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Non-Destructive Approach for Defect Detection in 
Concrete Structures by EM Waves with FDTD Techniques 

Ümmü ŞAHİN ŞENER 

 

Department of Mathematical Engineering 

Doctor of Philosophy Thesis 

 

Supervisor: Asst. Prof. Dr. Sebahattin EKER 

 

In this study; concrete samples are divided into three groups and both simulation 

and non-destructive measurements are made using the electromagnetic 

characteristics of concrete and construction materials that can be used in concrete 

structures. Concrete structures may contain defects due to environmental factors 

such as humidity and temperature, exposure to sudden energy changes such as 

earthquakes or wear over time. These defects need to be checked for the service life 

of the concrete structure. The most basic defects in concrete structures are surface 

cracks that can be found on the concrete surface and can go down to a certain depth, 

or internal cracks that cannot be observed from the outside. Cracks do not have a 

definite shape due to the natural formation process. In our study, rectangular step 

function and dynamic geometry are used to express surface cracks. By adding the 

narrowing rectangles one after another towards the inside of the concrete, a deeper 

crack is expressed, while a relatively shallow crack is expressed by the succession 

of circles, with the origin of one circle being the tangent point of another circle. The 

area between the two curves used in the integral definition is used to express the 

inner crack. The crack in the interior of the concrete is the area between the two 

curves, namely the Riemann integral region, and this region is assumed to be filled 

with air. As it is known from the Riemann integral definition, the finer the partition 
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of the area between the two curves is taken, the closer the area is to reality, so the 

crack modeling closest to reality is made by taking the fine partition of the air-filled 

area in the concrete. A concrete structure does not only consist of concrete, but also 

rebar, mortar, pavement and masonry can be found together with concrete. In 

addition, in environments with very high humidity, composite materials can be used 

together with concrete in the construction of piles. Considering these situations, 

modeling of concrete filled composite piles is made together with layered 

rectangular concrete structures containing mortar, masonry and soil. After 

determining the geometry of concrete samples, crack shape, content of layered 

samples and shape of concrete filled composite materials, samples are simulated 

with the help of FDTD, which is widely used in the simulation of electromagnetic 

wave propagation. Gaussian waves are used as input signals in simulations because 

frequency modulation is easier compared to other waveforms. In the numerical 

simulation, an absorber boundary condition is used to terminate the calculation 

region and to prevent the waves coming to the boundary from re-entering the 

calculation area. The results are compared using both transverse electric field and 

transverse magnetic field waves in the simulations. Two rectangular concrete 

specimens with surface cracks at different depths, one cylindrical concrete 

specimen with internal crack, and one cylindrical concrete specimen with rebar and 

avoids are prepared and dried in air. The prepared samples are measured in an 

anechoic chamber in the frequency range of 0.4-4.0 GHz using Vivaldi antenna array 

and vector network analyzer and scattering parameters are obtained. The reflection 

and transmission coefficients obtained from the scattering parameters and the 

reflection and transmission coefficients obtained from FDTD calculation are 

compared and the results are shown in figures. 

Keywords: Concrete cracks, layered concrete samples, computational modeling, 

electromagnetic wave propagation, FDTD; microwave radar NDT 
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ÖZET 

 

 

Beton Yapılarda Kusur Tespitinde ZUSF Tekniği 
Kullanarak EM Dalgalar Aracılığıyla Tahribatsız Yaklaşım  

Ümmü ŞAHİN ŞENER 

 

Matematik Mühendisliği Bölümü 

Doktora Tezi 

 

Danışman: Dr. Öğr. Üyesi Sebahattin EKER 

 

Bu çalışmada; beton numuneler üç gruba ayrılarak, betonun ve beton yapılarda 

kullanılabilen inşaat malzemelerinin elektromanyetik karakteristiği kullanılarak 

hem simülasyon hem de tahribatsız ölçüm yapılmıştır. Beton yapılar nem ve sıcaklık 

gibi çevresel faktörler sebebiyle, deprem gibi ani enerji değişimlerine maruz 

kalmakla ya da zamanla yıpranmasından dolayı kusurlar içerebilir. Bu kusurların 

beton yapının kullanım ömrü uzunluğu açısından kontrol edilmesi gerekmektedir. 

Beton yapılardaki en temel kusur beton yüzeyinde bulunup belirli bir derinliğe 

inebilen yüzey kırıkları ya da dış kısımdan gözlemlenemeyen iç kırıklardır. 

Kırıkların doğal oluşum sürecinden dolayı belirli bir şekilleri yoktur. Çalışmamızda 

yüzey kırıklarını ifade etmek için dikdörtgensel adım fonksiyonu ve dinamik 

geometri kullanılmıştır. Daralan dikdörtgenlerin birbiri ardınca betonun iç kısmına 

doğru eklenmesiyle daha derine inen bir kırık ifade edilirken bir çemberin orijini 

başka bir çemberin teğet noktası olacak şekilde çemberlerin birbirini takip 

etmesiyle nispeten daha yüzeysel bir kırık ifade edilmiştir. İç kırığı ifade etmek için 

integral tanımı ifadesinde kullanılan iki eğri arasında kalan alan ifadesi 

kullanılmıştır. Betonun iç kısmındaki kırık iki eğri arasında kalan alan yani Riemann 

integral bölgesi olup bu bölgenin hava ile dolu olduğu kabul edilmiştir. Riemann 

integral tanımından bilindiği üzere iki eğri arasındaki alanın parçalanışları ne kadar 
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ince alınırsa alan gerçeğe o kadar yakın ifade edilmiş olduğundan beton içindeki 

hava ile dolu alanın ince parçalanışı alınarak gerçeğe en yakın kırık modellemesi 

yapılmıştır. Bir beton yapı sadece betondan ibaret olmayıp, betonla birlikte inşaat 

demiri, harç, taş ve tuğla bir arada bulunabilir. Ayrıca nem oranının çok yüksek 

olduğu çevrelerde kolon inşasında betonla birlikte kompozit malzemeler birlikte 

kullanılabilir. Bu durumlar göz önünde bulundurularak harç, taş ve toprak içeren 

katmanlı dikdörtgensel beton yapılarla birlikte beton dolgulu kompozit kazıkların 

da modellemesi yapılmıştır. Beton numunelerin geometrisi, kırık şekli, katmanlı 

olma durumundaki içeriği ve beton dolgulu kompozit malzemelerin şekli 

belirlendikten sonra elektromanyetik dalganın yayılımının simülasyonunda yaygın 

kullanılan Zaman Uzayında Sonlu Farklar (ZUSF) yardımıyla numuneler simüle 

edilmiştir. Gauss dalgalarının frekans modülasyonu diğer dalga formlarına kıyasla 

daha kolay olduğundan simülasyonlarda giriş sinyali olarak kullanılır. nümerik 

simülasyonda hesaplama bölgesini sonlandırmak ve sınıra gelen dalgaların tekrar 

hesaplama alanına girmesini engellemek amacıyla soğurucu sınır koşulu kullanılır. 

Simülasyonlarda hem enine elektrik alan hem de enine manyetik alan dalgaları 

kullanılarak sonuçları karşılaştırılmıştır. Simülasyonu yapılan ve farklı derinliklerde 

yüzey kırığı içeren iki tane dikdörtgensel beton numune, bir tane iç kırık içeren 

silindirik beton numune, bir tane de inşaat demiri ve hava boşluğu içeren silindirik 

beton numune hazırlanmış ve hava ortamında kurutulmuştur. Hazırlanan 

numuneler Vivaldi anten dizisi ve vektör ağ analizörü kullanılarak 0.4-4.0 GHz 

frekans aralığında yankısız odada ölçülüp saçılma parametreleri elde edilmiştir. 

Saçılma parametrelerinden elde edilen yansıma ve iletim katsayıları ile ZUSF 

kullanılarak elde edilen yansıma ve iletim katsayıları karşılaştırılarak sonuçlar 

grafiklerle gösterilmiştir. 

Anahtar Kelimeler: Beton kırıkları, katmanlı beton numuneler, hesaplamalı 

modelleme, elektromanyetik dalga yayılımı, ZUSF; mikrodalga radar HMY. 
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1 

 

1  
INTRODUCTION 

 

1.1 Literature Review 

Reinforced concrete structures wear over time. This deposition may be caused by a 

sudden change of state, such as earthquakes, as it can be gradually spreading over 

time. In both cases, it is important to determine the position and size of the wear, 

cracking or delamination before starting any repair, rehabilitation, and maintenance 

or improvement process [1-3]. Early detection of damage and cracks in concrete 

structures and infrastructures has great importance for public safety economically 

saves. The need for reliable non-destructive testing techniques increases with the 

aging of existing concrete structures and infrastructure and the importance of public 

safety and economic aspects. At the end of a certain period, the deterioration in 

concrete seriously affects the service life, safety and maintenance costs of concrete 

structures. Reinforced concrete structures require routine, precise and reliable 

monitoring [4, 5]. Non-destructive testing is carried out to periodically check the 

structural integrity of many concrete structures, such as bridge trays, plates, and 

tunnels. In the inspection of concrete structures with non-destructive testing, the 

integrity of the structure is not compromised, and the serviceability of the structure 

is not prevented since this inspection can be done in a short time Delamination and 

cracking constitute a large part of the concrete deterioration [6-8]. 

Nondestructive testing (NDT) techniques, which have been used for more than 30 

years, are analysis techniques used in science and industry to evaluate the 

properties of a material, component or system without damaging the samples and 

destroying the integrity of the structure being tested. According to American Society 

of Nondestructive Testing (ASNT), NDT is the examination of the object without 

affecting its future usefulness, using technologies appropriate for the condition or 

structure of the substance to be examined. According to the basic principle of NDT, 

the inspection is performed by ensuring that a parameter of the sample and a 
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parameter of the method used are interacted without changing the quality and 

integrity of the sample to be examined [9, 10]. The main purpose of the NDT method 

is that the inspection is non-destructive and does not change the physical properties 

of the test object. In the non-destructive testing method, terms other than NDT are 

also used according to the information obtained from the test and the areas of use 

[11-13]. For example, if information is given about the process along with the test 

method, the term Nondestructive Evaluation (NDE) is used. Nondestructive 

Inspection (NDI) is used in areas other than process control. Nondestructive 

Characterization (NDC) is used to express the specific characterization of material 

properties, and Nondestructive Sensing (NDS) is used if sensors are used to obtain 

information from the sample inspected. There are many NDT techniques used to 

detect defects in the structures, such as acoustic, thermal, radiographic, microwave 

radar methods. In the following subsections current NDT techniques are reviewed 

[14, 15]. 

 Optical Methods 

The optical non-destructive testing method uses optic waves, which are the range of 

electromagnetic waves visible to the human eye. Although the history of optical non-

destructive testing methods is based on visual inspection, which is the oldest 

method, over time, techniques such as laser speckle metrology and machine 

visualization have been used with the development of technology. Optical spectrum 

includes visible wavelengths, these wavelengths vary from approximately 400nm to 

700 nm, and frequency is between 750 THz and 428 THz. Classical optics are divided 

into two main branches as geometric optics and physical optics [16, 17]. In 

geometric optics, or ray optics, light is assumed to travel on straight lines. In physical 

optics, or wave optics, light is thought of as an electromagnetic wave. 

In a homogeneous medium in regions free of current and charges, propagation of 

the light waves can be defined using the scalar wave equation. 

( )
( )2

2

2 2

,1
, 0

V t
V t

c t


 − =



r
r

 
(1.1) 



3 

 

where ( ), ,x y zr  is a position vector of a point P  in space and ( ), ,x y zs s ss  a unit vector 

in a fixed direction. Any solution of (1.1) of the form ( , , )V V t= r s , t  is time and c  is 

the speed of light waves in free space [18, 19]. 

There are various optical technologies that used in the assessment of the structures. 

These are small-scale optical fibre, optical heterodyne interferometry, infrared 

thermography, speckle technology that based on laser interferometry, endoscopic 

NDT technic based on optical measurements, terahertz (THz) technology. 

In optical fiber technology, optical fibers are used to collect and detect the signal 

coming from the structure under examination, and it has a wide range of uses as it 

can be used to measure almost anything. Since optical fibers are a very light 

material, they can be easily attached to the surface or internal parts of the structure 

to be tested and can be used in every environment because they are resistant to 

environmental effects such as corrosion and electromagnetic waves. Certain 

properties of the light used in the examination, such as wavelength, density and 

polarization, affect the examination results [20, 21]. 

 Acoustic Emission 

Compared to other NDE techniques, the acoustic emission (AE) method is one of the 

techniques that is difficult to apply practically, although it is based on simple 

physical concepts. Acoustic methods are non-destructive testing methods that use 

mechanical waves as body wave and surface wave to investigate the condition in the 

structures to be inspected [22-25]. 

Acoustic emission can be defined as the oscillation of transient elastic waves caused 

by the rapid redistribution of the stress in a material, that is, the wave used in the 

inspection is produced within the material itself. In the acoustic emission method, 

acoustic signals should be examined in order to detect the oscillation of sound waves 

and damage [26-29]. 

Since different AE sources can produce very different AE waveforms from each 

other, the emitted acoustic signal depends on the characteristics of the source. The 

ability to monitoring the volume of a region or material using a series of AE sensors, 

scanning in a short time and inexpensively, and continuing to use the structure or 
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material while scanning with the AE method are the advantages of the AE method. 

With the AE monitoring technique, evaluation of the damage progress of chemical 

industry materials and routine testing of pressure vessels can be performed. In 

addition to these, damage activity monitoring, damage location, damage mechanism 

identification, strength predictions can be performed by the AE emission [30]. 

 Ultrasound 

Ultrasonic NDE is one of the most widely used NDE methods today. Ultrasonic waves 

are sound waves that can propagate in solid, liquid and gaseous environments and 

vibrate at a frequency too high to hear. The interaction of ultrasonic waves with 

solids in a non-destructive testing needs to be examined. Since the motion of 

ultrasonic waves in solid media can be expressed mathematically, generating 

ultrasonic waves and using transducers one can find the structure, thickness and 

flexibility of a solid material. Ultrasonic NDE has many applications in aircraft, 

tubing, semiconductor, manufacturing, rail, power and other industries [31-34]. 

Ultrasonic waves are waves that oscillate at a frequency above 20,000 Hertz and 

frequencies used in NDE applications range from approximately 50 kHz to several 

GHz. In contrast to electromagnetic waves, sound waves propagate faster in solids 

and slower in air, electromagnetic waves propagate optimally in a vacuum and 

minimally in solids. Properties of ultrasonic waves such as velocity and attenuation 

are used to characterize the density, elastic properties, composition, geometric 

properties or defects of a material [35-38]. 

In ultrasonic inspection, a transducer is placed in a sample and the voltage pulse is 

converted into an ultrasonic pulse (wave). After the pulse passes through the object 

and responds to its geometry and mechanical properties, it is either transmitted to 

another transducer (pitch-catch method) or reflected back to the original 

transducer (pulse-echo method). In both methods, the signal is converted back into 

an electrical pulse observed on an oscilloscope. With the help of the observed signal, 

the wave velocity or thickness within the sample, if there is a defect or delamination, 

its size, shape, location, if a layered medium is examined, the thickness of the layers 

can be displayed [39, 40]. 
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 Magnetic Particle 

Magnetic Particle Inspection (MPI) is the most appropriate NDE method that can be 

used when inspecting the defects on the surface or crack just below the surface of 

the ferromagnetic materials. In non-destructive examinations to be made with MPI; 

the magnetization method, the current type, the particle to be used is primarily to 

be wet or dry are the parameters that should be determined first. In the MPI method, 

the sample to be examined is magnetized and finely divided ferromagnetic particles 

are poured on the surface. If there is any defect on the surface of the inspected 

structure or in the areas close to the surface, magnetic particles can be attracted to 

the edges of these defects, as the magnetic field will be affected by these defects. 

Since the sample examined in the MPI method must be magnetized, it cannot be used 

in non-ferrous samples such as copper, brass, aluminum, titanium, but can be used 

in materials that are easy to magnetize [41, 42]. 

The advantages of the MPI method are as follows: it is very simple to use, but it is 

the most reliable method for detecting surface cracks, including very fine cracks, 

there is no limitation on the geometry of the part being tested and the shape of the 

crack, unlike the liquid penetrant method, if the crack is filled with any foreign 

material or the MPI method can be used even if the surface of the material under 

investigation is coated with paint. The disadvantages of the MPI method are as 

follows: it can only be used to detect surface or near-surface cracks and can only be 

used on ferromagnetic samples [43-45]. 

 Eddy Current 

Using the eddy current (EC) NDT method, the positions of metal objects at different 

depths in concrete and soil environments such as walls and grounds can be 

determined. With the help of EC probes, the response of the examined material to 

electromagnetic waves at certain frequencies can be measured and using these 

measurements, the thickness of the material, its hardness, the presence of corrosion, 

whether the material is porosity and the presence of defects such as cracks can be 

interpreted. Since the electrical conductivity and magnetic properties are used in 

the EC non-destructive testing method, this method can be used in structures made 

of conductive materials such as metals and composite materials with low 
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conductivity. EC methods are also widely used in areas such as quality control, 

service integrity control, process control in the automotive and aircraft industries, 

research energy generation and maintenance. Thanks to the EC method, as in many 

other NDE methods, information such as geometry, conductivity and magnetic 

permeability of the examined sample is obtained [46-48]. 

The application areas of the EC method can be expressed as follows: the thickness 

of machined parts such as metallic foil, sheet and tube wall can be measured. In cases 

where the electromagnetic properties of the coating and the main material are 

different, the coating thickness can be measured. Material discontinuities such as 

cracks, seams, fractures and holes in plates and plates can be detected. Buried 

objects such as underground pipes, buried bombs and underground mines can be 

detected [49]. 

In eddy current method, conductive materials are examined by magnetic induction 

by using AC transformer as probe. In the EC method, the following steps are 

followed: excitation coil is stimulated by an AC signal, ferromagnetic or conductive 

material is brought near the probe to interact with the signal, a complete connection 

is established between the EC probe and the test sample. When the conductive 

material is released into the environment where the magnetic field is present, a 

current occurs, and these currents are called eddy currents since these currents 

generally go in a closed and circular path. Using the conductivity of a material, one 

can gain insight into the material's handling, hardness, and conductivity at 

temperature. Since eddy current technique is an electromagnetic method, the 

magnetic permeability property of the material affects the signal response. The 

response signals obtained in this method are displayed in the impedance plane and 

represent the impedance change in the start coil, although in different formats. The 

advantage of EC method over traditional ultrasonic method, penetrant method and 

magnetic particles is non-contact. It does not require any surface preparation. Its 

advantage over X-ray methods is its low cost. It gives fast results and is portable. 

