REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

RECURSIVE DEEP LEARNING FOR TURKISH
SENTIMENT ANALYSIS

Sultan ZEYBEK

DOCTOR OF PHILOSOPHY THESIS
Department of Mathematical Engineering

Program of Mathematical Engineering

Supervisor
Prof. Dr. Aydin SECER

Co-supervisor
Assist. Prof. Dr. Ebubekir KOC

August, 2021

REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

RECURSIVE DEEP LEARNING FOR TURKISH SENTIMENT
ANALYSIS

A thesis submitted by Sultan ZEYBEK in partial fulfillment of the requirements for the
degree of DOCTOR OF PHILOSOPHY is approved by the committee on 23.08.2021 in

Department of Mathematical Engineering, Program of Mathematical Engineering.

Prof. Dr. Aydin SECER Assist. Prof. Dr. Ebubekir KOC
Yildiz Technical University Fatih Sultan Mehmet Vakif University
Supervisor Co-supervisor

Approved By the Examining Committee

Prof. Dr. Aydin SECER, Supervisor
Yildiz Technical University

Prof. Dr. Ibrahim EMiROGLU, Member
Yildiz Technical University

Prof. Dr. Mustafa BAYRAM, Member

Biruni University

Prof. Dr. Samet Yiicel KADIOGLU, Member

Istanbul Technical University

Assoc. Prof. Dr. Birol ASLANYUREK, Member
Yildiz Technical University

I hereby declare that I have obtained the required legal permissions during data collection
and exploitation procedures, that I have made the in-text citations and cited the references
properly, that I haven’t falsified and/or fabricated research data and results of the study
and that I have abided by the principles of the scientific research and ethics during my
Thesis Study under the title of Recursive Deep Learning for Turkish Sentiment Analy-
sis supervised by my supervisor, Prof. Dr. Aydin SECER. In the case of a discovery of

false statement, I am to acknowledge any legal consequence.

Sultan ZEYBEK

Signature

This study was supported by The Scientific and Technological Research Council of
Turkey (TUBITAK), 2214-A International Research Fellowship Programme (for PhD
Students), Grant No. 1059B141800193.

Dedicated to my family

for their endless love and unconditional support

ACKNOWLEDGEMENTS

I would like to thank you my supervisor Prof. Dr. Aydin Secer, who has always been
supportive to me throughout my PhD journey. 1 would like to thank my co-supervisor
Dr. Ebubekir Ko¢ who always supports me and opens my way to the new opportunities.
Thanks to him, I met Professor Duc Truong Pham and became a permanent member of
the beehive. I would like to thank the members of my thesis committee Prof. Dr. Mustafa
Bayram and Prof. Dr. Ibrahim Emiroglu, and also many thanks to my dissertation jury
members Assoc. Prof. Birol Aslanyiirek and Prof. Dr. Samet Yiicel Kadioglu for their
time and valuable feedbacks. I would like to thank Professor Duc Truong Pham. He is
supervised and encouraged me both as an independent researcher and as a team member.
I am grateful for all his support, advice and contributions to my career and personal life.
I would like to thank Dr. Yongjing Wang for his support and guidance when I first meet
him at the University of Birmingham, Autonomous Remanufacturing (AUTOREMAN)
Laboratory. Many thanks to all others AUTOREMAN team members Dr. Jun Huang,
Mairi Kerin, Joey Lim, Mo Qu, Nathinee Theinnoi and others for their friendship and
support. It was a pleasure to be a member of an interdisciplinary research group and to
work together. I would like to special thanks to the members of Bees Algorithm Research
Group; Dr. Asrul Harun Ismail, Natalia Hartono, Dr. Mario Caterino, Kaiwen Jiang, Dr.
Turki Binbakir, and Dr. Murat Sahin for their friendship. I am fortunate enough to meet
great people to work with. I would like to thank to Dean of Engineering Faculty, Prof.
Dr. Ali Yilmaz Camurcu, also thanks to Fatih Sultan Mehmet Vakif University (FSMVU)
for their research support, and many thanks to the Dr. Berna Kiraz and members of the
Department of Computer Engineering for the times we shared. I would like to thank my
office-mate Derya Malkog, and also many thanks to Merve Demir, Burgin Ozbay, and
Goniil Temiz for their friendships and supports. This research was supported by the Sci-
entific and Technological Research Council of Turkey (TUBITAK), 2214-A International
Research Fellowship Programme, Grant No. 1059B141800193. I would like to thank to
the TUBITAK for their generous research support. But most of all, I want to express the
deepest gratitude to my family; my dad Hiiseyin Zeybek, my mom Aysekadin Zeybek, my
sister Melek Zeybek, and my brother Ramazan Zeybek for their love and unconditional

support. Without their support, this thesis could not have been completed. Thank you.

Sultan ZEYBEK

TABLE OF CONTENTS

LIST OF SYMBOLS ix
LIST OF ABBREVIATIONS X
LIST OF FIGURES! xii
LIST OF TABLES XV
ABSTRACT] xvii
Xix
1 _INTRODUCTION 1
(L1 ILaterature Review| 1
1.2 Objective of the Thests| 6
(1.3 Origmal Contribution| 6
(L4 Outline of the Thesisl 8

2 BACKGROUND 11
2.1 Supervised Learning|. Lo L. 11
2.2 Deeplearning/. 12
221 Neural[Networks 12

[2.2.2 Training: Backpropagation| 16

2.3 Neural Language Models| 20
[2.3.1 Dastributed Representations| 22

[2.3.2 Static Word Embeddings| 24

[2.3.3 Recurrent (Chain-Structured) Language Models| 26

2.4 Traimning Difficulties of Deep Recurrent Models| 31
[2.4.1 Vanishing and Exploding Gradients (VEG) Problem|. 31

[2.4.2 Approaches to Handle VEG Problem| 34

[2.5 Levels, Resources and Issues of Sentiment Analysis| 36
[2.6 Turkish and Its Challenging Semantic Structure for Sentiment Analysis|. . 39

vi

3 MS-TR: A MORPHOLOGICALLY ENRICHED SENTIMENT TREE- |
| BANK AND RECURSIVE DEEP MODELS FOR COMPOSITIONAL |

| SEMANTICS IN TURKISH

[3.2.1 Recursive Compositional Functions| 46

[3.2.2 Learning Through Structure|. 49

[3.3 MS-TR: A Morphologically Enriched Sentiment Treebank for Composi- |

[tional Semantics| L. L 52

[3.3.1 System Architecture, Resources and Tools Used in Building MS-TR| 52

[3.3.2 Semi-Supervised Annotation Strategies of the Turkish Sentiment |

[Treebankl. 54
[3.3.3 Morphological Analysis of Words for Annotation| 54

[3.4 Recursive Deep Models over MS-TR for Compositional Semantics| 64
3.5 Expermments|o 66
[(3.5.1 Experimental Setup| 66

4.3 ACT-LSTMs: Adaptive Composition Mechanisms 1in Binary Tree-LSTMs |

[for Attentive Sentiment Distributions| L. 79
1__Attenti ntiment Distributions| L. 79

4.3.2 ProposedModel| L. 81

“4.3.3 Traming in ACI-LSTMs| 84

4.4 Experiments 86
4.4.1 Expertmental Setup|, 86

M42 Baselinesl 86

4.5 Resultsand Discussionl oo 87
M6 Summary| e 91

5 METAHEURISTICS FOR TRAINING DEEP SEQUENTIAL RECUR- |

93
5.1 Preliminaries|. 94
[5.2 An improved Bees Algorithm (BA-3+) for Training Deep Recurrent Net- |

[works| ... 96

vii

[5.2.1 Bees Algorithm| 97

[5.2.2 Representation of Bees for Deep RNN Model| 98
[5.2.3 Local Search Operator] 100

[5.2.4 Enhanced Local Search by SGD and Singular Value Decomposi-
| tion (SVD) Operator]. 100
[5.2.5 Global Search Operator| 103
[5.3 Expertments 105
[5.3.1 Expertmental Setup| 105
5.4 Resultsand Discussion| 107
0.5 Summary| 114

6 RESULTS AND DISCUSSION| 116

REFERENCES| 119

A SOURCE CODES 134

PUBLICATIONS FROM THE THESIS| 135

viii

LIST OF SYMBOLS

Activation Function

Bias Matrix

Binary Cross-Entropy Loss Function
Cross-Entropy Loss Function

i"" input vector of the dataset

i'" Predicted Output of the Model

k" Parent Vector of the Parsed Tree
Learnable Parameters of the Model

Learning Rate

Left Hidden Child of the Inner Parse Tree
Local Error Signal of Neuron i in Layer &
Mean Squared Error Loss Function
Neighbourhood Size

One Sample Pair of the Dataset

Partial Derivative of the Loss function According to 6
Probability of Word w using Previous Context
Right Hidden Child of the Inner Parse Tree
Target Data Label of the i/ input

Vocabulary

Weight Matrix

Weight Vector from Neuron i to j Neuron at Layer k

Word Embedding of the Token w

X

LIST OF ABBREVIATIONS

Al
ACT-LSTM
ANN

BA
BA-3+
BERT

BP

BPTT
BPTS
BOW
CBOW
CNN
CT-LSTM
DL

DNNs
DT-LSTMs
FFNN

GA

GD
LST™M
ML

MLP

MRL

Artificial Intelligence

Attentive Compositional Mechanisms in Binary Tree-LSTM
Artificial Neural Network

Bees Algorithm

An Improved Ternary Bees Algorithm

Bidirectional Encoder Representation from Transformers
Backpropagation

Backpropagation Through Time

Backpropagation Through Structure

Bag-of-words

Continuous Bag-of-words

Convolutional Neural Networks
Constituency-Tree-Structured Long-Short-Term Memory Network
Deep Learning

Deep Neural Networks

Dependency-Tree-Structured Long-Short-Term Memory Network
Feedforward Neural Network

Genetic Algorithm

Gradient Descent

Long-Short-Term Memory Network

Machine Learning

Multilayer Perceptron

Morphologically Rich Language

MS-TR Morphologically Enriched Turkish Sentiment Treebank

MSE Mean Squared Error

NB Naive Bayes

NER Named Entity Recognition

NLP Natural Language Processing
NMT Neural Machine Translation

NN Neural Network

ooV Out-of-vocabulary

PCA Principal Components Analysis
POS Part-of-Speech

PSO Particle Swarm Optimisation

QA Question Answering

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

RNTN Recursive Neural Tensor Networks
SA Sentiment Analysis

SG Skip Gram

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition
SVM Support Vector Machine

SPINN Stack-augmented Parser-Interpreter Neural Network
TF-IDF Term Frequency-Inverse Document Frequency

Tree-LSTMs Tree-Structured Long-Short-Term-Memory Networks
Tree-RNNs Recursive Neural Networks

VEG Vanishing and Exploding Gradients

xi

LIST OF FIGURES

[Figure 1.1 Proposed solutions and contributions of the thesis| 8
[Figure 2.1 A single neuron example with 3 inputs, bias and 1 output| 13
[Figure 2.2 Examples of datasets with different separability] 14
Figure 2.3 A MLP with hiddenTayers| 15
[Figure 2.4 Examples of activation functions| 15
[Figure 2.5 Gradient descent algorithm| 16
[Figure 2.6 Backpropagation of errors through the network] 18
[Figure 2.7 A bottom-up fully-connected neural language model] 21
[Figure 2.8 Examples for semantic word embeddings| 23
[Figure 2.9 Architecture of the skip-gram and CBOW model with window size |
[c=ZNF . . 4 A = 25
[Figure 2.10 A single RNN cell which is many-to-one RNN model (Ieft), and un- |
| folding 1t for time step t (right)] 28
[Figure 2.11 Representation of the basic chain-structured LSTM cell] 30
[Figure 2.12 Word order and morphological structure differences between English |
[and Turkishl 41
[Figure 3.1 An example of hierarchical parse tree of sentences which is con- |
| structed recursively by composing noun phrases (NP), verb phrases |
[(VP) and propositions (PP) of the given sentence| 44
[Figure 3.2 Tree-RNN architecture to generate the “something incredible 1s hap- |
| pening phrase by composing child nodes recursively on structured |
[parse tree (left), and RNN architecture to model the same phrase by |
| using chain structure that (right)l 46
[Figure 3.3 Bottom-up recursive tree compositions over a binary parse tree] 46
[Figure 3.4 Simple architecture of the autoencoded 47
[Figure 3.5 TInner node of the recursive autoencodeq 49
[Figure 3.6 Splitting error function through structure and backpropagation of the |
[EITOI « « ¢ v v e e e e e e e e e e e e e e e e e e e 51
[Figure 3.7 A constituency parse tree of two different sentences from the BOUN |
[treebank [92]f 54
[Figure 3.8 The pipeline of the binarization framework to construct MS-TR|. . . . 57

Xii

[Figure 3.9 An example for the morph-level annotated tree structure of phrase

| cok eglenceli bulamadigimiz bir film, “a movie that we could not find

[much enjoyable” from MS-TR| 58
[Figure 3.10 An example representation for the stem-Ievel annotated tree structure |
[of phrase cok eglenceli bulamadigimiz bir film, **a movie that we could |
| not find much enjoyable” from MS-TR|. 60
[Figure 3.11 An example representation for the token-Ievel annotated tree structure |
[of phrase cok eglenceli bulamadigimiz bir film, **a movie that we could |
| not find much enjoyable” from MS-TR|. 61
[Figure 3.12 Normalized histogram of the annotated n-grams in fine-grained MS- |
[TR. Somewhat positive distributions are added to the positive senti- |
| ment class, and somewhat negative distributions are added to the neg- |
| ative sentiment class for fine-grained sentiment classification| 63
[Figure 4.1 Representation of the tree-structured LSTMcelll 76
[Figure 4.2 Child sum tree topology of LSTM cell at node k for children g, and |
[fic.|. . WA. AW Ay ... 77
[Figure 4.3 N-array (2-array) tree topology of LSTM cell at node k for children |
| hgrand hg,|o 78
[Figure 4.4 Dependency tree and constituency tree of the same sentence] 79
[Figure 4.5 Sequential attention mechanism for three time steps of the FENN|. . . 79
[Figure 4.6 An adaptive attention layer of the ACT-LSTM| 83
[Figure 4.7 An embedded attentive composition mechanism of ACI-LSTM]. . . . 83
[Figure 4.8 Tllustration of the attention mechanism over binary treg| 85
[Figure 4.9 Performance comparisons for ACT-LSTM, LSTM, Tree-LSTM and |
[RNTNmodels|. 89
[Figure 4.10 Normalized histogram of the annotated n-grams in fine-grained MS-TR| 90
[Figure 4.11 Effect of sentence length on the accuracy]. 90
[Figure 4.12 N-grams length distributions of products datasets| 91
[Figure 5.1 Foraging behaviour of honey-bees for Tocal search and global search |
[phasel 98
[Figure 5.2 Flowchart of the proposed enhanced ternary Bees Algorithm (BA-3+) 101
[Figure 5.3 A deep RNN architecture representing a bee in the proposed algo- |
| rithm. Black lines are the forward pass of RNN cell at time t (unfolded |
[version at upper) and red lines representing the error backpropagation |
| through long-term dependencies| 102
[Figure 5.4 Singular value decomposition (SVD) of matrix A] 102
[Figure 5.5 Flowchart of the proposed classificationmodel. 105
[Figure 5.6 The comparison of loss values based on BA-3+ and SGD| 108

Xiii

[Figure 5.7

Distributions of the loss values of the training and validation dataset

for 100 independentruns|

[Figure 5.8

Distributions of the loss values of the training and validation dataset

for 100 independentruns|

[Figure 5.9

Comparison of BA-3+ performance with advanced models and RNN

X1V

LIST OF TABLES

(Table 2.1 Examples of Turkish verb “oku™ with derivational and inflectional suf- |

[fixes construct a different sentences in English| 40

Table 2.2 Turkish has an free constituent, hence same words with different orders |

| can cause various different meanings| 40

(Table 2.3 The possible morphological analysis for the one word “arin” in Turkish| 42

[Table 3.1 Maximum and average n-grams length of the products datasets of MS-TR| 53

[Table 3.2 Balanced Turkish multi-domain products movie reviews datasets|. . . . 53

(Table 3.3 Examples of the morphological analysis of words and detecting nega- |

[tton withinwords| L o 55
(Table 3.4 Examples of the polar words which don’t have polar suffixes| 56
(Table 3.5 Total numbers of fine-grained n-grams|. 63

able 3.6 67
[Table 3.7 Performance comparisons for movie reviews datasetl 68
(Table 3.8 Performance comparisons of books dataset| 69
[Table 3.9 Performance comparisons of electronics dataset|. 69
(Table 3.10 Performance comparisons of DVD dataset|. 70
(Table 3.11 Performance comparisons of kitchen appliances dataset) 70
[Table 3.12 Performance comparisons in term of the total node and sentence-level |
[ACCUTACY| o o e e e e e e 71
(Table 4.1 Parametersetting| 86
(Table 4.2 Fine-grained dataset| 86
[Table 4.3 Accuracy results for binary classification datasets| 88
(Table 4.4 Average of test accuracy for fine-grained classification dataset| 89
(Table 5.1 Parameters of the deep RNN model trained by using BA-3+ 100
[Table 5.2 Learnable (trainable) parameters| 100
(Table 5.3 Parametersetting| 106
(Table 5.4 Turkish and English datasets| 106
[Table 5.5 Total training time (sec) of the BA-3+, DE, PSO and SGD algorithms| . 110
[Table 5.6 Comparison of BA-3+ performance with DE and PSO and SGD| 110
[Table 5.7 Comparison of the results of 100 independent experiments with 100 |
| epochs| 111
[Table 5.8 Parameter setting for LSTM and Tree-LSTM models| 112

XV

[Table 5.9 Comparisons of average accuracy results of advanced recurrent and re- |

| cursive language models for Turkish binary classification datasets| . . . 112

XVi

ABSTRACT

Recursive Deep Learning for Turkish Sentiment Analysis
Sultan ZEYBEK

Department of Mathematical Engineering

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Aydin SECER
Co-supervisor: Assist. Prof. Dr. Ebubekir KOC

In this thesis, Recursive Deep Learning models have been implemented for Turkish sen-
timent analysis. Although natural language processing has made progress recently, rep-
resenting compositional meanings is a challenging task. The traditional deep learning
methods claim sentences as an ordinary linear structure, i.e. chains or sequences. In this
thesis, tree-structured representations of the language have been developed to improve the
compositional semantics of the Turkish language considering the morphological structure
of the words. To this end, a novel Morphologically Enriched Turkish Sentiment Tree-
bank (MS-TR) has been constructed to encode sentences structure. MS-TR is the first
fully-labelled sentiment analysis treebank, which has four different annotation levels, in-
cluding morph-level, stem-level, token-level, and review-level. Recursive Neural Tensor
Networks (RNTN), which operate over MS-TR, have achieved much better results com-
pared to the machine learning methods. In addition to the RNTN model, an advanced tree-
structured LSTM model (ACT-LSTM) has been proposed as a novel recursive deep archi-
tecture. ACT-LSTM combines both attention and memory mechanisms over recursive tree
structures, which learn latent structural information while learning more important parts
of the sentences. ACT-LSTM has been compared with advanced chain-structured models
to decide which architecture is better. As a third main contribution, a novel metaheuristic
training algorithm has been proposed to overcome the vanishing and exploding gradients
(VEG) problem, which is usually observed while training models. An enhanced ternary
Bees Algorithm (BA-3+) has been implemented, which maintains low time complexity
for large dataset classification problems by considering only three individual solutions in

each iteration. The algorithm utilises the greedy selection strategy of the local solutions

xvii

with exploitative search, stabilises the problem of VEGs of the decision parameters using
SGD learning with singular value decomposition, and explores the random global solu-
tion with explorative search. BA-3+ has achieved faster convergence, avoiding getting

trapped at local optima compared to the classical SGD training algorithm.

Keywords: Recursive deep learning, deep neural networks, sentiment analysis, natural

language processing, Turkish sentiment analysis

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

xXviii

OZET

Yinelemeli Derin Ogrenme Teknikleri ile Tiirkce Duygu
Analizi

Sultan ZEYBEK

Matematik Miihendisligi Anabilim Dali
Doktora Tezi

Danigsman: Prof. Dr. Aydin SECER
Es-Danisman: Dr. Ogr. Uyesi Ebubekir KOC

Bu tez calismasinda, yinelemeli (recursive) derin 6grenme mimarileri kullanilarak
Tiirk¢e’nin bicimbilimsel ve anlambilimsel Ozelliklerinin bileskesel modellenmesi
amaclanmustir. Onerilen yinelemeli derin 6grenme modelleri Tiirk¢e duygu analizi gorevi
tizerinden test edilmistir ve geleneksel zincir-yapili (recurrent) modeller ve makine 6gren-
mesi modelleri karsilagtirilmistir. Yinelemeli derin 6grenme mimarilerinin egitilmesi
i¢cin Oncelikle agag-yapili etiketlenmis veri kiimelerinin olusturulmasi gerekmektedir. Bu
baglamda, kelimelerin morfolojik 6zellikleriyle kok + ekler, kok, kelime ve dokiiman
seviyeleri olmak lizere dort farkli seviyede etiketlenmis yeni bir duygu bankasi (MS-
TR) olusturulmugtur. MS-TR gelecekteki Tiirk¢e yinelemeli derin 6grenme modellerinde
kullanilabilecek ilk etiketlenmis duygu agaci olmasi nedeniyle literatiire oldukca 6nemli
bir katkida bulunmugtur. Yinelemeli Tensor Sinir Ag1, MS-TR iizerinden ikili ve ince-
taneli duygu analizi gorevi i¢in cimle temsillerini modellemistir. Yinelemeli Tensor Sinir
Ag1 modeli, SVM, NB ve MaxEnt gibi makine 6grenmesi modellerine kiyasla en yiik-
sek bagar1 oranlarini gostermistir. Yinelemeli Tensor Sinir Ag1 modelinin performansini
tyilestirmek icin ACT-LSTM adli yeni bir aga¢-yapil: sinir ag1 modeli dnerilmigtir. ACT-
LSTM dikkat ve hafiza mekanizmalarimi birlestirerek verinin daha 6nemli olan kisim-
larina odaklanarak 6grenmeyi saglamaktadir. Boylece kutupluluk iceren kelimeler agir-
liklandirilmis yorum temsiline daha fazla katki saglamaktadir. ACT-LSTM, diger zincir-
yapili modeller ile karsilastirilarak hangi mimarinin daha iyi oldugu arastirilmistir. Tezin
son kisminda egitim sirasinda siklikla ortaya ¢ikan kaybolan ve patlayan tiirev (vanishing

and exploding gradient) problemine ¢0ziim Onerisi olarak yeni bir metasezgisel grenme

Xix

algoritmasi Onerilmistir. Bu amagla, her bir arinin ayr1 bir 6grenme modelini temsil et-
tig1 gelistirilmis tiglii ar1 algoritmas1 (BA-3+) Onerilmistir. BA-3+, stokastik gradyan inisi
ve tekil deger ayristirma mekanizmasini birlestirerek kaybolan ve patlayan tiirev problemi
nedeniyle bilginin kaybolmasini 6nler. Lokal arama, stokastik gradyan inisi ve tekil deger
ayristirma kombinasyonu ile en iyi parametre degerlerine yakinsamayi garantilerken, ayni
zamanda global arama ile lokal optimum degerine takilip kalmay1 6nlemektedir. Oner-
ilen egitim algoritmasi, yalnizca stokastik gradyan inisi kullanan diger modellere kiyasla

Tiirk¢e duygu analizi i¢in ¢cok daha iyi dogruluk sonuglar elde etmistir.

Anahtar Kelimeler: Yinelemeli derin 6grenme, derin sinir aglari, duygu analizi, dogal

dil isleme, Tiirk¢e duygu analizi

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

XX

1

INTRODUCTION

1.1 Literature Review

Recently, the development of social media platforms has allowed people to express their
actions, their beliefs, and their lives, employing figurative and creative language. Con-
structing different data sources from social media, movie ratings, and product reviews
offer a strategical understanding of human behaviours and thoughts as the rapid growth

of Web 2.0 has increased Internet user data.

Artificial intelligence (Al) is a research topic, which aims to mathematically model the hu-
man thinking system and develop intelligent systems that can think and learn like humans.
Natural language processing (NLP), as a sub-field of Al, enables language processing for
specific purposes such as information extraction, meaning-extraction and sentiment anal-
ysis. Sentiment analysis (SA) is a prevalent research topic concerned with classifying and
exploring the views in a specific text, document, or sentence. SA studies have a signifi-
cant potential effect on from academia to commercial applications to get an insight into

peoples opinions as a crucial factor that influences human behaviours.

Learning the sentence structure and understanding the meaning of them in a computer is
a challenging task. The main difficulty in terms of semantics is to capture the meaning
of longer phrases. Even though NLP methods have made progress in recent years, repre-
senting compositional meanings is a challenging field of NLP. Current machine learning
algorithms have certain drawbacks, such as limitations of generalising when applied un-
structured text data. For example, the traditional feature representation methods such
as bag-of-words (BOWSs) represents words as a one-hot vector, which causes the loss
of the semantic relationships between words due to the atomic representations. Besides
sentences could be represented as high-dimensional sparse encodings based on the word
counts in a large vocabulary, which are not well enough to represent the sophisticated,
compositional semantics of a language. Hence much more studies should have been done

to fill the gap in compositional representation learning.

So far, most of the sentiment analysis and compositional representation learning studies
have focused on English. The first study was done by Pang et. al [1] suggested using the
BOW features and classifying reviews using Support Vector Machine (SVM) and Naive
Bayes (NB). This study has been followed by most machine-learning-based approaches as
a baseline study, and many other ML methods have been developed to learn dataset over
features, such as n-grams, TF-IDF, part-of-speech (POS) tags, and polarity (sentiment)

lexicons.

Linguists state that although the number of words in a natural language is limited, an
infinite number of sentences can be created by the natural language speakers. Grammar
rules are used as a natural way to create languages. Determining the compositional mean-
ing of the language (i.e. distributed representations for phrases, clauses and sentences) is
very hard since the language is represented as atomic, discrete values and symbolic data
structures which are unable to keep dynamical flows of the information. Both one-hot-
encodings and word embeddings have limited ability to model connectional meanings of
at least two items, and they cannot capture the semantic information of given sentences

since they cannot combine structurally or sequentially.

Human thinking and speaking happen in a non-linear way, and language is produced re-
cursively by interrelated processes in mind as a result of the integration and interpretation
ability of the human mind. It is crucial to represent this structural information for under-
standing the compositional semantics of the natural language, which is processed between
the human mind and language recursively. The traditional methods claim sentences as an
ordinary linear structure, i.e. chains or sequences. However, finding the optimum way to
detect the connectionist structure of the data and representing it in an optimum structure

is still an open problem.

Deep learning provides learning high-level and abstract features automatically by increas-
ing hidden layers and gives better representations of data that makes training easier in the
sense of optimisation procedure of NLP task. Through deep layers, the task can be done
without time-killer feature engineering steps of traditional machine learning. The use of
better representations, i.e. dense word embedding also be an efficient way for dealing
with high dimensions, which appears as a result of the representing words like atomic
units in a one-hot vector space that ignoring word order. With the deep learning era, Neu-
ral Language Models (NLM) get dramatic successes in semantics and sentiment analysis
tasks with the contribution of the large data sets and improvements. The magic behind the
success of all of the learning models is dependent on how well data is represented without
losing information. Recursive Neural Networks are developed for sentiment analysis as
they can capture the semantic compositionality in a given sentence [2|, 3]. The standard

version of the Recursive Neural Networks (Tree-RNNs), namely Recursive Autoencoders

(RAE), was introduced by Socher et al. [4] using autoencoders to understand language
as a continuous architecture of meaning, which flows from characters to words, words to
phrases, and phrases to sentences in a recursive manner. A semi-supervised version of the
RAE can learn phrase representations to predict sentiment distributions of the sentences
with good accuracy levels; however, it is not able to capture long-phrase meanings and all

types of compositions.

Researches focusing on compositional models for morphologically rich languages
(MRLs) is still developing, and they have not gone far beyond the conventional ap-
proaches. However, these approaches have a performance bottleneck due to representing
words as independent atomic units, which causes the loss of explicit information among
words and reducing accuracy. Hence new language representation models are needed to
be developed to learn the nonlinear structures of languages. However, fewer studies are
done for additive structured languages such as Turkish, and success rates are lower than
in English studies. Moreover, since different prepossessing techniques are required for
each language, the tools developed for English cannot be directly used in languages with

rich morphology, such as Turkish.

Turkish is a morphologically rich language (MRL). Many different words can be derived
by adding various suffixes to each word root. Hence the number of different words in-
creases, the space size becomes too large, and the processing time takes too much time.
In addition, since the data to be used during emotion analysis is raw data, many noise and
spelling errors in the raw data are corrected during the preliminary preparation stage on
the data set. However, this may cause some expressions that express emotion to be lost.

When using the commonly used word bag model, one has to work with large areas.

Feature engineering within the scope of machine learning is closely concerned with fea-
ture extraction from raw data. Current Turkish SA studies have mainly focused on
machine-learning-based approaches and lexicon-based approaches, trying to learn the
dataset features such as unigram, bigram, Part-of-speech (POS) tags or predict the emo-
tional orientation of an input text by using the emotional score of words. However, these
features are not enough to learn higher-level nonlinear features from large amounts of

data, although designing them take too much time.

Erogul’s thesis is the earliest Turkish SA work that was done in 2009 [5]. He built the
tagged movie review dataset from beyazperde.com and classified them by using SVM.
He investigated the effect of the stemming process and part-of-speech (POS) tags on the
Turkish sentiment model performance. As a baseline, he used bag-of-words features with
spellchecking and elimination process and achieved 85% F1-score. As a special case, he

focused on the different features, including using only roots of the words, parts-of-speech

(POS) tags, n-grams. Using only the roots of the words as a feature decreased perfor-
mance to the 83.99% F1-score. Noun + Adjective features performed better compared to
the other part-of-speech tags features and achieved 83.34% F1-score. The best accuracy
had been achieved as 86.16% F1-score, which has obtained by the combination of the

unigram, bigram, trigram and 4 gram.

One other remarkable study was done to classify Turkish political news by Kaya et al.
[6]. They used a combination of n-grams, root words, adjectives, and polar words feature
to represent political news in the bag-of-words (BOW) framework. Maximum Entropy
and n-gram LM achieved better accuracy levels compared to the SVM and NB with the
76-77% accuracy level.

A model had been proposed for assigning polarities of the Turkish blog posts about prod-
ucts and services by Aytekin [7]], that uses Naive Bayes Algorithm to classify 350 positive
and 350 negative comments which were collected by the We Feel Fine website. A sen-
timent dictionary, including 4,744 synsets, was used to assign probability distributions.

The precision scores measured up to 72.28% (pos) and 73.14% (neg), respectively.

Even though machine-learning algorithms have reached a good success rate, lexicon-
based approaches are widely preferred because they are practical. They are simply ap-
plied by attaching a sentiment polarity score to the words or phrases based on the lexicon
information. As an earlier lexicon-based work, Vural et al. proposed to use SentiStrenght
as a polarity lexicon [[8] to classify movie review dataset with unsupervised learning. They
translated the SentiStrenght’s polar words from English to Turkish [9] and calculated the
total polarity score of the original input text to detect positive and negative polarity score.
In terms of the accuracy result, their framework has reached up to 75.90% for the binary

classification task.

Over the last years, some additional efforts have been made to built Turkish polarity lex-
icons. Dehkharghani ef al. built a polarity lexicon, namely SentiTurknet, which con-
tains 14,795 synsets each has three-level (positive, negative, neutral) polarity score [[10].
The polarity scores evaluated by complementary usage of various NLP resources such
as English Wordnet [11]], Turkish Wordnet [12] lexicons and English SentiWordNet [|13]],
English SenticNet [14} [15] and Polar Word Set (PWS) and polarity words with Pairwise
Mutual Information (PMI) polarity scores. The proposed algorithm combined manual
labelling and feature extraction steps to detect the polarity of a given synset. Additional
polarity features were extracted from polarity lexicons, and they classified by logistic re-
gression (LR), neural networks and SVM. The final estimation of the label was predicted
by the combination of these three classifiers. SentiTurkNet was tested on the Turkish

movie reviews from beyazperde.com and achieved between 61.3% - 66.7% accuracy for

ternary sentiment classification.

Beyond the above, BOW representation and n-grams have become the most preferred
feature modelling methods. Coban et al. [[16] constructed a Twitter dataset for binary
sentiment classification, and they used BOW and N-grams to extract features. For all case
studies, N-gram features performed better compared to the BOW and achieved between
62%- 66% accuracy level. Extreme Learning Machine (ELM) was used to classify tweets,
and customer reviews of the telecom company based on the BOW and N-gram features
compared to SVM. SVM performed better with the highest accuracy level 74%, which is

not good enough again for the datasets, which each has lower than 3000 entries [17].

Few studies have been taking into account the morphological features of Turkish to de-
tect sentiment. Several NLP modules have been demonstrated on the noisy dataset in
[18]. The study proposed to use normalisation, negation handling, morphological analysis
and stemming modules and also adjectives for ternary classification using SVM. Experi-
ments achieved up to 79% accuracy level with the usage of normalisation and stemming
features, which means that additional morphological information improved the system
performance. Similarly, Turkmenoglu and Tantug [19] suggested comparing ML and
lexicon-based approaches taking into account morphological features of Turkish, i.e. tak-
ing into account absence/presence suffixes to detect kind of negation in Turkish words.
The SentiStreght was used as a baseline lexicon. Additionally, the booster list was used to
detect adjectives polarity score. The machine learning approach followed a similar way to
the studies above, and TF-IDF was used with unigrams and bigrams features. As a clas-
sification algorithm, SVM, Naive Bayes and Decision Trees were tested by using Twitter
and Movie dataset. The lexicon-based approach combined with all modules, including
normalisation, negation handling, multi-word expressions and booster word list, achieved
75.2% and 79% and accuracy level for Twitter and Movie dataset, respectively. Machine
learning approaches reached up to 85% accuracy level by using TF-IDF and unigram and
bigram features of tweets classified by SVM, and SVM and Naive Bayes achieved 89.5%

accuracy level on Movie dataset with same features.

As an extended version of the Turkmenoglu and Tantug’s lexicon-based approach, Yur-
talan et al. [20] proposed to used conjunctions to detect opposite meanings between two
phrases, idioms and proverbs analyzer and multi-word analyzer in addition to the nega-
tion handling phase of the word-level analyzer using 1181 polar items. They scored each
word with the polarity value ranging from -3 to 43 and classify each review according to
the total polarity value. Some researchers have been focused on constructing datasets and
annotation tools for sentiment analysis. TURKSENT had been implemented as an anno-
tation interface particularly for sentiment analysis from social media [21]] by combining

linguistic annotation layer including morphological analysis and normalization features,

and human annotation layer.

Despite all these time-consuming feature engineering efforts, the accuracy level of the
proposed models are still not good enough, and it is necessary to improve more efficient
ways. Notably, for the Turkish language, many methodologies which are successfully
applied to the English language are waiting to be explored to handle the challenging nature

of Turkish sentiment analysis.

1.2 Objective of the Thesis

The research aim is to develop tree-structured (recursive) deep learning models to learn
compositional representations of morphologically enriched words for Turkish sentiment

analysis.

The research objectives are as follows:

* To develop tree-structured dataset and recursive deep learning models for captur-
ing longer word dependencies and compositional representation of the Turkish lan-

guage.

