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Istanbul Technical University



I hereby declare that I have obtained the required legal permissions during data

collection and exploitation procedures, that I have made the in-text citations and cited

the references properly, that I haven’t falsified and/or fabricated research data and

results of the study and that I have abided by the principles of the scientific research

and ethics during my Thesis Study under the title of Detection Methods of Asymptotic

Critical Values of Polynomial Mappings supervised by my supervisor, Prof. Dr. Bayram

Ali ERSOY. In the case of a discovery of false statement, I am to acknowledge any legal

consequence.

Abuzer GÜNDÜZ

Signature



This study was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK) Grant No: 116F130.



Dedicated to my wife and my children



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof.Dr. Bayram Ali ERSOY

for his guidance and his endless help during my study.

Also, I would like to express my sincere gratitude to my co-advisor Prof.Dr. Susumu

TANABÉ for his guidance, patience, and his endless help during my study. I had

the opportunity to benefit from his in-depth and interdisciplinary way of thinking,

especially in our long science conversations.

During this whole process, I would like to thank Assoc. Prof. Özer ÖZTÜRK and Assoc.
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supporting this work under project grant 116F130 ”Period integrals associated to

algebraic varieties”.

Finally, my very profound gratitude goes to my wife and children for their support and

patience throughout my years of study.

I can sincerely say that they are the true owners of this study.

Abuzer GÜNDÜZ

v



TABLE OF CONTENTS

LIST OF SYMBOLS viii

LIST OF ABBREVIATIONS ix

LIST OF FIGURES x

ABSTRACT xi

ÖZET xiii

1 INTRODUCTION 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 PREMINARIES 3

2.1 Affine Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Singularity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Toric Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Affine Toric Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Bifurcation Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Tame Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Asymptotic Critical Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 THE METHOD OF REAL CURVE CONSTRUCTION 15

3.1 Preliminary steps for the method . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Real Curve Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 EXAMPLES 26

4.1 Non-isolated Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Isolated Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 RESULTS AND DISCUSSION 32

REFERENCES 34

vi



PUBLICATIONS FROM THE THESIS 36

vii



LIST OF SYMBOLS

∆( f ) A convex polyhedron of f

Γ A facet Γ of the polyhedron ∆∗ verifying dim (Γ ∩Rn−k) = n− k− 1

Xσ Affine toric variety

I(X ) All polynomials vanishing on V

Φ(σ) An algebraic torus of dimension n− k related to the cone σ

Sσ Finitely generated monoid

(C∗)n n- dimensional algebraic torus

g j
ρ
(c) The coefficient of




µ j,ϑu f W
�

(Q(t)) for each j ∈ J

V (T ) The common zeroes of all the elements of T

eΓ−( f ) The convex hull of supp( f )∪ {0} in Rn

(eΓ−( f ))∗ The dual space of eΓ−( f )

Fb = f −1(b) The fiber over b

Q(t) The form of parametric curve

ϑu f W (u) The logarithmic gradient

L0 The maximum value of



(q′, 0), wi −w j

�

µ( f ) The Milnor number of f

ρ The minimum value of 〈α̃, q〉

K∞( f ) The set of asymptotic critical value at infinity

B( f ) The set of bifurcation value of f

B∞( f ) The set of bifurcation value of f at infinity

f (Sing f ) The set of critical value of f

J The set of indices that subset of [1; n]

viii



LIST OF ABBREVIATIONS

Sing f Critical values of f

h.o.t. Higher order terms

L.H.S. Left hand side

R.H.S. Right hand side

ix



LIST OF FIGURES

Figure 4.1 The facet Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.2 Branches of the curve X (t) . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.3 Branches of the curve X (t) . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



ABSTRACT

Detection Methods of Asymptotic Critical Values of
Polynomial Mappings

Abuzer GÜNDÜZ

Department of Mathematics

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Bayram Ali ERSOY

Co-supervisor: Prof. Dr. Susumu TANABÉ

In algebraic geometry, the problem of detecting the bifurcation values of a polynomial

is very important. The bifurcation values of a polynomial mapping consist of the

bifurcation value at infinity and the set of critical values of its. This problem is

generally encountered as detecting bifurcation value at infinity, which is a subset

of the bifurcation values of the polynomial. This corresponds to determining some

supersets containing bifurcation values at infinity. In addition, it is another important

problem to determine the cases where the bifurcation values consist only of the

values of the polynomial at the critical points. This is equivalent to bifurcation values

at infinity is empty. In this thesis, we firstly construct a curve that approaching

an asymptotic critical value which is a superset of the bifurcation value at infinity

with very few coefficients. We used toric geometry as the main tool. By aids of,

we get the corollary that says every critical value of polynomial mappings over the

bad face of Newton polyhedron is an element of asymptotic critical value. Finally,

we give a method to construct a curve approaching an asymptotic critical value of

a real polynomial map, corresponding to detect real coefficients of the parametric

representation of the curve. Asymptotic critical values sometimes correspond to the

infimum or supremum of the polynomial. We hope that the study can be applied to

optimization problems.
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ÖZET

Polinom Fonksiyonların Asimptotik Kritik Değerlerinin
Tespit Yöntemleri

Abuzer GÜNDÜZ

Matematik Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Bayram Ali ERSOY

Eş-Danı̧sman: Prof. Dr. Susumu TANABÉ

Cebirsel geometride, bir polinomun çatallanma değerlerini (Bifurcation values)

belirleme problemi oldukça önemlidir. Bir polinomun çatallanma değerleri kümesi

polinomun sonsuzda çatallanma değerleri kümesi ve polinomun kritik noktalarda

aldığı değerler kümesinin birleşiminden oluşur. Bu problem genellikle polinomun

çatallanma değerlerinin bir alt kümesi olan sonsuzda çatallanma değerlerinin (

bifurcation value at infinity) tespit edilmesi olarak karşımıza çıkar. Bu ise sonsuzda

çatallanma değerlerini kapsayan bir kısım özel kümeler (superset) belirlemeye karşılık

gelir. Bunun yanı sıra çatallanma değerlerinin sadece polinomun kritik noktalarda

aldığı değerlerden oluştuğu durumları tespit etmek bir diğer önemli problemdir. Bu

ise sonsuzda çatallanma değerleri kümesinin boş küme olmasına denktir. Biz bu

çalı̧smada ilk olarak, söz konusu polinomun sonsuzda çatallanma değerlerini kapsayan

bir özel küme (superset) olan asimptotik kritik değerlere yaklaşan bir parametrik

eğrinin inşası için bir yöntem verdik ve dahası bu eğriyi oldukça az katsayı ile

inşaa ettik. Bu süreç için temel araçlarımızı Torsal geometriden aldık. Buradan

söz konusu polinomun Newton çok yüzlüsünün, kötü yüzleri (bad face) üzerine

kısıtladığımızda oluşan yeni polinomun tüm kritik değerlerinin tam olarak en baştaki

polinomun asimptotik kritik değerleri olduğunu söyleyen bir sonuç verdik. Son

olarak, tüm katsayıların reel sayılardan oluşmasına denk olan, reel eğri inşası için bir

yöntem verdik. Asimptotik kritik değerler bazen polinomun infimum veya spremum

değerlerine karşılık gelir. Bilhassa çalı̧smanın bu kısmının optimizasyon çalı̧smalarına

katkı verebileceğini umuyoruz.

xiii



Anahtar Kelimeler: Newton çokyüzlüsü, sonsuzda düzenlilik, kritik değerler, torsal
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1
INTRODUCTION

1.1 Literature Review

The bifurcation value of polynomial mapping was introduced by [1] and [2] that say

if f is a "tame polynomial" that the global Milnor number is finite, then the bifurcation

value at infinity is the empty set. Namely, bifurcation value of f comprises only

the critical values ( f (Sing f )). So, in this thesis, we focus on f that is not a "tame

polynomial".

On the other hand, in [3], authors showed that if f is Newton non-degenerate,

convenient and f (0) = 0 the following conclusion;

B( f ) ⊆ Σ f ∪ {0} ∪
⋃

γ∈B
Σγ (1.1)

holds, where Σγ = { fγ(z0) : z0 ∈ (C∗)n and grad ( fγ(z0)) = 0} and Σ f = f (Sing f )
and B is the set of bad faces γ and fγ(z) =

∑

α∈γ aαz
α for f (x) =

∑

α∈∆( f ) aαz
α.

This inclusion is investigated in section 2.5.

In [4], the author showed for a bad face σ a special so that there is a a critical point

on the algebraic torus (toric part) and so t0 ∈
∑

γ. Toric geometry was first used by

Zaharia in [4] for this problem.

Jelonek and Kurdyka [5, 6] found an algorithm for detecting the set of asymptotic

critical values K∞( f ). They showes that K∞( f ) is finite. Also, it is called a superset

ofB∞( f ), it means that it includesB∞( f ).
In [7], authors consider a real rational curve {X (t)} ⊂ Rn satisfies l imt→0‖X (t)‖ →∞,

for a real polynomial f : Rn→ R of degree ≤ d, with parametric representation with

length (d+1)dn−1+1 to attain the asymptotic critical value l imt→0 f (X (t)) ∈K∞( f ).
In [8], the author presented the relation between the K∞( f ) and optimization

problems. He said that supremum of f (x) is finite if and only if the supremum of

its an element of K∞( f ). Moreover, [8], he found that if supx∈R f (x) is finite, then

the elements of K∞( f ) are supx∈R f (x).
Also, the problem was studied in [9], [10], [11],[12], [13]. Moreover, detecting of a

superset ofB∞( f ) was studied in [14], [15], [16], [17], [18], [19] etc.