Although sensitive to electromagnetic properties such as conductivity, there are no 

restrictions on geometric properties. Measurements can also be made at high 

temperatures. The most important disadvantage of this method is that the sample 
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examined must be conductive. Since the signal response is not only due to 

discontinuities in the material but to all material properties, the obtained response 

can be difficult to interpret. It can only detect cracks on and near the surface [50, 

51]. 

 Active Thermography  

In this non-destructive testing technique, since the infrared imaging method is 

integrated with external heating and the sub-surface structure is tested, this method 

is called active thermography. Although there are thermal NDE techniques with 

different characteristics from each other, the methods using infrared cameras for 

measurements are generally called active thermography. The common features of 

all active thermography techniques can be listed as follows: the sample is heated by 

optical absorption, the inside of the sample is waited until it warms up, the 

temperature distribution on the surface of the sample is displayed using an infrared 

camera, the condition of the temperature distribution according to time and location 

is examined in order to interpret the material and geometric properties of the 

examined structure [52, 53]. 

In this technique, sub-surface defects can be detected by making use of the 

temperature difference between the material examined and the defect. Video 

recordings of surface temperature distribution are analyzed using infrared cameras. 

By expressing the change in surface temperature as a function of time, the sub-

surface structure of the sample is examined. The differences between the heating 

sources used to heat the sample cause the techniques used in active thermography 

to differ from each other. In all techniques used, after the sample is started to be 

heated with the help of a heat source, the change of surface temperature according 

to time and location is compared with an analytical model in every position 

measured by the camera. Thanks to active thermography, cracks, gaps, branching 

fractures in composite structures can be easily detected without contact [54-57]. 

 Liquid Penetrant 

Penetrant testing (PT) is a simple, inexpensive and precise non-destructive testing 

method that allows the examination of discontinuities on the surfaces of a wide 
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variety of materials, component parts and systems. These discontinuities on the 

material surfaces may be in the original materials or may be due to manufacturing 

processes or environmental factors. In order to detect any damage or fracture in the 

material by this method, it must have a relationship with the surface. The color of 

the liquid used in this method should be different from the color of the structure 

containing fractures. Just like a crack that one cannot normally see on the pavement 

can be seen after it is filled with dirty water. Compared to many other NDT methods, 

PT requires less mechanical skill [58, 59]. 

The most important things in this method are the cleanliness of the surface to be 

tested and the processing time. This method consists of two stages. First, the type of 

penetrant is determined, and then the time required for the penetrant to enter the 

defects in a word dwell time is determined. After the penetrant is applied and 

enough time has passed, the excess liquid is removed from the surface and then 

another material called developer is placed on the surface. The developer creates a 

contrasting background to make the penetrant easy to see. 

The purpose of the PT method is to completely cover the sample surface of the 

penetrating liquid and then penetrate the depths of the discontinuities opening to 

the surface. Surface tension contact angle and surface wetting, capillarity and dwell 

time are the are the basic parameters of this method [60]. 

 Radiology 

Radiographic techniques and especially X-rays are one of the few non-destructive 

testing methods that can visualize the interior of samples and are used without 

material discrimination. X-rays are electromagnetic waves that can be scattered, 

absorbed by materials, and can pass through materials that block visible light 

because of their high energy. While examining the sample, the interior of objects can 

be imaged depending on the amount of X-ray used, the thickness and density of the 

material. the X-ray is also used to determine the anatomical structure of the 

materials. X-rays are used in 1-dimensional imaging, 2-dimensional imaging called 

projection radiography, and 3-dimensional images called computed tomography. 2-

dimensional X-ray imaging is one of the most common imaging methods used both 
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in the medical field and in the non-destructive examination of samples, using film as 

the image storage medium [61, 62]. 

The X-ray NDE method is easier to interpret the results than many other methods, 

as it reveals the picture of the sample under examination and clearly reveals the 

imaged object. This method can be used in a wide range of areas from people to 

engine blocks without material restrictions. It is a useful method for determining 

the components of the sample, examining the mass or bulk density, and measuring 

its thickness. It is also a suitable method for using internal features such as voids, 

branching fractures, porosity in cast materials. This method can be used in a wide 

range of areas from visualization of human limbs to inspection of reinforced 

concrete blocks without material discrimination. The main disadvantages of this 

method are that the radiation method poses a serious safety concern, the high 

voltage requirement to produce X-rays, and the use of protective materials and 

equipment. It is not suitable for all types of cracks detection; it has limitations in 

crack detection. Even if closed cracks have a finite opening, discontinuity detection 

can only be made in certain directions. It is difficult to detect surface imperfections 

using this method. People who will use this method must have high security 

awareness [63, 64]. 

 Microwave and Radar 

Microwave nondestructive testing techniques were first introduced in the early 

1960s and are extensively used in many areas from the 1990s to the present (Bahr, 

1982). Microwave nondestructive testing technique started to develop later 

compared to other techniques and until very recently it was excluded from other 

non-destructive testing techniques [65-70]. 

Although the microwave NDT technique started to be used later than other 

techniques, it has developed very rapidly compared to other techniques and has 

achieved significant success especially in material characterization. Considering the 

constantly developing material technology, alternative lightning techniques are 

required instead of classical NDT approaches because lighter, stronger and more 

electrically insulating composites replace metals in many applications. Examination 
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of the dielectric materials such as ceramics, plastics and composites using 

microwave and millimeter wave is a new field of application in NDT [71-75]. 

As the first developed NDT techniques are used to examine metallic structures, they 

are insufficient for the recently produced composite materials. Microwaves can 

easily penetrate in dielectric materials [76, 77]. The depth at which information 

about a material can be obtained or the distance that the microwave can propagate 

depends on the loss factor of the dielectric material (the ability to absorb microwave 

energy), the operating frequency and the receiver sensitivity [78-80]. 

Microwave measurements may be carried out on one side or on both sides of a 

material and on contact or non-contact. Microwave NDT techniques can be used to 

examine the geometric and dimensional properties of an environment as well as 

defects can be examined. The measurement accuracy can be increased by using the 

polarization properties of the microwave in order to better visualize the defects in 

a particular area of the material being measured. It is also possible to evaluate the 

properties and composition of mixtures of chemically produced composites. 

In an application, the smallest spatial distance between the two defects is 

considered to be resolution so that they can be perceived individually. Later, near-

field microwave and millimeter wave techniques provided better resolutions than 

one-tenth of the wavelength, and in recent studies on microwave waves, better 

results than one fifty seconds of wavelength are obtained. This is because an open-

ended waveguide aperture or lateral resolution in the near field of a probe, such as 

an open-ended coaxial line, is determined by the probe dimensions rather than the 

operating wavelength. Changes in the properties of the reflection coefficient for a 

given microwave sensor and its defect are very different in far field and near field 

conditions [81, 82]. 

Hardware systems for microwave NDT applications do not have to be expensive. If 

laboratory-testing equipment is used to make measurements, the cost is high. 

Besides, the hardware for a particular application can be developed and 

manufactured to be relatively cheap, simple in design, hand-held, battery-powered, 

operator-friendly and on-line. As the primary purpose of detecting defects in most 

microwave NDT applications is the primary purpose, complex post signal 
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processing is generally not needed. Large scanning areas can be achieved as 

scanning areas can be equipped with a range of sensors. Microwave signals could 

not penetrate inside the conductors and graphite composites. but this does not mean 

that metals and composite materials can never be investigated. metals and graphite 

composites can be examined by evaluating their properties such as thickness and 

material composition of dielectric coatings on the outer surfaces [83]. 

One of the most important features of microwave NDT techniques is that many 

different probes/sensors can be used. Some of these may give better results than 

others for a particular application. In addition, more precise results can be achieved 

by optimizing the system parameters in microwave NDT techniques. Once the 

theoretical basis for the interaction of microwaves with a given environment is 

understood and modeled, electromagnetic codes can be developed to estimate the 

result of a measurement to obtain the highest possible measurement accuracy [84]. 

Some of the areas that use the microwave NDT techniques are composite inspection, 

dielectric material characterization, microwave imaging, medical and industrial 

applications. With the help of microwave radar NDT method, thickness 

measurement of coatings, inspection of single-layer dielectric sheets, examination 

of layered dielectric composites made of plastic, ceramic, wood, gap detection in 

layered and half-space of dielectric composites, detection of delamination and 

dispersion, determination of dispersion depth of layered composite or a thick 

dielectric Delamination potential in the material, rust and corrosion detection in 

paint and thick layer laminate composite coatings, detection and evaluation of 

impact damage in reinforced composite structures[85, 86]. 

1.2 Objective of the Thesis 

In this research, internal crack that cannot be detected from the outside and two 

different surface crack geometries are defined in concrete structures. In order to 

define the surface crack, rectangles of decreasing width and circles of the same 

radius moving one after another are used respectively in two different concrete 

samples. In the other concrete sample, crack type is defined different from the void 

that cannot be detected from the surface and very thin crack definition is made by 

using the Riemann integral region to express the concrete defects. In addition to the 
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definitions of cracks, the interaction of composite piles and layered structures with 

mortar, concrete and pavement on their surface with the microwave is investigated 

by preparing the simulation setups. FDTD modeling is performed in the center 

frequency of L (1.0-2.0 GHz), S (2.0-4.0 GHz) and C (4.0-8.0 GHz) bands for prepared 

simulation setups which are suitable for the defined cracks. In the FDTD 

calculations, the dispersivity of the concrete samples is also taken into account. The 

structures which have surface crack are measured with Vivaldi antenna array. The 

reflection and transmission coefficients obtained from the measurement results and 

FDTD calculations are compared. 

1.3 Hypothesis  

Until today, studies on smooth geometries have been made, and have been limited 

to numerical simulations and laboratory measurements. In our study, the most 

appropriate modeling is made for the crack that can be encountered in real life. 

Complex structured concrete (concrete containing cracks, rebars, delaminations 

and voids) is simulated, these simulation models are physically poured into the mold 

in the construction laboratory, allowed to dry in the air for a long time (more than 

six months), then, concrete measurement is made in an anechoic chamber using 

electromagnetic waves and vivaldi antenna array. The results obtained from the 

measurement and the results obtained from the simulation are compared. 

Hypothesis: The measurement values of the simulated concrete structures and the 

samples poured into the mold suitable for these situations overlap with the 

simulation values. Therefore, it will be shown that it is possible to simulate the cases 

we have presented without the need for costly experimental studies. 

1.4 Organization of the Dissertation 

This thesis is organized and presented in the following manner.  

Chapter 2 reviews the finite difference time domain (FDTD) method. Basic facts and 

knowledge of electromagnetic methods and FDTD are illustrated. The advantages of 

the FDTD method and the reasons for its use in this thesis are briefly mentioned. By 

expressing Maxwell's equations and finite differences, the expression of Maxwell's 

curl equations with difference equations is given. The derivation of the update 
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equations to be used in simulations is explained in detail by using finite difference 

notation and Yee algorithm. In order to facilitate the calculation, the three-

dimensional equations have been reduced to two dimensions and one dimension. 

Finally, the section is completed by mentioning the stability condition and numerical 

dispersion. 

Chapter 3 illustrates the source waveforms, absorbing boundary conditions and 

dielectric properties of concrete. 

Chapter 4 shows crack types, layered concrete structures and cylindrical concretes. 

Three different types of cracks that can be encountered in a concrete structure have 

been identified. Surface cracks are defined with shrinking rectangles and dynamic 

geometry, and internal cracks, which cannot be observed from the outer surface, is 

defined by the Riemann integral definition. Simulation setups of six different layered 

rectangular structures with different building materials are prepared. Since 

nondestructive testing can be performed with microwave radar technique for 

concrete filled composite piles used in environments with very high humidity, 

simulations have also been made for cylindrical concretes and concrete filled 

composite piles. In the simulations, the field distributions from both the TEz mode 

and the TMz mode are compared and it is investigated which mode is more 

advantageous in which situations. Surface cracks, rebars, voids, and internal cracks 

are simulated at 1.5 GHz, 3.0 GHz and 6.0 GHz frequencies, and 2-D and 3-D cases of 

field distributions are given. 

Chapter 5 physical structure of the concrete specimens, dielectric properties of 

concrete and measurement setups, reflection and transmission coefficients. The 

WCR02 table is presented by expanding it to the frequencies we work with. The 

variation of dielectric properties according to the moisture content of the concrete 

is examined.  

Chapter 6 summarizes the results from this study and discusses possible research 

topics for future studies. 
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2  
NUMERICAL SIMULATION AND FINITE 
DIFFERENCE TIME DOMAIN METHOD 

 

2.1 Basic Facts and Knowledge 

In the absence of the computer technology, electromagnetic problems are generally 

tried to be solved by analytical methods and if analytical methods are inadequate 

the problems are researched experimentally. With the advancement of computer 

technology, computational electromagnetics has developed rapidly over the past 

decade and has come to a state where extremely accurate predictions can be 

obtained for various electromagnetic problems such as the scattering cross section 

of radar targets, the sensitive design of antennas and microwave devices, which are 

among the most popular problems of today. Computational electromagnetic 

methods used in problems that cannot be solved analytically can be divided into two 

parts as differential equation methods and integral equation methods. In general, 

integral equation methods give approximate results in terms of finite sums, whereas 

differential equation methods give results in terms of finite differences [87]. 

In previous years, when studies in the time domain were not developed, most of the 

computational electromagnetic problems were carried out in the frequency domain 

where harmonic behavior was present. In real problem applications, frequency 

domain approaches are used since it is possible to compare the results obtained 

from the numerical solutions of the canonical problems with analytical solutions. In 

addition, the operation of the systems used to make measurements in the frequency 

domain has also led to the use of the frequency domain in problem solutions. 

Although frequency domain techniques have been used before time domain 

techniques, they have some difficulties. For example, scattering techniques that is 

used to electrically model the scattering properties of large and complex shapes do 

not work well when the material composition is non-metallic or more complex 

geometrically. 
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Integral equation methods are not affected by the content of the materials in the 

calculation domain and the complexity of the geometry, but since it will be necessary 

to solve high-dimensional linear equation systems, calculation space is needed. 

Differential equation methods used in computational electromagnetics have 

become more preferred in simulations because they do not contain complex 

mathematical formulas and are easier to encode. Differential equations time-

domain approaches can be applied to many physical problems, as the computational 

resources are evolving and easy to adapt to simulation models that do not involve 

complex mathematical operations [88]. 

Maxwell's equations were solved numerically at first with the help of frequency 

domain integral equations, and then this research was developed, and direct time 

domain solutions of Maxwell's curl equations were made on spatial grids. Finite 

Difference Time Domain method first proposed by Yee in 1966 was the first 

technique used in the time domain and continued to be developed using it for new 

problems. FDTD method can solve Maxwell's equations without the need for 

complex asymptotic or Green function operations. Although it solves problems in 

the time domain, it works for very broad band frequencies using the Fourier 

transform [89]. 

The FDTD is a recursive method based on solving directly into the time space by 

replacing differential operators in time-dependent Maxwell equations with central 

finite difference equations. Thus, it allows the calculation of three electric field and 

three magnetic field components in time at certain discrete points of space. The 

FDTD method has second order accuracy in time and space, and the time steps must 

be selected according to the Courant stability criterion. Thus, the solution does not 

have amplitude errors (dissipative error) but due to geometric discretization, 

dispersive error exists in the solution. 

FDTD method is useful for many problems such as photonic crystal based device 

modeling, electromagnetic band-gap-based device modeling, electromagnetic 

impact effects and analysis, radar performance analysis and radar cross-sectional 

area, interaction of biological tissues with electromagnetic wave, detection of 

medical diseases, electromagnetic wave propagation around the earth at low 
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frequencies, electromagnetic wave propagation in frequency dependent mediums, 

electromagnetic interference and compatibility analysis, classical and industrial 

electromagnetic device and system modeling. Because FDTD is a versatile modeling 

method, its results can be animated in MATLAB, Fortran, C ++ etc. In the FDTD 

method, both narrowband and broadband sources can be modeled [90-92]. 

2.1.1 Electromagnetic Methods and FDTD 

The first solution methods of Maxwell equations are based on frequency space 

solutions (sinusoidal steady state). Before 1960, closed form and infinite series 

based analytical solutions and numerical results are obtained with mechanical 

calculators. After 1960, high frequency asymptotic techniques and integral 

equation-based solutions are obtained thanks to electronic computers using 

programming languages such as Fortran. Sinusoidal types wave solutions have 

become widespread within this scope. The reasons for this are the mathematical 

effects of the Fourier theorem, the calculation of resonance frequencies, the spread 

of the solution of boundary value problems for the diffraction of waves at certain 

frequencies, electronic and communication technology based on single frequency 

carrier waves, sinusoidal waves in the nature. Sinusoidal-steady-state solutions can 

be obtained in general but studies on broadband and transient solutions are limited. 

In addition, for the problems encountered in the frequency space, electromagnetic 

wave scattering from complex geometry, non-metallic linear/nonlinear composite 

and large-scale structures numerical time space solutions have been proposed. The 

FDTD method is one of the most commonly used [89, 90]. 

2.1.2 The Advantage of the FDTD 

The FDTD does not use linear algebra. Therefore, there is no upper limit for the 

number of unknowns. There are solved problems until 109 unknowns. The FDTD 

offers a controllable solution. The solution is under control since the errors are well 

understood. Responds the impulse directly. Thus, it is possible to obtain a wideband 

pulse or sinusoidal steady state response in a single operation. Non-linear solutions 

are possible. It is possible to find non-linear responses of electromagnetic systems. 

Provides a systematic approach. It does not require new formulations, except for 

grid editing for different problems. For example, does not need to calculation of 



17 

 

Green function, potential etc. which is vary depending on the structure. Memory 

needs are solved. Nowadays, due to the developments in semiconductor 

technologies, memory problems required for FDTD have been solved with a high 

degree. Real-time imaging needs are solved. Today, due to the developments in 

semiconductor technologies, FDTD provides the opportunity to imaging the 

required field distribution. The number of publications related to FDTD is increasing 

every year because of the mentioned advantages. Thus, many new electromagnetic 

systems have been possible like digital systems, integrated optical applications etc. 

[89]. 

2.1.3 The Dynamic Range of the FDTD 

The FDTD algorithm developed for a problem needs to be examined in which 

boundaries and how accurately it produces results. The range of FDTD algorithms 

developed for a particular problem is the dynamic range that gives the best results 

in a given calculation region. According to this ( )2

incident /P Watt m  is power of the 

incident wave and minimum observable scattered power is ( )2

min /scatteredP Watt m  and 

the dynamic range is defined as follows: 

( )
( )

2

2

min.

