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A thesis submitted by Tahir COŞGUN in partial fulfillment of the requirements for the

degree of DOCTOR OF PHILOSOPHY is approved by the committee on 08.03.2022 in

Department of Mathematics, Program of Mathematics.

Prof. Dr. Murat SARI
Yildiz Technical University

Supervisor

Approved By the Examining Committee

Prof. Dr. Murat SARI, Supervisor

Yildiz Technical University
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Unstable Equilibria of Some Dynamical Systems

Tahir COŞGUN

Department of Mathematics

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Murat SARI

Although there are various numerical techniques to find the stable equilibria of a

dynamical system in scientific computing, no widely-used computational approach

has been encountered to discover the unstable equilibria of a system in the literature.

This thesis aims at presenting a new approach to uncover the equilibrium positions of

a dynamical system exhibiting a repelling nature. A newly developed algorithm called

the reversed fixed point iteration method (RFPIM) is presented to find the unstable

equilibrium positions of a nonlinear system. The current method is able to uncover the

behaviour of a nonlinear system near the unstable equilibria by preserving the realistic

features of the system without facing any conventional drawbacks. In this respect, it

is mathematically proven and numerically observed that the present approach has

various superiorities over the conventional approach.

Keywords: Unstable equilibrium, repelling fixed-points, dynamical systems,

advection-diffusion processes, inverse problems.
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ÖZET

Bazı Dinamik Sistemlerin Kararsız Dengeleri

Tahir COŞGUN

Matematik Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Murat SARI

Bilimsel hesaplamalarda doğrusal olmayan bir sistemin kararlı dengesini bulmak için

çeşitli sayısal teknikler olmasına rağmen, literatürde bir sistemin kararsız dengesini

keşfetmek için yaygın olarak kullanılan bir hesaplama yaklaşımına rastlanmamı̧stır.

Bu doktora tezi, itici bir davranı̧s sergileyen dinamik bir sistemin denge konumlarını

ortaya çıkarmak için yeni bir yaklaşım sunmayı amaçlamaktadır. Doğrusal olmayan

bir sistemin kararsız denge konumlarını bulmak için ters sabit nokta yineleme yöntemi

(RFPIM) adı verilen yeni geli̧stirilmi̧s bir algoritma sunulmuştur. Bir problemin

gerçek özelliklerini koruyan mevcut yöntem, herhangi bir geleneksel dezavantajla

karşılaşmadan, kararsız denge civarında doğrusal olmayan bir sistemin davranı̧sını

ortaya çıkarabilir. Bu açıdan mevcut yaklaşımın geleneksel yaklaşıma göre çeşitli

üstünlüklerinin olduğu matematiksel olarak ispatlanmı̧s ve bu durum sayısal olarak

da gözlemlenmi̧stir.

Anahtar Kelimeler: Kararsız denge, itici sabit noktalar, dinamik sistemler,

adveksiyon-difüzyon süreçleri, ters problemler.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

Solving a linear and/or nonlinear problem at the heart of science has been of great

importance for ages. Where possible, the solution of such systems has directly and

explicitly been derived. The solutions, acquired in such a manner, are so-called exact

or analytical solutions of the system. Under suitable assumptions, the existence of

solutions, and if it exists, the uniqueness of the solution to the problem could be

investigated further. Usually, linear problems possess a unique solution if the problem

is accompanied by acceptable initial and boundary conditions. It is not the case for the

nonlinear side of the coin in most cases. The number of solutions which a nonlinear

problem is still quite ambiguous for the scientific society. Moreover, there does not

exist in the literature a general way or method to handle the solution processes.

1.1 Literature Review

The literature includes a diversity of approaches and techniques depending on

the studied problem. In any case, numerical methods are needed to reach the

desired solutions due to the difficulties and impossibilities in the analytical solution

procedures, especially for more realistic problems. Moreover, the abundance of

techniques and approaches have been in question regarding the numerical methods.

However, most of the nonlinear systems still have not possessed an exact solution

procedure. Therefore, it is essential to study some numerical solution procedures for

nonlinear systems. In this context, Picard’s invention of the method of successive

approximations, in the pursuit of Liouville and Poincare, deserves a special care.

Brouwer [1] proved the fixed point theorem for continuous mappings in finite

dimensional spaces, and later on, Schauder [2] generalized the results of Brouwer

to infinite dimensional spaces. It is important to note that this was the first fixed-point

theorem for infinite dimensional spaces. Despite their extraordinary contributions,

both of them focused only on some existence results. Further generalizations of

Schauder’s fixed-point theorem was given by Tychonoff [3] and Ky Fan [4] by

extending the properties of the space of interest.
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Banach, among his contemporaries, can be regarded in a leading position because of

his great contribution to the fixed-point theory for contractive mappings. His famous

theorem [5] can be stated as follows:

Theorem 1.1 (Contraction Mapping Principle). Let (X ,∥.∥) be a Banach space, and U

be a subset of X , and let N : U → U be a contraction with Lipschitz constant λ. Then N

has a unique fixed-point ξ in U. Precisely, if x0 ∈ U then the sequence {xn}∞n=0 with

xn+1 = N(xn), n≥ 0

converges to ξ.

The reputation of Banach contraction mapping principle comes from that it provides

rigorous information about the existence, uniqueness and determination procedure of

the solution of the nonlinear system

N x = x . (1.1)

The Banach fixed-point theorem was generalized for non-expansive mappings

independently by Kirk [6] and Browder [7]. Many further generalizations of these

fundamental fixed-point theorems were studied in the literature such as in the

references [7–13].

In this context, it is considerable to note that the evolution and generalizations of the

fixed-point theory thrive upon two motivations: one is to change the nature of the

mapping, and the other is to expand the related structures or topological properties of

the space. Therefore, it is of great importance to study the nature or the characteristics

of a fixed-point locally by taking into account the global properties of the space.

To preserve the fluency of the subject, we are closing the discussion about the literature

for now. The literature will be discussed in more detail in the next chapter.

1.2 Objective of the Thesis

The numerical methods that have been discussed in the literature for centuries could

be categorized in a number of diversified ways. But, the current thesis focuses mainly

on a local numerical method, the fixed-point iteration method. So far, the researches

concentrate on the attracting equilibrium solutions of a system, and therefore, the

main objective of this study is to develop an approach, namely the reversed fixed point

iteration method (RFPIM), to uncover the equilibrium positions behaving a repelling
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nature.

Fixed-points of system (1.1), could be categorized as stable and unstable equilibrium

solutions. Although there exist further sub-classifications of these equilibria, in this

thesis, attracting fixed-points stand for asymptotically stable equilibria and repelling

fixed-points represent unstable equilibria. Hereby, the main objective of this thesis

emerges as finding the unstable equilibrium positions or fixed-points of repelling

nature. To achieve this goal a novel approach, the RFPIM, has been developed in

this thesis.

1.3 Original Contribution

The essence of this thesis could be clarified via an example problem in fluid dynamics

consisting of a sink and a source as in Figure 1.1. Assume a particle with negligible

mass suspended at the starting point, x0, in a pool with a source ui and a sink s j.

The release of the particle x0 will lead to its slide into the sink s3 with the flow. If

the positions of the particle are recorded step by step, each of the steps can then

be considered as a step of the conventional fixed-point iteration method (FPIM). It

is possible to accelerate the iteration by improving the FPIM, and of course, there

are plenty of such improvements in the literature succeeded so far. In the end, the

particle is going to meet inevitably with the sink, and hence, the position of the

sink will be located. On the other hand, source localization or identification is a

harder issue to handle. It requires more complicated observations via more advanced

equipment. At least, it is relatively tedious and exhausting to convey the particle

against the stream. This difficulty could be eliminated via the use of higher-order

numerical methods. Moreover, due to the inner structure of the fluid flow in the

pool, it will be difficult to decide the domain of dependence of the particle for a

particular position. Precisely, there could be several possible previous positions for

any intermediate location. Exactly, this is the case for most realistic problems.

Now at erst, some logical, reasonable and admissible restrictions should be imposed

on the current problem. First of all, the mathematical space of interest to be studied

should be determined. Although the ideas constructed in the thesis can be performed

in metric spaces, Banach spaces have been preferred to scrutinize since they are more

relevant for application purposes. In most realistic scientific problems, Banach spaces

include necessary and sufficient technical tools such as a distance function or norm,

sufficiently well-experienced and well-established concepts of derivative and integral.

Moreover, in some particular cases, Banach spaces could be equipped with an inner

product and turn into a Hilbert space as in the space of signals with finite energy,
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Figure 1.1 The numerical flow governed by the conventional fixed point iteration.

L2(a, b). Secondly, the problems of interest have been restricted to dynamic systems

in which time dependence is crucial. The reason why this limitation has been set is

the desire to examine more realistic problems.

1.4 Outline of the Thesis

Being equipped with enough technology, the current thesis reveals its findings as

follows: Chapter 3 provides main theoretical results including the construction of

the RFPIM and rigorous error bounds. Chapter 4 consists of implementations of the

RFPIM regarding various applications. The structure of the thesis has been prepared in

a harmony with the advance of the examined applications throughout the forthcoming

chapters so that the investigated applications have been getting more and more

sophisticated and realistic through the chapters. In this respect, the polynomial root

finding problem has been investigated, and it has been deduced that if the roots of the

polynomial are positive and distinct then necessarily the Picard iteration converges

to the least root, and if the roots are enumerated with respect to their magnitudes

then the roots of even indices are needed to be of repelling nature, i.e. they must be

unstable equilibria. The quantitative results indicate that the RFPIM is able to catch

these unstable roots while the conventional FPIM cannot.

In the next application, the repelling property of the boundary of the filled in the

Julia sets has been observed. Hence, the RFPIM has been implemented in complex

number field, C. Then, the applicability of the RFPIM has been shown for 2D and

3D root-finding problems. For a population dynamics model with a critical threshold,

it has been justified that the critical threshold is an unstable equilibrium position for
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admissible spatial increments, ∆x . Both the qualitative and quantitative indications

exhibit the effectiveness of the RFPIM towards to localization of this threshold.

In the same chapter, a nonlinear Fredholm integral equation of the second kind has

been debated. As expected, the mentioned problem possesses more than one solution,

and it has been seen that some of these solutions are unstable equilibria of the

corresponding integral operator. The RFPIM is viewed as highly capable of finding

these unstable equilibria.

The pendulum problem representing a nonlinear and highly oscillatory behaviour

has been discussed as well. In this respect, the RFPIM has been verified to succeed

in finding the unstable equilibrium position of the concerned fundamental control

problem. When closing this chapter, a 3D chaotic system has been examined. The

origin of R3 exhibits a resonating behaviour in this example. Accordingly, the

origin is shown to be an unstable equilibrium position, and as a result, the RFPIM

seems excellent to figure out this source-like behaviour. Thus far, the RFPIM has

been implemented on problems from various application areas including a system

of ordinary differential equations (ODEs).

In Chapter 5, the RFPIM has been implemented for a linear and unsteady

advection-diffusion process. The main aim of this chapter is to demonstrate the

applicability of the present method to solve a partial differential equation (PDE). In

this context, the RFPIM has been utilized via a hybrid approach that combines the

current method and the conventional finite difference schemes. The reversed nature

of the method has forced us to consider an inverse problem in advection-diffusion

processes, specifically the source identification or the initial data identification

problem. During the observations, whenever it is possible, the advection dominant

cases have been particularly focused on. This is exactly a challenge condition for

any advection-diffusion mechanisms. Although it is not encountered in everyday life

frequently, the movement of the atoms become too stagnant under extremely low

temperatures. Since the temperature of the space, 2.7 Kelvins, is just above the

absolute zero, -273.15 centigrade degrees or 0 Kelvin, the advection dominant cases

become severely important in space studies, and aeronautics as well.

When the inverse problems are concerned, the dependence on the initial data should

be taken into account inevitably. This consideration is crucial, particularly regarding

the numerical methods since it is important to know how any wrong measurement in

the initial data will affect the overall mechanism and the final time data.

Chapter 6, has been devoted to applying the mentioned ideas to a nonlinear PDE.

In this respect, Chapter 7 examines a more complicated class of partial differential
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equations, namely the singularly perturbed and generalized Burgers-Huxley and

Burgers-Fisher equations. In this chapter, a bunch of solitary wave solutions of the

mentioned equations have been derived for comparison purposes to test the current

method. In accordance with this generalization purpose, Chapter 8 illustrates the way

of handling the initial data identification problems in 2D coupled advection-diffusion

processes via the RFPIM.

When closing this section it is vitally important to note that not only the numerical

schemes or stencils have been reversed, but also physical processes are reversed

whenever it is needed during the implementation of the RFPIM. Thereby, throughout

this thesis, more than a numerical method, in fact an approach, based on the exploit

of inherent power or dynamics of the investigated problem, has been constructed.
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2
LITERATURE

A nonlinear system of the form (1.1) has usually more than one equilibrium solution

from the application viewpoint. These equilibria may be either stable or unstable.

Once the obtained equilibrium is stable, the Banach contraction mapping principle

provides a rigorous analysis about this equilibrium. Moreover, the mentioned

equilibrium solution can be found via the fixed-point iteration method. In the

meantime, there has not been a commonly adopted algorithm even though unstable

equilibrium solutions are encountered frequently in scientific problems.

In this respect, the reason and motivation of this thesis is to locate the unstable

fixed-points of an operator defined on Banach spaces, and the aim of this thesis is

to construct an approach regarding unstable equilibria of a mapping. It may be a

challenging task to find out an unstable equilibrium solution. Even for the fixed point

iteration in the space of real numbers, in the presence of more than one fixed-point,

the local convergence of the iteration was shown by Stepleman [14]. The following

theorem gives a test to decide whether the fixed-point iteration converges or diverges

around a fixed-point, that is to say, whether a fixed-point is stable or unstable.

Theorem 2.1. Let (X ,∥.∥) be a Banach space, and U be a subset of X . Suppose N : U →
U has a fixed-point at ξ. Then ξ is attracting if ∥N ′(ξ)∥ < 1, repelling if ∥N ′(ξ)∥ > 1.

If ∥N ′(ξ)∥ = 1, the test is inconclusive, and the fixed-point at ξ is said to be neutral. ξ

may be attracting, repelling or neither.

Theorem 2.1 was proved partially by Ostrowski [15], and a discussion about the

remaining part can be found in reference [16].

In Chapter 4, various fundamental problems such as root finding problems[17–19],
Julia sets [20, 21], population dynamical models [22], nonlinear Fredholm integral

equations [23–25], the simple pendulum, and chaos [26] have been discussed via

the RFPIM. The literature on these problems is quite extensive as well as there could

be found detailed information on these problems in many different primary sources.
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Therefore, the literature regarding more realistic problems like PDEs will be discussed

more extensively in the remaining part of this section.

The linear unsteady advection-diffusion equation

ut +αux − εux x = 0 (2.1)

having non-dissipative and dissipative components has been attracting researchers

from various disciplines for many years. To begin with, the advection-diffusion

equation has been exploited as a model equation in many scientific problems

such as flow in porous media [27], thermal pollution in river systems [28],
long-range transport of pollutants in the atmosphere [29], contaminant dispersion

in shallow lakes [30], the dispersion of dissolved material in estuaries and coastal

seas [31, 32], pollutant transport in rivers and streams [33], and dispersion of

tracers in porous media [34]. Recently, a cellular automaton model based on the

movements of pedestrians that are affected by a hazardous gas leakage represented

by an advection-diffusion problem is presented [35]. Besides, advection-diffusion

phenomena are studied on a two-dimensional lattice network to maximize the efficient

use of energy; and the transfer of the surplus energy to an appropriate direction in the

lattice is proposed as one way of utilizing renewable energy in maximum capacity

[36].

The advection-diffusion process describes the conservation of momentum in the case

of non-uniform fluid flows. In addition to the underlying physical dynamics, the

reputation of the advection-diffusion equation originates from its stiff behaviour for

relatively small values of the kinematic viscosity, ε ≪ 1. If the equation is diffusion

dominated, then Equation 2.1 performs a parabolic behaviour. In such cases, the

diffusion equation could be solved instead of Equation 2.1 by neglecting the advection

term. However, if the viscosity is relatively small, the equation is advection dominant,

then Equation 2.1 behaves in a hyperbolic nature. In this situation, if the diffusive

term is neglected, an undesirable numerical fluctuation is observed in the solution

especially due to central differencing of convective terms. In addition to that, the

upwind schemes usually cause an artificial numerical diffusion [37].

In the light of precious and praiseworthy contributions of antecedents, solution

procedures of the advection-diffusion equation still captivate scientists endeavoring

in a wide range of disciplines. Some of the studies carried out in this context can

be summarized as follows: The method of characteristics was combined with the

finite difference or finite element methods to treat advection-dominated diffusion

problems [38]. The authors showed the optimal error estimates for various schemes
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in L2(R) or W 1,2(R) with the corresponding norms. Their findings, allowing the

use of larger time steps, are persuasive about the efficacy of the proposed method

since the derived error estimates depend on the rate of change of the solution with

respect to the characteristic direction instead of time; and the solution of the model

equation changes much more slowly in the direction of the characteristics than

in the time direction. Superconvergence of local discontinuous Galerkin scheme,

being a class of finite element methods and formerly developed to analyze the

hyperbolic conservation laws, was enhanced for the advection-diffusion equation [39].
Orders of superconvergence were seen to be k + 3/2 for piecewise Pk polynomials

with k ≥ 1. Also, a second-order nearly analytic discrete method was offered

for the one-dimensional unsteady advection dominated diffusion equations such

as singularly-perturbed advection-diffusion equation and viscous Burgers equation

with slightly better stability results [40]. An unconditionally stable fourth order

semi-discrete method was derived by exploiting the Padé approximation method

[41]. A binding Fourier stability analysis of the flux reconstruction method was

implemented for the linear advection-diffusion equation [42], and findings confirm

that the maximum acceptable time step for the advection-diffusion equation is greater

than that of pure advection or pure diffusion. A total variation diminishing and

L-stable difference scheme, based upon a second or third order Lax-Wendroff type

difference scheme, was studied [43]. The proposed method was seen to be as accurate

as of the Holly-Preissmann backward characteristic method. A fully-discrete finite

difference method consisting of a third-order total variation diminishing Runge-Kutta

method for time and a local discontinuous Galerkin method for space with piecewise

polynomials was suggested [44]. Also, the energy technique was utilized to derive

the optimal error estimate in the energy norm. An error estimating method involving

an upwind scheme and Lax-Wendroff scheme was proposed for the model equation

by employing a sensitivity analysis on the parameters ∆t, ∆x , and ε [45]. To treat

the advection-diffusion equation, a polynomial based differential quadrature method

for space and a third-order Runge-Kutta scheme for the time, because of its strong

stability preserving property, were coupled; and the results indicated that the proposed

technique yields high accuracy and maximal gain of computational effort [46]. A

sixth-order compact finite difference method and RK4, for space and time, respectively,

were combined to model the concentration of a contaminant in a water reservoir [47].
An inclusive research about Taylor polynomial based difference schemes up to tenth

order was proposed [48].