* To prevent the loss of information caused by long-term time and long-term tree
dependencies by combining the attention and memory mechanism of the novel re-

cursive model, which is proposed as ACT-LSTMs.

e To improve the training algorithm of the architectures for avoiding vanishing and
exploding gradients (VEG) problem that occurs while learning deep recurrent and
recursive layers by employing an enhanced ternary Bees Algorithm (BA-3+) as a
novel meta-heuristics learning method performing local learning with exploitative
search, SGD learning with singular value decomposition (SVD), and global learn-

ing with the explorative search.

1.3 Original Contribution

The original contributions of this thesis are:

* A novel Morphologically Enriched Turkish Sentiment Treebank (MS-TR) was con-
structed to address compositional sentiment analysis for Turkish by using Recursive
Deep Models.

* A novel semi-supervised automatic annotation was proposed as a distant-

supervision approach. The morphological features of words were used to infer the

6

polarity of the inner nodes of the binary and fine-grained parse trees of the MS-TR.
To the best of our knowledge, MS-TR is the first sentiment treebank that is fully la-
belled according to morphological structures of Turkish words. The effect of using
morphological features of words on the performance was investigated using four
different annotation level, including morph-level annotation, stem-level annotation,

token-level annotation, and review-level annotation.

Tree-structured Recursive Neural Tensor Networks (RNTN) were operated over
MS-TR for Turkish Sentiment analysis, and better performances were obtained
compared to the conventional machine learning methods, which combined various

feature representation methods.

Attentive composition mechanisms and memory blocks over recursive structures
(ACT-LSTMs) were proposed as a novel tree-structured deep learning model to
overcome long-term-dependencies and padding issues while improving structural
learning for longer phrases. LSTM architecture had been generalized to process
parsed trees while preventing the right-to-left reading of the human mind while

preserving the linguistic structure of the sentences with attention.

The comprehensive benchmark was done to compare the performances of advanced
chain-structured and tree-structured language models to decide which architecture

is better.

A novel metaheuristic learning algorithm is developed to overcome the vanishing
and exploding gradients problem of the deep learning models. An enhanced ternary
Bees Algorithm (BA-3+) was proposed as a novel metaheuristic optimisation ap-
proach, which combines the collaborative search of three bees, performing local
learning with exploitative search, Stochastic Gradient Descent (SGD) learning with
singular value decomposition (SVD) to overcome vanishing and exploding gradi-
ents problem of deep architectures, and global learning with the explorative search

for avoiding getting trapped at local optima.

Sentiment Analysis

Machine Learning N \
Neural Networks

[[Deep Learning | _Recursive Deep Learning J

Methods

for Turkish Sentiment Analysis
Problems

Turkish Linguistic Difficulties as a Sentiment Analysis Difficulties to Training Difficulties of Deep
| Morphologically Rich Language L Learn Compositional Semantics Neural Language Models

Losing compositional sentiment and
semantic information due to the limits
of conventional feature representations
methods

Limited sentiment resources, hidden
sentiment information of words,
out-of-vocabulary words etc.

Vanishing and expleding gradients
(VEG) problem occurs due to
long-term dependencies

'\

Proposed Solutions - Contributions
Recursive Deep Models for Compositional } [A Novel Metaheuristic Training)

A Novel Marphologically
Enriched Turkish Sentiment
\Treebank (MS-TR)

Figure 1.1 Proposed solutions and contributions of the thesis

Semantics in Turkish and Comprehensive Algorithm (An Enhanced Ternary
Benchmark of Chain-Structured and Bees Alg.- BA-3+) to handle

Tree-Structured Models for Turkish SA VEG Problem)

1.4 Outline of the Thesis

Chapter [I] presents the aim and contributions of this study, problem definition, levels-

resources of sentiment analysis and related work.

Chapter [2 covers the mathematical background to understand the recursive deep learning
models methodologically for the Turkish sentiment analysis task. It reviews the basic
notations, definitions, and methods for deep neural network-based language models. The
theory of classification is given for a better understanding of sentiment classification task.
Distributional representations, gradient-based training algorithms and training difficulties
of deep models such as vanishing and exploding gradients problem are presented from
the perspective of mathematical optimisation. Terminology and difficulties of the senti-
ment analysis have been also given. Finally, the characteristic and challenges of Turkish

language have been discussed in terms of sentiment analysis.

Chapter [3] presents a novel Morphologically Enriched Sentiment Treebank for Compo-
sitional Semantics in Turkish (MS-TR). MS-TR is the first fully labelled according to
morphological structures of the words to infer the polarity of the inner nodes of MS-
TR as positive and negative. MS-TR contributes to the lack of sentiment analysis re-
sources in Turkish as an obligatory input format to work with Recursive Deep Models. A
semi-supervised annotation model that has been done for four different levels, including
morph-level, stem-level, token-level, and review-level, has been proposed. Morph-Level
annotated MS-TR is aiming to retrieve the hidden polarity of the suffixes in the morpho-
logically rich word. To this end, tokens are morphologically analyzed, and they are parsed

to their possible stem and suffixes. Using only a morphological analysis of the word can-

not provide the correct polarity information for each case. Hence, in addition to the
morphological annotation, using a polarity lexicon was proposed to capture polar words,
which are root and do not have any morphological information. Stem-Level annotated
MS-TR was constructed similar to morph-level annotated MS-TR. The only difference
is using only stems of the words, and the suffixes (ending) of the words are eliminated
from the word after morphological parsing. As a third level, each token of the reviews
is annotated using polar embedding spaces, which are constructed by using positive and
negative datasets. The cosine similarity measure has been used to find the token-level
label. As the last annotation level, only review-level annotated tree structures have been
used to construct MS-TR for comparing each annotation level’s performance. In addition
to the binary-labelled parse trees, the fine-grained dataset has been annotated by taking
into account the morphological information of the words. The polarity distribution of the
phrases, i.e. phrase-level to review-level labelling, was realized in two stages. The first
stage is labelling words according to their polarity features which are detected from the
morphological analysis of the words. In addition to the binary annotation, words have
been scored whether they are booster words. Three different domain datasets were used,
including product reviews, movie reviews, and the Turkish Natural Corpus essays for con-
struction. Comparative results were obtained with the Recursive Neural Tensor Networks
(RNTNSs), which is operated over MS-TR, and conventional ML methods. Experiments
proved that RN'TN outperformed the baseline methods and achieved much better accuracy
results compare to the baseline methods, which cannot accurately capture the aggregated

sentiment information.

Chapter 4] focuses on improving recursive deep learning models using memory and atten-
tion mechanisms to learn latent structural information and for improving the performance
of the Turkish Sentiment Analysis system. To this end, ACT-LSTMSs, namely an attentive
compositional mechanism in binary Tree-LSTMs, have been proposed to combine both
attention and memory over recursive tree structures. LSTM model has been extended
to ACT-LSTM, which can work over sentiment treebank while learning important (more
related) part of the long sentences. The main motivation is using attention over tree struc-
tures and mimicking the human attention mechanism to memorize and learn the more im-
portant parts of the given sentences for a downstream task. The aim is to prevent the loss
of information, which occurs due to padding operations. The performances of advanced
chain-structured and tree-structured language models have been compared over a SA task
to decide which architecture is better. According to the experimental results, ACT-LSTM
performed better in terms of fine-grained Sentiment Analysis (SA). They combined the
advantages of the attention mechanism with the combined power of the memory blocks,
particularly to improve the performance of the structured fine-grained SA models. It had

been observed that Tree-LSTMs performed better compared to chain-structured LSTMs

and RNTN. RNTN had also performed better than chain-LSTMs combined with various

segmentation methods.

Chapter [3] presents a novel metaheuristic optimization approach to solve vanishing and
exploding gradients (VEG) problem, as is discussed in detail in section 2.4.1] The ap-
proach employs an enhanced ternary Bees Algorithm (BA-3+) which maintains low time-
complexity for large dataset classification problems by considering only three individual
solutions in each iteration. The algorithm combines the collaborative search of three bees,
performing local learning with exploitative search, SGD learning with singular value de-
composition (SVD), and global learning with explorative search. Thus, the algorithm
utilizes the greedy selection strategy of the local search operators of the basic Bees Al-
gorithm to improve solutions, the stabilization strategy of SVD to handle the problem
of VEG of the decision parameters, and the random global search strategy of the basic
Bees Algorithm to achieve faster convergence avoiding getting trapped at local optima.
BA-3+ has been used to find the optimal set of trainable parameters of the proposed deep
recurrent learning architecture. The proposed algorithm has been compared for sentiment
detection. According to the experimental results, the improved accuracy and convergence
results showed that the proposed algorithm performed better compared to traditional SGD
and BA-3+ is an efficient algorithm for training deep RNNs for complex classification
tasks.

Chapter [0] reports results and discussion of the thesis. Suggestions are also given for

further future researches.

10

2

BACKGROUND

2.1 Supervised Learning

The "analysis" part of the sentiment analysis of all levels is a classification problem in
essence. Classification and deciding where the data belongs is the most crucial step in
the machine learning mechanism. Conventionally most of the sentiment classification
problems have been solved using supervised learning. This thesis aims to detect the
sentiment orientation of a given expression that includes an opinion about a specified
topic. More specifically, if we talked about the binary-classifier then the problem can be

formulated as follows:

C : Xinputs — T= {07 1} (21)

Here the map { as a positive or negative predictor of the observations (i.e. inputs) of
the corresponding class 7 = {0, 1}. In most of the classifying cases, { has been learned
via supervised learning over training set (D). The pairs (x;, t;),1 < i < n of D which are
distributed randomly and the classes #; € C have been given by instructor. The aim is
learning § which can predict the actual (target) class, i.e. label #; of observation x; with

minimal probability of loss.

The classifier success can be measured by the probability of loss function, which is de-

fined as follows:

where D = {(x;, ;) € X X C,1 <i<n}.

The aim is to learn the most suitable function over { € F, which can as much as minimize
the disagreement between the predicted class and the actual (gold) class. In the case of

sentiment analysis, the sentiment class of x;, i.e. sentiment observations of each review

11

or tweet from the dataset is predicted by classifier function, { : x; — y; € {0, 1}, one for
positive sentiment class and zero for negative sentiment. Each pair of (y;, ;) has been
used to maximise the correct estimation or minimise the error between predicted y; and
target data ;. This process defines our objective function (loss function) throughout this

thesis as follows:

LC(yiv ti) - P{C(Xinputs) 7’é T | D} (2.3)

or for any § € F it is expected loss which is defined as follows:

L&:* = argminE(L t)ND L(C(xi)’ tl)

ceT 2.4)

= a,I‘gl’l’linIE(x7 t)ND L(yi7 tl)
feF

Since D represents the unknown distributions of data pairs (x,7) and the expected value of
E(y,, 1)~p could not precisely be known. Besides, since the pairs are distributed identical
and independent (i.1.d) over D, L can be referred using average of total training error

represented by L™ :

N

2.2 Deep Learning
2.2.1 Neural Networks

A basic neuron is a simple summation function, which is designed years ago [22] in 1943.
This mechanism is a mathematical model of the biological neuron. After a while, Hebb

[23]] reported enhancement of human learning by interconnections between neurons.

Let X = (x1,x2,...,x;) be a k-dimensional input vector. A single neuron is a mapping that

12

Figure 2.1 A single neuron example with 3 inputs, bias and 1 output

can learn weights through following summation:

(2.6)

Here ¢ is an "activation function", which transforms the nonlinear features of the input

values for a specified task.

1, if (X, wlx;+b) >0,

0, otherwise,

Accordingly, Rosenblatt proposed a remarkable perceptron learning rule as a way for

updating the weights of the ANN system:
P == =) i (2.7)

to minimize the expecting error between (y;, #;) as given in Equation Here n is a
critical hyper-parameter of the model allowing adjustments to which weight to update.
Learnable parameters of the neuron in Figure [2.1] are weights (W) and single bias (b)
value. Although this can be a practical binary classifier, perceptron’s hyper-plane cannot

classify the non-linear dataset (see Figure [2.2)).

Figure [2.2] represents an example for distributed data point with a different separability

nature. The data points of (i) can be separated using linear mapping, and (ii) can be

13

(ii) (iii)

Figure 2.2 Examples of datasets with different separability

separated using a nonlinear function. However, (iii) (XOR problem) cannot be separated
with a simple mapping. Models need to handle the nonlinear nature of the data. With
this motivation, Multilayer neural architectures (i.e. MLP) have been implemented [24]]

which is combined with middle layers and m units for each (see Figure [2.3)).

Algorithm 1: Deep Layer Feedforward NN
Input: k = hidden layers , input vector=x,
weight matrices = {Wo, W, ... Wi}, biases = {by,bs,...,bx1}
h() — X
fori< 1tok+1do
L Xi < hi\Wi—1+b;
zi < 0(x;)

return y < z;

A deep feedforward NN (FFNN) is a mathematical processing unit, which is defined with
input layers, hidden layers and outputs layers as showed in Figure 2.3] It performs an
activation functions considering the weighted summation of input vectors and bias scalar
to learn nonlinear features of the given inputs. Algorithm [I]explains the steps of simplest
version of the deep feedforward neural networks with an activation function o, which can
be selected as sigmoid, tanh, ReLLU functions. The algorithm is the pseudocode of the
forward pass for one sample (x(i), t(i)) pair from the dataset. ¢ the nonlinear activation

function, and the total loss function calculated from the summation of each pair loss.

Activation of the hidden layers for a single neuron is calculated in a similar way with
Equation [2.6)as follows:

A0 Z ik gD ok
(2.8)

where it is called as forward propagation chain. Here Wy;,, b;, are learnable parameters of
the MLP model given in where the weight matrix Wy, € R¥" since it is assumed that

14

1%t hidden layer
input layer

k — 1" hidden layer
output layer

Figure 2.3 A MLP with hidden layers

MLP model has k hidden layer. Throughout this thesis the following nonlinear functions

have been used:
sigmoid,
¢ = « tanh,

softmax,

I-exp(
(

1
=5
1—exp(—27%)
14-exp(—27F)
exp(z")
Yi gexp(d)

2.9

Here Wj;, represents the weight matrix from hidden layer (k — 1) to hidden layer k, and

C is the number of classes. It can be seen that clearly, the outputs are represented as any

combination of the inner hidden layer activation, which is mapped into non-linear features

with activation functions that are chosen from Equation [2.9]

This mechanism opened a new era inspiring the different kinds of deep learning models.

They are designed with "hidden layers" as an automatic feature learners. They can solve

many tasks while exploring the nature of the data without hand-generated feature vectors.

¢(2)
2
1 tanh(z)
— sigmoid(z)
_—
0——— > 2
-1
20 -1 0 1 2

Figure 2.4 Examples of activation functions

15

Activation functions are critical mappings for modelling the nonlinearity of inputs. There
are many commonly used functions. Figure represents the activation functions of
sigmoid and tanh, and the two most common of these. MLPs combine affine mappings
and nonlinearity to learn the features of the problem for a specified task. It is good to
remind that, without nonlinearity, it is impossible to learn the features of data, and the
MLP system would be the same as simple linear mapping. Besides the advantages of
the nonlinear affine transformation, selecting the most suitable activation function is still
an open research topic due to the training difficulties of the deep architectures, which is
discussed in section in detail.

2.2.2 Training: Backpropagation

Training of a learning model aims to converge the optimum values of the learnable param-
eters of the model. The first version of the learning rule for neural models is introduced
in Equation as perceptron learning. Perceptron algorithm cannot be applied directly
to the MLP models since the hidden layers don’t have target values.

Gradient Descent (GD) is an algorithm to update multi-layer models parameters using

following equation:

6,=0 oL 2.10
t—t—l—n%H (2.10)
Figure 2.5 Gradient descent algorithm
which can also be represented as following:
9;:9,_1 —T[Ve L((P<Xj,9)7ti)) (211)

16

where learning rate 1 is a crucial the hyper-parameter that defines the GD steps and helps
to converge to optimum values of the parameters. Figure illustrates the iterations of
the gradient descent algorithm to converge optimum values of a given function. Backprop-
agation (BP) is a learning way to optimize the multilayer model parameters combining
gradient descent and chain-rule. It plays a critical role to converge the optimum values
of the learning parameters of the model. First chain-rule has been used to calculate the

partial derivatives according to the specified parameter as follows:

oL, o, 92F arp 9l 9z
owY aA“awﬁf_aéﬂaékaw<

ij J ij
(k) (k) (k=1)
(9Zj aZZVVU X; _a(kfl)
avvlsk) avvlgk) !
da® apEW) 2.12
L= = (o) (1 - p(e) = 0j(1 - 0)) 12
dz; dz;
g g IYE, (o)
5= 30, 90 = (0j=1))
da; j J
JdL i
8Wij§k) = (0j—1;)o,(1 Oj)ai(k b
Now the error for neuron j can be defined as following
s _ 9Lt
J (k)
%
L, 9a')
_dLgoa; (2.13)
aﬁ‘k) ZSk)
= (0j—tj)oj(1—-0))
and the learnable parameters derivative is defined as follows:
JL
¢ _ sy (2.14)
aW~(k) 1

where 0 is defined as error message as illustrated in Figure

Let the Wigll) represents the 1% layer weight parameter. Chain-rule is allowed to calculate

17

,

(k)
Sm(k)

Figure 2.6 Backpropagation of errors through the network. 5* represents the local error
signal of neuron i in layer k.

the partial derivative of the output as follows:

dy _ dy 979
aWi;l) dz(3) aWi(l)
dy 9z 9a®@
0z3) 9a® an(l)

dy 09z8) 94» 972

dy 973 9a® 9:2 9aV) 2.15)
~ .0 2 2 1 1
2z3) 94 9z 9q) 3Wi§l)
dy 09z8) 9a® 972 94 971
() 9a@ 9:2 94 97D (1)
9z83) da?) 9z(?2) dall) 9z oW,
dy 9z8) 94 972 94V 97V
~ .0 2 2) 5,40 1 1
2z3) 9a@ 972 9a) gz(1) 3W,~§1)
If y = a® is claimed as it is defined in 2.8}
dy da® 3) da? 2aV
2 77w w (2)._.[61(.)]. (2.16)
1 3) ih 2) i DAL
awl(h) 2z(3) d2z(2) dz()
with [aﬁo)]i, which is a vector of the same size as z{!) whose ith element is equal to a&o) and
all the other elements are 0. Each derivative 3‘;—5,;) corresponds to a m X m matrix (where

18

m is the number of unit in a one single layer) as follows:

290zX) dep(z¥)
aa(k) 82(()k) (921(1]1()
EECE : : (2.17)
¢ 20n(z") 20n()
P PR)
equals to the following diagonal matrix:
¢'() 0
da®) '
e — .. (2.18)
0 o' (zn)

The stochastic gradient descent (SGD) is a well-known generalised version of GD, which
learn from one example pair at each iteration instead of using the entire dataset at each
step. SGD particularly useful method for large training datasets. The gradient-based
training algorithms use the backpropagation algorithm, which is calculating the partial
derivatives according to learnable parameters of the system via the chain rule as given in
Algorithm 2]

Algorithm 2: Stochastic gradient descent (SGD) algorithm
Input: Learning rate:n), 6 = (W, bi)
Output: 6!
Function SGD (1, 0) :
for each hidden layer k do
Select training pairs (x(), ()
Update 6 by using gradient descent rule
// Vg coming from BP alg.

6% = 6%1 —n Vo L(f (x:,0),,))
| return 6F

In Algorithm |2} Vo represents the partial derivative of the loss function according to the
selected parameter of 0, which requires the partial derivatives of the nonlinear composite
activation functions. In other terms, the training algorithm searches for the optimal values

of the learnable parameters to minimise [2.19]

As an example objective function, we can define binary cross-entropy (BCE) loss func-
tion, which is defined as negative-log likelihood using each pair of (y;, #;) to maximise
the correct estimation or minimise the BCE error between predicted y’ and target data ¢/

as follows:

19

1 N, out

¥ Y rilog (i) + (1 —1;)log(1 — y;) (2.19)
out j—1

Lpce = —

or mean squared error (MSE) LC* = Lysg can be defined as follows:

1 N
Lg" =5 L LeOit)
i=1 (2.20)
l w1
= N;E | ti —ill,

dLyse 0 (1
= =2 5 ti=yilaf |
8wg.€) (9wg~<) N% 2 ’
1 1 9 -
“NL |25, [(ti—)’i) (ti—yi)] : (2.21)
L t
1 d(—y;
= N (tt_)’i)T (({)>
D 3W,-j

Here wg-c) is a weight vector from neuron i to j neuron at layer k. Next section briefs the

previous neural language models.

2.3 Neural Language Models

Language Models aim to learn likelihood of a each word in a given collection or context.
Recently, neural network language models have became powerful tools with the combi-
nations distributed representations of words, which is also called as word embeddings,

word vectors or distributed feature vectors throughout the thesis interchangeably.

Neural Language Models (NLMs) are basically performed for learning high-quality repre-
sentations of sentences from words. They are designed for computing word embeddings
based on the syntactic and semantic similarities, which are basically feedforward net-
works designed with hidden layers. NLMs designed to learn probability of a word P(w;|c)
using previous given context. The context words (w,_3,w;_»,w;_1) are concatenated and

used as an input to the second hidden layer. The output layer estimates the word w; using

20

softmax. Figure shows the selected 3-gram context words to predict the word w;. For
each word in database, the matrix E is used to represent context embedding. They are dis-
tributed representations of context words, which are calculated by embedding tools, that
will be explained in the next section. The embedding vectors concatenated to one vector
using projection layer as can be seen in Figure [2.7| The forward pass of NLMs algorithm

is given at Algorithm 3]

A bottom-up fully-connected architecture of neural language model network in the Figure
[2.7)is designed with input layer, 2 hidden layers (projection + hidden) and output layer
to predict the word “izmir” according to previous 3-gram context words ‘“‘sehirlerden,
Istanbul, Ankara”. The projection layer concatenates the embeddings of context words
into 1 x 3d, where d represents the embedding vector dimension coming from shared
word embeddings matrix E. The rows of the matrix E represent the dense feature vectors
of whole words in the vocabulary. Inputs are one-hot encoding vectors with dimension
1 x |V, which are converted dense real-valued distributed embedding vectors to give as

an input to the projection layer. Distributional hypothesis has been a foundation approach

softmax

Output Layer [@1) @%9) Yiv

L — |
/s

Uy ixap,

10}

Hidden Layer

Projection Layer

Embeddings for the

words w3 w2 wt-1 |
e Eaxv|

index li
Input Layer (coos .
| bityiik H sehirlerden H Istanbul H Ankara H [zmir m gibi
Xt_3 Xt_2 Xe_1 Xt

Figure 2.7 A bottom-up fully-connected neural language model

Algorithm 3: Feedforward neural network language model

Input: contexts= {w;_,4+1,...,Ww;_1}, vocabulary,
weight matrices= E,W.,U , bias =b

e < [E(Wt—n—',—l), ce ,E(W,_l)]

h < tanh(We + b)

y < softmax(Uh)

return y

for many studies focused on learning word vectors using context. Class-based n-grams

21

models [25]], Latent Semantic Analysis [26], a simple Recurrent Networks [27] are the
previous key studies during 1990s. The neural language models have been adopted based
on these foundation studies aiming to capture distributional semantics. Bengio et al. have
been designed the neural probabilistic language model as a foundation study for learning
continuous semantic representations of word vectors [28]]. The authors proposed a sim-
ple Feedforward Neural Network (FFN) model dealing with curse of the dimensionality
problem.

2.3.1 Distributed Representations

Before the deep learning era, the meaning of words conventionally learned using exter-
nal lexical resources like Wordnet [[11]. Word embeddings or distributed representations
of words have become very popular recently as a feature learning technique that calcu-
lates the real number of continuous vectors of words in a low-dimensional space. They
have constructed according to distributional hypothesis [29] and can demonstrate words

semantically and syntactically using embedded continuous representations [30-33]].

Distributional techniques in vector space models have a long history in theoretical lin-
guistics [34]], and they provide the basic construction of semantic vector embedding with
the fact that similar words lie close in the vector space [35]. Vector Space Models [25]]
also called Semantic Spaces or Distributional Models aims to project the words from text
corpus to an n-dimensional vector space by using the basis of Distributional Hypothesis,
“Words that occur in similar contexts tend to have similar meanings” [36]. Based on
this, words are represented as real-valued vectors in terms of context meanings and spa-
tial proximity (see Figure [2.8)). This approach is also the starting point of constructing
semantic vector space models [37] satisfying identity, additivity, multiplicity, distributiv-
ity axioms [38]], which makes it possible to do mathematical operations with words and

map them into vector space according to their meanings.

Let V denotes the set of words that is called as a dictionary, vocabulary or database.
Each word is defined by a real-valued n-dimensional numerical elements or objects of
the vector space (semantic space). The function d : V x V — R is a distance or simi-
larity measure between words. The meaning of words is represented as a part of high
dimensional semantic space, and words can be compared by using standard similarity or
distance measures. A similarity measure or similarity function is a function of two vari-
ables that quantified the similarity between two objects. For example, cosine similarity

measure between n-dimensional vectors x and y is calculated by the cosine of the angle

22

iyi, kétl, harika, berbat
(good, bad, wondeful, terrible)

bilgisayar, telefon
(computer, telephone

mavi, kirmizi (blue, red)
yesil, siyah(green, black)

o araba, aralar, arabasi
(cat, dog, bird, fish)

Figure 2.8 Examples for semantic word embeddings

between them as follows: x = {x1,x,...,xy} and y = {y1,y2,...,yn} is defined as:

. oxy YV xiyi
sim(x,y) = b = =
X
g \/(Zizlxiz> (Ei107)
Here words are represented as an ordered list of real numbers v = (vi,va,...,Vy—1,V)

and v; is the i component of the word vector.

Assume that x € R? is a d-dimensional input vector. The hidden layer output is evaluated

as follows:

ha = (Wi, x+bip)
y= go(ha) (2.22)
SJ/(x) = WhyT y

V(S,(x))|e is needed to be calculated to learn the optimum value of 6 = Wj,,.. The partial

derivative of the output score is calculated by chain-rule as follows:

9Sy(x) OWyy
Wy IWyy
dSy(x) _

OWp,y

(2.23)

23

9Sy(x) B BWhyT y
oWy, Wy,
_ Wiy @(Wip x + bin)

IWi,

(2.24)

If Wi,*7 is considered one single weight of k" hidden layer of the j. hidden neuron, the

full gradient of Wy, is calculated by chain-rule as follows:

8WhyTy o 8Whykf yj
oWyl oWk

(jOQ(h) on (2.25)
ohi QW ki
oh/
OWip*/

= Whykj q)/ (hj)

9 .
=&/ ———) Wy/'x!
hy amhk]; ih

= 6hijl

0 OhJ
=W, ko (W
IWipx + by (2.26)
dbiy

— Wi, K @' (1)

where Shyj is the local error signal and x' is the local input signal.

2.3.2 Static Word Embeddings

This section reviews the static (context-free) embedding models. Word embeddings have
been used as a practical tool in neural network models and construction of Language
Models (LMs) for many tasks including SA [4], QA [39} 40] and named entity recognition
(NER) [41]. They enable the representation of word-level features from massive datasets

into low-dimensional Euclidean space vectors.

Word vectors (word2vec) are a well-known window-based word vector learning models

[28]], [30], [33] to learn distributional representations. Skip-Gram (SG) model is one of

24

Input
Xt-2
Input Hidden X, Hidden Qutput
-
|
X, . X
|
|
Xt 1
Xe,2

Figure 2.9 Architecture of the skip-gram and CBOW model with window size ¢ =2

the well-known window-based static neural word embedding algorithms. It aims to learn
the representation of context (neighbours of the centre word) using a given target word.
The neighbourhood of the target words are claimed as positive class, and the other words

of the vocabulary are claimed as negative samples.

Let x,, € R" be the n-dimensional word embedding of token w in a given vocabulary
V. Given a pair of words (w;, w,), the likelihood of the word x. is probability of the

observation of the word x, using the target word x;, which is defined as follows:

exp(x.Tx;)

Vv
Z!] exp(x;Tx;)

P(we|wy) = (2.27)

Here x; represents target word, x. represents the context words the target vector. The

word embeddings of the vocabulary x1,x3,...,xr are learned by maximizing the following

objective function:

) logP (e |wr) (2.28)
—c<k

The context-window contains equal word vectors from the left and right of the tar-
geted word vector. For a targeted word vector x;, context window defined as x. =
{X[,k, “ee ,xt_] ,XH_] PR ,xt+k} Where k E {1,2, e ,N}.

25

Similar to SG, Continuous Bag-of-Words (CBOW) are used the produce word embedding
as a numeric distributional representation of words. It aims to find a higher prediction of
a specific word by using context as an input. Both of them are unsupervised learning
models that are used a large input corpus for the training phase and produce word vectors
for each of the words in the corpus. Figure [2.9)represents the architecture of the SG and
CBOW model with window size ¢ = 2.

There are some other learning models like doc2vec, which represents words and the whole
sentence and documents. Doc2vec models have proposed by inspiration and extension
of the word-level representations. The common way to calculate the whole sentence is
by calculating the average word embeddings [42]. Mikolov and Le have also proposed
paragraph vector method to find a dense vector of sentences, paragraphs, and documents
[42]]. This approach has experimented with the Stanford Sentiment Treebank (SST), and
IMDB sentiment analysis datasets [42]. The experiments showed that the doc2vec model
has the potential to overcome many word2vec models, especially many weaknesses of
the bag-of-words models. However, this approach causes the loss of relevant information

about the order of words and ignore the semantics of the words.

FastText has been implemented to handle rich word morphology. Especially the word
vectors for MRLs like Turkish, the words with the same root such as gozliikcii "optician"
and gozliik "glasses" don’t have similar word vectors. Bojanowski et al. suggested calcu-
lating representation by combining the character-level features and SG model. The model
can represent words as a sum of its character n-grams, so construction of compound words
getting easy especially for MRLs. Additionally, this model provides fast and robust text
classification by using the model probability of a label, and it has the pre-trained word

vectors for scarce supervised data [43]].

2.3.3 Recurrent (Chain-Structured) Language Models

Sentence embeddings can be calculated using word embeddings as an inputs to the NLMs.
The traditional MLP networks cannot capture the sequential structure in the data like se-
quence of words observations. In this section, we focus on conventional chain-structured
models, which have been used to learn from variable-length, temporal or sequential in-
puts. Firstly, the deep recurrent neural network (RNN) model has been described based
on the standard (vanilla) RNN model for the SA task. Since we focus on the SA task, we
try to optimise the CE or BCE loss function. Required optimisation steps based on the
training algorithm are also given. The training issues of the many-to-one deep recurrent

learning models have also been discussed in this section.

26

2.3.3.1 Deep Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have implemented to construct the sentences, para-
graphs and documents representations sequentially. Theoretically, they can transfer in-
formation to sequence steps between long time dependencies and even model unlimited
length data. The simplest version of RNNs is called as Elman network [27]], which has an

input layer, a hidden layer, and an output layer.

The recurrent neural layers of a deep RNN are dynamical connectionist layers, that can
learn from a sequential temporal data. Let x0) = (x1, X2, ...,X;_1, X;) be a sequential fea-
ture vector of the sequence of words, i.e. n-dimensional word embeddings or word vectors
for each observation in the dataset. The deep RNN model has been constructed using the
sequences of the following recurrence formula and defined below for each time step t with

two commonly used nonlinear activation functions, tanh and sigmoid as follows:

hy = tanh(Wyy, by 1 + Wy, X; -+ by,) (2.29)
y = sigmoid(Wyy, h; + by) (2.30)

Figure|2.10|represents a single RNN cell which is many-to-one RNN model and unfolding
it for time step t. The hidden state of the model 4; passes the information from the previous
time step h;_1, and uses it to classify the given observation x\). The sigmoid function is
used to predict the sentiment class of x(i), i.e. each review or tweet from the dataset. The
predicted observation is calculated by classifier function, g : x) — y() € {0,1}, one for
positive sentiment class and zero for negative sentiment class using a supervised learning
algorithm. The learning happens by updating W, Wy, W), which are shared learnable
weight parameters. Besides, bj, and b, are the learnable bias terms that are used for the
interception. The training algorithms, such as SGD, have been used to learn the optimal
values of system parameters to minimise the loss function or the objective cost function.
The proposed method used the binary cross-entropy (BCE) loss function, which is defined
as negative-log likelihood using each pair of (y(i), t(i)) to maximise the correct estimation
or minimise the BCE error between predicted y() and target data () as defined in Equation
231k

1 Nout
Lpce = N Y tilog (vi) + (1 — ;) log(1—y;) (2.31)
our j—1

Algorithm |4 is the pseudo-code of the forward pass for one sample (x(i), t(i)) pair from
the dataset. Functions f and g represent the nonlinear tanh and sigmoid activation func-
tions, and the total loss function calculated from the summation of each pair loss as de-

fined in Equation [2.31] The stochastic training algorithms learn from one example pair

27

by

Wan l Wy

b
e s

AN cell)

Unfold WM(
—_— ooy a —

Figure 2.10 A single RNN cell which is many-to-one RNN model (left), and unfolding it
for time step t (right)

Algorithm 4: Forward propagation of the RNN

Input: temporal sequential input 10 = (X1,X%2, -y Xo_ 1, Xt),
learnable parameters: 6 = (Wyy,, Wy, Why , by, by)
desired output target: t
Output: Predicted output: y and Loss: L
Function ForwardPass (x, ¢, 0) :
Initialize hidden states
hg+0
fori<— 1t T do
|y = f (Winhi—1 4+ WX + by,)

y < 8(Wiyh: +by)
L+« L(y,t)
returny, L

at each iteration instead of using the entire dataset at each step, which is a particularly
useful method for the large training datasets as defined in Algorithm 2l The gradient-
based training algorithms use backpropagation algorithm, which is calculating the partial
derivatives according to learnable parameters of the system via the chain rule. For deep
RNN backpropagation through time (BPTT) is applied as in Algorithm [5

The BPTT is applied by the chain rule to compute the partial derivatives of the learn-
able parameters of 6 through time as given in Algorithm [5 At each training time step
of the conventional gradient-based algorithms, the same shared weights are used during
backpropagation; hence the gradients can easily vanish or explode as discussed in section
[2.4.1] The gradient descent and backpropagation through time algorithms are combined
to train deep RNN models. As a powerful generalisation of the gradient descent strategy,

the stochastic gradient descent is commonly used to train large dataset. In the Algorithm

28

Algorithm 5: Backpropagation through time (BPTT)

Input: Loss: L, x = (x;,x2, ...,x,_1, x),
0= (thawhha Why 7bh7by)

desired output target: t

Output: dO6 = (dth,dWhh, dW ,dbh,dby)
Function BPTT (L, 0) :

fort<Tto1do

JdL dy
AWy <= 55 Wiy

dWXh < a_ya_ht avah

JL dy
AWy < 55 aw,

| returnd6 = (dW ,,dWiy, dW,, dby,dby)

[6] the steps are given for SGD algorithm.

Algorithm 6: BPTT combined with SGD

Input: Learning rate:n, 0 = (W, Wy, Why , by, by)
Output: 6'*!
Function SGD (1, 0) :
for each training step t do
Select training pairs (x(), (1))
Update 6 by using gradient descent rule
// Vg coming from BPTT alg.

6" = 0" —n Vg L(f (x:,6),y,))
| return 6'"!

In Algorithm|[6] Vi represents the derivative of the loss according to the selected variable

of 0, which requires the partial derivatives of the nonlinear composite activation functions.