 10 log
incident

scattered

P Watt m
dynamic range

P Watt m

 
 =
 
   

(2.1) 

The main factors affecting the minimum observable scattered wave: 

Errors due to the Absorbing Boundary Conditions (ABCs): Since the accuracy of 

reflection coefficients of Absorbing Boundary Conditions (ABCs) used in the 1980s 

is varying between -30 dB (3%) and -50 dB (0.3%), the dynamic range of the FDTD 

varies between almost 40-50 dB. But since 1994, the perfectly matched layer 

absorbing boundary conditions has been used instead of analytical boundary 

conditions, the accuracy can be achieved in terms of reflection coefficients at around 

-80 dB so the dynamic range of FDTD approaches almost 80 dB. Numerical 

dispersion errors (phase velocity anisotropy and non-homogenous gridding): As the 

dynamic range of the FDTD method is improved with the application of perfectly 

matched layer absorbing boundary conditions, the numerical dispersion errors can 
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be very big in electrically large-scale problems and consequently error rate is 

increasing as a result. As a solution to this situation, Multiresolution Time Domain 

(MRTD) and Pseudospetral Time Domain (PSTD) methods which have smaller 

numerical dispersion errors have been proposed [90]. 

2.2 The Scalar Wave Equation and FDTD 

2.2.1 Propagating-Wave Solutions 

In this section, the numerical FDTD solution of the most basic partial differential 

equation defining wave motion will be studied. After obtaining the analytical 

propagating wave solutions, the finite difference technique is applied to the wave 

equation and the numerical dispersion, numerical phase velocity, numerical 

stability and time step are examined. 

In a source free region, the wave equation that governs either the electric of 

magnetic field in one dimension can be written below: 

( ) ( )2 2

2 2

, ,
0

f x t f x t

x t


 
− =

   
(2.2) 

where ( ) ( ) ( ),f f x t f t x c = =   is a solution to this equation and provided that 

f is twice differentiable and 1c = . 

In here 
1

1,  
t x c

  
= = 

 
 and the first derivatives of this function can be obtained 

via the chain rule. 

( ) ( ) ( )f f f

t t

  

 

  
= =

     
(2.3) 

( ) ( ) ( )1f f f

x x c

  

 

  
= = 

     
(2.4) 

The second derivatives can be obtained similarly using the chain rule 

( ) ( ) ( ) ( )2 2

2 2

f f f f

t t t t

   

  

        
= = =   

           
(2.5) 
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( ) ( ) ( ) ( )2 2

2 2

1 1 1f f f f

x x x c c x c

   

  

        
=  =  =   

           
(2.6) 

As a result, (2.5) and (2.6) show that 

2 2

2 2

f f

t 

 
=

   
(2.7) 

2 2

2 2

1f f

x c 

 
=

   
(2.8) 

Substituting these into (2.2) yields 

2 2

2 2 2 2

1 1
0

f f

c c 

 
− =

   
(2.9) 

Since the two terms that satisfy the equation on the left side can be cancel. In here c

represents the speed of light in free space. Using the permittivity and permeability 

of free space, c is obtained as 8

0 01 3 10 m s.c  =   [89]. 

2.2.2 Finite Differences 

Numerical methods used in mathematical solutions are divided into Direct Methods 

(Gaussian Elimination, Numerical Integration) and Recursive Methods (Taylor 

Series). In the direct methods round-off errors can reach significant levels. 

according to this distinction the FDTD method is a recursive method. Accordingly, 

FDTD is based on determining the numerical equivalents of analytical derivatives of 

various degrees by expanding to the Taylor series of unknowns. While direct 

methods usually provide a solution with a certain number of computer operations, 

in recursive methods the number of computer operations is determined according 

to the convergence principle. 

The finite difference method is divided into three as follows: 

1. Static Finite Difference (SFD) 

Laplace and Poisson Equation 

TEM (Transverse Electromagnetic) and Quasi TEM Equations 

2. Finite Difference Frequency Domain (FDFD) 
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Helmholtz Equation 

3. Finite Difference Time Domain 

Wave Equation 

Static finite difference and finite difference frequency domain do not provide time-

based recursive solution. For this reason, only the matrix equation is obtained as a 

result of spatial discretization and this situation brings along the various 

disadvantages of the matrix equations. Since the entire FDTD solution is obtained 

recursively in time and in space, any matrix equation is not formed and the FDTD is 

distinguished from other finite difference techniques. Recursion is stopped when 

the problem is decided to be solved, the recursion is decided to be convergent, and 

the recursion is long enough. The basic errors that can be encountered in a recursive 

algorithm are the establishment of a mathematical model that is not sufficiently 

suitable for the physical model, data collection errors, truncation errors, inexact 

arithmetic usage and rounding errors [89]. 

Considering a Taylor’s series expansion of ( ), nf x t  about the space point ix to the 

space point ,ix x+  keeping time fixed at nt , 

( )
( )

( ) ( )

1

2 2

2,
, ,

3 43 4

3 4

, ,

. .
2

. .
6 24

i nn

i n i n

i n n

i x tt
x t x t

x t t

xf f
f x x f x

x x

x xf f

x x


 
+  = +  +

 

  
+ +

 
 

(2.10) 

The last term here is known as the error term or remainder term. 1  is a space 

located somewhere in the interval ( ),i ix x x+ . Similarly, using the Taylor’s series 

expansion to the space point ix x−  , and fixing time at nt  

( )
( )

( ) ( )

2

2 2

2,
, ,

3 43 4

3 4

, ,

. .
2

. .
6 24

i nn

i n i n

i n n

i x tt
x t x t

x t t

xf f
f x x f x

x x

x xf f

x x


 
− = − +

 

  
− +

 
 

(2.11) 
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In the remainder term, 2  is a space point located in the interval ( ),i ix x x− . 

Considering together (2.10) and (2.11) one can be obtain, 

( ) ( ) ( )
( )

,

, 3

42 4
2

2 4

,

2 . .
12i nn n

i n n

i i x tt t

x t t

xf f
f x x f x x f x

x x


 
+  + − = +  +

 
 

(2.12) 

In here using the mean-value theorem, 3  is a space point that located in the interval 

( ),i ix x x x− + . By rearrangement of terms one can obtain 

( ) ( ) ( )

( )
( )( )

2
2

22

,

2

i n
n

i i i

x t
t

f x x f x f x xf
O x

x x

 +  − + −
= +  
   

 

(2.13) 

Where ( )( )2
O x  refers the remaining term. In order to reduce the error, x  must 

approach zero. (2.13) is called as second order accurate, central difference 

approximation to the second partial derivative of f . After this i  shows space 

position and n  shows time observation point. (2.13) equation can be written more 

simply like this; 

( )
( )( )

2
21 1

22

,

2

i n

n n n

i i i

x t

f f ff
O x

x x

+ −− +
= + 

 
 

(2.14) 

where n

if express a field that calculated at the space point ix i x=   and time point 

nt n t=   (2.14) express the central difference approximation, backward and forward 

approximations can be calculated similarly, and they are given (2.15) and (2.16) 

respectively. 

( )
( )( )

2
22 1 2

22

,

2

i n

n n n

i i i

x t

f f ff
O x

x x

− − −− +
= + 

 
 

(2.15) 

( )
( )( )

2
22 1

22

,

2

i n

n n n

i i i

x t

f f ff
O x

x x

+ +− +
= + 

 
 

(2.16) 
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For the second order partial time derivative ix  is accepted fixed and expand f  in 

forward and backward Taylor’s series in time. After that a second order accurate 

central difference approximation to the second partial time derivative of f  [90]. 

( )
( )( )

1 12
2

22

,

2

i n

n n n

i i i

x t

f f ff
O t

t t

+ −− +
= + 

 
 

(2.17) 

2.3 Maxwell’s Curl Equations and FDTD 

For modeling the electromagnetic event in any environment, the differential or 

integral states of Maxwell's equations are used in three dimensions. The time-

dependent Maxwell’s equations are given in differential and integral form 

Gauss’ law for the electric field: 

( ) ( ). , ,et t =D r r
 (2.18) 

( ) ( ), . ,e

S v

t t dv= D r ds r

 
(2.19) 

Gauss’ law for the magnetic field: 

( ) ( ). , ,ht t =B r r
 (2.20) 

( ) ( ), . ,h

S v

t t dv= B r ds r

 
(2.21) 

Faraday’s law: 

( ) ( ) ( ), , ,t t t
t


= − −


B r E r M r

 
(2.22) 

( ) ( ) ( ), . , . , .
S l S

t t t
t


= − −

   B r ds B r dl B r ds

 
(2.23) 

Ampere’s law: 

( ) ( ) ( ), , ,t t t
t


=  −


D r H r J r

 
(2.24) 
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( ) ( ) ( ), . , . , .
S l S

t t t
t


= − −

   D r ds H r dl J r ds

 
(2.25) 

These equations can be expressed separately in all coordinate systems. In the FDTD 

algorithm only Faraday and Ampere laws are sufficient since Gauss’ law is provided 

automatically in FDTD cells due to the location of ( ),tE r  and ( ),tH r . Since the 

FDTD is a recursive algorithm, .totalT n t=   express the duration time, where n  is 

time step and t  is time interval. Considering the ( ) ( ) ( ), , n

t n t
f t f n t f

= 
=  =r r r  

and ( ), 0t =M r  the derivative of the equation (2.21) with respect to n t  time can 

be expressed in the form of central differences and taking into account that electric 

fields are in exact steps and magnetic fields are in half time steps. 

( ) ( ) ( )
( ) ( )1 2 1 2

, ,

n n

nn n
t t

+ −−
 = −   −

 

B r B r
E r B r E r

 
(2.26) 

( ) ( ) ( )1 2 1 2n n nt+ −   −  B r B r E r
 

(2.27) 

Similarly taking consideration the derivative the equation (2.24) at ( )1 2t n t= +   

time step in the form of central differences 

( ) ( ) ( ), 1 2 , 1 2 , 1 2n n n
t


 + = + + +


H r D r J r

 
(2.28) 

( )
( ) ( )

( )
1

1 2 1 2

n n

n n

t

+

+ +
−

  +


D r D r
H r J r

 
(2.29) 

( ) ( ) ( ) ( )1 1 2 1 2n n n nt+ + +  − − D r D r J r H r
 

(2.30) 

Since ( )1 2n+
J r  shows the electrical current, using the interpolation ( )1n+

D r  can be 

calculated as (2.31). 

( ) ( )
( ) ( )

( )
1

1 1 2

2

n n

n n nt

+

+ +
 −

 − − 
 

J r J r
D r D r H r

 

(2.31) 

( )1n+
J r  and ( )n

J r can be calculated using ( ), tJ r . 
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In linear, isotropic and nondispersive materials, D  is related to E and B  is related 

to H  as follows: 

0 0,  r r     = = = =D E E B H H
 (2.32) 

The materials that accepted isotropic and nondispersive convert some of the E and 

H  field into heat energy so some the E and H  field fields attenuate. Note that J and 

M  acts independent sources of  E-field energy and H-field energy, sourceJ  and .sourceM  

*,  source source = + = +J J E M M H
 (2.33) 

 : electric conductivity (Siemens/meter) 

*  : equivalent magnetic loss (ohms/meter) 

Equation (2.32) is substituted in Equ. (2.22) and Equ. (2.24) the equations, following 

equation is obtained. 

( )*1 1
source

t


 


= −  − +



H
E M H

 
(2.34) 

( )
1 1

source
t


 


=  − +



E
H J E

 
(2.35) 

Six scalar equations are obtained after the vector operators of Equ. (2.34) and (2.35) 

are written. When components of Equ. (2.34) and (2.35) are reformulated two 

decoupled groups of equations are obtained, and the decoupled equations are 

evaluated separately [89, 90]. 

( )*1
x

yx z
source x

EH E
M H

t z y




  
= − − + 

     
(2.36) 

( )*1
y

y xz
source y

H EE
M H

t x z




  
= − − +      

(2.37) 

( )*1
z

yxz
source z

EEH
M H

t y x




 
= − − + 

     
(2.38) 
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For the Equ. (2.35) 

( )
1

x

yx z
source x

HE H
J E

t y z




  
= − − + 

     
(2.39) 

( )1
y

y x z
source y

E H H
J E

t z x




   
= − − +      

(2.40) 

( )
1

z

y xz
source z

H HE
J E

t x y




 
= − − + 

     
(2.41) 

The partial differential equation systems in (2.36) -(2.38) and (2.39) -(2.41) are the 

basis of the FDTD algorithm used for electromagnetic wave interactions with three-

dimensional objects [90]. 

2.3.1 Reduction to Two Dimensions (2D) 

Considering that the structure to be simulated using the FDTD extends to infinity in 

the z-direction without a change in shape or position and the incident wave is 

uniform in the z direction, then all the derivatives with respect to z is equal to zero 

or 0z  = . As a result, all the equations defined in Equ. (2.36) and Equ. (2.39) are 

reduced to 2-D. 

( )*1
x

x z
source x

H E
M H

t y




  
= − − + 

    
(2.42) 

( )*1
y

y z
source y

H E
M H

t x




  
= − +     

(2.43) 

( )*1
z

yxz
source z

EEH
M H

t y x




 
= − − + 

     
(2.44) 

( )
1

x

x z
source x

E H
J E

t y




  
= − + 

    
(2.45) 

( )1
y

y z
source y

E H
J E

t x




  
= − − +     

(2.45) 
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( )
1

z

y xz
source z

H HE
J E

t x y




 
= − − + 

     
(2.47) 

Grouping the Equ. (2.42) –(2.44) and Equ. (2.45) –(2.47) two equations groups are 

obtained. These are TE or HH-polarized waves which contains , ,x y zE E H  component 

and TM or VV-polarized waves which contains , ,x y zH H E  components. 

Transverse magnetic mode with respect to z in two dimensions that is to say TMz 

mode: 

( )*1
x

x z
source x

H E
M H

t y




  
= − − + 

    
(2.48) 

( )*1
y

y z
source y

H E
M H

t x




  
= − +     

(2.49) 

( )
1

z

y xz
source z

H HE
J E

t x y




 
= − − + 

     
(2.50) 

Transverse electric- mode with respect to z in two dimensions that is to say TEz 

mode: 

( )
1

x

x z
source x

E H
J E

t y




  
= − + 

    
(2.51) 

( )1
y

y z
source y

E H
J E

t x




  
= − − +     

(2.52) 

( )*1
z

yxz
source z

EEH
M H

t y x




 
= − − + 

     
(2.53) 

Neither TM nor TE mode does not contain common vector components. Therefore, 

these modes may be existing simultaneously in any environment without any 

interactions. These modes are two possibilities that can occur if the partial 

derivative of the electromagnetic wave interaction problem in the z direction is 

equal to zero. These two modes are very different each other in physically. This is 

due to the positioning of the E and H field lines relative to the surface of the modeled 
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structure. The TEz mode creates E-field lines in a plane perpendicular to the z-axis 

with infinite length while the TMz mode sets up only E-field lines parallel to the z-

axis [89, 90]. 

2.3.2 Reduction to One Dimensions (1D) 

Assuming that both electromagnetic field excitation and the structure that is 

modeled has not have any variation in the y-direction. It is assumed that all domain 

partial derivatives are equal to zero for both y and z, and that the interaction 

structure consists of an infinite space with a possible material layer in the x 

direction. 

After that the two-dimensional TMz mode expressed by Maxwell's equations (2.48) 

–(2.50) is reduced to the following form: 

( )*1
x

x
source x

H
M H

t





 = − +
   

(2.54) 

( )*1
y

y z
source y

H E
M H

t x




  
= − +     

(2.55) 

( )*1
z

yxz
source z

EEH
M H

t y x




 
= − − + 

     
(2.56) 

Considering that 0
xsourceM =  for all time and 0xH =  at 0t =  time step and as a result 

0xH t  =  at 0t =  time step. In this case the terms containing xH  in Equ. (2.54) –

(2.56) are vanish and x-directed, z-polarized transverse electromagnetic (TEM) in 

one dimension is obtained as follows: 

( )*1
y

y z
source y

H E
M H

t x




  
= − + 

    
(2.57) 

( )
1

z

yz
source z

HE
J E

t x




 
= − + 

    
(2.58) 

The two-dimensional TEz mode expressed by Maxwell's equations (2.51) –(2.53) is 

reduced to the following form: 
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( )
1

x

x
source x

E
J E

t





 = − +
   

(2.59) 

( )1
y

y z
source y

E H
J E

t x




  
= − − +     

(2.60) 

( )*1
z

yz
source z

EH
M H

t x




 
= − − + 

    
(2.61) 

Considering that 0
xsourceJ =  for all time and 0xE =  at 0t =  time step and as a result 

0xE t  =  at 0t =  time step. In this case the terms containing xE  in Equ. (2.59) –

(2.61) are vanish and x-directed, y-polarized transverse electromagnetic (TEM) in 

one dimension is obtained as follows [90]: 

( )1
y

y z
source y

E H
J E

t x




  
= − − + 

    
(2.62) 

( )*1
z

yz
source z

EH
M H

t x




 
= − − + 

    
(2.63) 

2.3.3 Equivalence to the Wave Equation in One Dimension 

Assuming that the one-dimensional x-directed, z-polarized TEM mode given in 

(2.57) and (2.58). From this equation considering the 0
y zsource sourceM J= =  and 

* 0 = =  one can obtain homogeneous, lossless, one-dimensional scalar wave 

equation for yH . Taking the partial time derivative of (2.57), 

2 2

2

1 1
. .

y yz z
H HE E

t t x t t x 

   
= → = 

        
(2.64) 

and taking the partial space derivative of (2.58), 

22

2

1 1
. .

y yz z
H HE E

x t x x t x 

   
= → = 

        
(2.65) 

Substituting the x-t derivative of zE  in (2.65) into the t-x derivative of zE  in (2.64) 

one can obtain: 
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2 2 2

2

2 2 2

1 1
. .

y y yH H H
c

t x x 

  
= =

    
(2.66) 

where 1c = , (2.66) is a one-dimensional scalar wave equation for yH . 

Taking the partial time derivative of (2.58) and considering the 0
y zsource sourceM J= =

and * 0 = =  one can obtain homogeneous, lossless, one-dimensional scalar wave 

equation for zE . 

22

2

1 1
. .

y yz z
H HE E

t t x t t x 

   
= → = 

        
(2.67) 

and taking the partial space derivative of (2.57): 

2 2

2

1 1
. .

y yz z
H HE E

x t x x t x 

   
= → = 

        
(2.68) 

Substituting the x-t derivative of yH  in (2.68) into the t-x derivative of yH  in (2.67) 

one can obtain: 

2 2 2
2

2 2 2

1 1
. .z z zE E E

c
t x x 

  
= =

    
(2.69) 

where 1c = , (2.69) is a one-dimensional scalar wave equation for zE . 