In addition to the numerical methods mentioned above, some analytical or

semi-analytical methods are also encountered in the literature. Two different

techniques were offered to achieve solutions of the advection-diffusion equation

9



having a polynomial flow field [49]. The first approach is an iterative method thriving

upon the idea of converting the model equation to a singular integro-differential

equation, and the second one is relying on the use of the associated heat polynomial

expansion directly in the model equation. The responses were seen to be effective for

short time spans, and especially, the iterative method was seen to be more suitable

for the two-dimensional advection-diffusion problems as opposed to the expansion

methods. Another analytical solution procedure of the advection-diffusion equation

with time-varying boundary conditions was obtained based on the eigenfunction

expansion method for modeling the contaminant transport in the groundwater

reservoir [50].

As far as numerical methods are concerned, in the literature, they are inevitably

accompanied by debates regarding the convergence and stability issues. In

this respect, L2 -stability analysis was carried out for a mixed strategy such as

implicit-explicit Runge-Kutta schemes in time and discontinuous Galerkin methods

based on the (σ,µ)-family of diffusion schemes in space [51]. The findings are

located on a rigorous ground by providing necessary and sufficient conditions on the

parameters σ and µwhich guarantee the L2 stability for the time steps∆t = O(ε/α2).
Spectral analysis of various difference schemes for the advection-diffusion equation

was investigated, and qualitatively presented through figures depicting the stability

regions in the CFL number-∆x∆t plane [52]. Alternating-direction explicit finite

difference methods, formerly developed to solve linear partial differential equations

such as heat distribution, were analyzed [53], and in the direction of advection

from left to right, the scheme was seen to be unconditionally stable. Moreover,

another significant finding of the authors was that the stability of the scheme is

limited mainly by the advection term. The enthusiastic readers should consult the

work of Chan [54] for a comprehensive paper as to the stability analysis of various

difference schemes concerning the advection-diffusion equation. In the mentioned

paper, Chan provides a rigorous stability analysis for different schemes such as

Crank-Nicolson, DuFort-Frankel, leap-frog, Pade approximation schemes, and so on

by taking advantage of the Schur-Cohn theory. Regarding the stability analysis for

the advection-diffusion equation, the concepts of the von Neumann analysis, the CFL

condition, and the matrix method were reviewed in a historical manner [55].

Particularly, describing the nonlinear advection-diffusion mechanisms, systems of the

type

ut +αuux − εux x = 0, x ∈ (a, b), t > 0. (2.2)

have been widely discussed in the literature [46–48, 56–73] with testing purposes

for the newly developed algorithms. Besides, there are many books and research
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articles published in the literature to discover the behaviour of the nonlinear

advection-diffusion-reaction mechanisms using continuous or discrete methods [27,

48, 74–87]. In this respect, the aim of the later chapters of this thesis focused

on developing a novel method and approach to derive numerical responses of the

mentioned class of PDEs. In particular, the method introduced by Wang et al. [44]
and Abdelkader [88] is followed to infer some solitary wave solutions of the singularly

perturbed nonlinear advection-diffusion-reaction mechanisms.

For many researchers, in addition to its physical importance, the

advection-diffusion-reaction equations are test problems towards the solution

procedures of more complicated problems such as the Navier-Stokes equation. In

this respect, a newly produced method called the reversed fixed point iteration

method has been implemented in this thesis to find out numerical solutions of

the advection-diffusion-reaction equations by hybridizing it with various difference

schemes [56].
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3
MAIN THEORETICAL RESULTS

Fixed-points of system (1.1), with the notions of Lyapunov stability, have been

categorized as stable and unstable equilibrium solutions. Although there exist further

sub-classifications of these equilibria, in this study, an attracting fixed-point stands for

an asymptotically stable equilibrium and a repelling fixed-point represents an unstable

equilibrium.

Theorem 3.1 (Reversed Fixed Point Iteration Method). Let (X ,∥.∥) be a Banach space,

and N : X → X be a continuously differentiable nonlinear mapping in the Fréchet sense.

Let ξ be an unstable equilibrium solution for N x = x. Then the sequence {xn}n∈N con-

structed implicitly by the reversed fixed-point iteration

xn = N(xn+1) (3.1)

converges to ξ for every initial guess x0, which is sufficiently close to ξ.

Proof. Let V ⊂ X be the region of repulsion for the unstable fixed-point ξ. Since

N is a continuously differentiable mapping around ξ, the inverse function theorem

guarantees that N−1 exists in a sufficiently small neighbourhood, say U , of ξ. For the

sake of notational clarity, we can choose U ⊂ V , and we can safely restrict N to U .

Since ξ is an unstable fixed-point, N : U → X is an expansive mapping, and for any

x , y ∈ U we have

λ∥N−1 (N(x))− N−1 (N(y))∥= λ∥x − y∥ ≤ ∥N(x)− N(y)∥

where λ is a scalar with λ > 1. The last inequality implies that

∥N−1 (N(x))− N−1 (N(y))∥ ≤
1
λ
∥N(x)− N(y)∥.

Hence, N−1 : N(U) → U is a contraction with the Lipschitz constant 1/λ. Then,

Banach contraction mapping principle necessitates that for any initial guess x0 ∈
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N(U), the sequence {xn}n≥0 defined by the iteration

xn+1 = N−1(xn), n≥ 0

converges to unstable fixed-point ξ of N . In addition, the inverse function theorem

guarantees also that N−1 : N(U) → U is of class C1. Now, using the contractivity of

N−1 in N(U), the followings can be observed:

∥(N−1)′(ξ)h∥=
�

�

�

�

�

� lim
t→0

N−1(ξ+ th)− N−1(ξ)
t

�

�

�

�

�

�

= lim
t→0

�

�

�

�

�

�

N−1(ξ+ th)− N−1(ξ)
t

�

�

�

�

�

�

≤ lim
t→0

1
λ

�

�

�

�

�

�

th
t

�

�

�

�

�

�=
1
λ
∥h∥.

In the second step of the above calculations, uniform continuity of the norm and

existence of the Gâteaux derivative, by assumption, allow us to commute the norm and

the limit. Since the existence of continuous Gâteaux derivative implies the existence

of Fréchet derivative, we can use derivatives in the Fréchet sense. Thereby, it can be

concluded directly from definition of the operator norm that ξ is an attractive fixed

point of N−1 i.e.

∥(N−1)′(ξ)∥= sup
h

∥(N−1)′(ξ)h∥
∥h∥

≤
1
λ
< 1. (3.2)

This completes the proof. ■

Remark 3.1. Notice that finding the inverse mapping N−1 is as hard as finding the

fixed-point ξ. Therefore, instead of using the iteration xn+1 = N−1(xn), we can use

the iteration xn = N(xn+1). This is the main motivation of this thesis. However, in this

case we must carry the burden of solving an ill-posed problem in some cases.

The following corollary can be stated as a conclusion of Theorems 1.1 and 3.1.

Corollary 3.1. Let (X ,∥.∥) be a Banach space, and N be an expansive mapping near

the fixed-point ξ with expansion coefficient λ > 1. If the sequence xn is defined by iter-

ation (3.1), then for any initial guess x0 sufficiently close to the fixed-point ξ of N, the

errors in the application of the reversed fixed-point iteration method is estimated by

∥xn − ξ∥ ≤
1

(λ− 1)λn−1
∥x1 − x0∥ (3.3)

and

∥xn − ξ∥ ≤
1
λn
∥x0 − ξ∥ (3.4)
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for n= 1,2, 3, . . . .

Proof. Since N is an expansive mapping with expansion constant λ, N−1 is a

contraction with a contraction coefficient 1/λ, in other words

∥N−1(x)− N−1(y)∥ ≤
1
λ
∥x − y∥ (3.5)

for any x , y in a sufficiently small neighbourhood of ξ. Now, by taking xn+1 = N−1(xn)
into account, the followings can be deduced:

∥xn+p − xn∥ ≤
p
∑

k=1

∥xn+k − xn+k−1∥

≤
p
∑

k=1

1
λn+k−1

∥x1 − x0∥

≤
1
λn
∥x1 − x0∥

∞
∑

k=1

1
λk−1

≤
1

(λ− 1)λn−1
∥x1 − x0∥.

Hence, taking limit as p→∞ in the last inequality, it can be deduced that

lim
p→∞
∥xn+p − xn∥= ∥xn − ξ∥ ≤

1
(λ− 1)λn−1

∥x1 − x0∥. (3.6)

This completes the proof of the first inequality. The proof of the second inequality

comes from the application of (3.5) repetitively:

∥xn − ξ∥= ∥N−1(xn−1)− N−1(ξ)∥ ≤
1
λ
∥xn−1 − ξ∥ ≤ · · · ≤

1
λn
∥x0 − ξ∥. (3.7)

■
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4
VARIOUS APPLICATIONS

In the previous chapter, since unstable equilibria are frequently encountered in

scientific problems, a numerical procedure that reveals unstable fixed-points in Banach

spaces has been established. From the viewpoint of fixed-point theory, it is inevitable

that an unstable equilibrium solution is of repelling nature. To find out repelling

fixed-points, Theorem 3.1 gives a sufficient theoretical basis while Corollary 3.1

supplies a tool of accuracy for the current method.

In this chapter, different illustrative examples originated from a wide range of applied

areas are considered. For this purpose, examples regarding root finding problems in

R, R2, and R3 are considered, the repelling property of the Julia sets are observed, a

population dynamics model with an unstable critical threshold is analyzed, unstable

solutions of nonlinear Fredholm integral equations of the second kind are studied, the

pendulum is one of the basic examples of nonlinear control problems is analyzed, and

lastly, a 3D system of ODEs that exhibits a chaotic behaviour is examined.

4.1 Roots of Polynomials

First of all, the root finding problem

f (x) = 0 (4.1)

where x ∈ R is considered. To begin with, f (x) is taken as a polynomial.

Theorem 4.1. Assume that f (x) is a monic nth degree polynomial with real coefficients

and it has n positive distinct real roots i.e.

f (x) =
n
∏

k=1

(x − xk)

where x1, x2, . . . , xn are the roots of f , and suppose that 0< x1 < x2 < · · ·< xn−1 < xn.

If m is an even number, then xm is an unstable equilibrium solution of problem (4.1).
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Proof. The linear term of f (x) is (−1)n−1Sn−1 x , where Sn−1 is the (n−1)st elementary

symmetric function of {x1, x2, . . . , xn} defined by

Sn−1(x1, x2, . . . , xn) :=
n
∑

k=1

n
∏

i=1
i ̸=k

x i.

Now, root finding problem (4.1) can be reconsidered as a fixed-point problem as in

the following

g(x) := x +
(−1)n

Sn−1

n
∏

k=1

(x − xk) = x . (4.2)

The roots of f are just the fixed-points of g. Derivative of g can be computed as

d g(x)
d x

= 1+
(−1)n

Sn−1

n
∑

i=1

n
∏

k=1
k ̸=i

(x − xk). (4.3)

For a particular root, say xm, the following computations can be carried out

g ′(xm) = 1+
(−1)n

Sn−1

n
∏

k=1
k ̸=m

(xm − xk) (4.4)

= 1+
(−1)n

Sn−1

m−1
∏

k=1

(xm − xk)
n
∏

k=m+1

(xm − xk) (4.5)

= 1+
(−1)n(−1)n−m

Sn−1

m−1
∏

k=1

(xm − xk)
n
∏

k=m+1

(xk − xm) (4.6)

= 1+
(−1)m

Sn−1

m−1
∏

k=1

(xm − xk)
n
∏

k=m+1

(xk − xm). (4.7)

According to Theorem 2.1, if m is an even number then the corresponding fixed-point

xm of g is necessarily an unstable fixed-point since |g ′(x2k)|> 1 for k = 1,2, . . . . ■

Although Theorem 4.1 suffices for our observations on unstable equilibria, some

corollaries have been provided regarding the stable equilibrium solutions of

problem (4.1).

Corollary 4.1. x1 is an asymptotically stable equilibrium solution of nonlinear sys-

tem (4.1).

Proof. In the proof of previous theorem, if x1 is plugged in g ′(x), then the followings
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can be observed

g ′(x1) = 1−
1

Sn−1

n
∏

k=2

(xk − x1)

= 1−

∏n
k=2(xk − x1)/Sn

Sn−1/Sn

= 1−

∏n
k=2(1−

x1
xk
)

∑n
k=1

x1
xk

.

Since the inequalities
∏n

k=2(1 −
x1
xk
) < 1 and
∑n

k=1
x1
xk
> 1 both hold, so does the

inequality |g ′(x1)|< 1. In other words, the smallest root of f (x), namely x1, is always

an asymptotically stable equilibrium solution to equation (4.1). ■

Application of the Picard iteration to problem (4.1) produces the solution x1. The

reason of this consequence is that the orbit of 0 converges to x1, that is to say, 0 lies

in the basin of x1, and of course, the constant term of g lies in the attraction region of

x1.

Corollary 4.2. Let the roots of nonlinear system (4.1) satisfy the inequality

M n−1 < 2Sn−1 (4.8)

where M is defined as

M := max{(x2 j−1 − x1), (xn − x2 j−1)}.

Then the root x2 j−1 is an asymptotically stable equilibrium solution of system (4.1) for

j = 2,3, . . . .

Proof. In the proof of Theorem 4.1, let m= 2 j − 1 to obtain

g ′(x2 j−1) = 1−
1

Sn−1

2 j−2
∏

k=1

(x2 j−1 − xk)
n
∏

k=2 j

(xk − x2 j−1) (4.9)
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where j = 2, 3, . . . . Now, considering the following observations

0<
1

Sn−1

2 j−2
∏

k=1

(x2 j−1 − xk)
n
∏

k=2 j

(xk − x2 j−1)<
M2 j−2M n−2 j+1

Sn−1

=
M n−1

Sn−1

<
2Sn−1

Sn−1

= 2

it can be deduced for j = 2, 3, . . . that

|g ′(x2 j−1)|< 1.

■

Remark 4.1. Since M < (xn − x1), the assumption in the corollary can be replaced by

(xn − x1)n−1 < 2Sn−1 instead of M n−1 < 2Sn−1. Moreover, from Maclaurin’s inequality

for symmetric polynomials, instead of inequality in (4.8) the following inequality can

be checked

M < n
p

Sn. (4.10)

Remark 4.2. A steady state equilibrium solution, that can be found via the fixed-point

iteration method, depends on basin where the initial guess lies in. Similarly, a steady

state unstable equilibrium solution, that can be found via the RFPIM, depends on

which region of repulsion the initial guess lies in.

Notice that Corollary 4.2, Remarks 4.1 and 4.2 impose some conditions on the

distribution of the roots x1, x2, . . . , xn in R+ for characterization purposes. Attracting

and repelling characteristics of these roots alternate between two consecutive roots

if there does not exist any relatively high or small root in comparison to the other

roots. Particularly, when a 7th degree polynomial with fixed-points 1,2, . . . , 6, 7 is

considered, the attracting fixed-points are shown by black dots while the repelling

fixed-points are shown by open dots in Figure 4.1.

1 2 3 4 5 6 7

Figure 4.1 Seven equidistant fixed-points.

Now, being equipped with sufficient tools, consider the following algebraic equation

x3 − 6x2 + 11x − 6= 0 (4.11)
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Table 4.1 Some values obtained via the RFPIM from the orbits of some points
around x = 2.

Points
n

5 10 15 20 25 30
1.1 1.40938 1.77559 1.93860 1.98490 1.99638 1.99914
1.5 1.82776 1.95453 1.98892 1.99735 1.99937 1.99985
1.9 1.97481 1.99393 1.99856 1.99966 1.99992 1.99998
2.3 2.06108 2.01401 2.00330 2.00078 2.00019 2.00004
2.7 2.12110 2.02690 2.00629 2.00149 2.00035 2.00008

with roots x = 1, x = 2, and x = 3 [17].

Equation (4.11) can be rewritten in the form of (4.2) as

x =
6

11
+

6x2

11
−

x3

11
. (4.12)

Thus, the problem of finding the roots of f (x) is reduced to the determination of the

fixed-points of g(x) := 6/11+6x2/11− x3/11. By solving equation |g ′(x)|= 1, it can

be observed that x = 1 is an attracting fixed-point with basin (−0.768 . . . , 1.422 . . . ),
x = 2 is a repelling fixed-point with the region of repulsion (1.422 . . . , 2.577 . . . ) and

x = 3 is an attracting fixed-point with region of attraction (2.577 . . . , 4.768 . . . ) (see

Figure 4.2). Particularly, 6/11 = 0.545 . . . is in the basin of x = 1. Therefore, both

the Picard method and Adomian decomposition method yield the solution x = 1 for

initial guess x0 = 6/11.

321

Figure 4.2 Fixed-points of g(x) = 6/11+ 6x2/11− x3/11.

The unstable solution x = 2 can be obtained by applying the fixed-point iteration

method in the reverse direction. Some starting points and nth iterations obtained

from the reversed fixed-point iteration are shown in Table 4.2. Since the RFPIM is an

implicit method for this problem, the Newton-Raphson method has been utilized in

every intermediate step.

The results of the usual fixed-point iteration method have been presented in Table 4.2

for some starting points and the corresponding nth iterations. Even though randomly

distributed starting points are used, the conventional algorithm fails to capture the

unstable fixed-point.
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Table 4.2 Some values obtained via the conventional method from the orbits of
some points around x = 1 or x = 3.

Points
n

3 5 10 15 20 30
-0.7 0.90536 0.94028 0.97956 0.99268 0.99734 0.99964
-0.2 0.78456 0.87449 0.96016 0.98605 0.99497 0.99933
0.3 0.79288 0.87865 0.96129 0.98643 0.99510 0.99935
0.8 0.90759 0.94160 0.97999 0.99283 0.99739 0.99965
1.3 1.20772 1.15640 1.06888 1.02737 1.01036 1.00142
1.8 1.74343 1.69830 1.55807 1.38828 1.22415 1.04442
2.3 2.37922 2.43969 2.60925 2.77379 2.89184 2.98261
2.8 2.87146 2.90728 2.96211 2.98548 2.99459 2.99927
3.3 3.12700 3.07849 3.02629 3.00935 3.00339 3.00045
3.8 3.21593 3.12575 3.03991 3.01397 3.00504 3.00067
4.3 3.20538 3.12047 3.03846 3.01349 3.00487 3.00065

4.2 Root Finding in the Complex Field: Julia Sets

In this example, the reversed fixed-point iteration is applied in the complex plane C,

and the obtained iterations are observed in the complex plane. Backward iteration

was proposed firstly by Devaney [20] to find out the Julia set of a function. Repelling

property of the Julia set is hereby observed one more time by using the RFPIM. In this

context, the following root finding problem has been examined:

x2 − 1= x . (4.13)

Solutions of equation (4.13) can be found exactly as x1 =
1−
p

5
2 and x2 =

1+
p

5
2 . Since

| f ′(x1)| = |1 −
p

5| ≈ 0.618 < 1 and | f ′(x2)| = |1 +
p

5| ≈ 1.618 > 1, according to

Theorem 2.1, x1 is an attracting fixed-point while x2 is a repelling fixed-point. Using

the backward iteration

x2
n+1 − 1= xn, (4.14)

system (4.13) can be solved in R to find out unstable equilibrium solution x2 =
1+
p

5
2 .