1



1.2 Objective of the Thesis

In this thesis, we aimed to construct a curve approaching an asymptotic critical value

and getting a relation between Newton polyhedron of polynomial and an asymptotic

critical value of a polynomial (moreover a real polynomial) map. As a result, we aimed

to contribute to the optimization problem of the polynomial map.

1.3 Hypothesis

In this thesis, we first construct a curve approaching an asymptotic critical value which

is a superset of the bifurcation value at infinity with very few coefficients. By the aid

of this, we get a corollary that says every critical value of polynomial mappings over

the bad face of Newton polyhedron is an element of asymptotic critical value.

Secondly, we give a method to construct a curve approaching an asymptotic critical

value of a real polynomial map, corresponding to detect real coefficients of the

parametric representation of the curve. We hope that the study can be applied to

optimization problems.

2



2
PREMINARIES

In this section, we will basically utilize the book [20] for definitions and theorems.

2.1 Affine Variety

Let k be a fixed field (for example k = R or k = C), the set of n− tuples

An
k = {(x1, . . . , xn) : x i ∈ k, ∀i ∈ [1; n]} (2.1)

is called n− dimensional affine k−space.

According to the above definition if n = 2, k = R, then A2
R = R

2 and for k = C, then

A2
C = C

2 ∼= R4.

Let k[x1, . . . , xn] be the polynomial ring in variables over k. Then each polynomial

f ∈ k[x1, . . . , xn] is a function as f : An
k → A

1
k = k. Therefore if f ∈ k[x1, . . . , xn] is a

polynomial then the set of zeroes of f as

V ( f ) = {(x1, . . . , xn) ∈ An
k : f (x1, . . . , xn) = 0} ⊆ An

k = f −1(0). (2.2)

Example 1. Let f (x1, x2) = x2
1 + x2

2 − 4 ∈ k[x1, x2] and k = R as specially, Then

V ( f ) = {(x1, x2) ∈ R2 : x2
1 + x2

2 − 4= 0} ⊆ R2.

More generally, if T is any subset of k[x1, . . . , xn], we define the zero set of T to be

common zeroes of all the elements of T ;

i.e.V (T ) = {(x1, . . . , xn) ∈ An
k : f (x1, . . . , xn) = 0, ∀ f ∈ T}. (2.3)

Example 2. Consider T = {x2
1+ x2

2−1= 0, x1+ x2 = 0} ⊆ R2, to find common solution

x2
1 + x2

2 − 1= 0 and x1 + x2 = 0 that implies x2 = −x1 and so

x2
1 + (−x1)2 − 1= 0⇒ 2x2

1 = 1 and so x1 = ∓
1p
2

and x2 = ±
1p
2
.

As a result, V (T ) = {(−1p
2
, 1p

2
), ( 1p

2
, −1p

2
)}.

Definition 2.1. [20] Let k = R or k = C. A subset X ⊂ An
k is an algebraic set if there

3



exists a subset T ⊆ k[x1, . . . , xn] verifying X = V (T ).

On the other hand, we can ask this question: Does it correspond to an algebraic set if

we have a geometric object?

Definition 2.2. [20] A set X is a irreducible set if X = X1 ∪ X2 with X1, X2 ⊆ X then

X = X1 or X = X2.

Proposition 1. [20] An algebraic set is irreducible if and only if "its defining ideal" is

prime.

Definition 2.3. [20] For any subset X ⊆ An
k we define the ideal of X ∈ k[x1, . . . , xn]

by

I(X ) = { f ∈ k[x1, . . . , xn] : f (p) = 0, ∀p ∈ X }. (2.4)

Theorem 2.1. [20] Let f1, f2 ∈ k[x1, . . . , xn]
1) V (0) = An

2)V ( f1)∪ V ( f2) = V ( f1 f2),
3) V (

∑

i∈Λ Ii) =
⋂

i∈Λ V (Ii).

Theorem 2.2 (Hilbert Nullstellensatz). [20] Let k′ be an algebraic closed field and J

is an ideal of k′[x1, . . . , xn] polynomial ring. If f ∈ k′[x1, . . . , xn] that vanishes at all

points of V (J)⇒ f r ∈ J for some r > 0.

Namely,
p

J = I(V (J)), if we define
p

J = { f : f r ∈ J f or some r > 0}.

We can construct Zariski topology on An
k as open sets to be the complement of an

algebraic variety.

2.2 Singularity Theory

In this section, we will basically utilize the book [20] for definitions and theorems.

Definition 2.4. [20] Let V = V ( f1, . . . , fk) ⊂ An be an algebraic variety. If the Jacobian

matrix






∂ f1
∂ x1

. . . ∂ f1
∂ xn

...
. . .

...
∂ fk
∂ x1

. . . ∂ fk
∂ xn






(p1) (2.5)

has rank strictly less than min(n, k), then p1 is said to be the singular point of V.

Example 3. Let I = (y2 − x3, z − x2) and V (I) ⊆ A3. Then the Jacobian matrix

�

−3x2 2y 0

−2x 0 1

�

. (2.6)

4



Especially, for p = (0,0, 1), we can see that rankJV (p) = 1< 2= min(2,3) and implies

that p = (0, 0,1) is a singular point of V.

Definition 2.5. [20] If V = V ( f1) is a variety defined by a single polynomial then a

singular point p of V satisfies ∂ f
∂ x i
(p) = 0. Namely, the gradient of f must be vanishes.

i.e.

∇ f = (
∂ f
∂ x1
(p), . . . ,

∂ f
∂ xn
(p)) = (0, . . . , 0). (2.7)

Example 4. Let f (x1, x2) = x2
1 + x3

2 and V = V ( f1). Then ∇ f = ( ∂ f
∂ x1

, ∂ f
∂ x2
) = (0,0)

and so p1 = (0,0) is a singular point of V.

Definition 2.6. [20] A singular point p ∈ V is an isolated singular point if there are

no other singularities in a neighborhood of p1, Up1
⊂ V.

i.e. Up\{p} is smooth.

Otherwise, p is said to be a non-isolated singular point of V.

Example 5. Let f (x1, x2, x3) = x3
1 x2

2 + x2
2 x3 + x3

3 and V = V ( f ). Then

∇ f = ( ∂ f
∂ x1

, ∂ f
∂ x2

, ∂ f
∂ x3
) = (3x2

1 x2
2 , 2x3

1 x2 + 2x2 x3, x2
2 + 3x2

3) = (0, 0,0) and implies that

p1 = (0, 0,0) and p′ = (x , 0, 0) are a singular points of V.

Here p′ = (x , 0, 0) is example of a non-isolated singularity by along x − axis.

2.3 Toric Geometry

In this section, we will basically utilize [21] and [22] for definitions and theorems.

2.3.0.1 Convex Polyhedral Cones

We will define steps by steps as follows;

σ→ σ̌→ Sσ→ Rσ→ Xσ (2.8)

A lattice is named a discrete subgroup of N of Zn. If N is a lattice, for all x ∈ N , if

an open set W satisfies N ∩W = {x}. For instance, Z2 is a lattice. Moreover for a

subgroup of Rn(isomorphic to Zn), NR = N ⊗R and N has a basis as (v1, . . . , vn).
The set

σ = {r1v1 + r2v2 + . . .+ rnvn : r1, . . . , rn ∈ R≥0} (2.9)

is called the polyhedral cone and generated by (v1, . . . , vn). The cone σ is convex if

and only if for all v1, v2 ∈ σ, λv1 + (1−λ)v2 ∈ σ, where λ ∈ [0,1].
Let σ a convex polyhedral cone. If σ does not contain a line which passes the origin,

5



then it is called strongly convex cone.

i.e. σ∪ (−σ) = {0}.

Definition 2.7. [22] Let N ∼= Zn ⊂ Rn be a lattice and σ is a cone. If each generator

of σ is an element of N then σ is called rational or simplicial cone.

Consider a cone generated by (v1, . . . , vk);

Definition 2.8. [22] If all coordinates of a vector v ∈ Zn is coprime, then it is called

primitive. If (v1, . . . , vk) is primitive, then σ is called regular and also there exist

primitive vectors (vk+1, . . . , vn) such that det(v1, . . . , vn) = ±1. Namely, this vector may

be completed in a basis of the lattice.

The dimension of cone is the dimension of smallest vector space containing its. For

example, consider σ =< ((1, 0), (0,1)) >. It is a rational polyhedral cone and

dim(σ) = 2.

The dual space of N ∼= Zn is HomZ(N ,Z) that isomorphic to (Zn)∗ and showed by M .

Let us M as a dual vector space of N . It is defined as;

N ∗ = M = Hom(N ,Z), (2.10)

and we will take care the real vector space;

MR = M
⊗

Z
R= Re1

⊕

. . .Ren
∼= Rn. (2.11)

If e∗1, . . . , e∗n are generators of the dual space M , then we have the following condition;

< e∗i , e j >= δi j, (2.12)

where δi j is Kronecker delta.

The set

σ̌ = {v ∈ M :< u, v >≥ 0, ∀u ∈ σ} (2.13)

is called the dual cone of σ and also is a convex cone.

Definition 2.9. [22] If σ is simplicial polyhedral cone, then σ̌ is simplicial polyhedral

cone.

But the opposite is not always true. For example if σ = {0}, then σ̌ = MR is not a

strongly convex cone.

6



Example 6. Let N ∼= Z2 a lattice, σ ∈ NR and σ =< u1, u2 >=< 2e1 − e2, e2 >. The

dual space M is generated by ±e∗1,±e∗2 and so the dual cone σ̌ is generated by v1, v2 such

that v1 = a1e∗1 + a2e∗2, v2 = b1e∗1 + b2e∗2, where a1, a2, b1, b2 ∈ R.