In other terms, the training algorithm searches for the optimum rates of the 0 to minimise

231

Here 7 is the learning rate, that is one of the most important hyperparameters of the deep

learning models. Once the loss function is calculated at the feedforward step, the proposed

JdL JdL JL JdL JL

partial derivatives W Tb W I b

represented as Vg in the Equation

2.33

given

in section [2.4.1| need to be calculated for updating the set of trainable parameters of the

system. During the backpropagation, since the same weight parameters are shared at each

time step, the recursive nature of the training process causes the vanishing and exploding

gradients (VEG) problem which causes a huge loss of knowledge across the deep hidden

layers that we will discuss it section [2.4]

29

2.3.3.2 Long Short-Term Memory (LSTM) Networks

LSTM is a specific version of the recurrent language model which was designed to model
the long-term dependencies within random-sized sequential data [44], [45]. The informa-
tion across the chain (i.e. sequence) structured LSTM layers be transferred to learn using

following equations:

ig, =@ (Wi, X+ U hy—1 + b)

f8 =0 Wi xi+ Upp i+)

08; =@ (Who Xt + Upo hy—1 + b°) (2.32)
me; =ig; © ug, + fg,® mci_q

hg, = 0g, © y(mc;)

Here the entries of ig,, fg;, og; € [0,1]. Learning happens by processing inputs at every
time step in a sequential composition operations of the sigmoid function, which is rep-
resented by ¢. Forget layer is the gate to decide whether the information coming from
the memory cell should be forgotten. Unifying layer combines the information using
tanh function represented by y. Learning happens by updating the learnable parameters
Wih,Uih,th,Uhf,Wh,),Uh(),Wu,Uu,bi,bf,bo,b”. Figure represents the basic chain
structured LSTM cell.

mc
meg ——QO > @ @ mc, ..t

O—®
i_‘ T
lopn

(2]
[@@000] [@@0C0| [@@000| [@@OOJ0)

fg, ilgt ug; Oigt
L
@e []e]e]e) o
hgi_4 hg:
O0O
Xt

Figure 2.11 Representation of the basic chain-structured LSTM cell

30

2.4 Training Difficulties of Deep Recurrent Models
2.4.1 Vanishing and Exploding Gradients (VEG) Problem

Most of the training algorithms, such as SGD are based on the gradient descent learning

rule by backpropagation through time using following update rule for each time step t:

't =0"—n Vg L(f(x:,0),1;)) (2.33)

Here n is the learning rate, which is a critical hyperparameters of the learning system.

Once the loss function is calculated at the feedforward step, the proposed recurrent neural

: : . ot JdL JL IJL JdL JL
network model is required to calculate the partial derivatives I Ibor W W Ibe

that represented as Vg in the Equation above for updating the set of trainable pa-

rameters of the system. The recursive nature of these process causes "the vanishing and

exploding gradients (VEG) problem", which is formulated in detail below:

N
L(t,y) =Y L(yi,t;)
i=1

oL Now 9,

oW = Wi

. Nour &L[ay, aht
= Iy dhy Wy,

(2.34)

oh,
OWp,

oh; 4
A

= tanh,(Wyphy—1 + WX + bp) [hi—1 + Wiy,]

h; and h;_1 are both a function of Wy, so the product rule of the derivative should be used

for every time step as follows:

oh,_; oh;_»
av’th = tanh]_,(Winhi—2 4+ Wenxe—1) 2 + W 8V’th] (2.35)
oh;_» oh,_3
av’th = tanh]_>(Wihi—3 4+ Wenxi—2) i3+ Wi aut/hh] (2.36)

31

The rightmost term of the Equation [2.36|should be expanded until t = 1 to calculate ;Thllh,

and the following backpropagated sequence is found if tanh),(Wy,zh;—2 + Wyx,—1 + by,) is

represented as tanh;:

h il
BW;h :tanh; hi—1+ Whhmnh;—l h—o ... =W, 8Whh}]

= tanh; hy 1+ tanh; Whhtanhgflht_z + ...

(2.37)

Here the partial derivatives of h; are calculated with respect to the previous time step /y.

Therefore, the total loss can backpropagated according to Wy, as follows:

aL L dL, dy; dh; oh
A Z 9L: oy ohy Ohi (2.38)
8Whh =1 8y, 8h, 8hk 8Whh
Here 32’ =3 | (9 h - for any time state s of the system, and each a e j is the Jacobian
matrix for h € RP deﬁned as follows:
ohy dhy ohy]|
dhy_y Ohs_11 Jhs_1p,
ahs.l ahx,l 7]
ahxfl,l o al’lsfl,Dn (239)
9hx’,D,, . ahs‘,Dn
&hxfl,l o ahsfl,Dn B
Equation [2.38| becomes the following:
T 1
dL, d dhy . dh
Z Z Go 2 k (2.40)
8Whh 55 9y 8h, soit1 Ohs—1” OWpy

Since hy = tanh (Wyphi—1 + WX +by), the term [T, .| a h glves the diagonal matrix
from [2.39)and [2.40] that can be seen from the following equatlon .

32

Con, o

=[] Widiag(tanh' (Wynhe—1)) (2.41)
ahs_l s=k+1

s=k+1

Let a and b be both the upper bounds, or largest singular values of the matrices WhTh and
diag(tanh’ (Wy,hs_1)), respectively. The 2-norms of these matrices are bounded by ab

defined as follows for any time state s of the system:

Ih, |

[| = . st Wi) < .
oy L dhy —k

ol |l — < (ab 2.43

‘ Ihi ‘S_Ikll dhs 1|~ (ab) (2.43)

During training, the same weight matrix Wy, is used across the layers, so as t — oo the
term (a.b)' ™ vanishes at the very small value such as (ab) X — 0 or explodes to the

extremely large value such as (a.b)' ¥ — eo.

It has been shown that [46, 47|, if the absolute value of the largest eigenvalue of the Wha

is smaller than %, then the gradients vanish as follows:

dhg .
Vs, 3 < ”Wh];zH Hdzag (tcmh' (Whhhs_l)) H
s—1
1
(2.44)
3%' <y<l
t
H 8}” s (gt
ahk s= k+1 8]/13 1
As t — oo, it is clear that hm Hs k1 a(zh = 0. Similarly, when the largest eigenvalue

of the Whh is bigger than 1 / b, gradients explode and hm Hs k1 a‘zh = e From the

perspective of the dynamical systems, when the model keeps its state in the same stable
state for a long time, the information about the system updating is lost [47]. Hence, more
practical and efficient approaches are needed to train deep RNN architectures which are

mostly modelled with the nonlinear activation functions.

33

2.4.2 Approaches to Handle VEG Problem

This section reviews the approaches that have been used to handle the VEG problem in

training deep RNN models.

2.4.2.1 An Alternative Deep Architectures

The first approach to handle the VEG problem is to use newer types of RNN architec-
tures such as LSTMs [44]], Gated-Recurrent Units (GRUs) [48]] and Echo-State-Networks
(ESNs) [49]. These architectures can model sequences and they produced good results
for many applications [50]. But, they have issues such as limited non-linearity learning
abilities [S1f], training times that can sometimes be many days or even months and are
still not completely free from the same gradient problem. Besides, hyperparameter opti-
misation and initial parameter tuning are also needed to improve their performances. As
a similar way to the using of new architectures, some researchers have proposed to use
new activation functions such as ReLLU instead of hyperbolic tangent or sigmoid functions
[52-54]. However, these approaches have limitations as well. For example, as the ReLU
function is positive definite, it causes a bias shift effect, which means that it behaves like

a bias term for the next layers and decreases generalization capacity [55].

2.4.2.2 Gradient Stabilisation Methods

The second way to handle the vanishing and exploding gradient problem is the stabilisa-
tion of the updated recurrent weights. Gradient clipping [46] is a well-known heuristic
approach to rescale gradients. It controls the direction in parameter updating by using
a given threshold and prevents unexpected falls to zero or rises to infinity before oper-
ating the gradient-descent learning rule. L; and L; regularisation has also been applied
to the recurrent weights to prevent overfitting. They are used as a penalty term during
training mainly to bring weights closer to zero [56]]. Initialisation methods have also
been employed to limit the values of the updated parameters by using the identity or or-
thogonal shared matrix [S7H59]]. SVD has been used to find the orthogonal matrices of
the weight matrix, and they proposed to update the parameters at each iteration by using
geodesic GD and Cayley methods [59]. However, these methods require the computation
of inverse matrices, which sometimes can be complex. Additionally, the unitary initial

matrices cannot be held after many training iterations, and the same issues arise again.

2.4.2.3 Hessian-free and Gradient-free Methods

In addition to the aforementioned approaches, Hessian-free (HF) optimisation methods

[S1] have been proposed to model the curvature of the nonlinear functions of deep RNN

34

models using random initialisation. They have been inspired by the second-order deriva-
tive method and Newton optimisation method, which are also called as a truncated-
Newton or the pseudo-Newton method [60]. They have been applied successfully to
large scale architectures [61], but as [62] mentioned that, mentioned that besides their so-
phisticated nature they have not enough generalisation ability to learn and need additional

damping among hidden layers [61].

Some gradient independent methods have also been developed to tackle training diffi-
culties of the RNN. One of the first most well-known heuristic search approaches is the
Simulated Annealing method, which performs a random neighbourhood search iteratively
to find optimal weights of the system [47]. However, as mentioned in [47]], since its train-

ing time could be too long, alternative practical training methods are still needed.

2.4.2.4 Metaheuristics

So far, metaheuristic algorithms have been successfully implemented to find optimal so-
lutions for complicated nonlinear optimisation problems. They have good initialisation
strategies and local search abilities that bring crucial advantages to handle local optima
issues such as getting trapped at local optima [63]. Although the number of studies for
optimisation of deep architectures is less than that for conventional architectures [[64-68]],
some studies have been carried out to improve the optimisation performances for the spec-
ified tasks using the intelligent nature of population-based algorithms. Those studies are
mainly focused on hybridisation approaches which are used to evolve deep architectures
and to optimise the hyperparameters of the deep learning models. Ge et al. have presented
the modified Particle Swarm Optimisation (MPSO) [69] algorithm for training dynamic
recurrent Elman networks [70]], which try to learn the network structure and its parame-
ters initially for controlling Ultrasonic Motors. Xiao et al. [71] have proposed a hybrid
training algorithm with PSO and backpropagation (BP) for Impedance Identification. The
RNN architecture has been trained based on finding the minimum MSE and the largest
gradient. Zhang et al. have also proposed hybrid PSO and Evolutionary Algorithm (EA)
to train RNN for solar radiation prediction [/2]]. Likewise, Cai et al. [[73]] have used hybrid
PSO-EA for time series prediction with RNN. A continuous GA implemented for training

RNN by updating weight parameters using random real-valued chromosomes [[74].

Although the proposed hybrid approaches can train RNNs, those networks do not have so
many hidden layers that they can be considered as deep architectures. Desell ef al. have
proposed Ant Colony Optimisation (ACO) [75] to evolve deep RNNs [64] and improve
the architecture of the networks with artificial ants. Similarly, ElSaid et al. have also pro-
posed employing the ACO algorithm to evolve the LSTM network structure [[76]. Again,

the networks developed do not comprise many hidden layers and cannot be regarded as

35

deep. More studies should be performed to explore the advantages of metaheuristic ap-
proaches for deep learning and to improve the deep recurrent learning abilities. Section [3]
proposed a novel method to handle VEG problem, that occurs during training for SA task.
Next section defines the SA task, levels and resources of SA, and discusses the issues of
the SA in detail.

2.5 Levels, Resources and Issues of Sentiment Analysis

Sentiment analysis (SA) 1s based on detecting the polarity of a given text, which is gener-
ally classified as a positive, objective, or negative thinking about specific domains, sub-
jects or items [77]. Before giving a formal definition let us consider the following review

for a sentiment analysis:

Review A: User Sultan’s Friend Date: April 9, 2021

"(1) I am such a fan of the TV show FR.I.E.N.D.S. (2) The characters are well developed indepen-
dently and together they play off each other well. (3) Some moments are cheesy while others are
funny, while the rest is just very well. (4) The actors and actresses portray their characters terribly
fun. (5) The stories are unique and the script is amazing! (6) People are saying that friends is run-
ning out of ideas and that the humor is getting dull. (7) Running out of ideas? possibly. (8) Is humor
getting feeble? absolutely not. (9) In fact, it’s getting better and really captured my heart. (10) I

know that they’ll be there for me!!!"

This review is about a movie, which it is called as a target (g) or entity (g) of an opinion. A
sentiment (s) is a subjective expression about a target or entity. It can be positive, negative,
neutral or a rating score. The user X is an opinion holder (h), who post opinions about
a related target at fime t. Sentiment analysis mainly focus on the polar opinions. Hence

more formally and broadly an opinion is defined as a quadruple (g, s, h,t).

Sentiment Analysis is an interdisciplinary research topic, which is related to linguistics,
psychology, and computer science; which is also state as an opinion mining in academia
[1]]. Sentiments of an opinion can be emotional or rational. For example, the sentences
"This book is worth to read" and "The battery life of this computer is not long" contains a
rational sentiments about the book and battery life of computer targets respectively. The
sentences also can express emotional feeling, such as I am so happy with my excellent
new car., "Best restaurant and best foods ever" or What’s wrong with you, are you kidding
me?. The terms "affect, emotion and mood" are also related psychological, physiological
and sociological terms, which are interrelated terms. Affective computing is interested
in detection of sentiments by face gestures generally and emotion analysis focus on the
detection of the "anger, fear, joy, love, sadness, surprise" [78]. SA interested in processing

natural language to explore how emotions and affects of emotions are expressed in text.

36

There are different levels of sentiment analysis in literature. If the overall polarity of the
review which is expressed based on a single target is considered, this is the document
(review) level SA, as TV show mentioned in review A. When detecting the sentiment is
done only considering one sentence, it is the sentence-level SA. More precisely, aspect-
level SA studies focus on a specific targeted feature of the product. For example, it could
be rooms of the hotels, the service quality of the hotel or the food of the hotel for an
hotel domain SA application. Word-level SA applications is looking for the sentiment
orientation of each token (word) of the sentence, which is particularly usable for domain-

specific applications.

The accuracy level for the sentiment analysis tasks has mainly related to the availability
of sentiment analysis resources and NLP tools. For example, understanding of the polar-
ity of the domain-specific reviews requires using domain-specific [[79] polarity lexicons,
enhanced feature extraction rules and annotation strategies. Most SA methods and NLP
resources such as polarity lexicons [[14} 15, 80], and sentiment treebanks [2], parsers have
been first implemented for English [81]. Many resources such as dictionaries and cor-
puses are developed to be used in semantics and sentiment analysis studies. The corpus is
the whole of the texts that enable researchers to collect written and oral texts as recorded
in the electronic database and to describe different aspects of the language by researchers
to make specific or general-purpose investigations. Wordnet is a database created by the
English "Cognitive Science Laboratory of Princeton University" and is still being updated
[11]. Turkish version of Wordnet is also under development [[12]. SentiWordNet, on the
other hand, assigns numerical emotion scores with a maximum of 1 as positive (Pos),
negative (Neg) and neutral (Obj) to each word working in connection with the WordNet
dictionary for emotion classification [82]. Since such databases contain a limited num-
ber of words, they need constant updating to decrease the calculation performance of the
models used. However, since Turkish is an additive language, many different words can
be derived by adding various suffixes to each word root, and as a result, the number of
different words increases, the space size becomes very large, and the processing time
takes too much time. In addition, since the data to be used during emotion analysis is raw
data, many noise and spelling errors in the raw data are corrected during the preliminary
preparation stage on the data set. However, this may cause some expressions that express
emotion to be lost, especially in data sets containing user comments. These resources
are generally used in a lexicon-based classifiers frameworks. They are mainly focused on
using annotated corpora and manual feature engineering methods. Besides humans can
have additional bias while annotating words, and they can add additional subjectivity to

the classification, which makes the process more complicated.

There are some challenging points of SA. Let us consider the review A from user Sultan’s

Friend, which is about a sitcom comedy film. Even the general sentiment orientation of

37

the review A is positive, the sentences of reviews could have different polarity levels.
Some of the sentences expressed the sentiment implicitly or explicitly. For example, the
sentences "(2) The characters are well developed independently and together they play
off each other well. (5) The stories are unique and the script is amazing!" contains the
explicit (direct) aspect expressions using well, unique and amazing about the characters
of film, their acting, scripts, and scenario. If "(7) Running out of ideas? possibly. (8)
Is humor getting feeble? absolutely not. (9) In fact, it’s getting better and really cap-
tured my heart."” is considered the expressions about the scenarios of the film and humor
expressed indirectly and in an implicit (indirect) way as in (10) "I know that they’ll be
there for me!!!". The easiest way of detecting the polarity of a sentence is using detecting
polar words such as "good, wonderful, and amazing, like " as positive sentiment words,
or "bad, awful, dislike" for negative ones. Polar words (generally adjectives and adverbs)
with intensifiers are generally used such as "very, so, extremely, dreadfully, really, awfully,
terribly" to express the intensity. The point to be careful at this point is the compositional
phrase ferribly fun of the sentence (4) The actors and actresses portray their characters
terribly fun. express a strong positive sentiment intensity while the "terribly" sometimes
can be used with the same meaning as "badly". Likewise intensifiers, diminishers in-
cluding "slightly, pretty, a little bit, a bit, somewhat, barely" are changed the intensity
such as expressed in the sentence "(7) Running out of ideas? possibly.". Intensifiers and

diminishers are important particularly for fine-grained (multi-class) SA applications.

Another issue to be aware of the review is the numbers of opinion holders. There could
be more than one opinion holder in a review, which cause a confusion about the sentiment
orientation about the review. The sentence "(6) People are saying that friends is running
out of ideas and that the humor is getting dull.” express the other peoples opinion and
it i1s negative contrast to reviewer. In similar cases, the overall sentiment of the review
is needed to be find. Additionally, the sentences using the conjunctions like "but, while,
however, except that" etc. combines the opposite polar expressions such as given in the
"(3) Some moments are cheesy while others are funny, while the rest is just very well.".
These expressions are much more complicated and they require compositional sentiment
analysis. There are also some domain-dependent issues, which occur for different ap-
plications of SA. The "analysis" part of the sentiment analysis interrelated with different
levels of applications domains, including product reviews, social media comments like
tweets, news and political reviews, or hotel and restaurant comments. Unfortunately,
there is no one complete module for each language that can analyze all type of the dataset
correctly. For example, the same polar words could contain the opposite polarity for
different domains. The adjective "big" could mean positive as in "The hotel rooms are
big, comfortable, and very clean." in the hotel domain, but it contains negativity when

it is used in the product domain such as "Its battery is very big and heavy.". Hence

38

different strategies for each domain are needed to be implemented. Similarly, when the
user-generated dataset is considered, i.e. for example, when noisy dataset from social me-
dia is used, domain-dependent issues occur. For example, additional preprocessing steps
should be done to process tweets. Many challenges appear in the processing steps be-
cause of the user-generated data with many grammatical mistakes. Moreover, since they
are short comments and generally express implicit sentiments with figurative expressions
it is hard to detect the exact opinions from them. The retweeted tweets have not to be col-
lected while constructing or to be cleaned since they may be not express the opinions, and
many additional preprocessing steps have to be performed to clean collected tweets from
hashtags, URLs, or mentions (i.e. @unibirmingham). There is also domain-independent
issues of SA that can occur regardless of the application domain. Rhetorical expressions,
sarcastic and ironic phrases are also complicated sub-field of SA. There are syntactic (lin-
guistic) and semantic issues, that are encountered in almost any language. Even the study
considers only binary polarity detection, it is hard to understand compositional meanings,
rhetorical questions, negations, or ironic phrases regardless of the language [79]. They
could happen in the text infrequently and detection of them is too hard since even un-
derstanding the figurative language is hard in spoken language due to the nature of the
ironic and sarcastic sentences. They can contain contextual presumptions, and they re-
quire background knowledge of the topic. It is hard to make an exact distinction between
the sentimental and ironic expressions which make SA more complicated [[77]]. In this
thesis, we focus on detecting compositional binary and fine-grained sentiment classes
for Turkish as a well-known morphologically rich language (MRL). Since we focus on
Turkish language, there is also language-dependent linguistic issues, which have been
discussed in section

2.6 Turkish and Its Challenging Semantic Structure for Sentiment
Analysis
This section addresses the challenging linguistic issues of Turkish for SA task particularly.
According to the Ethnologue [83]], Turkish is the most 20th spoken language in the world,
as the most widely spoken Turkic language with over 85 million speakers [84]]. The
world atlas of language database [85] is defined Turkish as an outlier among the Eurasia
languages, since it has high synthesis level i.e. up to eight or nine categories per word on
average [86]]. This means one word in Turkish can take over 30 inflections [87] and it can

produce many derivational forms of a same root as given in Table

Turkish is a morphologically rich language (MRL), which means it has a very produc-
tive word structure which are constructed like “beads-on-a-string”. Even one root word

can have massive amount of derivational morphemes. For example, the longest word in

39

Table 2.1 Examples of Turkish verb “oku” with derivational and inflectional suffixes
construct a different sentences in English

Root: oku Root: read
Word Formations in Turkish | Word Formations in English
okuyorum I am reading
okuyorsun You are reading
okuyor He/ she/ it reading
okuyoruz We are reading
okuyorsunuz You are reading
okuyorlar They are reading
okuduk We read
okudukca As long as (somebody) reads
okumaliy1z We must read
okumadan Without reading
okuman Your reading
okurken While (somebody) is reading
okuyunca When (somebody) comes
okutmak To cause (somebody) to cause
(another person) to read

Turkish is “Muvaffakiyetsizlestiricilestiriveremeyebileceklerimizdenmigssinizcesine” con-
sists 70 letters. It also has an free constituent order, hence general English Subject-Object-
Verb sentence structure sequence not followed in Turkish. Hence same words with differ-

ent orders can cause various semantics like given in Table [2.2]

Table 2.2 Turkish has an free constituent, hence same words with different orders can
cause various different meanings

Ali bilgisayar1 aldi. Ali took computer.
Bilgisayar1 Ali aldi. It was Ali, who took computer.
Ald1 Ali bilgisayari. Ali took computer

(but was not really supposed to took it).
Aldi bilgisayart Ali. Ali took computer

(and I was expecting that).
Ali ald1 bilgisayari. Ali took computer
(but someone else could also have took it.)

Bilgisayar ald1 Ali. Ali took computer

(but he could have took something else.)

In addition to the freedom of constituent structure and lackness of data sources, Turkish
has many other linguistic issues for the NLP tasks. Since Turkish has multiple deriva-
tions for one word, many words might be constructed by adding various suffixes to the
same word. This causes "out-of-vocabulary (OOV)" problem. OOV words that might
be seen in a given dataset while searching over a vocabulary consisting of pre-defined

limited word set. Even as [88]] mentioned that over 1M word could be derived and from

40

only one word using additional suffixes in MRLs. Thus, the likelihood of many OOV
words increases exponentially, and some words only rarely appear in the training dataset.
Even word vectors can model the natural language by using distributional information,
they cannot model the unknown words which are not in the dataset. Although they can
capture the same syntactic and semantic relations like singular/plural word information
like X pencit ~ Xpencits> Tare and unseen words cannot represent efficiently [89]. A typical
elimination solution for the OOV words causes the loss of many information since even
one Turkish might corresponds to almost a sentence in English. For example the Turkish
word “bitirebileceksek” is translated as "if we will be able to finish (it)" in English, which
is as long as like a sentence. [[79] pointed out the additive structure of the Turkish words
and mentioned the challenging points of Turkish in SA. The morphological analysis of
Turkish word is important since it may provide a sentiment information of a word. For
example, the token sabir "patience" in root form is converted to positive with particu-
lar derivational suffix -l1 and converted to negative with particular derivational suffix -s1z
sabir-siz "impatient”. Additionally, one word can has many possible morphological fea-
tures as given in Table [2.3] Moreover, as it can be seen in Figure 2.12] word order and
morphological structure of the Turkish and English is different. Hence even most of the
NLP tools have been implemented for English, new algorithms are needed to implement

for Turkish language due to the linguistic structure dependency.

Turkish Ev-imiz-in kargi-sin-da-ki diikkan-da gordiig-iim bir ceket-i dene-mek iste-r-im.

/ -

Inverse of
morphemes

and

concepls

English I’d like to try on a jacket I’ve see-n in a shop across the street from our home.

Figure 2.12 Word order and morphological structure differences between English and
Turkish

In addition to Turkish linguistics difficulties, sentiment analysis has syntactic (linguistic)
and semantic issues, that are encountered in almost any language. Even if SA focuses
on binary level polarity; it is hard to understand compositional meanings, rhetorical ques-
tions, negations, or ironic phrases regardless of the language [79]. Hence converting

words to the one-hot encoding to the continuous dense encoding is not enough to un-

41

Table 2.3 The possible morphological analysis for the one word “arin” in Turkish

Roots / Category Morphological Analysis
[arinmak: Verb] arin: Verb+Imp+A2sg
[ar:Noun,Prop] ar:Noun+A3sg+in:Gen
[ar:Noun,Prop] ar:Noun+A3sg+in:P2sg

[ar:Noun] ar:Noun+A3sg+in:Gen
[ari:Noun,Prop] art:Noun+A3sg+n:P2sg
[ari:Noun] ari:Noun+A3sg+n:P2sg
[arm:Noun,Prop] arin:Noun+A3sg
[ar:Adj] ari:AdjlZero+Noun+A3sg+n:P2sg

derstand the continuous combinations of semantics in Turkish language. Additionally,
when the user-generated dataset is considered, i.e., when noisy dataset from social media
is used, domain-dependent issues occur. Hence, it is needed to be done time-consuming
specialised preprocessing steps for cleaning a dataset. Moreover, the understanding of
the polarity of the domain-specific reviews requires using domain-specific [[79] polarity
lexicons, enhanced feature extraction rules and annotation strategies. These are generally
done by time-consuming manual processes, also humans can have additional bias while

annotating words, and they can add additional subjectivity to the classification.

This thesis mainly focused on capturing the sentiment of longer phrases by combining
morph level, stem level, word-phrase level and sentence level and review level sentiment
information, with the implementations of various datasets from different domains, includ-
ing movie reviews and various product reviews. Most previous studies have been done
based on a binary prediction of a given sentence due to limited resources of a fine-grained
labelled large dataset. Hence, a novel fine-grained sentiment classification dataset has
been introduced to contribute to the lack of Turkish NLP resources. Section [3] presents

the first proposed recursive model and the datasets in detail.

42

3

MS-TR: A MORPHOLOGICALLY ENRICHED
SENTIMENT TREEBANK AND RECURSIVE DEEP
MODELS FOR COMPOSITIONAL

SEMANTICS IN TURKISH

This section introduces the Recursive Neural Network structures and a Morphologically
Enriched Turkish Sentiment Treebanks (MS-TR) to operate on them for compositional
sentiment analysis of Turkish. Throughout the thesis the abbreviation Tree-RNNs was
used for Recursive Neural Networks to prevent mixing with the abbreviation of RNNs for

Recurrent Neural Networks.

In this section, we seek to address three main issues for Turkish SA; i) to investigate the
effectiveness of the recursive compositional models for Turkish sentiment analysis, ii)
to construct a Turkish Sentiment Treebank (a hierarchical representation of the sentences,
i.e. fully labelled parse trees) to capture the semantic compositionality in a given sentence,
and iii) to contribute to the lack of sentiment analysis resources that also can be used for

the other recursive deep models for future studies.

To this end, we introduced our contributions and efforts to develop a novel Morphologi-
cally Enriched Turkish Sentiment Treebank (MS-TR) [90]], which is annotated according
to each word’s morphological information. To the best of our knowledge, MS-TR is the
first sentiment treebank that is fully labelled according to morphological structures of the
Turkish words. It has been constructed to employ compositional effects of the sentiment
analysis for two different subtasks: binary classification and fine-grained classification.
MS-TR is constructed by using different domains, including movie reviews and multi-
domain product reviews, which were annotated by Demirtas and Pechenizky [91]. The
fine-grained MS-TR is constructed based on the latest updated version of BOUN Tree-
bank [92]]. It was constructed by phrase-level annotation based on the morphological
information of each word. The aim is investigating whether recursive neural networks

can improve the classification accuracy of MRL. Specifically, we employ Recursive Neu-

43

ral Tensor Networks (RNTN) for binary and fine-grained sentiment classification over the
MS-TR, since RNTN has been performed better compared to the other recursive models
such as semi-supervised recursive autoencoders (RAE), matrix-vector recursive neural
networks (MV-RNN) both for English [2] and for Arabic, that is also MRL like Turkish
(93]

3.1 Preliminaries

Sentences are the hierarchical structures [94]. This means sentences are constructed by
combining phrases which are constructed by combining words recursively to represent

whole sentence [95].

S

.\
NP, VP .
/\
Hur‘nan mind NP, PP,
A /\
processes sentences as NP,
,/—/-\
NP, PP,
e
compo‘sitions of NPg

NP; and NP,

words phrases

Figure 3.1 An example of hierarchical parse tree of sentences which is constructed
recursively by composing noun phrases (NP), verb phrases (VP) and propositions (PP)
of the given sentence

The simplest way to model data is representing it as a simple sequence. However, this way
cannot capture the structural information encoded in real-world applications data such as
protein representations in molecular biology, sentences in natural language processing, or
images of computer vision tasks. Learning information about the real-world applications
is required to represent data in a structured way, i.e. tree-based or graph-based represen-
tation of data. Recursive Neural Networks (Tree-RNNs) were implemented to process
the information in a structured network to capture the dynamical connections of complex

structures.

While Recurrent Neural Network (RNN) is operating on the chain structures of the se-
quential input, Recursive Neural Networks (Tree-RNNs) are operating the hierarchical
structures, i.e. tree structures to learn compositional features of the data recursively by
using tree-based data structures. In the following section details of the Tree-RNNs are

given.

44

3.2 Recursive Neural Networks

Recursive Neural Networks (Tree-RNNs) are inspired by the composition ability of hu-
man mind to model the semantic and syntactic structures by tree-like data structures.
Tree-RNNs have been designed to learn compositional meanings from hierarchical repre-
sentations of the sequential data as a generilazed version of Recurrent Neural Networks
[27]].

The first well-known version of Tree-RNNs was proposed by Kiihler and Goller in 1996
[96]. They offer magical powers in many NLP tasks since they can able to learn the
structure of language in a recursive essence thanks to bottom up combinations of words
by parse tree. They have been used both the exploitation of syntactic information and
exploration of semantic information coming from child nodes to the parent nodes for the
compositional meaning understanding. Figure represents the example parse tree of
a given sentence. This is a hierarchical representation of the sentence (top-level node)
constructed by the combination of phrases. Every two or more child nodes of parse tree
are composed to get high-level compositional phrases until to reach root node which is

represented as S in Figure 3.3

Pollack implemented Recursive Auto-Associative Memory (RAAM) to represent dy-
namic tree structures as a fixed-length distributional vectors [97]. RAAM architecture
is an autoencoder in essence that encodes the leaves of a binary tree in a recursive manner

until reach the root of the tree.

Despite every representation models have its advantages and disadvantages [34] using
the hierarchical data structures instead of chain structures has many advantages. Tree-
RNNSs convert chain networks to the deep tree structures. When a same sentence is used
to process in both RNN and Tree-RNN, the number of nonlinear compositional func-
tion operations is reduced from n to O(logn) in Tree-RNN (here n is defined as sentence
(sequence) length). This is the one of the most important advantage of Tree-RNN for
dealing with long-term dependencies of RNN. Besides, the representation of text inputs
are getting larger by utilising tokens into phrases, phrases into sentences and sentences
into documents. Hence it is needed to find more practical compositional models, which
can represent larger text units by using fixed dimension. Tree-RNNs combine neighbour-
hood tokens instead of combining tokens by word orders like in RNN. For example, for
the the sentence “something incredible is happening” is processed as a syntactic parse
tree, i.e. ((something incredible) (is happening)) over Tree-RNN, instead the sequential

input, i.e. (((something incredible) is) happening) chain structure like in traditional RNN.

Traditional RNNs consider only word order in the sentences as a linguistic structure.

On the contrary, Tree-RNNs consider the neighbourhood information of the tokens of

45

sentences and they can learn syntactic and compositional information over parse tree.

Tree-RNNs have produced impressive results for mapping of phrases in a semantic
space[98]], sentiment analysis [2], dependency parsing [99]. However, the compositional

power of the Tree-RNN:ss is still waiting to explore for Turkish NLP tasks.

PN
o

SR i@@@

something incredible happening something incredible is happening

Figure 3.2 Tree-RNN architecture to generate the “something incredible is happening”
phrase by composing child nodes recursively on structured parse tree (left), and RNN
architecture to model the same phrase by using chain structure that (right)

3.2.1 Recursive Compositional Functions

Bottou pointed out the reasoning ability of the Tree-RNNs [100]. Composition of learn-
able parameters to achieve a specific task is very important for various NLP tasks. Various
versions of Tree-RNNs have been implemented to combine algebraic functions for learn-
ing tree-like structures. The main goal is predicting structured representation of sentences

from their plausible sub-pieces.

S S S

NP/\ VP —) NP/\ VP w— NP/\ VP

Tﬁ\ild bro/ke\ NP TAild bné(e\ NP TAild bro@ NP
/N /N VAN

the toy the toy the toy

child bmke /\ TPAiId blzie\ NP

the toy the ‘toy

Figure 3.3 Bottom-up recursive tree compositions over a binary parse tree

46

3.2.1.1 Semi-Supervised Recursive Autoencoders

Autoencoders are unsupervised encoding-decoding networks to learn the approximate
representation of an input vector [[101H103]]. The aim of the autoencoders is learning the
lower-dimensional distributional representations of the sparse representations. The input
vector x mapped by non-linear function y, : X — .% such as h = y,(x) as an encoder
and then h is decoded by an output function ¢, : % — X such as y = ¢,(h). Learning

happens by minimizing the following error function:

L (x, x1) = L (x, 94 (Ve (x)))

— argmin || x — @y (h) ||* = argmin || x —x ||?
q)dvll/e q’dﬂl@

3.1)

Here argmin|| x — x/ ||2 is defined as reconstruction error using Frobenius norm.

/
s

Figure 3.4 Simple architecture of the autoencoder

Recursive Autoencoders (RAE) can learn the hierarchical representation based on the
binary tree structures and word embeddings. Assume that X&) = (x1,X2,....,Xk), is the
sequence of d-dimensional word vectors of the given sentence for Vx; € RY |1 <i <k
. Figure represents the one internal step of the semi-supervised RAE, which is used
to map the compositional meanings of the child nodes to the parent vector and to predict
the sentiment class of the reconstructed parent representation. As given in Figure
x8) = (x1,x2,....,X) has been learned by using binary tree structure by evaluating parent

word vectors with following recursive function:
Xp =@ (Wemh [xl;xr]7 bemb)

3.2)
’ bemb)

Xl

Xr

=0 (Wemb [

47

Here @ represents the tanh function and x;,x, and x,, are R4! dimensional word vectors
of left child word, right child word and parent word respectively. The concatenation of
the x;, x, is represented by [x;;x,] € R2 W, € RP24 and b,,,, € R¥!. The quality of
the parent vector is calculated by reconstruction layer as follows:

[xl/;xr/] = Wrecxp + brec (3.3)

Here Wy € R®% b,,. € R¥! and reconstruction layer is doing similar task to the @,
as defined in[3.1] The aim is minimizing the reconstruction error, which is defined same

such as 3.1k
Enws =L (w5, [arxdl) = argminl [—] P G

At every internal the parent word vector x, scored with positive or negative by using
softmax function for binary classification task. The phrases are merged recursively to

predict sentiment class of the root vector as follows:

y'? = so ftmax (VVlabelxp)
_ exp(Wlabelxp))
Zle exp(Wzabel xpi)

y*7 is the predicted sentiment, W p; € R | and c is the number of sentiment class. Here
' = softmax (Wjapeix,) can be interpreted as a conditional probability y*» = p(c|[x;;x/])
and Y7, y*7" = 1 and for a given target (true) label *» of the parent vector, the total cross-

entropy loss is defined as follows:

C
Ecp = — Y E(xpi,1,0)
i=1

. (3.6)
=—) r7log(y")
i=1
The total objective function is defined by weighted sum of the reconstruction error of the
compositional embeddings is Egyp and the cross-entropy error of the sentiment labels

Ecg as follows for a given pair (x°,#*) from the dataset:

1 Nout A)u
Lioal = 3 ZE(xi,txl,9)+5|| 6 ||3 (3.7)
out j—1

the error of each pair (xs,txs) for a given sentence from the train dataset is defined as

48

follows:

; BTreecx®)
E@,,0)= Y E(l:x)xt",0) (3.8)

i=1

where BTree is the set of binary trees that contains non-leaf nodes of a given sentences

and E ([x;;x.],xpi,t'71,0) is calculated weighted sum of Egyp and Ecg:

BTreecx®®)
E([xr;x0],%p,67,0) = Z OEemp([xi;x,];0)+ (1 — &) Ecg(xp,17,0) (3.9)
i=1

Egmp
i______| _EEE___
I
X1 | I
| x T Xp1
| [ﬁl:/' . :
|
| %rec X | Wiabel |
P+ — T T T T
XNerr:b\
X Xr

Figure 3.5 Inner node of the recursive autoencoder

The learning happens by updating the learnable parameters 6
(Wembs Wree, Wiabels Demp brec)- The gradient is defined as follows:

amel o 1 Now &E(xi,txi,e)
90 Nuu = 06

+ 16 (3.10)

The parameter updating happens based on the gradient descent learning rule by backprop-

agation through structure [96].

