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ABSTRACT

Detection Methods of Asymptotic Critical Values of
Polynomial Mappings

Abuzer GUNDUZ

Department of Mathematics

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Bayram Ali ERSOY
Co-supervisor: Prof. Dr. Susumu TANABE

In algebraic geometry, the problem of detecting the bifurcation values of a polynomial
is very important. The bifurcation values of a polynomial mapping consist of the
bifurcation value at infinity and the set of critical values of its. This problem is
generally encountered as detecting bifurcation value at infinity, which is a subset
of the bifurcation values of the polynomial. This corresponds to determining some
supersets containing bifurcation values at infinity. In addition, it is another important
problem to determine the cases where the bifurcation values consist only of the
values of the polynomial at the critical points. This is equivalent to bifurcation values
at infinity is empty. In this thesis, we firstly construct a curve that approaching
an asymptotic critical value which is a superset of the bifurcation value at infinity
with very few coefficients. We used toric geometry as the main tool. By aids of,
we get the corollary that says every critical value of polynomial mappings over the
bad face of Newton polyhedron is an element of asymptotic critical value. Finally,
we give a method to construct a curve approaching an asymptotic critical value of
a real polynomial map, corresponding to detect real coefficients of the parametric
representation of the curve. Asymptotic critical values sometimes correspond to the
infimum or supremum of the polynomial. We hope that the study can be applied to

optimization problems.
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OZET

Polinom Fonksiyonlarin Asimptotik Kritik Degerlerinin
Tespit Yontemleri

Abuzer GUNDUZ

Matematik Anabilim Dali

Doktora Tezi

Danigsman: Prof. Dr. Bayram Ali ERSOY
Es-Danisman: Prof. Dr. Susumu TANABE

Cebirsel geometride, bir polinomun catallanma degerlerini (Bifurcation values)
belirleme problemi oldukca 6nemlidir. Bir polinomun catallanma degerleri kiimesi
polinomun sonsuzda catallanma degerleri kiimesi ve polinomun kritik noktalarda
aldig1 degerler kiimesinin birlesiminden olusur. Bu problem genellikle polinomun
catallanma degerlerinin bir alt kiimesi olan sonsuzda catallanma degerlerinin (
bifurcation value at infinity) tespit edilmesi olarak karsimiza cikar. Bu ise sonsuzda
catallanma degerlerini kapsayan bir kisim 6zel kiimeler (superset) belirlemeye karsilik
gelir. Bunun yani sira catallanma degerlerinin sadece polinomun kritik noktalarda
aldig1 degerlerden olustugu durumlar tespit etmek bir diger 6nemli problemdir. Bu
ise sonsuzda catallanma degerleri kiimesinin bos kiime olmasina denktir. Biz bu
calismada ilk olarak, s6z konusu polinomun sonsuzda catallanma degerlerini kapsayan
bir 6zel kiime (superset) olan asimptotik kritik degerlere yaklasan bir parametrik
egrinin insast icin bir yontem verdik ve dahasi bu egriyi oldukca az katsay: ile
insaa ettik. Bu siire¢ icin temel araclarimizi Torsal geometriden aldik. Buradan
s0z konusu polinomun Newton cok yiizliistiniin, kotii yiizleri (bad face) iizerine
kisitladigimizda olusan yeni polinomun tiim kritik degerlerinin tam olarak en bastaki
polinomun asimptotik kritik degerleri oldugunu soéyleyen bir sonu¢ verdik. Son
olarak, tiim katsayilarin reel sayilardan olusmasina denk olan, reel egri insasi i¢in bir
yontem verdik. Asimptotik kritik degerler bazen polinomun infimum veya spremum
degerlerine karsilik gelir. Bilhassa calismanin bu kisminin optimizasyon ¢alismalarina

katki verebilecegini umuyoruz.
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1

INTRODUCTION

1.1 Literature Review

The bifurcation value of polynomial mapping was introduced by [|1] and [2]] that say
if f is a "tame polynomial" that the global Milnor number is finite, then the bifurcation
value at infinity is the empty set. Namely, bifurcation value of f comprises only
the critical values (f(Singf)). So, in this thesis, we focus on f that is not a "tame
polynomial".

On the other hand, in []3], authors showed that if f is Newton non-degenerate,

convenient and f(0) = 0 the following conclusion;

A(f)cz,uforul Jz, (1.1)

YEB

holds, where %, = {f,(2°) : 2° € (C*)" and grad (f,(2°)) =0} and % = f(Singf)
and B is the set of bad faces y and f,(2) = X} ¢, a,2% for f(x) = 3, cap) Q2™

This inclusion is investigated in section [2.5]

In [[4], the author showed for a bad face o a special so that there is a a critical point
on the algebraic torus (toric part) and so t, € ZY. Toric geometry was first used by
Zaharia in [4] for this problem.

Jelonek and Kurdyka [/5, 6] found an algorithm for detecting the set of asymptotic
critical values . (f). They showes that #.,(f) is finite. Also, it is called a superset
of B..(f), it means that it includes B, (f).

In [|7]], authors consider a real rational curve {X(t)} C R" satisfies lim,_,,||X(t)|| — oo,
for a real polynomial f : R" — R of degree < d, with parametric representation with
length (d +1)d™ ! +1 to attain the asymptotic critical value lim,_,f (X(t)) € A (f).
In [8]], the author presented the relation between the #,,(f) and optimization
problems. He said that supremum of f(x) is finite if and only if the supremum of
its an element of #_,(f). Moreover, [8], he found that if sup,.gf (x) is finite, then
the elements of £, (f) are sup, g f ().

Also, the problem was studied in [|9], [[10], [11],[[12], [13]]. Moreover, detecting of a
superset of B, (f) was studied in [[14]], [15]], [16], [[17], [[18], [[19] etc.

1



1.2 Objective of the Thesis

In this thesis, we aimed to construct a curve approaching an asymptotic critical value
and getting a relation between Newton polyhedron of polynomial and an asymptotic
critical value of a polynomial (moreover a real polynomial) map. As a result, we aimed

to contribute to the optimization problem of the polynomial map.

1.3 Hypothesis

In this thesis, we first construct a curve approaching an asymptotic critical value which
is a superset of the bifurcation value at infinity with very few coefficients. By the aid
of this, we get a corollary that says every critical value of polynomial mappings over
the bad face of Newton polyhedron is an element of asymptotic critical value.

Secondly, we give a method to construct a curve approaching an asymptotic critical
value of a real polynomial map, corresponding to detect real coefficients of the
parametric representation of the curve. We hope that the study can be applied to

optimization problems.



2

PREMINARIES

In this section, we will basically utilize the book [[20]] for definitions and theorems.

2.1 Affine Variety
Let k be a fixed field (for example k = R or k = C), the set of n— tuples

Al ={(xy,...,x,): x; €k, Yie[1;n]} 2.1)

is called n— dimensional affine k—space.
According to the above definition if n = 2, k = R, then A2 = R* and for k = C, then

AZ=C22R%
Let k[x;,...,x,] be the polynomial ring in variables over k. Then each polynomial
f €k[xy,...,x,]is a function as f : A} — A} = k. Therefore if f € k[x,,...,x,]is a

polynomial then the set of zeroes of f as

V() ={(x1,...,x) €AY f(xp,...,x,) =0} S A} = f71(0). (2.2)

Example 1. Let f (x1,x,) = x> + x> —4 € k[x, x,] and k =R as specially, Then
V(f)={(x,x;) €R*: x?+x2—4=0} CR>

More generally, if T is any subset of k[x;,...,Xx,], we define the zero set of T to be

common zeroes of all the elements of T}
1.e.V(T)={(xy,...,x,) €A} : f(xy,...,x,) =0, Vf €T} (2.3)

Example 2. Consider T = {x3+x2—1=0, x;+x, = 0} C R?, to find common solution
x?+x3—1=0and x; + x, = 0 that implies x, = —x,; and so
x24+(—x;)*—1=0=2x}=1andso x; ::F% and x, ::I:%.
As aresult, V(T) = {(;—%, %), (%, ;—%)}.

