-based MI+SVD) + Simplified RNN with

accuracy of 95.20%. The D-based MI+SVD followed the same direction as it had

previously taken and remained superior to P-based MI+SVD for the classification

accuracy improvement purpose as shown in Fig.4.20.
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Figure 4.19 The successful clustering for obtain the tumor image
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Figure 4.20 The graphical description of the classification accuracy for the proposed
system by using real data set.

4.9 Summary

In view of all the experimental results, several findings are summarized:

1. Using LDI-Means to extract the tumor image in the proposed system provided

a precise segmented area to be stored in a separated file for to use in the next

stage. LDI-Means is very stable algorithm and can automatically perform the

segmentation in less number of clusters and less time with higher accuracy. It is

simple and can be implemented easily.

2. Using LDI-Means can produce useful information about the tumors such as

tumor to brain ratio, and tumor metric size. Tumor size and tumor to

brain tissues ratio could give good indication about how far the tumor has

spread within the brain tissues. It proves its effectiveness compared to two

segmentation methods; K-means and watershed algorithms.

3. Using MI in combination with SVD creates an impressive way to decrease the

features space by selecting the robust features that could offer an excellent match

to the inputs more than others. It is a novel approach which has not been

mentioned before this study.

4. Using MI+SVD to improve the classification performance in the proposed system

provided a significant estimation of the brain tumor grades. It is not complex

algorithm and easy to implement.
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5. Using MI+SVD in its two version; P-based MI+SVD and D-based MI+SVD,

offered better result than two common methods used for the same purpose;

PCA and SVD. It is expected that for the standard SVD and PCA to have a low

classification accuracy because they do not take into consideration the relations

between the class labels and the features in contrast to MI+SVD.

6. D-based MI+SVD yielded slightly better result than P-based MI+SVD and that

because MI based on probability, depends only on the intensity values of

population without any spatial information which might be occurred in the

individual images whereas the MI based on distance metric depends on the

distance between the elements in population.

7. Using simplified RNN to classify the brain images into three classes in the

proposed system provided a reliable model that can make a useful medical

decision making system.

8. simplified RNN is very flexible and understandable network in contrary to many

deep learning networks used in the filed of interest which full of sophistication

and act as a black box.

9. As seen from Table 4.10 the proposed system occupies a superior position

compared to current methods in published studies.
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5
RESULTS AND DISCUSSION

5.1 Conclusions

In recent days, tumor detection, segmentation and classification methods have been

a widely investigated field. While several algorithms have been developed, this field

of study remains open to further studies. The essential objective of this study is to

build an automated system can identify and classify grades of brain gliomas. This

study achieved this goal by proposing an intelligent system which has six stages:

image enhancement, segmentation, tumor localization, feature extraction, MI+SVD

algorithm employment, and classification. In the first stage, the image noise is

removed, non-brain tissues are stripped, and the image is prepared appropriately for

the next stage. In both segmentation and tumor localization stages, the new method

named LDI-Means is used to segment the ROIs and to obtain the tumor position. In

the feature extraction stage, intensity and texture based features are extracted. In the

fourth stage, a novel algorithm, MI+SVD, is used to find a small subset of features that

have a maximum information about the class label. In the classification stage, MLP,

RBF-SVM, and simplified RNN are implemented.

The proposed system combined both unsupervised and supervised learning methods.

It can construct a suitable medical decision making system for decreasing the errors

in diagnoses and speeding up diagnostic procedures. it may avoid the surgical

interventions as well.

K-means algorithm is a common clustering method used for segmentation process.

The ordinary K-means algorithm selects randomly K points from the population and

assumes these points are the initial centers. Definitely, this selection will not give a

stable and true clusters each time. Conversely, the proposed LDI-Means algorithm

showed its ability to generate a very stable and accurate clusters. This study offers

a successful way for grouping pixels in a short time to the number of clusters.

The experimental findings confirmed that LDI-Means algorithm can select specific

initial centroids and provide a better accuracy in shorter computational time than the

K-means algorithm. Also, can give a better tumor metric size than ones that measured
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after using K-means and watershed algorithms.

This study presents a hybrid method of using MI+SVD to enhance the classification

performance. Automatically, MI+SVD technique identify the most meaningful

features, resulting in excellent recognition of the grade of the tumors and saved time.

In addition, adding a shortcut connections to built a new network structure; simplified

RNN, and later to used it as a classifier permitted the classification process in the

proposed system to be more convenient. This study achieves many benefits, such as:

1. Developing a medical decision making system can rapidly provide a precise

suggestions about brain glioma grades to radiologists based on preoperative

clinical examinations.