However, if the system is solved in the complex field and if all of the obtained iterations

in the final step are plotted in C, an interesting image has been encountered. For

instance, if the reversed fixed-point iteration is started to be applied with initial choice

x0 = 1, then iterations obtained from relation x2
n+1−1= xn after 15 steps can be seen

in the complex plane as in Figure 4.3.
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

Figure 4.3 The iterations obtained from equation (4.14) after 15 steps via the
RFPIM.

In the figure, the iterations depicted in the complex plane are obtained through the

RFPIM after 15 steps. If the obtained set of numbers are restricted to the real line R,

then it could be seen that the points in the intersection accumulate near the unstable

equilibrium solution x2 = (1+
p

5)/2.

Now, let us consider the Julia set of function f (x) = x2 − 1. The Julia set is the

boundary of the filled Julia set which consists of x0 ∈ C such that the sequence

f n(x0) = f ( f ( f (. . . f (x0)))) remains bounded as n → ∞. As is the case in the

literature, infinity is assumed to be an attracting fixed point for any polynomial of

degree greater than or equal to 2. Hence, another characterization about the Julia

set can be given as the boundary of the region of attraction of∞. The Julia set of

function f (x) = x2 − 1 is depicted in Figure 4.4. Notice that, there is a similarity

between Figures 4.3 and 4.4. If we put them together in the same picture, Figure 4.5

is obtained. It can be observed in Figure 4.5 that the obtained points in Figure 4.3

accumulates near the boundary of the shape in Figure 4.4. The reason behind this

situation is that the Julia set is a dynamical repeller.

Boundary of the Julia set is a fractal except some cases. Further information about the

Julia sets can be found in references [20, 21].

Remark 4.3. The sequence defined through the RFPIM converges to the Julia set of the

function. Here, we do not mean a point-wise convergence, we mean that the obtained

set after each iteration converges to the boundary of the filled Julia set as n→∞, in

other words, we mean a set-wise convergence.
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.5

0.0

0.5

Figure 4.4 The Julia set of function f (x) = x2 − 1.

4.3 2D Root Finding

In this example, following 2D root finding problem [18] is considered

x2 − 2x − y + 0.5= 0

x2 + 4y2 − 4= 0.

When we have tried to solve this system using the conventional or the RFPIM, we need

to rewrite it as a fixed-point problem as follows:

�

x

y

�

=

�

0.5x2 − 0.5y + 0.25

x2 + 4y2 + y − 4

�

. (4.15)

Solutions of the system are ξ1 = (−0.222 . . . , 0.993 . . . ) and ξ2 =
(1.900 . . . , 0.311 . . . ). If we denote system (4.15) as N(x) = x, where x stands

for the column vector (x , y)T , then the eigenvalues of the Jacobian matrix of N can

be computed approximately as

λ1 ≈ 8.97 and λ2 ≈ −0.25 (4.16)

for the fixed-point ξ1 and as

λ3,4 ≈ 2.70± 1.13i (4.17)

for the fixed-point ξ2. Since magnitude of both eigenvalues are strictly greater than 1,

the fixed-point ξ2 is an unstable equilibrium of the system. A stream plot and locations
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.5

1.0

Figure 4.5 Combination of Figures 4.3 and 4.4.

of the fixed points, which are depicted by red dots, can be seen in Figure 4.6.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 4.6 Stream plot and locations of the equilibria for system (4.15)

Soundness and accuracy of the proposed method can be observed in Table 4.3. In

the intermediate steps of the RFPIM, the Newton method has been utilized to solve

implicit equations.

When the conventional fixed-point iteration method is applied to solve system (4.15),

even by starting with fairly close initial guesses to desired solutions, the obtained

sequence of iterations is seen to diverge as presented in Table 4.4. Notice also that the

fixed-point ξ1 is a saddle point. Hence, the usual fixed-point iteration method fails

to find out both of the equilibria ξ1 and ξ2. This situation has been investigated
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Table 4.3 Absolute errors after application of the RFPIM for equation (4.15) with
different initial choices at different steps.

Points
n

5 10 15 20
(1.90,0.31) 1.61× 10−5 4.18× 10−8 2.31× 10−10 1.64× 10−12

(1.90,0.32) 3.68× 10−5 8.27× 10−8 1.01× 10−9 2.75× 10−12

(1.91,0.31) 1.29× 10−4 5.66× 10−7 1.16× 10−9 1.50× 10−11

(1.91,0.32) 1.80× 10−4 5.69× 10−7 2.22× 10−9 1.92× 10−11

numerically in Table 4.4. Although the initial guesses are chosen fairly close to

the equilibrium solutions, the sequence obtained through the traditional fixed-point

iteration method diverges suddenly.

Table 4.4 Fifth and tenth iterations after application of the fixed-point iteration
method for equation (4.15) with different initial choices.

Points
n

5 10

(-0.22,0.99) (-0.51,2.28 ×101) NW1

(-0.23,0.99) (0.54,-3.18) NW

(-0.22,1.00) NW NW

(-0.23,1.00) NW NW

(1.90,0.31) (2.14,7.58×10−2) NW

(1.90,0.32) (1.12,2.91) NW

(1.91,0.31) (-1.78,1.45×102) NW

(1.91,0.32) (-5.42,6.01×102) NW

4.4 Population Dynamics Model with a Critical Threshold

Growth of a population with a critical threshold can be modeled by the autonomous

equation
d y
d t
= −r
�

1−
y
T

��

1−
y
K

�

y (4.18)

where r is a positive constant depending on the population and environment, T is the

critical threshold, and K is the environmental carrying capacity or saturation level. The

phase line and sample plots with different initial conditions can be seen in Figure 4.7.

It can be perceived geometrically from Figure 4.7 that y = 0, y = T , and y = K

are equilibrium solutions of model (4.18). Critical threshold y = T is an unstable

1NW=Not Working
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y

f(y)

T K

(a) Phase line for model (4.18).

K

T

t

y

y3=K

y2=T

y1 = 0

(b) Sample solutions for model (4.18) with various initial
conditions.

Figure 4.7 Geometrical observations regarding model (4.18).

equilibrium solution while zero population y = 0 and environmental carrying capacity

y = K are stable equilibria [22]. These conclusions can be drawn in a more theoretical

way in accordance with Theorem 3.1. For this purpose, let us discretize problem (4.18)

with the use of a forward finite difference scheme for d y/d t as

yn+1 − yn

h
= −r
�

1−
yn

T

��

1−
yn

K

�

yn, (4.19)

and define an operator N(.) as

N(yn) = yn + h
h

−r
�

1−
yn

T

��

1−
yn

K

�

yn

i

. (4.20)

Thus, equation (4.18) has been converted to be a fixed-point problem as N(y) =
y . Notice also that N(.) has become a real-valued third-degree polynomial after

discretization. Consequently, it can be differentiated near the fixed-points and the
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obtained derivative can be evaluated at the fixed-points as

N ′(0) = 1− hr (4.21)

N ′(T ) = 1+ hr
�

1−
T
K

�

(4.22)

N ′(K) = 1+ hr
�

1−
K
T

�

. (4.23)

Since 0 < T < K and r is positive, it can be deduced from Equations (4.21)-(4.23)

that N ′(0) < 1, N ′(T ) > 1 and N ′(K) < 1 for conventionally used small step sizes.

Same results can be observed by defining N(.) on C1, the space of continuously

differentiable functions, instead of R. Ultimately, threshold level is going to be an

unstable equilibrium while zero population level and environmental carrying capacity

are going to be asymptotically stable equilibria. From a theoretical viewpoint, the

RFPIM is more suitable to find out unstable equilibrium, while the conventional

fixed-point iteration method is far more suitable to find out stable equilibria.

For a numerical observation, consider the following problem:

d y
d t
= −0.5
�

1−
y
3

��

1−
y

10

�

y, y(0) = y0. (4.24)

For model (4.24), the zero population level y = 0 and the environmental carrying

capacity y = 10 are stable equilibria while the critical threshold level y = 3 is an

unstable equilibrium. The computed results of the reversed fixed-point algorithm

have been presented in Table 4.5. In the solution procedure, the step size is taken

to be h = 1. To solve inverse problems encountered in the intermediate steps, the

Newton-Raphson method has been utilized.

Table 4.5 Numerical simulation of model (4.24) via the RFPIM with different initial
values (y0) with h= 1.

y0

n

5 10 15 20 25 30

0.5 1.96891 2.73448 2.93893 2.98629 2.99694 2.99932

1 2.34687 2.84176 2.96407 2.99196 2.99820 2.99960

2 2.74389 2.94117 2.98679 2.99705 2.99934 2.99985

4 3.20384 3.04450 3.00988 3.00220 3.00049 3.00011

6 3.55614 3.11745 3.02587 3.00575 3.00128 3.00029

8 3.92696 3.18997 3.04153 3.00922 3.00205 3.00046
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Table 4.6 Absolute errors for model (4.24) after the first step of the RFPIM with
various step sizes.

y0
Absolute Errors

h=10 h=100 h=1000
0.5 2.07× 10−1 2.35 ×10−2 2.37× 10−3

1.0 1.61× 10−1 1.87 ×10−2 1.90× 10−3

2.0 7.69× 10−2 9.31 ×10−3 9.50× 10−4

4.0 7.19× 10−2 9.21 ×10−3 9.49× 10−4

6.0 2.06× 10−1 2.74 ×10−2 2.84× 10−3

8.0 3.33× 10−1 4.52 ×10−2 4.74× 10−3

Since the main goal is to find an unstable equilibrium solution, it makes sense to work

with relatively larger step sizes at a relatively low cost as usual. When differential

equation solving is concerned, it could be observed that the use of larger step sizes

increases the speed of the current method. Hence, the desired unstable solution can

be obtained after a few steps instead of tedious calculations in each separate single

iteration. Notice that the error could be diminished as much as required by increasing

the coefficient of expansion of N because of Corollary 3.1. Moreover, the desired

accuracy could be captured in the first step by increasing the step size h further.

Remark 4.4. One of the critically important results of using relatively larger step sizes

is that the spectral radius of the Jacobian matrix of an operator N is getting larger by

increasing h. Thus, in the application process of the Newton method, the possibility

to encounter with a too small Jacobian becomes almost impossible.

4.5 3D Root Finding Problem: A Sophisticated but Robust Ap-

proach

In this example, the 3D root finding problem

x + y + z = 0

x2 + y2 + z2 − 2= 0

x y + xz + 1= 0

(4.25)

is considered [19]. In the previous example, the use of relatively larger step sizes has

been observed to be a significant advantage of the RFPIM through the solutions of

differential equations. To take advantage of the presented method, the following ODE
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Table 4.7 Norm of the absolute errors for corresponding unstable fixed-points at the
first step of the RFPIM towards the solution of system (4.26) with an initial guess

(x0, y0, z0) = (0, 0,0) and various values of step sizes.

Fixed Points
Absolute Errors

h=10 h=100 h=1000 h= 106 h= 1010

(-1,0,1) 0.11 1.01×10−2 1.00×10−3 1.00 ×10−6 4.00 ×10−15

(1,0,-1) 2.44 1.72×10−2 1.73×10−3 1.73 ×10−6 1.41 ×10−10

(-1,1,0) 2.86 7.10×10−3 7.07×10−4 7.07 ×10−7 5.00 ×10−11

(1,-1,0) 1.54 1.21×10−2 1.22×10−3 1.22 ×10−6 1.12 ×10−10

system could be considered instead of considering system (4.25)

ẋ = x + y + z

ẏ = x2 + y2 + z2 − 2

ż = x y + xz + 1.

(4.26)

System (4.25) has four exact solutions: (±1, 0,∓1), (±1,∓1, 0). Notice that the

fixed-points of system (4.25) are equilibrium solutions of system (4.26). Now, a

nonlinear operator can be defined by discretizing system (4.26) as follows

N







xn

yn

zn






:=







xn + h1(xn + yn + zn)
yn + h2(x2

n + y2
n + z2

n − 2)
zn + h3(xn yn + xnzn + 1)






. (4.27)

All of the four exact solutions of system (4.25) can be determined by applying the

RFPIM with an initial guess (x0, y0, z0) = (0,0, 0). For the sake of clarity, the step sizes

are taken to be h1 = h2 = h3 = h. Note that for any positive values of the step size h,

the spectral radius of the Jacobian matrix of N is greater than 1 for any fixed-point of

N . Hence, every fixed-point of N must be unstable.

The produced results reveal that the proposed technique may be utilized to obtain

fixed-points of a function even in higher dimensions. Notice that the errors in Table 4.7

have been produced by applying the RFPIM only one step. When the step size is getting

larger, the tendency of decrease in the norm of absolute errors can be observed as

another remarkable point in the example. A significant output of this example is that

when the Newton method is considered to be used, the current method can be utilized

to avoid too small Jacobians.
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4.6 Fredholm Integral Equations via a Reverse Approach

Consider the nonlinear Fredholm integral equation

u(x) = f (x) +λ

∫ b

a

K(x , t)F(u(t))d t (4.28)

where f (x) is a known source function, K(x , t) is a known kernel, a and b are known

end points and F(.) is a nonlinear function with one variable. Also, λ is a parameter.

A thorough discussion about this topic can be found in references [23, 25]. Let us

define an integral operator N(.) as

N : L2(a, b) −→ L2(a, b) (4.29)

u 7−→ f (x) +λ

∫ b

a

K(x , t)F(u(t))d t. (4.30)

Here, notice that the Fréchet derivative of N can be computed as

N ′(u) = λ

∫ b

a

K(x , t)F ′(u(t))d t. (4.31)

Thereby, the requirements of Theorem 3.1 can be checked, and after this step, the

procedure in the RFPIM could be followed by solving a Fredholm integral equation of

the first kind at each intermediate step. In the first step,

u0(x)− f (x) = λ

∫ b

a

K(x , t)F(u1(t))d t. (4.32)

is needed to be solved for u1(x). Particularly, in the nth step

un(x)− f (x) = λ

∫ b

a

K(x , t)F(un+1(t))d t. (4.33)

must be solved for un+1(x). However, since it is a backward problem and an ill-posed

problem, equation (4.33) is not easy to handle. Lavrentiev’s regularization method

should be utilized to seek solution(s) to such kind of equations. Instead of solving

equation (4.33) it is proposed to solve

αun+1,α(x) = f (x)− un,α(x) +λ

∫ b

a

K(x , t)F
�

un+1,α(t)
�

d t (4.34)

where α is a parameter. Notice that when α → 0, the solution obtained from

equation (4.34) reduces to solution of equation (4.33).
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Particularly, let us consider the following example [23]

u(x) =
5x
6
+ x

∫ 1

0

t2u3(t)d t (4.35)

with three exact solutions: u1(x) = x , u2(x) =
p

21−1
2 x ≈ 1.79129x and u3(x) =

−
p

21−1
2 x ≈ −2.79129x . Here, the Fréchet derivative of N can be computed as

N ′(u) = 3x

∫ 1

0

t2u2(t)d t.

Notice that ∥N ′(u1)∥L2(0,1) = 0.34641 < 1, ∥N ′(u2)∥L2(0,1) = 1.11153 > 1 and

∥N ′(u3)∥L2(0,1) = 2.69898 > 1. Therefore, only u1(x) = x is an asymptotically

stable solution to Equation (4.35). Hence, if the conventional fixed-point iteration

method is started to be applied with an initial guess φ0, lying in a sufficiently small

neighbourhood of u1(x), the solution u1(x) = x is reached.

To find out unstable solutions, let us use the reversed fixed-point algorithm. At each

intermediate step, an equation of the following type has to be solved

cx = x

∫ 1

0

t2u3(t)d t (4.36)

where c is a scalar. After application of the regularization method, it can be

deduced that Equation (4.36) has solutions of the form
�

3p6c
�

x (for the solution

procedure please see [24]). Some iterations and the errors in L2 sense can be seen in

Tables 4.8 and 4.9.

Table 4.8 Some iterations obtained via the RFPIM with initial guess φ0(x) = 7x/3
for problem (4.35).

Number of Iterations Approximate solutions L2 Errors

1 2.41014x 3.57 ×10−1

2 2.11500x 1.87 ×10−1

3 1.97382x 1.05 ×10−1

4 1.89852x 6.19 ×10−2

5 1.85577x 3.72 ×10−2

6 1.83061x 2.27 ×10−2

7 1.81547x 1.40 ×10−2

8 1.80624x 8.63 ×10−3

9 1.80056x 5.35 ×10−3

10 1.79705x 3.32 ×10−3
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Table 4.9 Some iterations obtained via the RFPIM with initial guess φ0(x) = 0 for
problem (4.35).

Number of Iterations Approximate Solutions L2 Errors

1 -0.8333x 1.13

2 -2.4804x 1.80 ×10−1

3 -2.70908x 4.75 ×10−2

4 -2.77002x 1.23 ×10−2

5 -2.78582x 3.16 ×10−3

6 -2.78988x 8.12 ×10−4

7 -2.79093x 2.09 ×10−4

8 -2.79120x 5.47 ×10−5

9 -2.79126x 1.50×10−5

10 -2.79128x 4.77× 10−6

4.7 Unstable Equilibria in Control Problems: The Simple Pendu-

lum

Let us now consider the motion of a pendulum exposed to a control torque. Consider

a solid rod whose mass is neglected. A particle is attached to the endpoint of the rod

as seen in Figure 4.8.

θ

θ

u

u

mg

mg

Figure 4.8 Equilibrium positions for a simple pendulum.
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Suppose also that there is a resisting force due to friction. If the mass is exposed to a

control torque u in the counterclockwise direction, the motion of the pendulum could

be represented by
d2θ

d t2
= −

g
l

sin(θ )−
k
m

dθ
d t
+

1
ml2

u (4.37)

where g is the gravitational acceleration, m is the mass, l is the length of the rod, k

is the coefficient of friction and θ is the positive angle between the vertical line and

the ray pointing towards the position of the mass. Looking at the free body diagrams,

existence of two different equilibrium angles can be observed. The first one is between

0 and π/2 is a stable equilibrium, while the second one is between π/2 and π is an

unstable equilibrium.

Equation (4.37) can be converted to a system of first order ODEs by taking x = θ , and

y = dθ/d t:
d x
d t = y

d y
d t = −

g
l sin(x)− k

m y + 1
ml2 u.

(4.38)

To analyze the stability of the system, consider the Jacobian of system (4.38):

J =

�

0 1

− g cos(x)
L − k

m

�

. (4.39)

The spectrum σ of the Jacobian matrix J can be obtained as:

σ(J) =

¨

−
k

2m
−

√

√ k2

4m2
−

g
l

cos(x),−
k

2m
+

√

√ k2

4m2
−

g
l

cos(x)

«

. (4.40)

Therefore, if cos(x) ≥ k2 l
4m2 g then both eigenvalues have negative real parts and the

system is asymptotically stable. However, if cos(x) < k2 l
4m2 g then, since one of the

eigenvalues lies in the right half complex plane, and hence, the system is unstable.