Then we have< u1, v1 >=< 2e1−e2, a1e∗1+a2e∗2 >=< (2,−1), (a1, a2)>= 2a1−a2 = 0,

< u2, v1 >=< (0, 1), (a1, a2)>= a2 ≥ 0,

< u1, v2 >=< (2,−1), (b1, b2)>= 2b1 − b2 ≥ 0,

< u2, v2 >=< (0, 1), (b1, b2)>= b2 = 0. Then, we get

2a1− a2 = 0, a2 ≥ 0, 2b1− b2 ≥ 0, b2 = 0, we can choose as v1 = (1, 2) and v2 = (1,0)
and so σ̌ =< e∗1 + 2e∗2, e∗1 > . Also σ =< u1, u2 >=< 2e1 − e2, e2 > has four faces as

τ1 = {0}, τ2 = u1, τ3 = u2, τ4 = σ.

The set

τ= σ∩ u⊥ = {v ∈ σ :< v, u>= 0} (2.14)

is called a face of σ where u ∈ σ̌ ∩ M and showed by τ ≺ σ. Besides, any cone is a

face of itself. If the face has (n− 1)−dimension, then it is named as facet.

The following properties can be written by [22];
1) Every face of convex polyhedral cone is a polyhedral convex cone.

2) Every face of face is a face of the cone.

3) Every intersection of faces of σ is a face of σ.

4) Let σ ⊂ NR, (σv)v = σ.

5) If σ1 ⊂ σ2, then σ̌2 ⊂ σ̌1.

6) σ is strongly convex cone if and only if σ̌ has dimension n.

Let ” ? ” be an binary operation over non-empty set S such that ? : S × S → S. If

” ? ” is associative then it is called a semi-group. Moreover, if it is commutative, has

zero element and satisfies the simplification law that is s + t = s
′
+ t ⇒ s = s

′
for all

s, s
′
, t ∈ S then it is called a monoid.

Lemma 2.1. [22] Let σ be a cone, and N be a lattice. Then σ∩ N is a monoid.

Definition 2.10. [22] Let T be a monoid. If there exist a1, . . . , ak ∈ T such that

∀v ∈ T, v = λ1a1 + . . . + λkak where λi ∈ Z≥0 then T is called finitely generated

monoid. Moreover a1, . . . , ak are called generators of the T.

Lemma 2.2 (Gordon’s Lemma). [22] If σ is rational cone then σ ∩ N is a finitely

generated monoid.

We will utilize this lemma in order to polyhedral cone σ̌ and will indicate by Sσ the

monoid Sσ = σ̌∩M .
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Generally, Sσ = σ̌∩M can be finitely generated monoid. Namely, by 2.2, if σ̌ is rational

cone, then Sσ = σ̌ ∩M is finitely generated monoid. It is very important because we

will obtain an affine toric variety from the relationship between the finite generators

of Sσ.

2.4 Affine Toric Variety

In this section, we will basically utilize [21] and [22] for definitions and theorems.

Now, we will present how to obtain an affine toric variety from a rational strong convex

cone.

Definition 2.11. [22] C[z, z−1] = C[z1, . . . , zn, z−1
1 , . . . , z−1

n ] is called Laurent

Polynomial ring.

Definition 2.12. [22] For λ ∈ C∗ and α = (α1, . . . ,αn) ∈ Zn. The Laurent monomial

is denoted by

λ · zα = λ · zα1
1 · z

α2
2 · · · z

αn
n . (2.15)

There exists an isomorphism between the additative group Zn and the multiplicative

group of monic Laurent monomials as

θ : Zn→ C[z, z−1]
α= (α1, . . . ,αn) 7−→ zα = λzα1

1 · z
α2
2 · · · z

αn
n .

(2.16)

By 2.16, we have

χ : M → C[M] = C[X1, . . . , Xn, X−1
1 , . . . , X−1

n ] (2.17)

by χ e∗i = X i and χ−e∗i = X−1
i where ±e∗i is a generator of the dual space M . Hence, for

all v ∈ Sσ, there is a generator χ v ∈ C[Sσ] correspond to v.

Because of the Sσ is finitely generated by 2.2, C[Sσ] has finite number of generators.

Besides, ∀v1, v2 ∈ Sσ, we get

χ v1χ v2 = χ v1+v2 (2.18)

and so

C[Sσ] = {
∑

αvχ
v : v ∈ Sσ, αv ∈ C}. (2.19)

In this place, χ0 = 1 is the constant polynomial corresponding to 0 ∈ Sσ = σ̌∩M .

Consider the map;

f : C[Y1, . . . , Ym]→ C[Sσ] (2.20)
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by χ vi = Yi, where vi is a generator of Sσ. It can be seen that the kernel of the map f

is an ideal of the polynomial ring C[Y1, . . . , Ym]. If we indicate this by I , we obtain

C[Sσ]∼= C[Y1, . . . , Ym]/I . (2.21)

Because of θ and χ are describe likewise, the ideal I is besides kernel of θ . Namely,

the ideal I is detected by relations between the generators of Sσ.

Spec(R) is the set of all prime ideal of R. For example the spectrum of ring C[X1, X2] =
{(x − a, x − b)} and also corresponding to the maximal ideal of its.

Definition 2.13 (Affine Toric Variety). [22] If σ is rational strongly convex cone σ ⊂
NR ∼= Rn, then

Xσ = Spec(C[Sσ]) (2.22)

is called affine toric variety.

Theorem 2.3. [22] Let σ ⊂ NR ∼= Rn and I is generated by the relations between the

generators of the ring C[Sσ], then Vσ is the variety V (I) in the space Cm.

Example 7. Considerσ =< e1, e2 >, then σ̌ is generated by e∗1, e∗2 and Sσ =< (e∗1, e∗2)>.

Hence the generators of C[Sσ] are χ e∗1 = X1 and χ e∗2 = X2, and so C[Sσ] = C[X1, X2].
If we pass to the variable Y1, Y2, we get C[Sσ] = C[Y1, Y2]/I , Here, note that

dim(Vσ) = dim(C[Y1, Y2]) = 2 and so there is no relation between generators of Sσ.

Namely I =< 0>, so

Vσ = Spec(C[Sσ])∼= V (< 0>) = C2.

Theorem 2.4. [22] Let σ be a rational cone. Then the ring

Rσ = { f ∈ C[z, z−1] : supp( f ) ⊂ σ̌∩M} (2.23)

is a C-algebra that has finite generators.

Example 8. In R2, let σ =< (2e1 − e2, e2) > and implies that σ̌ =< (e∗1, e∗1 + 2e∗2) >.

But e∗1 + e∗2 can not be generated by σ̌. Then we should add its as a new element of Sσ
and so Sσ =< (e∗1, e∗1+ e∗2, e∗1+2e∗2)> . Now, we construct an isomorphism θ between Sσ
and C[z, z−1] such that

a1 7−→ u1,

a2 7−→ u2,

a3 7−→ u3.

(2.24)

By the isomorphism θ , we get u1 = z1, u2 = z1z2, u3 = z1z2
2 . The C−algebra Rσ can be

represented as Rσ = C[Sσ] = C[z1, z1z2, z1z2
2] = C[γ1, . . . ,γn]/Iσ where the corelation
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a1+ a3 = 2a2 case to the corelation u1u3 = u2
2. Here I is generated by γ1γ3 = γ2

2. Hence,

we get affine toric variety

Xσ = V (Iσ) = {x = (x1, x2, x3) ∈ C3; x1 · x3 = x2
2}.

Note that it has a singularity at origin, which is a quadratic cone and coresponding to

the cone σ.

Definition 2.14. [22]
TN
∼= C∗ ×C∗ × . . .C∗ = (C∗)n (2.25)

is called n−dimensional affine algebraic torus.

In general, for σ ∈ NR we have Sσ ⊂ S{0} and implies that C[Sσ] ⊂ C[S{0}] and so

X{0} ⊂ Xσ. Hence, for all σ ∈ NR, Xσ contains n−dimensional affine algebraic torus

TN
∼= (C∗)n as an open and dense subset. Because of this, Xσ is called toric variety.

2.5 Bifurcation Value

Let E, B be spaces and f : E→ B be a map. For t ∈ B, each the disjoint sets Ft = f −1(t)
is named the fiber over t. Also the space B is named the base space of the fibration, E

is said to be the total space, a fibration denoted by (E1, E2, F, f ).

Definition 2.15. Let a fibration (E1, E2, F, f ), for each t ∈ E2, there exists a

neighbourhood E2 ⊇ U , t ∈ U such that f −1(U) is diffeomorphic to U × F , then f

is called locally trivial fibration.

Namely, each f −1(t), t ∈ B are diffeomorphic one to another.

Let f : Cn → C be a polynomial map. If an neighbourhood, U ⊂ C, t0 satisfying

f| : f −1(U)→ U is locally trivial C∞- fibration then t0 ∈ C is said to be a typical value

of f .

Otherwise, t0 is called a bifurcation value (or atypical value). The set of bifurcation

values of f is denoted byB( f ).
Besides, for t0 ∈ C, if there exists a compact set K ⊂ Cn and a neighbourhood W ⊂ C at

t0 satisfying under the condition f| : f −1(W )\K →W is a locally trivial C∞- fibration,

then f is called topologically trivial at infinity at t0 ∈ C. Otherwise t0 is a bifurcation

value at infinity of f and denoted byB∞( f ) that is bifurcation locus at infinity of f .

In general,B( f ) : the bifurcation locus of a polynomial f is the smallest subset C and

union of the set of critical values at infinityB∞( f ) and critical values. Namely,

B( f ) = f (Sing f )∪B∞( f ). (2.26)

The following example relates f (Sing f ) to a part ofB( f ).
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Example 9. Consider f : C2 → C with f (x1, x2) = x2
1 + x2

2 . Here (0, 0) is a singular

point of f and so f ((0, 0)) = 0 ∈ f (Sing f ). Thereby the fiber f −1(0) and f −1(t), for

t 6= 0 are different as topologically and implies that 0 ∈B∞( f ).