Definition 2.1. [20] Let k =R or k = C. A subset X C A} is an algebraic set if there

3



exists a subset T C k[xy,...,x,] verifying X = V(T).

On the other hand, we can ask this question: Does it correspond to an algebraic set if

we have a geometric object?

Definition 2.2. [[20] A set X is a irreducible set if X = X; UX, with X;,X, C X then
X=X,orX =X,.
Proposition 1. [20] An algebraic set is irreducible if and only if "its defining ideal" is
prime.
Definition 2.3. [20] For any subset X C A} we define the ideal of X € k[x;,...,x,]
by
IX)={f €k[xy,...,x,]: f(p)=0, VpeX}. 2.4

Theorem 2.1. [20|] Let f,, f, € k[xq,...,X,]

1) V(0) = A™

VUV =V(AL),

3) Viea ) =Niea VL.

Theorem 2.2 (Hilbert Nullstellensatz). [20] Let k’ be an algebraic closed field and J
is an ideal of k'[x4,...,x,] polynomial ring. If f € k'[x4,...,x,] that vanishes at all
points of V(J) = f" € J for some r > 0.

Namely, +/J = I(V(J)), if we define v/J ={f : f" €J for somer > 0}.

We can construct Zariski topology on A} as open sets to be the complement of an

algebraic variety.

2.2 Singularity Theory

In this section, we will basically utilize the book [[20]] for definitions and theorems.

Definition 2.4. [20] Let V =V (fi,..., f;) C A" be an algebraic variety. If the Jacobian

matrix

9h of1
dx; "0 9x,
: . () (2.5)
9fk O
dx; 0 9x,

has rank strictly less than min(n, k), then p, is said to be the singular point of V.

Example 3. Let I = (y?—x3,2—x?) and V(I) C A3. Then the Jacobian matrix

—3x% 2y 0
: (2.6)
—2x 0 1



Especially, for p = (0,0, 1), we can see that rankJ,(p) =1 < 2 = min(2,3) and implies
that p = (0,0, 1) is a singular point of V.

Definition 2.5. [20] If V = V(f;) is a variety defined by a single polynomial then a
singular point p of V satisfies %(p) = 0. Namely, the gradient of f must be vanishes.

i.e.

f 3f

0
Vf = ( (P) (p)) =(0,...,0). 2.7

Example 4. Let f(x;,x,) = x>+ x; and V = V(f,). Then Vf = (ax , 6x2) (0,0)
and so p; = (0,0) is a singular point of V.

Definition 2.6. [20] A singular point p € V is an isolated singular point if there are
no other singularities in a neighborhood of p,, U, C V.

i.e. U,\{p} is smooth.

Otherwise, p is said to be a non-isolated singular point of V.

Example 5. Let f (xy,xy,Xx3) = x3x2 4+ x2x3+ x5 and V = V(f). Then
Vf = (axl’ ;}fz, 5){3) (Bx2x2,2x3x, + 2x5X3, X5 + 3x§) = (0,0,0) and implies that
p; =(0,0,0) and p’ = (x,0,0) are a singular points of V.

Here p’ = (x,0,0) is example of a non-isolated singularity by along x — axis.

2.3 Toric Geometry

In this section, we will basically utilize [[21]] and [[22] for definitions and theorem:s.

2.3.0.1 Convex Polyhedral Cones

We will define steps by steps as follows;

o—0—S, >R, =X, (2.8)

A lattice is named a discrete subgroup of N of Z". If N is a lattice, for all x € N, if
an open set W satisfies N N W = {x}. For instance, Z* is a lattice. Moreover for a
subgroup of R"(isomorphic to Z"), Ny = N ® R and N has a basis as (v4,...,v,).
The set

o={rvi+ryVo+...+rv,: r,..., T, €ER} (2.9)

is called the polyhedral cone and generated by (v;,...,v,). The cone o is convex if
and only if for all v;,v, € 0, Av; +(1—A)v, € o, where A €[0,1].

Let o a convex polyhedral cone. If o does not contain a line which passes the origin,



then it is called strongly convex cone.
ie. cU(—o)=1{0}.

Definition 2.7. [22] Let N = Z" C R" be a lattice and o is a cone. If each generator

of o is an element of N then o is called rational or simplicial cone.

Consider a cone generated by (vy,...,v;);

Definition 2.8. [[22] If all coordinates of a vector v € Z" is coprime, then it is called
primitive. If (v;,...,v;) is primitive, then o is called regular and also there exist
primitive vectors (V;,,...,V,) such that det(v,,...,v,) = £1. Namely, this vector may

be completed in a basis of the lattice.

The dimension of cone is the dimension of smallest vector space containing its. For
example, consider o =< ((1,0),(0,1)) >. It is a rational polyhedral cone and
dim(o) = 2.

The dual space of N = Z" is Hom,(N, Z) that isomorphic to (Z")* and showed by M.
Let us M as a dual vector space of N. It is defined as;

N*=M =Hom(N,Z), (2.10)

and we will take care the real vector space;

My =MQR=Re,P...Re, =R". (2.11)
z
If e],..., e are generators of the dual space M, then we have the following condition;
< e;k, e] >= 5ij’ (2.12)
where 6,; is Kronecker delta.
The set
c={veM:<u,v>>0,Vueao} (2.13)

is called the dual cone of o and also is a convex cone.

Definition 2.9. [22] If o is simplicial polyhedral cone, then & is simplicial polyhedral

cone.

But the opposite is not always true. For example if o = {0}, then & = M, is not a

strongly convex cone.



Example 6. Let N = Z? a lattice, 0 € Ny and 0 =< u;,u, >=< 2e; —e,,e, >. The
dual space M is generated by e}, +e} and so the dual cone & is generated by v, v, such
that v; = a,e] + aye;, v, = bye] + b,e;, where a,,a,, b;, b, €R.

Then we have < uy,v; >=< 2e;—ey, a,e] +a,e; >=<(2,—1),(a;,a,) >=2a;,—a, =0,
<uy, v >=<(0,1),(ay,a,) >=a, =0,

< Uy, Vs >=< (2,_1),(b1, b2) >= 2b1 - b2 = 0,

<u,,v, >=<(0,1),(by, b,) >= b, =0. Then, we get

2a;,—a, =0, a, >0, 2b; —b, >0, b, =0, we can choose as v; = (1,2) and v, = (1,0)
and so & =< e] + 2ej,e] > . Also 0 =< uy,u, >=< 2e; —e,,e, > has four faces as
T, ={0}, Ty =Uy, T3 =1Uy, T4, =0.

The set
t=ocnut={veo:<v,u>=0} (2.19)

is called a face of o where u € & N M and showed by 7 < o. Besides, any cone is a

face of itself. If the face has (n — 1)—dimension, then it is named as facet.

The following properties can be written by [22]];

1) Every face of convex polyhedral cone is a polyhedral convex cone.
2) Every face of face is a face of the cone.

3) Every intersection of faces of o is a face of o.

4) Let 0 C N, (0”) =o0.

5) If o, C 0,, then 0, C 0.

6) o is strongly convex cone if and only if & has dimension n.

Let ” x” be an binary operation over non-empty set S such that x : S xS — S. If
” % ” is associative then it is called a semi-group. Moreover, if it is commutative, has
zero element and satisfies the simplification law thatiss+t =s +t = s =5 for all

s,s/, t € S then it is called a monoid.
Lemma 2.1. [22]Let o be a cone, and N be a lattice. Then o NN is a monoid.

Definition 2.10. [22] Let T be a monoid. If there exist a;,...,a, € T such that
VveT, v=Ada +...+Aa, where A; € Z., then T is called finitely generated

monoid. Moreover a,...,a; are called generators of the T.