2.4 Finite Difference Time Domain Solution and Yee’s Algorithm 

The basis of the Yee algorithm is very robust and still has great usability. Instead of 

solving the wave equation for only electric field and magnetic field, a solution is 

obtained for the electric and magnetic fields by time and space discretization using 

the Maxwell curl equations combined with the Yee algorithm. As both E and H 

information is used to solve the problem, a better result is obtained in large scale 

problems. Both the electrical and magnetic material properties can be modeled 

easily. The Yee algorithm centers E and H components in time according to a 

leapfrog arrangement. Using the previously stored H data, all E calculations in the 

area are completed and memorized for a given time point. Then, using the calculated 
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E data, the H calculations in the space are completed and stored in memory. 

Recalculating components E using the most recently obtained H data, the cycle starts 

again. The leapfrog time-stepping algorithm is explicit so that problems with 

simultaneous equations and matrix inversion are avoided [90]. 

2.4.1 Finite Differences and Notation 

Considering that the problem is defined as a grid in the cartesian coordinates with

( ), ,x y zN N N N=  and ( ) ( ), j , , ,i x y k z i j k=    =r r r  

( ) ( ) ( ), , , , , ,n

t n t
f r t f i x j y k z n t f i j k

= 
=     =

 
(2.70) 

Equ. (2.70) can be taken as the fundamental of the Yee notation. According to the 

discretization given above (2.70), ( )n
E r  and ( )1 2n+

H r  values must be calculated at 

the same time. In this context, ( )1 2n+
H r  expressions that are half a step ahead in 

time should be offset in position according to the formula position speed time=  . 

Accordingly, each small cubic cell is called a FDTD cell or unit Yee cell. Each unit Yee 

cell has three electric and three magnetic field components with different 

intracellular locations. The electric field components are in the middle of the cell 

surfaces while the magnetic field components are in the middle of the cell's edge 

lines. 

  
a b 

Figure 2.1 (a) Unit Yee Cell (b) FDTD Space [90] 
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Due to the difference in the position of the electric field and magnetic field in the cell, 

the time step values automatically differ from each other by 2t . 

In the FDTD method the problem space consists of ( )x y zN N N   pieces of 

rectangular cubic cells as Figure 2.1. The FDTD method is first given in Cartesian 

coordinates, and it must provide three fundamental conditions. In this coordinate 

system, the computational space boundary must be sufficiently far from the 

scattering surface (at least 1− 2 wavelength), unit cells must have at least λ/10 

dimensions, and provide the stability criterion [89]. 

2.4.2 FDTD Updating Equations for Three-Dimensional Problems 

To achieve the numerical approximation of the Maxwell’s curl equations in three 

dimensions given by (2.39) –(2.40) and (2.42) –(2.44) can be expressed as discrete 

equations in both space and time. 

Taking consideration  

( )
1

x

yx z
source x

HE H
J E

t y z




  
= − − + 

     
(2.39) 

Considering central difference for the time and space derivatives with the location 

of ( ), ,xE i j k  approximate value of the derivatives in (2.37a) can be calculated. 

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )
( )

1 1 2 1 2

1 2 1 2

1 2

, , , , , , , 1,1

, ,

, , , , 11
                                        -

, ,

, , 1
                                        - , ,

, , ,

n n n n

x x z z

n n

y y

n

x

E i j k E i j k H i j k H i j k

t i j k y

H i j k H i j k

i j k z

i j k
E i j k

i j k i







 

+ + +

+ +

+

− − −
=

 

− −



−
( )

( )1 2 , ,
, x

n

sourceJ i j k
j k

+

 

(2.71) 

Although the components of the electric field are defined at integer time steps in the 

finite difference algorithm, on the right side of Equ. (2.71) the electric field 

component is defined at semi-integer time step. The ( )1 2 , ,n

xE i j k+ can be written as 

the average of the ( )1 , ,n

xE i j k+  and ( ), ,n

xE i j k  as follows. 
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( )
( ) ( )1

1 2
, , , ,

, ,
2

n n

x xn

x

E i j k E i j k
E i j k

+

+
+

=
 

(2.72) 

Substituting the (2.72) in (2.71) and after some mathematical manipulations 

updating equation of the electric field for the next step can be calculated using the 

values of the magnetic field components, the source component, and the electric 

field component from the previous time step. The field positions of Ex are indicated 

in Figure 2.2. 

( ) ( )

( )
( )

( ) ( )

( )
( )

( )
( ) ( )( )

( )
( )

1

1 2 1 2

1 2

2 , , . , , 2 , , . , ,
, , , ,

2 , , 2 , ,

                        + , , , 1,
, ,

                        - , ,
, , x

n n

x x

n n

z z

n

source

i j k t i j k i j k t i j k
E i j k E i j k

i j k i j k

t
H i j k H i j k

i j k y

t
J i j k

i j k

   

 





+

+ +

+

+  + 
=


− −





 

(2.73) 

 

Figure 2.2 Field Components for Calculation of the ( ), ,xE i j k  [89] 
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Figure 2.3 Field Components for Calculation of the ( ), ,xH i j k  [89] 

Similar to the method used to derive the electric field equations, update equations 

can be obtained in semi-integer time steps for the magnetic field components 

according to the field locations expressed in Figure 2.3. 

( )
( ) ( )

( ) ( )
( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1

1 2 1 2

1 2 1 2

2 , , . , ,
, , , ,

2 , , . , ,

2
                   + , , , 1,

2 , , . , ,

2
                    - , , , , 1

2 , , . , ,

            

n n

x x

n n

z z

n n

y z

i j k t i j k
E i j k E i j k

i j k t i j k

t
H i j k H i j k

i j k t i j k y

t
H i j k H i j k

i j k t i j k z

 

 

 

 

+

+ +

+ +

−
=

+ 


− −

+  


− −

+  

( ) ( )
( )1 22

        - , ,
2 , , . , , x

n

source

t
J i j k

i j k t i j k 

+

+ 
 

(2.74) 
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After discretization of the (2.36) in space and time finite difference formula for 

( )1 2 , ,n

zH i j k+ can be obtained as follows. 

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )
( )

( )

1 2 1 2 , , 1 , ,, , , , 1

, ,

, 1, , ,1
                                           -

, ,

, , 1
                                           - , ,

, , , ,

n nn n

y yx x

n n

z z

n

x s

E i j k E i j kH i j k H i j k

t i j k y

E i j k E i j k

i j k y

i j k
H i j k M

i j k i j k







 

+ − + −−
=

 

+ −



− ( ), ,
x

n

ource i j k

 

(2.75) 

Using some mathematical manipulations, the future term is written as follows: 

( )
( ) ( )

( ) ( )
( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

*

1 2 1 2

*

*

*

2 , , . , ,
, , , ,

2 , , . , ,

2
                     , , 1 , ,

2 , , . , ,

2
                       - , 1, , ,

2 , , . , ,

           

n n

x x

n n

y y

n n

z y

i j k t i j k
H i j k H i j k

i j k t i j k

t
E i j k E i j k

i j k t i j k z

t
E i j k E i j k

i j k t i j k y

 

 

 

 

+ −
−

=
+ 


+ + −

+  


+ −

+  

( ) ( )
( )*

2
            - , ,

2 , , . , , x

n

source

t
M i j k

i j k t i j k 



+ 
 

(2.76) 

Using the coefficient terms expressed below, the FDTD update equations for all 

components of the electromagnetic field equations can be written in the compact 

form. 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1

1 2 1 2

1 2 1 2

1 2

, , , , , ,

                    + , , , , , 1,

                    + , , , , , , 1

                    + , , , ,
x

n n

x exe x

n n

exhz z z

n n

exhy y y

n

exj source

E i j k C i j k E i j k

C i j k H i j k H i j k

C i j k H i j k H i j k

C i j k J i j k

+

+ +

+ +

+

= 

 − −

 − −


 

(2.77) 

 

 

 

( )*1
x

yx z
source x

EH E
M H

t z y




  
= − − + 

     
(2.36) 
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where 

( )
( ) ( )

( ) ( )

2 , , . , ,
, ,

2 , , . , ,
exe

i j k t i j k
C i j k

i j k t i j k

 

 

−
=

+ 
 

(2.78) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
exhz

t
C i j k

i j k t i j k y 


=

+ 
 

(2.79) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
exhy

t
C i j k

i j k t i j k z 


= −

+ 
 

(2.80) 

( )
( ) ( )

2
, ,

2 , , . , ,
exj

t
C i j k

i j k t i j k 


= −

+ 
 

(2.81) 

The FDTD updating equations for ( )1 , ,n

yE i j k+ : 

( )1
y

y x z
source y

E H H
J E

t z x




   
= − − +      

(2.40) 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1

1 2 1 2

1 2 1 2

1 2

, , , , , ,

                    + , , , , , , 1

                    + , , , , 1, ,

                    + , , , ,
y

n n

y eye y

n n

eyhx x x

n n

eyhz z z

n

eyj source

E i j k C i j k E i j k

C i j k H i j k H i j k

C i j k H i j k H i j k

C i j k J i j k

+

+ +

+ +

+

= 

 − −

 − −


 

(2.82) 

where 

( )
( ) ( )

( ) ( )

2 , , . , ,
, ,

2 , , . , ,
eye

i j k t i j k
C i j k

i j k t i j k

 

 

−
=

+ 
 

(2.83) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
eyhx

t
C i j k

i j k t i j k z 


=

+ 
 

(2.84) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
exhz

t
C i j k

i j k t i j k x 


= −

+ 
 

(2.85) 

( )
( ) ( )

2
, ,

2 , , . , ,
eyj

t
C i j k

i j k t i j k 


= −

+ 
 

(2.86) 
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The FDTD updating equations for ( )1 , ,n

zE i j k+ : 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1

1 2 1 2

1 2 1 2

1 2

, , , , , ,

                    + , , , , 1, ,

                    + , , , , , 1,

                    + , , , ,
z

n n

z eze z

n n

ezhy y y

n n

ezhx x x

n

ezj source

E i j k C i j k E i j k

C i j k H i j k H i j k

C i j k H i j k H i j k

C i j k J i j k

+

+ +

+ +

+

= 

 − −

 − −


 

(2.87) 

where 

( )
( ) ( )

( ) ( )

2 , , . , ,
, ,

2 , , . , ,
eze

i j k t i j k
C i j k

i j k t i j k

 

 

−
=

+ 
 

(2.88) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
ezhy

t
C i j k

i j k t i j k x 


=

+ 
 

(2.89) 

( )
( ) ( )( )

2
, ,

2 , , . , ,
ezhx

t
C i j k

i j k t i j k y 


= −

+ 
 

(2.90) 

( )
( ) ( )

2
, ,

2 , , . , ,
ezj

t
C i j k

i j k t i j k 


= −

+ 
 

(2.91) 

The FDTD updating equations for ( )1 2 , ,n

xH i j k+ : 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 2 1 2, , , , , ,

                    + , , , , 1 , ,

                    + , , , 1, , ,

                   + , , , ,
x

n n

x hxh x

n n

hxey y y

n n

hxez z z

n

hxm source

H i j k C i j k H i j k

C i j k E i j k E i j k

C i j k E i j k E i j k

C i j k M i j k

+ −= 

 + −

 + −


 

(2.92) 

where 

( )
( ) ( )

( ) ( )

*

*

2 , , . , ,
, ,

2 , , . , ,
hxh

i j k t i j k
C i j k

i j k t i j k

 

 

−
=

+
 

(2.93) 

( )
( ) ( )( )*

2
, ,

2 , , . , ,
hxey

t
C i j k

i j k t i j k z 


=

+  
 

(2.94) 
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( )
( ) ( )( )*

2
, ,

2 , , . , ,
hxez

t
C i j k

i j k t i j k y 


= −
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(2.95) 

( )
( ) ( )*

2
, ,

2 , , . , ,
hxm

t
C i j k

i j k t i j k 


= −

+ 
 

(2.96) 

The FDTD updating equations for ( )1 2 , ,n

yH i j k+ : 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 2 1 2, , , , , ,

                    + , , 1, , , ,
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n
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+ −= 

 + −

 + −


 

(2.97) 

where 
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( ) ( )
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*

*

2 , , . , ,
, ,

2 , , . , ,
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i j k t i j k
C i j k

i j k t i j k

 
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=
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(2.98) 
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2
, ,

2 , , . , ,
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t
C i j k

i j k t i j k x 


=
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(2.99) 
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( ) ( )( )*

2
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2 , , . , ,
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t
C i j k

i j k t i j k z 


= −
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(2.100) 
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( ) ( )*

2
, ,

2 , , . , ,
hym

t
C i j k

i j k t i j k 


= −

+ 
 

(2.101) 

The FDTD updating equations for ( )1 2 , ,n

zH i j k+ : 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 2 1 2, , , , , ,

                    + , , , 1, , ,
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n
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+ −= 

 + −

 + −


 

(2.102) 
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where 

( )
( ) ( )

( ) ( )

*

*

2 , , . , ,
, ,

2 , , . , ,
hzh

i j k t i j k
C i j k

i j k t i j k

 

 

−
=
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(2.103) 

( )
( ) ( )( )*

2
, ,

2 , , . , ,
hzex

t
C i j k

i j k t i j k y 


=

+  
 

(2.104) 

( )
( ) ( )( )*

2
, ,

2 , , . , ,
hzey

t
C i j k

i j k t i j k x 


= −

+  
 

(2.105) 

( )
( ) ( )*

2
, ,

2 , , . , ,
hzm

t
C i j k

i j k t i j k 


= −

+ 
 

(2.106) 

The first and second symbols in the subscripts used in the coefficient equations 

indicate the updated relevant field component, and the third and fourth subscripts 

indicate the type of the area where these coefficients are multiplied. After 

determining the FDTD equations, the time-marching algorithm can be created, every 

step of the time-marching algorithm the magnetic field components are updated for 

time instant ( )1 2n t+   and after one step the electric field components are updated 

for time instant ( )1n t+  . Since the problem space is finite dimensional, the field 

components on the boundaries of the problem space are calculated according to the 

type of boundary conditions during iteration. Any desired field can be stored or used 

after the electric field and magnetic field are updated using the FDTD algorithm. 

FDTD iterations can be continued until the conditions specified in the algorithm are 

achieved [89, 90]. 

2.4.3 FDTD Updating Equations for Two-Dimensional Problems 

When it is assumed that there is no change in one of the axes of the 

structure/geometry that is numerically modeled using the FDTD algorithm, the 

derivative terms with respect to this axis are equal to zero. In this case, the equations 

used in the algorithm are reduced from 3-dimensions to 2-dimensions. Equations in 

2-dimensions can be expressed in two groups. All electric field components in the 

first group are transverse to the reference dimension, while in the second group all 

magnetic field components are transverse to the reference dimension. The first 
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group of equations is called the TEz mode, the second group of equations is called 

the TMz mode. 

For TEz mode the updating formula for the FDTD algorithm can be obtained by 

applying the central difference formula. The placement of TEz mode field equations 

in cartesian coordinates is as shown in the Figure 2.4. 

 

Figure 2.4 Two-Dimensional TEz FDTD Field Components [89] 

The 2-D FDTD updating equations for ( )1 ,n

xE i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 1 2 1 2

1 2

, , , , , , 1

                 + , J ,    
x

n n n n

x exe x exhz z z

n

exj source

E i j C i j E i j C i j H i j H i j

C i j i j

+ + +

+

=  +  − −


 

(2.107) 
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where 

( )
( ) ( )

( ) ( )

2 , . ,
,

2 , . ,
exe

i j t i j
C i j

i j t i j

 

 

−
=

+ 
 

(2.108) 

( )
( ) ( )( )

2
,

2 , . ,
exhz

t
C i j

i j t i j y 


=

+ 
 

(2.109) 

( )
( ) ( )( )

2
,

2 , . ,
exj

t
C i j

i j t i j 


= −

+
 

(2.110) 

The 2-D FDTD updating equation for ( )1 ,n

yE i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 1 2 1 2

1 2

, , , , , 1,

                 + , J ,    
y

n n n n

y eye y eyhz z z

n

eyj source

E i j C i j E i j C i j H i j H i j

C i j i j

+ + +

+

=  +  − −


 

(2.111) 

where 

( )
( ) ( )

( ) ( )

2 , . ,
,

2 , . ,
eye

i j t i j
C i j

i j t i j

 

 

−
=

+ 
 

(2.112) 

( )
( ) ( )( )

2
,

2 , . ,
eyhz

t
C i j

i j t i j x 


= −

+ 
 

(2.113) 

( )
( ) ( )( )

2
,

2 , . ,
eyj

t
C i j

i j t i j 


= −

+
 

(2.114) 

The 2-D FDTD updating equation for ( )1 2 ,n

zH i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1 2 1 2, , , , , 1 ,

                 + , 1, , + , ,    
z

n n n n

z hzh z hzex x x

n n n

hzey y y hzm source

H i j C i j H i j C i j E i j E i j

C i j E i j E i j C i j M i j

+ −=  +  + −

 + − 
 

(2.115) 

where 

( )
( ) ( )

( ) ( )

*

*

2 , . ,
,

2 , . ,
hzh

i j t i j
C i j

i j t i j

 

 

−
=

+
 

(2.116) 
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( )
( ) ( )( )*

2
,

2 , . ,
hzex

t
C i j

i j t i j y 


=

+  
 

(2.117) 

( )
( ) ( )( )*

2
,

2 , . ,
hzey

t
C i j

i j t i j x 


= −

+  
 

(2.118) 

( )
( ) ( )( )*

2
,

2 , . ,
hzm

t
C i j

i j t i j 


=

+ 
 

(2.119) 

For TMz mode the updating formula for the FDTD algorithm can be obtained by 

applying the central difference formula. The placement of TMz mode field equations 

in cartesian coordinates is as shown in the Figure 2.5. 