The following example relatesB∞( f )) to a part ofB( f ).

Example 10. [1] Let us take the polynomial f : C2 → C, with f (x1, x2) = x2
1 x2 − x1

has no singular points, otherwise it has the critical values at infinity for t1 = 0. To more

explain, let t1 = 0,

f −1(0) = {(x1, x2) ∈ C2 : x2
1 x2 − x1 = 0} ∼= CtC∗ (dis joint union), but t1 6= 0,

f −1(t1) = {(x1, x2) ∈ C2 : x2
1 x2 − x1 = t} ∼= C. We can see that for t1 6= 0, f −1(t1)

and f −1(0) are topologically different. Because they have different connected component

numbers that is a topological invariant.

2.6 Tame Polynomial

Let a polynomial f : Cn→ C. If a compact neighborhood K of the critical points of f

satisfying under the condition ‖∂ f ‖ is bounded away from zero on Cn \ U , then f is

named "tame polynomial". Namely, when f is "tame", then B∞( f ) = ;.

Definition 2.16. [1] Tame polynomial can be characterized below by Milnor number

µ( f ) = dimC(C[x1, . . . , xn]/( f1, . . . , fn)) (2.27)

where f j =
∂ f
∂ x j

for 1≤ j ≤ n.

Proposition 2. [1] A polynomial is "tame" if and only if µ( f )<∞ and µ( f w) = µ( f )
for all sufficient small w ∈ Cn.

Example 11. Let f (x , y) = 2x3 + x − y2, then ∂ f (x ,y)
∂ x = 6x2 + 1, ∂ f (x ,y)

∂ y = −2y,

and implies that µ( f ) = dimC(C[x , y]/(6x2 + 1,−2y)) then µ( f ) = 2, because for

I =< 6x2 + 1,−2y > the set {1, x} can not be generated by I .

As well as, µp( f ) is a topological invariant and a useful for singularity theory.

Example 12. Let f (x1, x2) = x2
1 , then ∂ f (x1,x2)

∂ x1
= 2x1, ∂ f (x1,x2)

∂ x2
= 0, and implies that

µ( f ) = dimC(C[x1, x2]/(2x1, 0)) then µ( f ) = ∞, because for I =< 2x1 > the set

{1, x2, x2
2 , . . . , xn

2 , xn+1
2 , . . .} can not be generated by I .

In this thesis, we study the topological map f : Cn→ C such that f is not tame, namely

B∞( f ) 6= ;. If f is not tame, namely B∞( f ) 6= ;, there exists a curve X (t) ∈ Cn, ∀t

such that it approaching to the critical point of f at infinity.
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2.7 Asymptotic Critical Value

Lemma 2.3. (Curve selection lemma) [3]
Let f1, . . . , fs, g1, . . . , gs, h1, . . . , hr ∈ R[x1, . . . , xn] be polynomial functions with real coef-

ficients. Let U = {x ∈ Rm : fi(x) = 0, i ∈ [1, q]}, W = {x ∈ Rm : gi(x) > 0, i ∈ [1, s]}.
Suppose that there exists a sequence {x k} ⊆ U ∩W such that

l imk→∞‖x k‖ =∞ for all j ∈ [1; r], l imk→∞h j(x k) = 0. Then there exists a real an-

alytic curve p : (0,ε) → U ∩W with limt→0‖Q(t)‖ =∞, l imt→0h j(Q(t)) = 0 for

j ∈ [1; r], where Q(t) = atα + a1 tα+1 + . . . with a ∈ Rm \ {0} and α < 0.

Here we will consider h j as a gradient and we will use effectively this lemma.

Definition 2.17. [3] Let ∆ is a closed face of convex hull of supp( f )∪ {0} in Rn. For

f∆(z) =
∑

v∈∆ avz
v, if the system of equations

∂ f∆
∂ z1
(z) = . . .=

∂ f∆
∂ zn
(z) = 0 (2.28)

has no solution in (C∗)n, then f is called non-degenerate on ∆. Moreover, if f is

non-degenerate on every compact face ∆ of convex hull of supp( f )∪ {0} in Rn, then

f is called Newton non-degenerate.

Definition 2.18. [3] If the intersection of supp( f ) with each coordinate axis is

non-empty, then f is called convenient.

To give our main study, the following theorem in [3] should be investigated.

Theorem 2.5. [3] Suppose that f is not convenient, Newton non-degenerate and

f (0) = 0. Then the following inclusion

B( f ) ⊆ Σ f ∪ {0} ∪
⋃

γ∈B
Σγ (2.29)

holds, where Σγ = { fγ(z0) : z0 ∈ (C∗)n and grad ( fγ(z0)) = 0}, Σ f = f (Sing f ) and

B is the set of bad faces (see 3.1).

Proof. Let p(t) an analytic curve by aid of the curve selection lemma to choose a curve

p(t) such that l imt→0p(t) =∞ and l imt→0 f (p(t)) ∈ C and we denote

l imt→0 f (p(t)) ∈ Σ f ∪ {0} ∪
⋃

γ∈B
Σγ. (2.30)

To indicate this, see the expansion

p(t) = atα + a1 tα+1 + a2 tα+2 + . . .
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f (p(t)) = btβ + b1 tβ+1 + b2 tβ+2 + . . .

grad f (p(t)) = c tγ + c1 tγ+1 + c2 tγ+2 + . . .

and investigate each case step by step.

• If grad f (p(t)) = 0 then l imt→0 f (p(t)) ∈ Σ f .

• If grad f (p(t)) 6= 0 and

p(t) = (p1(t), p2(t), . . . , pn(t)) = (w
0
1 t v

1+w1
1 t v1+1+. . . , . . . , w0

k t v
k+w1

k t vk+1+. . . , 0, . . . , 0).

Let ιv : supp( f )∩Rk→ R, γ a face of supp( f ) such that the linear function

ιv(x) = Σk
j=1vi x i takes the minimal value, say d, on γ and let m ∈ (−∞, 0) be such

that m< minx{ιv(x) : x ∈ supp( f )}.
By the aid of this, we can write

f (p(t)) = fγ(w
0)td + fγ1

(w0)td+1 + . . . (2.31)

and
∂ f
∂ z j
(p(t)) =

∂ fγ
∂ z j
(w0)td−v j + . . . (2.32)

where w0 = (w0
1, w0

2, . . . , w0
k, 1, . . . , 1) and γ is a bad face such that ιv(x) takes a minimal

value over its.

• If d > 0, we get l imt→0 f (p(t)) = 0 ∈ {0}.
• If d = 0 and vk ≤ 0 we get a contradiction!

• If d = 0 and vk > 0, we get a bad face such that

l imt→0 f (p(t)) = fγ(w
0) ∈ Σγ. (2.33)

We will focus this case, because we want to construct a curve p(t) such that the critical

values under some condition are a asymptotic critical values.

• If d < 0, we attain a contradiction, due to nondegenerate condition. �

In other words, we aim to construct a curve satisfies two conditions,

approaching to infinity and l imt→0‖X (t)‖‖grad f (X (t))‖ = 0, respectively and

implies that we get l imt→0 f (p(t)) = fγ(w0) ∈ Σγ.

Jelonek and Kurdyka [5, 6] introduced the concept of asymptotic critical value of

polynomial mapping that is defined as;

Definition 2.19. [5]K∞( f ) = {y ∈ C : there is a sequence X (t), l imt→0‖X (t)‖=∞

13



and l imt→0‖X (t)‖‖grad f (X (t))‖= 0 such that l imt→0‖ f (X (t))‖= y}.

This is weaker condition than B∞( f ) and when t /∈ K∞( f ), then f satisfies a

Malgrange’s condition at this point. As we have, B∞( f ) ⊂ K∞( f ). To control the

set B∞( f ), the set of "asymptotic critical value of f " ,K∞( f ), can be used. Here

K∞( f ) is also a superset ofB∞( f ).

Example 13. [15] Consider the polynomial

f : R2→ R, f (x1, x2) = x2(x2
1 x2

2 + 3x1 x2 + 3) and the curve

Q(t) : (0, 1) → R2, t → (−3
2t , t) then we get l imt→0‖Q(t)‖ = ∞ and

limt→0‖Q(t)‖‖grad ( f (Q(t)))‖= 0. Since l imt→0 f (Q(t)) = 0, we obtain 0 ∈K∞( f ).

As a result, we focus on to give a method to construction curve that approaching to

K∞( f ), namely

l imt→0 f (X (t)) ∈K∞( f )). (2.34)
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3
THE METHOD OF REAL CURVE CONSTRUCTION

3.1 Preliminary steps for the method

In this section, we will give a method to construction a real curve X (t) approaching

to t0 ∈K∞( f ). Namely

l imt→0 f (X (t)) ∈K∞( f ) (3.1)

Let us give some basic notions of toric geometry following [4] and [23]. Consider

f (x) = Σν∈Naνz
ν, supp( f ) = {ν ∈ Nn : aν 6= 0} (3.2)

and∆( f ) = the convex hull closure of supp( f ) in Rn and is called Newton polyhedron

of f . The convex hull of supp( f )∪{0} inRn is denoted by eΓ−( f ). Also, (eΓ−( f ))∗ is called

the dual of eΓ−( f ) and K be a unimodular simplicial subdivision of (eΓ−( f ))∗.