3.2.2 Learning Through Structure

In this section the learning procedure of the tree-structured networks was explained.

Backpropagation through structure (BPTS) is used to minimize cross-entropy error.

Principally, BPTS learning procedure follows the similar way as BPTT. Updating of the
learnable parameters happens by backpropagation through structure and the derivative of

49

each parent node through the tree structure is needed to be calculated. To this end, as
Goller and Kuchler proposed in 1996 [96] BPTS follows following pathways:

@

(i)

At every parent nodes of the tree structure the error need to be splitted to its children.
The predicted sentiment y* (3.23) of the parent vector x,, (3.17) is used to minimize
the cross-entropy error message 07 based on the ground truth value #*7:

857 = Wigper! (7 — 7)) @ o' (xp) (3.11)

The negative log-likelihood loss function, that is defined in[3.24]is used to minimize

the cross-entropy. y*» is the predicted sentiment of the parent vector x,, are R4

5xp,d0wn — (WembT5Xp> ® (P/(xp)

3 (WembT6x‘”> ® (P/

X]

xr] (3.12)
§5 = §rdown[y . g]

5 = &AW [g 4 1 : 2]

If for example the right-child has a label the error function of it will be like the

following:

6x,,c0mbined — ax,,,saftmax_'_ axp.,down [d—f—l Z2d] (313)

The summation of the partial errors over tree structure needed to be calculated. To
illustrate the recursive derivative function with an example, the derivative of the
recursive function that is defined as frec = @ (Wemp (@ (Wempxp))) can be calculated

according to the W,,,,;, as follows:

9 frec _) [‘P (Wemb((p(Wembxp»)}
aVvemb a‘/Vemb

) Wemb
i a Wemb

a¢(Wembx)
O Wempxp) +Wemb—aWemb 21 314

=¢ (Wemb (@ (Wempxp)))

= (p/(Wemb((P(Wembxp))) 1-(P(Wembxp) + Wemb(P/(Wemb-xp)xp]

50

This equation gives the same result with each embedding matrix if the function
defined as frec = @(Wg, (¢ (WE,x,))) and the derivative is calculated as follows:

_ oW, (9We,xp)))] | 9 [0(We, (9(We,x,)))]
aWEz 8WE1

= @' (Wi, (@(Wg,x,))) (@(WE,xp)) + @' (WE, (9(WE, X)) (WE, @' (WE, Xp)X,p)

= ¢’ (Wg, (9(Wg,xp))) lﬁo(WElxp) + Wi, @' (WE,xp)xp)

(3.15)

If Wg, = Wg, it is clear that Equation is equal to the Equation [3.14

; XP1
’ ‘ x"
; ' y
ll s ’
’ \\ I’
'/ Wemb */y
X Xr
U \
1 AY
f \
I/ AN
I AY
<4
Xq Xp

Figure 3.6 Splitting error function through structure and backpropagation of the error

xpl

)

-——_————

Tree-RNNs have been developed by Socher et al. [2] to model meaning in long-phrases
and sentences by a recursive combination functions in a neural network’s architecture.
Tree-RNNs are needed to be specialised labeled tree structures to train for sentiment
analysis task. Stanford Sentiment Treebank (SST) had been developed from the dataset
English classification datasets (fine-grained) [[104]], and Tree-RNNs have been achieved

impressive successes for sentiment analysis in English by using SST.

The main difficulty in terms of the semantics is to capture the meaning of longer phrases.
This section mainly focused on combining word-phrase level and sentence-level senti-
ment information, with the implementations of various datasets from different domains,
including movie reviews and various product reviews. Most of the previous studies have
been done based on a binary prediction of a given sentence due to limited resources of
a fine-grained labelled large dataset. Hence, a novel fine-grained sentiment classification

dataset has been also introduced to contribute to the lack of Turkish NLP resources.

51

3.3 MS-TR: A Morphologically Enriched Sentiment Treebank for
Compositional Semantics

In this section, we introduce MS-TR, to address compositional sentiment analysis for
Turkish. We propose a semi-supervised automatic annotation, as a distant-supervision
approach, using morphological features of words to infer the polarity of the inner nodes
of MS-TR as a positive and negative. The proposed annotation model has been done for 4
levels, including morphemes, stems, tokens, and reviews. Each annotation level’s contri-
bution was tested using three different domain datasets, including product reviews, movie
reviews, and the Turkish Natural Corpus essays. Comparative results were obtained with
the RNTNs which is operated over MS-TR, and conventional ML methods. Experiments
proved that RN'TN outperformed the baseline methods and achieved much better accuracy
results compare to the baseline methods, which cannot accurately capture the aggregated
sentiment information. The following sections presents the proposed methodologies to
construct fully-labelled MS-TR.

3.3.1 System Architecture, Resources and Tools Used in Building MS-TR

MS-TR has been constructed as a new sentiment analysis resource to work with tree-
structured Recursive Deep Learning models. The main drawback for the data-driven clas-
sification systems is to have task-dependent well constructed annotated data. Researchers
have proposed to use emoticons, and emojis [[105, 106] or hashtags [107] as classifica-
tion labels inferring polarity of a given task as an extension of distant supervision [108]]
to overcome this issue. Similar to those approaches, we propose using morphological
features of each word to infer the polarity of the inner nodes of the MS-TR, which con-
tains annotated binary-structured parse trees. Parsed trees were labelled according to

fine-grained (multi-class) and binary sentiment class.

Datasets Two different dataset format have been used for the construction of the MS-TR.
Binary-labelled MS-TR was constructed using movie reviews and multi-domain product
reviews with a raw text format. A fully-labelled fine-grained MS-TR was constructed
using the latest updated version of BOUN Treebank [92]. BOUN Treebank includes
9,757 sentences from different application domains such as newspapers, magazines and
essays of Turkish Natural Corpus [109]. Each sentence in BOUN Treebank encoded
in ConLL-U format. Movie reviews collected by Demirtas and Pechenizkiy [91]] from
beyazperde.com. Multi-domain product reviews include reviews about the books, DVD,
etc. that are collected from Turkish commercial website hepsiburada.com. Additional
details and the average and maximum n-grams lengths of reviews are given in Table [3.1]
and Table 3.2

52

Table 3.1 Maximum and average n-grams length of the products datasets of MS-TR

Datasets | Max N-Gram Length | Avr. N-Gram Length
Books 207 33.19
DVD 253 31.75
Electronic 245 37.51
Kitchen 182 32.66
Movie 1566 33.20

Table 3.2 Balanced Turkish multi-domain products movie reviews datasets

TR Books 700 P, 700 N
TR DVD 700 P, 700 N
TR Electronics 700 P, 700 N

TR Kitchen Appliances | 700 P, 700 N
Turkish Movie Reviews | 5331 P, 5331 N

Figure [3.§] illustrates steps for the annotation steps of MS-TR and binarization process.
The proposed pipeline starts with preprocessing steps and sentence boundary detection.
Before the annotation and morphological analysis, each review in the dataset is parsed
at the sentence boundary detection phase and then cleaned by Turkish spell checking.
Zemberek was used [110] for preprocessing steps, including sentence boundary detection
and morphological parser. Turkish spell checking also had been done since Turkish has
additional letters such as (“¢”, “g”, “1”, “07, “s”, “U”), that is missing in English, the raw
text from the dataset usually contains non-Turkish characters because of the non-Turkish
keyboards. Each word morphologically analyzed and labelled according to the negation
cases, as discussed in the previous section. Additionally, we used a polar word list to
detect sentiment specific adjectives and nouns in an unsupervised manner. Zemberek is
only used for the movie reviews, and product reviews as a morphological analyzer since
CoNLL-U format dataset has already contained FEATS field that contains morphological

features for words.

In Figure it can be seen the parse tree of two different sentences: “Bu baglamda in-
celeyecegimiz iki gok haritast somut ornekler sunacak.” and “Zeki Miiren , Miizeyyen
Senar , Safiye Ayla ¢ocuklugumdan beri tanig oldugum isimler.” from the CoNNL-U
dataset. The word “sunacak”™ is a root of the parse tree, and it can be seen POS tags
(i.e. NOUN, ADJ, PUNCT) of the leaf words and root word of the parse tree. These
parse trees (graphs) are examples of structural representation of the sentences that can be

processed in Recursive Neural Models (Tree-RNNs).

Tree-RNNs were proposed for learning from the arbitrary shape structures like trees and
graphs; hence it is needed to implement a binary parse tree to train RNTNs. The Stanford
Core NLP tool has been used to build the binarized dataset, i.e. fully labelled parse trees

53

nnnnnnn

isimler
root

o NOUN
haritasi drnekler . b
nsubj obj punct o
j NOUN NOUN PUNcT Zeki \ tanig .
nsubj acl punct
inceleyecegimiz ik gok somut ADJ VERB\ PUNCT
acl nummod nmod:poss amod (_,

NUM NUM NOUN e Mﬁbﬁfmzeyyen Safiye cocuklugumdan oldujum
baglamda flat conj conj advmod compound:lve
ob PROPN NOUN PROPN NOUN VERB
NOUN

, Senar , Ayla beri
Bu punct flat punct flat case
det PUNCT PROPN PUNCT PROPN ADP

Figure 3.7 A constituency parse tree of two different sentences from the BOUN
treebank [92]

at the final step of the MS-TR construction. This a tool to set the class labels on a sentence
tree dataset using the user default annotations. The expected input file for the Stanford
Core NLP should contain one sentence per line. The reviews separated by blank lines
and each review labelled with their sentiments. Before the blank line, sub-phrases of the
current review can also be labelled with their own label. Consequently, all of the labels on
a tree set to the given default value. The annotation strategies of the MS-TR is different
from the Stanford Sentiment Treebank (STS), which is developed by Socher et al. [2]
for English. We propose to annotate MS-TR in a semi-supervised manner to construct
fully-labelled parse trees. The following section gives the details and pseudo-codes of the

proposed annotation phase of the MS-TR.

3.3.2 Semi-Supervised Annotation Strategies of the Turkish Sentiment Treebank

We present two pathway as an automatic semi-supervised annotation approach for binary
classification datasets. The first one is using the combination of morphological features
of words, and the other is hybridization of the polarity lexicon and the polar word embed-
ding models. By following two pathways, we have constructed four different treebanks,
namely morph-level (stems+suffixes) annotated MS-TR, stem-level annotated MS-TR,
token-level annotated MS-TR, and review-level annotated MS-TR. Each model has been
constructed for each dataset to figure out the compositional effects of the morphologically
rich structure of Turkish. Each annotation level has been tested to compare the efficiency

of the proposed models by feeding them into the RNTNSs.

3.3.3 Morphological Analysis of Words for Annotation

Morphological features of the Turkish words are very important for accurate sentiment

analysis since even suffixes of the Turkish words can have the polarity information as

54

discussed in above. Particularly, negation suffixes, that are embedded within the word
are crucial for the detection of the negative polarity. We annotated MS-TR by using the
morphological features of the words to explore sentiment that hides behind Inflectional
Groups (IG) of words. We parse words to the root of the word and the possible suf-
fixes to find morphological features. We consider the following cases for a binary level

annotation:

Case 1: In Turkish, the suffix -mA and its versions are used to negate the verbs. For exam-
ple, the suffix -me changes the sentiment of word from positive meaning such as “sevdim”
(I like it) to the negative such as “sevmedim” (I did not like it). In addition, Turkish aux-
iliary verbs “etmek” (to do, to make) and “olmak” (to be, to become) are used with the
suffix -mA to negate the verb phrases. For example, “sabretmemek” was annotated as
negative since it is morphological features sabret+Verb+Neg DB+Noun+Inf1+A3sg con-
tains “Neg” keyword (see Table [3.3).

Table 3.3 Examples of the morphological analysis of words and detecting negation
within words

(a) Word / Phrases
Possible Morphological Analysis
sabretmek (to be patient)
sabret+Verb”"DB+Noun+Inf1+A3sg
sabretmemek (not to be patient)
sabret+Verb+Neg”DB+Noun+Inf1+A3sg
sabirli (patient)
sabirli+Noun+Prop+A3sg
sabir+Noun+A3sg”"DB+Adj+With
sabir+Noun+Prop+A3sg"DB+Adj+With
sabirsiz (impatient)
sabir+Noun+A3sg"DB+Adj+Without
sabir+Noun+Prop+A3sg”"DB+Adj+Without
sabirli degil(without patient)
degil+Conj
degil+Verb+Neg+Pres+A3sg
sabr1 yok (have no patience)
yok+Conj
yok+Adj
yok+Noun+Prop+A3sg
sabr1 var (does have a patience)
var+Adj
var+Verb+Imp+A2sg
var+Noun+A3sg

Case 2: Besides verbal negation, the adjectives, which are transformed from the noun

using absence suffixes (-li/-1i) and presence suffixes (-s1z/siz) can give polarity infor-

55

Table 3.4 Examples of the polar words which don’t have polar suffixes

Word / Phrases
Polarity (P:Positive N:Negative)
kazanan (winner) (P)
kaybeden (loser) (N)
asimile (assimilated) (N)
karizmatik (charismatic) (P)
daginik, savruk (untidy) (N)
muhtesem, harika (gorgeous) (P)
tckagit (fiddle) (N)
dingin (calm) (P
galeyan (ebullition) (N)
filizlenmek (sprout) (P)
pandemi, salgin (pandemic, epidemic) (N)
iyi (good) (P)
cene calmak, gevezelik (chitchat, chatter) (N)
nezaket, nazik (kindness, gentle) (P)
kotiimser, karamsar (pessimistic) (N)
efsanevi (legendary) (P)
antisosyal (antisocial) (N)
oncii (pioneer) (P)
sendrom (syndrome) (N)
alcakgoniillii (humble) (P)
intihal (plagiarism) (N)
akliselim (common sense) (P)

mation. The suffix -l1 and its versions transform names to the positive adjectives, and
the suffix -siz and its versions transform names to the negative adjectives. For ex-
ample, the name “sabir” transforms to the positive adjective with the suffix -li, such
as “sabirlt” (patient). The suffix -siz (without) negates adjectives and converts its
positive meaning to the negative meaning, such as “sabirsiz” (impatient). We detect
the absence and presence by considering the keywords (Without/With) in the morpho-
logical analysis of the words. Since one of the morphological analysis of “sabirli”
(sabir+Noun+A3sg"DB+Adj+With) contains the keyword “With”, sabirli annotated as
positive. Similarly, “sabirsiz” is annotated as negative since its morphological analysis
contains “Without” (sabir+Noun+A3sg"DB+Adj+Without).

Case 3: The conjunction “degil” (is/are not) is used with adjectives as a negation marker.
For example, “uzun degil” means “not long” gives a negative meaning to the “uzun”
(long) as an adjective. Similarly, “var” (there is) and “yok” (there is not) are also used as
a presence and absence indicator for nouns. For example, “sabr1 yok™ (have no patience)
has negative polarity, and “sabr1 var” (have patience) has a positive polarity. We annotated

“degil and “yok” with as a negative; and “var” as a positive.

56

Reviews

Sentence Boundary
Detection

Turkish Spell
Checking

F» Tokenization

Pre-processing

SentiTurkNet
Polarity Lexicon

Morphological
Analysis
(Stems + Suffixes)

SentiTurkNet
Polarity Lexicon

Morphological
Analysis
(Stems)

SentiTurkNet
Polarity Lexicon

Word Embeddings
(Tokens)

| |
v v 3

Semi-supervised
Word Level
Annotation

Figure 3.8 The pipeline of the binarization framework to construct MS-TR

3.3.3.1 Morph-Level Annotated MS-TR

In this model, the annotation has been done at morph-level, aiming to retrieve hidden
polarity of the suffixes in the morphologically rich word. We propose to construct fully-
labelled morphologically enriched treebank (Morph-Level MS-TR) with the morpholog-
ical features of the words, which are used as a distant supervision method similar to the
[1054108]]. To this end, tokens are morphologically analyzed, and they are parsed to
their possible stem and suffixes. All of the possible morphological results for a given
input word were used for the word-level annotation. If the word contain negation suffixes
as given in previous section, the parsed stem and suffixes (ending) of the word labelled
with 0, if it contains positive suffixes the parsed stem and suffixes (ending) of the word
have been annotated with 1. For example, sabirsiz (sabir+s1z) “impatient” is represented
as ((0 sabir) (0 s1z)) in the proposed Morph-Level Annotated MS-TR. Similarly, sabirl
(sabir+1) “patient” is represented as ((1 sabir)(1 11)) as a morph-level annotated tree in the
MS-TR.

In addition to the morphological annotation, we propose to use polarity lexicon to capture
polar words, which are root and do not have any morphological information. Words in
Table [3.4) have been used as a case examples to elaborate on this point. Using only a
morphological analysis of the word cannot provide the correct polarity information for
each case. For example, the sentence “Seni yeniden gérmek i¢in sabirsizlaniyorum” (I
can’t wait to see you again / looking forward to seeing you again) has a positive meaning,

but the morphological information of the “sabirsizlantyorum” contain negation suffix -

57

\

p}igok edlenceli P3 rootrsufi PU@MadIgimiz ¢ = ;
2 tuo ©/ %m morph-level
00000000 ()

¢, = gok P rootssuin ©GlENCEI = amadi§imiz

G oot = ’ suffix

c = eglence c_ . =li

I,ro r,suffix

Figure 3.9 An example for the morph-level annotated tree structure of phrase cok
eglenceli bulamadigimiz bir film, “a movie that we could not find much enjoyable” from
MS-TR

siz (sabir+sizlantyorum). To handle this issue, we proposed to use sentiment polarity
lexicon, SentiTurkNet [10]], and we combine morphological features and polarity lexicon
information to annotate each word of the review. After the tokenization step, the polarity
words are controlled by the hybrid usage of morphological analysis and SentiTurkNet
lexicon. This approach used for binary annotation of the MS-TR. The detailed steps of

the annotation algorithm are given in Algorithm

Figure [3.9]represents the hierarchical structure of the phrase cok eglenceli bulamadigimiz
bir film, “a movie that we could not find much enjoyable". Each token of the phrase
has been parsed and annotated to learn review level sentiment recursively in a bottom-
up manner. As it can be seen at the morph-level, suffix —li “with” and root word eg-
lence “enjoy” are composed as a distributional word vectors of left child (c; o) and
right child (¢, ffix) to calculate parent representation of the word eglenceli “enjoyable”.
This combination combines the positive sentiments from child nodes to the parent node.
The second morph-level composition is a clear example of the handling negation of the
morphologically rich word. The word bulamadigimiz “that we could not find”, contains
a negation suffix -ma “without”, hence the right child (c,g.rfix) is negative. As a re-
sult the compositional parent node bulamadigimiz “that we did not find” is also negative.
The longest phrase ¢ok eglenceli bulamadigimiz bir film, “a movie that we could not find
much enjoyable” is produced recursively at the same dimension in a bottom-up manner

and annotated as a negative.

58

Algorithm 7: Morph-level semi-supervised binary annotation

Input: LabelledReviews, Polarity Lexicon
Output: Morph-Level Annotated Parsed Reviews
Function MorphToLabel (LabelledReviews, polarityLexicon)
seperatedReviews = SentenceBoundaryDetection(labelledReviews)
cleanedReviews = SpellChecking(seperatedReviews)
tokenizedReviews = Tokenization(cleanedReviews)
annotatedFile = openNewFile4 AnnotatedReviews()
TRMorphology = Zemberek. TurkishMorphologyAnalyzer()
for each review € tokenizedReviews do
annotatedFile.write(review)
annotatedTokens= []
for each token € review do
tokenMorphology = TRMorphology(token)
stem = tokenMorphology.getStem()
suf fix = tokenMorphology.getSuffix()
// Negation Handling
if tokenMorphology contains "Neg”or”Without” then
labelledMorph = 0+ stem+ 0+ suf fix
annotatedTokens.add(labelledMorph)
break

else if tokenMorphology contains ”Pos”or”’With” then
labelledMorph = 1+ stem+ 1 + suf fix
annotatedTokens.add(labelledMorph)
break

// Annotation with Polarity Lexicon
PosPolarWords = getPositivesFromLex(SentiTurkNet)
NegPolarWords = getNegativesFromLex(SentiTurkNet)
if PosPolarWords contains token then

labelledMorph = 1+ token
annotatedTokens.add(labelledMorph)
break

else if PosPolarWords contains stem then
labelledMorph = 1+ stem
annotatedTokens.add(labelledMorph)
break

if NegPolarWords contains token then
labelledMorph = 0+ token
annotatedTokens.add(labelledMorph)
break

Ise if NegPolarWords contains stem then

labelledMorph = 0+ stem

annotatedTokens.add(labelledMorph)
break

(o]

annotatedFile.write(annotatedTokens)

L return annotatedFile

59

p, = ¢ok eglence bul bir film

o/

00080006
p, = ¢ok eglence

G, = gok

Figure 3.10 An example representation for the stem-level annotated tree structure of
phrase cok eglenceli bulamadigumiz bir film, “a movie that we could not find much
enjoyable” from MS-TR

3.3.3.2 Stem-Level Annotated MS-TR

Stem-Level annotated MS-TR was constructed similar to morph-level annotated MS-TR.
The only difference is using only stems of the words, and the suffixes (ending) of the
words are eliminated from word after morphological parsing. The aim of constructing
stem-level MS-TR is to investigate the efficiency of the using stem-+suffix structure by
comparing to using the only stem of the words. The flowchart of the annotation algorithm
is similar to Algorithm [7]and the example tree structure of the stem-level annotated MS-
TR is given in Figure [3.10]

3.3.3.3 Token-Level (Surface Level) Annotated MS-TR

As a third level, we propose to annotate each token of the reviews using polar embedding
spaces, which are constructed by using positive and negative datasets. Related word vec-
tors have been produced for each polarity level using the word embeddings model. Fast-
Text [111] model has been used to take its advantage of representing out-of-vocabulary
word vectors for MRLs. To this end, the positive embedding model has been constructed
by using positive reviews dataset and positive polar words that are taken from Senti-
TurkNet. Similarly, negative word embedding space has been constructed using negative
reviews dataset and negative polar words taken from SentiTurkNet. The most similar
word of the token has been found by using positive word vector space and negative word

vector space.

After tokenization step of each review, the cosine similarity measure has been used to find
the token-level label. If the cosine similarity of the positive most similar word and the
target token is bigger than the cosine similarity of the negative most similar word and the
target token, the token is labelled as positive; else it is labelled as negative. The flowchart

of the proposed algorithm is given in Algorithm [§] and the example tree structure of the

60

p, = ¢ok eglenceli bulamadi§imiz bir film

90000000
p, = gok eglenceli bulamadigimiz

®
e00c0000) 1
/ ¢= bulamadigimiz ¢, = bir c, = film
& \. token-level
00000080
¢ = cok ¢ = eglenceli

Figure 3.11 An example representation for the token-level annotated tree structure of
phrase cok eglenceli bulamadigimiz bir film, “a movie that we could not find much
enjoyable” from MS-TR

token-level annotated MS-TR is given in Figure [3.11]

3.3.3.4 Review-Level Annotated MS-TR

As the last annotation level, we proposed using only review-level annotated tree struc-
tures to construct MS-TR for comparing each annotation level’s performance. After the
annotation process has been done, the annotated files fed into the Standford Core NLP

module to construct the binarized tree structure by parsing each review of the datasets.

In addition to the binary-labelled MS-TRs, fine-grained MS-TR has been annotated by
taking into account the morphological information of the words. 1003 of BOUN Tree-
bank sentences have been selected randomly as an initial step. Parsing the 1003 sentences
has produced 63,782 nodes (see Table [3.5). The polarity distribution of the phrases, i.e.
phrase-level to review-level labelling was realized in two stages. The first stage is la-
belling words according to their polarity features which are detected from the morpholog-
ical analysis of the words. The morphological feature of the word was detected from the
FEATS field of the CoNLL-U data format, which provides the lemma and morphological
analysis of the word, including Polarity feature as proposed in the previous section. In
addition to the binary annotation, we have scored words whether they are booster words.
If the word is contained by positive booster words list, it was annotated with 5 for very
positive class. Similarly, if the negative booster words list contains the word, it was an-
notated with 1 for very negative class. The total sentence-level score was calculated as

follows:

sentiscore = — 10xveryNeg - aneg + 5Xpos + 1OxveryPos (3.16)

Here each x represents the total number of related polar word in a given sentence. Booster

61

Algorithm 8: Semi-Supervised Binary Annotation With Word Embeddings Model

Input: LabelledReviews, Polarity Lexicon
Output: Token-Level Annotated Parsed Reviews
Function MorphToLabel (LabelledReviews, polarityLexicon)
Start
posReviews = GetPositiveReviews(labelledReviews)
negReviews = GetNegativeReviews(labelledReviews)
posPolarWords = GetPosPolarWords(SentiTurkNet)
negPolarWords = GetNegPolarWords(SentiTurkNet)
annotatedFile = openNewFile4 AnnotatedReviews
PosVocabulary = posReviews + posPolarWords
NegVocabulary = negReviews + negPolarWords
// Word Embedding Models with FastText
PosModel = FastText.train(PosVocabulary)
NegModel = FastText.train(NegVocabulary)
for each review € LabelledReviews do
annotatedFile. write(review)
annotatedTokens=[]
for each token € review do
posSimilarity = PosModel.GetMostSimilar(token)
negSimilarity = NegModel.GetMostSimilar(token)
// Annotate According to Cosine Word
Similarity
if posSimilarity geater or equal to negSimilarity then
labelledToken = 1 +token
annotatedTokens.add(labelledToken)
break

else
labelledToken = 0 +token
annotatedTokens.add(labelledToken)
break

annotatedFile.write(annotatedTokens)

L return annotatedFile

62

words were taken from polarity lexicon, which are used for morph-level and stem-level
annotation. After calculating the total sentiment score of the sentence, scores of -15 and
less are labelled as very negative (1), those with -10 labelled as negative (2), O is labelled
as neutral (3), 10 is labelled as positive (4), and those above 15 and 15 are labelled as very
positive (5). Table [3.5] represents the total number of the fine-grained n-grams for each
sentiment class. Somewhat positive and somewhat negative n-grams got emotion scores
of 5 and -5, respectively, hence we considered them in positive and negative, respectively.
After semi-supervised annotation process, 188 reviews were labelled as class 5 (very pos-
itive), 215 reviews were labelled as positive, 230 reviews were labelled as neutral, 207

reviews labelled as negative, and 163 reviews labelled as very negative.

Table 3.5 Total numbers of fine-grained n-grams

N-Grams Total Number
Very Positive 8231
Positive 7610
Somewhat Positive 22635
Notr 15392
Somewhat Negative 2471
Negative 2559
Very Negative 214

100
mm Very Neg
9 80 = Neg
._:'u Somewhat Neg
2w Notr
5 Somewhat Pos
E mmm Pos
§ 40 = Very Pas
s
2 20
0 i _ - . - . A
5 10 15 20 25 30 35 40

N-gram Length

Figure 3.12 Normalized histogram of the annotated n-grams in fine-grained MS-TR.
Somewhat positive distributions are added to the positive sentiment class, and somewhat
negative distributions are added to the negative sentiment class for fine-grained
sentiment classification

We used the Standford Core NLP [112] module to build a binarized tree structure similar
to the Stanford Sentiment Treebank (STS) [113]]. The total inner nodes of the annotated
MS-TR that have been produced by binarized parsing have been given in[3.3]

63

3.4 Recursive Deep Models over MS-TR for Compositional Seman-
tics

The compositional power of the Tree-RNNss is still waiting to explore for Turkish sen-

timent analysis task. With this motivation, we employ MS-TR with Recursive Neural

Tensor Networks (RNTN) to handle Turkish’s agglutinative morphology and catch the

freedom of its constituent structure for compositional sentiment analysis. The proposed

model also contributes to the lack of data sources for improving understanding of seman-

tics in Turkish.

Recursive Neural Network (Tree-RNN) is a tree-structured model based on composing
words over nested hierarchical structure in sentences. The neural network function re-
cursively merges words to construct noun phrases until representing the entire sentence.

Tree-RNNs have an extraordinary ability for mapping of phrases in a semantic space [98].

Recursive Neural Tensor Networks (RNTN) have achieved promising accuracy results for
English [2]] and morphologically rich languages (MRL) such as Arabic [3]. RNTN out-
performed the previous versions of the Recursive Neural Networks, such as Tree-RNNs
and MV-RNN. Hence we used RNTN over a morphologically enriched Turkish sentiment

treebank.

The proposed model learns the distributional representations to construct not only phrases

to but also morphologically rich words from their root and suffixes.

Tree-RNNs are the simplest version of the Recursive Deep Models. In essence, they are
designed to process tree-structured datasets, and they generalize the sequential models
from chain-structures to the tree-structures. Assume that x(8) = (x1,X%2,....,Xk), is the
sequence of d-dimensional word vectors of the given sentence for Vx; € RY |1 <i<k.
x8) = (x1,x2,....,x) has been learned by using binary tree structure by evaluating parent

word vectors with following recursive function:
Xp =@ (Wemb [xl;xr]7 bemb)

(3.17)
) bemb)

Xl

Xr

=0 (Wemb [

Here ¢ represents the tanh function and x;,x, and x, are R4! dimensional word vectors.
The concatenation of the x;, x, is represented by [x;;x,] € R**! ' W,,,, € R®?¢ and b,,,,;, €
Rdxl]

RNTNSs is the enhanced version of the tree-based deep learning models, which aims to

aggregate polarity of child nodes to the parent root node using one direct composing

64

relation by tensor algebra [2]. The learning architecture of the model is the same as the

Tree-RNN. The modification has been done using the following aggregation:

]
hypi = [x’] 7l [’”] (3.18)
Xy X

]
hy = [x’] Tl | L, [xl] (3.19)
Xy Xy Xy
X T X X
xp=<p([l Tl 1+Wemb[l]> (3.20)
Xr Xr Xy

Tensor defined as T4l € R2#24%d and [x;;x,]T € R4, where x;,x,, /1, are € R™! di-
mensional word vectors. T is a slice of a tensor € R%_ This process is done recursively
as defined in the Tree-RNN and ¢ represents the same tanh function. The primary moti-
vation to use RNTN is to satisfy the direct association between input vectors. The quality

of the parent vector is calculated by reconstruction layer as follows:
[xl/;xr,] - WrerP+breC (3.21)

Here Wy € R%24_p,,. € R%!. The aim is minimizing the reconstruction error, which is
defined as follows:

Egmp = L ([xi3x], [xi/5x,1]) (3.22)

= argmin|| [x;;x;| — [x;/;x,1] ||2

At every internal the parent word vector x, scored with positive or negative by using
softmax function for binary classification task. The phrases are merged recursively to

predict sentiment class of the root vector as follows:

ny = ¢ (W/labelxp)

X

y P = SOftmax (Vvlabelxp) (323)
_ €Xp(WlabelXp)
Zle exP(Wlabel xpi)

y is polarity prediction, Wiz € R among c sentiment classes. Here y% =
softmax (Wyape1xp) can be interpreted as a conditional probability y*» = p(c|[x;;x,]) and

Y7 1y =1 and for a given target (true) label +*» of the parent vector, the total cross-

65

entropy loss is defined as follows:

(&
Ecp = — Y E(xpi,t,0)
i=1

. (3.24)
=—Y r*ilog(y")
i=1
The reconstruction error of the compositional embeddings is Eryp and the cross-entropy
error of the sentiment labels Ecg as follows for a given pair (x*, %) from the dataset define

the total objective function as following:

LN e r.0) 2 0 |2 (3.25)
Naut i=1 2

Ltotal = -

Learning happens by using backpropagation through structure (BPTS) with updating the
learnable parameters of the model 0 = (T, W,,,,s Wyec, Wiaper)- The comprehensive details

of the recursive learning process has been discussed in the next chapter.

3.5 Experiments

3.5.1 Experimental Setup

The reviews are divided into train/dev/test set. The detailed information for each dataset
is given at Table The hyper-parameters of the model were set following up from
previous studies. Socher et al. pointed the RNTN model achieved promising results for
English when the dimension of the word embeddings was set between 25 and 35. We
choosed 30 as a dimension of the word embeddings, which is also used as a dimension
of the suffix embeddings [2]]. Similarly, the recommended batch size was between 20 and
30. We used the train and dev set to set batch size, learning rate. We observed that the
performance of the model was decreasing for larger batch size; hence we used 20 as batch
size. 0.01 is used as a learning rate, and AraGrad was used as an optimizer with 0.001
weight decay regularization. The model was trained over 100 epoch. The predictions
compared with the baseline methods that were described in the following section. The

best accuracy results were obtained over cross validation of dev set.

3.5.2 Baselines

For the sake of fair comparison, MS-TR constructed over datasets that were classified
before both by ML and LB methods. The conventional ML algorithms, including NB,
SVM, and Max-Ent were used as a baseline methods to compare performances. Feature

representation methods for each baseline models are as follows:

66

Table 3.6 Root and inner node counts of different level annotated MS-TR

Annotation Datasets Train / Inner Dev / Inner Test / Inner
Level Node Count Node Count | Node Count
Books 978 /98,182 141/ 13,507 280/27,252

Morph-Level DVD‘ 978 / 89,490 141/ 13,644 280 /27,950
Electronics | 978 /111,588 141 /15,208 280/32,126

Kitchen 978 /95,064 141/ 14,501 280/ 28,376
Movie 8,000/405,964 | 1,001/50,717 | 1,657/ 84,469

Books 978 / 86,580 141/9,672 280/21,1819

Stem-Level DVD 978 /78,156 141/9,783 280/ 21,368
Electronics | 978 /90,230 141/ 12,607 280/ 24,034

Kitchen 978 /78,309 141/10,489 280/21,629
Movie 8,000/378,768 | 1,001 /45,639 | 1,657 /77,460

Books 978 /73,316 141/ 10,489 280/ 19,878

Token-Level DVD 978 /70,570 141/9,979 280/ 19,882
Electronics 978 /79,434 141 /12,783 280/23,516

Kitchen 978 /70,631 141/9,158 280/20,332
Movie 8,000/336,008 | 1,001/43,717 | 1,657 /73,617

Books 978 /76,917 141/ 10,647 280/21,562

Review-Level DVD 978 /75,836 141/14,120 280/ 20,468
Electronics | 978/ 88,550 141/ 16,454 280/ 22,604

Kitchen 978 /78,309 141 /10,489 280/21,629
Movie 8,000/379,074 | 1,001/45,618 | 1,657 /80,738

* NB/SVM BoW: BoW features combined with cross-lingual machine translation

feature set from Turkish to English [91].