 

Figure 2.5 Two-Dimenssional TMz FDTD Field Components [89] 
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The 2-D FDTD updating equations for ( )1 ,n

zE i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 1 2 1 2

1 2 1 2

1 2

, , , , , 1,

             + , , , 1

             + , ,    
z

n n n n

z eze z ezhy y y

n n

ezhx x x

n

ezj source

E i j C i j E i j C i j H i j H i j

C i j H i j H i j

C i j J i j

+ + +

+ +

+

=  +  − −

 − −


 

(2.120) 

where 

( )
( ) ( )

( ) ( )

2 , . ,
,

2 , . ,
eze

i j t i j
C i j

i j t i j

 

 

−
=

+ 
 

(2.121) 

( )
( ) ( )( )

2
,

2 , . ,
ezhy

t
C i j

i j t i j x 


=

+ 
 

(2.122) 

( )
( ) ( )( )

2
,

2 , . ,
ezhx

t
C i j

i j t i j y 


= −

+ 
 

(2.123) 

( )
( ) ( )( )

2
,

2 , . ,
ezj

t
C i j

i j t i j 


= −

+
 

(2.124) 

The 2-D FDTD updating equations for ( )1 2 ,n

xH i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 2 1 2, , , , , 1 ,

                 + , ,    
x

n n n n

x hxh x hxez z z

n

hxm source

H i j C i j H i j C i j E i j E i j

C i j M i j

+ −=  +  + −


 

(2.125) 

where 

( )
( ) ( )

( ) ( )

*

*

2 , . ,
,

2 , . ,
hxh

i j t i j
C i j

i j t i j

 

 

−
=

+
 

(2.126) 

( )
( ) ( )( )*

2
,

2 , . ,
hxez

t
C i j

i j t i j y 


= −

+  
 

(2.127) 

( )
( ) ( )( )*

2
,

2 , . ,
hxm

t
C i j

i j t i j y 


= −

+  
 

(2.128) 
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The 2-D FDTD updating equations for ( )1 2 ,n

yH i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 2 1 2, , , , 1, ,

                  + , ,    
y

n n n n

y hyh y hyez z z

n

hym source

H i j C i j H i j C i j E i j E i j

C i j M i j

+ −=  +  + −


 

(2.129) 

where 

( )
( ) ( )

( ) ( )

*

*

2 , . ,
,

2 , . ,
hyh

i j t i j
C i j

i j t i j

 

 

−
=

+
 

(2.130) 

( )
( ) ( )( )*

2
,

2 , . ,
hyez

t
C i j

i j t i j x 


=

+  
 

(2.131) 

( )
( ) ( )*

2
,

2 , . ,
hym

t
C i j

i j t i j 


= −

+ 
 

(2.132) 

2.4.4 FDTD Updating Equations for One-Dimensional Problems 

In the one-dimensional problems, there is only one-dimensional change in problem 

geometry and field distributions. For example, only the x-axis has change for the 

geometry and field, the derivative with respect to y and z dimensions vanish in 

Maxwell’s curl equations. The curl equations that reduced to one-dimension is given 

(2.54) -(2.56) and (2.59) -(2.61). In the (2.54) -(2.56) and (2.59) -(2.61) equations 

for xE  and xH  include time derivative but not include space derivative so FDTD 

updating equations not need for these equations because these equations do not 

represent the propagating fields. The equations for , ,y z zE H E  and yH  represent 

propagating fields that transverse to the x-axis. Firstly, FDTD updating equations for 

TE mode components are given. The fields position in one-dimensional space is 

given in Figure 2.6. 
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Figure 2.6 One-Dimensional FDTD Positions of Field Components yE  and zH  [89] 

The 1-D FDTD updating equations for ( )1 ,n

yE i j+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 1 2 1 2

1 2

1n n n n

y eye y eyhz z z

n

eyj iy

E i C i E i C i H i H i

C i J i

+ + +

+

=  +  − −

+ 
 

(2.133) 

where 

( )
( ) ( )

( ) ( )

2 .

2 .
eye

i t i
C i

i t i

 

 

−
=

+ 
 

(2.134) 

( )
( ) ( )( )

2

2 .
eyhz

t
C i

i t i x 


= −

+ 
 

(2.135) 

( )
( ) ( )

2

2 .
eyj

t
C i

i t i 


= −

+ 
 

(2.136) 

The 1-D FDTD updating equations for ( )1 2n

zH i+ : 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 2 1 2 1

z

n n n n

z hzh z hzey y y

n

hzm source

H i C i H C i E i E i

C i M i

+ −=  +  + −

+ 
 

(2.137) 

where 

( )
( ) ( )

( ) ( )

*

*

2 .

2 .
hzh

i t i
C i

i t i

 

 

−
=

+
 

(2.138) 

( )
( ) ( )( )*

2

2 .
hzey

t
C i

i t i x 


= −

+  
 

(2.139) 
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( )
( ) ( )

2

2 .
hzm

t
C i

i t i 


= −

+ 
 

(2.140) 

Secondly, FDTD updating equations for TM mode components are given. The fields 

position in one-dimensional space is given in Figure 2.7. 

 

Figure 2.7 One-Dimensional FDTD Positions of Field Components zE  and yH  [89] 

The 1-D FDTD updating equations for ( )1n

zE i+ : 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 1 2 1 2

1 2

1

z

n n n n

z eze z ezhy y y

n

ezj source

E i C i E i C i H i H i

C i J i

+ + +

+

=  +  − −

+ 
 

(2.141) 

where 

( )
( ) ( )

( ) ( )

2 .

2 .
eze

i t i
C i

i t i

 

 

−
=

+ 
 

(2.142) 

( )
( ) ( )( )

2

2 .
ezhy

t
C i

i t i x 


=

+ 
 

(2.143) 

( )
( ) ( )

2

2 .
ezj

t
C i

i t i 


= −

+ 
 

(2.144) 

The 1-D FDTD updating equations for ( )1 2n

yH i+ : 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 2 1 2 1

y

n n n n

y hyh y hyez z z

n

hym source

H i C i H C i E i E i

C i M i

+ −=  +  + −

+ 
 

(2.145) 
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where 

( )
( ) ( )

( ) ( )

*

*

2 .

2 .
hyh

i t i
C i

i t i

 

 

−
=

+
 

(2.146) 

( )
( ) ( )( )*

2

2 .
hyez

t
C i

i t i x 


=

+  
 

(2.147) 

( )
( ) ( )*

2

2 .
hym

t
C i

i t i 


= −

+ 
 

(2.148) 

2.5 Stability Criteria and Numerical Dispersion 

2.5.1 Stability Criteria in FDTD Algorithm 

The choice of space increment and time step in a finite different grid that modeled 

the one-dimensional scalar wave equation affects the propagation velocity of the 

numerical waves and thus the numerical error. Unstable solutions which is likely to 

occur in solutions of differential equations is undesirable. If the numerical stability 

is not provided, the results will be unlimited and irregular increase during the time-

increment. Since the electric field and magnetic field at separate points in time and 

space are sampled using the FDTD algorithm, the sampling selection in time and 

space steps must be made according to certain rules in order to ensure solution 

stability [90]. 

Taking consideration, the wave equation stability criteria can be given simply. 

( ) ( )
( ) ( )0

, ,
0,    , 0

f x t f x t
f x t f x

t x

 
+ = = =

   
(2.149) 

where ( ),f x t  is the unknown wave function, ( )0f x  is the initial condition at 0t = . 

This partial differential equation can be solved analytically. 

( ) ( )0,f x t f x t= −
 (2.150) 

Discretizing the ( ),f x t  both in time and space domains, a time-domain numerical 

scheme can be developed to solve the wave equation numerically. 
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( )

,    1, 2,3,...

,    t 1, 2,3,...

,

i

n

n

i i n

x i x i

t n t

f f x t

=  =

=  =

=
 

(2.151) 

where t  is the time cell size and x  is the space cell size. To obtain the numerical 

solution of the (2.149) finite-difference scheme is needed for computing the 

derivatives. 

1 1

1 1 0
2 2

n n n n

i i i if f f f

t x

+ −

− +− −
+ =

   
(2.152) 

Using the mathematical manipulations, the time domain numerical scheme can be 

obtained as follows: 

( )1 1

1 1 ,    n n n n

i i i i

t
f f f f

x
 + −

+ −


= + − =

  
(2.153) 

where i  shows the x position and n  shows the time and there is a small numerical 

error represented by the  . The error probably results from the truncation of real 

number. The error will continue to propagate in this time-domain algorithm; 

however, it can be observed that errors are always limited to the original error  . 

Errors are always limited to the original error  , and in the case where 1 = , the 

maximum absolute value of the propagation error is the same as the original error, 

when 2 = , the propagation of the error will continue to increase as time 

progresses. In cases where the error is large enough, the true value of u  is lost and 

the time-domain algorithm deviates from the correct result due to a very small 

initial error [90]. 

According to the sampling theory the numerical stability of the FDTD algorithm 

specified in time by the following formula: 

max

1

2
t

f
 

 
(2.154) 

where maxf  the maximum frequency content. For example when the maximum 

frequency 6.0 GHzf =  the sampling rate must be less than 
113 10 sec−  or 

23 10 ns.−  



48 

 

Another sampling criterion is about time increment t  and space increment that is 

to say ,x y   or z .This criterion is known as the Courant-Friedrichs-Levy (CFL) 

criteria and given as follows: 

( ) ( ) ( )
2 2 2

1

1 1 1
t

c
x y z

 

+ +
  

 

(2.155) 

( ) ( ) ( )
2 2 2

max

1 1 1 1
1

2
t c t

f x y z
   + + 

  
 

(2.156) 

In three-dimensional problems for uniform spatial discretization ( )x y z =  =   

one can get 
3

x
t

c


   and for two-dimensional problems 

2

x
t

c


   For instance if 

0.0015x = , t  must be less than 
33.538 10 ns.−  In one-dimensional case where 

y →  and z →  the CFL criteria reduced to t x c    or .c t x    According 

to this equation, a wave can travel in space at most one cell size during one time step. 

2.5.2 Numerical Dispersion 

Although the FDTD method provides a good approach to examining the real physical 

behavior of fields, approaching the derivatives of continuous functions with finite 

differences causes a difference between the real solution and the numerical solution, 

and this difference is called error. The difference of the phase velocities obtained 

numerically by the FDTD method from the actual phase velocities is called the 

numerical dispersion. For example, assuming that a plane wave which is 

propagating in the free space along the x-axis given by 

( ) ( )0, cosz xE x t E k x t= −
 (2.157) 

( ) ( )0, cosy xH x t H k x t= −
 (2.158) 

where ( ),zE x t  satisfies the wave equation 
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2 2

0 02 2
0z zE E

x t
 

 
− =

   
(2.159) 

Substituting the ( ),zE x t  given in (2.157) in the wave equation given in (2.159) the 

following equation van be obtained given in (2.160). 

2

2 2

0 0xk
c


  

 
= =  

   
(2.160) 

Eq. (2.160) is known as the dispersion relation. 

The dispersion relation which is analytically exact determines the relation between 

the spatial frequency xk  and the temporal frequency   [89]. 

The numerical dispersion relation or in other words dispersion relation can be 

calculated according to the finite-difference approximation of Maxwell’s curl 

equations. In the source-free medium the plane wave expressions given in (2.157) 

and (2.158) satisfy the Maxwell’s curl equations in one-dimension. 

0

1 yz
HE

t x


=

   
(2.161) 

0

1y z
H E

t x

 
=

   
(2.162) 

The FDTD algorithm for these equations can be obtained using the central difference 

formula. 

( ) ( ) ( ) ( )1 2 1 21

0

11
n nn n

y yz z
H i H iE i E i

t x

+ ++ − −−
=

   
(2.163) 

( ) ( ) ( ) ( )1 2 1 2 1 1
n n n n

y y z z
H i H i E i E i

t x

+ −− − + −
=

   
(2.164) 

The plane wave equations given (2.157) and (2.158) can be discretized in space and 

time since they are continuous in space and time. 

( ) ( )0 cosn

z xE i E k i x n t=  − 
 (2.165) 
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( ) ( )( )1

0 cos 1n

z xE i E k i x n t+ =  − + 
 (2.166) 

( ) ( )( )01 cos 1n

z xE i E k i x n t+ = +  − 
 (2.167) 

( ) ( ) ( )( )1 2

0 cos 0.5 0.5n

y xH i H k i x n t+ = +  − + 
 (2.168) 

( ) ( ) ( )( )1 2

01 cos 0.5 0.5n

y xH i H k i x n t+ − = −  − + 
 (2.169) 

( ) ( ) ( )( )1 2

0 cos 0.5 0.5n

y xH i H k i x n t− = +  − − 
 (2.170) 

Using the equation (2.165), (2.166), (2.167) and (2.169) in the equation (2.163), the 

equation (2.171) can be obtained as follows. 

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

0

0

0

cos 1 cos

cos 0.5 0.5
     =

cos 0.5 0.5

x x

x

x

E
k i x n t k i x n t

t

k i x n tH

x k i x n t

 



 

 − +  −  − 


 +  − + 
 
  − −  − +    

(2.171) 

Using the trigonometric identity ( ) ( ) ( ) ( )cos cos 2sin sinx y x y x y− − + = . In the 

(2.171) considering that ( )0.5xx k i x n t=  − +  , 0.5y t=   on the left side and 

( )0.5xx k i x n t=  − +  , 0.5y t= −   one can obtain. 

( ) ( )0 0

0

sin 0.5 sin 0.5 x

E H
t k x

t x



 = − 

   
(2.172) 

Using the equation (2.165), (2.167), (2.168) and (2.170) in the equation (2.164), the 

equation (2.171) can be obtained as follows. 

( ) ( )0 0

0

sin 0.5 sin 0.5 x

H E
t k x

t x



 = − 

   
(2.173) 

The numerical dispersion relation can be obtained like in the (2.174) using the 

(2.172) and (2.173) together. 

22

1 1
sin sin

2 2

xk xt

c t x

        
=     

         

(2.174) 
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The relation given in (2.174) is called the numerical dispersion relation and this 

numerical dispersion relation is different from the ideal dispersion relation given by 

(2.160). This difference is due to the deviation between the real solution of the 

problem and the finite difference solution. But for the one dimensional case, using 

the t x c =   numerical dispersion relation reduces to the ideal dispersion relation 

and this means that there is no dispersion error for propagating in the free space. 

Similarly, the numerical dispersion relation for two-dimensional and three-

dimensional cases can be obtained respectively [90]. 

222

1 1 1
sin sin sin

2 2 2

yx
k yk xt

c t x y

           
= +        

             

(2.175) 

In here there is no variation in the z-dimension. 

For the special case ,   ,   and  
2

x yx y t k k
c


 =  =   = = . 

The ideal numerical dispersion equality for two-dimensional problems can be 

expressed as following: 

2

2 2

x yk k
c

 
+ =  

   
(2.176) 
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= +        
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   
+   
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(2.177) 

For the special case ,   ,   and  
3

x y zx y z t k k k
c


 =  =  =   = = =  

The ideal numerical dispersion equality for three-dimensional problems can be 

expressed as following: 

2

2 2 2

x y zk k k
c

 
+ + =  

   
(2.178) 
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2.6 The Independence of FDTD Method from Divergence 

One of the advantages of the FDTD algorithm is that the Gauss's Law for electric and 

magnetic field is provided automatically by the unit cell locations of the field 

components in source-free environments. Gauss's Law for the electric field can be 

seen as follows: 

( ) ( ) ( ). , 0 . , , . 0
v s

t t dv t d =   = = D r D r D r s

 
(2.179) 

where ( ), 0e t =r . 

Discretizing surface integral in terms of the unit Ye cell, 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )
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                      + 1 2, 1, 1 2 1 2, , 1 2
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x x
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y y

n n

z z

t D i j k D i j k y z

D i j k D i j k x z

D i j k D i j k x y

= + + − − + +  

− + + − − +  

− + + − − +  

D r ds

 

(2.180) 

Taking the time derivative of all equations and writing in terms of the Maxwell 

equations: 

( ) ( )( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
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=
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x x
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t

H i j k H i j k
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H i j k H i j k

z

H i j k H i j k

y
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
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

 + + − +
 

 
 + + − +
 −
  

 − + + − − +
 

 −
 − + + − − +
 −
    

(2.181) 
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(2.183) 

Substituting these expressions in the integral equations given by (2.179), 

( ), . 0
s

t
t


=

 
D r ds  is obtained. As a result, ( ), . constant

s

t =D r ds . Using the 

( )
0

, 0
t

t
=
=D r  initial condition, ( ), . 0

s

t
t


=

 
D r ds  can be obtained. Hereunder, the 

FDTD algorithm is independence from the divergence in the source free medium. 

Since the necessary condition is already provided within the FDTD algorithm 

automatically there is no need to create algorithms for divergence equations [90]. 
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3  
SOURCE WAVEFORMS AND ABSORBING 

BOUNDARY CONDITIONS 

 

In the approximate solutions of the problems using the FDTD algorithm, how to 

define electromagnetic wave excitations is important and source types vary 

depending on the type of problem under consideration. Sources are generally 

divided into two as near (voltage and current sources) and far (incident fields in 

scattering problems) in accordance with the type of problem being solved. Source 

excites electric and magnetic fields with a waveform as a function of time [90]. 

3.1 Source Waveforms for FDTD Simulations 

Sources are indispensable parts of FDTD simulations and are divided into two as far 

field and near field according to the type of problem to be solved. In both cases, a 

source excites electric and magnetic fields with a waveform as a function of time. 

The waveform type is specially selected according to the nature of the problem, 

considering some of the limitations of the FDTD method. The frequency spectrum of 

the source waveform used in FDTD simulation should include all frequencies used 

in the simulation. The selection of waveform types according to the type of problem 

to be solved is important. While the sine or cosine function refers to a single 

frequency waveform, Gaussian pulse, time derivative of Gaussian pulse, Gaussian 

pulse with cosine modulation are multi-frequency waveforms [89]. 

3.1.1 Sinusoidal Waveform 

A sinusoidal waveform is a single-frequency waveform. In FDTD simulation, the 

initial conditions for the sources are zero and the waveform can be excited for a 

limited time in the simulation. Therefore, in the simulation if sinusoidal signal 

( )( )sin 2 ,  0 4t t    waveform is used for a source its duration time is finite. 
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The Fourier transform of a continuous time function ( )x t  is ( )X   given by 

( ) ( ) j tX x t e dt


−

−

= 
 

(3.1) 

and the inverse Fourier transform is 

( ) ( )
1

2

j tx t X e d 




−

= 
 

(3.2) 

The Fourier transform of the signal is a complex function. In an electromagnetic 

simulation induced using a sinusoidal waveform, the simulation must be run long 

enough for the transient response caused by the opening of the sources to disappear 

and only the sinusoidal response to persist [90]. 

3.1.2 Gaussian Waveform 

If simulations are desired to be made at broadband frequencies, the sinusoidal wave 

form is not suitable. The selection of the frequency spectrum of the source waveform 

is important for the results to be obtained from the FDTD algorithm to be valid and 

accurate. When the cell size in the computation domain is too large for part of a 

wavelength, the signal at that frequency cannot be accurately sampled in space. For 

this reason, the highest frequency in the source waveform spectrum should be 

chosen so that the cell size is less than or equal to a fraction of the highest frequency 

wavelength. A Gaussian waveform is the most suitable waveform as it can contain 

all frequencies down to the highest frequency that depends on a cell size by a factor. 