∆a is denoted by a face of eΓ−( f ) determined by the condition 〈a, y〉 ≤ 〈a, x〉 where

x ∈ eΓ−( f ) and y ∈∆a for a ∈ (Rn)∗.
Also, define

fγ(x) =
∑

α∈γ

aαxα, (3.3)

where γ ⊂∆( f ) is a face of the Newton polyhedron of f . Let σ ∈ K be a unimodular

simplicial cone with dim(σ) = k. We can define an algebraic torus of dimension n− k

related to the cone σ as

Φ[σ] = (C∗)n/{(t b1 , . . . , t bn); t ∈ (C∗)k, (b1, . . . , bn) ∈ σ}. (3.4)

Besides, let us consider a disjoint union of tori is defined as by

Mσ = ∪σ′⊂σΦ[σ
′
]∼= Ck × (C∗)n−k 3 (u1, . . . , uk, uk+1, . . . , un) (3.5)
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with σ = ∪σ′⊂σσ
′
where σ

′
run over all subcones of σ.

In this study, firstly, we will present a change variable to restrict over the chart 3.4,

and so we look for the singularities of f over this chart. For this purpose, we focus on

the following set;

u= (u′, u′′) ∈ Cn
k = C

k × (C∗)n−k, (3.6)

where u′ ∈ Ck called affine part and u′′ ∈ (C∗)n−k called toric part.

In order to investigate the the bifurcation value of f (x), [4, p. 2.4] passes from Cn

to Cn
k := Ck × (C∗)n−k. To examine the topology of f −1(t) ∈ Cn, [4] states that it is

enough to study the question on (C∗)n−k. We will use this approach to determine the

asymptotic critical value set K∞( f ).

We recall the method to construct a curve (3.1) proposed by [24]. Namely, the critical

value of fγ, for γ : bad face ( Definition 3.1), on the toric part (C∗)n−k ⊂ Cn
k represents

an asymptotic critical value and it can be obtained by the curve X (t) (3.1) constructed

step by step in our study.

Let us define the special face on which f will be restricted.

Definition 3.1. [23] The face γ ⊂ ∆( f ) is called bad if it verifies the following two

conditions;

(i) The affine subspace of dimension = dim γ spanned by γ contains the origin,

(ii) (± condition for the bad face) There exists an hyperplane H ⊂ Rn, γ= H ∩∆( f )
defined by an equation

∑n
j=1 p j x j = 0 where there exists i 6= j verifying pi p j < 0.

Let us see the definitions given so far in the following example,

Example 14. Let f (x , y) = x4 y3 + (x3 y + 1)2 − 1, then

supp( f ) = {(4, 3), (6, 2), (3,1)}= {v1, v2, v3},
eΓ−( f ) = supp( f )∪ {0}= {(4, 3), (3,1), (6, 2), (0, 0)},
(eΓ−( f ))∗ = {< (−1,3), (−3, 4), (1,2)>}.
Besides, γ : bad face is generated by γ =< (3, 1), (6, 2) > because it passes to the origin

and the equation of bad face is x − 3y = 0.

We can choose p1 = 1 and p2 = −3 and so p1p2 = −3 < 0. Finally, since (−1,3)⊥γ, we

get Φ[γ] = (C∗)2/(t−1
1 , t3

1) = (t2, t−2
2 ).

Our purpose is to detect the singularities of f (x) over the bad face by changing the

variable. Because of this, we will give a condition for the bad face.

Let a1, · · · , ak be a unimodular basis of a k− dimensional cone σ,

i.e., σ = Σk
i=1 t iai, t i ≥ 0. In this case, we may take m1, · · · , mn ∈ Rn as a basis

16



of the dual cone σ∗ = {x ∈ Rn; 〈x , a〉 ≥ 0,∀a ∈ σ} such that



ai, m j

�

= δi j, i ∈
{1, . . . , k}, j ∈ {1, . . . , n} where δi j is Kronecker Delta. Throughout the thesis, we use

the notation i ∈ [r1; r2]⇔ i ∈ {r1, · · · , r2} for two integers r1 < r2.

The basis a1, · · · , ak can be extend to an n−dimensional basis a1, · · · , an by means of

supplementary vectors ak+1, · · · , an in the condition of | det(a1, · · · , an) |= 1. We show

σ∗ = {
∑n

i=1λimi;λ1, . . . ,λk ≥ 0} and

Vσ∗ = {λk+1mk+1 + . . .+λnmn,λ j ∈ R, j = k+ 1, · · · , n}, respectively.

Suppose that γ is a bad face and a n−dimensional cone σ verifying

γ ⊂ σ∗ = {x ∈ Rn; 〈α, x〉 ≥ 0,∀α ∈ σ} (3.7)

has a basis (a1, . . . , ak) such that γ = {v ∈ ∆( f ); 〈ai, v〉 = 0, i = 1, . . . , k}. The

existence of this basis can be reached from Definition 3.1 (ii).

Note that we put conditions on bad face γ such that ∀ v ∈ γ, < ai, v >= 0 f or i ∈
1, . . . , k and < ai, v > ≥ 0 f or i ∈ {k + 1, . . . , n} to get a polynomial if we restrict f

over the monomials γ.

Now, we will give a method to detect unimodular matrixes used for changing variable.

Let us define an unimodular matrix

W = (a1
T , . . . , an

T ) =











w1

w2
...

wn











, W−1 = M = (µ1
T , . . . ,µn

T ) =











m1

m2
...

mn











, (3.8)

where (m1, . . . , mn) is a basis of σ∗ and σ∗ = Σk
i=1R≥0mi +Σn

j=k+1Rm j. In particular,

we will choose the cone σ so that {m1, · · · , mn} ⊂ (R∗)n. This is possible thanks to the

conditions of 3.1.

Under the change of variables

(x1, · · · , xn) = (u
w1 , · · · , uwn), (3.9)

we get a rational function by (3.9)

f W (u) =
∑

α∈supp( f )

aαu
α·W . (3.10)
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Namely, for α ∈∆( f ), each monomial of f (x) can be written as

xα = uα·W = u<a1,α>
1 · . . . · u<ak ,α>

k · u<ak+1,α>
k+1 · . . . · u<an,α>

n . (3.11)

Especially if v ∈ γ , then 〈ai, v〉 = 0 f or i ∈ [1; k] and 〈ai, v〉 ≥ 0 f or i ∈ [k+ 1; n].
Hence we get uv·W = u<ak+1,v>

k+1 · . . . · u<an,v>
n .

By this condition, the toric variety is obtained from f W
γ
(x) lies in the toric part

(C∗)n−k ⊂ Cn
k.

Now we are in the u− space and look at its singularity by restricting the function over

γ.

Now we investigate the singularity of f W
γ
(u) by means of the logarithmic gradient

ϑu f W (u) = (ϑu1
f W (u), · · · ,ϑun

f W (u)), (3.12)

with ϑu j
= u j

∂
∂ u j

, j ∈ [1; n], for u∗ = (0, u′′∗ ) ∈ C
n
k.

If ϑu f W
γ
(u∗) = 0, then u∗ = (0, u′′∗ ) ∈ C

n
k is called a critical point. We give the notation

u′ = (u1, · · · , uk), U ′′ = (Uk+1, · · · , Un) = (uk+1 − u∗k+1, · · · , un − u∗n), respectively. The

local expansion of the Laurent polynomial

f W (u) at u= u∗ = (0, u′′∗ ) ∈ C
n
k is given by

f W (u) =
∑

β∈suppu∗ ( f W )

a∗
β
(u− u∗)β =

∑

β∈suppu∗ ( f W )

a∗
β
u′β

′
U ′′β

′′
, (3.13)

for suppu∗( f W ) := {β ∈ Zn; a∗
β
6= 0}.

After the expansion, negative power can occur. In this case, we will expand its Laurent

polynomial series.

The expression matching to the term α.W ∈ (Zk
≥0 \ {0})×Z

n−k
<0 in (3.10) will produce

a series in (3.13) with (β ′,β ′′) ∈ (Zk
≥0 \ {0})× (Z≥0)n−k with respect to the rule

1
u j
=

1
u∗j

∑

`≥0

(−
U j

u∗j
)`. (3.14)

Lemma 3.1. [23] The Laurent polynomial f W (0, u′′) = f W
γ
(u) =

∑

α∈γ aαu
α.W is a poly-

nomial (with positive power terms) , when it restrict over u′′ variables.
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Now let us see this process again with the following example. We received the method

in [25] to determine the unimodular matrix W.

Example 15. For 14, a1 = (−1, 3)⊥γ and for a(1)2 = (1,−2), < v, a(1)2 >≥ 0, where

v ∈ γ. Hence we can take

W = (at
1, (a(1)2 )

t) =

�

w1

w2

�

=

�

−1 1

3 −2

�

, W−1 = M =

�

m1

m2

�

=

�

2 1

3 1

�

and

detect M T =

�

µ1

µ2

�

.

Also, changing variables v3 ·W = (0, 1) and v1 ·W = (5,−2) and so

f W (u) = u1u−2
2 + (u2 + 1)2 − 1. For the expansion of the Laurent polynomial, calculate

1
u2

2
= ( −1

1−(1+u2)
)2 = [1+Σ j=1(1+ u2) j]2. So, we have

ϑu f W (u) = (ϑu1
f W (u),ϑu2

f W (u)) = (5u5
1u−2

2 ,−2u5
1u−2

2 +2u2(u2+1)). For ϑu f W
γ
(u∗) = 0,

then u∗ = (0,−1) and so f W (0, u′′) = f W
γ
(u) =

∑

α∈γ aαu
α.W = (u2+1)2−1. For U1 = u1

and U2 = u2 + 1, then f W (U1, U2) = U5
1 (U2 − 1)−2 + (U2)2 − 1.

Here, we will some basic definitions to illustrate sufficient conditions of 3.19.

We define ∆∗ as a convex hull of ∪n
i=1∆u∗(




µi,ϑu f W (u)
�

).
Here the polyhedron ∆u∗(




µi,ϑu f W (u)
�

) is defined as a convex hull of

suppu∗(



µi,ϑu f W (u)
�

) obtained after the expansion as in (3.13).