Lemma 2.2 (Gordon’s Lemma). [22] If o is rational cone then o NN is a finitely

generated monoid.

We will utilize this lemma in order to polyhedral cone ¢ and will indicate by S, the

monoid S, = N M.



Generally, S, = &NM can be finitely generated monoid. Namely, by[2.2] if & is rational
cone, then S, = & N M is finitely generated monoid. It is very important because we
will obtain an affine toric variety from the relationship between the finite generators
of S,.

2.4 Affine Toric Variety

In this section, we will basically utilize [21]] and [[22] for definitions and theorems.
Now, we will present how to obtain an affine toric variety from a rational strong convex

cone.
Definition 2.11. [22] C[z,z7'] = Cl[z,...,%,,3;",...,2, ] is called Laurent
Polynomial ring.

Definition 2.12. [22]] For A € C* and a = (a4, ...,a,) € Z". The Laurent monomial

is denoted by
A'Za:A«'Zixl'Zgz'nzgn' (215)

There exists an isomorphism between the additative group Z" and the multiplicative

group of monic Laurent monomials as

0:7"— C[z,271]

(2.16)
a=(a1,...,an)a—>z“:)tzfl -Zgz...zn

By [2.16], we have

x:M—->CM]=C[Xy,.... X, X', ..., X '] (2.17)

n

by x% =X; and y % =X; ' where *e] is a generator of the dual space M. Hence, for
all v € S,, there is a generator y” € C[S, ] correspond to v.
Because of the S,, is finitely generated by [2.2] C[S,] has finite number of generators.
Besides, Yv;,v, €S, we get

Xy = (2.18)

and so
C[S,]= {Z a,y':ves,, a,C}. (2.19)

In this place, y° = 1 is the constant polynomial corresponding to 0 € S, = & N M.

Consider the map;
f:ClYy,...,Y,] = C[S,] (2.20)

8



by x'' =Y;, where v; is a generator of S,. It can be seen that the kernel of the map f

is an ideal of the polynomial ring C[Y3,...,Y,,]. If we indicate this by I, we obtain

C[S,]=ClYy,..., Y, /L. (2.21)

Because of 6 and y are describe likewise, the ideal I is besides kernel of 6. Namely,

the ideal I is detected by relations between the generators of S,.

Spec(R) is the set of all prime ideal of R. For example the spectrum of ring C[X,,X,] =

{(x —a,x —b)} and also corresponding to the maximal ideal of its.

Definition 2.13 (Affine Toric Variety). [22] If o is rational strongly convex cone o C
Ni = R", then
X, =Spec(C[S,]) (2.22)

is called affine toric variety.

Theorem 2.3. [22]] Let 0 C Ny = R" and I is generated by the relations between the
generators of the ring C[S, ], then V, is the variety V(I) in the space C™.

Example 7. Consider c =< e,,e, >, then & is generated by e}, e; and S, =< (e],e;) >.
Hence the generators of C[S,] are y* = X, and % = X,, and so C[S,] = C[X,X,].
If we pass to the variable Y,,Y,, we get C[S,] = C[Y;,Y,]/I, Here, note that
dim(V,) = dim(C[Y;,Y,]) = 2 and so there is no relation between generators of S,,.
Namely I =< 0>, so
V, =Spec(C[S,]) = V(< 0>)=C>

Theorem 2.4. [22 ] Let o be a rational cone. Then the ring
R, ={f €C[z,27']: supp(f) c & N M} (2.23)

is a C-algebra that has finite generators.

Example 8. In R?, let 0 =< (2e; —e,,e,) > and implies that & =< (e}, e} + 2¢}) >.
But e} + e can not be generated by &. Then we should add its as a new element of S,
and so S, =< (e}, e] +e;, e +2e;) > . Now, we construct an isomorphism 6 between S,
and C[z,z '] such that

a, — Uy,
a, — U, (2.24)

a3 — u3.

By the isomorphism 0, we get u; = 2;, Uy = 2129, U = zlzg. The C—algebra R, can be

represented as R, = C[S,] = C[zy,2,2,,2,25] = C[y1,...,7,]/I, where the corelation
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a, + a; = 2a, case to the corelation u,u; = uj. Here I is generated by y,y; = v3. Hence,
we get affine toric variety

X, =V(U,)={x=(x1,x5,x3) € C* x; - x3 = x3}.

Note that it has a singularity at origin, which is a quadratic cone and coresponding to

the cone o.

Definition 2.14. [22]]
Ty XC* x C* x...C* = (C)" (2.25)

is called n—dimensional affine algebraic torus.

In general, for o € N we have S, C Sy, and implies that C[S,] € C[S,] and so
X0y C X,. Hence, for all o € Ng, X, contains n—dimensional affine algebraic torus

Ty = (C*)" as an open and dense subset. Because of this, X, is called toric variety.

2.5 Bifurcation Value
Let E, B be spaces and f : E — B be a map. For t € B, each the disjoint sets F, = f ~(t)

is named the fiber over t. Also the space B is named the base space of the fibration, E
is said to be the total space, a fibration denoted by (E,, E,, F, f).

Definition 2.15. Let a fibration (E;,E,,F, f), for each t € E,, there exists a
neighbourhood E, 2 U, t € U such that f~}(U) is diffeomorphic to U x F, then f
is called locally trivial fibration.

Namely, each f~(t), t € B are diffeomorphic one to another.

Let f : C" — C be a polynomial map. If an neighbourhood, U C C, t, satisfying
fiif ~1(U) - U is locally trivial C*°- fibration then t, € C is said to be a typical value
of f.

Otherwise, t, is called a bifurcation value (or atypical value). The set of bifurcation
values of f is denoted by A(f).

Besides, for t, € C, if there exists a compact set K € C" and a neighbourhood W ¢ C at
t, satisfying under the condition f, : f~'(W)\K — W is a locally trivial C*- fibration,
then f is called topologically trivial at infinity at t, € C. Otherwise t, is a bifurcation
value at infinity of f and denoted by %.,(f) that is bifurcation locus at infinity of f.
In general, %(f) : the bifurcation locus of a polynomial f is the smallest subset C and

union of the set of critical values at infinity %.,(f) and critical values. Namely,

B(f) = f(Sing f)U Boo(f). (2.26)
The following example relates f(Singf) to a part of B(f).
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Example 9. Consider f : C* — C with f(x,,x,) = x> + x3. Here (0,0) is a singular
point of f and so f((0,0)) = 0 € f(Singf ). Thereby the fiber f~1(0) and f~1(t), for
t # 0 are different as topologically and implies that 0 € B, (f).

The following example relates %.,(f)) to a part of B(f).

Example 10. [1|] Let us take the polynomial f : C* — C, with f (x,x;) = x2x, — x;
has no singular points, otherwise it has the critical values at infinity for t; = 0. To more
explain, let t; =0,

F710) = {(x,x,) € C* : x?x, —x; = 0} = CUC* (disjoint union), but t; #0,
F7Ht) = {(x,x,) € C* 1 x2x, —x; = t} = C. We can see that for t; # 0, f~'(t;)
and f~1(0) are topologically different. Because they have different connected component

numbers that is a topological invariant.

2.6 Tame Polynomial

Let a polynomial f : C" — C. If a compact neighborhood K of the critical points of f
satisfying under the condition ||d f || is bounded away from zero on C" \ U, then f is

named "tame polynomial". Namely, when f is "tame", then B (f) = 0.

Definition 2.16. [1]] Tame polynomial can be characterized below by Milnor number

,u(f)=dim@((C[xl,...,xn]/(fl,...,fn)) (227)

wherefj=%for1£an.
J

Proposition 2. [1/] A polynomial is "tame" if and only if u(f) < oo and u(f") = u(f)
for all sufficient small w € C".

Example 11. Let f(x,y) = 2x> + x — y?, then %ﬁi’y) = 6x2+1, %ﬁj” = -2y,

and implies that u(f) = dimc(C[x,y]/(6x* + 1,—2y)) then u(f) = 2, because for
I =< 6x?+1,—2y > the set {1,x} can not be generated by I.