Note that the physical nature of the problem reveals that if cos(x) < 0 then the mass

m rests on an unstable equilibrium position. Furthermore, a nonlinear operator N(.)
could be defined as follows to check the requirements of Theorem 3.1

N

�

xn

yn

�

:=

�

xn + hyn

yn − h
� g

l sin(xn) +
k
m yn −

u
ml2

�

�

. (4.41)

Spectrum of the Jacobian matrix J of N can be computed as

σ (J) =







1−
hk
2m
± h

√

√

√

�

k
2m

�2

−
g cos(x)

l







. (4.42)
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If cos(x) > 0, then spectral radius of J is less than 1 for conventionally used small

step sizes. Hence, the equilibrium position is necessarily attracting and asymptotically

stable. However, if cos(x) < 0 then the spectral radius of J is greater than 1, and the

corresponding equilibrium position is of repelling nature, and hence it is unstable.

Particularly, if the parameters of the system are taken to be u= 25 Newton, m= 5 kg,

g = 10 m/s2, k = 1 and l = 1 m, then the equilibrium solutions are found to be

θ = π/6 and θ = 5π/6. Since cos(5π/6) < 0, θ = 5π/6 is an unstable equilibrium

solution for model (4.37) while θ = π/6 is an asymptotically stable equilibrium.

To obtain the unstable equilibrium, system (4.38) should be discretized through a

finite difference scheme as in (4.41). Then the results obtained after only one step by

applying the RFPIM have been shown in Table 4.10 where the step size h is taken to

be 100.

Table 4.10 Absolute errors towards finding repelling fixed-point θ = 5π/6≈ 2.618
with the use of the RFPIM after single iteration with h= 100.

Initial Guess for θ Absolute Errors Relative Errors

0.0 5.74× 10−4 2.19 ×10−4

0.5 4.65× 10−4 1.78× 10−4

1.0 3.55× 10−4 1.36 ×10−4

1.5 2.45× 10−4 9.37 ×10−5

2.0 1.36× 10−4 5.18 ×10−5

2.5 2.59× 10−5 9.89 ×10−6

3.0 8.38× 10−5 3.87 ×10−5

3.5 1.94× 10−4 7.39 ×10−5

Note that the conventional fixed-point iteration method is not suitable to apply in the

solution procedure of this kind of problems due to the oscillatory nature of the stable

equilibrium position. The results have been obtained after 1000 steps by applying

the fixed point iteration to system (4.38) for various initial guesses with h = 0.01

(see Table 4.11). A decrease in errors in the vicinity of the fixed-points can be

observed in the results due to the locality of the fixed-point iteration. Nevertheless,

the conventional fixed-point iteration method suffers from the oscillatory nature of

the problem.
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Table 4.11 Absolute errors towards finding attracting fixed-point θ = π/6≈ 0.524
with the use of conventional fixed-point iteration method after 1000 iterations with

h= 0.01.

Initial Guess for θ Absolute Errors Relative Errors

0.0 2.65× 10−1 5.06 ×10−1

0.5 5.84× 10−3 1.11 ×10−2

1.0 1.76× 10−1 3.36 ×10−1

1.5 4.37× 10−1 8.34 ×10−1

2.0 1.71× 10−1 3.27 ×10−1

2.5 6.25× 10−1 1.19

3.0 1.55× 10+2 2.96 ×10+2

3.5 1.60× 10+2 3.05 ×10+2

4.8 Unstable Equilibria in Chaotic Structures

Chaos is one of the most challenging areas of interest in contemporary science.

Unstable equilibria are encountered in chaotic processes as an isolated unstable

equilibrium or a strange repeller. A chaotic problem studied in reference [26] is

considered here:

ẋ = a(y − z)

ẏ = (c − a)x − axz

ż = x y − bz

(4.43)

where a, b, c ∈ R, and a ̸= 0. When the parameters of system (4.43) are taken

to be (a, b, c) = (2.1,0.6, 30) and initial condition is taken to be (x0, y0, z0) =
(0.1,−0.3,0.2) then the chaotic behaviour of the system reveals a strange attractor

as in Figure 4.9. Besides, if the parameters a, b, c are taken to be (a, b, c) =
(−2,−1, 10) then the origin becomes an isolated unstable equilibrium, as is the case

in reference [26]. Therefore, the conventional fixed-point iteration method diverges

even under the consideration of fairly close initial guesses to O(0, 0,0). The chaotic

orbit of the system corresponding to the mentioned set of parameters can be seen in

Figure 4.10.

It can be observed that O(0,0, 0) is the only isolated equilibrium of system (4.43). The

origin behaves as a source since it is an unstable equilibrium. Therefore, the reversed

fixed-point algorithm is efficient to find out this unstable and chaotic equilibrium.

To observe the instability of the origin and to check the requirements of Theorem 3.1,
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Figure 4.9 Chaotic orbit of system (4.43), for the parameters (a, b, c) = (2.1,0.6, 30)
and initial condition (x0, y0, z0) = (0.1,−0.3, 0.2).

let us define an operator N as

N







xn

yn

zn






:=







xn + h1a(yn − zn)
yn + h2 ((c − a)xn − axnzn)

zn + h3 (xn yn − bzn)






. (4.44)

Spectrum of the Jacobian matrix J of N at the origin can be found as

σ (J) |(0,0,0) =
¦

1−
Æ

h1h2a(1− a), 1+
Æ

h1h2a(1− a), 1− h3 b
©

. (4.45)

Hence, whenever a ̸= 0 or a ̸= 1, the origin becomes an unstable equilibrium since the

spectral radius ρ(σ)> 1. Regarding the solution of system (4.43) with different initial

guesses, absolute errors can be found in Table 4.12. A forward difference scheme is

utilized to discretize the problem with step sizes h1 = h2 = h3 = h. More efficient

results could be observed using larger step sizes.
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Figure 4.10 Chaotic orbit obtained via the RFPIM of system (4.43), for the
parameters (a, b, c) = (−2,−1,10) and initial condition (x0, y0, z0) = (1,1, 1).

Table 4.12 Norms of the absolute errors at the first step of the RFPIM towards the
solution of system (4.43) with different initial values and various values of step sizes.

Points
Absolute Errors

h=10 h=100 h=1000

(1,1,1) 1.00 ×10−1 1.08×10−2 1.09×10−3

(-1,1,1) 1.08 ×10−1 1.15×10−2 1.16×10−3

(1,-1,1) 1.08 ×10−1 1.15×10−2 1.16×10−3

(1,1,-1) 9.97 ×10−2 1.08×10−2 1.09×10−3

(-1,-1,1) 1.00 ×10−1 1.08×10−2 1.09×10−3

(-1,1,-1) 1.09 ×10−1 1.15×10−2 1.16×10−3

(1,-1,-1) 1.09 ×10−1 1.15×10−2 1.16×10−3

(-1,-1,-1) 9.97 ×10−2 1.08×10−2 1.09×10−3

4.9 Discussions Regarding the Applications

In the previous sections of this chapter, it is investigated that the behaviour of an

unstable equilibrium solution, without facing any conventional drawbacks or without

any linearization, and thus by preserving the nonlinear features of nature, could

be understood by using the RFPIM. Moreover, the conventional fixed-point iteration

method has been seen to fail for capturing the behaviour near unstable equilibria in
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the examples demonstrated in the previous sections.

Since the characterization of all fixed points for a randomly determined function is

almost impossible, at least for now, the characterization of the fixed-points of an nth

degree polynomial which has n different positive real roots has been illustrated in

the first example. A numerical example regarding the subject has been examined

by using the arguments of Theorem 4.1, Corollaries 4.1 and 4.2. In this respect, the

produced results have revealed that the present approach is able to locate the unstable

fixed-points. However, the conventional fixed-point iteration method has been seen

to fail to find out such equilibrium points (see Tables 4.1 and 4.2).

Repelling property of the Julia sets has been observed one more time in a different

way in Example 2. An important result of the example is that the ill-posedness in the

intermediate steps produces multiple solutions in each step even if this situation leads

to a beauty like a fractal. Particularly, 215 points have been used to produce Figure 4.3

by applying the RFPIM 15 times. Therefore, the present method is seen to be slightly

complicated to apply repetitively.

It has been observed that the method can also be used to solve 2-dimensional root

finding problems. Effectiveness and efficiency of the current method versus the

conventional fixed-point iteration method could have been understood by comparing

the results in Tables 4.3 and 4.4. The current method has been seen to be far better

than the conventional approach.

An application regarding population dynamics has been investigated as an illustrative

example in the previous section. It is observed, as seen in Table 4.5, that the present

method is able to find out the threshold level which is an unstable equilibrium solution

for population dynamical models while the usual fixed-point iteration method fails to

explore such unstable thresholds.

In Example 5, a 3-dimensional root-finding problem has been studied in an

unorthodox way by equipping with the efficacy of the current method for capturing

the mathematical behaviour of a differential operator near unstable equilibria. For this

purpose, the given system of equations has been converted to a system of differential

equations to take advantage of the current method for solving differential equations,

then the derivatives are approximated by a forward finite difference scheme, and

hereby, a new 3-dimensional root-finding problem has been constructed. Thus, the

obtained system has been solved by applying the RFPIM only one step and by using

the Newton method. It can be concluded from the results in Table 4.7 that the errors

are in a tendency to decrease which is proportional to h−1. Hence, to understand the

mathematical behaviour of a differential operator near an unstable equilibrium, the
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RFPIM supplies also a tool of accuracy.

Generally, integral operators are difficult to handle when they are compared with

differential operators. For instance, the Newton method has been used for solving

root-finding problems in intermediate steps in this thesis. However, it is a tedious job to

apply the Newton method in the solution procedure of an integral equation, because,

it is a slightly difficult task to obtain the inverse of an integral operator. Therefore,

in the application procedure of the RFPIM regarding the solution of the Fredholm

integral equation of the second kind in Example 6, Lavrentiev’s regularization method

has been utilized to solve the Fredholm integral equations of the first kind encountered

in the intermediate steps. In this context, the produced results show that the present

method is able to discover unstable equilibria with some admissible initial guesses (see

Tables 4.8 and 4.9).

Control of an unstable equilibrium has been an ongoing problem for many researchers.

The pendulum is one of the fundamental examples studied in nonlinear control theory.

In this study, once more, the existence of two different equilibria of the pendulum

system has been observed, and one of these equilibrium positions has been seen to

be unstable. Effective results in Table 4.10 show how much the current method is

accurate to find out this unstable equilibrium. On the other hand, when the system is

solved by using the conventional fixed-point iteration method, the oscillatory nature

of the problem has caused fluctuations in the errors as shown in Table 4.11. Moreover,

the conventional fixed-point iteration method has been seen to discover the attracting

fixed-point of the system only if the iteration has been started by admissible initial

guesses.

In the previous parts of this chapter, although examples up to the last one are of

different characteristics, the last example, related to the unpredictable systems, is of

great importance. The notions of unpredictability and chaos frequently have been

mentioned together in the literature. A chaotic system that has an unstable fixed

point has been considered in Example 8. The repelling fixed-point situated at the

origin of R3 can be viewed as an isolated source performing a resonance behaviour.

By discretizing the given set of ordinary differential equations with the use of a forward

finite difference scheme as is the case in the previous differential equations, the given

system can be converted to a 3D root finding problem. Hence, by choosing relatively

larger step sizes, the errors in Table 4.12 can be produced after the application of the

present method in only one step. Increasing the step size h, the error can be diminished

as much as required. Thus, the storage drawback has been greatly overcome.
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4.10 Use of Relatively Larger Step Sizes

One of the most outstanding aspects of the current method is that the use of relatively

larger step sizes produces more accurate results when the solution procedures of

ordinary differential equations are concerned. Application of the RFPIM just one step

by using relatively larger step sizes has been seen to be quite effective according to the

results in Table 4.6. Therefore, solving only one implicit equation is seen to be more

reasonable as compared to iterating an explicit relation many times. Besides, since

an increase in the step size h yields a Jacobian matrix with a high spectral radius, the

Newton method could be safely used to solve the implicit equations come out in the

intermediate steps.

It has been observed in this chapter that the RFPIM is great to capture the behaviour

of unstable equilibrium solutions, it is not the case for stable equilibrium solutions in

general. On the other hand, the conventional fixed-point iteration method fails to find

out unstable equilibrium solutions. Usually, an ill-posed problem having more than

one solution must be solved at each intermediate step to run the reversed fixed-point

algorithm. After this first step in the application areas, in the following chapters, the

more realistic problems represented by PDEs are going to be dealt with.
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5
LINEAR ADVECTION DIFFUSION PROCESSES

Even the RFPIM is employed originally to find out unstable equilibria of nonlinear

mappings defined on Banach spaces, it has been applied to obtain the responses of

various advection diffusion reaction processes represented by fundamental partial

differential equations (PDEs) such as advection-diffusion equation, Burgers equation

and singularly perturbed generalized Burgers Huxley equation in the forthcoming

chapters of this thesis. The von-Neumann stability analysis has been employed for the

linear problems as one dimensional linear advection diffusion equation. Concordantly,

the stability of the method is examined for different schemes, and the findings reveal

that the method usually has a slightly different but significant stability region as

compared to the conventional approach.

In the previous chapters, the RFPIM has been constructed and has been implemented

to observe its effectiveness through various problems. Starting from this chapter the

direction of this thesis is going to focus on more realistic problems represented by

PDEs, hereby, the opportunity to uncover the validity, strength, and persuasiveness of

the present method. In this chapter, being a linear, unsteady, and one-dimensional

PDE, Equation 2.1 is studied.

5.1 A Criterion for Convergence

The linear advection-diffusion equation possesses a unique solution under suitable

assumptions, and since the equation is linear, the attracting or repelling property of

the solution should be a global feature due to its uniqueness. In the existing study,

this characteristic is of top priority even before the crucial stability issues. Therefore,

an approach to check the requirements of Theorem 2.1 will be developed in this

section. To achieve this, the left hand side of Equation 2.1 will be integrated once with

respect to time variable (t) and twice with respect to the space variable (x) aiming

at getting an operator N as in Equation 1.1. To begin with, let us note that Equation

2.1, the initial condition u(x , 0) = f (x), and the boundary conditions u(a, t) = g(t),
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and u(b, t) = h(t) together form an initial-boundary value problem over the domain

(x , t) ∈ [a, b]× [0, T] where a and b are the spatial endpoints and T is the final time.

Now, let us construct the corresponding integral operator for Equation 2.1 as follows

0=

∫ x

a

∫ x

a

u(ξ, t)− u(ξ, 0) dξdξ

+α

∫ t

0

∫ x

a

u(ξ,τ)− u(a,τ) dξdτ

− ε
∫ t

0

u(x ,τ)− u(a, t)− xux(a,τ) dτ. (5.1)

To eliminate the term ux(a,τ), it will be a useful trick to write x = b in one of the

intermediate steps of the integration processes. Hence the following integral relation

is derived

∫ t

0

ux(a,τ) dτ=−
1
εb

∫ b

a

(b− ξ) (u(ξ, t)− u(ξ, 0)) dξ

−
α

εb

∫ b

a

∫ t

0

u(ξ,τ)− u(a,τ) dτdξ

+
1
b

∫ t

0

u(b,τ)− u(a,τ) dτ. (5.2)

Now, the corresponding integral operator could be defined as

N(u(x , t)) :=u(x , t) +

∫ x

a

∫ x

a

u(ξ, t)− u(ξ, 0) dξdξ

+α

∫ t

0

∫ x

a

u(ξ,τ)− u(a,τ) dξdτ

− ε
∫ t

0

u(x ,τ)− u(a,τ) dτ

−
x
b

∫ b

a

(b− ξ) (u(ξ, t)− u(ξ, 0)) dξ

−
αx
b

∫ b

a

∫ t

0

u(ξ,τ)− u(a,τ) dτdξ

+
εx
b

∫ t

0

u(b,τ)− u(a,τ) dτ. (5.3)

Hence, being a fixed-point problem, N(u) = u is obtained. By applying the Cauchy

integral reduction formula and by using the initial-boundary conditions, N(u) could

be simplified further. In the end, the derivative of N with respect to u could be derived
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as follows:

N ′(u) :=1+ (x − a)2 −
∫ x

a

(x − ξ) f (ξ) dξ+α(x − a)t

−α(x − a)

∫ t

0

g(τ) dτ− εt + ε

∫ t

0

g(τ) dτ

−
(b− a)2 x + 2α(b− a)x t

2b
(5.4)

for the integral form of the debated advection diffusion problem. In accordance

with Theorems 3.1 and 2.1, ∥N ′(u)∥L2([a,b]×[0,T]) must be greater than 1. Therefore,

this criterion should be checked before the stability criteria and numerical

implementations in the following sections.

5.2 Stability Issues

The mentioned initial-boundary value problem could be discretized via various

difference schemes by constructing a two-dimensional uniform lattice on the rectangle

[a, b] × [0, T]. Throughout the computations and observations carried out in this

chapter, the initial values are represented by the nodal values u j,1 for j = 1,2, 3, . . . M+
1, and the boundary conditions are represented by the nodal values u1,n and uM+1,n for

n= 2,3, . . . , L+1 where M , L ∈ N. Also, two constants, namely r1 and r2, are defined

as follows

r1 := α∆t/∆x

r2 := ε∆t/∆x2

for the use in stability analysis.

Theorem 5.1. The RFTFS scheme is stable whenever one of the conditions

r1 ≤ 1 and r2 ≤ r1/2 OR

1< r1 < 2 and (r2
1 − r1)/2≤ r2 ≤ r1/2 (5.5)

is satisfied.

Proof. Let us discretize Equation 2.1 by using the FTFS scheme:

u j,n+1 − u j,n

∆t
+α

u j+1,n − u j,n

∆x
− ε

u j+2,n − 2u j+1,n + u j,n

∆x2
= 0. (5.6)
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By reversing the iteration, the following scheme is obtained

u j,n − u j,n+1

∆t
+α

u j,n+1 − u j+1,n+1

∆x
− ε

u j,n+1 − 2u j+1,n+1 + u j+2,n+1

∆x2
= 0. (5.7)

Now, by employing the von Neumann stability analysis the following equation is

derived

Anei jk∆x − An+1ei jk∆x

∆t
+α

An+1ei jk∆x − An+1ei( j+1)k∆x

∆x
(5.8)

− ε
An+1ei jk∆x − 2An+1ei( j+1)k∆x + An+1ei( j+2)k∆x

∆x2
= 0. (5.9)

By solving this equation for A,

A=
1

1− r1 + r2 + (r1 − 2r2)eik∆x + r2ei2k∆x
(5.10)

is acquired. If the exponentials are expanded by using the Euler identity and the result

is simplified, then |A| could be computed as

|A|=
�

1+4 sin2
�

k∆x
2

�

�

r2
1 − 2r2r1 − r1 + 2r2

2 +
�

−2r2
2 + 2r1r2 − 2r2

�

cos(k∆x)
�

�−1/2

Here, necessarily, the inequality

−
�

r2
1 − 2r2r1 − r1 + 2r2

2

�

≥ |−2r2
2 + 2r1r2 − 2r2| (5.11)

must hold. There are two possible cases

• −
�

r2
1 − 2r2r1 − r1 + 2r2

2

�

≥ (−2r2
2 + 2r1r2 − 2r2) or

• −
�

r2
1 − 2r2r1 − r1 + 2r2

2

�

≥ −(−2r2
2 + 2r1r2 − 2r2).