Proposition 3. ([23, Proposition 3.1]) Assume that ϑu f W
γ
(u∗) = ϑu f W (0, u′′∗ ) = 0.

Then we can detect a facet Γ of the polyhedron ∆∗ verifying dim (Γ ∩Rn−k) = n− k− 1

is determined by the aids of a vector q ∈ Zn such that

Γ = {β ∈∆∗; 〈β , q〉 ≤



β̃ , q
�

for every β̃ ∈∆∗}. (3.15)

Namely, the inequality 〈β , q〉 ≤



β̃ , q
�

is valid with each

β̃ ∈∆u∗(



µi,ϑu f W (u)
�

), i ∈ [1; n], for any β ∈∆∗. Also, we will denote ρ ,is an integer,

by the following

ρ = minα̃∈∆∗ 〈α̃, q〉 . (3.16)

It is clear that 3.16 equal to 〈α, q〉 for α ∈ Γ since the definition of 3.15

In this situation, we define a special curve in u−space

Q(t) = (u′(t), u′′(t)) = (c′ tq′ + h.o.t., u
′′

∗ + c′′ tq′′ + h.o.t.), (3.17)

where q = (q′, q′′) is detected in Proposition 3, u
′′

∗ 6= 0, as u
′′

∗ ∈ (C
∗)n−k and

c′ tq′ = (c′1 tq′1 , · · · , c′k tq′k), etc.
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By the means of all aforementioned, we will look for conditions to verify 3.19.

Definition 3.2. ( [5, 6, 23]) Let us consider a curve x = X (t) verifies the following

two conditions;

l imt→0||X (t)||=∞, (3.18)

l imt→0 x i
∂ f (X (t))
∂ x j

→ 0, (3.19)

for each pair (i, j) ∈ [1; n]2. The value of l imt→0 f (X (t)) is called the asymptotic

critical value of f . K∞( f ) is called the set of asymptotic critical values of f .

Besides [15], if the image value of f , which is not asymptotic critical is called

t−regular value of f . If limit l imt→0 f (X (t)) = p0 exists for the curve (3.18), the

negation of the condition (3.19) is known as Malgrange condition for the fiber f −1(p0).
It means that ∃ε > 0 such that l imt→0||X (t)||||grad f (X (t))||> ε.

In order to construct a curve ‖X (t)‖ →∞ aforementioned, it is sufficient to take only

one torus chart Φ[σ].

To construct a special curve X (t) a image of the curve Q(t) in u− space by the map

(3.9). Further we impose the following condition on (3.15), q = (q′, q′′) and (3.8):

∃i ∈ [1; n] such that < (q′, 0), wi >< 0, (3.20)

in the view of X i(t) = ci t
<(q′,0),wi>(1+ h.o.t).

That is our first condition for our method and is called (µ) condition.

Also, X (t) is denoted by the image of the curve Q(t) defined in (3.17) by the aids of

the map (3.9).

Lemma 3.2. [23] The condition (µ) of 3.20 is adequate to exist a curve ‖X (t)‖ →∞
with finite limit l imt→0 f (X (t)) = l imt→0 f W (Q(t)).
l imt→0 ϑu f W (Q(t)) = 0 verifies and the limit l imt→0 f W (Q(t))is corresponding to a crit-

ical value of the polynomial f W
γ
(u).

Proof. we can get x i(t) = ci t〈(q
′,0),wi〉(1+ h.o.t.) since (3.17) and x i = uwi .

Because of this definition of curve (3.17), it is clear that the value

l imt→0 f (X (t)) = l imt→0 f W (Q(t)) is existed. �

For the second condition, we shall see the following relation between the logarithmic
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gradient vectors.











ϑx1
f (x)

ϑx2
f (x)
...

ϑxn
f (x)











= M T











ϑu1
f W (u)

ϑu2
f W (u)
...

ϑun
f W (u)











. (3.21)

Let ~̀= (`1, · · · ,`n) ∈ (R∗)n be a vector in general position with non-zero components

(actually corresponding to coefficients of the curve) and denote < ~̀, uW >=
∑n

j=1 ` ju
w j , then

< ~̀, x >











∂x1
f (x)

∂x2
f (x)
...

∂xn
f (x)











=< ~̀, uW >











µ1
uw1

µ2
uw2

...
µn
uwn





















ϑu1
f W (u)

ϑu2
f W (u)
...

ϑun
f W (u)











. (3.22)

On comparing the orders in t of the L.H.S. and R.H.S. for x = X (t) in (3.22), it is

sufficient to investigate a curve Q(t) satisfying

min
i 6= j




(q′, 0), wi −w j

�

+ ord
�

< µ j,ϑu f W > (Q(t))
�

> 0, (3.23)

for every j ∈ [1; n]. Also, we define the new integer as follow;

L0 = max i 6= j < (q
′, 0), wi −w j >, (3.24)

and will use it to control powers in the series Q(t).

Example 16. To see more clearly 3.22, let us try to get in two variables.

Firstly, let us see

�

ϑx1
f (x)

ϑx2
f (x)

�

= M T

�

ϑu1
f W (u)

ϑu2
f W (u)

�

. (3.25)

Namely, let us change parameters for Jacobean matrix.

Since x1 = uw1 , x2 = uw2 , u1 = xm1 = xm11
1 xm12

2 , u2 = xm2 = xm21
1 xm22

2 then

ϑx1
u1 = x1

∂ u1
∂ x1
= x1 ·m11 · x

m11−1
1 · xm12

2 = m11 xm11
1 xm12

2 = m11 · u1 and similarly

ϑx1
u1 = m21 · u2, x1

∂
∂ x1
= x1(

1
∂ x1
∂ u1

· ∂∂ u1
+ 1

∂ x1
∂ u2

· ∂∂ u2
) =
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x1[
∂ u1
∂ x1
· ∂∂ u1

+ ∂ u2
∂ x1
· ∂∂ u2
] = m11 · u1

∂
∂ u1
+m21 · u2

∂
∂ u2
=

m11ϑu2
+m21ϑu2

=< µ1, (ϑu1
,ϑu2
) >, as desired. Moreover, let ~̀ = (`1,`2) ∈ (R∗)2 be a

vector with non-zero components and denote



~̀, uW
�

=
∑2

j=1 ` ju
w j . Then we have




~̀, x
�

�

∂x1
f (x)

∂x2
f (x)

�

=



~̀, uW
�

�

µ1
uw1

µ2
uw2

��

ϑu1
f W (u)

ϑu2
f W (u)

�

. (3.26)

(`1uw1 + `2uw2) ·











1
uw1

�

m11

m21

�

1
uw2

�

m12

m22

�











= (`1 + `2uw2−w1) ·

�

m11

m21

�

+ (`1uw1−w2 + `2) ·

�

m12

m22

�

= `1

��

m11

m21

�

+ uw1−w2

�

m12

m22

��

+

`2

�

uw1−w2

�

m11

m21

�

+

�

m12

m22

��

=

<`,uw>
uw1 = <(`1,`2),(uw1 ,uw2 )>

uw1 = `1uw1+`2uw2

uw1 = `1 + `2uw2−w1 .

If we write in the last equation

Q(t) = (u′(t), u′′(t)) = (c′ tq′ + h.o.t., u
′′

∗ + c′′ tq′′ + h.o.t.) (3.27)

and focus on ord((`1 + `2uw2−w1)|Q(t)), we arrive the equation

mini 6= j




(q′, 0), wi −w j

�

(Q(t)).

Also for the last part of the 3.26, we arrive the equation ord
�


µ j,ϑu f W
�

(Q(t))
�

. As a

result, the logarithmic gradient goes to zero, the following integer that is the power of t,

mini 6= j




(q′, 0), wi −w j

�

+ ord
�


µ j,ϑu f W
�

(Q(t)),
�

should be positive.

Hence, we give the following theorem.

Theorem 3.1. [23] Consider a polynomial f ∈ C[x1, · · · , xn] and its Newton polyhe-

dron ∆( f ), has maximal dimension n. Suppose that γ is one of its bad faces is given in

Definition 3.1.

(i) Under the conditions (µ) of 3.20, we obtain a curve X (t) verifying (3.18), (3.19) of

Definition 3.2 so that a critical value of the polynomial f W
γ
(u) is equal to l imt→0 f (X (t)).

(ii) X (t) is found as an image by the map (3.9) of a curve Q(t) whose coefficients c ∈ C
verify (L0 −ρ + 1) | J | −tuple of algebraic equations for ρ (3.16), L0 (3.24). (iii) The

curve Q(t) aforementioned in (ii) has a parametric representation (3.17) of parametric

length L0 − ρ + 2, in other words, we may suppose whose parametrization coefficients

verifies (c′( j), c′′( j)) = 0 for j > L0 −ρ + 1.
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By the choice made in Proposition 3, (3.15), (3.16), we get the expansion of <

µ j,ϑu f W > (Q(t)), in t with the following form

g j
ρ
(c)tρ + g j

ρ+1(c)t
ρ+1 + h.o.t. (3.28)

We define the index set

J= { j ∈ [1; n]; mini 6= j < (q́, 0), wi −w j >< 0}. (3.29)

The algebraic function g j
ρ
(c) depends on all n variables (c′(0), c′′(0)) ∈ Cn ⊂ C for

each j ∈ J in view of the choice of q ∈ Zn .

As | J |< n the system of algebraic equations g j
ρ
(c) = 0,∀ j ∈ J has non-trivial solutions

in C.

Here for each j ∈ J, the vector with polynomial entries g j
ρ
(c) is depended on all n

variables (c′(0), c′′(0)) ∈ Cn ⊂ C selection of q ∈ Zn is obtained in Proposition 3.