As well as, u,(f) is a topological invariant and a useful for singularity theory.

Example 12. Let f(x;,x,) = x2, then %}Z’CZ) = 2x,, %;;XZ) = 0, and implies that
w(f) = dimge(Clxy,x,]1/(2x,,0)) then u(f) = oo, because for I =< 2x; > the set

{1,x5,x2,...,x5,x*1, ...} can not be generated by I.

T2 2

In this thesis, we study the topological map f : C" — C such that f is not tame, namely
Boo(f)#£ 0. If f is not tame, namely B, (f) # 0, there exists a curve X(t) € C", Vt
such that it approaching to the critical point of f at infinity.
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2.7 Asymptotic Critical Value

Lemma 2.3. (Curve selection lemma) [3|]

Let fi1,...,f,815-++»&sM1,.- s, €ER[Xq,...,Xx,] be polynomial functions with real coef-
ficients. Let U ={x € R™: f,(x)=0,i€[1,q]}, W={xe€R™: g(x)>0,i €[1,s]}.
Suppose that there exists a sequence {x*} C U NW such that

limy_, oo llx*|| = 00 for all j € [1;r], lim;_ooh;(x*) = 0. Then there exists a real an-
alytic curve p : (0,€) — U NW with lim,_||Q(t)l| = oo, lim,_,h;(Q(t)) = 0 for
j€[1;r], where Q(t) = at* + a;t*™' +... with a € R™\ {0} and a < 0.

Here we will consider h; as a gradient and we will use effectively this lemma.

Definition 2.17. [3] Let A is a closed face of convex hull of supp(f)U {0} in R". For

fa(2) =2, cp a,2", if the system of equations

%(z)z...—%

52, = %2 (2)=0 (2.28)

has no solution in (C*)", then f is called non-degenerate on A. Moreover, if f is
non-degenerate on every compact face A of convex hull of supp(f)U {0} in R", then

f is called Newton non-degenerate.

Definition 2.18. [3] If the intersection of supp(f) with each coordinate axis is

non-empty, then f is called convenient.

To give our main study, the following theorem in [3]] should be investigated.

Theorem 2.5. [3] Suppose that f is not convenient, Newton non-degenerate and
f(0) =0. Then the following inclusion

A(f ez, uforul Jz, (2.29)

YEB

holds, where %, = {f,(z°) : 2° € (C*)" and grad (f,(z°)) =0}, %; = f(Singf) and
B is the set of bad faces (see[3.1).

Proof. Let p(t) an analytic curve by aid of the curve selection lemma to choose a curve
p(t) such that lim,_,,p(t) = oo and lim,_,,f (p(t)) € C and we denote

lim,_of (p(t)) € T U{O}U( 2, (2.30)
Y€B

To indicate this, see the expansion
p(t) =at*+a t*"' + a,t**? + ...
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f(p(t)) =btP + bytP* + bytP2 4 ...
grad f(p(t)) =ct’ +c t™ eyt 2+ ...

and investigate each case step by step.

o If grad f(p(t)) =0 then lim,_,f (p(t)) € X.

o If grad f(p(t)) # 0 and

p(t) = (p1(8), po(0), ..., pa()) = WOt +w it it 4wt ..., 0,...,0).

Let 1, : supp(f) NRK = R, y a face of supp(f) such that the linear function

L (x) = Zﬂlevixi takes the minimal value, say d, on y and let m € (—o0,0) be such
that m < min, {¢,(x) : x € supp(f)}.

By the aid of this, we can write

F(O) = £,WO)e + £, (WO)ed*1 4. 2.31)

and 4 of
—f(p(t)) = —Y(Wo)td_"f +... (2.32)

0z; 0z;
wherew® = (w9, w),...,w?,1,...,1) and y is a bad face such that t, (x) takes a minimal

value over its.

o If d >0, we get lim,_,,f (p(t)) = 0 € {0}.

e If d =0 and v, <0 we get a contradiction!

e If d =0 and v, > 0, we get a bad face such that

lim,_f (p(t)) = fy(wo) SHI (2.33)

We will focus this case, because we want to construct a curve p(t) such that the critical
values under some condition are a asymptotic critical values.
e If d < 0, we attain a contradiction, due to nondegenerate condition. [ |

In other words, we aim to construct a curve satisfies two conditions,
approaching to infinity and lim,_||X(t)||llgrad f(X(t))|| = O, respectively and
implies that we get lim,_of (p(t)) = f,(w°) € ...

Jelonek and Kurdyka [5, 6] introduced the concept of asymptotic critical value of

polynomial mapping that is defined as;

Definition 2.19. [5] #.(f) = {y € C : there is asequence X (t), lim,_,||X(t)|| = oo

13



and lim,_o|IX(0)llllgrad f (X ()|l = 0 such that lim,_,|lf (X()ll = y}.

This is weaker condition than %.,(f) and when t ¢ 4 (f), then f satisfies a
Malgrange’s condition at this point. As we have, B.,(f) C . (f). To control the
set B.(f), the set of "asymptotic critical value of f" ,.#.,(f), can be used. Here
Hoo(f) is also a superset of B, (f).

Example 13. [15/] Consider the polynomial

fiR* >R, f(xy,x,)=xy(x}x2 +3x,x,+ 3) and the curve

Q(t) : (0,1) - R%4 t — (F,t) then we get lim,_,llQ(t)| = oo and
lim,_ollQ(DIlllgrad (f (Q())I = 0. Since lim,_,f (Q(t)) = 0, we obtain 0 € H,(f).

As a result, we focus on to give a method to construction curve that approaching to
Hoo(f ), namely

lim,_of (X(t)) € Heo(f)). (2.34)
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3

THE METHOD OF REAL CURVE CONSTRUCTION

3.1 Preliminary steps for the method

In this section, we will give a method to construction a real curve X(t) approaching
to ty € Hoo(f). Namely

lim,_of (X(t)) € X (f) (3.1

Let us give some basic notions of toric geometry following [|4] and [[23]]. Consider

f(x)=2X,ena,2”, supp(f)={veN":q,#0} (3.2)

and A(f) = the convex hull closure of supp(f) in R" and is called Newton polyhedron
of f. The convex hull of supp(f )U{0} in R" is denoted by T'_(f). Also, (T_(f))* is called
the dual of T (f) and K be a unimodular simplicial subdivision of (T_(f))*.

A is denoted by a face of T_(f) determined by the condition (a, y) < (a,x) where
x €T (f)and y € A® for a € (R")*.
Also, define

£ =D ax, (3.3)

acy

where vy C A(f) is a face of the Newton polyhedron of f. Let 0 € K be a unimodular
simplicial cone with dim(o) = k. We can define an algebraic torus of dimension n—k

related to the cone o as

o] = (CH"/{(t™,...,th); t € (CH,(by,...,b,) €T} (3.4)

Besides, let us consider a disjoint union of tori is defined as by

Ms=U, [0 12 CK x (C)"™* 3 (uy,...,up,Upss, ..., U,) (3.5)
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. —_— / /
with 0 = U, ,0 where o run over all subcones of o.

In this study, firstly, we will present a change variable to restrict over the chart
and so we look for the singularities of f over this chart. For this purpose, we focus on
the following set;

u=(u,u")eC} =C"x(C)™, (3.6)

where 1’ € Ck called affine part and u” € (C*)"* called toric part.

In order to investigate the the bifurcation value of f(x), [4, p. 2.4] passes from C"
to C} := Ck x (C*)"*. To examine the topology of f~(t) € C", [4] states that it is
enough to study the question on (C*)"*. We will use this approach to determine the

asymptotic critical value set A, (f).

We recall the method to construct a curve proposed by [24]]. Namely, the critical
value of f,, for y : bad face ( Deﬁnition, on the toric part (C*)"* C; represents
an asymptotic critical value and it can be obtained by the curve X (t) constructed
step by step in our study.