A Gaussian waveform can be written as a function of time as 

( )
1 2

0

0

exp
t t

g t


  −
 = − 
     

(3.3) 

where 0t  states how long after the start of the simulation the pulse will be included 

in the system, 0  is the parameter determining the pulse width. Since the product of 

time and time bandwidth is constant, as 0  gets smaller the frequency band widens. 
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If the Gaussian pulse is injected into the zE  component at a certain point, it is called 

soft source. 

( ) ( ) ( ), ,n n

z zE nxp nyp E nxp nyp g n= +
 (3.4) 

where ( ),nxp nyp  is the point in the spatial that Gauss pulse is injected. At same time 

step, if the source is calculated after the zE  value is calculated then the source 

applied on the FDTD grid, it is called a hard source. In time domain ( )g n  is discrete 

Gauss function 

( ) ( ),n

zE nxp nyp g n=
 (3.5) 

Using the 0 0t n t=  , 0 Tn t =   in (3.3) one can obtain (3.6) as follows, 

( )
1 2

0exp
n n

g n
n

 − 
= −       

(3.6) 

One of the important elements in electromagnetic problem simulation with FDTD is 

selection of the parameter [90]. The main purpose of simulating pulsed signals in 

time with FDTD is to examine the behavior of the studied structure in the wide 

frequency band. Since not every structure can be examined in every frequency 

region, the parameter selection should be chosen according to the desired frequency 

analysis. In this study, simulations that perform the FDTD algorithm for two-

dimensional applications are made. For example, for TE case, the simulation 

contains ,x yE E  and zH  components. In the case of TE, the Gaussian pulse is applied 

to the zH  component. 

The minimum wavelength of the signal and the highest frequency signal need to be 

considered because these values are important for accurate and stable FDTD 

simulation. Source pulse duration is determined according to the highest frequency 

to be analyzed. 
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0

max

1
 

2
pulse duration

f
= =

 
(3.7) 

Taking consideration, the maximum frequency max 1.67 GHzf = and pulse duration 

can be calculated using this value as in (3.6). 

0 9

1
0.3 

1.67 10
ns = =



 

(3.8) 

The methods used for the selection of the cell step in the FDTD formulation are 

generally similar, but sufficient sampling points must be taken to obtain the desired 

results. The number of samples per wavelength depends on many factors but usually 

one tenth of the wavelength is a suitable approach [90]. In this case, the relation 

between position steps and wavelength is as follows. 

min0.1x y  =  = 
 (3.9) 

8

0,min 9

max

3 10
0.18

1.67 10

c
m

f



= = =

  
(3.10) 

0,min0.1 0.018x y m =  =  =
 (3.11) 

If the medium is a non-magnetic dielectric medium with a relative dielectric 

constant of 4r = , the minimum wavelength and the position step are determined 

as in (3.12) and (3.13). 

8

min 9

max

3 10 4
0.1

1.67 10

rc
m

f





= = 

  
(3.12) 

min0.1 0.01x y dx m =  = =  =
 (3.13) 

In a non-magnetic dielectric medium, the phase velocity can be written as in (3.14) 

and in lossy dielectric medium the phase velocity is given in (3.15). 

p

r

c
V


=

 
(3.14) 
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w
V m s



 

  
=  −        

(3.15) 

The phase velocity in the lossy medium is lower than the phase velocity of the 

lossless medium. In lossy materials ( )0  , the time step required for stability 

should be smaller than the Courant limit [93] but in many problems the time steps 

is determined by the speed of light. Since the velocity in conductive materials is 

smaller than the wave velocity in free space, in FDTD calculations that include both 

free space and conductive medium, the time step should be selected so that the 

Courant limit is provided throughout the calculation space. 

The Gaussian pulse can be expressed with finite difference as in (3.16). 

( )
1 2

0

0

exp
n t t

g n t


   −
  = − 
     

(3.16) 

where 0t  expresses how long after the Gaussian pulse will be injected after the 

simulation. 

In Table 3.1 microwave frequency ranges used in the simulations and their 

wavelengths are given. 

Table 3.1 Microwave Frequency Ranges 

Letter 
Display 

Frequency Range Wavelength Range Wavelength Range 
(m) 

L 1 GHz-2 GHz 15 cm -30 cm 0.15 m – 0.3 m 

S 2 GHz-4 GHz 7.5 cm -15 cm  0.075 m – 0.15 m 

C 4 GHz-8 GHz 3.75 cm – 7.5 cm 0.0375 m – 0.075 m 

X 8 GHz-12 GHz 25 mm – 37.5 mm 0.025 m – 0.0375 m 

Ku 12 GHz-18 GHz 16.7 mm – 25 mm 0.0167 m -0.025 m 

K 18 GHz-26.5 GHz 11.3 mm – 16.7 mm 0.0113 m – 0.0167 m 

Ka 26.5GHz-40 GHz 5 mm – 11.3 mm 0.005 m – 0.0113 m 
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3.2 Absorbing Boundary Conditions 

Even if the computers used in simulations are high-capacity and fast, the FDTD 

calculation space must be finite since all simulations are performed in a limited area 

and in a limited time. In cases where the problem to be simulated is limited, the 

problem is solved by matching the boundary of the problem with the boundary of 

the FDTD calculation space, but in problems such as antenna problems and 

scattering problems, the computation space must be limited. In numerical wave 

propagation computations, an artificial boundary has to be defined to restrict the 

computation domain and absorb the outgoing waves. Physically, this process is like 

the walls of an anechoic chamber. Perfect electrically conductive (PEC) material and 

perfect magnetic conducting (PMC) material are used as boundary conditions to 

terminate the computation space [89] 

In the perfect electric conductor boundary condition, boundaries can be closed with 

a perfect electric conductive material and a zero value can be assigned to electric 

field components tangent to the boundary planes. By applying this condition to all 

boundaries in the computational space, resonator type structures can be examined. 

When modeling the behavior of the electromagnetic wave in any waveguide, the 

boundary condition is not defined since the tangent electric field is zero on the walls. 

In the perfect magnetic conductor boundary condition boundaries can be closed 

with a perfect magnetic conductive material and a zero value can be assigned to 

electric field components tangent to the boundary planes. According to PEC, PMC is 

a non-physical condition and is used to reduce the volume, especially in problems 

with structural symmetry. The plane in the middle of the symmetrical structure is 

closed with PMC and the symmetrical magnetic field values according to this plane 

are equal to each other [90]. 

Since it is not possible to simulate the infinite expansion of the problem space, the 

space must be restricted at a certain place where it will be sufficient for interactions 

and terminated appropriately. When the scattered and radiating fields reach the 

boundary, if the necessary boundary conditions are not applied, the fields can reflect 



60 

 

into the problem space. Usually, the boundary of the FDTD problem space is chosen 

in such a way that the scattered or radiating fields absorb them when they reach the 

boundary. In order to model the real infinity, the boundary conditions applied after 

the problem space is terminated in a certain region are called Absorbing Boundary 

Conditions (ABC). Absorbing boundary condition layer has a few mesh cells 

thickness and absorbs the electromagnetic waves on it with zero reflection in the 

entire frequency spectrum and at all angles [90]. 

The most commonly used absorbing boundary conditions are Mur type ABC, 

dispersive boundary condition (DBC) and perfectly matched layer (PML). The 

perfectly matched layer (PML) developed by Berenger [94, 95] has proven to be one 

of the strongest absorptive boundary conditions compared to other methods [95-

99]. The perfectly matched layer (PML) is a finite thickness lossy material boundary 

layer that is perfectly matched to the solution space and surrounds the calculus 

space. PML uses artificial structural parameters to establish the wave impedance 

adaption condition, regardless of the frequency and angle of the incident wave. All 

the absorbing boundary conditions, types of which will be described below, must 

conform with the Courant stability condition. 

3.2.1 Mur Type ABC 

According to total field/scattered field (TF/SC) theory, 

2 2 2

2 20

1
0 0

2x

f f c f
L f

x t c t y

−

=

  
=  − + =

     

(3.17) 

taking consideration tanf f=  at ( )1 2, j  cell and arranging the derivatives according 

to the central differences as follows 

1 1
2 2 2

1 2, 1 2, 1 2,

1 1 1 1

1, 0, 1, 0,

1

2

1
             

2

n n n

j j j

n n n n

j j j j

f f f

x t t x x

f f f f

t x x

+ −

+ + − −

   
 = −
     
 

    − −
    = −

      
      

(3.18) 
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     
    

 

(3.19) 
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f f f
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f f f f f f
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   
 

    − + − +
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     
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(3.20) 

Substituting (3.18) -(3.20) in the governing equation given in (3.17) and rearranging 

(3.17) according to the 
1

0,

n

j
f

+
 (3.21) can be obtained as follows. 
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( ) ( )

( )

( )

1 1 1 1

0, 1, 1, 0, 0, 1,

2
0, 1 0, 0, 1

2

1, 1 1, 1, 1

2

2
          

2 2

n n n n n n

j j j j j j
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 −  
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   +  + − +    

(3.21) 

In the square mesh taking consideration x y =  =   and rearranging (3.21) 

according to this equality (3.22) can be obtained as follows. 
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 −  
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(3.22) 
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Considering the equations given above and equalizing to zero the first-order 

accuracy of the Mur type boundary condition of the derivatives which are in the y 

direction, 
1

0,

n

j
f

+
is finally obtained as in (3.23). 

( ) ( )1 1 1 1

0, 1, 1, 0, 0, 1,

2n n n n n n

j j j j j j

c t
f f f f f f

c t c t

+ − + − − 
= − + + + +

 +   +   
(3.23) 

(3.23) is the Mur type boundary condition for, Mur type boundary conditions can be 

obtained for can be obtained similarly [100]. 

3.3 Perfectly Matched Layer 

Our problem is governed by Maxwell equations and they solved by using the FDTD 

in a computational domain to understand the interaction of the wave radiated from 

a point source and concrete structure. An absorbing layer encloses the 

computational domain and this calculation domain ends with perfect conductive 

conditions. In PML boundary condition the waves which have arbitrary incidence 

angle, frequency and polarization are matched at the boundary. Another advantage 

of the PML is the numerical computation domain can be composed of 

inhomogeneous, anisotropic, dispersive, or non-linear mediums. Such mediums 

cannot be modeled analytic ABCs 

The Perfectly Matched Layer (PML) is a finite thickness lossy material boundary 

layer that is perfectly matched to the solution space and surrounds the computation 

space. It has been shown that the PML developed by Berenger [94] is one of the 

strongest absorbing boundary conditions then other boundary condition methods 

[98]. PML is based on the use of artificial structural parameters to establish the wave 

impedance adaption condition, regardless of the frequency and angle of the incident 

wave. The main advantage of PML over other ABCs is that it can absorb all waves 

any frequency, polarization, and angle on it ideally with zero reflection. Although 

there are various types of PML in the literature, the first PML application is applied 

to the problem space of FDTD by Berenger. There are some types of PML like 

Berenger PML [97] Stretched Coordinates PML [101], Conventional lossy 
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dispersionless absorbing medium [102], Uniaxial Anisotropic PML [99], 

Convolutional PML [103], Nearly PML [104]. 

Convolutional PML (CPML) is suitable for low frequency analysis. Berenger PML 

(BPML) requires modification of Maxwell's equations and field decomposition. Due 

to space separation, the memory requirement is doubled compared to traditional 

FDTD methods. 

3.3.1 Berenger PML 

Berenger PML (BPML) is based on the principle of obtaining the reflection 

coefficient as zero by using non-physical splitting field components in the PML 

region with electrical and magnetic losses. [94] 

0
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problem
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  
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(3.25) 

(3.24) and (3.25) must be equal to provide the PML condition that is to say

problem BPMLZ Z= . 

0

0
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r

r
problem BPML e

r
r

j

Z Z

j




 






+

=  =

+

 

(3.26) 

Since impedance compatibility and reflection should be zero one need the (3.27). 

0 0

e m 

 
=

 

(3.27) 
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3.3.2 Uniaxial PML 

In the FDTD-UPML formulation, the entire spatial domain is considered to be 

anisotropic medium [90]. Since UPML is based on anisotropic material properties to 

define the absorptive layer, the lossy anisotropic environment can be perfectly 

matched to the isotropic environment by selecting the ambient parameters 

appropriately. The medium is anisotropic when the relationship between D and E  

(similarly B  and H ) depends on the direction of E  and H . Since D  and E  is not 

parallel to each other in the anisotropic medium, the structural parameters are 

expressed by the tensor dielectric constant ( )  and the tensor magnetic 

permeability ( ) . According to the UPML algorithm, a uniaxial anisotropic medium 

is sufficient in terms of dielectric and magnetic permeability when there is only one 

interface. This means for a single interface the anisotropic medium is uniaxial. 

Assuming that an arbitrary polarized plane wave propagating in Medium 1 

impinging on Medium 2 with i  angle. The magnetic field expression for the incident 

wave can be written in phasor form 

1 1

0
ˆ x yjk x jk y

i zH a H e
− −

=  (3.28) 

where 
1 1 1

ˆ ˆ
x x y yk k a k a= +  is wave number vector of the Medium 1. The region where 

0x   is anisotropic medium and its electrical and magnetic permeabilities in uniaxial 

tensor structure are expressed as follows: 

2 2 2 2

0 0 0 0

0 0 ,    0 0

0 0 0 0

a c

b d

b d

   

   
   

= =
   
        

(3.29) 

Waves transmitted to the second medium are also planar waves and satisfy 

Maxwell's equations. The Maxwell’s curl equations in phasor form can be given in 

(3.30) –(3.31). 

2E j H = −  
(3.30) 
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2H j E =  
(3.31) 

The scattering relationship of uniaxial media is obtained for TE and TM modes as 

follows. 

1 1

0
ˆ x yjk x jk y

i zH a H e
− −

=  (3.32) 

2H j E =  
(3.33) 

( ) ( ) ( )
222 1 1 1 1

2 2 2 0 for TE  0,  0x y z x yk k b d k a d H H− − − −− − = = =
 

(3.34) 

( ) ( ) ( )
222 1 1 1 1

2 2 2 0 for TM  0x y z zk k b d k b c H− − − −− − = =
 

(3.35) 

where 2 2

2 2 2k   = . As can be seen from (3.31) the scattering characteristics for TE 

and TM are similar to each other. Assuming that the incident wave is TE polarized 

wave, this wave has three field components ,  x yE E  and zH . 

The electric field for incident wave can be defined as follows: 

( ) 1 1

0
ˆ ˆcos sin x yjk x jk y

i x i y iE E a a e 
− −

= − +
 

(3.36) 

1 1
1 1

1 1 1

cos cos x x
x i i

k k
k k

k
 

  
= → = =

 
(3.37) 

1 1

1 1

1 1 1

sin sin
y y

y i i

k k
k k

k
 

  
= → = =

 
(3.38) 

0 1
0 0 0

1 1

E
H E H



 
= → =

 
(3.39) 

where 1k  is wave number of Medium 1 and 1  intrinsic impedance of the Medium 1. 

Substituting the (3.36)-(3.38) in (3.34) –(3.35) the incident electric field can be 

obtained and given in (3.40). 

1 11 11
0

1 1 1 1 1

ˆ ˆ x yjk x jk yy x
i x y

k k
E H a a e



      

− −
  

= − +  
      

(3.40) 
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1 11 1
0

1 1

ˆ ˆ x yjk x jk yy x
i x y

k k
E a a H e

 

− − 
= − + 
   

(3.41) 

The reflected field in phasor form in Medium 1 can be written in (3.41). 

1 1

0
ˆ x yjk x jk y

r zH a H e
−

=   (3.42) 

The reflected electric field in the Medium 1 can be as follows: 

1 11 11
0

1 1 1 1 1

ˆ ˆ x yjk x jk yy x
r x y

k k
E H a a e



      

−
  

=  − − −  
      

(3.43) 

1 11 1
0

1 1

ˆ ˆ x yjk x jk yy x
r x y

k k
E a a H e

 

− 
= − −  
   

(3.44) 

where   is reflection coefficient. The total magnetic field and electric field in 

Medium 1 are expressed as superposition of incident and reflected fields, 

respectively, as follows: 

( ) 1 112

1 0
ˆ 1 x yx

jk x jk yj k x

zH a H e e
− −

= +
 

(3.45) 

( ) ( )1 11 2 21
1

1 1

ˆ ˆ1 1x xy j k x j k xx
x y

k k
E a e a e

 

 
= − + + − 
   

(3.46) 

The total magnetic field and electric field in anisotropic medium is given in (3.46) 

and (3.47). 

2 2

2 0
ˆ x yjk x jk y

zH a H e
− −

=  (3.47) 

2 22 2
2 0

2 2

ˆ ˆ x yjk x jk yy x
x y

k k
E a a H e

a b


 

− − 
= − + 
   

(3.48) 

At 0x =  the tangent components of the E  and H  are continues and using the Snell 

law, refractive law one can obtain (3.48) and (3.49). 

2 1 1 siny yk k k = =
 (3.49) 
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1

1 2 1

1 1

1 2 1 2

2
,  1x x x

x x x x

k k b k

k k b k k b


−

− −

−
 = = + =

+ +  
(3.50) 

Snell reflection law ( )i r =  Snell refractive law 1

2

sin

sin

t

i

k

k





 
= 

 

 where   is reflection 

coefficient and   transmission coefficient. Substituting the (3.48) in (3.32), (3.50) 

can be obtained. 

( ) ( )
2 2

2 2 2 2

2 1 1 1 1 1x y y xk k b k b b k k bk= − = − =
 

(3.51) 

The parameter should be selected so that the reflection coefficient is zero 

1

1 2

1

1 2

0x x

x x

k k b

k k b

−

−

 −
 = = 

+ 

 for all incidence angles. For this condition 2 1x xk bk=  is enough. 

If the parameters are selected as 
1

1 2 1 2,  ,  ,  d b a b    −= = = = , one can obtain 

1 2k k=  and 1 2 = . 

( ) ( )
2 2

2 2 2 2

2 1 1 1 1 1x y y xk k b k b b k k bk= − = − =
 

(3.52) 

For all 1xk  values the reflection coefficient equal to zero. Thus, a non-reflective 

interface can be obtained at all incidence angles and frequencies. When a uniaxial 

medium with 2  and 2  tensors is created, non-reflective wave transmission to 

Medium 2 occurs. 