The vector with polynomial entries g j
ρ+1(c) efficiently is depended on

(c′(0), c′′(0), c′(1), c′′(1)) ∈ C2n ⊂ C , so the system of equations g j
ρ+1(c) = 0,∀ j ∈ J

which has further non-trivial solutions in C.

Thereby, we may acquire non-trivial solutions to (L0 + 1−ρ) | J | −tuple of algebraic

equations

g j
ρ
(c) = g j

ρ+1(c) = · · ·= g j
L0
(c) = 0,∀ j ∈ J, (3.30)

for L0 (3.24).

In order to demonstrate this, it is enough to indicate that g j
ρ+`(c) efficiently is attached

to (c′(`), c′′(`)) are absent in g j

ρ+˜̀(c) for ˜̀ ∈ [0;`− 1].

In summary we get the following theorem [23, Theorem 3.7] tells us that every critical

value of polynomial

f W
γ
(u) =

∑

α∈γ∩supp( f )

aαu
α.W (3.31)

with γ bad face is an asymptotic critical value under certain conditions.

Namely, the limit l imt→0 f W (Q(t)) corresponds to a critical value of the polynomial

f W
γ
(u).
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Corollary 3.1. [23] Under supposition of Theorem 3.2, we get the following inclusion

⋃

γ

fγ(Sing fγ ∩ (C∗)dim γ) ⊂K∞( f ), (3.32)

where γ runs among bad faces of ∆( f ) when a cone σ verifying condition (µ) of 3.20

may be constructed.

Proof. Theorem 3.2 tells us f W
γ
(Sing f W

γ
∩ (C∗)dim γ) ⊂ K∞( f ). It is enough to show

that f W
γ
(Sing f W

γ
∩ (C∗)dim γ) = fγ(Sing fγ ∩ (C∗)n) for fγ(x) =

∑

α∈γ∩supp( f ) aαxα.

From Lemma 3.1, f W
γ
(u) is a polynomial depending effectively on toric variables u′′

and independent of affine variables u′ (the condition (i) of the Definition 3.1 ). This

means that ϑu1
f W
γ
(u) = · · · = ϑuk

f W
γ
(u) = 0. Thus, for u′′∗ ∈ Sing f W

γ
∩ (C∗)dim γ, the

vanishing of the logarithmic gradient vector holds: ϑu f W
γ
(0, u′′∗ ) = 0. By using the map

u′′(x) = (xmk+1 , · · · , xmn) induced by the inverse to (3.9), we see fγ(x) = f W
γ
(0, u′′(x)).

Taking the relation (3.21) into account, we see that this entails

ϑx fγ(x∗) = 0 for x∗ ∈ (C∗)n that satisfies u′′(x∗) = u′′∗ .

Conversely, if ϑx fγ(x∗) = 0 for x∗ ∈ (C∗)n, by (3.21), we see ϑu f W
γ
(0, u′′∗ ) = 0 for

u′′∗ = u′′(x∗) the image of the map (3.9). �

3.2 Real Curve Construction

In this section, we investigate the construction of real curve (3.1) for a real polynomial

mapping f : Rn → R. Our aim is to solve equations (3.30) in the real space for

` ∈ [0; L0 −ρ + 1].

Theorem 3.2. [24] We apply notions of precedent sections to the real polynomial map-

ping f : Rn → R. If card(J) = 1, for the index set (3.29), then the real curve (3.1) can

be constructed that approaches a real asymptotic critical value of f .

Proof. As J= { j} with some j ∈ [1; n], for each equation

g j
ρ+`(c) = 0, ` ∈ [0; L0 −ρ+ 1], we shall try to solve algebraic equations in variables

c j(0), c j(1), · · · , c j(`) that can be solved in real while other variables can be chosen in

an arbitrary manner, especially chosen to be real. We explain the proof step by step.

Firstly, let us consider the equation g j
ρ
(c) in a variable c j(0):

g j
ρ
(c) = b0

0 + b0
1(c j(0)) + b0

2(c j(0))2 + . . .+ b0
p0
(c j(0))p0 , p0 ≥ 1, where all b0

i are real

numbers for i ∈ [0; p0]. Note that g j
ρ
(c) has a non-zero term b0

0. The coefficients

b0
1, . . . , b0

p0
depend also on real ci(0), i ∈ [1; n]\{ j} that can be consider as real free

variable. This means that there is sufficient freedom to change the constant b0
0 so
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that the equation g j
ρ
(c) has a real root as an equation in c j(0).

Secondly, for the equation g j
ρ+1(c) = 0 which can be considered as an equation that

depends on only c j(0), c j(1). However we found the variable c j(0) as real number

from the first step. So, the equation consists of

g j
ρ+1(c) = b1

0 + b1
1(c j(1)) + b1

2(c j(1))2 + . . . + b1
p1
(c j(1))p1 , p1 ≥ 1. By an argument

analogous to see the existence of real {ci(0)}ni=0 satisfying g j
ρ
(c) = 0, we conclude

that there exist real {ci(0), ci(1)}ni=0 satisfying g j
ρ+1(c) = 0.

It can bee seen that for each step the equation g j
ρ+`(c) = 0, ` ∈ [0; L0−ρ+1] can be

solved in terms of c j(`) that can be chosen real. In this way we can construct a real

curve X (t), as desired. Thus the proof is completed. �

As a result of this theorem, for example, if we take all exponents of f (x) even, the

infimum of this function will be the element of K∞( f ).
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4
EXAMPLES

Examples in this section are received from work [23]. We will give two examples that

illustrate Theorem 3.2.

4.1 Non-isolated Case

Example 17. (Non-isolated singularity on a two dimensional bad face) [23]

For a polynomial f (x) = x v1 + (x v2 − x v3 + 1)2 + (x v2 − x v3 + 1)3 + x v4 − 2

with v1 = (2,1, 1), v2 = (2, 2,1), v3 = (1,2, 1), v4 = (3,1, 1).

We shall restrict the monomial of f over the bad face to look for singularities.

Note that non-isolated singularities at infinity case have not been studied in [26].
By changing the variable, we will construct a unimodular matrix W and M .

We state that

M =







v1

v2

v3






= (µ1

T ,µ2
T ,µ3

T ) =







2 1 1

2 2 1

1 2 1






, is unimodular. So we may take

M−1 = W = (a1
T , a2

T , a3
T ) =







w1

w2

w3






=







0 1 −1

−1 1 0

2 −3 2






. Here, γ of ∆( f ) is the

only bad face located on the plane spanned by v2, v3. By aid the of the above matrix

W, we get f W (u) = −2+ u1 + (u2 − u3 + 1)2 + (u2 − u3 + 1)3 + u1u2
u3

.

Note that f W
γ
(0, u2, u3) = (u2 − u3 + 1)2 + (u2 − u3 + 1)3 is a polynomial and has

non-isolated singularities along a line u2 − u3 + 1 = 0. For example, we may select,

u∗ = (0,−1/3,2/3).

Since the negative power occurs, we shall expand the Laurent series.

For U2 = u2 + 1/3, U3 = u3 − 2/3, f W (u) has the following expansion
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f W (u) = −2+ u1 + (U2 − U3)2 + (U2 − U3)3 +
3u1
2 (U2 − 1/3)(1− 3U3

2 + (
3U3

2 )
2 + · · · ), in

the neighbourhood of u∗.

The facet given in Γ , (3.15) is determined by the calculating of ∆(



µi,ϑu f W (u)
�

) for

i = 1, 2,3.

A direct computation indicates



µ3,ϑu f W (u)
�

= u1
16 − 2U2 + 2U3 + h.o.t.

Now, we detect the facet 3.15 that is a face closest to the origin of

∆(



µi,ϑu f W (u)
�

) i = 1,2, 3.

Figure 4.1 The facet Γ

We see that detect the facet Γ locates on the plane including (1, 0,0), (0,0, 1), (0, 1,0)
and q = (1,1, 1), (q′, 0) = (1,0, 0) and compute L0 = 3 and ρ = 1, respectively. Note

that a curve Q(t) (3.17) with real coefficients of parametric length 4. Compared to

[7], the length is so less than that one.

In other words,

u1 =
∑3

j=0 c1( j)t j+1, u2 = −1/3+
∑3

j=0 c2( j)t j+1, u3 = 2/3+
∑3

j=0 c3( j)t j+1

that verifies −3+ ord



µ3,ϑu f W (Q(t))
�

> 0, can be constructed. Here one can obtain

J= {3}.

However, by the aids of the method of [7, Theorem 3.5.], the real curve with needed

property has parametric length 16× 152 + 1= 3601.

Indeed, providing that we put these terms into



µ3,ϑu f W (u)
�

, the expansion with

initial term proportional to t1, (〈q,α〉= 1 for α ∈ Γ ) is obtained as follows




µ3,ϑu f W (u)
�

(Q(t)) = {c1(0)/2− 2c2(0) + 2c3(0))}t+
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1/4{2c1(1) + 6c1(0)c2(0) − 4c2(0)2 − 8c2(1) + 3c1(0)c3(0) + 8c2(0)c3(0) − 4c3(0)2 +
8c3(1)}t2+
1/8{4c1(2) + 12c1(1)c2(0) + 24c2(0)3 + 12c1(0)c2(1) − 16c2(0)c2(1) − 16c2(2) +
6c1(1)c3(0) − 18c1(0)c2(0)c3(0) − 72c2(0)2c3(0) + 16c2(1)c3(0) − 9c1(0)c3(0)2 +
72c2(0)c3(0)2−24c3(0)3+6c1(0)c3(1)+16c2(0)c3(1)−16c3(0)c3(1)+16c3(2)}t3+ · · ·

Since L0 = 3, we shall solve the coefficient equations of t, t2, t3 is an equation system.