* NB/SVM BA: SentiTurkNet and polarity lexicon, to use the average of words as a

feature, basic approach (BA) [114]].

* NB/SVM BA-Neg: Basic approach combined with handling negation [114].

* NB/SVM BA-Booster: Basic appoach combined with booster words [114].

* NB/SVM BA-Seed Words: Basic approach combined with handling negation

[114].

* Max-Ent BoW: BoW features combined with cross-lingual machine translation

feature set from Turkish to English [91].

Aforementioned baseline studies did not report the training and test splits ratio. Hence, in

this study, we prefer to split train/dev/test dataset like suggested in [2] for STS dataset.

67

3.6 Results and Discussion

In terms of the experimental results, RNTNs have sentence level (root) and total node
accuracy. For the sake of fair comparison, we report the first experiments results as av-
erage of the sentence (root) level accuracy of the train set, since the previous baseline
studies reported the train dataset results. Table [3.10| and Table [3.11] presents the binary
classification accuracy results of the products reviews, and Table presents the binary
classification accuracy results of the movie reviews. Although Socher et al. [2]] mentioned
that RNTN performed better for shorter reviews, we observed that compared to the tradi-
tional methods RNTN performed better even for longer reviews of Turkish movie dataset.
In addition to models comparison, we also investigated the effect of different annotation
levels to the accuracy results. As it can be seen in Table [3.10] Table [3.11] and Table
we observed that there is not much difference between the accuracy rates of RNTN over
morph-level annotated MS-TR, stem-level annotated MS-TR, token-level annotated MS-
TR and review-level annotated MS-TR. However, as shown in Table [3.12] in terms of the

inner node accuracy, i.e. all node accuracy, we observed that RNTN performed better
with the token-level annotated MS-TR.

Table 3.7 Performance comparisons for movie reviews dataset

Models Accuracy %
RNTN Morph-Level MS-TR 89.60
RNTN Stem-Level MS-TR 89.84
RNTN Token-Level MS-TR 89.71
RNTN Review-Level MS-TR 89.57
NB BA 67.49
SVM BA 67.61
NB BA-Neg 68.34
SVM BA-Neg 68.92
NB BA-Booster 69.18
SVM BA-Neg 69.78
NB BA-Seed Words 74.28
SVM BA-Seed Words 75.52
NB BoW 69.5
NB BoW TR-MT 70.0
SVM BoW 66.0
SVM BoW TR-MT 66.5
MaxEnt BoW 68.2
MaxEnt BoW TR-MT 68.6

68

69

Table 3.8 Performance comparisons of books dataset

Table 3.9 Performance comparisons of electronics dataset

Dataset Models Accuracy %
RNTN Morph-Level MS-TR 82.49
RNTN Stem-Level MS-TR 81.84
RNTN Token-Level MS-TR 82.80
RNTN Review-Level MS-TR 86.08
NB BA 67.49
SVM BA 67.61
NB BA-Neg 68.34
SVM BA - Neg 68.92
Books NB BA-Booster 69.18
SVM BA-Neg 69.78
NB BA-Seed Words 74.28
SVM BA-Seed Words 75.52
NB BoW 72.40
NB BoW TR-MT 72.90
SVM BoW 66.60
SVM BoW TR-MT 66.90
MaxEnt BoW 68.70
MaxEnt BoW TR-MT 70.50

Dataset Models Accuracy %
RNTN Morph-Level MS-TR 83.61
RNTN Stem-Level MS-TR 82.65
RNTN Token-Level MS-TR 81.87
RNTN Review-Level MS-TR 86.66
NB BA 67.49
SVM BA 67.61
NB BA-Neg 68.34
SVM BA - Neg 68.92
Electronics NB BA-Booster 69.18
SVM BA-Neg 69.78
NB BA-Seed Words 74.28
SVM BA-Seed Words 75.52
NB BoW 73.00
NB BoW TR-MT 64.40
SVM BoW 72.40
SVM BoW TR-MT 64.40
MaxEnt BoW 74.00
MaxEnt BoW TR-MT 66.30

0L

Table 3.10 Performance comparisons of DVD dataset

Dataset Models Accuracy %
RNTN Morph-Level MS-TR 81.04
RNTN Stem-Level MS-TR 82.95
RNTN Token-Level MS-TR 80.84
RNTN Review-Level MS-TR 82.42
NB BA 67.49
SVM BA 67.61
NB BA-Neg 68.34
SVM BA - Neg 68.92
DVD NB BA-Booster 69.18
SVM BA-Neg 69.78
NB BA-Seed Words 74.28
SVM BA-Seed Words 75.52
NB BoW 76.00
NB BoW TR-MT 74.90
SVM BoW 70.30
SVM BoW TR-MT 67.60
MaxEnt BoW 71.80
MaxEnt BoW TR-MT 72.90

Table 3.11 Performance comparisons of kitchen appliances

dataset
Dataset Models Accuracy %
RNTN Morph-Level MS-TR 81.68
RNTN Stem-Level MS-TR 80.73
RNTN Token-Level MS-TR 81.73
RNTN Review-Level MS-TR 79.86
NB BA 67.49
SVM BA 67.61
NB BA-Neg 68.34
SVM BA - Neg 68.92
Kitchen NB BA-Booster 69.18
SVM BA-Neg 69.78
NB BA-Seed Words 74.28
SVM BA-Seed Words 75.52
NB BoW 75.90
NB BoW TR-MT 69.60
SVM BoW 70.00
SVM BoW TR-MT 67.30
MaxEnt BoW 72.40
MaxEnt BoW TR-MT 70.20

Table 3.12 Performance comparisons in term of the total node and sentence-level

accuracy
Datasets Model Level | All (Node) Sentence-Level
(Test) Accuracy% | (Root) Accuracy %
Morph-Level 68.22 89.60
Movie Stem-Level 68.28 89.84
Token-Level 68.96 89.71
Review-Level 68.48 89.57
Morph-Level 68.86 82.49
Books Stem-Level 68.34 81.84
Token-Level 73.55 82.80
Review-Level 62.14 86.08
Morph-Level 66.92 81.04
Stem-Level 67.24 82.95
bVD Token-Level 73.03 80.84
Review-Level 59.02 82.42
Morph-Level 71.40 83.61
Electronics Stem-Level 70.28 82.65
Token-Level 76.24 81.87
Review-Level 63.63 86.66
Morph-Level 70.83 81.68
Kitchen Stem-Level 67.70 80.73
Token-Level 75.17 81.73
Review-Level 68.03 79.86
BOUN 5-class | Review-Level 46.66 43.50

3.7 Summary

This chapter introduces a Morphologically Enriched Sentiment Treebank (MS-TR) for
compositional semantics in Turkish. MS-TR was constructed based on the four different
annotation levels, including morph level, stem level, token level, and review level using
morphological features of the words as a semi-supervised annotation approach. Each an-
notation level of binary and fine-grained fully-labeled parse trees has been constructed as
a novel sentiment treebank. Experiments have been done using different domain datasets
with Recursive Neural Tensor Networks (RNTN) and compared to conventional baseline
methods, including Naive Bayes(NB), Maximum Entropy (ME), and Support Vector Ma-
chines (SVM). The effect of using labeled stems and suffixes in MS-TR has also been
investigated for each dataset. According to the experimental results, RNTN has outper-
formed conventional baseline methods for each MS-TR annotation level. It has been
shown that our semi-supervised distant annotation approach can be practically used to
construct a fully-labeled sentiment treebank without the need for human labor while keep-
ing sentiment information of words to construct structured input for Tree-RNNs. This

study can be improved using enhanced tree-based deep learning architectures, including

71

constituency or dependency parse trees. Particularly, the fine-grained train dataset for

Turkish can be expanded for future studies.

72

4

ATTENTIVE COMPOSITION MECHANISMS AND
MEMORY BLOCKS OVER RECURSIVE
STRUCTURES

"What is the optimal way for compositional representation of sentences?" is still an open
question in the NLP field. As we discussed in section [2.4.1] both recursive and recurrent
models have a VEG problem when they try to learn over long and deep structures. Al-
though Tree-RNNs are powerful models to learn syntactic and semantic features, they still
cannot handle the long-term dependencies, and similar issues could happen like in tradi-
tional chain-structured models. LSTM and its variants have been developed to process
sequential input bidirectionally or stacked layers [[115] |116] to overcome this problem.
But these architectures cannot process the tree-structured data similar to the recursive
neural networks. Besides, LSTM models also have some disadvantages even they per-
formed well for many tasks, particularly in the field of NLP. They are hard to train, and
the same training issues could also happen while backpropagating error over long-term
dependencies [99, |117]. Additionally, they cannot fully support batch training and to
handle different length sentences, so they need padding operation [118].

This section focuses on extending LSTM to Tree-LSTM, which can work over sentiment
treebank while using memory-blocks and attentive mechanism. A novel attentive compo-
sitional mechanism has been proposed in binary Tree-LSTMs (ACT-LSMTs) to improve
the structural learning ability of the tree-structured LSTMs. ACT-LSTMs have been used
to detect the important (more related) part of the long sentences. The motivation is mim-
icking the human attention mechanism to memorize and learn the more important parts
of the given sentences for a downstream task. The aim is to prevent the loss of informa-
tion, which occurs due to padding operations. In addition, a comprehensive benchmark
has also been aimed to compare the performances of advanced chain-structured and tree-

structured language models to decide which architecture is better.

Firstly the related work of the attention mechanisms and Tree-LSTM architectures fo-

cusing on SA applications have been summarized. Then ACT-LSTM model have been

73

introduced, which is proposed as an attentive composition mechanism in Binary Tree
LSTMs for selective sentiment classification. Next, the benchmarks of the ACT-LSTM
model for both chain and tree-structured models have been reported. Finally, last section

have concluded with results and discussions.

4.1 Preliminaries

Recently, many researchers have focused on the develop unified and advanced tree-based
LSTM architectures [99, 119, |120]. These models have been proposed as an extension
of the chain-LSTMs to work over parse trees, and they performed better than the shallow
chain structured models. However, besides their compositional advantages, data process-
ing could be very time-consuming due to these architectures do not fully support batched
learning [118]]. Bowman et al. have proposed Stack-augmented Parser-Interpreter Neu-
ral Network (SPINN) architecture as a hybrid tree-sequence model [118]. SPINN model
gives the opportunity to understand the "depth in space" while learning the "depth in
time". It supports batch-learning, and thanks to GPUs, we can make the processing time
much faster than previous tree-structured models. GPUs give us a parallel processing
chance, so we can process more than one sample at the same time. However, we need
to pad inputs at least to the maximum sentence length of each batch, which could cause
the loss of information. For example, consider the following two sentences that we use
as examples of in the minibatch. S| =Mutlaka izlenmesi gereken harika bir film "It is
a great movie that must be watched." and Sy =Berbat bir film. "It’s a terrible movie."
We can encode these sentences word by using embedding of the each token such as
S1 = [x1,x2,x3,%4,X5,X6] and Sy = [x7,x8,x9]. Padding is a necessity for batch-learning,
let us consider that we put "1" for an absent tokens to represent S, as long as S7 such
as S = [x7,x8,%x9,1,1,1]. It can be clearly seen that this process could cause a loss of

information when we need padding for longer and longer sentences.

In this section, an attention mechanism has been proposed to model the important tokens
of the sentences to prevent the side-affects of padding operation. Our main motivation is to
focus on the many related parts of each sentence for sentiment detection while preserving

structural learning over Tree-LSTMs.

Attention layers have been inspired by the cognitive attention mechanisms of humans,
which gave superior results in many applications [121]]. First remarkable applications of
the attention mechanism have been addressed for machine translation task [[122] to align
translated words. The mechanism has the learning ability without the limitation of the
fixed-sized representations of the content while learning an important part of the given

text.

74

Various versions of attention mechanisms have been proposed, including self-attention
[123]124]], global-local attention [125]], soft-hard attention [126] and they achieved good
results for many tasks, [[127] including classification tasks [128} |[129]], NLI [123]], ma-
chine translation (MT) [124}125]], encoding semantic relations [130], speech recognition
[131]], recommendation systems [[132, |133], and as well as computer vision applications
such as image captioning [126]. They have also proved their capabilities for represen-
tational learning, such as dynamic word embedding models, which can learn depending
on the context. As a well-known transformer model, BERT (Bidirectional Encoder Rep-
resentation from Transformers) model can learn the contextualised meaning of words in
the whole sentences using bidirectional self-attention Transformer (Transformer encoder)
[134]. For example, the word "objective" in the sentence "My objective is not just to
make an objective speech" should have a different word representation. Or the word ap-
ple should have different word embedding for the sentence "I love apple, especially when

I buy it from Apple store."

We want to adapt these advantages of attention mechanisms for our own task to improve
learning ability Tree-LSTM. Before we introduce the ACT-LSTM model, we give the

details of the Tree-LSTMs architectures in the next section.

4.2 Tree-LSTMs and Its Variants

Tree-LSTMs can be considered as a generalization of the basic chain-LSTMs (see Equa-
tion @]) In this section, two well-known variants of Tree-LSTM have been given. The
shallow version of the Tree-LSTM can learn the sentence representation using the follow-

ing equations:

(Wi x4+ U™ hg" 4+ U hg®,_ + b

(Wen x4+ U™ hgh, 1+ Up™® hg®, 1+ b/)

(Wen x; + Ufh Lpgt, |+ UthR hg®, |+ b,f)

08, = © (Who X + Upot hgt, | + UpR hg®, |+ b,°) 4.1)
ug, = v W, x,+ UL hgt, |+ US hg®, | b")

¢
¢
=0

me; =g, © ug, +fgz ®mct 1+ fgt ®mct 1
hg, = 0g, ® y(mc;)

Here, the hidden right child vector hgR, |, hidden left child vector hg”, |, and current
state input vector x; are used as an input to calculate current values of the input gate,
left forget gate, right forget gate, and output gate to learn the current and hidden state of
the Tree- LSTM cell. As described in [119]], we first described the child-sum version,
which is useful over dependency trees called Dependency-Tree-LSTMs (DT-LSTMs). It

75

R
mck .. @@ mc—,

oomct ok
ﬂ O
[@@00C@e] [@ecTCee) I!OOOOOO? IQOOOOOO\ \ooooonl
fgt fglt ige uge OFt
1 | |
@@000ee) 0o

@® OO0 eoe
hgl , Xt hgl,

Figure 4.1 Representation of the tree-structured LSTM cell

is operated over child-sums of the tree. Lets Child(k) be a child of node k. Compositional

meaning has been learned using the following equations:
hgy = Y
JEChilds(k)
ige = @ (Wi x+ Upy hgy + bf)
fei; =0 Wpxe+ Up hj+ b))
08t = ¢ (Who X + Upo hgi+ b°) (4.2)
ug, =v (W, xe+ Uy, hgk + b)

mep =igy O uge + Y, [8;0 me;
JEChild(k)

hg, = og; © y(mcy)

An unordered version of childs, such as dependency relations, are well-performed with
the child-sums version. Figure .2 represents the child sum Tree-LSTM cell for the childs
hg, and hg,. The forget gate number is only two since node k has only two childs. This
can be generalised to the k-forget gate for an inner targeted node that has k-child. These

forget gates allow to learn selective information for each hidden child.

The second version of Tree-LSTMs is the Constituency-Tree-LSTM (CT-LSTM), that
have been proposed for learning compositional meaning over ordered-binary parsed trees,

i.e. constituency relations. They are well-performed with N-array variant of Tree-LSTM

76

mc, @ @
mCZ. .

Z fgi; © me;—() @®mc,— 00

|

& O G

[@@000] [@@000] [@@OO0]

igx ugy 0gk
|

hg, @@ — s ————{@@000) K
e 2 B hei @®0O00 gk

Q00O

Xk

Figure 4.2 Child sum tree topology of LSTM cell at node k for children hg; and hg,

topology and formalised as follows:

igy = @ (Wip xi + Z U, hy +b')
i1
f&kj=0 Wpnxic+ Z Uiy b +)
=1

N
08 = @ (Who X+ Z Uilzo hig +b°)
=1 4.3)

N
ug, =v (W, x;+ Z Ubll hy +b")
=1
N

mey = igy © uge + Y feu© mey
=1

hg, = og; © y(mcy)

The leaf nodes are composed to learn the compositional information, which is combined
in the hidden layer until to reach the top root of the tree structured sentence. The learn-
ing happens by updating the Wiy, Ui, W, Un, Who, Upo, Wy, Uy, b, b/ b0, b Figure
N-array (2-array) i.e. binary Constituency-Tree-LSTM (CT-LSTM) cell at node k for
children hg, and hg,.

Besides their structural processing ability, the trees mentioned above do not have the at-

tention mechanism to capture the more informative words for a specific task. Each child of

71

mei @ @0 Z fgig O Moy —’O @O0m;,———0®

ﬁ s

|oo<>oo| uoool [@@0O00)

fgi1 UBk 08k

o0
" hgy

hgy, @
hgkz. @

00O
Xk
Figure 4.3 N-array (2-array) tree topology of LSTM cell at node k for children hg; and
hg,

the tree structure has equal contributions to the compositional meaning of the sentence. In
terms of Turkish sentiment analysis, although Recursive Neural Tensor Networks (RNTN)
over MS-TR performed well compared to conventional baseline methods, including Naive
Bayes(NB), Maximum Entropy (ME), and Support Vector Machines (SVM), the results
are still not well enough and could be improved using enhanced tree-based deep learning
architectures, including constituency or dependency parse trees (see Figure [4.4). Particu-
larly, the fine-grained train dataset for Turkish as one of the low-resources language need
to be expanded [90]. Hence, we propose an adaptive composition mechanisms in binary
Tree-LSTM (ACT-LSTM) as a novel recursive deep architecture model for attentive sen-
timent distributions. The proposed model extends LSTM to Tree-LSTM, and combines
both attention and memory mechanism over recursive tree structures, which learn latent

structural information while learning more important part of the sentences.

78

speaking S

N N
/\. . NP/ \VP is/\ speaking
the drl\fmg /\ / \

The man driving NP

aircraft A
the the aircraft
Dependency Tree Constituency Tree

Figure 4.4 Dependency tree and constituency tree of the same sentence

4.3 ACT-LSTMs: Adaptive Composition Mechanisms in Binary
Tree-LSTMs for Attentive Sentiment Distributions

4.3.1 Attentive Sentiment Distributions

In this section, we proposed an adaptive tree network combined with an attentive com-
position mechanism to better understand and strengthen compositional sentiment predic-
tions. For a clear understanding, we first give the basics of the attention mechanism for a

shallow chain structured network, as illustrated in Figure [4.5]

g

Qn
I
S
—
]
-
]
~
+
[\

Figure 4.5 Sequential attention mechanism for three time steps of the FFNN

The main idea of the attention mechanism is a weighted summation of the content [[122,
124]. The average of the weighted summation of the features proposed for learning a
more important part of the context window based on the specified task. Although the
attention mechanisms have breakthrough success for encoding-decoding tasks in NMT by
the transformers [124]], they also contribute to the remarkable performance achievements
for various NLP tasks of many networks that have recurrence or memory cells such as
RNNs or LSTMs [[135]).

We can generalize Figure [4.5| using the sequence of d-dimensional word vectors. Let

£ = (x1,x2,....,X,) represents the tokens of full sentence for V x; € RY 1 <i<n.

79

Attention score [|124]] for each token is calculated as follows:

k w. &)
a=yW,h ¢ Xc
v(Wa hgy +) (4.4)
= tanh(W, hg, + W, xﬁ“))

where W, and W, € R% learnable vector that represents the score of the importance ratio
of the given token y is the non-linearity scaling function such as tanh. xgs) represents the
context vector for a given sentence, which is found by chain or tree-topology language
model. Dot-product score a; is used to find the attention weight oy, € [0, 1] is calculated

as follows:

exp(WTdk)

= T) 4.5)

O

where WT € R is the learnable parameter matrix and the weighted representation of

the inner states of the x{*) = (x1,x2,. .. .,x,) would be:

n
hare = Z ohgy (4.6)
k=1

Here hy; € R is transformed by new attentive hidden context representation A, as

follows:

I’:c;t = V’(Wrep har +brep) 4.7
= ta”h(Wrep ha + brep)

Recently, there have been some other attention studies that aim to work with tree-
topology. Zhou et al. tried to encode sentence pairs by embedding attentive layer into
Child-Sum-Tree LSTM, and Child-Sum Tree-GRU [136].

80

4.3.2 Proposed Model

The proposed model unifies the structures and semantics of the sentence using adaptive

attentive compositions.

We define the attention mechanism over Binary-Tree-LSTM architecture to detect more
important phrases in a sentence. Since finding the optimum compositional function that
can learn all the meanings and non-linearity of the dataset is a challenging task [137]], we
proposed an adaptive composition layer that operates multiple attention functions. The
aim is to operate adaptive tree-based attention mechanisms to infer the polarity of the
combined words similar to human attention mechanisms. The attention layer operates
different attention score functions, namely additive function, general attention, and scaled
dot-product attention and concatenation function to find the weighted parent node rep-
resentation. The attention layer of the ACT-LSTM model randomly selects from those
attention score functions, which are defined in Equation @] to define the importance

ratio of each child according to the parent vector.

Let hg; and hgg be a right and left child of the inner parse tree of the sentence and xp;
be a parent vector of them at node k. We concat left and right child as a hidden key
matrix, M = [hg; ;hgr] € R%2. Similar to [124], ACT-LSTM:s operates a self-attention
mechanism, as we search for classification instead of NMT. Hence query (parent) and
value (attentive hidden representation) matrices have been chosen equals to key matrix
such as M7 = MP =MV

In this section, we define the first attentive function operates a scaled-dot product attention

score. It is calculated using K., Q,, V, matrices as follows:

K. =W, My (4.8)
0, =W, My (4.9)
V=W, My (4.10)

81

where the learnable parameter matrices W, and W, € R%“ and K, and Q,, € R%2.

T
ak = & Ke @.11)

Vd

here a1* € R>? represents the attention score. It is scaled to the probability of the impor-

tance of each child of node k as follows:

o* = ¢(ar¥)
0,7K, (4.12)

Va)

= softmax(

The attention weight matrix o;* € R*? and values matrix V, € R%? have been used to

generate new attentive hidden representation of the parent value as follows:

~k
hy =aofvr (4.13)

~k ~k . .
where V, = WyMy € R and h; € R*?. Here each row of the A is an attentive

representation of the each children.

The other scaling functions are similar to the aforementioned one, but they use different

score functions, which are defined as follows:

(T
O, K.
1, scaled dot, 7

general, K.” (WaQ), +ba)
additive, W, (K. + Q) + ba)

(4.14)

B~ WL

concatenation, W,([K.; Qp),ba)

here a;* scaled to the probability of the importance of each child via softmax.

The attention layer can be seen from Figure which operates with different scaling
functions as they are illustrated in Figure 4.6

82

Adaptive Attention Layer

Attentive Context

Attention Weights \\

"""" Adaptive Score |

KEYS (Energy) Functions } (Probalitiy Distiﬂ’):uions)

Left and] \\ ail \

Right) I /

Childs)/ _ .y e

D"’ Qi “ |/ ///
””””””””””””””””””” e
//
Figure 4.6 An adaptive attention layer of the ACT-LSTM
me; @ @——0 ‘ ‘Z fgi; © meg—> r@@®mc, ———— 0@
mcy
mc, @ @ 4O
o) (o)
@0000) [@@000] @@000| [@@OO0)
fgr1 fgio 18k ugk 08k
Y -0@®
hgi, © @ . hgi
hgkz. ®
00
Xk

Figure 4.7 An embedded attentive composition mechanism of ACT-LSTM

Equation 4.3 represents the attentive compositional vector of the kth inner of the parsed

tree:

¢ = y(g(ai)Va")

= y(o*V, 5 (4.15)
~k
=y(hi)
where Y is the non-linearity function such as tanh and aik, ok, ..., o are the attention

scores. @(a;X) is the likelihood score of attentive combination of the right and left child
vectors which is calculated using adaptive attention scores as given in Equation .15/ and
Equation #.14] Figure [4.3.3] illustrates the proposed attention mechanism over a binary

parse tree.

83

4.3.3 Training in ACT-LSTMs

For an inner node k, the sentiment prediction of inner node hg;, is calculated as follows:

y[xk] = softmax (‘/Vlabel hg, + blabel)
_ exp(Wiaper hgi + biaber) (4.16)
Z16:1 exp(vvlabel hgi + blabel)

Here y{xk] is the predicted sentiment for an internal hidden node of hg,. At the same
time it can be considered as a conditional probability defined as y™! = p(c|[x]) and
Yo y[xk} = 1. Wigper € R | and c is the number of sentiment class. For a given target
(true) label 71! of the hidden node vector, the total cross entropy loss is defined as follows:

ECE = ZE<[xk]7t[Xk}76)
vy 4 ‘ (4.17)
=4 Z 1l 1og (yPl")

For a given pair (x*,#%) from the dataset, the total cost function is defined by as follows:
1 Nour

R TR
E(x.r%.0)+ 2 6 (4.18)
Nom‘ Z_Z] (l) 2 || ||2

Ltotal =

Here the error E (x;,+%, 0) is the function for each pair (x*,7) for a given sentence from

the train dataset and it is defined as follows:

Totalnodes

E(',r,0)= Y E([x],"0)
i=1 (4.19)

| Totalnodes

A
- - (il 20 112
Totalnodes g t* log(y™) + 2 H H2

E(x;,t",0) is defined as a total error, which comes from the total nodes of each training

pair of the dataset that contains the sentiment polarity.

84

¢8

/5\ SHIFT
The child broke /NPZ\
the toy
S REDUCE
NPy VP
/\ /\ The 0.2
The child broke NPa child 0.8
the toy
S SHIFT
/ \ NP,
NP, V
/\ /\ broke
th
The child broke NP; =
the toy
5\
NP, VP NPy
/ \ / \ broke
NP.
The child broke /NPE\ 2
the toy

s
WA

The child broke

1

2\

The child broke

the

NP,

L

SHIFT

toy

NP, NP

toy

REDUCE

NP,

A

broke

the 0.25

A

toy 0.75

The child broke NP&

the toy

_REDUCE _

o

NP,

broke 0. 50

2 A

child broke NP;

NP, 0.50

The / \

the toy

—

-

A

.

The child broke NP2

SHIFT

NP,

i

the

A

A D

The child broke NP,

.

toy
SHIFT

NP,

broke

the toy

2

A A

the

AN

A A

The child broke NP

the

NPy

toy

w

toy

Figure 4.8 Illustration of the attention mechanism over binary tree

-

A AN

The child broke NP

NPy
broke

the toy

2

N A

The child broke NP2

NP,
broke
the

the toy

s
N B

The child broke NP

.

the

REDUCE

NP, 0.40

VP 0.60

toy

4.4 Experiments

4.4.1 Experimental Setup

We have used the same parameters of Recursive Neural Tensor Network (RNTN) for the
sake of comparison which is done in [90]. The reviews are divided into train/dev/test set
(see Table [3.2] and Table [3.6)). The hyper-parameters of the model were set following up
from the previous chapter. We chose 30 as a dimension of the word embeddings. Since
the performance of the model was decreasing for larger batch size, we used 20 as batch
size. 0.01 is used as a learning rate, and AraGrad was used as an optimizer with 0.001
weight decay regularization. The model was trained over 100 epoch. The predictions
compared with the chain structured LSTM, tree-structured LSTM, and RNTN were given
in the following section. The best accuracy results were obtained over cross-validation of
the dev set.

The hyper-parameters of the proposed model have been given in Table The maxi-
mum sentence length has been selected as 50 based on the observations of the n-grams
histograms of the classes (see Figure[d.10). 1003 of BOUN Treebank sentences have been

used for classification. The distribution of the five class has been given in Table

Table 4.1 Parameter setting

Parameter Value
x = (x1,x2, ...,%,_, x;) | max length = 50
embedding dimension 300
nhidden 150
epoch 100
batch size 32

optimizer adam
learning rate 2e-4

Table 4.2 Fine-grained dataset

Label Size
Very Positive | 188
Positive 215
Notr 230
Negative 207
Very Negative | 163

4.4.2 Baselines

In addition to comparison with conventional ML methods, we propose to compare our
model performance with other advanced deep learning models. To this end, we have cho-

sen the best models of the chain-structured models from [138]. We represented them as

86

CNN-1 to CNN-5 and LSTM-1 to LSTM-5. Moreover, we compared the chain-structured
models with Tree-structured LSTM models and also RNTN models, which operate over
different-level annotated parsed trees. CNNs and LSTMs models also combined with
various segmented features. The details of the models combined with various feature

representation methods are as follows:

¢ CNN-1 and LSTM-1: Lemma and suffixes of the words have been used. Suffixes
considered as a token similar to the morph-level annotated MS-TR over RNTN-1
[138].

* CNN-2 and LSTM-2: Only extracted stems of the words have been used similar
to RNTN-2.

* CNN-3 and LSTM-3: Only word-tokens have been used similar to the RNTN-3.

* CNN-4 and LSTM-4: Hybrid: Words are analysed by [110], and if morphological

analysis cannot be done, the word is parsed to its characters [[138]].

¢ CNN-5 and LSTM-5: The BPE-5k method has been used as a sub-word mod-
elling method [138]].

e RNTN-1: Tree-structured morph-level annotated MS-TR [90]].
¢ RNTN-2: Tree-structured stem-level annotated MS-TR [90].
¢ RNTN-3: Tree-structured token-level annotated MS-TR [90].
¢ RNTN-4: Tree-structured review-level annotated MS-TR [90].

* ACT-LSTM: An attentive binary Tree-LSTM model over review-level annotated
MS-TR.

In this study, we prefer to split train/dev/test dataset as given in Table [3.6]like suggested
in [2]] for Stanford Sentiment Treebank (SST) dataset.

4.5 Results and Discussion
Table [4.3] Table 4.4, and Figure 4.9] report the accuracy results for advanced chain-

structured models with different segmentation methods, tree-structured models with dif-
ferent annotation levels, advanced tree-structured LSTM models and ACT-LSTM. We
have used review-level annotated MS-TR since we found that it gave the best results with
token-level annotated MS-TR compared to the stem-level and morph-level annotated MS-

TR. According to the experimental results, we observed that Tree-LSTM performed better

87

compared to the chain-structured LSTM and tree-structured RNTN. RNTN is also better
than chain-LSTMs combined with various segmentation methods. Hence we can say that
Tree-structured models performed better than the chain-structured models. In terms of
the attention layer, even ACT-LSTM performed better than the Tree-LSTM. We cannot
observe much more difference between their performances. In addition, CNN combined
with word tokenization performed best for the movie dataset. Since the movie dataset is
much bigger than the product reviews dataset (see Table [3.2]), we can say that CNN with

the word token feature could perform better for huge datasets.

Table 4.3 Accuracy results for binary classification datasets

Models Book Electr. DVD Kitchen Movie
CNN Lemma+Suffix 8143 77.86 7643 75.00 90.61
CNN Lemma 7643 73.57 7429 73.57 88.92
CNN Word Token 77.14 7357 75.00 77.14 91.08
CNN Hybrid 75.71 80.71 75.00 77.14 89.01
CNN BPE-5k 75.71 75.00 75.00 80.71 90.61
LSTM Lemma+Suffix 77.86 77.14 79.29 65.71 90.33
LSTM Lemma 80.00 75.00 77.86 75.00 89.20
LSTM Word Token 77.86 80.71 76.43 75.00 90.80
LSTM Hybrid 75.00 80.00 73.57 74.29 89.48
LSTM BPE-5k 75.71 79.29 75.71 75.00 89.86
LSTM 82.34 7251 75.11 75.24 83.54
Tree-LSTM 88.34 8532 8494 81.97 88.12
ACT-LSTM 89.49 86.77 84.99 86.08 89.77

RNTN Morph-Level 8249 83.61 81.04 81.68 89.60
RNTN Stem Level 81.04 82.65 8295 80.73 89.84
RNTN Token Level 82.80 81.87 80.84 81.73 89.71
RNTN Review Level 86.08 86.66 82.42 79.86 89.57

NB BoW 72.40 73.00 76.00 75.90 69.50
NB BoW TR-MT 7290 6440 7490 69.60 70.00
SVM BoW 66.60 72.40 7030 70.00 66.00
SVM BoW TR-MT 66.90 6440 67.60 67.30 66.00
MaxEnt Bow 68.70 74.00 71.80 72.40 68.20

MaxEnt BoW TR-MT 70.50 66.30 72.90 70.20 68.60

88

Table 4.4 Average of test accuracy for fine-grained classification dataset

Models Mean Acc. %
ACT-LSTM 51.01
Tree-LSTM 47.31
LSTM 41.56
RNTN 46.66
RNN 34.94
10 10
0.8 1 = 08
g g
= =
7] 1)
g 0.6 & 06
™ E
S H
1 e s T R e
=@~ TREE-LSTM =#— RNTN ! =@~ TREE-LSTM =4~ RNTN i
e | STM e ACT-LSTM : wdp= | STM = ACT-LSTM :
0.2 T T T T 0.2+ T T T T
0 20 40 B0 80 100 o 20 40 B0 80 100
iterations iterations
1.0
g os . >
- ! H
g | 3 !
< 0.6 : o]
E | g I
£ i S i
£ 04 : - a ; L
x =@— TREE-LSTM == RNTN i =@— TREE-LSTM =gr— RNTN i
=gp= LSTM == ACT-LSTM | == LSTM == ACT-LSTM |
0.2 + T T T T 0.2 + T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
10 1.0 - - -
- =@ TREE-LSTM =gr— RNTN
: == LSTM == ACT-LSTM
> 0.5 5
g g
E L3
E 06+ L L E
— n
3 . . | | ¢ :
E 0.4 frozsmmmsmorem oo pe e s mmmpom s s oo s oo s @ T T r
=@= TREE-LSTM == RNTH i E | |]
== | STM == ACT-LSTM w ! ! | |
0z i i i f ; ; : :
0 2'0 4:3 slo Blu 100 0 20 40 60 80 100
iterations Iterations

Figure 4.9 Performance comparisons for ACT-LSTM, LSTM, Tree-LSTM and RNTN

models

In addition to the comprehensive benchmark, a qualitative analysis has been done to de-
tect the effect of sentence length on the accuracy. Since there is not much more per-
formance difference on binary classification we have chosen to study on a fine-grained

dataset. According to the experimental results we observed that ACT-LSTM performed

&9

Very Positive Positive

Distribution
8 &
3

Oistributios
s 8 3 8 &8 8 8
g

= 8

Very Negative 100 Negative
n
©
15 5w
£ H
[} 0
s 0
0 % 0 35 @O &
N-gram Length
ol
) 5 B [[

N-gram Length

Notr

x5
N-gram Length

Figure 4.10 Normalized histogram of the annotated n-grams in fine-grained MS-TR

approximately %35 better performance improvement compared to RNTN.