2 21 1,  s s   = =  
(3.53) 

where 

1 0 0

0 0

0 0

x

x

x

s

s s

s

− 
 

=  
 
 

. s  complex diagonal tensor, 1  and 1  are the electrical and 

magnetic permeabilities of the isotropic medium adjacent to the UPML medium, 

respectively. The non-reflective feature is independent of the incident angle, 

polarization, and frequency of the incident wave [90]. 
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3.3.3 Discrete Uniaxial PML 

TEz polarized wave has three field components ,x yE E  and zH . It is assumed that 

UPML is perpendicular to the x-plane. The FDTD method is based on discrete 

representations of Maxwell's equations. In the uniaxial medium, Ampere's law in 

matrix form given as follows: 

1

1

0 0

0 0

0 0 0
0

z

x x

z
x y

x

H

y
s E

H
j s E

x
s



−

 
 

    
    
− =        

    
 
    

(3.54) 

The second row (tangent to the boundary components) is derived from the standard 

FDTD update equations. However, xE  cannot be updated this way due to the non-

linear frequency dependency of xx . The xE  field component that perpendicular to 

the boundary can be updated in several ways. One of these ways updating the 

normal electric flux density xD  from the standard FDTD formulation and then xE  

can be calculated from the relationship between xD  and xE  [99]. 

In the uniaxial medium, Faraday's law in matrix form is given in (3.54). The last row 

is obtained from the FDTD updating equations. 

1

1

0 0 0 0

0 0 0 0

0 0

x

x

x zy x

s

j s

s HE E

x y



−

 
 

    
     =     
       

− 
    

(3.55) 

The FDTD update equations for , ,x x yD E E  and zH  can be written as follows when 

the 
*

1 1

x x 

 
=  condition is satisfied for a compatible PML. 
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( ) ( )

( ) ( )( )

1

1 2 1 2

1 2, 1 2,

1 2, 1 2 1 2, 1 2

n n

x x

n n

z z

D i j D i j

t
H i j H i j

y

+

+ +

+ = +


+ + + − + −
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(3.56) 
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(3.57) 
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  

+

+

+
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(3.58) 
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 
+ + − +  +   

          

(3.59) 

3.3.4 Corner Regions 

In the previous section, the condition of the wave coming to a single planar 

boundary is examined. However, for open region simulation in 2D-FDTD space, four 

sides of the computation domain must be restricted with UPML. In this case, UPML 

has 4 planar edges and 4 corner regions. A more general relationship is needed to 

eliminate uncertainty in corner regions that have more than one vertical interface. 

In the corner regions Maxwell’s curl equations can be written as (3.59). 

0 rE j sH  = −  
(3.60) 

0 rH j sE  =  
(3.61) 
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where 

0 0

0 0

0 0

y x

x y

x y

s s

s s s

s s

 
 

=  
 
 

 and 01 ,x xs j = +  01y ys j = +  the 

structural tensor is not uniaxial but anisotropic. The xs
 and ys  are related with x-

plane and y-plane respectively. The FDTD update equations of the areas in the 

corner regions are obtained using the two-digit method used for perpendicular area 

components. Ampere’s law in matrix form can be written as follows: 

1

0 0

0 0

0 0 0
0

z

y x x

z
x y y

x y

H

y
s s E

H
j s s E

x
s s



 
 

    
    
− =        

    
 
    

(3.62) 

Electric flux density is related to the electric field as given in (3.62). 

y

x x

x

s
D E

s

 
=  
   

(3.63) 

x
y y

y

s
D E

s

 
=   
   

(3.64) 

The partial differential equations given in (3.62) are in the frequency domain and 

by using the j
t




→


 transformation, the equations can be expressed in the time 

domain. Substituting the (3.63) –(3.64) in (3.62) the partial differential equations 

that are related to the magnetic field and magnetic flux density in time domain can 

be obtained. 

1
z

x

H
D

y t


 
=

   
(3.65) 

1
z

y

H
D

x t


 
− =
   

(3.66) 
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Using the (3.62) the time domain partial differential equations associated with the 

electric field strength components and the electric flux density components are 

obtained as follows: 

0 0

yx
x x x xD D E E

t t



 

  
+ = + 

    
(3.67) 

0 0

y x
y y y yD D E E

t t

 

 

  
+ = + 

    
(3.68) 

Faraday’s law in matrix form can be written as follows: 

1

0 0 0 0

0 0 0 0

0 0

y x

x y

x y zy x

s s

j s s

s s HE E

x y



 
 

    
     = −     
       

− 
    

(3.69) 

The magnetic flux density component is related to the magnetic field strength 

component as specified in (3.69). 

1z y zB s H=
 

(3.70) 

Substituting the (3.69) in (3.67) -(3.68) the time domain partial differential equation 

associated with the electric field strength components and the magnetic flux density 

components is obtained as follows. 

0

yx x
z z

EE
B B

x y t





 
− = +

    
(3.71) 

Using the (3.69) the time domain partial differential equations associated with 

magnetic field strength components and magnetic flux density components are 

obtained as follows: 

1 1

0

y

z z zB H H
t t


 



 
= +

   
(3.72) 
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Finite difference time domain approximations of partial differential equations given 

in (3.63) -(3.64) are obtained as follows [90]: 

( ) ( )

( ) ( )( )

1

1 2 1 2

1

1 2, 1 2,

                        1 2, 1 2 1 2, 1 2

n n

x x

n n

z z

D i j D i j

t
H i j H i j

y

+

+ +

+ = +


+ + + − + −

  

(3.73) 
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x x

y y

t
E i j E i j

t

t t
D i j D i j

t t

 

 

   

   

+

+

 − 
+ = + +  +  

   +  − 
+ − +      +  +      

(3.74) 

3.4 Dielectric Properties of Concrete 

Concrete is a heterogeneous material containing cement, water, fine aggregate, 

coarse aggregate and air. Aggregates are used as filling material in concrete and as 

a result of the reactions between cement and water, a mixture that holds the 

materials in the concrete together is formed. Concrete is brittle by nature and is 

resistant to compressive stresses and has low resistance to tensile stresses. Iron is 

used in concrete to increase the resistance of concrete to tensile stresses. Although 

the concrete has a heterogeneous structure, the curing time after production, the 

drying method (oven drying, air drying) and the environmental conditions during 

its use affect the physical properties of the concrete. In addition to other properties 

of concrete, its dielectric properties are the most influential feature in microwave 

radar inspection and simulation [105]. 

The dielectric property of a material relative to free space is a complex parameter 

consisting of its permittivity. The real part of this parameter is called the dielectric 

constant and the imaginary part is called the loss factor. 

r r rj   = −  
(3.75) 

( )1 tanr r j  = −
 

(3.76) 

The dielectric properties of a material can be expressed by (3.75) and (3.76). 
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While the real part indicates the amount of energy that can be stored in a material 

in the form of an electric field, the imaginary part or loss factor is a parameter that 

expresses how much of the energy given to the material is consumed as heat in the 

material [106]. The loss factor can be expressed as: 

02 f




 
 =

 
(3.77) 

Where   is conductivity and f  is frequency. The dielectric loss factor or loss 

tangent expresses the measure of the conversion of electromagnetic energy into 

heat energy due to dielectric losses and is the ratio of the dielectric loss factor to the 

dielectric constant and given as in (3.78) and   is the angular frequency of the 

wave. 

tan
 


 


= =

   
(3.78) 

Using the equation (3.76), it can be concluded that if tan 1  the medium is a good 

insulator, and if tan 1  the medium is a good conductor. 

The dielectric constant of concrete sensitive to measurement frequency, water-to-

cement ratio, moisture content, and measurement temperature [106]. Since the 

dielectric constant of water is high in the 0.1 GHz-20.0 GHz microwave frequency 

range, both the loss factor and the dielectric constant increase as the moisture level 

in a concrete sample increase. Concretes used in experimental measurements can 

be grouped according to their moisture content as saturated, wet, oven-dried or air-

dried. In concretes at the same humidity level, the dielectric constant varies 

depending on the frequency, but in cases where the concrete is dry, the dielectric 

constant is independent of the frequency [107, 108]. Considering the state of 

dielectric constant when the concrete is dry and when the moisture content of the 

concrete is highest, it has been observed that the dielectric constant varies between 

5 and 25 [75]. The dielectric constant does not change depending on the frequency 

when the concrete is dry [109, 110]. After the concretes used in our study were 

molded, they were kept in the curing tank for 28 days and dried in air for more than 

six months. 
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4 
CONCRETE TYPES AND SIMULATION SETUPS 

 

Concrete structures have a wide area of use in all areas of our lives. Since they have 

many different areas of use, their geometry changes depending on where they are 

used. Although its geometric shapes change according to the usage areas, it is also 

used in combination with different materials. When concrete material is used in 

areas that come into contact with water, such as bridge legs, it is used together with 

composite materials, making it usable for a longer time. Concrete materials used in 

building columns are reinforced with rebar. In cases where concrete is used on the 

building wall, concrete material can be used together with brick and mortar. In some 

cases, even when the concrete is newly prepared, defects such as being porous or 

having voids are observed. In concretes that have been used for a long time, exposed 

to strong energy such as earthquakes or weathered due to environmental factors, 

cracks are observed on the surface or in the interior [111]. 

In this section, concrete structures with cracks on the surface or inside, concrete 

structures that form a layered environment with different materials, and cylindrical 

concrete structures are examined respectively, and simulation results are given 

[112]. 

4.1 Surface Crack Definition 

Some of the physical models representing the types of cracks that could be found in 

any concrete structure are created. The simulation geometry of these crack types is 

explained in detail under subheadings. 

4.1.1 Crack Definition 

For defining the surface crack, rectangular step function is used that is defined 

mathematically in Equ (4.1). The rectangular step functions are added which are 

shrinking evenly and successively downward. The definition of the crack is obtained 

geometrically with the addition of functions and presented in Figure 4.1. 
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( )

0,  2

1 ,  2 2

0,  2

t a

rect t a a t a

t a

 −


= −  
   

(4.1) 

Rectangles with centers on the same axis are used. Rectangles of equal height, but 

tapering downward, are added end to end to form a ladder shape. The aim here is to 

examine how the rebar near and far from the surface is visualized in a concrete 

sample with a surface crack that narrows as one goes deeper. 

 

Figure 4.1 Surface Crack Model Defined by Rectangular Step Function [114] 

The dimensions of the numerical domain are 300 grids in other words 300-unit cell 

in the x-axis and 150 grids in the y-axis. For the spatial increment in the simulation 

domain, uniform discretization in space is appealed with 0.0015x y m =  =  and so 

computation domain physically corresponds to a rectangular region of 

0.45 0.225m m . In addition to these, domain contains four embedded rebar (radius 

of rebar is 8 mm). The operation frequencies for simulations are 1.5 GHz, 3.0 GHz 

and 6.0 GHz. 

Another surface crack definition is made by moving the same centered circles on 

triangle edges. The tangent point of one of the circles is the center of another the 

successive circle in Figure 4.2. Although this surface crack is shallower than the 

previous surface crack, the area it covers on the surface is wider.  
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The positions of the rebars in the concrete and the concrete thickness are the same, 

only the shape and depth of the crack are different. Thanks to this difference in the 

shape and depth of the crack, the time needed to detect the rebars and the response 

of the electromagnetic wave sent from the source when it encounters the concrete 

medium can be compared. In both simulation setups, the computational domain is 

surrounded by the PML layer [94]. Thus, the electromagnetic wave coming to the 

calculation area is absorbed and re-entering the calculation area is prevented. 

 

Figure 4.2 Surface Crack Model Defined by Dynamic Geometry [114] 

The dimensions of the numerical domain are 300 grids in the x-axis and 150 grids in 

the z-axis. In the reality the computation domain corresponds to a rectangular 

region of 0.45 0.225m m  and 0.0015x y m =  = . The experimental setup of Case B 

contains four embedded rebar (radius of rebar is 8 mm). The operation frequencies 

for simulations are 1.5GHz, 3.0 GHz, and 6.0 GHz.  

4.1.2 Simulation Results for Surface Cracks 

The numerical simulation experiments are excited by TE and TM waves, and all 

electric and magnetic components are calculated for Case A to Case C. Ex field 

distribution from simulations using TE wave and Ez field distributions from 

simulations using TM wave are shown and compared. In the presented cases, the 

maximum wave velocity is equal to the speed of light propagated along with the free 

space [90]. The simulation results are obtained at 1.5 GHz, 3.0 GHz and 6.0 GHz 
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frequencies. The state of the field distributions changes according to the time steps. 

Results are presented with the best visibility of cracks, defects and rebars. The 

operation frequencies for simulations are 1.5 GHz, 3.0 GHz, 6.0 GHz and some of the 

results at specific times are given. 

Simulation results are given for Case A function as follows: 

Frequency Ex Ez 

 

1.5 GHz 

  
a b 

 

3.0 GHz 

  
c d 

 

6.0 GHz 

  
e f 

Figure 4.3 Simulation Result for Case A at 600-Time Step: (a) Ex Field Distribution 

for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field Distribution for 3.0 

GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field Distribution for 6.0 GHz, (f) 

Ez Field Distribution for 6.0 GHz [114] 

Six different simulation results are given in Figure 4.3 for Case A. The thickness of 

the concrete and free space is 0.18 m and 0.045m, respectively. The simulation 

results for 1.5 GHz colors are more distinct, so crack and rebar are seen clearly in 

Figure 4.3a. When we compare the frequencies in the same time step for the Ex field 

distribution, the 1.5 GHz frequency is more suitable than the 3.0 GHz and 6.0 GHz 

frequencies. Figure 4.3a is a more reasonable result than Figures 4.3c and 4.3e. Ez 

field distribution obtained from TM mode at 1.5 GHz, 3.0 GHz and 6.0 GHz are given 

respectively in Figure 4.3b, Figure 4.3d and 4.3f. The variation of the waves 
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propagating from the air to the concrete appears to be more apparent in TM mode. 

On the other hand, rebars can be easily viewed in any situation. 

Simulation results are given for Case B geometry as follows: 

Frequency Ex Ez 

 

1.5 GHz 

  
a b 

 

3.0 GHz 

  
c d 

 

6.0 GHz 

  
e f 

Figure 4.4 Simulation Result for Case B at 600-Time Step: (a) Ex Field Distribution 

for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field Distribution for 3.0 

GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field Distribution for 6.0 GHz, (f) 

Ez Field Distribution for 6.0 GHz [114] 

As well as the simulation result given for Case A, the result is also obtained for Case 

B. The thickness of the concrete and free space is 0.18 m and 0.045 m, respectively. 

Although the rebars can be displayed in all results, the best result is obtained in 

Figure 4.4a. The transmission of the EM wave from one medium to another can be 

observed better in the field distribution obtained from TM mode. Since the crack in 

Case B is closer to the surface than in Case A and the TM mode is more suitable for 

observing the transition of the wave from the air to the concrete, the surface crack 

appears to be more appropriate in Figure 4.4b. Although the irons can be 

distinguished well in Figure 4.4c, the surface crack is not obvious. In Figure 4.4d, 
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although crack can be seen, the appearance of the rebars is not as clear as other 

shapes. At the same frequency, when the figures obtained from the TE and TM mode 

are compared, that is, when Figure 4.4e and Figure 4.4f are compared, the rebars 

appear more clearly in the results obtained from the TE mode. The best result for 

rebar detection is TE mode at 1.5 GHz frequency, and the best result for concrete 

detection is TM mode at 1.5 GHz frequency. 

4.2 Interior Crack Definition 

Internal fractures in concrete structures are damages that occur as a result of 

sudden energy changes such as earthquakes or as a result of situations such as 

collapse on the ground where the concrete structure is located. It poses a great risk 

for the safety of concrete structures as it is not possible to detect from the outside 

such as surface cracks. For these reasons, the detection of internal cracks is very 

important for both the safety of people and the service life of concrete structures. 

4.2.1 Definition of the Interior Crack via Riemann Integral Domain 

Interior concrete crack definition is made taking advantage of Riemann integral 

domain, in other words, the domain that is under a curve. Firstly, the area under the 

curve is defined using the Riemann integral expression, and then this definition is 

extended to the region expression between two curves. The area between the two 

curves is considered as an air-filled crack in simulations. To simulate this crack, 

which is the air-filled area, the integral of the function that assumed as a crack curve 

is used. The Riemann integral of a function requires the calculations of the area by 

dividing it into rectangles for this purpose. If one rectangle is used, the rudest 

approximation is achieved. But approximating the actual value of the area between 

two curves and making better refinements to the area, more rectangles should be 

added. These statements can be expressed mathematically as such: If the number of 

subintervals is increased, a more realistic area definition is made. 

This statements can be expressed mathematically as such: f  is a bounded function 

on  ,a b , P  is a  ,a b  partition of and a partition of an interval  ,a b  on the real 

axis can be defined as finite sequence 0 1 2, , ,..., kx x x x  of real numbers such that 
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0 1 2 ... ka x x x x b=     = . P can be denotable as a set  0 1 2, , ,..., nP a x x x x b= = = . 

In other words, a partition of a compact interval  ,I a b=  is a strictly increasing 

sequence of real numbers starts from 0x a=  point and ends at kx b= . Each interval 

of  1,i iI x x +  section will be referred to as a subinterval of x . If the number of 

subintervals is increased, a more realistic area definition is made. The subintervals 

are completed to rectangles from the bottom or top after dividing the area under the 

function curve into subintervals. Completing the sub-intervals to the rectangles 

from the bottom or using the minimum value of ( )f x  Lower Darboux Sum is 

obtained. In a similar way completing the subintervals to the rectangles from the top 

or using the maximum value of ( )f x  Upper Darboux Sum is obtained. 

Namely, assuming that  ,S a b ,  ( , ) inf ( ) :m f S f x x S= =   and 

 ( , ) sup ( ) :M f S f x x S= =  . 

Lower Darboux Sum, Upper Darboux Sum and then transition to integral domain are 

given in the following equations group, respectively. 

( )  ( ) ( )1 1

1

, , , .
n

k k k k

k

L f P m f t t t t− −

=

= −
 

(4.2) 

( )  ( ) ( )1 1

1

, , , .
n

k k k k

k

U f P M f t t t t− −

=

= −
 

(4.3) 

( ) ( ) ( ) ( )1 1 0 2 2 1 1, ... n n nL f P m t t m t t m t t −= − + − + + −
 

(4.4) 

( ) ( ) ( ) ( )1 1 0 2 2 1 1, ... n n nU f P M t t M t t M t t −= − + − + + −
 

(4.5) 

  ( ) sup ( , ) :  is a partition of ,L f L f P P a b=
 

(4.6) 

  ( ) inf ( , ) :  is a partition of ,U f U f P P a b=
 

(4.7) 

( ) ( ) ( )
b

a

f x dx L f U f= =
 

(4.8) 
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Related graphics are showed in Figure.4.5. 