The coefficients of t, t2, t3 depends on ((c1(0), c2(0), c3(0)), ((c1(0), c2(0), c3(0), c1(1), c2(1), c3(1)),
((c1(0), c2(0), c3(0), c1(1), c2(1), c3(1), c1(2), c2(2), c3(2)), respectively. Hence, we get

the system of algebraic equations including (ci( j))i=1,2,3, j=0,1,2 ∈ C9. Here we shall

detect each (ci( j))i=1,2,3, j=0,1,2 ∈ C9 which yield the system of algebraic equations.

In order to do this, we may take (c1(3), c2(3), c3(3)) ∈ C3 as arbitrary non-zero vector.

The change variable x1 = u2u−1
3 , x2 = u−1

1 u2, x3 = u2
1u−3

2 u2
3, are obtained by the image

of curve Q(t), which verifies (3.18) , (3.19) of Definition 3.2 and

l imt→0 f (X (t)) = −2 ∈K∞( f ).

As a result, we construct the curve X (t) approaches to the surface {x; f (x) = −2} as

t → 0.

The curve X (t) = (x1(t), x2(t), x3(t)) which is asymptotically approaching to the

surface {x; f (x) = −2} and consists of the following parameters by the found

coefficients (ci( j))i=1,2,3, j=0,1,2 ∈ C9 :

x1(t) =
t4 + t3 + t2 + t − 1

3

t4 + 131t3

256 −
t2

4 +
3t
4 +

2
3

(4.1)

x2(t) =
t4 + t3 + t2 + t − 1

3

t4 + t3 + t2 + t
(4.2)

x3(t) =

�

t4 + 131t3

256 −
t2

4 +
3t
4 +

2
3

�2 �
t4 + t3 + t2 + t

�2

�

t4 + t3 + t2 + t − 1
3

�3 . (4.3)

Solving this by the computer program Mathematica, we get the above explicit form.

Note that this curve is one of many curves with the same characteristic.

In Figure 5.2, we pose two parts of the curve corresponding to the asymptotes as

t → 0+, t → 0−.
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Figure 4.2 Branches of the curve X (t)

In Examples 17 and 18 figures explaining algebraic surfaces and rational parametric

curves are drawn utilizing the computer program MATLAB.

4.2 Isolated Case

Example 18. (Isolated singularities at infinity) [23]
For a polynomial f (x) = −3x v0 + x v1 + x v2 + x3v0 with v0 = (2,2, 1), v1 = (1, 0,1),
v2 = (0,1, 1). By changing the variable, we will construct a unimodular matrix W and

M . W = (a1
T , a2

T , a3
T ) =







w1

w2

w3






=







1 0 1

−2 −1 −1

2 2 1






,

M =







m1

m2

m3






= (µ1

T ,µ2
T ,µ3

T ) =







−1 −2 −1

0 1 1

2 2 1






.

A face γ of ∆( f ) is only bad face and is located on the cone {t.v0; t > 0}.
f W = u1

3u2
2u3

2+ u2+ u3
3− 3u3. To look for singularities over the algebraic torus, we

restrict f over bad face.

The singular points of f W
γ
(u) = u3

3 − 3u3 are u∗3 = ±1 and critical values are ∓2. By

the aids of [26], we pose that, in this case the bifurcation setB( f ) ⊂K∞( f ) contains

{±2}.

We will plain constructing a curve X (t) which verifies (3.18) , (3.19) of Definition 3.2

and also the limit condition l imt→0 f (X (t)) = −2. Likewise, another curve may be also

constructed, verifying l imt→0 f (X (t)) = 2.

Let us compute



µ j,ϑu f W (u)
�

, j = 1,2, 3 and detect the facet Γ that is the closest face
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of the origin. For instance,



µ3,ϑu f W (u)
�

consist of the following

3u1
3u2

2(U3 + 1)2 − u2 + 3U3(U3 + 1)(U3 + 2), with U3 = u3 − 1.

The facet Γ consists on the plane including (3,2, 0), (0, 1,0), (0,0, 1). By calculating,

we get q = (−1, 3,3) ,i.e., (q′, 0) = (−1,3, 0) and implies that

〈(q′, 0), w1〉 = −1, 〈(q′, 0), w2〉 = −1, 〈(q′, 0), w3〉 = 4. Likewise, J = {3}, note that

card(J) = 1 and L0 = max i 6= j




(q′, 0), wi −w j

�

= 5. Hence (3.17) consist the following

parts

u1 = c1(0)t−1+ c1(1)+h.o.t., u2 = c2(0)t3+ c2(1)t4+h.o.t, u3 = 1+ c3(0)t3+ c3(1)t4+
h.o.t. Indeed, providing that we put these terms into




µ3,ϑu f W (u)
�

, the expansion

with initial term t3 (〈q,α〉= 3 for α ∈ Γ ) is obtained as follows;

{c2(0) + c1(0)3c2(0)2 + 6c3(0)}t3 +
{3c1(0)2c1(1)c2(0)2 + c2(1) + 2c1(0)3c2(0)c2(1) + 6c3(1)}t4 +
{3c1(0)c1(1)2c2(0)2+3c1(0)2c1(2)c2(0)2+6c1(0)2c1(1)c2(0)c2(1)+c1(0)3c2(1)2+c2(2)+
2c1(0)3c2(0)c2(2) + 6c3(2)}t5 + h.o.t.

The coefficients of t3, t4, t5 depend on

(c1(0), c2(0), c3(0)), (c1(0), c2(0), c3(0), c1(1), c2(1), c3(1)),
(c1(0), c2(0), c3(0), c1(1), c2(1), c3(1), c1(2), c2(2), c3(2)), respectively. Namely, under

the condition −5+ord



µ3,ϑu f W
�

(Q(t))> 0, the real curve can be constructed. Even

though we obtained Q(t)whose minimum parametric length is 4, we have known that

after the method of [7, Theorem 3.5.], the rational curve with needed properties has

a length 3601.

We obtain the curve X (t) as the image of the curve Q(t) by the map x1 = u1u3, x2 =
(u2

1u2u3)−1, x3 = u2
1u2

2u3, as desired.

The curve X (t) = (x1(t), x2(t), x3(t)) asymptotically approaching to the surface

{x; f (x) = −2} as follows:

x1(t) =
�

t2 + t +
1
t
+ 1

��

t6 −
8t5

3
− t4 −

t3

3
+ 1

�

, (4.4)

x2(t) =
1

�

t2 + t + 1
t + 1

�2 �
t6 − 8t5

3 − t4 − t3

3 + 1
�

(t6 + t5 + t4 + t3)
, (4.5)

x3(t) =
�

t2 + t +
1
t
+ 1

�2�

t6 −
8t5

3
− t4 −

t3

3
+ 1

�

�

t6 + t5 + t4 + t3
�2

. (4.6)

Solving this in the computer program Mathematica, we get the above explicit form.

In Figure 5.3, we pose two parts of the curve corresponding to the asymptotes as

t → 0+, t → 0−.
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Figure 4.3 Branches of the curve X (t)
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5
RESULTS AND DISCUSSION

Consider f : Cn → C a polynomial mapping and for x ∈ Cn, t ∈ C such that

f (x) = t x . We focus on the problem of how the fiber f −1(t) changes topologically,

when t ∈ C changes.

Namely, when f −1(t0) is not diffeomorphic to other fibers

f −1(t) for t0, t ∈ C? The t is element of the bifurcation locus of f which is denoted

by B( f ), if the fiber f −1(t) is not topologically equivalent to f −1(s) for any value

s ∈ C near enough to t ∈ C.

The bifurcation locus of a polynomial map f is the smallest subset of C such that f is

a locally trivial C∞- fibration over C \B( f ).
Also, B∞( f ) comprise values for which f is not a locally trivial fibration at infinity

(i.e. outside a large ball) and is called the critical value of f at infinity.

In conclusion, the equality B( f ) = f (Sing f )∪B∞( f ) holds. Here f (Sing f ) is the

critical value of polynomial at this point.

In general, the bifurcation locus B( f ) is not equal to its bifurcation set f (Sing f )
which is showed by Broughton, in 1998 [1]. But, describing exactly the critical value

set at infinityB∞( f ) is a difficult task.

In the literature, some special sets called supersets including B∞( f ) are defined

to approach to B∞( f ). We focus on the asymptotical critical value of polynomial

mapping that is a superset and denoted by K∞( f ).
The asymptotical critical value of polynomial mapping defined as

K∞( f ) = {y ∈ C : there is a sequence X (t), l imt→0‖X (t)‖ = ∞ and

l imt→0‖X (t)‖‖grad f (X (t))‖= 0 such that

l imt→0‖ f (X (t))‖ = y} and B∞( f ) ⊂ K∞( f ). It was introduced firstly with K∞( f )
by Z. Jelonek and K. Kurdyka [5].
In this thesis, we firstly present an effective method to construct curves approaching

the asymptotic critical value set of the polynomial map.

To this end, we suggest a way to construct rational curves with parametric

representation with very few coefficients. At this moment, we pose that the

asymptotic critical value set contains the critical value of a polynomial associated
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with the bad face of the Newton polyhedron. For this purpose, we use toric geometry

as a tool, which has been introduced into the study of this question by A.Némethi

and A.Zaharia [3]. Hence, we will give a method to the construction curve that

approaching t0 ∈K∞( f ) such that l imt→0 f (X (t)) ∈K∞( f ).
Secondly, we give a method to construct a curve approaching an asymptotic critical

value of a real polynomial map, corresponding to detect real coefficients of the

parametric representation of the curve.

As a result, if we take all exponents of f (x) even, the infimum of this function will be

the element ofK∞( f ). Finally, we hope that the study can be applied to optimization

problems.
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