Further simplifications yield

• (r2
1 − r1)/2≤ r2 or

• (r1 − 1)/2≤ r2 ≤ r1/2.

respectively. Here, if r1 < 1 then (r1 − 1)/2 ≤ (r2
1 − r1)/2 ≤ 0 ≤ r2. Hence the only

required condition is r2 ≤ r1/2. Besides, if 1< r1 < 2 then (r1 − 1)/2≤ (r2
1 − r1)/2≤

r2 ≤ r1/2 must hold. Therefore, |A| is always greater than 1 whenever condition 5.5

is satisfied. ■
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It is important to note that the reversion process is applied for each term in Equation

2.1 separately. Another significant issue regarding the stability analysis is the need for

the criterion |A| > 1 instead of |A| < 1. The reverse nature of the RFPIM forces us to

prefer such a condition.

Theorem 5.2. The RFTCS scheme is stable whenever the conditions

r1 < 1 and
r2

1

2
≤ r2 ≤

1
2

(5.12)

are fulfilled.

Proof. By applying the present method using the FTCS scheme, the equation

u j,n − u j,n+1

∆t
+α

u j−1,n+1 − u j+1,n+1

2∆x
− ε

u j−1,n+1 − 2u j,n+1 + u j+1,n+1

∆x2
= 0 (5.13)

is obtained. If the von Neumann stability analysis is performed to observe the

numerical stability,

Anei jk∆x − An+1ei jk∆x

∆t
+α

An+1ei( j−1)k∆x − An+1ei( j+1)k∆x

2∆x

− ε
An+1ei( j+1)k∆x − 2An+1ei jk∆x + An+1ei( j−1)k∆x

∆x2
= 0

is achieved. By solving the last equation for A, it is obtained that

A=
1

1− 2r2(1− cos(k∆x))− ir1 sin(k∆x)
. (5.14)

Consequently, the magnitude of the amplification factor is to be found as

|A|=
�

(1− 2r2(1− cos(k∆x)))2 + (r1 sin(k∆x))2
�−1/2

(5.15)

=

�

1+ (1− cos(k∆x))
�

r2
1 − 4r2 + 4r2

2 + cos(k∆x)
�

r2
1 − 4r2

2

��

�−1/2

. (5.16)

Since 1−cos(k∆x)≥ 0, |A| is greater than 1 if −(r2
1−4r2+4r2

2 )≥ |r
2
1−4r2

2 | is satisfied.

In the present circumstance, there are two possibilities:

• −r2
1 + 4r2 − 4r2

2 ≥ r2
1 − 4r2

2 ,

• −r2
1 + 4r2 − 4r2

2 ≥ −(r
2
1 − 4r2

2 ).

The first possibility necessitates 1
2 ≥ r2, and the second one necessitates r2 ≥

r2
1
2 . Here,
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r1 < 1 immediately comes from the relation r2
1/2 < r2 ≤ 1/2. Hence, the magnitude

of A remains greater than 1 with the assumptions r1 < 1 and r2
1/2≤ r2 ≤ 1/2. ■

Theorem 5.3. The RFPIM is unstable for the FTBS scheme.

Proof. If the RFPIM is implemented by combining it with the FTBS scheme, then the

amplification factor is obtained as

A=
1

1+ r1 + r2 − (r1 + 2r2)e−ik∆x + r2e−i2k∆x
. (5.17)

By using the Euler identity and by rearranging the trigonometric terms, |A| is computed

as

|A|=
�

1+ 4 sin2
�

k∆x
2

�

×

��

r2
1 + 2r2r1 + r1 + 2r2

2

�

+
�

−2r2
2 − 2r1r2 − 2r2

�

cos(k∆x)
�

�−1/2
. (5.18)

If −
�

r2
1 + 2r2r1 + r1 + 2r2

2

�

≥ |−2r2
2 − 2r1r2 − 2r2|, then |A| could be greater than 1,

and hence, |A|> 1 holds. Since 2r2
2 + 2r1r2 + 2r2 > 0, there is only one case

−
�

r2
1 + 2r2r1 + r1 + 2r2

2

�

≥ 2r2
2 + 2r1r2 + 2r2. (5.19)

By arranging the inequality, (r1 + 2r2) + (r1 + 2r2)2 ≤ 0 is obtained. However, this

holds only for r1 = r2 = 0. ■

Theorem 5.4. The RBTFS scheme is stable whenever one of the following conditions

r2 ≤ r1/2 OR (1+ r1)/2≤ r2 (5.20)

is satisfied.

Proof. By combining the conventional FPIM and the BTFS scheme for Equation 2.1

u j,n − u j,n−1

∆t
+α

u j+1,n − u j,n

∆x
− ε

u j+2,n − 2u j+1,n + u j,n

∆x2
= 0 (5.21)

is obtained. Then, by reversing the iteration

u j,n−1 − u j,n

∆t
+α

u j,n−1 − u j+1,n−1

∆x
− ε

u j,n−1 − 2u j+1,n−1 + u j+2,n−1

∆x2
= 0 (5.22)

is obtained. Now, if the von Neumann stability analysis is performed to observe the
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numerical stability, the amplification factor A is obtained as

A= 1+ r1 − r2 + (−r1 + 2r2)e
ik∆x − r2ei2k∆x . (5.23)

By expanding the exponentials into trigonometric form by using the Euler identity and

simplifying the result, |A| is computed as

|A|=
�

1+ 4 sin2
�

k∆x
2

�

×

�

r2
1 − 2r2r1 + r1 + 2r2

2 +
�

−2r2
2 + 2r1r2 + 2r2

�

cos(k∆x)
�

�1/2

The only case to be considered for stability is
�

r2
1 − 2r2r1 + r1 + 2r2

2 +
�

−2r2
2 + 2r1r2 + 2r2

�

cos(k∆x)
�

> 0. There are two cases to

consider here

• r2
1 − 2r2r1 + r1 + 2r2

2 >
�

−2r2
2 + 2r1r2 + 2r2

�

• r2
1 − 2r2r1 + r1 + 2r2

2 > −
�

−2r2
2 + 2r1r2 + 2r2

�

The second condition always holds. The inequality (r1 − 2r2)(r1 − 2r2 + 1) > 0 can

be deduced from the first case. Hence, the conditions in Equation 5.20 have been

concluded by reducing the last inequality. This completes the proof. ■

Theorem 5.5. The RFPIM is unconditionally stable for the BTCS scheme.

Proof. After the implementation of the RBTCS scheme, by performing the von

Neumann stability analysis, the amplification factor A is obtained as

A= 1+ 2r2(1− cos(k∆x))− ir1 sin(k∆x). (5.24)

Hence, |A| is attained as

|A|=
�

(1− cos2(k∆x))r2
1 + (1+ 2r2(1− cos(k∆x)))2

�1/2

. (5.25)

Since each term is positive in the square-root, and particularly the second term

is greater than 1 the norm of the amplification factor A is always greater than 1.

Therefore, the numerical scheme RBTCS is unconditionally stable. ■

Theorem 5.6. The RBTBS scheme is stable whenever one of the following conditions

• r1 ≤ 1 and (1− r1)/2≤ r2

46



• 1< r1

is satisfied.

Proof. For the RBTBS scheme, the amplification factor A is obtained as

A= 1− r1 − r2 + (r1 + 2r2)e
−ik∆x − r2e−i2k∆x . (5.26)

Here, |A| can be computed as

|A|=
�

1+ 4sin2
�

k∆x
2

�

×

��

r2
1 + 2r2r1 − r1 + 2r2

2

�

+
�

−2r2
2 − 2r1r2 + 2r2

�

cos(k∆x)
�

�1/2

. (5.27)

Here,
�

r2
1 + 2r2r1 − r1 + 2r2

2

�

≥ |−2r2
2 − 2r1r2 + 2r2| must hold. Again, there are two

cases

•
�

r2
1 + 2r2r1 − r1 + 2r2

2

�

≥
�

−2r2
2 − 2r1r2 + 2r2

�

,

•
�

r2
1 + 2r2r1 − r1 + 2r2

2

�

≥ −
�

−2r2
2 − 2r1r2 + 2r2

�

.

From the first case, it can be deduced that r2 > (r1 − r2
1 )/2. From the second case,

(r1 + 2r2)(r1 + 2r2 − 1) > 0 could be derived. Hence, r2 > (1 − r1)/2, and thereby,

r1 ≤ 1. Notice also that if r1 ≤ 1 then (1− r1)/2 > (r1 − r2
1 )/2. Therefore, the strict

condition r2 > (1− r1)/2 should be adopted for r1 ≤ 1. If r1 ≥ 1 then (r1− r2
1 )/2< 0,

and r2 > (r1 − r2
1 )/2 is always true. ■

Table 5.1 Stability conditions for the present method.

FT BT

FS r1 ≤ 1 and r2 ≤ r1/2 OR r2 ≤ r1/2 OR
1< r1 < 2 and (r2

1 − r1)/2≤ r2 ≤ r1/2 (1+ r1)/2≤ r2

CS r1 < 1 and
r2
1
2 ≤ r2 ≤

1
2 Unconditionally Stable

BS Unstable r1 < 1 and (1− r1)/2≤ r2 OR
1< r1

Stability behaviours of the current method for the standard schemes are summarized

in Table 5.1. Although the conventional method is unstable for the FTFS scheme, the
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current method is conditionally stable for the same scheme. Moreover, if the inequality

r2 ≤
1
2(r1 + r2

1 ) is solved for the diffusivity constant ε then the criterion ε ≤ α
2 (∆x +

α∆t) is obtained. Hence, if the current method is applied together with the FTFS

scheme, then the method is seen to be still effective when the problem is getting stiffer,

ε ≪ 1. In other words, the RFTFS scheme appears to be conditionally stable for

challenging advection-dominant diffusion problems even in the case ε→ 0.

The change in the explicit or implicit nature of a numerical scheme after hybridizing

with the RFPIM is another crucial result of the present study. In this respect, notice

that the RBT schemes uncover an explicit relationship between the nodes of the

computational molecule, and the RFT schemes reveal an implicit relationship between

the nodes.

5.3 Numerical Illustrations

The numerical efficiency of the current method has been tested in this section to

recover the initial condition from the final time data. Apparently, this is an inverse

problem, being suitable for the spirit of the reversed algorithm, and is designed in such

a way that the final time data u(x , T ) is obtained via the solution of the accompanying

forward problem. Then, the initial condition u(x , 0) is tried to be recovered from the

final condition.

Example 1. Consider the inverse problem represented by the one-dimensional, linear,

and unsteady advection diffusion equation as stated in Equation 2.1. Here, the initial

condition or the data to be recovered is given by

u(x , 0) = 10e−
1
2 x2
+ 6e−

1
2 (x−6)2 + 4e−

1
2 (x+8)2 (5.28)

which represents a sum of three Gaussian functions, as in Figures 5.1, 5.2 and 5.3.

The boundary conditions are taken to be the Dirichlet boundary conditions as

u(−15, t) = u(15, t) = 0. (5.29)

Since the current study does not depend upon an experimental basis, the final time

data, u(x , T ), could be derived by using the corresponding forward problem, either

analytically or numerically. Then, the obtained final data u(x , T ) could be utilized to

recover the initial data via the RFPIM.

The present method is seen to be critically effective for handling such inverse

problems. Figure 5.1 illustrates a very accurate response for relatively great final times
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such as T = 5 or T = 10 seconds even under a challenge condition ε = 0.001. It is

known that the advection-diffusion problems under advection dominance are quite

challenging and stiff. Similarly, Figure 5.2 exhibits the power of the present approach

in the reconstruction process of the initial data when the phase speed is high, in other

words, α is getting higher. The strength of the method emerges in Figure 5.3 even

under critical advection dominance levels as ε= 0.00001.
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Figure 5.1 Final condition (blue), initial condition (red), and the recovered initial
data (black dashed) via the RFTFS scheme for T = 5 (left) and T = 10 (right) with

α= 0.5, ε= 0.001, ∆x = 0.01, and ∆t = 0.01.
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Figure 5.2 Final condition (blue), initial condition (red), and the recovered initial
data (black dashed) via the RFTCS scheme for T = 1 with α= 10, ε= 0.1,

∆x = 0.01, and ∆t = 0.0005 (left), and for T = 2 with α= 0.5, ε= 0.01, ∆x = 0.1,
and ∆t = 0.1 (right).

Although the current study is theoretical, an admissible level of error or noise may be

expected during the experimental studies in the measurement process of the final time

data. To observe the effectiveness of the RFPIM in such cases a noise data is added

to the final time data as in Figure 5.4. The sample noise has been produced via Ran-

domReal command of the utilized software [57]. The results in Tables 5.2-5.4 reveal

that even there are some numerical fluctuations in the errors, the current method is

still effective to capture the initial behaviour of the problem under admissible noise

levels.

The obtained results via the RFTCS scheme could be observed in Figure 5.5 for T = 10
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Figure 5.3 Final condition (blue), initial condition (red), and the recovered initial
data (black dashed) via the RFTBS scheme for T = 10 with ε= 10−5 (left), and ε= 0

(right) where α= 0.5, ∆x = 0.01, and ∆t = 0.01.

seconds, α = 0.5 m/s, and ε = 10−5 m2/s. In this case, the RMSE is computed to be

0.066, the relative error in the mean values is found to be 0.029. Obviously, the present

method is able to recover original initial data with a negligible effect of the noise.
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Figure 5.4 Sample noise (left) and noisy final data (right).

Table 5.2 The RMSE, the maximum absolute (AE) and relative (RE) errors for
various values of space and time increments regarding Example 1.

∆t ∆x RMSE Max AE Max RE
0.1 0.1 0.1737 0.6557 0.0659

0.01 0.01 0.0418 0.1591 0.0159
0.001 0.1 0.3013 1.1213 0.1127
0.001 0.01 0.0558 0.2123 0.0212
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Figure 5.5 initial condition (red), and the recovered initial data (black dashed) via
the RFTCS scheme for T = 10 with ε= 10−3 where α= 0.5, ∆x = 0.01, and

∆t = 0.005 (left) and absolute errors (right).

Table 5.3 The RMSE, the maximum absolute (AE) and relative (RE) errors for
various values of space and time increments with 5% noise regarding Example 1.

∆x ∆t RMSE Max AE Max RE
0.1 0.1 0.2819 0.6500 0.0653
0.01 0.01 0.2637 0.4665 0.0467
0.001 0.1 0.3855 1.2599 0.1266
0.001 0.01 0.2714 0.5500 0.0550

Table 5.4 The RMSE, the maximum absolute error, the absolute error in the mean,
and relative error in the mean for various noise levels regarding Example 1.

Noise levels: 100% 50% 30% 10% 5% 0%
RMSE 0.342 0.201 0.135 0.042 0.037 0.035

AE(max) 2.529 1.481 0.763 0.204 0.165 0.132
AE(mean) 0.154 0.083 0.062 0.025 0.022 0.022
RE(mean) 0.092 0.050 0.037 0.015 0.013 0.013
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Example 2. In this example, inspired by reference [89], consider Equation 2.1

together with the Dirichlet boundary conditions, u(−15, t) = u(15, t) = 0, and the

following initial condition

u(x , 0) =











































































0 x < −10.5

8x + 84 −10.5 ≤ x < −10.

−8x − 76 −10.0 ≤ x < −9.5

0 −9.5 ≤ x < −0.5

20x + 10 −0.5 ≤ x < 0

10− 20x 0 ≤ x < 0.5

0 0.5 ≤ x < 7.5

12x − 90 7.5 ≤ x < 8.

102− 12x 8.0 ≤ x < 8.5

0 8.5 ≤ x

(5.30)

Notice that the imposed initial condition is not continuously differentiable for this

example. The initial condition is compactly supported through three non-intersecting

intervals. Thus, the problem can be regarded also as a sparse source identification

problem. As it can be seen in Figure 5.6, the present method is excellent to locate the

sparse initial sources. On the other hand, if the effect of diffusion is getting relatively

prevalent then the RFPIM suffers to identify the source intensities since the second

derivative of the initial condition is almost zero.
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Figure 5.6 Final condition (blue), initial condition (red), and the recovered initial
data (black dashed) via the FTCS scheme for T = 1 with ε= 10−3 , α= 1.0,
∆x = 0.01, and ∆t = 0.001 (left), and ε= 0.01 , α= 1.0, ∆x = 0.01, and

∆t = 0.001 (right) regarding Example 2.

Example 3. In this example [90], an advection diffusion equation is considered for

α = 1.0 and ε = 0.01. For this case, the analytical solution to Equation 2.1 is as

follows

u(x , t) =
0.025

p
0.000625+ 0.02t

exp−
(x + 0.5− t)2

(0.00125+ 0.04t)
(5.31)

where 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1. The corresponding initial and boundary conditions

52



could be derived from the exact solution. Since the exact solution is known as in

Figure 5.7, the effectiveness of the RFPIM could be observed in a more convenient

and persuasive way in this example.

Figure 5.7 Exact solution of the problem in Example 3.

To obtain noisy final time data, a noise signal has been added to the exact final data.

Notice that the noise level is approximately 10% of the mean of the final data as

it is seen in Figure 5.8. Figure 5.9 reveals the accuracy of the current method even

under 10% noisy measurement of the final data. The propagation of the corresponding

absolute errors between the initial condition and the recovered initial data could be

observed in Figure 5.10.
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Figure 5.8 The exact final data (red) and the noisy final data (black) regarding
Example 3.

As can be concluded from the results in Table 5.5, the current method is able to

recapture the initial data even under the circumstances of 10% noisy measurements.
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Figure 5.9 The final data (blue), the initial data (red), and the recovered initial data
(dashed) obtained via the RFTCS scheme regarding Example 3.
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Figure 5.10 Propagation of the absolute error obtained via the RFTCS scheme
regarding Example 3.

When we are closing this section, we ardently want to reveal a thought-provoking

case. In this respect, a final time data covering a high level of noise up to 100% is

considered. In other words, the measured final time data is assumed to include a

relative error of up to 100%. As could be seen in Figure 5.11, the seed of the iteration,

the noisy final time data, includes undesirable fluctuations. However, the RFPIM is

seen to be able to eliminate the unwanted fluctuations rapidly, and strikingly, recover

the initial data (see Figure 5.12). The quantitative results regarding the situation has

been presented in Table 5.6. The RMSE is found to be 4.08‱, and the maximum

absolute error is computed to be 1.46%.
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Table 5.5 The RMSE and the maximum absolute errors (AE) for various values of
space and time increments with 10% noise in the mean.

∆x ∆t RMSE Max AE
0.1 0.01 0.0198214 0.0419892
0.1 0.001 0.0168792 0.0168792

0.01 0.001 0.0005695 0.0017127
0.01 0.0001 0.0021366 0.0079092

0.005 0.0001 0.0032523 0.0118425
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Figure 5.11 The exact final data (red) and sample noisy final data (black) regarding
Example 3.