0.7
0.6 +--- NN~k =mmmm e

& 0.5 4------ BRI O T S —

2 : !

o | ‘ : ‘

§ 044 : — *
031 —9— TreelSTM _g RNTN -~y

—a— ACT-LSTM - LSTM H 1 i

0.2 : ; ——r—y ———r

e e
sentence length

Figure 4.11 Effect of sentence length on the accuracy

90

N-Grams Length Distributions of Products Datasets

140 A DvD

120 1 1 Electronic
Kitchen

100 1 X Book

Distribution

T T T - T
100 125 150 175 200 225
N-gram Length

Figure 4.12 N-grams length distributions of products datasets

Figure .10 represents the normalized histogram of the annotated n-grams in fine-grained
MS-TR and Figure 4.12] represents the n-grams distributions of products dataset. As we
can see from Figure @, Tree-LSTM, ACT-LSTM, RNTN performed similar for 10-
grams and 35-grams. It has been observed that, ACT-LSTM performed better for longer
n-grams. Additional details and the average and maximum N-grams lengths of reviews
are given in Table [3.1]and Table [3.2]

4.6 Summary

This section proposed an advanced tree-structured LSTM model for unifying structural
learning that supports batch learning to get competitive results for Turkish SA. Although
LSTM has many variants to process sequential input bidirectionally or stacked layers,
these architectures cannot process the tree-structured data similar to the recursive neural
networks. Therefore, we focused on extending LSTM to Tree-LSTM, which can work
over a sentiment treebank while using memory blocks and an attentive mechanism. To
this end, we proposed a novel attentive compositional mechanism in binary Tree LSTMs
(ACT-LSMTs) to improve the structural learning ability of the tree-structured LSTMs.

ACT-LSTMs have been used to detect the critical (more related) part of long sentences.
Our primary motivation is mimicking the human attention mechanism to memorize and
learn the more important parts of the given sentences for a downstream task, and pre-
venting the loss of information, which occurs due to padding operations. Experiments
have been done over a Morphologically Enriched Turkish Sentiment Treebank (MS-TR),
and a comprehensive benchmark has been done over performances of advanced chain-
structured and tree-structured, and convolutional deep learning models to detect which

architecture is better.

According to the experimental results, ACT-LSTM performed better in terms of fine-
grained Sentiment Analysis (SA). We observed that Tree-LSTMs performed better com-

91

pared to chain-structured LSTMs and RNTN. RNTN also performed better than chain-
LSTMs combined with various segmentation methods. Hence we can say that tree-
structured models performed better than the chain-structured models. In terms of the
attention layer, even ACT-LSTM performed better than the Tree-LSTM, we could not ob-
serve much more difference between their performances in terms of binary classification.
Howeyver, it is demonstrated that tree-structured models are better than chain-structured

models for binary and fine-grained sentiment classification.

92

S

METAHEURISTICS FOR TRAINING DEEP
SEQUENTIAL RECURSIVE LANGUAGE MODELS

This section focuses on the deep sequential recursive language models, namely Recur-
rent Neural Networks (RNNs), which have been modelled for learning information from
temporal sequences. So far, due to the limitations of the conventional language models,
there are many advanced tree-structured, and chain-structured neural language models
have been proposed. All these models were actually developed because of the under-
lying, well-known training problems. As it is well-known, designing an optimum deep
recurrent neural network is difficult due to configuration and training issues such as the
VEG problem (see section [2.4.1). In this section, it is investigated whether deep RNNs
will be as good as previous advanced models if their learning capabilities are improved.
To this end, a novel metaheuristic optimisation approach is proposed for training deep
RNNss for the sentiment classification task. The approach employs an enhanced ternary
Bees Algorithm (BA-3+) which maintains low time-complexity for large dataset classifi-
cation problems by considering only three individual solutions iteratively. BA-34+ com-
bines the collaborative search of three bees, performing local learning with exploitative
search, SGD learning with singular value decomposition (SVD), and global learning with
explorative search. Thus, the algorithm utilises the greedy selection strategy of the local
search operators of the basic Bees Algorithm to improve solutions, the stabilisation strat-
egy of SVD to handle the problem of VEG of the decision parameters, and the random
global search strategy of the basic Bees Algorithm to achieve faster convergence avoid-
ing getting trapped at local optima. BA-3+ has been used to detect the optimal value of
trainable parameters of the proposed deep recurrent learning architecture. The proposed
algorithm has been compared for sentiment detection. According to the experimental re-
sults, the improved accuracy and convergence results showed that the proposed algorithm
performed better compared to traditional SGD and BA-3+ is an efficient algorithm for

training deep RNNs for complex classification tasks.

93

5.1 Preliminaries

Deep RNNs are powerful models which can learn from the large sets of sequential data for
various tasks in NLP [139], time series prediction [140], machine translation [141] and
image captioning [[142]. Deep RNNs have self-looped connected deep layers, which can
retain knowledge from the previous time steps and can learn from arbitrarily long time se-
quences. However, despite their theoretical power, they have well-known computational
issues such as training difficulties due to VEG [46], the need for implementation in hard-
ware and memory limitations [56]]. Besides, designing a deep learning model to perform a
particular task could be very time-consuming as it involves many optimisation steps such
as selecting a proper network architecture, finding the optimum hyper-parameters of the

selected architecture, and choosing the correct training algorithm for the model.

Training a deep RNN is making it learn higher-level nonlinear features from large
amounts of sequential data, which is typically a nonconvex optimisation problem [56].
This problem can be formulated as the minimisation of nonlinear loss functions with
multiple local optima and saddle points. From the perspective of optimisation, even con-
vex optimisation problems have many challenges. Additional difficulties therefore arise
in training DNNs because of the nonconvex nature of the problem. For example, SGD is
a commonly used training algorithm, could easily get trapped at local minima or saddle
points, and it cannot guarantee convergence to the global optimum because of the nonlin-
ear transformations in each hidden layer. Moreover, the gradient of nonlinear activation
functions cannot be computed backward through the network layers without vanishing or
exploding over many training time steps [47, 143]], which causes the loss of direction in

parameter updating to reach a feasible solution.

So far, researchers have mainly focused on two alternative pathways to deal with long-
term dependencies. The first pathway is to devise new network architectures such as
LSTMs [44], GRUs [48] and Temporal Restricted Boltzmann Machines (TRBM) [144].
Although these architectures have proved successful in many applications, they are more
complex to implement and require long implementation and computation times, in addi-
tion to specialised software and powerful hardware. The second pathway is to develop
search methods and optimisation algorithms specifically to handle the vanishing and ex-
ploding gradient problem. Recently, two popular methods, gradient clipping and gradi-
ent scaling, were proposed to avoid the gradient explosion issue. Gradient clipping [46]
which employs a shrinking strategy when the gradient becomes too large, is used to avoid
remembering only recent training steps. Shrinking has also been employed by second-
order optimisation algorithms, but these have been replaced by simple SGD as a fair and
practical technique because of the computational cost of Hessian matrices in second-order

optimisation [116].

94

The learning performance of deep learning models does not depend only on improving
the training algorithm. The initial design parameters also play a key role in the ability to
find global optima without becoming trapped at local stationary points. For example, the
initial weights of model can significantly affect training performance and good solutions
often cannot be reached with gradient-based training algorithms because of the nonlin-
earity and “butterfly-effects” of the iterative updating procedure [46]. Generally, design
parameters are adjusted manually, and the designer has to evaluate the model performance
repeatedly to determine the best objective functions, learning rates, or training algorithm
for their task. Besides, even when the optimal model could be designed, additional regu-
larisation strategies such as dropout [145]] are required to handle the overfitting problem
of a deep model. It is well-known that these procedures are very time-consuming, and

new strategies are needed to develop practical solutions.

Numerical methods and exact algorithms cannot handle the nonconvexity of the objec-
tive functions of deep RNNs, which are unable to capture curvature information, causing
the optimisation process to be trapped at local solutions. Nature-inspired metaheuris-
tic algorithms have been developed to handle nonlinear, multi-constraint and multi-modal
optimisation problems. They have proved to be robust and efficient optimisation tools that
can avoid the issue of local optima. They can adapt to problem conditions like the nature
of the search space (i.e. continuous or discrete), decision parameters, varying constraints
and other challenges encountered in the training and designing of RNN models. Previous
research into the optimisation of deep learning models has focused on three main areas,
namely, hyperparameter optimisation, neural architecture or topology optimisation, and
weight optimisation. Cai et al. used particle swarm optimisation (PSO) and evolution-
ary algorithm (EA) (hybrid PSO-EA) as a hybrid algorithm for training RNNs for time
series prediction [73]]. A recurrent NARX neural network has been trained by a Genetic
Algorithm (GA) to improve the state of charge (SOC) of lithium batteries [[146]. The
NeuroEvolution of Augmenting Topologies (NEAT) approach has been developed based
on the GA [147] for the optimisation of neural model architectures. Desell ef al. have
used Ant Colony Optimisation (ACO) to design a deep RNN architecture with five hid-
den and five recurrent units for predicting flight data [64]]. Similarly, Ororbia ef al. have
implemented Evolutionary eXploration of Augmenting Memory Models (EXAMM) and
different versions of it such as GRU, LSTM, MGU and UGRNN [148]] to evolve RNNs.

However, there have only been limited studies into optimising the architecture of a deep
RNN [64] or deep LSTM [76]. For example, the authors of [64] have used ACO to
convert fully-connected RNNs into less complex Elman ANNs. These studies have been
conducted for specified tasks with the numbers of hidden and recurrent neurons limited
to a maximum of five, and new practical approaches are needed to be useful for deeper
RNN models [149]].

95

This section proposes using an enhanced ternary Bees Algorithm (BA-3+) to obtain the
optimum weights of a deep RNN model for sentiment classification. Existing population-
based optimisation algorithms need to operate with large populations and, as a result, are
generally slow. The Bees Algorithm [150] is a population-based algorithm that has been
successfully employed to solve complicated optimisation problems [151H153]. It is able
to find optimum solutions without needing to calculate the gradient of the objective func-
tion. The ternary Bees Algorithm (BA-3) first described in [[154] is an improvement on
other population-based algorithms that employs a population of just three individual so-
lutions. The BA-3+ algorithm presented in this section is an enhanced version of BA-3+
that also uses only three individual solutions, the global-best solution, the worst solution
and an in-between solution. BA-3+ combines the exploration power of the basic Bees Al-
gorithm to escape from local optima and the greedy exploitation drive of new local search
operators to improve solutions. The new local search operators comprise one for neigh-
bourhood search using SGD and one for search control employing SVD. SGD is a greedy
operator for reaching a local optimum quickly. SVD is adopted to stabilise the train-
able parameters of the model and overcome the problem of VEG of the selected weights
when SGD is applied to derive the in-between solution. The aim is to use the strengths
of gradient-based backpropagation training as the most commonly used RNN training
method, but without its limitations like local optimum traps and VEG through long time
dependencies. As the proposed algorithm uses only three individual bees, it is very fast,
being able to find the global optimum within polynomially-bounded computation times
[152, |154]. Experiments with the sentiment classification of English and Turkish movie
reviews and Twitter tweets show that the ternary BA performs well, providing faster and

more accurate results compared to previous studies.

We first start with the reviews applications of metaheuristics to the training of deep RNNs.
Section 3 presents detailed information about deep RNNSs and the difficulties with train-
ing them. Section 4 details the proposed algorithm and its local search operators, and
describes its configuration for training deep RNNs for sentiment classification. Section 5
provides information about the datasets used, the hyper-parameters of the model, and the

experimental results obtained. Section 6 concludes the section.

5.2 An improved Bees Algorithm (BA-3+) for Training Deep Recur-
rent Networks

In this section, a population-based search algorithm for training deep RNNSs is presented.
The learnable parameters 6 = (W ;,, Wy, Wy, , by, by) are the same as in SGD, which is
defined as a candidate solution in BA-3+, and try to minimise the binary cross-entropy

loss function L(y,7) for each pair of the sequential input (xy,x2, ...,x,_;, X;), the desired-

96

targeted output t, and the predicted value y.

Gradient-based learning algorithms are particularly sensitive to the initial value of the
weights and noise variance of the dataset in nonconvex optimisation. Hence, the difficulty
of the training deep RNN model depends on not only keeping the information through
long-term time but also initial values of the parameters. Most initialisation methods are
generally based on the random initialisation [[155] or researchers choose to initiate the
weights as an identity matrix or close to the identity conventionally [[156]. Therefore,
finding optimum initial parameters for a specified model and exploring which parameters
should be updated and learned are still remains an open difficult optimisation task, due to
the lack of the exact knowledge about the which properties of these parameters are kept

or learned, under which conditions [56]].

As mentioned above, this work uses an enhanced Ternary Bees Algorithm (BA-3+) for
training deep RNNs. BA-3+ combines exploitative local search with explorative global
search [154]]. Improvements to the training of deep RNN models with BA-3+ have been
made in three key areas: finding promising candidate solutions and initialising the model
with good initial weights and biases, improving local search strategies to enhance good
solutions by neighbourhood search, particularly to handle the VEG problem, and per-

forming exploration to find new potential solutions with global search.

5.2.1 Bees Algorithm

The Bees Algorithm has been implemented by Pham er al., which models the clever
food-foraging behaviours of the honey bees[150]. Honey bees have the population-based
searching abilities to exploit good food sources. Every honey bee can extend itself in
multiple directions and distances which can be more than 10 km from hive to explore
new flower patches which are abundant in pollen or nectar. The honey bees have a good
memory to remember the quality of the visited food source in terms of location of the
flower patch, its distance to the hive or its food abundance like sugar content. They also
have good communication mechanisms to share their experiences with other follower
bees when they return to the hive. They do "waggle dance" or wag-tail dance [157]
to communicate about their exploration journey and tells other bees "where" the visited
good patches is [158]. The follower bees observe this dance, and they are recruited to
go to the specified patches by the distance and the direction information of the selected
patches. This fascinating dance language enables the communication between honey bees
and starts the recruitment process of the bees’ behaviours. It becomes guidance of the
exploration, local search of potentially profitable flower patches for the unemployed bees.
A larger number of bees follow the experiences of the dancer bees and the colony of honey

bees may maximise the benefits of the recruitment process.

97

o

g > 30
&

Random exploration of the search space by scout bees

Figure 5.1 Foraging behaviour of honey-bees for local search and global search phase

5.2.2 Representation of Bees for Deep RNN Model

The “Bee” in the proposed method represents a sequential deep RNN model, which is
modelled for binary sentiment classification task. As it can be seen in Figure [5.3] every
Bee (Sequential model) instance has the input layer, hidden deep RNN layers, and the out-
put layer. The proposed model has the learnable parameters 6 = (W, Wy, Why ,bp,by),
and aim to classify the sequential input data (xj,x2, ...,x,_;, x;) to its targeted class
t. Based on the training procedure of the RNN model, each “Bee Model” has its own
forward propagation action to calculate the initial solutions, and local search procedure,
gradient descent training with SVD, and global search actions to find the optimal pa-
rameters 6 = (W, Wyn, Wyy , by, by) via the binary cross-entropy loss function (fitness
function) Lgcg (f(x?),0),y\) as defined Section

BA-3+ does not require a large population, which is a drawback with other population-
based methods. BA-3+ employs only three individual bees for each training time. Each
iteration begins with these three initial solutions as a forward pass of the model and con-
tinues with specified search strategies including exploitative local search, SGD stabilised

by SVD, and explorative global search.

As with the basic Bees Algorithm [150], the initial candidate solutions are sorted. The
maximum fitness value is selected as the best RNN bee for the local exploitative search.
The worst fitness value (third bee) is selected for global search to avoid getting trapped at
local optima, and the remaining RNN, i.e. the middle RNN bee is selected for stochas-
tic gradient-descent learning with the stabilisation strategy of SVD operator to update
weights and biases without VEG.

98

Algorithm 9: The pseudo-code of the basic Bees Algorithm (BA) for continuous
domains
Input: n: ScoutBee, m: SelectedBee, e: EliteBee,
nsp: SelectedSitesBee, nep:SelectedEliteSitesBee, neighbourhoodSize: ngh
Function BA (nScout,m,e,nsp,nep, ngh) :
population < InitialSolutions(ScoutBee)
while stopping criterion not met do
Evaluate fitness of the population
Sort population according to fitness function
Select m best solution for local search
// Generate local solutions with neighbourhood
search
for each Bee € e do
for each Bee € nep do
localBee < Bee + random(—ngh,ngh)
localBee < Fitness(localBee)
if localBee better than Fitness(Bee) then
// Update Bee
L Bee = localBee

for each bee € m—e do
for each bee € nsp do
localBee <— Bee + random(—ngh,ngh)
localBee <— Fitness(localBee)
if localBee better than Fitness(Bee) then
// Update Bee
Bee = localBee

// Assign remaining bees for global search
for each Bee € n—m do
L globalSolutions < GenerateRandomSolutions(Bee)

Evaluate fitness of the new population
Select Best Bee from the new population

L return BestBee

Fig represents the flowchart of the proposed algorithm. (xltrain) g(train)y iq the training
sample from the dataset, that x() = (x1,x2, ..., %_1, X) is defined as an n-dimensional
sequential input and t(i)) € {0, 1} is its targeted sentiment class. Three initial solutions
are calculated with the initial trainable parameters 6 (see Table[5.2)) and sorted according
to the loss function. The elite (best) RNN bee performs the local search operator, the
middle RNN bee performs SGD with SVD operator, and the third RNN bee performs
global search. The optimisation continues with a new population of bees until the stopping

criteria met; in other words until the loss value is converged to zero.

99

Table 5.1 Parameters of the deep RNN model trained by using BA-3+

Parameters Information
x = (x,x2, ...,x,_, %) | i temporal sequential input from the input training set
1) i"" targeted class of the output training set
y(0) i"" predicted class of the x{?
W Weight matrix from input layer to hidden layer
Win Weight matrix from hidden layer to hidden layer
Why Weight matrix from hidden layer to output layer
by, by Biases for the hidden layer and the output layer
nScout Number of scout bees for initialisation
ngh Neighbourhood size for the local search
nhidden Hidden layer size
n Learning rate for SGD

Table 5.2 Learnable (trainable) parameters

Parameters | Dimension
W, Rnumber of hidden layers x dimension of each word
X
Win Rnumber of hidden layers X number of hidden layers
W, R VIX number of hidden layers
y
bh R number of hidden layers
b R number of output layers
Y
V|: number of words in the vocabular
y

5.2.3 Local Search Operator

The local search procedure in the basic Bees Algorithm includes improving the promis-
ing solution within the “flower patch” (see Fig[5.1), which represents the neighbourhood
of the selected solution parameters. In the following pseudo-code of algorithm ngh
represents the initial size of the neighbourhood for local search after waggle dance.

The neighbourhood begins as a large area and it is reduced by using a shrinking method
[152] at each iteration, which is defined as ngh(t + 1) = o ngh(t). Here, is usually a
number between 0 and 1. The neighbourhood matrix is generated with the same dimen-
sion of each weight matrix of the learnable parameters 6 = (W, Wy, Wy, , by, by), and
then is aded to the original weight matrix to obtain the updated weights. The pseudo-code
to generate neighbourhood weights is given in algorithm [I0] The updated local weights
are used for the local search of BA-3+ that can be seen in algorithm [I0]

5.2.4 Enhanced Local Search by SGD and Singular Value Decomposition (SVD)
Operator

As analysed in Section[2.3.3.1] due to the sharing the same hidden matrix Wy, across the
deep hidden layers and multiplying it again and again at every time step of the BPTT al-

100

(Start)
!

For each RNN Bee in
a Sequential NLP
Model

|

Initialisation of the bees and
performing forward pass for each

F 3

pair of the data sample (x/, t')

Evaluate fitness (loss function) and

sort the population

h J

Gradient-Descent

with SVD Operator Global
Search

Local
Search

Y

New population

Converge

Yes

Figure 5.2 Flowchart of the proposed enhanced ternary Bees Algorithm (BA-3+)

gorithm, the eigenvalues of the Jacobian matrix exponentially grow or vanish after t time
steps. To handle this issue, it has been proposed to use a singular value decomposition of
the hidden layer matrix to stabilise the eigenvalues of the updated matrix in the enhanced
local search of BA-3+. As an example, assume that the eigenvalues of the Wy, are rep-
resented A;,A,...,A, The singular values of Wy, can be founded by using the positive
eigenvalues of the matrix Wy,,Wy,,”, forevery 4; >0 € A1, A2,..., Ay, Si = VA [159] if
Wi 1s positive semi-definite square matrix. Since the learnable parameters of the RNN
can also be rectangular matrices, it is needed to find singular values of an arbitrary matrix
A.

It is well-known that every arbitrary real matrix can be represented by the product of three

matrices as A = USVT, which is called singular value decomposition (SVD) of matrix

101

Figure 5.3 A deep RNN architecture representing a bee in the proposed algorithm.
Black lines are the forward pass of RNN cell at time t (unfolded version at upper) and
red lines representing the error backpropagation through long-term dependencies

Algorithm 10: Generate neighbourhood weights
Input: weight matrix : w, ngh
Output: updated ngh weights
Function generateNghWeight (w, ngh) :
for each w, € wdo
ngh < random number € [—ngh,nghl
L Whngh S We +ngh

return wygj,

m F ¥ m

S 0 Vi

n — n [-‘I]ILZ[L} = F S}SJ. r %
n J o :

A u s vr

Figure 5.4 Singular value decomposition (SVD) of matrix A

A, which is used to find the singular values [160]. Figure represents the SVD of
an n X m dimensional matrix. Here, S is the r X r dimensional diagonal matrix S, x, =
diag[S1,S2,...,...,S,] that each S; represents the singular values of the matrix A, and U
and V contain the corresponding singular vectors where U and V are orthogonal matrices

with the n X r and r X m dimensions, respectively.

102

Algorithm 11: Local search after waggle dance
Input: Bee, ngh: neighbourhood radius
Output: Local Bee with U pdated Parameters
Function Local Search (Bee, ngh) :
for ecachw e 0 = (W, Wy, Why , by, by) do
dim,, < dimension(w)
Wigh < generateNghWeight (w,ngh)
Bee.w < wygp

return Bee

Algorithm 12: SGD with SVD
Input: Learning rate:n, Bee, ngh : neighbourhood radius
Output: Bee with U pdated Parameters
Function SGDSVD (n, 0) :
for ecachw € 0 = (W ;,, Wiy, Wy, by, by) do
// Update 06 by using gradient descent rule
61 = 0'— 1 Vo L(f (x,6).7,))
Calculate SVD for each w :
U, S, VT = SVD(w)
for each s; € S do
if s; > (1 +ngh) then
‘ si=1-+ngh
elseif s; < 1/(1+ngh) then
| si=1/(1+ngh)

Bee.w < wsyp

L return Bee

After updating each parameter of the 6 =(Wyy,, Wy, Wiy, by, by) by SGD rule, the SVD
operator has used to control the eigenvalues of each parameter. The method aims to keep
the singular values of the updated matrix close to 1 for gradient stabilisation. To this end,
the SVD decomposition of the updated matrix is performed to find the singular values,

and then every singular vector is controlled to be close to the unit vector.

As given in Figure 2], the singular values of the updated weight matrix are restricted to
the interval [1/(1 + ngh), 1 + ngh| to avoid updating in the wrong direction. Here, ngh
is the initial neighbourhood size, which is chosen between (0,1). As a result, Wy, can be

updated over-time without vanishing or exploding gradients.

5.2.5 Global Search Operator

Besides the enhanced local search procedures, the proposed algorithm also includes a
global search operator that combines random sampling chances which is also a good

strategy for escaping local optimum points of the solution space. The third bee in a colony

103

Algorithm 13: An improved ternary Bees Algorithm for training deep RNN model
Input: nScout, learning rate:1n, ngh: neighbourhood
radius, dataset
Function BA—-3+ (nScout,n, ngh, dataset) :
Start
inputs < Createlnputs(dataset)
targets < labels(y)
items <— convert dataset to list of // x=sentences and t=targets
for each (x1),11)) € items do
Initialize population with ternary RNNpe,
while stopping criterion not met do
Evaluate fitness of the population
y, Loss < FORWARD(RNNg,,, x\!))
Sort population according to loss values
localy,, < LocalSearch(bestpe.,ngh)
Evaluate fitness of localpe.
if localp.. better than bestp,.. then

// Update First Bee

bestgee = localpee

SGDSV Dp,. < SGDSVD(secondpe,.,ngh)
Evaluate fitness of SGDSV Dg,.,
if SGDSV Dp,, better than secondp,. then
// Update Second Bee
secondgee = SGDSV Dpee

globalp,, < GlobalSearch(thirdp,,)

Evaluate fitness of globalp,,

if globalg,, better than thirdpg.. then
// Update Third Bee
thirdg., = globalpe,

Evaluate fitness of the new population
Sort population according to loss values
Best Model = Best Bee

N return Best Model (Best Bee)

is used for the random exploration for potential new solutions of the search space. If the
updated random weights gave a better solution for the loss function, then the third bee is
updated with new global searched weights. This procedure gives the advantage to escape
the getting trapped at local optima, that results with converging to the global optimum
faster during the training process. Figure [5.2] shows the pseudo-code of the proposed
enhanced Ternary Bees Algorithm (BA-3+). Algorithm [I3]shows the pseudo-code of the
proposed enhanced Ternary Bees Algorithm (BA-3+).

104

5.3 Experiments

5.3.1 Experimental Setup

The proposed algorithms were implemented using the Tensorflow library with Keras Se-
quential model in Python on the macOS Catalina on MacBook Pro, 3.1 GHz quad-core
Intel Core 15 hardware. The proposed BA-3+ algorithm was run with batch size 1 for each
(x) = (x1,x2, ..., x,_1, x;),t®)) pair of datasets. Each dataset was divided into a training
set and a validation set using 5-fold cross-validation. The training was performed with
BA-3+ and SGD according to BCE loss value over 100 independent runs, each involving
100 epochs. The BA-3+ training procedure was online learning and happened incremen-
tally over each iteration, which means the learnable parameters were updated after each
forward and backward propagation of each training sample [161]]. Figure [5.5]|represents

the flowchart of the proposed classification model.

Pre-processing steps

Datasets 4'{ Raw text H Spell Checking H Tokenizer

Initialise temary bees |

4{ Evaluate the fitness (loss) values ‘

Train network model and calculate fitness values ‘

Meet the stop
condition?

Yes

| Optimal classification model |

Classify results

Figure 5.5 Flowchart of the proposed classification model

Table [5.3] shows the parameters of BA-3+. The number of scout bees represents the
number of sequential RNN networks. Each training sample of the input data xl) =
(x1,%2, ...,X,_1, %) is padded to the maximum sequence length after preprocessing steps
of the given dataset. Widely-used sentiment classification datasets in Turkish and English
from 3 different domains (movie reviews, multi-domain product reviews and twitter re-
views) were adopted to verify the proposed algorithm. Table [5.4] presents the datasets

information in detail.

In all of the experiments, the sequential model was implemented with the same hyper-

105

Table 5.3 Parameter setting

Parameter Value
x(0) = (X1,2%2, <oy X1, Xp) max length = 200
nScout 3
nEiteSiteBee 1
nSelectedSiteBee 1
ngh 0.5
nhidden 32
epoch 100
independent runs (solution numbers) 100
batch size 1
upper limit of max singular value 1+ngh
lower limit of min singular value 1/(1+ngh)
N (learning rate) 0.01

Table 5.4 Turkish and English datasets

Dataset Size

TR Books [91]] 700 P, 700 N

TR DVD [91] 700 P, 700 N

TR Electronics [91]] 700 P, 700 N

TR Kitchen Appliances [91]] 700 P, 700 N
Turkish Movie Reviews [91]] 5331 P, 5331 N
Turkish Twitter Dataset [[162]] 12490 P, 12490 N
English IMDB Movie Reviews [163] | 12500 P, 12500 N
English Movie Reviews []1]] 1000 P, 1000 N
English Yelp dataset [[164]] 3337 P, 749 N

parameters for the sake of fair comparison. Every sequential model was constructed with
the input layer, hidden RNN layers, and the output layer. The embedding layer was used
as the input layer, which converts the indexes of the sequential input to the fixed size
dense vectors as an input of the model. The vocabulary size of each dataset was used as
the input dimension of the embedding layer. The random uniform function was used as

weight initialiser for both the embedding layer and hidden layers.

As a critical hyper-parameter, the neighbourhood size (ngh) of the BA-3+ is set to 0.5.
The learning rate (1) of the SGD is set to 0.01. The neighbourhood size is used for
both the local search and the stabilisation of the largest and the smallest eigenvalue of
the updated parameters. The number of hidden layers is set to 32 for each model. Each
element of the learnable (trainable) parameter of the 6 = (W ;,, Wy, Wiy, by, b)), the
dimension of the weight matrices is changed according to hidden layer numbers, and the
corresponding dimensions of the weight matrix can be seen in Table in Section

106

In this section, F1-score or F1 measure was used as a statistical measure for the analysis
of the binary classification problem in addition to the accuracy measure. F1 measure is

calculated as follows:

2 Precision Recall

= 5.1
Precision+ Recall -1
TP

Precision = ——— 5.2)

(TP+FP)

TP
Recall = ———— (5.3)
(TP+FN)

TP+TN

Accuracy = + (54)
(TP+TN+FP+FN)

Precision is the total count of true positives divided by the total number of positive results.
The recall is the total number of true positive results divided by the number of all samples
that should have been classified as positive. F1 measure can also be defined as a harmonic
mean of the precision and recall value. The next section reports performance results and

benchmarks.

5.4 Results and Discussion

Table reports the best and average accuracy, loss and F1 measures obtained by both
the BA-3+ and SGD algorithms. The accuracy and loss values of the training and val-
idation datasets are given as percentages. The average values were calculated after 100
independent training runs. Figure [5.6] shows the loss values for each dataset after one
independent run which contains 100 training epochs. According to experimental results,
the proposed BA-3+ algorithm guarantees fast convergence to the optimum value and the

lowest error rate for each dataset.

Figure and Figure [5.8] represent the distributions of the loss values for both BA-3+
and SGD over 100 independent runs. Table reports the best and average accuracy

107

and loss values of the training datasets and validation datasets. BA-3+ performs better
compared to traditional SGD. Results showed that BA-3+ can be used as an effective
learning method for the sentiment classification task. The performances of BA-3+ were
better both in terms of the best and average accuracy compared to SGD. Similarly, the

best and average values of BA-3+ were lower than for SGD for each dataset.

i Training and Validation Loss with Turkish Book Reviews - Training and Validation Loss with Turkish Twitter Dataset Training and Validation Loss with Turkish DVD Reviews

1
— G training loss — 5GD training loss
150 { — SGD validaticn loss 10 — SGD validation loss.
" — TeAwaining loss — TBAraining loss
125 { — TBAvaiigation loss 08 — TBA validation loss
06 —— SGO training loss = 100
a —— SGO validation loss. 8o g%
8 —— TBA training loss g
04 — TBA validation loss 5o 04
02 e 02
000
o Y E) & ® 100 00
00 Epoch
0 20 0 €0 0 100 o 2 &0 100
Epoch Epoch

Training and Validation Loss with Turkish Movie Reviews Training and Validation Loss with Turkish Electronic Products Reviews
16

— SGD training loss. —— SGD training loss

o8 — 5GD validation loss 14 { — SGD validation loss
s — TBAtalning loss — TBAtraining loss
— TBAvalidation loss 12 { — T84 validation foss
06
— SGO training loss 10
a —— SGO validation loss. F w
804 —— TBA training loss 8 & L
— TBA validation loss 06
02 04
02
- [E)) o 100 hes
o E) E) ©) 100 Epoch 0 0 P © o 100
Epoch Epoch

Training and Validation Loss with English IMDB Movie Training and Validation Loss with English Movie Reviews Training and Validation Loss with English Yelp Dataset

—— SGD training loss

35 01 —— SGD training loss
—— SGD validation loss 10 —— SGD validation loss.
30 = TBA training loss 06 = TBA training loss
—— TBA validation loss 08 —— TBA validation loss
25 0s

— 56D training loss.

w20 04 — SGD validation loss 06
8 — TBAtsaining loss &
15 03 = TBAvalidation loss
04
10 02
. D ot 02
00 L 00
[} B) 0 ® 180
0 k- 0 @ L] 100 o 2 L 100
Epoch Epoch

Epoch

Figure 5.6 The comparison of loss values based on BA-3+ and SGD

Kitchen Products Dataset Results with SGD Turkish Movie Reviews Dataset Results with BA

10
0850
— 5GD training — BAtraining
0825 - SGD validation ~— BA validation
0800
" 0775
7
5 0750
0725
0700
0675 ;
0 20 0) 8 100 2 . s . s bt
RNN Sentiment C} ion Loss on English Movie Reviews dataset JRNN Classification Loss on English Movie Reviews
5 — BAtraining
—— SGD training
— 5GD validation == CAvaildation
4
w3 "
3 k|
2
1
0 20 40 €0 80 100

RNN Sentiment Classification Loss on English Yelp dataset

timent € Loss on English Yelp dataset Results with BA
14 { — SGD training — BAtraining
—— 5GD validation —— BAvalidation
1 08
10 06
] 3
08 04
06
02
04
00
[20 P () 0 100

20 40 0 L)

Independent runs / Solution numbers

100 :
Independent runs / Solution numbers

Figure 5.7 Distributions of the loss values of the training and validation dataset for 100
independent runs

108

601

Loss

RNN Sentiment Classification Loss on English IMDB dataset

= SGD training
—— SGD validation

RNN Sentiment Classification Loss on Turkish Twitter data

0 20 40 60 80 100

set

= 5GD training
— SGD validation

[» Py)) 100

Book Products Dataset Results with SGD

— SGD training
—— SGD validation

0 2 ® &) 100
Independent runs / Solution numbers

Sengjrunenl Classification Loss on English IMDB dataset Results with BA

= BA training
~—— BA validation
08
06
a
|
04
02
00-

0 20 40 60 80 100

RNN Sentiment Classification Loss on Turkish Twitter dataset

—— BA training
e —— BA validation
05
04
w
803
02
01
00
0 » B)) 100
i Book Products Dataset Results with BA
—— BA training
—— BA validation
08

Independent runs / Solution numbers

Loss.

08

DVD Products Dataset Results with SGD

= SGD training
= SGD validation

075

074

073

072

071

070

069

0 20 40 &0 80 100

Electronic Products Dataset Results with SGD

—— SGD training
—— SGD validation

Turkish Movie Reviews DatasetResults with SGD

= SGD training loss
= SGD validation loss

20 40 Gl &0 100
Independent runs / Solution numbers

10

08

10

10

08

DVD Products Dataset Results with BA

= BA training
—— BA validation

Electronic Products Dataset Results with BA

— BAtraining
= BA validation

Kitchen Products Dataset Results with BA

=—— BAtraining
~—— BA validation

Independent runs / Solution numbers

Figure 5.8 Distributions of the loss values of the training and validation dataset for 100 independent runs

Table 5.5 Total training time (sec) of the BA-3+, DE, PSO and SGD algorithms

Datasets SGD Total Time BA3+ Total Time DE Total Time PSO Total Time

TR Book 237.36 393.139 871.608 544914
TR DVD 233.92 407.187 860.439 520.700
TR Elect. 233.15 411.297 1317.971 512.482
TR Kitchen 235.73 417.765 855.125 513.929
TR Movie 1021.38 1394.631 3827.576 3969.091
TR Twitter 4334.98 8340.9 16178.52 8978.6
ENIMDB 12100.00 22347.5 31724.76 25674.5
EN Movie 1293.718 2206.8 3361.95 2399.71
EN Yelp 4691.78 12112.8 21157.6 13894.9

Table 5.6 Comparison of BA-3+ performance with DE and PSO and SGD

Datasets SGD Acc. BA3+ Acc. DE Acc. PSO Acc.