Let us define the special face on which f will be restricted.

Definition 3.1. [23] The face y € A(f) is called bad if it verifies the following two
conditions;

(i) The affine subspace of dimension = dim y spanned by y contains the origin,

(ii) (% condition for the bad face) There exists an hyperplane H C R", y = H N A(f)
defined by an equation Z};l p;x; = 0 where there exists i # j verifying p;p; < 0.

Let us see the definitions given so far in the following example,

Example 14. Let f(x,y) =x*y*+ (x3y + 1)>—1, then

supp(f) =1{(4,3),(6,2),(3,1)} = {vy, v5,v3},

T_(f) = supp(f) u{0} = {(4,3),(3,1),(6,2),(0,0)},

) ={<(-1,3),(-3,4),(1,2) >}.

Besides, v : bad face is generated by v =< (3,1),(6,2) > because it passes to the origin
and the equation of bad face is x —3y = 0.

We can choose p; = 1 and p, = —3 and so p;p, = —3 < 0. Finally, since (—1,3)Ly, we
get ®[y]=(C*)?*/(t7", t)) = (ta, £37).

Our purpose is to detect the singularities of f(x) over the bad face by changing the
variable. Because of this, we will give a condition for the bad face.

Let a,,---,qa; be a unimodular basis of a k— dimensional cone o,

ie, o = Zi.‘zltiai, t; = 0. In this case, we may take m;,---,m, € R" as a basis
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of the dual cone o* = {x € R";{x,a) = 0,Va € o} such that (ai,mj> =06;, 1€
{1,...,k}, j €{1,...,n} where o,; is Kronecker Delta. Throughout the thesis, we use
the notation i € [ry;r,] & i€ {ry, - ,r,} for two integers r; < r,.

The basis a,,- - ,a; can be extend to an n—dimensional basis a,, - - ,a,, by means of
supplementary vectors a,.," - ,a, in the condition of | det(a;,- -+ ,a,) |= 1. We show
o*={>_  Aimi;Aq,..., A =0} and

Vor ={Ap1Myr +...+ A,m, A, €R,j=k+1,---,n}, respectively.

Suppose that y is a bad face and a n—dimensional cone o verifying

yco*={xeR"{(a,x)>0,Yaco} 3.7)

has a basis (a;,...,q;) such that y = {v € A(f);{a;,v) = 0, i = 1,...,k}. The
existence of this basis can be reached from Definition (i1).

Note that we put conditions on bad face y such that Vv €y, <a;,,v >=0 for i €
1,...,kand <a;,v>=>0 for i € {k+1,...,n} to get a polynomial if we restrict f

over the monomials y.

Now, we will give a method to detect unimodular matrixes used for changing variable.

Let us define an unimodular matrix

wy my

w, a my
wW=(a,%,...,a,")= : W =M=(u,",...,u," )= : s (3.8)

w m

n n

: : * * _ sk n :
where (m;,...,m,) is a basis of c* and o* = X7 | R,om; + X Rm;. In particular,

we will choose the cone o so that {m,,---,m,} C (R*)". This is possible thanks to the
conditions of

Under the change of variables
(xp, o, x,) = (W, -+ ,u"), (3.9)
we get a rational function by
Pay= > au*". (3.10)

acsupp(f)
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Namely, for a € A(f), each monomial of f(x) can be written as

a_ oW _  <a,a> Ly Sa> L <Agy1,0> L qy<ap,a>
x*=u"" =u, ceet Uy U, ceet U . (3.1D)

Especially if v € vy, then (a;,v) =0 for i €[1;k] and {(a;,v) =0 for i€[k+1;n].

<dp41,V>

Hence we get u"" =u, RS T i

n

By this condition, the toric variety is obtained from fYW(x) lies in the toric part
x\n—k n
(C)y cCh.

Now we are in the u— space and look at its singularity by restricting the function over

Y.

Now we investigate the singularity of fYW(u) by means of the logarithmic gradient

B f " (W) =@, f" W, f W), (3.12)

with ﬁuj = ”jaiuj’ j € [1;n], for u* = (0,u)) € Cj.

If 9, fYW (u*) =0, then u* = (0,u”) € C" is called a critical point. We give the notation
u' = (uy, 1), U= Upsr,  Up) = (Upyy — U5, ,u, — 1)), respectively. The
local expansion of the Laurent polynomial
fY(u) atu=u*=(0,u’) € C} is given by

f¥(w) = Z aE(u—u*)ﬁ = Z azu’ﬂ/U”ﬂﬁ, (3.13)

Besuppy(fV) Besupp(f7)

for supp,.(f") :={B € Z"; a; # 0}.

After the expansion, negative power can occur. In this case, we will expand its Laurent
polynomial series.
The expression matching to the term a.W € (Z’;o \ {0}) x Z’Z)k in (3.10) will produce

a series in (3.13) with (B, ") € (Z&, \ {0}) x (Z5,)" ™ with respect to the rule

11 U;
- = _*Z(_u—j)f. (3.14)
J

U Ui

agy —a

Lemma 3.1. [23] The Laurent polynomial f"(0,u”) = fYW(u) => . a,u*" isa poly-

nomial (with positive power terms) , when it restrict over u” variables.
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Now let us see this process again with the following example. We received the method

in [25] to determine the unimodular matrix W.

Example 15. For a, = (—1,3) Ly and for agl) =(1,-2), <v, agl) >> 0, where

v € y. Hence we can take

Lim()(3 A)rowe(z)-(2 )

Uy

Also, changing jzzzriables vy W =(0,1) and v, - W = (5,—2) and so

Y (u) = wyuy? + (uy + 1)*> — 1. For the expansion of the Laurent polynomial, calculate
% = (1_(Iiu2))2 =[1+%,.,(1 +uyY 1% So, we have

B, W) = (0, (W), 8, f W) = (5ujuy?, —2uuy?+2uy(u,+1)). For T.f W) =0,
then u* = (0,—1) and so fV(0,u”) = fYW(u) = Zaey a,u*" = (u,+1)>—1.For U; = u4
and U, = u, + 1, then f"(U,,U,) = U; (U, — 1) + (U,)* — 1.

detect MT =

Here, we will some basic definitions to illustrate sufficient conditions of

We define A* as a convex hull of U?:lAu*(<ui,1?ufW(u)>).

Here the polyhedron Au*(<,ui,1§‘u f W(u))) is defined as a convex hull of
suppu*(<ui,ﬁufw(u)>) obtained after the expansion as in (3.13).

Proposition 3. ([23, Proposition 3.1]) Assume that 9, fYW(u*) = 9,/"(0,u”) = 0.
Then we can detect a facet T of the polyhedron A* verifying dim (TNR" ) =n—k—1
is determined by the aids of a vector q € Z" such that

r={BeA"(p,q) < ([5’,q> for every € A*}. (3.15)

Namely, the inequality (f8,q) < </§, q> is valid with each
B e Au*(<ui,ﬁufw(u)>), i €[1;n], for any 8 € A*. Also, we will denote p ,is an integer,
by the following

P =mingea-(a,q) . (3.16)

It is clear that[3.16]equal to (a,q) for a €T since the definition of

In this situation, we define a special curve in u—space
Q(t) = W'(t),u”()) = (c't? +ho.t,u, +c"t? +h.o.t.), (3.17)
where ¢ = (q’,q") is detected in Proposition u: # 0, as u: € (C)"* and

/ / /
c't? = (c[th,--- ¢ t%), etc.
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By the means of all aforementioned, we will look for conditions to verify

Definition 3.2. ( [[5, 6, 23]]) Let us consider a curve x = X(t) verifies the following

two conditions;

lim,_,|[X(¢)]| = o0, (3.18)
limt_,oxim — 0, (3.19)
dx

J
for each pair (i,j) € [1;n]* The value of lim,_f (X(t)) is called the asymptotic
critical value of f. #_.(f) is called the set of asymptotic critical values of f.