Table 5.6 The RMSE and the maximum absolute errors (AE) for various values of
space and time increments with 100% noise in the mean via the RFTCS scheme.

∆x ∆t RMSE Max AE
0.1 0.01 0.018618 0.041324
0.1 0.001 0.019349 0.037195

0.01 0.001 0.004080 0.014551
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Figure 5.12 The numerical response obtained via the RFTCS scheme by starting with
approximately 100% noisy data regarding Example 3.
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6
NONLINEAR ADVECTION DIFFUSION PROCESSES

In the previous chapter, the RFPIM has been successfully implemented to identify

the initial condition from end-time data in linear advection-diffusion processes. In

this chapter and in the following chapters, the main motivation of this thesis is to

apply the current method to solve more realistic problems represented by nonlinear

PDEs. In this respect, the RFPIM has been utilized to solve a class of fundamental

partial differential equations, namely viscous and inviscid Burgers equations, and

singularly perturbed and generalized Burgers Huxley equation. Especially, inverse

problems in these equations have been investigated by considering the reversed nature

of the current method. The results produced confirm that the current method has the

potential to effectively solve problems governed by PDEs representing the phenomena

of advection, diffusion, and reaction. Derivations reveal that even in challenging

situations such as advection dominance, the RFPIM is highly capable of capturing the

natural behaviour of the problems under study. Another important finding, regarding

the Burgers equation, is that the RFPIM can allow the use of relatively larger time steps.

This feature is of great importance, to the best knowledge of the author, in reducing

the need of storage space and CPU time for the whole computational community.

Therefore, this chapter is devoted to showing how the RFPIM could be utilized through

the solution procedures of nonlinear PDEs. In this context, we discuss the RFPIM

towards the solution procedure of a fundamental class of PDEs including the inviscid

Burgers equation, and the viscous Burgers equation. The mentioned equations can be

summarized as in Equation 2.2. Besides, the following initial and boundary conditions

are imposed on Equation 2.2

u(x , 0) = f (x), u(x , a) = g1(t), u(x , b) = g2(t). (6.1)

The Burgers equation, being a reduction of the Navier-Stokes equation to one

dimension, is of great importance. It is a test problem for numerical methods since

it is well studied in the literature. Moreover, it still attracts a lot of researchers from

various disciplines because of its potential applications. Therefore, in the following
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sections, the Burgers equation has been utilized to observe the numerical performance

of the RFPIM on the numerical treatment of PDEs.

6.1 Solution Procedure

In the solution process, the model equation is discretized by using a basic finite

difference scheme, and then the RFPIM is applied. For example, to obtain a fully

discretized scheme, for example, the BTCS scheme would be considered as follows

u j,n − u j,n−1

∆t
+αu j,n

u j+1,n − u j−1,n

2∆x
− ε

u j+1,n − 2u j,n + u j−1,n

∆x2
= 0. (6.2)

By reversing the numerical scheme and the advective effect, the fully discretized

scheme

u j,n−1 − u j,n

∆t
+αu j,n−1

u j−1,n−1 − u j+1,n−1

2∆x
− ε

u j−1,n−1 − 2u j,n−1 + u j+1,n−1

∆x2
= 0. (6.3)

is reached. Besides, a semi-discrete FT scheme could be written as follows

un+1(x)− un(x)
∆t

+αun(x)
d

d x
un(x)− ε

d2

d x2
un(x) = 0 (6.4)

where ∆t represents the time step size. Now, by applying the RFPIM, the following

scheme could be reached

un − un+1

∆t
−αun+1u′n+1 − εu

′′
n+1 = 0. (6.5)

We can solve the final equation for un(x) to obtain an explicit numerical scheme in

backward direction. Therefore, the numerical implementations will not require any

further root finding problems.

In the next section, some illustrative problems are discussed to show the effectiveness

of the use of Equations 6.5 and 6.3.

6.2 Numerical Illustrations

In this section, some numerical examples are implemented to show the effectiveness

of the present method to capture the physical nature governed by a class of partial

differential equations. In this respect, in the following examples, the inviscid Burgers

equation and viscous Burgers equation are considered.
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Example 1. [Viscous Burgers Equation: Forward Problem] The model problem

could be posed together with an associated sinusoidal initial condition and two

accompanying boundary conditions as follows

∂ u
∂ t
+αu

∂ u
∂ x
− ε
∂ 2u
∂ x2

= 0, ∀x ∈ (0,1), t > 0, (6.6)

u(x , 0) = sin(πx), (6.7)

u(0, t) = u(1, t) = 0. (6.8)

Under these circumstances, the exact solution of the problem was given by Cole [72]
in the following form

u(x , t) = 2πε

∑∞
n=1 ane−n2π2εt n sin nπx

a0 +
∑∞

n=1 ane−n2π2εt cos nπx
(6.9)

where the coefficients an could be computed as

a0 =

∫ 1

0

e−(1−cosπx)/(2πε) d x ,

an = 2

∫ 1

0

e−(1−cosπx)/(2πε) cos(nπx) d x

for n = 0,1, 2, . . . . In the solution procedure of the problem, parameters α and ε are

taken to be 1 and 0.0001, respectively. The space interval (0, 1) is divided into 300

equidistant sub-intervals and the time step is taken as 0.0005 for comparison purposes.

The findings in Table 6.1 indicate that the obtained results are in good agreement with

the results in the literature. The qualitative results in Figure 6.1 reveal that the current

method is able to capture the sharp behaviour near the right boundary, x = 1. In this

regard, let us note that a relatively small value of ε like 0.0001 is especially a challenge

condition here.

Example 2. [Initial Data Identification] The exact solution of the Burgers equation

together with special initial and boundary conditions may be known in the literature

as in the problem of this example. Here, we consider the problem stated in Equations

2.2 and 6.1 together with

f (x) =
2πε sin(πx)
B + cos(πx)

, B > 0, g1(t) = g2(t) = 0. (6.10)

The exact solution of the problem represented by Equations 2.2, 6.1, and 6.10 is given
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Table 6.1 Comparison of numerical results with literature for ε= 0.0001 at t = 1.0
and various grid points for Example 1.

x [63] [64] [65] [66] [67] [62] RFPIM
0.05 0.0422 0.0424 0.0419 0.0379 0.0379 0.0379 0.0379
0.16 0.1266 0.1263 0.1253 0.1213 0.1213 0.1212 0.1212
0.27 0.2108 0.2103 0.2034 0.2044 0.2044 0.2044 0.2043
0.38 0.2946 0.2939 0.2527 0.2872 0.2872 0.2871 0.2870
0.50 0.3778 0.3769 0.2350 0.3769 0.3769 0.3768 0.3767
0.61 0.4601 0.4592 0.2578 0.4584 0.4584 0.4583 0.4580
0.72 0.5414 0.5404 0.6014 0.5388 0.5388 0.5387 0.5383
0.83 0.6213 0.6201 0.7011 0.6179 0.6179 0.6178 0.6173
0.88 0.6605 0.6600 0.6717 0.6533 0.6533 0.6530 0.6526
0.94 0.6992 0.6957 0.7261 0.6952 0.6952 0.6890 0.6944

Figure 6.1 Shock wave behaviour of the problem in Example 1 for ε= 0.0001.

in reference [61] as follows

u(x , t) =
2πεe−π

2εt sin(πx)
B + e−π2εt cos(πx)

, B > 0. (6.11)

In the solution procedure the constant B is taken as 1.50. The reversed nature of the

current method pushes us to consider the inverse problem in the Burgers equation.

In this respect, final time condition is taken from the exact solution in Equation 6.11.

Then, the exact initial condition is tried to be recovered from the final time data via

the RFPIM.

For extremely challenging conditions, the quantitative results could be seen in Tables

6.2 and 6.3. To the best knowledge of the author, for such small values of diffusivity

coefficient, most numerical methods tend to fail to capture the natural behavior of the
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problem being analyzed.

Table 6.2 L2(0, 1) errors for various values of ε regarding the problem represented
by Equations 2.2, 6.1, and 6.10.

T ε= 10−20 ε= 10−15 ε= 10−10 ε= 10−5 ε= 10−3

0.1 8.81× 10−36 1.53× 10−29 1.67× 10−19 1.67× 10−9 1.67× 10−5

0.2 8.81× 10−36 3.58× 10−29 3.35× 10−19 3.35× 10−9 3.33× 10−5

0.3 8.81× 10−36 5.34× 10−29 5.02× 10−19 5.02× 10−9 4.98× 10−5

0.4 8.81× 10−36 6.70× 10−29 6.70× 10−19 6.70× 10−9 6.62× 10−5

0.5 8.81× 10−36 7.96× 10−29 8.37× 10−19 8.37× 10−9 8.25× 10−5

0.6 8.81× 10−36 9.88× 10−29 1.00× 10−18 1.00× 10−8 9.88× 10−5

0.7 8.81× 10−36 1.17× 10−28 1.17× 10−18 1.17× 10−8 1.14× 10−4

0.8 8.81× 10−36 1.33× 10−28 1.34× 10−18 1.33× 10−8 1.31× 10−4

0.9 8.81× 10−36 1.51× 10−28 1.50× 10−18 1.50× 10−8 1.46× 10−4

1.0 8.81× 10−36 1.64× 10−28 1.67× 10−18 1.67× 10−8 1.62× 10−4

Table 6.3 Maximum absolute errors for various values of ε regarding the problem
represented by Equations 2.2, 6.1, and 6.10.

T ε= 10−20 ε= 10−15 ε= 10−10 ε= 10−5 ε= 10−3

0.1 LDMP1 LDMP 9.18× 10−21 9.22× 10−11 4.04× 10−5

0.2 LDMP 1.57× 10−30 1.83× 10−20 1.85× 10−10 8.06× 10−5

0.3 LDMP 1.57× 10−30 2.75× 10−20 2.79× 10−10 1.20× 10−4

0.4 LDMP 1.57× 10−30 3.67× 10−20 3.73× 10−10 1.60× 10−4

0.5 LDMP 2.36× 10−30 4.59× 10−20 4.69× 10−10 1.99× 10−4

0.6 LDMP 3.94× 10−30 5.51× 10−20 5.65× 10−10 2.38× 10−4

0.7 LDMP 5.52× 10−30 6.43× 10−20 6.62× 10−10 2.77× 10−4

0.8 LDMP 5.52× 10−30 7.34× 10−20 7.59× 10−10 3.15× 10−4

0.9 LDMP 7.88× 10−30 8.26× 10−20 8.58× 10−10 3.54× 10−4

1.0 LDMP 7.88× 10−30 9.18× 10−20 9.57× 10−10 3.92× 10−4

Example 3. [Inviscid Burgers Equation] In this example, the current method is

utilized to reach a numerical solution of the inviscid Burgers equation. The associated

initial boundary value problem is taken from [60] and stated as

∂ u
∂ t
+αu

∂ u
∂ x
= 0, ∀x ∈ (0, 2π), t > 0, (6.12)

u(x , 0) = 1+ sin(x), (6.13)

u(0, t) = u(2π, t). (6.14)

Note that the initial condition is posed as a sinusoidal wave, and periodic boundary

conditions are imposed on the model equation. Besides, α is taken to be 1 through
1LDMP means the maximum absolute error is less than double machine working precision.
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the computations. Firstly, the governing equation is discretized by using a backward

in time and forward in space scheme (BTFS). Afterwards, the numerical scheme is

combined with the RFPIM.

Problem represented by Equations 6.12-6.14 exhibits an N-wave behaviour, and the

wave is getting steeper as time increases. The obtained results are depicted in Figure

6.2. Note that one of the most outstanding indication of this example is that the time

step∆t is taken to be 0.1 and the spatial increment∆x is taken to be 0.21 throughout

the computations.
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Figure 6.2 Behaviours of the problem in Example 2 for various time spans such
as t = 1, t = 2, t = 10 seconds (left) and the solution profile at the end-time

(right).

Now, being capable of obtaining the numerical solutions of various types of the Burgers

equation via the RFPIM, we intend to carry these results on o more realistic basis. In
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this respect, an optimization problem regarding the minimization of the sonic boom of

supersonic aircraft is taken into consideration in the next example. This application is

of great importance for us since it reveals how the RFPIM is applied to gain responses

to a PDE-constrained minimization problem.

Example 4. [An Inverse Problem: Sonic Boom Modelling]

In this example an optimal control problem that represents the sonic boom produced

by a supersonic aircraft has been debated. When an air vehicle breaks the sound

barrier, in other words, its speed exceeds the speed of sound in the air, a shock wave

is propagated through the air. In the literature, this phenomenon is called as sonic

boom, and the shape of the shock wave through the propagation could be seen in

Figure 6.3.

Figure 6.3 Pressure signature of a supersonic plane [69].

The shape of the shock wave in the far field is called as pressure signature, and

the ground scanned by the sonic boom is called as boom carpet. To derive an

optimal solution to this problem the following PDE constraint minimization problem,

accompanied with Dirichlet boundary conditions, is considered [68]:

J(u0) =
1
2

∫

R
(u∗(x)− u(x , T ))2 d x (6.15)

subject to ut +αuux − εux x = 0 (6.16)

u(x , 0) = u0. (6.17)

Now, let us consider the sonic boom governed by the Burgers process with the

following target function

u∗(x) =
3

2000

p
πx
�

erf
�

5
p

20− x
�

+ erf
�

x + 2
p

20
��

+ e−(x+2
p

20)2 − e−(x+5
p

20)2
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where |x | ≤ 25, and u∗(x) = 0 elsewhere [68]. Note that the diffusion coefficient

and the advection coefficient are taken to be ε = 10−4 and α = 1 throughout the

computations. The results in Figure 6.5 is obtained with the use of the RFPIM, and

-20 0 20 40

0.00

0.05

0.10

Figure 6.4 Pressure signature u∗(x) for the model.

the produced results are in good agreement with the literature [68, 69]. In the figure,

the black line stands for the target function u∗ and the red dashed line represents the

optimal solution u0 of the problem. The green line stands for the recovered final data

uT , and it is obtained by solving the corresponding forward problem via numerical PDE

solver of MATHEMATICA. Note that, instead of either the conventional or the reversed

FPIM, a different PDE solver has been used intentionally to derive the solution to the

corresponding forward problem. The values of the functional J for various ∆x and

∆t values could be observed in Table 6.4.

Table 6.4 Values of the functional J for T = 50s and various values of spatial and
temporal increments.

∆t
0.01 0.1 1

0.8 2.41× 10−4 2.42× 10−4 2.48× 10−4

∆x 0.4 1.96× 10−4 1.97× 10−4 2.02× 10−4

0.2 1.76× 10−4 1.76× 10−4 1.78× 10−4

0.1 1.71× 10−4 1.71× 10−4 1.72× 10−4

Both the quantitative and qualitative results seem to be quite acceptable. So, the

RFPIM seems to be preferable for PDE-constrained optimization problems or the

inverse problems as in this example.

64



-20 0 20 40

-0.05

0.00

0.05

0.10

x

u

-20 0 20 40
-0.05

0.00

0.05

0.10

x

u

-20 0 20 40
-0.05

0.00

0.05

0.10

x

u

-20 0 20 40
-0.05

0.00

0.05

0.10

x

u

Figure 6.5 Behaviour of the target function u∗ (black), the optimal solution u0 (red)
and the recovered final data uT (green) for T = 50 seconds with ∆x = 0.8 (first),

∆x = 0.4 (second), ∆x = 0.2 (third), and ∆x = 0.1 (fourth).
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7
SINGULARLY PERTURBED CASES IN NONLINEAR

ADVECTION DIFFUSION REACTION PROCESSES

In this chapter, as a continuation of the previous chapter, different travelling wave

solutions of the kink type are derived for significant advection-diffusion-reaction

mechanisms such as the singularly perturbed generalized Burgers Huxley and Burgers

Fisher equations. To achieve this, a nonlinear transformation and an ansatz

method have been utilized. Stability analysis is performed on different types of

equations to detect the effects of the coefficients on the stability of the obtained

solutions. Subsequently, the performance of the RFPIM has been examined concerning

the solution procedures of inverse problems in the singularly perturbed advection

diffusion reaction mechanisms.

Most of the physical mechanisms including convection, reaction, dispersion, etc. are

governed by nonlinear partial differential equations (PDEs) [16, 91]. Such physical

systems represented by nonlinear PDEs may possess traveling wave solutions. Since

their shapes have been conserved through the process, traveling waves are important

phenomena in nonlinear wave theory. In this chapter, firstly, traveling wave solutions

of the following model equations

ut +αuδux − εux x = βu(1− uδ)(uδ − γ) (7.1)

and

ut +αuδux − εux x = βu(1− uδ) (7.2)

where α, β , ε, δ and γ are parameters such that 0< ε, 0< α, 0≤ β , 0< δ, γ ∈ (0, 1)
have been derived. Then, the RFPIM is employed to observe numerical behaviour of

the mentioned problems in the following sections. So, the formerly obtained analytical

solutions could be utilized to test the efficiency of the RFPIM.

In the literature, Equation 7.1 is called as the singularly perturbed generalized

Burgers-Huxley equation (SPGBHE), and Equation 7.2 is called as the singularly
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perturbed generalized Burgers Fisher equation (SPGBFE). In the model equations,

the term uux represents the movement of a fluid material usually by means of a heat

transfer or represents the bulk motion of a suspended or dissolved material in a fluid.

The former one is called convection and the latter one is called advection. Moreover,

the term ux x represents the diffusion process. In the model equations, the parameter

ε stands for the diffusion coefficient or kinematic viscosity. Besides, the parameter δ

has been put to control the degree of the nonlinearity, and the parameters β and γ

represent the coefficients of reaction terms.

According to previous studies when the kinematic viscosity is too small, in other words,

the coefficient of diffusion ε is too small, any exact solution of these equations has not

been known yet. From the viewpoint of characteristics of a PDE, in the situation of

zero kinematic viscosity, ε = 0, the parabolic behaviour of the mentioned equations

evolve to hyperbolic behaviour. Parabolic and hyperbolic PDEs have significantly

different solution procedures. In this respect, the aim of this study is to develop some

traveling wave solutions for the SPGBHE and the SPGBFE. To achieve this, the method

introduced by Wang et al. [92] and Abdelkader [88] is followed. In addition, the

stability behaviour of the solutions obtained is analyzed in detail.

It is a noticable fact that Equations 7.1 and 7.2 represent a wide variety of nonlinear

evolution equations. From an application point of view, these equations include

many different and important mechanisms such as advection, diffusion and reaction.

Particularly, if ε = 0, then Equation 7.2 represents an advection-reaction mechanism.

If ε = β = 0 and α = δ = 1, both Equations 7.1 and 7.2, independently, turns to be

the inviscid Burgers equation.