TR Book 0.527 0.801 0.789 0.690
TR DVD 0.519 0.923 0.808 0.678
TR Elect. 0.58 0.915 0.786 0.696
TR Kitchen 0.507 0.81 0.794 0.686
TR Movie 0.58 0.93 0.887 0.759
TR Twitter 0.747 0914 0.74 0.709
ENIMDB 0.579 0.91 0.778 0.701
EN Movie 0.585 0.896 0.78 0.69

EN Yelp 0.79 0.87 0.71 0.68

BA-3+ has been compared with Differential Evolution (DE) and Particle Swarm Opti-
mization (PSO) algorithms. For the sake of comparison, PSO has been evaluated with
three particles as we propose to employ only three scout bees over 100 epochs. However,
DE has been employed with 100 generations since it gave too low accuracy when it em-
ployees with only three generations. Table [5.5]reports the time consumption of the SGD,
BA-3+, DE, and PSO algorithms in second. As can be in Table [5.6] BA-3+ has outper-
formed the DE and PSO, and its computation time of the BA-3+ is lower from DE and
PSO. Although BA-3+ time consumption was longer than standard SGD, the accuracy
value and F1 measure have improved for all classification datasets, at least with a 30% -
40% improvement. Furthermore, BA-3+ was more stable and converged faster than the
DE and PSO algorithms since it employs only three individual bees as a population. As
is expected SGD model has the lowest computation time, but the accuracy result is also

lower compared to all other metaheuristic training algorithms.

110

Table 5.7 Comparison of the results of 100 independent experiments with 100 epochs

I11

Accuracy Results Loss Results F1 Score
Datasets Alg. Traingess Valpess Traina,g Valay, | Traing.y Valgey Traing,, Valayg | Traina, Valay,
TR Book BA-3+ | 0.99 0.99 0.801 0.882 | 0.00 0.00 0.0769 0.117 | 0.81 0.78
SGD 0.73 0.64 0.527 0.51 0.686 0.688 0.695 0.697 | 0.68 0.67
TR DVD BA-3+ | 0.99 0.99 0.923 0.91 0.00 0.00 0.076 0.089 | 0.80 0.78
SGD 0.52 0.39 0.519 0.389 | 0.686 0.701 0.708 0.748 | 0.70 0.70
TR Elect. BA-3+ | 0.99 0.99 0.915 0.916 | 0.00 0.00 0.084 0.083 | 0.83 0.81
SGD 0.99 0.58 0.615 0.549 | 0.092 0.684 0.640 0.849 | 0.75 0.73
TR Kitchen BA-3+ | 0.99 0.99 0.81 0.810 | 0.00 0.00 0.189 0.191 | 0.81 0.75
SGD 0.52 0.54 0.507 0.525 | 0.692 0.689 0.640 0.813 | 0.70 0.67
ENIMDB BA-3+ | 0.99 0.99 0911 0.90 0.00 0.00 0.032 0.006 | 0.77 0.75
SGD 0.58 0.47 0.579 0.469 | 0.68 0.693 0.81 0.870 | 0.71 0.70
TR Twitter BA-3+ | 0.99 0.99 0.914 0.830 | 0.00 0.00 0.017 0.029 | 0.76 0.73
SGD 0.99 0.55 0.747 0.456 | 0.112 0.691 0.51 0.909 | 0.59 0.57
TR Movie BA-3+ | 0.99 0.99 0.93 0.855 | 0.00 0.00 0.00 0.05 0.80 0.77
SGD 0.9 0.58 0.58 0.494 | 0.376 0.689 0.668 0.725 | 0.66 0.63
EN Movie BA-3+ | 0.99 0.99 0.896 0.87 0.00 0.00 0.024 0.058 | 0.81 0.80
SGD 0.640 0.610 0.585 0.601 | 0.655 0.668 0.69 0.678 | 0.77 0.75
EN Yelp BA-3+ | 0.99 0.99 0.87 0.86 0.00 0.00 0.030 0.02 0.75 0.70
SGD 0.87 0.809 0.79 0.854 | 0.325 0.318 0.490 0.424 | 0.61 0.57

Since we aim to improve the learning capacity of RNN as good as advanced deep learn-
ing language models such as LSTMs, we compared the proposed training algorithm with
the advanced neural language models, including chain-structured and tree-structured lan-
guage models. For this purpose, LSTM has been modeled with the same hidden layer
number and training optimizer. Tree-LSTM has been modeled with similar hyperparam-
eters to the RNTN model, which operates over MS-TR treebank [90]. The results of the
Recursive Neural Tensor Network (RNTN) model have been taken from [90]. Table [5.8]
reports the hyperparameters of the advanced deep language models and Table[5.9]reports
comparisons of accuracy results of advanced recurrent and recursive language models for
Turkish binary classification datasets over test dataset. According to the experiments, it
is observed that the RNN model combined with the BA-3+ training algorithm performed
close or as good as advanced recurrent and recursive deep language models and gave

comparable results.

Table 5.8 Parameter setting for LSTM and Tree-LSTM models

Parameter Value
x = (x1,x2, ...,x,_{, %) | max length = 50

embedding dimension 300
nhidden 32
epoch 100
batch size 32

optimizer SGD
learning rate 0.01

Table 5.9 Comparisons of average accuracy results of advanced recurrent and recursive
language models for Turkish binary classification datasets

Models Book Electr. DVD Kitchen Movie Twitter
LSTM 0.823 0.725 0.751 0.75 0.835 0.895
Tree-LSTM 0.883 0.853 0.85 0.82 0.88 0.89
RNTN 0.86 0.866 0.824 0.798 0.88 0.835
RNN BA3+ 0.88 0.801 0.866 0.818 0.854 0.838
RNN SGD 0.808 0.75 0.734 0.704 0.721 0.744

The success of BA-3+ depends on its hybrid metaheuristic nature. BA-3+ evaluates only
three candidate models, each having the same deep RNN architecture with different learn-
able parameters [165]. The training process starts with these three candidate models
(number of scout bees), which dynamically search for the optimum values of the learnable
parameters, and continues selecting the best model for local search to find better solutions.
This is the feature of BA-3+ that brings good initial parameters for the iterative learning

process. After each iteration of the proposed algorithm, if more optimum values of the

112

10 10
7081 . 08]
[v
g g
S 06+ : : A 3
: — ° o0 o —© g 0.6
° o a o
-] N RA o
@ g4 —@ TREELSTM == RNN-BA-3+ 3 0| —@= TREELSTM T
ST o= RNN-SGD g LSTM o RNN-SGD
il —#— RNTN
0.2 ; ; i ! .
0 20 40 60 80 100 . f y y y
Iterations Y 20 40 60 80 100
Iterations
10 10
> 08 | 208
v [
o =
- -]
g o E .
g L < 0.6 o
206 — c e
= ° ° ° o o o
7] I =
= 04_2'/ ~@— TREE-LSTM =¥= RNN-BA-3+ £ 04 —@— TREE-LSTM =%= RNN-BA-3+
’ - LSTM o RNN-SGD B - LSTM o RNN-SGD
~de— RNTN —#— RNTN
0.2 i i ; " 0.2 . . i ;
0 20 40 60 80 100 0 20 40 60 80 100

Iterations

Iterations

=
(=}

o
o

o
o

Movie Accuracy
Twitter Accuracy

== RNN-BA-3+

== RNN-BA-3+

=@- TREE-LSTM | =@= TREE-LSTM

o
£

~gp- LSTM o RNN-SGD - LSTM o RNN-SGD
= RNTN —#— RNTN
0.2 - T f y 0.2 : - . T
0 20 40 60 80 100 0 20 40 60 80 100

Iterations Iterations

Figure 5.9 Comparison of BA-3+ performance with advanced models and RNN model
trained with SGD for some datasets

learnable parameters are found, they will be updated incrementally. This feature of BA-3+
yields faster convergence. Additionally, as BA-3+ combines local SGD training with the
SVD , it can exploit the learning ability of SGD while controlling VEG, making BA-3+
a hybrid meta-learning algorithm combining gradient-free and gradient-based optimisa-
tion. Finally, BA-3+ has a random exploration operator, namely, global search operator,
which enables the exploration of new promising solutions while preventing the optimi-
sation process from being trapped at local stationary points. Beside these advantages,
critical hyper-parameters, such as learning rate and neighbourhood size, were empirically
selected for BA-3+ as for SGD. For future studies, hyperparameter tuning would be per-
formed to learn much larger datasets. Learning large datasets may also require the parallel

running of the proposed algorithm and more powerful hardware resources.

As it can be clearly seen from Figure[5.9 RNN-SGD performed well for only one dataset.
Accordingly, we can say that the performance of the systems can be better when the mod-
els are trained with huge datasets such as the Twitter classification dataset (see Table[5.4)).
However, in all other cases, we found that the BA algorithm performed well and yielding
results just as well as advanced language models. The experimental results demonstrate
that BA-3+ gives us a chance to get rid of the disadvantages of the SGD algorithm and
can handle the VEG problem. Although BA-3+ time consumption is longer than SGD,

113

the accuracy value and F1 measure are higher for all classification datasets. Furthermore,
since BA-3+ employs only three scout bees, the total training time is shorter than the DE
and PSO algorithms and it outperformed the DE and PSO (see Table [5.5 and Table [5.6).
BA-3+ and PSO run-times are similar, but BA-3+ gave better results in terms of accu-
racy. Even though the DE algorithm was tested for 100 generations, it could not reach the

BA-3+ performance.

5.5 Summary

This section has described the use of the Ternary Bees Algorithm (BA-3+) as a training
algorithm for finding the optimal set of parameters of a sequential deep RNN language
model for the sentiment classification task. BA-3+ has been modeled as a sequential
model and tested on nine different datasets including Turkish and English text. The model
conducts an exploitative local search with the best bee and an explorative global search
with the worst bee. The in-between bee is used for improved Stochastic Gradient De-
scent (SGD) learning with Singular Value Decomposition (SVD) to stabilise the updated
model parameters after the application of SGD. This strategy is adopted to prevent the
vanishing and exploding gradients problem of SGD training. The proposed BA-3+ algo-
rithm guarantees fast convergence as it combines local search, global search, and SGD
learning with SVD, and it is faster than other iterative, metaheuristic algorithms, as it
employs only three candidate solutions in each training step. BA-3+ has been tested
on the sentiment classification task with different datasets, and comparative results were
obtained for chain-structured and tree-structured deep language models, Differential Evo-
lution (DE), and Particle Swarm Optimization (PSO) algorithms. BA-3+ converged to the
global minimum faster compared to the DE and PSO algorithms and it outperformed the
SGD, DE, and PSO algorithms both for the Turkish and English datasets. According to
the experimental results, BA-3+ performed better compared to the standard SGD training
algorithm and RNN combined with BA-3+ performs as good as for advanced deep neu-
ral language models. BA-3+ converged to the global minimum faster than the DE and
PSO algorithms, and it outperformed the SGD, DE, and PSO algorithms for the Turkish
and English datasets. The accuracy value and F1 measure have improved at least with a
30% - 40% improvement than the standard SGD algorithm for all classification datasets.
Accuracy rates in the RNN model trained with BA-3+ ranged from 80% to 90%, while
the RNN trained with SGD was able to achieve between 50% and 60% for most datasets.
The performance of the RNN model with BA-3+ has as good as for Tree-LSTMs and
Recursive Neural Tensor Networks (RNTNs) language models, which achieved accuracy
results of up to 90% for some datasets. The improved accuracy and convergence results
show that BA-3+ is an efficient, stable algorithm for the complex classification task, and it

can handle the vanishing and exploding gradients problem of deep RNNs. The small dif-

114

ferences between the training and validation results for the nine datasets have confirmed
the efficiency of the proposed algorithm, with BA-3+ indeed offering better generalisation

and faster convergence than the SGD algorithm.

115

6

RESULTS AND DISCUSSION

In this thesis, comprehensive research to supply new resources and approaches was pre-
sented for recursive deep learning models for Turkish sentiment analysis. The conclusions
of the study contributed to three major interrelated research topics; creating a new senti-
ment treebank, modelling novel recursive deep learning architectures, and implementation

of a new training algorithm.

The first part of the dissertation focus on constructing a Turkish Sentiment Treebank,
which is obligatory for work with recursive deep learning models. We constructed MS-
TR, a Morphologically Enriched Sentiment Treebank, which was implemented as an input
for Recursive Deep Models to address compositional sentiment analysis for Turkish. MS-
TR contributes to the lack of sentiment analysis resources that also can be used for the
other recursive deep models for future studies. It is the first Turkish Sentiment Treebank
that is fully labelled according to morphological structures of the words to infer the polar-
ity of the inner nodes of MS-TR as positive and negative. The proposed annotation model
has been done for four different levels, including morph-level, stem-level, token-level,
and review-level. Morph-Level annotated MS-TR was aiming to retrieve hidden polarity
of the suffixes in the morphologically rich word. To this end, tokens are morphologically
analyzed, and they are parsed to their possible stem and suffixes. Using only a morpho-
logical analysis of the word cannot provide the correct polarity information for each case.
Hence, in addition to the morphological annotation, we also proposed to use a polarity
lexicon to capture polar words, which are root and do not have any morphological infor-
mation. Stem-Level annotated MS-TR was constructed similar to morph-level annotated
MS-TR. The only difference is using only stems of the words, and the suffixes (ending)
of the words are eliminated from the word after morphological parsing. As a third level,
we propose to annotate each token of the reviews using polar embedding spaces, which
are constructed by using positive and negative datasets. The cosine similarity measure
has been used to find the token-level label. If the cosine similarity of the positive most
similar word and the target token is bigger than the cosine similarity of the negative most

similar word and the target token, the token is labelled as positive; else, it is labelled as

116

negative. As the last annotation level, we proposed using only review-level annotated tree
structures to construct MS-TR for comparing each annotation level’s performance. In ad-
dition to the binary-labelled parse trees, the fine-grained dataset has been annotated by
taking into account the morphological information of the words. The polarity distribution
of the phrases, i.e. phrase-level to review-level labelling, was realized in two stages. The
first stage is labelling words according to their polarity features which are detected from
the morphological analysis of the words. In addition to the binary annotation, we have
scored words whether they are booster words. Three different domain datasets were used,
including product reviews, movie reviews, and the Turkish Natural Corpus essays for con-
struction. Comparative results were obtained with the Recursive Neural Tensor Networks
(RNTNSs), which is operated over MS-TR, and conventional ML methods. Experiments
proved that RNTN outperformed the baseline methods and achieved much better accu-
racy compared to the baseline methods, which cannot accurately capture the aggregated

sentiment information.

In the second part of the thesis, advanced recursive deep learning architectures had been
investigated. Even though RNTN obtained good results both for binary and fine-grained
sentiment detection, results are not well enough. Hence tree-structured models have been
improved using attention and memory blocks. To this end, LSTM models had been ex-
tended to Tree-LSTM, which can work over sentiment treebank while using memory
blocks and attentive mechanism. A novel attentive compositional mechanism was pro-
posed in binary Tree LSTMs (ACT-LSMTs) to improve the structural learning ability of
the tree-structured LSTMs. ACT-LSTMs had been used to detect the important (more
related) part of the long sentences. The main motivation was mimicking the human atten-
tion mechanism to memorize and learn the more important parts of the given sentences
for a downstream task. The aim was to prevent the loss of information, which occurs
due to padding operations. A comprehensive benchmark had also been aimed to com-
pare the performances of advanced chain-structured and tree-structured language models
over a SA task to decide which architecture is better. According to the experimental re-
sults, ACT-LSTM performed better in terms of fine-grained Sentiment Analysis (SA).
They combined the advantages of the attention mechanism with the combined power of
the TreeLSTM networks for Turkish SA, particularly to improve the performance of the
structured fine-grained SA models. It had been observed that Tree-LSTMs performed bet-
ter compared to chain-structured LSTMs and RNTN. RNTN also performed better than

chain-LSTMs combined with various segmentation methods.

In the third part of the thesis, a new training algorithm was presented to overcome the
vanishing and exploding gradients (VEG) problem, which usually observed while train-
ing models. A novel metaheuristic optimization approach was proposed for training deep

RNNs for the sentiment classification task. The approach employs an enhanced ternary

117

Bees Algorithm (BA-3+) which maintains low time-complexity for large dataset classi-
fication problems by considering only three individual solutions in each iteration. The
algorithm combines the collaborative search of three bees, performing local learning with
exploitative search, SGD learning with singular value decomposition (SVD), and global
learning with explorative search. Thus, the algorithm utilizes the greedy selection strategy
of the local search operators of the basic Bees Algorithm to improve solutions, the stabi-
lization strategy of SVD to handle the problem of VEG of the decision parameters, and the
random global search strategy of the basic Bees Algorithm to achieve faster convergence
avoiding getting trapped at local optima. BA-3+ had been used to find the optimal set of
trainable parameters of the proposed deep recurrent learning architecture. The proposed
algorithm had been compared for sentiment detection. According to the experimental re-
sults, the improved accuracy and convergence results showed that the proposed algorithm
performed better compared to traditional SGD and BA-3+ is an efficient algorithm for

training deep RNNs for complex classification tasks.

Tree-RNNs are powerful models to learn syntactic and semantic features, but they are
not popular as traditional chain based RNNs due to their dependencies on the parse-tree
representation of input data. Besides their compositional advantages, the construction of
treebanks can be very time-consuming and processing the language getting much more
complicated. Although there is a significant benefit in processing a sentence in a tree-
structured recursive manner, data annotated with parse trees could be expensive to pre-
pare, and it is needed to find the optimum tree structure of the sequence. Hence finding

the best tree structure of sentences is still an open problem in NLP for future researches.

The artificial intelligence systems get dramatic successes with the contribution of the large
data sets and improvements of the deep learning algorithms. The available resources and
algorithms could be expanded for future Turkish studies. Algorithms could be imple-
mented to learn the out-of-vocabulary (OOV) word embeddings that are especially useful

for morphologically rich languages (MRLSs).

Due to the black-box nature of the AI models and the nonlinearity of computation within
the nested deep neural networks, the theory of the success behind these models still cannot
be explained. That causes the lack of transparency and limited effectiveness of the Al
systems and make it hard to gain trust from users. Nevertheless, instead of accepting the
black-box structure of the deep learning models as a bug, it is necessary to explain the

magic of how these black boxes generate information and answers.

118

REFERENCES

[3]

B. Pang, L. Lee, S. Vaithyanathan, “Thumbs up? sentiment classification us-
ing machine learning techniques,” in Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2002), Associ-
ation for Computational Linguistics, Jul. 2002, pp. 79-86. doi: |10 . 3115/
1118693 .1118704. [Online]. Available: https://www .aclweb .
org/anthology/W02-1011.

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C.
Potts, “Recursive deep models for semantic compositionality over a sentiment
treebank,” in EMNLP 2013 - 2013 Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference, 2013, pp. 1631-1642, isbn:
9781937284978.

R. Baly, H. Hajj, N. Habash, K. B. Shaban, W. El-Hajj, “A sentiment treebank and
morphologically enriched recursive deep models for effective sentiment analysis
in arabic,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 16, no. 4,
Jul. 2017, issn: 2375-4699. doi: |10 . 1145 /3086576. [Online]. Available:
https://doi.org/10.1145/3086576.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, C. D. Manning, “Semi-
supervised recursive autoencoders for predicting sentiment distributions,” in
EMNLP 2011 - Conference on Empirical Methods in Natural Language Process-
ing, Proceedings of the Conference, 2011, pp. 151-161, isbn: 1937284115. doi:
10.1.1.224.9432.

U. Erogul, “Sentiment Analysis in Turkish,” Middle East Technical University,
Master of Science, 2009.

M. Kaya, G. Fidan, 1. H. Toroslu, “Sentiment analysis of Turkish political news,”
Proceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelli-
gence, WI 2012, pp. 174-180, 2012. doi:|10.1109/WI-IAT.2012.115.

C. Aytekin, “An Opinion Mining Task in Turkish Language: A Model for Assign-
ing Opinions in Turkish Blogs to the Polarities,” Journalism and Mass Communi-
cation, vol. 3, no. 3, pp. 179-198, 2013.

M. Thelwall, K. Buckley, G. Paltoglou, “Sentiment strength detection for the so-
cial web,” J. Am. Soc. Inf. Sci. Technol., vol. 63, no. 1, pp. 163-173, Jan. 2012,
issn: 1532-2882.doi: 10.1002/asi.21662. [Online]. Available: https:
//doil.org/10.1002/asi.21662.

A. G. Vural, B. B. Cambazoglu, P. Senkul, Z. O. Tokgoz, “A Framework for Sen-
timent Analysis in Turkish: Application to Polarity Detection of Movie Reviews
in Turkish,” in Computer and Information Sciences I11: 27th International Sympo-
sium on Computer and Information Sciences, E. Gelenbe, R. Lent, Eds., London:

119

https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://www.aclweb.org/anthology/W02-1011
https://www.aclweb.org/anthology/W02-1011
https://doi.org/10.1145/3086576
https://doi.org/10.1145/3086576
https://doi.org/10.1.1.224.9432
https://doi.org/10.1109/WI-IAT.2012.115
https://doi.org/10.1002/asi.21662
https://doi.org/10.1002/asi.21662
https://doi.org/10.1002/asi.21662

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Springer London, 2013, pp. 437-445. doi: https://doi.org/10.1007/
978-1-44771-4594-3_45.

R. Dehkharghani, Y. Saygin, “SentiTurkNet : a Turkish polarity lexicon for senti-
ment analysis,” Language Resources and Evaluation, vol. 50, no. 3, pp. 667-685,
2016, issn: 1574-0218.doi:|10.1007/s10579-015-9307-6.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. J. Miller, “Introduction
to wordnet: An on-line lexical database,” International Journal of Lexicography,
vol. 3, no. 4, pp. 235-244, 1990, issn: 09503846. doi: 10.1093/131/3.4.
235.

0. Bilgin, O. Cetinoglu, K. Oflazer, “Building a Wordnet for Turkish,” Romanian
Journal of Information Science and Technology, 2004.

S. Baccianella, A. Esuli, F. Sebastiani, “SentiWordNet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining,” May 2010. [Online]. Avail-
able: http://www.lrec—conf.org/proceedings/lrec2010/
pdf/769_Paper.pdfl

E. Cambria, C. Havasi, A. Hussain, “SenticNet 2: A semantic and affective re-
source for opinion mining and sentiment analysis,” in Proceedings of the 25th In-
ternational Florida Artificial Intelligence Research Society Conference, FLAIRS-
25,2012, pp. 202-207, isbn: 9781577355588.

E. Cambria, D. Olsher, D. Rajagopal, “SenticNet 3: A common and common-
sense knowledge base for cognition-driven sentiment analysis,” Proceedings of
the National Conference on Artificial Intelligence, vol. 2, pp. 1515-1521, 2014.

O. Coban, B. Ozyer, G. T. Ozyer, “Sentiment analysis for Turkish Twitter feeds,”
pp- 2388-2391, 2015.doi: 10.1109/s1u.2015.7130362.

B. M. Ozyildirim, O. Coban, “An Empirical Study of the Extreme Learning Ma-
chine for Twitter Sentiment Analysis,” International Journal of Intelligent Sys-
tems and Applications in Engineering, vol. 3, no. 6, pp. 178-184, 2018, issn:
2147-6799.doi: 10.18201/1jisae.2018644774.

E. Yildirim, F. S. Cetin, G. Eryigit, T. Temel, “The Impact of NLP on Turkish
Sentiment Analysis,” TBV Journal of Computer Science and Engineering, no. 1,
pp- 44-51, 2014.

C. Tirkmenoglu, A. C. Tantug, “Sentiment Analysis in Turkish Media,” in ICML
2014, International Conf. Mach. Learn. BeijingVolume WISDOM’ 14, Workshop
Issues Sentim. Discov. Opin. Mining, June 25th, Beijing, 2014.

G. Yurtalan, M. Koyuncu, C. Turhan, “A polarity calculation approach for
lexicon-based Turkish sentiment analysis,” Turkish Journal of Electrical En-
gineering and Computer Sciences, vol. 27, no. 2, pp. 1325-1339, 2019, issn:
13036203. doi: 10.3906/e1k-1803-92.

G. Eryigit, F. S. Cetin, M. Yanik, T. Temel, 1. Cicekli, “TURKSENT: A senti-
ment annotation tool for social media,” in Proceedings of the 7th Linguistic An-
notation Workshop and Interoperability with Discourse, Sofia, Bulgaria: Associa-
tion for Computational Linguistics, Aug. 2013, pp. 131-134. [Online]. Available:
https://www.aclweb.org/anthology/W13-2316.

120

https://doi.org/https://doi.org/10.1007/978-1-4471-4594-3_45
https://doi.org/https://doi.org/10.1007/978-1-4471-4594-3_45
https://doi.org/10.1007/s10579-015-9307-6
https://doi.org/10.1093/ijl/3.4.235
https://doi.org/10.1093/ijl/3.4.235
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
https://doi.org/10.1109/siu.2015.7130362
https://doi.org/10.18201/ijisae.2018644774
https://doi.org/10.3906/elk-1803-92
https://www.aclweb.org/anthology/W13-2316

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

W. S. McCulloch, W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The Bulletin of Mathematical Biophysics, 1943, issn: 00074985. doi:
10.1007/BF024782509.

D. O. Hebb, The Organization of Behavior. New York: Wiley, 1949.
M. L. Minsky, S. A. Papert, Perceptrons. Cambridge: MIT Press, 1969.

H. Schiitze, “Dimensions of meaning,” in Proceedings of the International Con-
ference on Supercomputing, 1992, isbn: 0818626305. doi: |10 .1007 /978 -
94-009-3847-2_3.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, “In-
dexing by latent semantic analysis,” Journal of the American Society for Infor-
mation Science, 1990, issn: 10974571. doi: |10 . 1002 / (SICI) 1097 —
4571(199009)41:6<391::AID-ASI1>3.0.C0O;2-9.

J. L. Elman, “Finding structure in time,” Cognitive Science, 1990, issn: 03640213.
doi:|10.1016/0364-0213(90) 90002—-E.

Y. Bengio, A. Courville, P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2013, issn: 01628828. doi: | 10.1109/TPAMI . 2013 .50 arXiv: 1206 .
5538.

M. Sahlgren, “The distributional hypothesis,” Italian Journal of Disability, pp. 1—-
18, 2008. [Online]. Available: https : //www . diva—-portal . orqg/
smash/get/diva2:1041938/FULLTEXTO1 .pdfl

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, “Distributed represen-
tations ofwords and phrases and their compositionality,” in Advances in Neural
Information Processing Systems, 2013. arXiv:|1310.4546.

R. Socher, Y. Bengio, C. D. Manning, “Deep learning for NLP (without magic),”
p. 5, Jul. 2012. [Online]. Available: https : / / www . aclweb . org /
antholoqgy/P12-4005.

R. Collobert, J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” Helsinki, Finland, Tech. Rep.,
2008, pp. 160-167. doi: |10 .1145/1390156.1390177. [Online]. Avail-
able: https://doi.org/10.1145/1390156.1390177.

J. Pennington, R. Socher, C. D. Manning, “GloVe: Global vectors for word
representation,” in EMNLP 2014 - 2014 Conference on Empirical Methods
in Natural Language Processing, Proceedings of the Conference, 2014, isbn:
0781937284961.doi:|10.3115/v1/d14-1162.

G. E. Hinton, Learning distributed representations of concepts, 1986. [Online].
Available: http : / / citeseerx . ist . psu . edu / viewdoc /
download?doi=10.1.1.408.7684&rep=repl&type=pdf.

A. Lenci, “Distributional Models of Word Meaning,” Annual Review of Linguis-
tics, 2018, issn: 2333-9683. doi: 10.1146/annurev—linguistics-—
030514-125254.

Z. S. Harris, “Distributional Structure,” WORD, 1954, issn: 0043-7956. doi: |10 .
1080/00437956.1954.11659520.

121

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/978-94-009-3847-2_3
https://doi.org/10.1007/978-94-009-3847-2_3
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.1109/TPAMI.2013.50
https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1206.5538
https://www.diva-portal.org/smash/get/diva2:1041938/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1041938/FULLTEXT01.pdf
https://arxiv.org/abs/1310.4546
https://www.aclweb.org/anthology/P12-4005
https://www.aclweb.org/anthology/P12-4005
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.3115/v1/d14-1162
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7684&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7684&rep=rep1&type=pdf
https://doi.org/10.1146/annurev-linguistics-030514-125254
https://doi.org/10.1146/annurev-linguistics-030514-125254
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C. D. Manning, H. Schiitze, G. Weikurn, “Foundations of Statistical Natural Lan-
guage Processing,” SIGMOD Record, 2002, issn: 01635808. doi: 10 .1145/
601858.601867.

H. Anton, C. Rorres, Elementary Linear Algebra, Applications Version, 9th Edi-
tion. 2005, isbn: 0471433292.

T. Shao, H. Chen, F. Cai, M. De Rijke, “Length-adaptive neural network for an-
swer selection,” in SIGIR 2019 - Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval, 2019,
pp. 869—-872, isbn: 9781450361729. doi: |10 .1145/3331184.3331277.
[Online]. Available: https : //doi .org/ 10 . 1145 /3331184 .
3331277

Y. Bengio, R. Ducharme, P. Vincent, C. Janvin, “A neural probabilistic language
model,” J. Mach. Learn. Res., vol. 3, pp. 1137-1155, Mar. 2003, issn: 1532-4435.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, “Neural ar-
chitectures for named entity recognition,” in 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL HLT 2016 - Proceedings of the Conference, 2016, pp. 260—
270, isbn: 9781941643914. [Online]. Available: https://www.aclweb.
org/anthology/N16-1030.pdf.

Q. Le, T. Mikolov, “Distributed representations of sentences and documents,’
in 31st International Conference on Machine Learning, ICML 2014, 2014, isbn:
9781634393973. arXiv:11405.4053.

P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, “Enriching Word Vectors with
Subword Information,” Transactions of the Association for Computational Lin-
guistics, 2017, issn: 2307-387X. doi: |10 . 1162 /tacl_a_00051. arXiv:
1607.04606.

S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
1997, issn: 08997667. doi:|10.1162/neco.1997.9.8.1735.

F. A. Gers, J. Schmidhuber, F. Cummins, “Learning to forget: Continual predic-
tion with LSTM,” Neural Computation, 2000, issn: 08997667. doi: 10.1162/
089976600300015015.

R. Pascanu, T. Mikolov, Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ser. ICML’ 13, Atlanta, GA, USA:
JMLR.org, 2013, 1II-1310-111-1318.

Y. Bengio, P. Simard, P. Frasconi, “Learning Long-Term Dependencies with Gra-
dient Descent is Difficult,” IEEE Transactions on Neural Networks, 1994, issn:
19410093. doi: 10.1109/72.279181.

J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Gated feedback recurrent neural net-
works,” in 32nd International Conference on Machine Learning, ICML 2015,
2015, isbn: 9781510810587 arXiv: 1502 .02367.

H. Jaeger, H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication,” Science, 2004, issn: 00368075. doi:
10.1126/science.1091277.

122

https://doi.org/10.1145/601858.601867
https://doi.org/10.1145/601858.601867
https://doi.org/10.1145/3331184.3331277
https://doi.org/10.1145/3331184.3331277
https://doi.org/10.1145/3331184.3331277
https://www.aclweb.org/anthology/N16-1030.pdf
https://www.aclweb.org/anthology/N16-1030.pdf
https://arxiv.org/abs/1405.4053
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/1607.04606
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1109/72.279181
https://arxiv.org/abs/1502.02367
https://doi.org/10.1126/science.1091277

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber,
“LSTM: A Search Space Odyssey,” IEEE Transactions on Neural Networks and
Learning Systems, 2017, issn: 21622388. doi: |10 . 1109/ TNNLS . 2016 .
2582924l arXiv:/1503.040609.

J. Martens, 1. Sutskever, “Learning recurrent neural networks with Hessian-free
optimization,” in Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, 2011, isbn: 9781450306195.

V. Nair, G. E. Hinton, “Rectified linear units improve Restricted Boltzmann ma-
chines,” in ICML 2010 - Proceedings, 27th International Conference on Machine
Learning, 2010, isbn: 9781605589077.

X. Glorot, A. Bordes, Y. Bengio, “Deep sparse rectifier neural networks,” in Jour-
nal of Machine Learning Research, 2011.

X. Glorot, Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Journal of Machine Learning Research, 2010.

D. A. Clevert, T. Unterthiner, S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (ELUs),” in 4th International Conference
on Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016.
arXiv:/1511.07289.

Y. Lecun, Y. Bengio, G. Hinton, Deep learning, 2015. doi: 10 . 1038 /
naturel45309.

Q. V. Le, N. Jaitly, G. E. Hinton, A simple way to initialize recurrent networks of
rectified linear units, 2015. arXiv: 1504 .00941 [cs.NE].

X. Xu, H. Ge, S. Li, “An improvement on recurrent neural network by combining
convolution neural network and a simple initialization of the weights,” in Pro-
ceedings of 2016 IEEE International Conference of Online Analysis and Com-
puting Science, ICOACS 2016, 2016, isbn: 9781467377546. doi: 10 .1109/
ICOACS.2016.7563068.

E. Vorontsov, C. Trabelsi, S. Kadoury, C. Pal, “On orthogonality and learning
recurrent networks with long term dependencies,” in 34th International Con-
ference on Machine Learning, ICML 2017, PMLR, 2017, pp. 3570-3578, isbn:
9781510855144, arXiv: 11702 .00071.

G. D. Magoulas, M. N. Vrahatis, G. S. Androulakis, “Improving the conver-
gence of the backpropagation algorithm using learning rate adaptation methods,”
7, vol. 11, Cambridge, MA, USA: MIT Press, Oct. 1999, pp. 1769—-1796. doi:
10.1162/089976699300016223. [Online]. Available: https : //
doi.org/10.1162/089976699300016223.

J. Martens, I. Sutskever, “Training deep and recurrent networks with hessian-free
optimization,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7700
LECTU, pp. 479-535, 2012, issn: 16113349. doi: 10.1007/978-3-642—
35289-8_27.

J. Martens, “Deep learning via hessian-free optimization,” in Proceedings of
the 27th International Conference on International Conference on Machine
Learning, ser. ICML’10, Haifa, Israel: Omnipress, 2010, pp. 735-742, isbn:
9781605589077.

123

https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
https://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1511.07289
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1504.00941
https://doi.org/10.1109/ICOACS.2016.7563068
https://doi.org/10.1109/ICOACS.2016.7563068
https://arxiv.org/abs/1702.00071
https://doi.org/10.1162/089976699300016223
https://doi.org/10.1162/089976699300016223
https://doi.org/10.1162/089976699300016223
https://doi.org/10.1007/978-3-642-35289-8_27
https://doi.org/10.1007/978-3-642-35289-8_27

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms: Second Edition. Luniver
Press, 2010, isbn: 1905986289.

T. Desell, S. Clachar, J. Higgins, B. Wild, “Evolving deep recurrent neural net-
works using ant colony optimization,” in Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2015, isbn: 9783319164670. doi: 10.1007/978-3-319-
16468-7_8.

Q. Kang, W. K. Liao, A. Agrawal, A. Choudhary, “A hybrid training algorithm
for recurrent neural network using particle swarm optimization-based preprocess-
ing and temporal error aggregation,” in IEEE International Conference on Data
Mining Workshops, ICDMW, 2017, isbn: 9781538614808. doi: 10 . 1109 /
ICDMW.2017.112.

C. F. Juang, “A Hybrid of Genetic Algorithm and Particle Swarm Optimization
for Recurrent Network Design,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, 2004, issn: 10834419. doi: 10.1109/TSMCB.
2003.818557.

S. Fong, S. Deb, X. S. Yang, “How meta-heuristic algorithms contribute to deep
learning in the hype of big data analytics,” in Advances in Intelligent Systems and
Computing, 2018, isbn: 9789811033728. doi: [10.1007/978-981-10-
3373-5_1.

P. J. Angeline, G. M. Saunders, J. B. Pollack, “An Evolutionary Algorithm that
Constructs Recurrent Neural Networks,” IEEE Transactions on Neural Networks,
1994, issn: 19410093. doi:10.1109/72.265960.

R. Eberhart, J. Kennedy, “New optimizer using particle swarm theory,” in Pro-
ceedings of the International Symposium on Micro Machine and Human Science,
1995.doi:110.1109/mhs.1995.494215.