2. Offering a understandable and easy to implement methods instead of using one

of deep learning networks which is a complex and ambiguous process. Almost,

its complexity is because of the itemized patterns of how information can flow

within the model.

3. Providing a an effective automated tumor grading agency that is able to detect

and classify brain tumor grades based on as little data as possible. This study

used only one MRI acquisition format (FLAIR). Most of the existing algorithms

are used depend on information from four different sequences of MRI and

frequently, this is not easy to provide.

4. Removing the noisy and unreliable features. Practically, a high amount of

training data means more features may significantly slow down the learning

process and cause overfitting due to the redundant or irrelevant features

that confuse the learning algorithm. Thus using MI+SVD will improve the

classification accuracy, reduce the overfitting risk and speed up in training.

5. Lowering the computational costs due to reduced dimensionality in the model

training.

6. Improving the generalization ability of the classifiers by reducing the capacity

and achieving the early stopping.

7. Saving the time. There is no doubt that the automatically computational

segmented lesions could serve as a proper surrogate or even better to manual

delineations in term of time and precision.

8. Presenting a comparative experimental study of three segmentation algorithms

(K-means, watershed, and LDI-Means), three dimensionality reduction methods

(PCA, SVD, and MI+SVD) and 3 classification techniques (MLP, RBF-SVM, and

simplified RNN).
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9. Addressing an important overview of the existing methods in the task of brain

tumor segmentation and classification as seen in section 1.4 which contained

more than 25 published studies.

Generally, based on the satisfied results of this study, it is expected to expand it to be

able to identify tumors in other organs. If this study can be adapted to fit in different

medical fields, it will enable the early diagnosis of many types of diseases and prevents

the invasive operation, which can suffer from risks more than its benefits.

5.2 Main Contribution and Novelty

The combination of using LDI-Means, MI+SVD, and simplified RNN is the main novelty

which proposed by this study. This study includes multiple contributions, which are

summarized as follows:

• A new clustering method named LDI-Means (local difference in intensity -

means) clustering method is proposed to overcome the standard k-means

clustering limitation.

• A new algorithm named MI+SVD (mutual information + singular value

decomposition) is presented to find the robust features in order to improve the

classification process.

• A simplified version of RNN is offered to perform classification.

• Several tests are carried out to create a satisfied comparative analysis.

• Finally, a fully automated system is presented for detection, segmentation and

grading of the brain tumor.

In summary, a review of previous studies in the last ten years was addressed for

comparison purposes. Novel approaches were proposed for brain tumor segmentation

and grading. This study can assist the doctors, radiologists and surgeons to make a

right decision about diseases diagnosing in very short time and with high accuracy.

This study actively contributes to the development of medical decision making

systems.
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5.3 Limitations

The proposed system may face some limitations regarding to the segmentation and

the selected features. In this study, both LDI-Means and MI+SVD were managed

to perform harmoniously complementing each other by using the data set of brain

MRIs, But definitely the variety of other data sets may present different difficulties

and challenges. Additionally each organ within human body can show different tissue

intensities through imaging. Therefore, the proposed model in its current version

could be unsuitable for all data sets and will need some modification to suit the

nature of each data set. It is needed to use various data sets to cover different possible

scenarios in order to overcome these limitations in order to make the proposed system

comprehensive and wide-ranging and can help in many medical issues.

5.4 Future Perspectives

This study has some potential for future development. These possible future steps

includes:

1. Using T1-weighted or T2-weighted MR images or may be mixing more than one

acquisition format if available, where FLAIR-weighted is only used in this study

could enhance the proposed system accuracy.

2. Using different data sets from various imaging techniques and for different

organs could overcome the limitation of the proposed system and make it more

general for decision making in more than one medical issue.

3. Using fused images could improve the findings of the proposed system. These

images can be created by infusing images from different imaging modalities

using some special methods such as wavelet-based fusion image which utilizes

the complementary and redundant information from the Computed Tomography

(CT) image and Magnetic Resonance Imaging (MRI) images [110].

4. Using 3-D VOIs for evaluation, which could be more convincing.

5. Increasing the number of classes, which could provide more information on the

grades of glioma tumors.

6. Using another methods to extract features. There are many techniques used to

extract different types features from images such as local binary pattern (LBP),

histogram of gradient (HOG) etc. [28]. Furthermore, using global features in

addition to local features may increase the quality of the extracted features [22].
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7. Using different classifiers to improving the system efficiency. In the future,

the researchers can use selective classifier method combined by more than one

classifier with methods of feature selection [8].

8. Using deep learning neural networks, because in spite of some successes,

the applications of these neural network types remain relatively unexplored

effectively in the field of neuroimaging.
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