In this chapter, traveling wave solutions of the kink shape have been obtained. Kinks

possess a time-independent behaviour i.e. permanent profile. Another interesting

property of kinks is that there are also anti-kinks like anti-particles. Kink and anti-kink

forms can be seen in Figures 7.1 and 7.2.

x-ct

u(x-ct)

Figure 7.1 Profile of a kink

x-ct

u(x-ct)

Figure 7.2 Profile of an anti-kink

There are many books and research articles published in the literature to discover the
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behaviour of advection-diffusion-reaction mechanisms using continuous or discrete

methods [74–87, 93, 94]. The main reason that led us to this consideration is

the desire to observe the effects of the parameters in Equations 7.1 and 7.2 on the

behaviour of solutions, especially in terms of stability. In this respect, to capture

the stability behaviour of the equilibrium points, a linear stability analysis has been

performed. The stability behaviour of the obtained solutions has been examined even

for the limiting case ε→ 0.

7.1 Analytical Solution of the Singularly Perturbed Generalized

Burgers-Huxley Equation

The following useful nonlinear transformation

u= v1/δ (7.3)

can be utilized to ease the nonlinearity in Equation 7.1. Use of Equation 7.3 in

Equation 7.1 leads to

vt +αvvx − εvx x − ε
�

1
δ
− 1
�

1
v
(vx)

2 = δβ v(1− v)(v − γ). (7.4)

Equation 7.4 becomes an ordinary differential equation by letting v(x , t) = v(x−c t) =
v(ξ) as

− c
dv
dξ
+αv

dv
dξ
− ε

d2v
dξ2
− ε
�

1
δ
− 1
�

1
v

�

dv
dξ

�2

=

= δβ v(1− v)(v − γ). (7.5)

Any solution of Equation 7.5 is necessarily a traveling wave solution of the SPGBHE. In

the following section, traveling wave solutions to the SPGBHE are found by assuming

a relation between dv/dξ and v.

7.1.1 Solution Procedure of the SPGBHE

Firstly the ansatz dv/dξ = av(1− v) and secondly the ansatz dv/dξ = av(v − γ) are

considered where a is a real scalar to be determined later.

7.1.1.1 First Ansatz

The assumption
dv
dξ
= av(1− v) (7.6)
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gives rise to
d2v
dξ2

= a2v(1− v)(1− 2v). (7.7)

By plugging Equations 7.6 and 7.7 into Equation 7.5, the following polynomial

equality

0=−
a2v3ε

δ
− a2v3ε+

2a2v2ε

δ
+ a2v2ε−

a2vε
δ
+ acv2

− acv − aαv3 + aαv2 + βδv3 − βγδv2 − βδv2 + βγδv

can be obtained. By expanding the last equation and organizing it in terms of the

powers of v, the following system of equations

−
a2ε

δ
− ac + βγδ = 0, (7.8)

−
a2ε

δ
− a2ε− aα+ βδ = 0, (7.9)

2a2ε

δ
+ a2ε+αa+ ac − βγδ− βδ = 0 (7.10)

can be found. Lastly, solving Equations 7.8-7.10 for a and c, it has been obtained that

a1,2 =
δ
�

−α±
p

α2 + 4β(δ+ 1)ε
�

2(δ+ 1)ε
(7.11)

and

c1,2 =
α(γδ+ γ+ 1)± (γδ+ γ− 1)

p

α2 + 4β(δ+ 1)ε
2(δ+ 1)

. (7.12)

Now, integrating Equation 7.6, it can be found that

v(ξ) =
1

1+ e−aξ−b
(7.13)

where b is an integration constant, and is taken to be 0 in the following computations.

Hence, by using Equations 7.3, 7.11 and 7.12, two distinct traveling wave solutions

of the SPGBHE can be found as

u1,2(x , t) =
�

1
1+ e−a(x−c t)

�1/δ

(7.14)

where a and c are as in Equations 7.11 and 7.12.

Remark 7.1. Note that, by assuming just Equation 7.13 and, by plugging it in Equation

7.5 to find out possible values of a, the equation

eaξ
�

a2ε
�

δeaξ − 1
�

+ βδ2
�

(γ− 1)eaξ + γ
�

− aδ
�

−αeaξ + ceaξ + c
��

δ (eaξ + 1)3
= 0 (7.15)
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must be solved for both a and c simultaneously. Since it is almost impossible to solve

such non-polynomial equations, in this study, it is not preferred to use the mentioned

assumption.

7.1.1.2 Second Ansatz

In a similar manner, assuming

dv
dξ
= av(v − γ) (7.16)

a and c can be computed as

a3,4 =
δ
�

α∓
p

α2 + 4β(δ+ 1)ε
�

2(δ+ 1)ε
(7.17)

and

c3,4 =
α(γ+δ+ 1)± (−γ+δ+ 1)

p

α2 + 4β(δ+ 1)ε
2(δ+ 1)

. (7.18)

Thus, the corresponding traveling waves can be found as

u3,4(x , t) =
� γ

1− eaγ(x−c t)

�1/δ
(7.19)

where a and c are as in Equations 7.17 and 7.18.

7.1.2 Stability Analysis for the SPGBHE

For a deeper analysis from the point of view of stability, let us reconsider Equation 7.5

by letting
dv
dξ
= w (7.20)

and
dw
dξ
=

1
ε

�

−cw+αvw− ε
�

1
δ
− 1
�

w2

v
−δβ v(1− v)(v − γ)

�

. (7.21)

Hence, Equation 7.5 has been converted to a first order ODE system, and a stability

analysis can be given in the Poincaré phase plane. First of all, the zero-growth isoclines

should be found by solving equations

dv
dξ
= 0 and

dw
dξ
= 0. (7.22)

Solutions of system 7.22 are (0, 0), (1,0) and (γ, 0). These values of (v, w) can be

interpreted as steady-state solutions of the system. Now, let us define p(v, w) and
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q(v, w) as

p(v, w) :=
dv
dξ
= w

and

q(v, w) :=
dw
dξ
=

1
ε

�

−cw+αvw− ε
�

1
δ
− 1
�

w2

v
−δβ v(1− v)(v − γ)

�

.

The Jacobian matrix of the system p = 0 and q = 0 can be computed as

�

pv pw

qv qw

�

=

�

0 1
(1−δ)w2

δv2 + αw−(1−v)vβδ−(1−v)β(v−γ)δ+vβ(v−γ)δ
ε − c

ε −
2w(1−δ)
δv + vα

ε

�

.

The eigenvalues of the Jacobian matrix are obtained as follows:

λ1 =
−c −
p

c2 − 4βγδε

2ε

λ2 =
−c +
p

c2 − 4βγδε

2ε

for the equilibrium point (v, w) = (0, 0) and

λ3 =
(α− c)−
p

(α− c)2 − 4β(1− γ)δε
2ε

λ4 =
(α− c) +
p

(α− c)2 − 4β(1− γ)δε
2ε

for the equilibrium point (v, w) = (1, 0) and

λ5 =
(αγ− c)−
p

(αγ− c)2 + 4βγ(1− γ)δε
2ε

λ6 =
(αγ− c) +
p

(αγ− c)2 + 4βγ(1− γ)δε
2ε

for the equilibrium point (v, w) = (γ, 0). Now, the real parts of the eigenvalue pairs

are considered for each equilibrium point separately. Whenever both eigenvalues have

negative real parts, then it is concluded that the equilibrium point is stable. If both of

the real parts are positive then the equilibrium point is said to be unstable. Otherwise,

the equilibrium point is a saddle point.

Remark 7.2. Since the inequality |c| >
p

c2 − 4βγδε is always true, the inequalities

Re{λ1} < 0 and Re{λ2} < 0 hold when c > 0. Therefore, (v, w) = (0, 0) is a stable

point when c > 0. Besides, if c < 0 then the inequalities Re{λ1} > 0 and Re{λ1} > 0

necessarily hold, and hence (v, w) = (0,0) is an unstable point when c < 0.

Remark 7.3. Since |α−c|>
p

(α− c)2 − 4β(1− γ)δε, the inequalities Re{λ3}< 0 and
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Re{λ4}< 0 necessarily hold when α− c > 0. Thus, (v, w) = (1, 0) is seen to be a stable

point when α − c > 0. Besides, if α − c < 0 then both Re{λ3} > 0 and Re{λ4} > 0

absolutely hold, and hence (v, w) = (1,0) is an unstable point if α− c < 0.

Remark 7.4. Whether the term (αγ− c) is positive or negative, since (αγ− c) is always

less than
p

(αγ− c)2 + 4βγ(1− γ)δε, both Re{λ5} < 0 and Re{λ6} > 0 always hold.

Therefore, the equilibrium point (v, w) = (γ, 0) corresponds to a saddle point.

Hence, to obtain stable traveling wave solutions to the SPGBHE at least one of the

conditions c > 0 and α− c > 0 is required. In this respect, the following lemmas can

be given without proof.

Lemma 7.1. The following conditions hold for the traveling wave speed ck’s where k =
1,2, 3,4:

(i) c1 > 0 if γ < 1/(1+δ),

(ii) c2 > 0 if 1/(1+δ)≤ γ≤ 1,

(iii) c3 > 0 always true,

(iv) c4 > 0 if δ < α/
p

βε.

Lemma 7.2. The following conditions hold for the traveling wave speed ck’s where k =
1,2, 3,4:

(i) α− c1 > 0 if δα2 > βε,

(ii) α− c2 > 0 if γ < 1/(1+δ),

(iii) α− c3 > 0 always false,

(iv) α− c4 > 0 always true.

Theorem 7.1. The equilibrium point (v, w) = (0,0) is stable for the traveling wave

speeds c1, c2, and c4 whenever the conditions γ < 1/(1 + δ), 1/(1 + δ) ≤ γ ≤ 1, and

δ < α/
p

βε are satisfied, respectively. Besides, the equilibrium point (v, w) = (0, 0) is

always stable for wave speed c3.

Proof. See Remark 7.2 and Lemma 7.1. ■

Theorem 7.2. The equilibrium point (v, w) = (1,0) is stable for the traveling wave

speeds c1, and c2 whenever the conditions δα2 > βε, and γ < 1/(1 + δ) are satisfied,

respectively. Besides, the equilibrium point (v, w) = (1, 0) is always stable for the wave

speed c4 while it is always unstable for the wave speed c3.
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Proof. See Remark 7.3 and Lemma 7.2. ■

Theorem 7.3. The equilibrium point (v, w) = (γ, 0) is a saddle point for any wave speed

ck, k = 1,2, 3,4.

Proof. See Remark 7.4. ■
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Figure 7.3 2D graph of the vector field (p(v, w), q(v, w)) for c1 with α= 1, β = 1,
ε= 1, δ = 1, and γ= 0.4.

For instance, if the parameters are chosen as α = 1, β = 1, ε = 1, δ = 1, and γ = 0.4

for the wave speed c1 then it is inevitably seen that the condition in Theorem 7.1 is

satisfied but the criterion in Theorem 7.2 is not fulfilled. Therefore, (0, 0) is a stable

equilibrium point while (1,0) is an unstable equilibrium point. Notice also that (γ, 0)
is a saddle point (see Figure 7.3). The equilibrium points are shown by the red dots

in Figure 7.3.

7.1.3 Stability Analysis under Advection Dominant Case

Secondly, the stability behaviour must be considered carefully when Equation 7.1 is

forced to be advection dominant (ε→ 0). Firstly, let us define the eigenvalues under

advection dominant case as follows:

lim
ε→0
λk = λ

0
k (7.23)

for k = 1, 2,3, 4,5, 6.

Corollary 7.1. Under advection dominance; for the wave speed c1, the equilibrium point

(v, w) = (0, 0) is stable whenever the condition

γ <
1

(1+δ)2
(7.24)
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Table 7.1 Eigenvalues in the limiting case, ε→ 0, for the wave speeds c1 and c2.

Eigenvalues For the wave speed c1 For the wave speed c2

λ0
1 β

�

γ(1+δ)2 − 1
�

/α β(1− γ)(1+δ)/α
λ0

2 −βγδ(1+δ)/α −βδ/α

λ0
3 β(1− γ)(1+δ)/α βδ/α
λ0

4 −β (2+δ− 2γ− 2γδ)/α −β (−1+ γ+δ+δγ)/α

λ0
5 β
�

−1+ γ+ γδ+ −1+(−2+γ)γ(−1+δ2)
|−1+γ+γδ|

�

/2α −β (−1+ γ+ γδ)/2α

λ0
6 β
�

−1+ γ+ γδ− −1+(−2+γ)γ(−1+δ2)
|−1+γ+γδ|

�

/2α −β (−1+ γ+ γδ)/2α

Table 7.2 Eigenvalues in the limiting case, ε→ 0, for the wave speeds c3 and c4.

Eigenvalues For the wave speed c3 For the wave speed c4

λ0
1 −β(1− γ)(1+δ)/α β

�

(1+δ)2 − γ
�

/α
λ0

2 −βγδ/α −βδ(1+δ)/α

λ0
3 −β(1+δ− γ)/2α β(1− γ)δ(1+δ)/α(1+δ− γ)
λ0

4 −β(1+δ− γ)/2α β
�

1+ γ2 +δ+ γ(−2+δ)(1+δ)
�

/α(1+δ− γ)

λ0
5 −β (1− γ+δ+ γδ)/α −β(1− γ)(1+δ)/α
λ0

6 βγδ/α β (2+ 2δ− 2γ− γδ)/α

is satisfied, otherwise, it is a saddle point. Moreover, the equilibrium point (0, 0) is un-

conditionally stable for the traveling wave speed c3, while it is a saddle point for the wave

speeds c2 and c4.

Corollary 7.2. Under advection dominance; the equilibrium point (v, w) = (1,0) is sta-

ble for the traveling wave speed c3, is unstable for the wave speed c4, and is a saddle point

for the wave speed c2. The equilibrium point (1,0) is a saddle point for the wave speed

c1 whenever the condition

γ <
1
2
+

1
2(1+δ)

(7.25)

is satisfied, otherwise, it is unstable.

Corollary 7.3. Under advection dominance; the equilibrium point (v, w) = (γ, 0) is un-

conditionally stable for the traveling wave speed c1, while it is a saddle point for the

wave speeds c3 and c4. For the wave speed c2, the equilibrium point (γ, 0) is stable if the

condition
1

1+δ
< γ (7.26)

is satisfied, otherwise, it is unstable.
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7.2 Analytical Solution of the Singularly Perturbed Generalized

Burgers Fisher Equation

To obtain a traveling wave solution to the generalized form of the singularly perturbed

Burgers Fisher equation, if the nonlinear transformation v = uδ is utilized and the

equality v(x , t) = v(x−c t) = v(ξ) is assumed, then the following ordinary differential

equation

−c
dv
dξ
+αv

dv
dξ
− ε

d2v
dξ2
− ε
�

1
δ
− 1
�

1
v

�

dv
dξ

�2

= δβ v(1− v) (7.27)

is obtained. Now, taking the ansatz dv
dξ = av(1− v) for some scalar a, following the

method in the previous section, the traveling wave solution

u5(x , t) =
�

1
1+ e−a5(x−c5 t)

�1/δ

(7.28)

to Equation 7.2 can be obtained, where

a5 = −
αδ

(1+δ)ε
,

c5 =
α

1+δ
+
β(1+δ)ε
α

.

7.2.1 Stability Analysis for the SPGBFE

As is the case for the SPGBHE, by defining

p(v, w) :=
dv
dξ
= w

and

q(v, w) :=
dw
dξ
=

1
ε

�

−cw+αvw− ε
�

1
δ
− 1
�

w2

v
−δβ v(1− v)
�

,

the zero-growth isoclines of the system are obtained as (v, w) = (0, 0) and (v, w) =
(1,0). The Jacobian matrix of the first order ODE system is found to be

�

pv pw

qv qw

�

=

�

0 1
(1−δ)w2

δv2 + βδ(2u−1)+αv
ε

vα−c
ε +

2w(δ−1)
δv

�

.

75



Eigenvalues of the Jacobian matrix can be computed as

λ1 =
−c −
p

c2 − 4βδε

2ε

λ2 =
−c +
p

c2 − 4βδε

2ε

for the equilibrium point (v, w) = (0, 0), and

λ3 =
α− c −
p

(α− c)2 + 4βδε
2ε

λ4 =
α− c +
p

(α− c)2 + 4βδε
2ε

for the equilibrium point (v, w) = (1, 0).

Remark 7.5. (v, w) = (0,0) corresponds to an asymptotically stable equilibrium point

while (v, w) = (1, 0) represents a saddle point.
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Figure 7.4 2D graph of the vector field (p(v, w), q(v, w)) for c5 with α= 1, β = 1,
ε= 1, and δ = 1

For instance, if the parameters of the system are chosen as α = 1, β = 1, ε = 1, and

δ = 1 for the wave speed c5 then it is found that λ1 = −2, λ2 = −0.5, λ3 = −2, and

λ4 = +0.5. Hence, it can be concluded that the equilibrium point (0, 0) is stable while

the equilibrium point (1, 0) is a saddle point. This can be observed pictorially in Figure

7.4.

Theorem 7.4. In advection dominant cases, if 0 < δ < 1 then the equilibrium point

(v, w) = (0, 0) remains stable.

Proof. If the following limits are considered

lim
ε→0
λ1 =

β(δ− 1)(δ+ 1)
α

(7.29)
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lim
ε→0
λ2 = −

βδ(δ+ 1)
α

(7.30)

and the presumed inequality 0< δ < 1 is taken into account then we can deduce that

both eigenvalues λ0
1 and λ0

2 have negative real parts. ■

Corollary 7.4. In advection dominant cases, the equilibrium point (v, w) = (1,0) is a

non-hyperbolic equilibrium.

Proof. The following limits

lim
ε→0
λ3 = −

β(δ+ 1)
α

(7.31)

lim
ε→0
λ4 = 0 (7.32)

are taken into consideration. Since λ0
3 remains in the left half of the complex plane

and λ0
4 = 0, the equilibrium point (1, 0) is a non-hyperbolic equilibrium. ■

In the case of having one zero eigenvalue, we have more than one equilibrium point.

Indeed, we have a line of equilibrium points which is pointing towards the eigenvector

corresponding to this eigenvalue.

7.3 Numerical Solutions via the RFPIM

One of the important tools that can be applied in testing a newly proposed method is

the singularly perturbed nonlinear partial differential equations. In this section, then,

some numerical examples are implemented to show the effectiveness of the reversed

fixed point iteration method to capture the physical nature governed by a class of

singularly perturbed nonlinear partial differential equations. In this respect, in the

following examples the singularly perturbed generalized Burgers Huxley and Burgers

Fisher equations are considered. In the solution procedure, a semi discretization

approach has been adopted. Both Equation 7.1 and Equation 7.2 could be considered

as

ut = F(u, ux , ux x). (7.33)

If the last equation is temporally discretized via the reversed forward in time scheme,

the following semi discrete equation is obtained:

un − un+1

∆t
= F(u, ux , ux x)|t=tn+1

. (7.34)

Hence, the scheme

un = un+1 +∆t F(u, ux , ux x)|t=tn+1
(7.35)
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is obtained. In the solution procedures of the following examples ∆t is taken to be

the final time T . Then the approximate initial data ũ(x , 0) is recovered by using the

final data u(x , T ) via the RFPIM.

Example 1. In this example, an inverse problem in the SPGBHE is considered. Notice

that

F(u, ux , ux x) = −αuδux + εux x + βu(1− uδ)(uδ − γ) (7.36)

for this case. To begin with, a final data or final condition u(x , T ) is produced via

analytical solution 7.14 to Equation 7.1. The derived results, the recovered initial data

ũ(x , 0), by using the RFPIM have been compared with the initial condition obtained

via the exact solution in Equation 7.14.