H. W. Ge, Y. C. Liang, M. Marchese, “A modified particle swarm optimization-
based dynamic recurrent neural network for identifying and controlling nonlinear
systems,” Computers and Structures, 2007, issn: 00457949. doi:|[10.1016/ 7.
compstruc.2007.03.001.

P. Xiao, G. K. Venayagamoorthy, K. A. Corzine, “Combined training of recur-
rent neural networks with particle swarm optimization and backpropagation al-
gorithms for impedance identification,” in Proceedings of the 2007 IEEE Swarm
Intelligence Symposium, SIS 2007, 2007, isbn: 1424407087. doi: 10 .1109/
SIS.2007.368020.

N. Zhang, P. K. Behera, C. Williams, “Solar radiation prediction based on par-
ticle swarm optimization and evolutionary algorithm using recurrent neural net-
works,” in SysCon 2013 - 7th Annual IEEE International Systems Conference,
Proceedings, 2013, isbn: 9781467331067. doi: 10.1109/SysCon.2013.
6549894.

X. Cai, N. Zhang, G. K. Venayagamoorthy, D. C. Wunsch, “Time series prediction
with recurrent neural networks trained by a hybrid PSO-EA algorithm,” Neuro-
computing, 2007, issn: 09252312. doi: 10.1016/J.neucom.2005.12.
138.

124

https://doi.org/10.1007/978-3-319-16468-7_8
https://doi.org/10.1007/978-3-319-16468-7_8
https://doi.org/10.1109/ICDMW.2017.112
https://doi.org/10.1109/ICDMW.2017.112
https://doi.org/10.1109/TSMCB.2003.818557
https://doi.org/10.1109/TSMCB.2003.818557
https://doi.org/10.1007/978-981-10-3373-5_1
https://doi.org/10.1007/978-981-10-3373-5_1
https://doi.org/10.1109/72.265960
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1016/j.compstruc.2007.03.001
https://doi.org/10.1016/j.compstruc.2007.03.001
https://doi.org/10.1109/SIS.2007.368020
https://doi.org/10.1109/SIS.2007.368020
https://doi.org/10.1109/SysCon.2013.6549894
https://doi.org/10.1109/SysCon.2013.6549894
https://doi.org/10.1016/j.neucom.2005.12.138
https://doi.org/10.1016/j.neucom.2005.12.138

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

A. Blanco, M. Delgado, M. C. Pegalajar, “A real-coded genetic algorithm for
training recurrent neural networks,” Neural Networks, 2001, issn: 08936080. doi:
10.1016/50893-6080(00)00081-2.

M. Dorigo, G. Di Caro, “Ant colony optimization: A new meta-heuristic,” in Pro-
ceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, 1999.
doi:10.1109/CEC.1999.782657.

A. E. R. ElSaid, F. El Jamiy, J. Higgins, B. Wild, T. Desell, “Optimizing long
short-term memory recurrent neural networks using ant colony optimization to
predict turbine engine vibration,” Applied Soft Computing Journal, 2018, issn:
15684946. doi: 10 . 1016/ j.asoc .2018.09. 013 arXiv: 1710 .
03753.

B. Pang, L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf.
Retr., vol. 2, no. 1-2, pp. 1-135, Jan. 2008, issn: 1554-0669. doi: 10 .1561/
1500000011. [Online]. Available: https://doi.org/10.1561/
1500000011.

R. W. Picard, Affective Computing. Cambridge, MA, USA: MIT Press, 1997, isbn:
0262161702.

R. Dehkharghani, B. Yanikoglu, Y. Saygin, K. Oflazer, “Sentiment analysis in
turkish at different granularity levels,” Natural Language Engineering, vol. 23,
no. 4, pp. 535-559, 2017.doi: 10.1017/51351324916000309.

V. Hatzivassiloglou, K. R. McKeown, “Predicting the semantic orientation of ad-
jectives,” in 35th Annual Meeting of the Association for Computational Linguis-
tics and 8th Conference of the European Chapter of the Association for Computa-
tional Linguistics, Madrid, Spain: Association for Computational Linguistics, Jul.
1997, pp. 174-181.doi: |10.3115/976909. 97964 0. [Online]. Available:
https://www.aclweb.org/anthology/P97-1023.

K. Oflazer, “Turkish and its challenges for language processing,” Language Re-
sources and Evaluation, 2014, issn: 15728412. doi: |10 . 1007 / s10579 —
014-9267-2.

S. Baccianella, A. Esuli, F. Sebastiani, “SentiWordNet 3.0: An enhanced lex-
ical resource for sentiment analysis and opinion mining,” in Proceedings of
the Seventh International Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta: European Language Resources Association (ELRA),
May 2010. [Online]. Available: http : / / www . lrec — conf . org /
proceedings/lrec2010/pdf/769_Paper.pdf.

Ethnologue, What are the top 200 most spoken languages? | Ethnologue, 2020.
[Online]. Available: https : / /www . ethnologue . com/ guides /
ethnologue200|(visited on 08/10/2020).

Turkic languages - Wikipedia. [Online]. Available: https : / / en .
wikipedia . org / wiki / Turkic _ languages| (visited on
06/06/2021).

M. Haspelmath, M. S. Dryer, D. Gil, B. Comrie, The World Atlas of Language
Structures. Oxford University Press, 2005, isbn: 9780199255917.

125

https://doi.org/10.1016/S0893-6080(00)00081-2
https://doi.org/10.1109/CEC.1999.782657
https://doi.org/10.1016/j.asoc.2018.09.013
https://arxiv.org/abs/1710.03753
https://arxiv.org/abs/1710.03753
https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011
https://doi.org/10.1017/S1351324916000309
https://doi.org/10.3115/976909.979640
https://www.aclweb.org/anthology/P97-1023
https://doi.org/10.1007/s10579-014-9267-2
https://doi.org/10.1007/s10579-014-9267-2
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
https://www.ethnologue.com/guides/ethnologue200
https://www.ethnologue.com/guides/ethnologue200
https://en.wikipedia.org/wiki/Turkic_languages
https://en.wikipedia.org/wiki/Turkic_languages

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

B. Bickel, J. Nichols, “Inflectional synthesis of the verb,” in The World Atlas of
Language Structures, The World Atlas of Language Structures Online. Leipzig:
Max Planck Institute for Evolutionary Anthropology., 2005, pp. 94-97.

R. Cotterell, H. Schiitze, S. Schiitze, J. Eisner, “Morphological Smoothing and
Extrapolation of Word Embeddings,” Tech. Rep., pp. 1651-1660.

K. Oflazer, “Turkish and its challenges for language processing,” Language Re-
sources and Evaluation, vol. 48, no. 4, pp. 639-653, 2014, issn: 15728412. doi:
10.1007/s10579-014-9267 — 2. [Online]. Available: https : / /
link .springer.com/content /pdf/10.1007%2Fs10579-
014-9267-2.pdf.

T. Luong, R. Socher, C. Manning, “Better word representations with recursive
neural networks for morphology,” pp. 104-113, Aug. 2013. [Online]. Available:
https://www.aclweb.org/anthology/W13-3512.

S. Zeybek, E. Koc, A. Secer, “MS-TR: A Morphologically Enriched Sentiment
Treebank and Recursive Deep Models for Compositional Semantics in Turkish,”
Cogent Engineering, 2021. doi: 10.1080/23311916.2021.1893621.

E. Demirtas, M. Pechenizkiy, “Cross-lingual polarity detection with machine
translation,” in Proceedings of the 2nd International Workshop on Issues of Sen-
timent Discovery and Opinion Mining, WISDOM 2013 - Held in Conjunction
with SIGKDD 2013, 2013, isbn: 9781450323321.doi: 10.1145/2502069.
2502078.

U. Turk, F. Atmaca, S. B. Ozates, A. Koksal, B. Ozturk, T. Gungor, A. Ozgur,
“Turkish treebanking: Unifying and constructing efforts,” in LAW 2019 - 13th

Linguistic Annotation Workshop, Proceedings of the Workshop, 2019, isbn:
9781950737383. doi: 10.18653/v1/w19-4019.

R. Baly, G. Badaro, G. El-Khoury, R. Moukalled, R. Aoun, H. Hajj, W. El-Hajj,
N. Habash, K. Shaban, “A characterization study of Arabic Twitter data with
a benchmarking for state-of-the-art opinion mining models,” pp. 110-118, Apr.
2017. doi: 10.18653/v1/W17—-1314. [Online]. Available: https://
www.aclweb.org/anthology/W17-1314.

H. Aarsleff, “The History of Linguistics and Professor Chomsky,” Language,
vol. 46, no. 3, pp. 570-585, Aug. 1970, issn: 00978507, 15350665. doi: |10 .
2307 / 412308l [Online]. Available: http : / / www . Jjstor . org/
stable/412308.

S. L. Frank, R. Bod, M. H. Christiansen, How hierarchical is language use? 2012.
doi: 10.1098/rspb.2012.1741.

C. Goller, A. Kuechler, “Learning task-dependent distributed representations by
backpropagation through structure,” in IEEE International Conference on Neural
Networks - Conference Proceedings, vol. 1, IEEE, 1996, pp. 347-352. doi: 10 .
1109/icnn.1996.548916.

J. B. Pollack, “Recursive distributed representations,” Artificial Intelligence,
1990, issn: 00043702.doi:|10.1016/0004-3702 (90) S0005-K.

R. Socher, C. D. C. Manning, A. Y. A. Ng, “Learning continuous phrase represen-
tations and syntactic parsing with recursive neural networks,” Proceedings of the
NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, 2010.

126

https://doi.org/10.1007/s10579-014-9267-2
https://link.springer.com/content/pdf/10.1007%2Fs10579-014-9267-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10579-014-9267-2.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10579-014-9267-2.pdf
https://www.aclweb.org/anthology/W13-3512
https://doi.org/10.1080/23311916.2021.1893621
https://doi.org/10.1145/2502069.2502078
https://doi.org/10.1145/2502069.2502078
https://doi.org/10.18653/v1/w19-4019
https://doi.org/10.18653/v1/W17-1314
https://www.aclweb.org/anthology/W17-1314
https://www.aclweb.org/anthology/W17-1314
https://doi.org/10.2307/412308
https://doi.org/10.2307/412308
http://www.jstor.org/stable/412308
http://www.jstor.org/stable/412308
https://doi.org/10.1098/rspb.2012.1741
https://doi.org/10.1109/icnn.1996.548916
https://doi.org/10.1109/icnn.1996.548916
https://doi.org/10.1016/0004-3702(90)90005-K

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

P. Le, W. Zuidema, “Compositional distributional semantics with long short term
memory,” in Proceedings of the Fourth Joint Conference on Lexical and Compu-
tational Semantics, Denver, Colorado: Association for Computational Linguistics,
Jun. 2015, pp. 10-19. doi: 10.18653/v1/S15-1002. [Online]. Available:
https://www.aclweb.org/anthology/S15-1002.

L. Bottou, “From machine learning to machine reasoning: An essay,” Machine
Learning, 2014, issn: 08856125. doi: 10.1007/s10994-013-5335-x.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning representations by
back-propagating errors,” Nature, 1986, issn: 00280836. doi: 10 . 1038 /
323533a0.

G. E. Hinton, R. S. Zemel, “Autoencoders, minimum description length and
helmholtz free energy,” in Proceedings of the 6th International Conference on
Neural Information Processing Systems, ser. NIPS’93, Denver, Colorado: Mor-
gan Kaufmann Publishers Inc., 1993, pp. 3—-10.

Y. Bengio, “Learning deep architectures for Al,” Foundations and Trends in Ma-
chine Learning, vol. 2, no. 1, pp. 1-27, 2009, issn: 19358237. doi: 10.1561/
2200000006.

B. Pang, L. Lee, “Seeing stars: Exploiting class relationships for sentiment catego-
rization with respect to rating scales,” in Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL’05), Ann Arbor, Michi-
gan: Association for Computational Linguistics, Jun. 2005, pp. 115-124. doi:
10.3115/1219840.1219855. [Online]. Available: https://www.
aclweb.org/anthology/P05-1015.

J. Read, “Using emoticons to reduce dependency in machine learning techniques
for sentiment classification,” in Proceedings of the ACL Student Research Work-
shop, ser. ACLstudent 05, Ann Arbor, Michigan: Association for Computational
Linguistics, 2005, pp. 43-48.

J. Suttles, N. Ide, “Distant Supervision for Emotion Classification with Discrete
Binary Values,” in Computational Linguistics and Intelligent Text Processing, A.
Gelbukh, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 121-136,
isbn: 978-3-642-37256-8.

J. H. Park, P. Xu, P. Fung, “PlusEmo2Vec at SemEval-2018 Task 1: Exploit-
ing emotion knowledge from emoji and #hashtags,” in arXiv, New Orleans,
Louisiana: Proceedings of the 12th International Workshop on Semantic Evalua-
tion (SemEval-2018), Association for Computational Linguistics, 2018, pp. 264—
272.doi: 10.18653/v1/s18-1039. eprint: 1804 .08280.

M. Mintz, S. Bills, R. Snow, D. Jurafsky, “Distant supervision for relation ex-
traction without labeled data,” in Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, Suntec, Singapore: Association for Compu-
tational Linguistics, Aug. 2009, pp. 1003—1011. [Online]. Available: https :
//www.aclweb.org/anthology/P09-1113.

127

https://doi.org/10.18653/v1/S15-1002
https://www.aclweb.org/anthology/S15-1002
https://doi.org/10.1007/s10994-013-5335-x
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.3115/1219840.1219855
https://www.aclweb.org/anthology/P05-1015
https://www.aclweb.org/anthology/P05-1015
https://doi.org/10.18653/v1/s18-1039
1804.08280
https://www.aclweb.org/anthology/P09-1113
https://www.aclweb.org/anthology/P09-1113

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Y. Aksan, M. Aksan, A. Koltuksuz, T. Sezer, U. Mersinli, U. U. Demirhan, H.
Yilmazer, G. Atasoy, S. Oz, 1. Yildiz, O. Kurtoglu, “Construction of the Turk-
ish national corpus (TNC),” in Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation (LREC’12), Istanbul, Turkey: Euro-
pean Language Resources Association (ELRA), May 2012, pp. 3223-3227. [On-
line]. Available: http://www . lrec—conf.org/proceedings/
lrec2012/pdf/991_ Paper.pdfl

A. A. Akin, M. D. Akin, “Zemberek, An Open Source Nlp Framework for Turkic
Languages,” Structure, vol. 10, pp. 1-5, 2007. [Online]. Available: https://
citeseerx.ist .psu.edu/viewdoc/download?doi=10.1.
1.556.69&rep=repl&type=pdf.

E. Grave, P. Bojanowski, P. Gupta, A. Joulin, T. Mikolov, “Learning word vec-
tors for 157 languages,” in Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan: Euro-
pean Language Resources Association (ELRA), May 2018. [Online]. Available:
https://www.aclweb.org/anthology/L18-1550.

P. Qi, T. Dozat, Y. Zhang, C. D. Manning, “Universal Dependency parsing from
scratch,” in Proceedings of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, Brussels, Belgium: Association
for Computational Linguistics, Oct. 2018, pp. 160-170. doi: 10 . 18653 /
v1/K18—-2016. [Online]. Available: https://www.aclweb.orqg/
antholoqgy/K18-2016.

R. Socher, C. D. Manning, “Deep learning for NLP (without magic),” in NAACL
HLT 2013 Tutorial Abstracts, Atlanta, Georgia: Association for Computational
Linguistics, Jun. 2013, pp. 1-3. [Online]. Available: https : / / www .
aclweb.org/anthology/N13-4001.

G. Gezici, B. Yanikoglu, “Sentiment Analysis in Turkish,” in, Oflazer K, Saraglar
M (editors). Turkish Natural Language Processing. Cham, Switzerland: Springer
Publishing, 2018, pp. 255-271. doi: 10 .1007/978-3-319-90165-
7_12.

A. Graves, “Generating Sequences With Recurrent Neural Networks,” Aug. 2013.
[Online]. Available: http://arxiv.org/abs/1308.0850.

I. Sutskever, “Training Recurrent neural Networks,” University of Toronto, PhD
Thesis, 2013.

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, Gradient Flow in Recurrent
Nets: the Difficulty of Learning Long-Term Dependencies. 2001.

S. R. Bowman, R. Gupta, J. Gauthier, C. D. Manning, A. Rastogi, C. Potts, “A fast
unified model for parsing and sentence understanding,” in 54th Annual Meeting
of the Association for Computational Linguistics, ACL 2016 - Long Papers, 2016,
isbn: 9781510827585. doi: 10.18653/v1/plo—-1139.

128

http://www.lrec-conf.org/proceedings/lrec2012/pdf/991_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/991_Paper.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.69&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.69&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.556.69&rep=rep1&type=pdf
https://www.aclweb.org/anthology/L18-1550
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://www.aclweb.org/anthology/K18-2016
https://www.aclweb.org/anthology/K18-2016
https://www.aclweb.org/anthology/N13-4001
https://www.aclweb.org/anthology/N13-4001
https://doi.org/10.1007/978-3-319-90165-7_12
https://doi.org/10.1007/978-3-319-90165-7_12
http://arxiv.org/abs/1308.0850
https://doi.org/10.18653/v1/p16-1139

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

K. S. Tai, R. Socher, C. D. Manning, “Improved semantic representations from
tree-structured long short-term memory networks,” in Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long
Papers), Beijing, China: Association for Computational Linguistics, Jul. 2015,
pp. 1556-1566. doi: 10 . 3115 /vl /P15 - 1150. [Online]. Available:
https://www.aclweb.org/anthology/P15-1150.

X. Zhu, P. Sobhani, H. Guo, “Long short-term memory over recursive structures,’
in Proceedings of the 32nd International Conference on International Conference
on Machine Learning - Volume 37, ser. ICML’ 15, Lille, France: JMLR.org, 2015,
pp- 1604-1612.

S. Chaudhari, V. Mithal, G. Polatkan, R. Ramanath, “An attentive survey of atten-
tion models,” 2020.

D. Bahdanau, K. Cho, Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” 2016.

A. Parikh, O. Téackstrom, D. Das, J. Uszkoreit, “A decomposable attention model
for natural language inference,” in Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, Austin, Texas: Association
for Computational Linguistics, Nov. 2016, pp. 2249-2255. doi: |10 . 18653/
v1/D16—- 1244 [Online]. Available: https://www.aclweb.org/
anthology/D16-1244.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, I. Polosukhin, Attention is all you need, 2017.

T. Luong, H. Pham, C. D. Manning, “Effective approaches to attention-based
neural machine translation,” in Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, Lisbon, Portugal: Association
for Computational Linguistics, Sep. 2015, pp. 1412-1421. doi: 10 . 18653/
v1/D15-1166. [Online]. Available: https://www.aclweb.org/
anthology/D15-1166.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, Y. Ben-
gio, “Show, attend and tell: Neural image caption generation with visual atten-
tion,” in Proceedings of the 32nd International Conference on Machine Learning,
F. Bach, D. Blei, Eds., ser. Proceedings of Machine Learning Research, vol. 37,
Lille, France: PMLR, Jul. 2015, pp. 2048-2057. [Online]. Available: http :
//proceedings.mlr.press/v37/xucl5.htmll

G. Letarte, F. Paradis, P. Giguere, F. Laviolette, “Importance of self-attention for
sentiment analysis,” in Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, Brussels, Belgium: Associ-
ation for Computational Linguistics, Nov. 2018, pp. 267-275. doi: 10.18653/
v1/W18—-5429. [Online]. Available: https ://www.aclweb.org/
anthology/W18-5429.

W.Li F. Qi, M. Tang, Z. Yu, “Bidirectional LSTM with self-attention mechanism
and multi-channel features for sentiment classification,” Neurocomputing, 2020,
issn: 18728286.doi: 10.1016/73.neucom.2020.01.006.

129

https://doi.org/10.3115/v1/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244
https://www.aclweb.org/anthology/D16-1244
https://www.aclweb.org/anthology/D16-1244
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
https://doi.org/10.18653/v1/W18-5429
https://doi.org/10.18653/v1/W18-5429
https://www.aclweb.org/anthology/W18-5429
https://www.aclweb.org/anthology/W18-5429
https://doi.org/10.1016/j.neucom.2020.01.006

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

P. Qin, W. Xu, J. Guo, “Designing an adaptive attention mechanism for rela-
tion classification,” in 2017 International Joint Conference on Neural Networks
(IJCNN), 2017, pp. 4356—4362.doi: 10.1109/IJCNN.2017.7966407.

T. Rocktischel, E. Grefenstette, K. M. Hermann, T. Kocisky, P. Blunsom, “Rea-
soning about entailment with neural attention,” in 4th International Conference

on Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016.
arXiv: 1509.06664.

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio, “End-to-end
attention-based large vocabulary speech recognition,” in 2016 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016,
pp. 4945-4949.doi: 10.1109/ICASSP.2016.7472618.

H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, J. Wu, “Sequen-
tial Recommender System based on Hierarchical Attention Networks,” in Pro-
ceedings of the Twenty-Seventh International Joint Conference on Artificial In-
telligence, {IJCAI-18}, International Joint Conferences on Artificial Intelligence
Organization, 2018, pp. 3926-3932. doi: |10 .24963/1jcai .2018/546.
[Online]. Available: https://doi.org/10.24963/1jcai.2018/
546!

L. Zhang, P. Liu, J. A. Gulla, “Dynamic attention-integrated neural network
for session-based news recommendation,” Machine Learning, vol. 108, no. 10,
pp. 1851-1875, 2019, issn: 1573-0565. doi: 10 . 1007 / s10994-018 -
05777 — 9. [Online]. Available: https : / /doi . org/10. 1007/
s10994-018-05777-9.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidi-
rectional transformers for language understanding, 2018.

A. Galassi, M. Lippi, P. Torroni, “Attention in natural language processing,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1-18, 2020. doi:
10.1109/TNNLS.2020.3019893.

Y. Zhou, C. Liu, Y. Pan, “Modelling sentence pairs with tree-structured attentive
encoder,” in Proceedings of COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, Osaka, Japan: The COLING 2016
Organizing Committee, Dec. 2016, pp. 2912-2922. [Online]. Available: ht tps:
//www.aclweb.org/anthology/Cl6—1274.

L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, K. Xu, “Adaptive Recursive Neural
Network for target-dependent Twitter sentiment classification,” in 52nd Annual
Meeting of the Association for Computational Linguistics, ACL 2014 - Proceed-
ings of the Conference, vol. 2, Association for Computational Linguistics, 2014,
pp. 49-54, isbn: 9781937284732. doi:|10.3115/v1/p14-20009. [Online].
Available: https://www.aclweb.org/anthology/P14-20009.

F. Kurt, D. Kisa, P. Karagoz, “Investigating the effect of segmentation methods on
neural model based sentiment analysis on informal short texts in turkish,” 2019.

T. Mikolov, M. Karafiat, L. Burget, C. Jan, S. Khudanpur, ‘“Recurrent neural net-
work based language model,” in Proceedings of the 11th Annual Conference of the
International Speech Communication Association, INTERSPEECH 2010, 2010.

130

https://doi.org/10.1109/IJCNN.2017.7966407
https://arxiv.org/abs/1509.06664
https://doi.org/10.1109/ICASSP.2016.7472618
https://doi.org/10.24963/ijcai.2018/546
https://doi.org/10.24963/ijcai.2018/546
https://doi.org/10.24963/ijcai.2018/546
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1007/s10994-018-05777-9
https://doi.org/10.1109/TNNLS.2020.3019893
https://www.aclweb.org/anthology/C16-1274
https://www.aclweb.org/anthology/C16-1274
https://doi.org/10.3115/v1/p14-2009
https://www.aclweb.org/anthology/P14-2009

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, “Recurrent Neural Networks
for Multivariate Time Series with Missing Values,” Scientific Reports, 2018, issn:
20452322, doi: |10 . 1038 / s41598-018—-24271 — 9. arXiv: 1606 .
01865,

N. Kalchbrenner, P. Blunsom, “Recurrent continuous translation models,” in Pro-
ceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, Seattle, Washington, USA: Association for Computational Linguistics,
Oct. 2013, pp. 1700-1709. [Online]. Available: https://www.aclweb.
org/anthology/D13-1176.

Q. You, H. Jin, Z. Wang, C. Fang, J. Luo, “Image captioning with semantic at-
tention,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2016, isbn: 9781467388504. doi: 10.1109/
CVPR.2016.503larXiv:|1603.03925.

S. Hochreiter, “The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
vol. 6, no. 2, pp. 107-116, Apr. 1998, issn: 0218-4885. doi: 10 . 1142 /
S0218488598000094. [Online]. Available: https://doi.org/10.
1142/50218488598000094.

I. Sutskever, G. Hinton, “Learning multilevel distributed representations for high-
dimensional sequences,” in Journal of Machine Learning Research, 2007.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, 2014, issn: 15337928.

G. Chuangxin, Y. Gen, Z. Chengzhi, W. Xueping, C. Xiu, “SoC estimation for
lithium-ion battery using recurrent NARX neural network and genetic algorithm,”
in IOP Conference Series: Materials Science and Engineering, 2019. doi: 10 .

1088/1757-899X/486/1/012076.

K. O. Stanley, R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary Computation, 2002, issn: 10636560. doi: 10.1162/
106365602320169811.

A. Ororbia, A. E. R. ElSaid, T. Desell, “Investigating recurrent neural net-
work memory structures using neuro-evolution,” in GECCO 2019 - Proceed-
ings of the 2019 Genetic and Evolutionary Computation Conference, 2019, isbn:
9781450361118. doi: 10 . 1145/ 3321707 . 3321795, arXiv: 1902 .
02390.

A. Darwish, A. E. Hassanien, S. Das, “A survey of swarm and evolutionary com-
puting approaches for deep learning,” Artificial Intelligence Review, 2020, issn:
15737462.doi: 10.1007/s10462-019-09719-2.

D. T. Pham, A. Ghanbarzadeh, E. Kog, S. Otri, S. Rahim, M. Zaidi, “The Bees
Algorithm - A Novel Tool for Complex Optimisation Problems,” in Intelligent
Production Machines and Systems - 2nd I*PROMS Virtual International Con-
ference 3-14 July 2006, 2006, isbn: 9780080451572. doi: |[10.1016/B978—
008045157-2/50081-X.

D. T. Pham, E. Kog, A. Ghanbarzadeh, “Optimization of the weights of multi-
layered perceptions using the Bees Algorithm,” no. June 2016, pp. 38—46, 2006.

131

https://doi.org/10.1038/s41598-018-24271-9
https://arxiv.org/abs/1606.01865
https://arxiv.org/abs/1606.01865
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://doi.org/10.1109/CVPR.2016.503
https://doi.org/10.1109/CVPR.2016.503
https://arxiv.org/abs/1603.03925
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1088/1757-899X/486/1/012076
https://doi.org/10.1088/1757-899X/486/1/012076
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1145/3321707.3321795
https://arxiv.org/abs/1902.02390
https://arxiv.org/abs/1902.02390
https://doi.org/10.1007/s10462-019-09719-2
https://doi.org/10.1016/B978-008045157-2/50081-X
https://doi.org/10.1016/B978-008045157-2/50081-X

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

D. T. Pham, M. Castellani, “A comparative study of the Bees Algorithm as a
tool for function optimisation,” Cogent Engineering, 2015, issn: 23311916. doi:
10.1080/23311916.2015.1091540.

A. H. Ismail, N. Hartono, S. Zeybek, D. T. Pham, “Using the Bees Algorithm
to solve combinatorial optimisation problems for TSPLIB,” in IOP Conference
Series: Materials Science and Engineering, 2020. doi: |10 . 1088 / 1757 —
899X/847/1/012027.

Y. Laili, F. Tao, D. T. Pham, Y. Wang, L. Zhang, “Robotic disassembly re-
planning using a two-pointer detection strategy and a super-fast bees algorithm,”
Robotics and Computer-Integrated Manufacturing, 2019, issn: 07365845. doi:
10.1016/7.rcim.2019.04.003.

D. Erhan, P. A. Manzagol, Y. Bengio, S. Bengio, P. Vincent, “The difficulty of
training deep architectures and the effect of unsupervised pre-training,” in Journal
of Machine Learning Research, 2009.

S. S. Talathi, A. Vartak, “Improving performance of recurrent neural network with
relu nonlinearity,” 2015. arXiv: 1511.03771 [cs.NE].

E. O. Wilson, “The Dance Language and Orientation of Bees. Karl von Frisch.
Translated from the German edition (Berlin, 1965) by Leigh E. Chadwick. Belk-
nap Press (Harvard University Press), Cambridge, Mass., 1967. xiv + 566 pp.,
illus. $15,” Science, 1968, issn: 0036-8075.doi:|10.1126/science.159.
3817.864.

D. S. Wilson, “The Wisdom of the Hive: The Social Physiology of Honey Bee
Colonies By Thomas D. Seeley,” Perspectives in Biology and Medicine, 1997,
issn: 1529-8795.doi:|10.1353/pbm.1997.0016.

R. L. Burden, J. D. Faires, Numerical Analysis 9th Edition. 2011, isbn:
9780538733519.

L. N. Trefethen, D. Bau, Numerical Linear Algebra. 1997, isbn: 978-0-89871313-
61-9.

L. Bottou, “On-line learning and stochastic approximations,” in On-Line Learn-
ing in Neural Networks, D. Saad, Ed., ser. Publications of the Newton In-
stitute. Cambridge University Press, 1999, pp. 9-42. doi: 10 . 1017 /
CB09780511569920.003.

A. Hayran, M. Sert, “Kelime Gémme ve Fiizyon Tekniklerine Dayali Mikroblog
Verileri Uzerinde Duygu Analizi,” in 2017 25th Signal Processing and Commu-
nications Applications Conference, SIU 2017, 2017, isbn: 9781509064946. doi:
10.1109/5T1U0.2017.7960519.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, C. Potts, “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technolo-
gies, Portland, Oregon, USA: Association for Computational Linguistics, Jun.
2011, pp. 142-150. [Online]. Available: http: //www . aclweb . orqg/
anthology/P11-1015.

N. Asghar, “Yelp Dataset Challenge: Review Rating Prediction,” May 2016. [On-
line]. Available: http://arxiv.org/abs/1605.05362.

132

https://doi.org/10.1080/23311916.2015.1091540
https://doi.org/10.1088/1757-899X/847/1/012027
https://doi.org/10.1088/1757-899X/847/1/012027
https://doi.org/10.1016/j.rcim.2019.04.003
https://arxiv.org/abs/1511.03771
https://doi.org/10.1126/science.159.3817.864
https://doi.org/10.1126/science.159.3817.864
https://doi.org/10.1353/pbm.1997.0016
https://doi.org/10.1017/CBO9780511569920.003
https://doi.org/10.1017/CBO9780511569920.003
https://doi.org/10.1109/SIU.2017.7960519
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1605.05362

[165] S. Zeybek, D. T. Pham, E. Kog, A. Secer, “An Improved Bees Algorithm for
Training Deep Recurrent Networks for Sentiment Classification,” Symmetry,
2021.doi:|10.3390/sym13081347.

133

https://doi.org/10.3390/sym13081347

SOURCE COD&

A Morphologically Enriched Turkish Sentiment Treebank (MS-TR) can be downloaded
fromhttps://data.mendeley.com/datasets/nz7vm5rchd/1l

Related source code for Chapter 3, Chapter 4 and Chapter 5 can be downloaded from
https://github.com/sultanzeybek.

134

https://data.mendeley.com/datasets/nz7vm5rchd/1
https://github.com/sultanzeybek

PUBLICATIONS FROM THE THESIS

Papers

1. S. Zeybek, D. T. Pham, E. Koc, A. Secer, "An Improved Bees Algorithm for Train-
ing Deep Recurrent Networks for Sentiment Classification”, Symmetry. 2021;
13(8):1347. https://doi.0org/10.3390/syml13081347.

2. S. Zeybek, E. Koc, A. Secer, "MS-TR: A Morphologically Enriched Sentiment
Treebank and Recursive Deep Models for Compositional Semantics in Turkish,"
Cogent Engineering, 2021. https://doi.org/10.1080/23311916.
2021.1893621.

3. S. Zeybek, “MS-TR: A Morphologically Enriched Turkish Sentiment Treebank,”
Mendeley Data, vol. 1, 2020. doi: 10.17632/nz7vmSrchd.1 Available Online:
https://data.mendeley.com/datasets/nz7vm5rchd/1

4. S. Zeybek, E. Koc, A. Secer, "Attentive Composition Mechanisms and Memory-
Blocks over Recursive Structures for Turkish Sentiment Analysis", Applied Sci-
ences, July 2021 (submitted).

Projects

1. Project Title: Training of Deep Recursive Neural Networks Using Bees Algorithm
Supporting Institution / Programme: The Scientific and Technological Research
Council of Turkey (TUBITAK), 2214/A International Research Fellowship Pro-
gramme, Grant No. 1059B141800193
Research Institution / Country: University of Birmingham, College of Engineer-
ing and Physical Sciences, Autonomous Remanufacturing Laboratory, Edgbaston,
Birmingham, UK
Period: June 2019 - June 2020

135

https://doi.org/10.3390/sym13081347
https://doi.org/10.1080/23311916.2021.1893621
https://doi.org/10.1080/23311916.2021.1893621
https://data.mendeley.com/datasets/nz7vm5rchd/1

	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ÖZET
	INTRODUCTION
	Literature Review
	Objective of the Thesis
	Original Contribution
	Outline of the Thesis

	BACKGROUND
	Supervised Learning
	Deep Learning
	Neural Networks
	Training: Backpropagation

	Neural Language Models
	Distributed Representations
	Static Word Embeddings
	Recurrent (Chain-Structured) Language Models

	Training Difficulties of Deep Recurrent Models
	Vanishing and Exploding Gradients (VEG) Problem
	Approaches to Handle VEG Problem

	Levels, Resources and Issues of Sentiment Analysis
	Turkish and Its Challenging Semantic Structure for Sentiment Analysis

	MS-TR: A MORPHOLOGICALLY ENRICHED SENTIMENT TREEBANK AND RECURSIVE DEEP MODELS FOR COMPOSITIONAL SEMANTICS IN TURKISH
	Preliminaries
	Recursive Neural Networks
	Recursive Compositional Functions
	Learning Through Structure

	MS-TR: A Morphologically Enriched Sentiment Treebank for Compositional Semantics
	System Architecture, Resources and Tools Used in Building MS-TR
	Semi-Supervised Annotation Strategies of the Turkish Sentiment Treebank
	Morphological Analysis of Words for Annotation

	Recursive Deep Models over MS-TR for Compositional Semantics
	Experiments
	Experimental Setup
	Baselines

	Results and Discussion
	Summary

	ATTENTIVE COMPOSITION MECHANISMS AND MEMORY BLOCKS OVER RECURSIVE STRUCTURES
	Preliminaries
	Tree-LSTMs and Its Variants
	ACT-LSTMs: Adaptive Composition Mechanisms in Binary Tree-LSTMs for Attentive Sentiment Distributions
	Attentive Sentiment Distributions
	Proposed Model
	Training in ACT-LSTMs

	Experiments
	Experimental Setup
	Baselines

	Results and Discussion
	Summary

	METAHEURISTICS FOR TRAINING DEEP SEQUENTIAL RECURSIVE LANGUAGE MODELS
	Preliminaries
	An improved Bees Algorithm (BA-3+) for Training Deep Recurrent Networks
	Bees Algorithm
	Representation of Bees for Deep RNN Model
	Local Search Operator
	Enhanced Local Search by SGD and Singular Value Decomposition (SVD) Operator
	Global Search Operator

	Experiments
	Experimental Setup

	Results and Discussion
	Summary

	RESULTS AND DISCUSSION
	REFERENCES
	SOURCE CODES
	PUBLICATIONS FROM THE THESIS