Besides [15]], if the image value of f, which is not asymptotic critical is called
t—regular value of f. If limit lim,_,f (X(t)) = p, exists for the curve (3.18), the
negation of the condition is known as Malgrange condition for the fiber f ~(p,).
It means that Je > 0 such that lim,_||X(t)||||grad f(X(t))|| > e.

In order to construct a curve ||X(t)|| — oo aforementioned, it is sufficient to take only

one torus chart ®[c].

To construct a special curve X(t) a image of the curve Q(t) in u— space by the map
(3.9). Further we impose the following condition on (3.15), ¢ = (¢’,¢”) and (3.8):

di € [1;n] such that < (q’,0),w; ><0, (3.20)

in the view of X;(t) = ¢;,t<@"O">(1 + h.o.t).
That is our first condition for our method and is called (u) condition.

Also, X(t) is denoted by the image of the curve Q(t) defined in (3.17) by the aids of
the map (3.9).

Lemma 3.2. [23|] The condition (1) of [3.20]is adequate to exist a curve ||X(t)|| — oo
with finite limit lim,_of (X (t)) = lim,_of ¥ (Q(t)).
lim,_, 9,f"(Q(t)) = 0 verifies and the limit lim,_,,f " (Q(t))is corresponding to a crit-

ical value of the polynomial fYW(u).

Proof. we can get x;(t) = cit<(q/’0)’wf>(1 + h.o.t.) since ll and x; = u".
Because of this definition of curve (3.17), it is clear that the value
lim,_of (X(t)) = lim,_of " (Q(t)) is existed. [

For the second condition, we shall see the following relation between the logarithmic
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gradient vectors.

8, f () 8, (@)
LT I O .
8, F(x) 8, (W

Let { = €y, ,L,) € (R*)" be a vector in general position with non-zero components
(actually corresponding to coefficients of the curve) and denote < (U >=
> £.u"i, then

j=1%"J
Oy, f (x) o By, f 1 (W)
<f,x> a“{(x) =<0,u" > 5722 ﬁuzf:W(u) (3.22)
aan; (x) Lffv B, f .W(u)

On comparing the orders in t of the L.H.S. and R.H.S. for x = X(t) in (3.22)), it is

sufficient to investigate a curve Q(t) satisfying
rgéijn((q’, 0),w; — wj> +ord (< ,uj,w?ufw > (Q(t))) >0, (3.23)
for every j € [1;n]. Also, we define the new integer as follow;
Ly =max;;; < (q’,0),w; —w; >, (3.24)

and will use it to control powers in the series Q(t).

Example 16. To see more clearly [3.22] let us try to get in two variables.

Firstly, let us see

( 0, f (x) ):MT( 0, S (W) ) (3.25)
8, f () B, W )’ |

Namely, let us change parameters for Jacobean matrix.

. m m m m
Since x; = u", x, =u"?*,u; = x™ =x; "' x, ?,uy; = x™ = x; *x, * then

— Ouy; __ my—1 my __ myy Mz __ I
Ty Uy = X17x, = X1 MMy Xy “ X, 2 =myyx; X, ? = myy - uy and similarly

_ a_ _ 12 1 3.y _
ﬁx1u1 = My - Uy, X1a—ﬁ—xl(z'a—m+ Tx] '3—,12)—
Jduy duy
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du; 2 du, 4 1_ A 9 _
1[a_x1 35 T ax,  Fgd T M Uiz Moy U g, =

my 0, + my ¥, =<y, (9,,,9,,) >, as desired. Moreover; let { = (£1,£,) € (R*)?> be a

. r 2 .
vector with non-zero components and denote <€, uW> = ijl {;u"i. Then we have

7 axlf(x) 17 .w lfLTll 1?ulfw(u)
() ( 8, () )‘“’” >( i )(mﬂ(w ) 220

(ﬁﬂlwl + €2uW2) : a1 = (61 + ezuwz_wl) : ( i )

my,

v+ L) - ( My, ) _ ‘ [( my )+uwl—wz( My, ):| 4
my, my, my,
62 |:uw1—w2( my, )+( myy )i| r
my, My,

<tu"> <(£q,£5),(u"1,u™2)> Lu™1+0,u™2 Wo—Ww
W uv1 ~ uv1 = el + ezu s

If we write in the last equation
Q(t) = (W (t),u"()) = (c't? +h.o.t.,u, +c"t! +h.o.t.) (3.27)

and focus on ord(({; + Ezuwz_wl)bm), we arrive the  equation
min,; {(q’, 0), w; —w;) (QE)).

Also for the last part of the we arrive the equation ord ((,uj,i‘)‘ufw> (Q(t))) .As a
result, the logarithmic gradient goes to zero, the following integer that is the power of t,

min,; ((q’,0),w; —w;)+ord ({u;, ¥, f")(Q(t)), ) should be positive.
#J< J> (< J

Hence, we give the following theorem.

Theorem 3.1. [23] Consider a polynomial f € C[xy,-+-,X,] and its Newton polyhe-
dron A(f), has maximal dimension n. Suppose that y is one of its bad faces is given in
Definition

(i) Under the conditions (1) of we obtain a curve X(t) verifying (3.18), of
Definition so that a critical value of the polynomial fYW (u) is equal to lim,_,o f (X(t)).
(i) X(t) is found as an image by the map of a curve Q(t) whose coefficients c € €
verify (Lo —p + 1) | J | —tuple of algebraic equations for p (3.16), L, (3.24). (iii) The
curve Q(t) aforementioned in (ii) has a parametric representation of parametric

length L, — p + 2, in other words, we may suppose whose parametrization coefficients
verifies (¢'(j),c”(j))=0for j>Ly,—p + 1.
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By the choice made in Proposition (3.15), (3.16), we get the expansion of <
u;, 9, f" > (Q(t)), in t with the following form

gi)(c)tp + gi)ﬂ(c)terl +h.o.t. (3.28)

We define the index set

J={j €[1;n]; miny; <(4,0),w;—w;><0}. (3.29)

The algebraic function gi) (c) depends on all n variables (c’(0),c”(0)) € C" C € for
each j € J in view of the choice of g € Z" .

As | J |< n the system of algebraic equations gé (¢) =0,Vj € J has non-trivial solutions
in C.

Here for each j € J, the vector with polynomial entries gi) (c) is depended on all n
variables (¢’(0),c”(0)) € C" C € selection of g € Z" is obtained in Proposition

The vector with polynomial entries gi) +1(c) efficiently is depended on
(c’(0),c”(0),c’(1),c”(1)) € C>" C €, so the system of equations géﬂ(c) =0,Vjel
which has further non-trivial solutions in C.

Thereby, we may acquire non-trivial solutions to (L, + 1 —p) | J | —tuple of algebraic

equations
gle)=g . ,(c)=-=g ()=0,Yj €], (3.30)

for L, (3.24).

In order to demonstrate this, it is enough to indicate that g; .,(c) efficiently is attached
to (¢’(£),c”(¢)) are absent in g£+z(c) for £ €[0;0—1].

In summary we get the following theorem [23, Theorem 3.7] tells us that every critical

value of polynomial

fray= >, au*” (3.31)

asynsupp(f)
with y bad face is an asymptotic critical value under certain conditions.

Namely, the limit lim,_,f " (Q(t)) corresponds to a critical value of the polynomial

£ w.
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Corollary 3.1. [23|] Under supposition of Theorem we get the following inclusion
(J£,(Sing £, N (CY™) € Hoo (f), (3.32)
T

where y runs among bad faces of A(f) when a cone o verifying condition (u) of

may be constructed.

Proof. Theorem tells us fYW(Sing fYW N (CH)4EmT) ¢ Ao (f). It is enough to show
that fYW(Sing fYW N(C*)¥m7) = f (Sing f, N (C*)") for f,(x) = Zaeyﬂsupp(f) aqx”.