The results indicate that the present method is much more accurate for the smaller

values of the parameter of nonlinearity as indicated in Table 7.3. Besides, for the

critical values of the diffusion coefficient, ε≪ 1, any change in the diffusion coefficient

does not matter a significant difference in the accuracy (see Table 7.4).

Table 7.3 L2 (−∞,∞) errors for Example 1 for various values of δ with α= 1,
β = 1, ε= 10−5, and γ= 0.5 with ∆t = T .

T δ = 1/2 δ = 1 δ = 2 δ = 5
0.1 0.000106 0.000228 0.000441 0.000904
0.2 0.000422 0.000912 0.001765 0.003612
0.3 0.000950 0.002052 0.003970 0.008107
0.4 0.001689 0.003647 0.007052 0.014356
0.5 0.002639 0.005696 0.011007 0.022321
0.6 0.003800 0.008199 0.015826 0.031948
0.7 0.005171 0.011153 0.021504 0.043179
0.8 0.006752 0.014556 0.028030 0.055949
0.9 0.008543 0.018408 0.035394 0.070184
1.0 0.010544 0.022705 0.043584 0.085811

According to the results in Table 7.5, an increase in the reaction coefficient could lead

to a decrease in the accuracy of the current method. A similar result can be observed

in Table 7.6 for the reaction parameter β . Notice also that these results are valid for

a challenging condition as ε= 10−5.

In Table 7.7, despite the very striking choice of kinematic viscosity, it can be observed

that an increase in the advection coefficient slightly reduces the effectiveness of the

proposed method. Recovery of the initial condition and the corresponding absolute

error for the inverse problem in the SPGBHE with α = 1, β = 1, δ = 1, ε = 10−10,
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Table 7.4 L2 (−∞,∞) errors for Example 1 for various values of ε with α= 1,
β = 1, γ= 0.5, and δ = 1 with ∆t = T .

T ε= 10−15 ε= 10−10 ε= 10−5 ε= 10−3 ε= 1.0
0.1 0.000221 0.000228 0.000228 0.000191 0.0128293
0.2 0.000897 0.000913 0.000912 0.000837 0.0254972
0.3 0.002029 0.002053 0.002052 0.001938 0.0380039
0.4 0.003615 0.003649 0.003647 0.003492 0.0503496
0.5 0.005655 0.005698 0.005696 0.005500 0.0625345
0.6 0.008148 0.008201 0.008199 0.007959 0.0745589
0.7 0.011091 0.011156 0.011153 0.010869 0.0864234
0.8 0.014484 0.014560 0.014556 0.014227 0.0981283
0.9 0.018325 0.018412 0.018408 0.018032 0.1096740
1.0 0.022610 0.022709 0.022705 0.022282 0.1210620

Table 7.5 L2 (−∞,∞) errors for Example 1 for various values of γ with α= 1,
β = 1, δ = 1, and ε= 10−5 with ∆t = T .

T γ= 0.01 γ= 0.3 γ= 0.5 γ= 0.7 γ= 0.99
0.1 2.74× 10−7 0.000082 0.000228 0.000447 0.000894
0.2 3.66× 10−7 0.000328 0.000912 0.001788 0.003575
0.3 2.76× 10−7 0.000738 0.002052 0.004021 0.008037
0.4 3.30× 10−9 0.001313 0.003647 0.007144 0.014269
0.5 4.52× 10−7 0.002051 0.005696 0.011154 0.022258
0.6 1.09× 10−6 0.002954 0.008199 0.016045 0.031983
0.7 1.91× 10−6 0.004020 0.011153 0.021811 0.043425
0.8 2.91× 10−6 0.005249 0.014556 0.028448 0.056556
0.9 4.09× 10−6 0.006642 0.018408 0.035945 0.071348
1.0 5.46× 10−6 0.008197 0.022705 0.044297 0.087768

and γ = 0.01 with ∆t = T = 1.0 can be observed in Figure 7.5. In the figure, and

also in the following figures in this example, the red curve stands for the approximate

solution while the dashed blue curve represents the exact solution. The absolute errors

are shown by the green dashed curve in the figures.

Example 2. In this example, an inverse problem in the SPGBFE is considered. To

begin with, a final data or final condition is produced via analytical solution 7.28

to the accompanying problem with the IBCs derived from the analytical solution of

Equation 7.2. The derived results by using the RFPIM have been compared with the

initial condition obtained via Equation 7.28. According to the results in Tables 7.8, the

current method is seen to produce more accurate results for relatively smaller values

of δ. Again, the errors in L2(−∞,∞) sense could be observed for various values of ε.
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Table 7.6 L2 (−∞,∞) errors for Example 1 for various values of β with α= 1,
δ = 1, γ= 0.5, and ε= 10−5 with ∆t = T .

T β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9
0.1 7.20× 10−6 0.000037 0.000081 0.000133 0.000195
0.2 0.000029 0.000150 0.000323 0.000534 0.000779
0.3 0.000065 0.000337 0.000726 0.001202 0.001752
0.4 0.000115 0.000600 0.001290 0.002137 0.003114
0.5 0.000180 0.000937 0.002016 0.003338 0.004865
0.6 0.000260 0.001349 0.002903 0.004806 0.007003
0.7 0.000353 0.001837 0.003950 0.006540 0.009527
0.8 0.000462 0.002399 0.005159 0.008539 0.012436
0.9 0.000584 0.003036 0.006528 0.010803 0.015729
1.0 0.000721 0.003748 0.008057 0.013331 0.019404

Table 7.7 L2 (−∞,∞) errors for Example 1 for various values of α with β = 1,
δ = 1, γ= 0.5, and ε= 10−5 with ∆t = T .

T α= 0.1 α= 0.3 α= 0.5 α= 0.7 α= 0.9
0.1 0.000060 0.000123 0.000160 0.000190 0.000216
0.2 0.000265 0.000495 0.000643 0.000762 0.000865
0.3 0.000613 0.001118 0.001449 0.001716 0.001946
0.4 0.001104 0.001989 0.002576 0.003050 0.003460
0.5 0.001739 0.003109 0.004024 0.004764 0.005404
0.6 0.002517 0.004477 0.005792 0.006858 0.007778
0.7 0.003437 0.006093 0.007880 0.009329 0.010580
0.8 0.004499 0.007954 0.010286 0.012176 0.013809
0.9 0.005702 0.010061 0.013008 0.015398 0.017462
1.0 0.007046 0.012412 0.016046 0.018993 0.021539

The results seem quite acceptable and this situation is of great importance especially

for smaller values of the diffusion coefficient.

As the values of the reaction coefficient move from −1 to 0, a decrease in the L2 error

is observed in Table 7.10. Similarly, an increase in the advection coefficient causes a

relative increase in the accuracy of the present method as depicted in Table 7.11, in

most cases. In Figure 7.6, the recovery of the initial data from the final data and the

picture of the absolute error could be observed for the almost optimal values of the

parameters towards the success of the proposed technique.
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Figure 7.5 Recovery of the initial condition and the absolute error for the inverse
problem in the SPGBHE at T = 1.0 with α= 1, β = 1, δ = 1, ε= 10−10, and

γ= 0.01 with ∆t = T .

Table 7.8 L2 (−∞,∞) errors for Example 2 for various values of δ with α= 1,
β = −1, and ε= 1 with ∆t = T .

T δ = 0.1 δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.9
0.1 0.001727 0.006028 0.009041 0.010884 0.011899
0.2 0.003450 0.011970 0.017763 0.021075 0.022623
0.3 0.005170 0.017827 0.026166 0.030574 0.032177
0.4 0.006886 0.023598 0.034251 0.039386 0.040573
0.5 0.008599 0.029284 0.042018 0.047515 0.047830
0.6 0.010309 0.034884 0.049469 0.054969 0.053975
0.7 0.012015 0.040400 0.056606 0.061758 0.059043
0.8 0.013719 0.045830 0.063430 0.067893 0.063084
0.9 0.015418 0.051175 0.069945 0.073390 0.066164
1.0 0.017115 0.056436 0.076151 0.078267 0.068372
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Table 7.9 L2 (−∞,∞) errors for Example 2 for various values of ε with α= 1,
β = −1, and δ = 1 with ∆t = T .

T ε= 0.25 ε= 0.50 ε= 0.75 ε= 1.00 ε= 2.0
0.1 0.025820 0.018029 0.014410 0.012184 0.007726
0.2 0.051640 0.035603 0.027829 0.022919 0.012670
0.3 0.077460 0.052721 0.040261 0.032217 0.014874
0.4 0.103280 0.069387 0.051715 0.040095 0.014465
0.5 0.129099 0.085604 0.062206 0.046585 0.011870
0.6 0.154919 0.101375 0.071751 0.051733 0.009022
0.7 0.180739 0.116705 0.080376 0.055606 0.012003
0.8 0.206559 0.131602 0.088113 0.058297 0.022120
0.9 0.232379 0.146070 0.094999 0.059938 0.036372
1.0 0.258199 0.160120 0.101082 0.060715 0.053800

Table 7.10 L2 (−∞,∞) errors for Example 2 for various values of β with α= 1,
δ = 1, and ε= 1 with ∆t = T .

T β = −0.9 β = −0.7 β = −0.5 β = −0.3 β = −0.1
0.1 0.012365 0.012649 0.012829 0.012907 0.012881
0.2 0.023640 0.024775 0.025497 0.025807 0.025704
0.3 0.033833 0.036380 0.038004 0.038701 0.038468
0.4 0.042952 0.047466 0.050350 0.051588 0.051175
0.5 0.051014 0.058035 0.062535 0.064469 0.063824
0.6 0.058040 0.068093 0.074559 0.077344 0.076415
0.7 0.064059 0.077643 0.086423 0.090212 0.088947
0.8 0.069111 0.086693 0.098128 0.103073 0.101422
0.9 0.073245 0.095249 0.109674 0.115928 0.113839
1.0 0.076528 0.103321 0.121062 0.128777 0.126199

Table 7.11 L2 (−∞,∞) errors for Example 2 for various values of α with β = −1,
δ = 1, and ε= 0.1 with ∆t = T .

T α= 0.1 α= 0.3 α= 0.5 α= 0.7 α= 0.9
0.1 0.001697 0.000140 0.002959 0.006373 0.010158
0.2 0.007199 0.004632 0.002742 0.010380 0.018589
0.3 0.016602 0.013484 0.001327 0.012059 0.025311
0.4 0.030067 0.026645 0.007687 0.011524 0.030352
0.5 0.047802 0.044052 0.017564 0.009188 0.033766
0.6 0.070056 0.065619 0.030644 0.007071 0.035641
0.7 0.097097 0.091239 0.046880 0.010674 0.036128
0.8 0.129195 0.120783 0.066233 0.019863 0.035477
0.9 0.166599 0.154096 0.088661 0.032294 0.034126
1.0 0.209518 0.191003 0.114116 0.047345 0.032820
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Figure 7.6 Recovery of the initial condition and the absolute error for the inverse
problem in the SPGBFE at T = 1.0 with α= 1.0, β = −1.0, δ = 1.0, and ε= 1.0 with

∆t = T .
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8
TWO DIMENSIONAL ADVECTION DIFFUSION

PROCESSES

The RFPIM has been employed to obtain numerical solutions to various

one-dimensional, even if they are challenging, problems represented by PDEs thus

far. In this chapter, the two dimensional coupled Burgers equations

ut + uux + vuy = ε(ux x + uy y) (8.1)

vt + uvx + vvy = ε(vx x + vy y) (8.2)

will be discussed where the common term ε stands for the kinematic viscosity. The

exact solution of this system of equations derived via Hopf Cole transformation in [95]
as follows

u(x , y, t) =
3
4
−

1
4(1+ e(−4x+4y−t)/(32ε))

, (8.3)

v(x , y, t) =
3
4
+

1
4(1+ e(−4x+4y−t)/(32ε))

. (8.4)

Here, the RFPIM will be implemented to identify the initial conditions u(x , y, 0) and

v(x , y, 0) based on the final conditions u(x , y, T ) and v(x , y, T ) for a given final time

T . Note that, the initial and final conditions are taken from the exact solutions. Then,

the approximate initial conditions ũ(x , y, 0) and ṽ(x , y, 0) are derived via the RFPIM.

8.1 Implementation of the RFPIM and Numerical Observations

A semi-discrete scheme is utilized in this section to reach continuous approximate

initial conditions ũ(x , y, 0) and ṽ(x , y, 0) for the coupled Burgers equation. To obtain

the semi-discrete scheme, the terms ut and vt in Equation 8.1 and Equation 8.2 are

need to be replaced with a forward finite difference scheme first. Thus, the RFPIM

could be employed to get the needed scheme as follows:

84



u(x , y, (n+ 1)∆t)− u(x , y, n∆t)
∆t

+ u(x , y, n∆t)ux(x , y, n∆t)+

+ v(x , y, n∆t)uy(x , y, n∆t) = ε(ux x(x , y, n∆t) + uy y(x , y, n∆t))

v(x , y, (n+ 1)∆t)− v(x , y, n∆t)
∆t

+ u(x , y, n∆t)vx(x , y, n∆t)+

+ v(x , y, n∆t)vy(x , y, n∆t) = ε(vx x(x , y, n∆t) + vy y(x , y, n∆t))

and by reversing the iterations the last equations yield

u(x , y, n∆t)− u(x , y, (n+ 1)∆t)
∆t

− u(x , y, (n+ 1)∆t)ux(x , y, (n+ 1)∆t)−

− v(x , y, (n+ 1)∆t)uy(x , y, (n+ 1)∆t) = ε(ux x(x , y, (n+ 1)∆t) + uy y(x , y, (n+ 1)∆t))

v(x , y, n∆t)− v(x , y, (n+ 1)∆t)
∆t

− u(x , y, (n+ 1)∆t)vx(x , y, (n+ 1)∆t)−

− v(x , y, (n+ 1)∆t)vy(x , y, (n+ 1)∆t) = ε(vx x(x , y, (n+ 1)∆t) + vy y(x , y, (n+ 1)∆t)).

Thus, the last equation produces an explicit semi-discrete scheme for u(x , y, n∆t) and

v(x , y, n∆t). To observe the numerical efficiency of the current method, the coupled

Burgers equations are considered in the domain Ω = {(x , y) ∈ [0,1] × [0,1]}, and

then, ũ(x , y, 0) and ṽ(x , y, 0) have been computed via the RFPIM. The obtained initial

conditions have been compared with the exact ones for various values of the diffusion

coefficient ε, the time increment ∆t, and the final time T . The quantitative results

in Tables 8.1-8.4 reveal that the RFPIM has an outstanding numerical performance

to identify the exact initial conditions. Note that the results provided in the tables

represent the error in the L2(0, 1) sense. In most cases, the performance of the RFPIM

has been seen to be its maximum when ∆t = T .

Table 8.1 L2(0, 1) errors for various values of ∆t with ε= 0.01 and T = 0.5.

∆t u v
0.100 3.17× 10−2 3.17× 10−2

0.125 2.92× 10−2 2.92× 10−2

0.167 2.52× 10−2 2.52× 10−2

0.250 2.78× 10−2 2.78× 10−2

0.500 2.51× 10−2 2.51× 10−2
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Table 8.2 L2(0, 1) errors for various values of ∆t with ε= 0.01 and T = 1.0.

∆t u v
0.200 5.83× 10−2 5.83× 10−2

0.250 5.36× 10−2 5.36× 10−2

0.333 4.63× 10−2 4.63× 10−2

0.500 3.46× 10−2 3.46× 10−2

1.000 4.93× 10−2 4.93× 10−2

Table 8.3 L2(0,1) errors for various values of ∆t with ε= 0.001 and T = 0.1.

∆t u v
0.020 1.97× 10−2 1.97× 10−2

0.025 1.82× 10−2 1.82× 10−2

0.033 1.57× 10−2 1.57× 10−2

0.050 1.19× 10−2 1.19× 10−2

0.100 1.76× 10−2 1.76× 10−2

Table 8.4 L2(0,1) errors for various values of ε and T with ∆t = T .

T = 0.1 T = 0.5 T = 1.0 T = 5.0 T = 10.0
ε= 0.01 6.94× 10−3 2.52× 10−2 4.93× 10−2 1.60× 10−1 1.64× 10−1

ε= 0.1 8.20× 10−4 4.07× 10−3 8.38× 10−3 4.54× 10−2 2.46× 10−2

ε= 0.5 3.96× 10−5 2.05× 10−4 4.55× 10−4 5.78× 10−3 1.91× 10−2

ε= 1.0 9.96× 10−6 5.17× 10−5 1.16× 10−4 1.54× 10−3 5.64× 10−3

ε= 2.0 2.49× 10−6 1.30× 10−5 2.91× 10−5 3.95× 10−4 1.49× 10−3
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9
RESULTS AND DISCUSSION

A novel approach to finding unstable equilibria of a dynamical system, the reversed

fixed-point iteration method, has been presented in this thesis. The method can

be seen to be a significant contribution when unstable equilibrium solutions of a

nonlinear system are investigated. This discovery has been underpinned via the

following results observed in the remarkable implementations:

Classification of the relatively homogeneously distributed roots of a polynomial and

determination of unstable equilibria have been carried out. Also, the numerical

illustrations of the present method have been carried out in R2 or R3.

In population dynamical models, unstable thresholds have been found via the RFPIM.

It has been observed that the use of relatively larger step sizes increases the accuracy

of the method.

Unstable solutions of the nonlinear Fredholm integral equations of the second kind

have been successfully computed via the current method.

Unstable equilibrium position comes out in the nonlinear control theory, such as in

the pendulum problem, which is one of the most fundamental examples, has been

determined.

The behaviour of unstable equilibria in chaos has been strikingly discovered in a

particular example. The fixed points, of repelling nature, behaving like a resonator,

have been localized properly.

Unstable steady-states of an ordinary differential operator have been successfully

determined by using the present method. It has been found that the use of relatively

larger step sizes significantly increases the efficiency of the present method. Hence, the

need for storage space and the time required for computations have been meaningfully

decreased.
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The RFPIM has been implemented to generate numerical solutions of the significant

forms of advection-diffusion-reaction equations. The derived results have been seen

to be in good agreement with the corresponding ones in the literature and/or ones of

the exact solutions. Absolute and relative errors, the RMSE, and the L2 errors have

been seen to be remarkably low, and the present method has been seen to be highly

capable of capturing the sharp behaviour of the physical models even under advection

dominant cases, ε→ 0.

Throughout this thesis, the RFPIM has been seen to capture the behaviour of a

nonlinear system successfully near unstable equilibria without facing any conventional

drawbacks. In future studies, attention may be focused on the implementation of

the RFPIM to solve high-dimensional or various nonlinear PDEs representing more

realistic processes. Furthermore, the present method can be utilized to understand

the unstable equilibria of various dynamical systems or unstable equilibrium solutions

of different mathematical models arising in a wide range of spectrums including

stochastic or chaotic processes, control problems, and so on.
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