From Lemma fYW(u) is a polynomial depending effectively on toric variables u”
and independent of affine variables u’ (the condition (i) of the Definition ). This
means that ﬁulfyw(u) == q?ukaW(u) = 0. Thus, for u” € Sing fyW N (C*)4m7 | the
vanishing of the logarithmic gradient vector holds: 1, fYW(O, u’) = 0. By using the map
u”(x) = (x™+ ... x™)induced by the inverse to , we see f, (x) = fYW(O, u”’(x)).
Taking the relation (3.21)) into account, we see that this entails

9, f,(x,) = 0 for x, € (C*)" that satisfies u”(x,) = u/.

Conversely, if 7, f,(x,) = 0 for x, € (C*)", by , we see ﬁufYW(O, u’) = 0 for
u! = u"(x,) the image of the map (3.9). ]

3.2 Real Curve Construction

In this section, we investigate the construction of real curve (3.1) for a real polynomial
mapping f : R® — R. Our aim is to solve equations (3.30) in the real space for
Le[0;Ly—p +1].

Theorem 3.2. [24|] We apply notions of precedent sections to the real polynomial map-
ping f : R" = R. If card(J) = 1, for the index set ([3.29), then the real curve (3.1)) can

be constructed that approaches a real asymptotic critical value of f.

Proof. As J = {j} with some j € [1;n], for each equation

gi) (€)=0, £€[0;L,— p + 1], we shall try to solve algebraic equations in variables
¢;(0),¢;(1),---,c;(€) that can be solved in real while other variables can be chosen in
an arbitrary manner, especially chosen to be real. We explain the proof step by step.
Firstly, let us consider the equation gll; (¢) in a variable c;(0):

g{)(c) = by + bY(c;(0)) + bY(c;(0))* + ... + bgo(cj(O))PO, Po = 1, where all b? are real
numbers for i € [0;p,]. Note that gljj (¢) has a non-zero term bg. The coefficients
b?, e, bgo depend also on real ¢;(0), i € [1;n]\{j} that can be consider as real free

variable. This means that there is sufficient freedom to change the constant bg SO
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that the equation gljy (¢) has a real root as an equation in ¢;(0).

Secondly, for the equation gf) +1(¢) = 0 which can be considered as an equation that
depends on only c;(0),c;(1). However we found the variable c;(0) as real number
from the first step. So, the equation consists of

gi)ﬂ(c) = b} + bj(c;(1)) + by(c;(1))* + ... + b;l(cj(l))l’l, p; > 1. By an argument
analogous to see the existence of real {c;(0)}!_, satisfying g;) (¢) = 0, we conclude
that there exist real {c;(0),c;(1)}!_, satisfying glJ) 4(e)=0.

It can bee seen that for each step the equation géﬁ(c) =0, £ €[0;L,—p+1]can be
solved in terms of c;(¢) that can be chosen real. In this way we can construct a real
curve X(t), as desired. Thus the proof is completed. [ |

As a result of this theorem, for example, if we take all exponents of f(x) even, the
infimum of this function will be the element of #_,(f).
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4

EXAMPLES

Examples in this section are received from work [[23]]. We will give two examples that
illustrate Theorem

4.1 Non-isolated Case

Example 17. (Non-isolated singularity on a two dimensional bad face) [123]]

For a polynomial f(x) = x" + (x> —x" + 1)+ (x> —x" + 1) + x™* —2
withv; =(2,1,1),v,=(2,2,1),v;=(1,2,1),v, = (3,1, 1).

We shall restrict the monomial of f over the bad face to look for singularities.

Note that non-isolated singularities at infinity case have not been studied in [26]].

By changing the variable, we will construct a unimodular matrix W and M.

We state that

v, 21 1
M=| v, |=WHu,u")=] 2 2 1 |,isunimodular. So we may take
Vs 121
M7t =W =(aq;",a,",a;,") = ( . Here, y of A(f) is the
-3 2

only bad face located on the plane spanned by v,,v5. By aid the of the above matrix
W, we get fV(u)=—2+u; +(uy,—us + 1%+ (u, —u; +1)°> +
Note that f"(0,uy,u3) = (up —us + 1)* + (u; —u3 + 1)° is a polynomial and has
non-isolated singularities along a line u, —u; + 1 = 0. For example, we may select,
u* =(0,—1/3,2/3).

u1u2

Since the negative power occurs, we shall expand the Laurent series.
For U, =u, +1/3,U; =u;—2/3, f"(u) has the following expansion
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FYW = =2+ + (U= Us)* + (U = Us)* + 51U, — 1/3)(1 = 32 + (332) + ), in
the neighbourhood of u*.

The facet given in T, ID is determined by the calculating of A((,ui,f)u f W(u))) for
i=1,2,3.

A direct computation indicates {us, ¥, f" (w)) = 2 — 2U, + 2U; + h.o.t.

Now, we detect the facet that is a face closest to the origin of
A((ps 0., (W) i=1,2,3.

Figure 4.1 The facet T’

We see that detect the facet I' locates on the plane including (1,0, 0),(0,0,1),(0,1,0)
and ¢ =(1,1,1), (¢’,0) = (1,0,0) and compute L, = 3 and p = 1, respectively. Note
that a curve Q(t) with real coefficients of parametric length 4. Compared to
[7]], the length is so less than that one.

In other words,

ul = Z':::O Cl(j)tj+1: uZ = _1/3 + Z?:() CZ(j)tj+17 u3 = 2/3 + Z?:() C3(j)tj+1
that verifies —3 + ord ( s, U, f W(Q(t))) > 0, can be constructed. Here one can obtain
J=1{3}.

However, by the aids of the method of [|7, Theorem 3.5.], the real curve with needed
property has parametric length 16 x 152+ 1 = 3601.

Indeed, providing that we put these terms into <u3,1‘/‘u f W(u)>, the expansion with

initial term proportional to t', ({(q,a) = 1 for a € T') is obtained as follows
(s, B (W) (QO) = {¢1(0)/2 = 265(0) + 2¢3(0))} t+
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1/4{2¢;(1) + 6¢,(0)c,(0) — 4c,(0)* — 8¢c,(1) + 3¢;,(0)c5(0) + 8¢,(0)c5(0) — 4c5(0)? +
8c; (1)} %+

1/8{4c;(2) + 12¢;(1)c,(0) + 24¢,(0)® + 12¢1(0)cy(1) — 16¢,(0)c,(1) — 16¢,(2) +
6¢,(1)c3(0) — 18¢,(0)cy(0)c3(0) — 72¢,(0)%¢c5(0) + 16¢5(1)c3(0) — 9¢;(0)c5(0)* +
72¢5(0)c5(0)* —24¢5(0)3 +6¢,(0)cs(1) +16¢,(0)c5(1)—16¢5(0)cs (1) +16¢5(2)} 3+ - -

Since L, = 3, we shall solve the coefficient equations of t, t, t* is an equation system.
The coefficients of t, t2, t* depends on ((c;(0), ¢,(0), c5(0)), ((c,(0), c,(0), c5(0), ¢;(1), ¢,(1), c5(1)),
((c1(0),¢5(0),¢5(0), ¢1(1),c5(1),¢5(1),¢41(2),c5(2), c5(2)), respectively. Hence, we get
the system of algebraic equations including (¢;(j))i=123j=012 € C°. Here we shall

detect each (c¢;(j))iz1,23,j=01.2 € C° which yield the system of algebraic equations.
In order to do this, we may take (c,(3), c,(3), c5(3)) € C? as arbitrary non-zero vector.

The change variable x; = u,u;", x, = u]'uy, X5 = uu;u?, are obtained by the image
of curve Q(t), which verifies (3.18) , (3.19) of Definition [3.2] and
lithOf(X(t)) =—-2€ J{oo(f)

As a result, we construct the curve X (t) approaches to the surface {x; f(x) = —2} as
t—0.

The curve X(t) = (x;(t),x,(t), x5(t)) which is asymptotically approaching to the
surface {x;f(x) = —2} and consists of the following parameters by the found

coefficients (¢;(j))i=123,j=012 € C’ :

t+ e+t —3

x,(t) = 13163 2 | 3t | 2 (4.1)
tht S 7 T3 13
. t+ e+t —3 42)
x,(t) = :
2 t4 3+ 24 ¢
2 2
(42— 2 2 (34 24 t)
x5(t) = . (4.3)

3
(tr+e3+e2+t—1)
Solving this by the computer program Mathematica, we get the above explicit form.

Note that this curve is one of many curves with the same characteristic.

In Figure 5.2, we pose two parts of the curve corresponding to the asymptotes as
t—0", t—0".
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Figure 4.2 Branches of the curve X (t)

In Examples (17| and (18] figures explaining algebraic surfaces and rational parametric
curves are drawn utilizing the computer program MATLAB.

4.2 Isolated Case
Example 18. (Isolated singularities at infinity) [23]]
For a polynomial f(x) = —3x" + x" + x" + x> with v, = (2,2,1),v, = (1,0, 1),

v, = (0,1, 1). By changing the variable, we will construct a unimodular matrix W and

w, 1 0 1
M. W=(a,",a,,a3")=] w, |=| =2 -1 -1 [,
W, 2 2 1
m, 1 -2 -1
M= my |="uus')= 0 1 1
m, 2 2 1

A face v of A(f) is only bad face and is located on the cone {t.v,; t > 0}.

Y =u,3uyus? + u, + us® — 3u,. To look for singularities over the algebraic torus, we
restrict f over bad face.

The singular points of ny(u) = u3® — 3u, are u; = £1 and critical values are F2. By
the aids of [[26]], we pose that, in this case the bifurcation set B(f) C A, (f) contains
{£2}.

We will plain constructing a curve X (t) which verifies (3.18)) , (3.19) of Definition
and also the limit condition lim,_,,f (X(t)) = —2. Likewise, another curve may be also
constructed, verifying lim,_f (X(t)) = 2.

Let us compute (,uj,ﬁu f W(u)) ,J =1,2,3 and detect the facet I that is the closest face
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of the origin. For instance, < Ws, U, f W(u)) consist of the following

3u;’uy?(Us + 1)* —uy + 3U3(Us + 1)(Us + 2), with Uy = uy — 1.

The facet T' consists on the plane including (3,2, 0),(0,1,0),(0,0,1). By calculating,
we get g = (-1, 3, 3) ,i.e.,, (¢’,0) =(—1,3,0) and implies that

((qd’,0),w;) = —1,((q’,0),w,) = —1,((q’,0),w;) = 4. Likewise, J = {3}, note that
card(J) =1and L, = max,; ((q’, 0),w; —wj> = 5. Hence (3.17) consist the following
parts

u; = c;(0)t 7 +c;(1)+h.o.t.,uy = c,(0)t3 +cy (Dt +h.o.t,us = 14+ c5(0) 3 +c5(1)t* +
h.o.t. Indeed, providing that we put these terms into (,u3,1?u f W(u)), the expansion
with initial term t3 ({(q, @) = 3 for a € T') is obtained as follows;

{c5(0) +¢,(0)°¢,(0)* + 6¢5(0)} 2 +

{3¢1(0)%¢1(1)c2(0)* + ¢5(1) +2¢,(0)°c,(0)co(1) + 6¢5 (1)} t* +
{3¢1(0)c1(1)%c5(0)*+3¢,(0)%¢;(2)e5(0)*+6¢,(0)?c1 (1)ca(0)cy(1)+¢,(0)°cy (1) +cy(2)+
2¢1(0)3¢,(0)c,(2) + 6¢5(2)}t° + h.o.t.

The coefficients of t, t*, t> depend on

(€1(0), ¢5(0), ¢5(0)), (c1(0), ¢5(0), c5(0), ¢1(1), c5(1), c5(1)),
(c1(0),¢5(0),¢5(0),c1(1),c5(1),c5(1),¢1(2),c5(2), c5(2)), respectively. Namely, under
the condition —5+ord ( Ws, U, f W) (Q(t)) > 0, the real curve can be constructed. Even
though we obtained Q(t) whose minimum parametric length is 4, we have known that
after the method of [[7, Theorem 3.5.], the rational curve with needed properties has
a length 3601.

We obtain the curve X(t) as the image of the curve Q(t) by the map x; = ujus, x, =
(Wuyus) ™!, x5 = uulus, as desired.
The curve X(t) = (x;(t), x,(t),x5(t)) asymptotically approaching to the surface
{x; f (x) =—2} as follows:

8t° t3

(e per)(e-5 -5 0)
xl(t)—(t +t+t+1 t : t 3+1, 4.4)

1
2
(2+t+24+1) (6—88 —t4— 2 4+ 1) (£ + 5+ t4 + ¢3)

x,(t) = , 4.5)

2 1 (6 8 4 ¢ 6 4 45 4 444 +3)?
x(O)=| et o+1) (- —tf =41 (c+e+t*+2%)". (4.6

Solving this in the computer program Mathematica, we get the above explicit form.

In Figure 5.3, we pose two parts of the curve corresponding to the asymptotes as
t—0", t—0".
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Figure 4.3 Branches of the curve X (t)
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5)

RESULTS AND DISCUSSION

Consider f : C" — C a polynomial mapping and for x € C", t € C such that
f(x) = t,. We focus on the problem of how the fiber f~!(t) changes topologically,
when t € C changes.

Namely, when f'(t,) is not diffeomorphic to other fibers

f7(¢t) for t,,t € C? The t is element of the bifurcation locus of f which is denoted
by %(f), if the fiber f~1(t) is not topologically equivalent to f~!(s) for any value
s € C near enough to t € C.

The bifurcation locus of a polynomial map f is the smallest subset of C such that f is
a locally trivial C*°- fibration over C \ A(f).

Also, B..(f) comprise values for which f is not a locally trivial fibration at infinity
(i.e. outside a large ball) and is called the critical value of f at infinity.

In conclusion, the equality B(f) = f(Sing f) U %B..(f) holds. Here f(Sing f) is the
critical value of polynomial at this point.

In general, the bifurcation locus %(f) is not equal to its bifurcation set f(Sing f)
which is showed by Broughton, in 1998 [[1]]. But, describing exactly the critical value
set at infinity 9., (f) is a difficult task.

In the literature, some special sets called supersets including %B.,(f) are defined
to approach to %B.,(f). We focus on the asymptotical critical value of polynomial
mapping that is a superset and denoted by . (f ).

The asymptotical critical value of polynomial mapping defined as

Hoo(f) = {y € C : there is a sequence X(t), Llim,_,||X(t)|| = oo and
lim,_o||X(t)|ll|grad f (X(t))|| = O such that

lim,_l|lf X ()|l = ¥y} and B, (f) C Ho(f). It was introduced firstly with £, (f)
by Z. Jelonek and K. Kurdyka [|5]].

In this thesis, we firstly present an effective method to construct curves approaching
the asymptotic critical value set of the polynomial map.

To this end, we suggest a way to construct rational curves with parametric
representation with very few coefficients. At this moment, we pose that the

asymptotic critical value set contains the critical value of a polynomial associated
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with the bad face of the Newton polyhedron. For this purpose, we use toric geometry
as a tool, which has been introduced into the study of this question by A.Némethi
and A.Zaharia [3]]. Hence, we will give a method to the construction curve that
approaching t, € A, (f) such that lim,_,f (X(t)) € A (f)-

Secondly, we give a method to construct a curve approaching an asymptotic critical
value of a real polynomial map, corresponding to detect real coefficients of the
parametric representation of the curve.

As a result, if we take all exponents of f(x) even, the infimum of this function will be
the element of ¢, (f). Finally, we hope that the study can be applied to optimization

problems.
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