  

a b 

  

c d 

Figure 4.5 Riemann Integral Definition: Rude Partition 

The subintervals are completed to rectangles from the bottom as in Figures 4.5 (a, 

c) or top as in Figures 4.5 (b, d) after dividing the area under the function curve into 

subintervals. Figures 4.5 (a, b) are the rudest approximation, Figures 4.5 (c, d) are a 

little better, but Figures 4.6 (a, b) are the best since calculating the area under the 

curve n  piece of the rectangle are considered [113]. 

  

a b 

Figure 4.6 Riemann Integral Definition: Thin Partition 
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This means after dividing the curve expressed by the function into subintervals, 

completing the rectangle from the top and completing the rectangle from the bottom 

is almost same meaning. Electric field and magnetic field are computed with FDTD 

at all these subdomains [114]. 

As a result of these definitions, in Case C the most realistic crack explanation that 

can be encountered in any concrete structure is made and this type of crack refers 

to a branching internal crack caused by various external factors. The crack 

expressed in this simulation model is an internal crack and cannot be physically seen 

from the outside. For Case C the dimensions of the computational domain are 300 

grids in the x-axis and 150 grids in the y-axis, and this physically corresponds to a 

rectangular region of 0.45 0.225m m  and 0.0015 .x y m =  = 0.045 m of the 

computation domain is air, the rest of the domain in other words, thickness of the 

concrete is 0.18 m. The simulation experiment for Case C is given in Figure 4.7. 

 

Figure 4.7 Interior Crack Model [114] 

The curve expressed by the function that represents the concrete crack or 

delamination physically is divided into subintervals. These subintervals have 

completed the rectangle from the top and the bottom. By doing so, rectangular 

subdomains are obtained, and then electric field and magnetic fields are computed 
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at all these subdomains with FDTD. The operation frequency for simulation is 6.0 

GHz and some of results at specific times are given. 

4.2.2 Simulation Results for Interior Crack 

Simulation results are given for Case C as follows: 

Frequency Ex Ez 

 

1.5 GHz 

  
a b 

 

3.0 GHz 

  
c d 

 

6.0 GHz 

  
e f 

Figure 4.8 Simulation Result for Case C at 700-Time Step: (a) Ex Field Distribution 

for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field Distribution for 3.0 

GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field Distribution for 6.0 GHz, (f) 

Ez Field Distribution for 6.0 GHz [114] 

Six different simulation results are given for Case C. The thickness of the concrete 

and free space is 0.18 m and 0.045 m respectively. In this experiment, rebar is not 

used to prevent the scattering of the wave in the structure so internal cracks are 

clearly visualized. The best result is in Figure 4.8a. In Figure 4.8b, the crack 

continuing to the right can be observed better. From the results of Figures 4.8c and 

4.8d, it can be concluded that increasing frequency makes internal crack detection 

difficult. Although it is noticed that there is a damage in the concrete medium in 

Figure 4.8e and Figure 4.8f, which are simulation results at 6 GHz frequency, the 
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crack shape is not clear. Relatively lower frequencies give better results for internal 

crack detection. 

The three-dimensional results of the simulation results of the surface cracks and 

internal crack described above are given in Figure 4.9. 

Case Ex Ez 

 

A 

  
a b 

 

B 

  
c d 

 

C 

  
e f 

Figure 4.9 3-D Simulation Result for All Cases for 1.5 GHz: (a) Ex for Case A at 600-

Time Step, (b) Ez for Case A at 600 Time Step, (c) Ex for Case B at 600 Time Step, 

(d) Ez for Case B at 600 Time Step, (e) Ex for Case C at 700 Time Step, (f) Ez for Case 

C at 700 Time Step [114] 

In Figure 4. 9, 3-D simulation results at 1.5 GHz, for Case A, Case B and Case C are 

given respectively. Since the most suitable frequency for both crack and rebar 

detection is 1.5 GHz, it is preferred to provide 3-D figures of simulations at this 

frequency. The locations of the sources can be seen clearly in all results. In Case A, 

because the crack is deeper, the wave can propagate without attenuation too much, 

hitting the rectangular-shaped edges and creating a reflection. This situation can be 

seen in Figure 4.9a. While a similar situation can be observed for Case C as in Figure 

4.9e, it could not be observed for Case B in Figure 4.9c. Since the EM wave is 
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scattered from rebars, they appear prominently in Figure 4.9a-d. As we know from 

the 2-D simulation results, the air-concrete separation can be determined more 

clearly in the Ez field distribution in Figures 4.9b, 4.9d, 4.9f. 

4.3 Material Characterization of Rectangular Concrete Blocks 

Containing Different Materials 

While examining concrete structures using microwave radar nondestructive testing 

technique, the main environment we focus on is concrete environments, but when 

we want to inspect a reinforced concrete building or a bridge, we encounter 

environments other than concrete. While there are materials such as iron and 

mortar on the walls of the concrete structure, paving stones can be found when 

examining the bridge decks. These paving stones can be either superficial or have a 

curved structure. In certain cases, the soil layer may be encountered. Considering all 

these situations, in addition to the concrete examination, it becomes necessary to 

examine the propagation of the electromagnetic wave in the case of mortar, 

pavement and soil layer. In this subsection, electromagnetic wave propagation in 

different materials with concrete structures will be examined and simulation setups 

containing different materials will be designed and results will be given. 

4.3.1 Wave Propagation in Planarly Layered Media 

The differences in the material properties of the four structural components 

(concrete, mortar, pavement, rebar) create challenging problems in predicting the 

behavior of the integrated structural system since concrete is a heterogeneous 

structure consisting of water, cement, sand, coarse aggregate and air in addition, the 

heterogeneous structure called mortar consists of water, cement, sand and air. 

Simple models, taken as cross-sections of large structures, can provide information 

about the behavior of a system that is lost in the details of more complex models and 

situations. Materials with many different dielectric properties have been 

successfully modeled in the same geometric structure. Therefore, the purpose of this 

section is to explain how the wave in microwave frequencies emitted from sources, 

in a layered environment composed of materials with different dielectric properties 
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and rebar. The response of layered media including pavement, concrete and soil is 

investigated by numerical simulation. 

Planarly layered media is the simplest inhomogeneous media compared with the 

other inhomogeneous media. Electromagnetic waves propagating in a planarly 

layered, isotropic medium can be reduced to the studying of the two uncoupled 

scalar wave equations. These two uncoupled scalar wave equations can be reduced 

to one dimensional scalar wave equations. 

When an electromagnetic wave comes to the plane boundary between two dielectric 

materials, some of the incident wave is transmitted while some is reflected. The 

boundary normal, incident wave, reflected wave, and transmitted wave lie in the 

same plane, and the plane is called the incidence plane or reflection plane. The ,i r  

and t  indices are used for incident wave, reflected wave and transmitted wave 

respectively. In addition, the material in which the incident and reflected wave 

propagates is indicated by i  and r , and the material in which the transmitted wave 

is propagated with t . The electric field and magnetic field are given below for 

incident wave, reflected wave and transmitted wave. 

( ) 0 exp .i i i iE i t= −E k r
 

(4.9) 

( ) 0 exp .r r r rE i t= −E k r
 

(4.10) 

( ) 0 exp .t t t tE i t= −E k r
 

(4.11) 

ˆn

c
= B k E

 
(4.12) 

The electromagnetic field must always satisfy the boundary conditions for E,D,B  

and H  at every point between the two materials. For the boundary conditions to 

always hold,   must be the same for all three waves. In order for the boundary 

conditions to be valid at every point, the following equations must be satisfied. 

. . .i r t =  = k r k r k r
  

(4.13) 

.sin .sin .sini i r r t tk k k  = =
 

(4.14) 
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Since the incident wave and reflected waves propagate in the same medium i rk k=  

and sin sini r = , using the reflection law i r = . Using the pk v n c = =  and 

since the   is the same for all waves Equ. (4.12) can be obtained. 

. . .i r t =  = k r k r k r  (4.15) 

Using the reflection law and Snell law direction of the reflection wave and 

transmitted wave can be find. The polarization perpendicular to the plane of 

incidence is known as the ( ), s  or TE mode and is expressed by the ( )⊥  index in 

the equations. The polarization perpendicular to the plane of incidence is known as 

the ( ),p  or TM mode and is expressed by the ( )  index in the equations. Since TE 

mode means transverse electric, E  is perpendicular to the incidence plane, while 

TM mode means transverse magnetic, B  perpendicular to the incidence plane. In 

general, the incident electromagnetic wave can be considered as a superposition of 

two linearly polarized waves perpendicular and parallel to the incident plane. In 

transverse electromagnetic waves, both E  and B  are perpendicular to the 

direction of propagation k . 

When an electromagnetic wave comes to the interface between two dielectrics, the 

properties of the reflected and transmitted waves are determined by the boundary 

conditions of E  and B . In the dielectric medium in which the incident wave exists, 

the electric and magnetic fields are the vectoral sum of the incident and reflected 

waves. In obtaining the boundary conditions for D  and B , it is taken into account 

that the interface is very thin. Under this assumption free surface charge can be 

taken as 0f =  Using the Gauss law for electric field . 0D dS =  and magnetic field 

B. 0dS =  together the Equ (4.16) and (4.17) can be obtained. 

( ) 1 1
ˆ ˆ. .i i r t t + =E E e E e

 
(4.16) 

( ) 1 1
ˆ ˆ. .i r t+ =B B e B e

 
(4.17) 
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In obtaining the boundary conditions for E and H  Ampere law 

. .fd d
t

 
= + 

 
 

D
H r J S  and Faraday law . .d d

t


= −

 
B

E r S  are used together. On 

the interface free charge density is 0f =J . Thus, the boundary conditions for H  

and E  are calculated as below. 

( ) 2 2
ˆ ˆ. .i r i t t + =B B e B e

 
(4.18) 

( ) 3 3
ˆ ˆ. .i r i t t + =B B e B e

 
(4.19) 

( ) 2 2
ˆ ˆ. .i r t+ =E E e E e

 
(4.20) 

( ) 3 3
ˆ ˆ. .i r t+ =E E e E e

 
(4.21) 

In the nonmagnetic and isotropic mediums for plane electromagnetic waves using 

the ( )B n c E=  and 0   equality, 
2

0n   can be used. 

How the electric field amplitudes of the reflected and transmitted waves will change 

according to the amplitude of the incident wave is determined by Fresnel's 

equations. In this case 1 3
ˆ ˆ. 0,  . 0= =E e E e  and ˆ 0=

2
B.e . Thus, the equations between 

(4.16) -(4.121) are reduced to (4.22) -(4.24). 

( )( ) ( ) ( ) ( )cos 2 cos 2i r i i i t tE E n c E n c   ⊥ ⊥ ⊥+ − = −
 

(4.22) 

( ) ( ) ( )0 0cos cosi r i i t t tE E n c E n c   ⊥ ⊥ ⊥− + = −        
(4.23) 

( )i r tE E E⊥ ⊥ ⊥+ =
 

(4.24) 

By solving (4.23) and (4.24) together, the following equations are obtained [114]. 

( )

( )

cos cos

cos cos

i t i t

r i

i t i t

n n
E E

n n

 

 

⊥ ⊥
−

=
+

 
(4.25) 

( )

2cos

cos cos

i
t i

i t i t

E E
n n



 

⊥ ⊥=
+

 
(4.26) 
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Thanks to the Snell’s law ( )sin sint t i in n =  cosine of the angle of refraction is given 

in (4.27). 

2 2 2cos 1 sint i t in n = −
 

(4.27) 

Substituting the (4.27) into the (4.25) and (4.26) the reflection coefficient of 

perpendicular polarization can be obtained as (4.28). 

 

( )

( )

2 2

2 2

cos sin

cos sin

i t i ir

i
i t i i

n nE
r

E n n

 

 

⊥

⊥ ⊥

− −
 =

+ −
 

(4.28) 

( )
2 2

2cos

cos sin

t i

i
i t i i

E
t

E n n



 

⊥

⊥ ⊥
 =

+ −
 

(4.29) 

The transmittance coefficient for perpendicular polarization is given in (4.29). 

Similarly, the equations for parallel polarization are obtained as follows: 

The equations 1 3
ˆ ˆ. 0, . 0,= =Be Be  and 3

ˆ. 0,=Ee  are reduced to (4.30)-(4.32). 

( )sin sini i i r i t t tE E E    + =
 

(4.30) 

( )i r i t tE E n E n+ =
 

(4.31) 

( )cos cosi r i t tE E E − + = −
 

(4.32) 

By solving (4.31) and (4.32) together, the following equations are obtained. 

( )

( )

cos cos

cos cos

t i i t

r i

t i i t

n n
E E

n n

 

 

−
=

+
 

(4.33) 

( )

2cos

cos cos

i
t i

t i i t

E E
n n



 
=

+
 

(4.34) 

By substituting the (4.27) which is obtained by using the Snell’s law into the (4.33) 

and (4.34) the reflection coefficient for parallel polarization can be obtained as 

follows: 
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( ) ( )

( ) ( )

2 2 2

2 2 2

cos sin

cos sin

t i i t i ir

i
t i i t i i

n n n nE
r

E n n n n

 

 

− −
 =

+ −
 

(4.35) 

( )

( ) ( )

2

2 2 2

2 cos

cos sin

t i it

i
t i i t i i

n nE
t

E n n n n



 
 =

+ −
 

(4.36) 

The transmittance coefficient for parallel polarization is given in (4.36) [115]. 

4.3.2 Layered Media Definitions 

The GPR method is a useful method that can be used to inspect construction 

structures and infrastructure. GPR systems also provide an important service for 

road surveys. For this purpose, asphalt, concrete, etc. determination of deformations 

in structures, road, etc. It is used to determine the voids under the structures, to 

control the quality of asphalt, and to map the thickness of asphalt and concrete 

pavements [116]. GPR systems, which can also be used in archaeological research, 

are used to locate objects and structures belonging to ancient civilizations. It is also 

used in archaeological field studies [117]. Another important area of use is the 

analysis of structures. In this context, it is used to display the iron reinforcement in 

columns and beams, to determine the existing building foundation type, and to 

investigate discontinuities in columns or beams. Finally, GPR systems are used in 

environmental research. For this purpose, it is used in underground pollution 

research, revealing filled areas and determining waste areas. Radio waves or 

microwaves, which are high-frequency waves, are used as a source in GPR. 

Frequency selection is made according to the depth of the research. A GPR system 

consists of transmit-receive antennas and a recording-analyzer. The transmitting 

antenna sends the electromagnetic wave underground. The receiving antenna 

detects the electromagnetic waves reflected from the underground and transmits 

them to the recording-analysis device. The signal sent underground is scattered, 

reflected and transmitted after it reaches objects with different dielectric 

properties. It is then recorded with the receiving antenna and recording-analyzer 

located on the surface. The GPR method has been used in many fields since its first 

use. Today, it is used in areas such as building and structural inspection, archeology, 
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road and tunnel quality assessment, detection of gaps, pipe and cable detection, and 

satellite remote sensing [119, 121]. 

The two-dimensional computational domain is divided into cells of much smaller 

size than the wavelength. Six different simulations set up are introduced. 

 

Figure 4.10 Model A: Layered Media with Pavement, Mortar, Concrete and 

Horizontal Rebar [117] 

In the first numerical experiment namely Model A in Figure 4.10, a two-layered 

rectangular specimen with pavement that contain mortar between and concrete 

including horizontal rebar is used to test the method. The thickness of the concrete 

is 0.13m, the height of the pavement 0.03 m, the height of the mortar 0.02m and 

extend of the free space in the y-axis is 0.09 m. The length of the rebar is 0.4 m. The 

entire computational domain is a rectangular region of 0.5 0.25m m . The numerical 

domain is obtained by dividing into 200 grids in the x-axis and 100 grids in the y-

axis, 0.0025x y m =  = . 
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Figure 4.11 Model B: Layered Media with Pavement, Mortar, Concrete and Vertical 

Rebar [117] 

In Figure 4.11 physical model for Model B is introduced. a two-layered rectangular 

specimen with pavement that contain mortar between and concrete including 

horizontal rebar is used to test the method. The thickness of the concrete is 0.13 m, 

the height of the pavement 0.03 m, the height of the mortar 0.02 m and extend of the 

free space in the y-axis is 0.09 m. The characteristics of this physical model are the 

same as the Model A except for the location of the rebar. The diameter of each rebar 

is 0.015 m, distance between rebar and x-axis is equal and 0.05 m. The distances of 

the centers of the rebar to each other and to the calculation edge are equal and 0.1 

m. 
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Figure 4.12 Model C: Layered Media with Circular Pavement and Concrete [117] 

In Figure 4.12 the simulation setup for Model C is introduced. This model contains 

circular pavement on concrete layer, the thickness of the concrete is 0.15 m, the 

distance between maximum point of the pavement and interface of the concrete-

pavement is 0.05 m. The computational domain is a rectangular region. The domain 

has 200 grids in the x-axis and 100 grids in the y-axis and 0.0025x y m =  = . The 

entire computational domain is a rectangular region of 0.5 0.25m m . 
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Figure 4.13 Model D: Layered Media with Concrete and Soil [117] 

In Figure 4.13 the simulation setup for Model D is given, and this model consists of 

undulating soil surface under concrete layer. The maximum height of the area 

formed by soil and concrete is 0.125 m and the distance between x-axis and peak of 

the soil is 0.075 m. The entire computational domain is a rectangular region of 

0.5 0.25m m . The numerical domain is obtained by dividing into 200 grids in the x-

axis and 100 grids in the y-axis, 0.0025x y m =  = . 



95 

 

 

Figure 4.14 Model E: Layered Media with Concrete, Mortar and Masonry [118] 

In Figure 4.14 a three-layered rectangular computational domain is presented. The 

calculation domain includes masonry, mortar and concrete which contains coarse 

aggregate respectively from top to bottom. There are air gaps between the 

masonries. This model has 0.5 m in the x-axis and 0.25 m in the y-axis. The 

computational domain is a rectangular region of 0.5 0.25m m . The numerical 

domain is obtained by dividing into 200 grids in the x-axis and 100 grids in the y-

axis, 0.0025x y m =  =   
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Figure 4.15 Model F: Layered Media with Concrete, Mortar, Rebar and Void [118] 

In the Model F experiment given in Figure 4.15 two-layered rectangular specimen 

that contain mortar and concrete layer is investigated. This sample includes a void 

and three rebar, two of which are of the same radius and the other one is thicker. 

This model has 0.5 m in the x-axis and 0.25 m in the y-axis. The computational 

domain is a rectangular region of 0.5 0.25m m . The numerical domain is obtained 

by dividing into 200 grids in the x-axis and 100 grids in the y-axis, 0.0025x y m =  =

. The thicknesses of the concrete layer and mortar layer are 0.17 m and 0.03 m 

respectively. The height of the free space on the y-axis is 0.05 m. 
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4.3.3 Simulation Results of Layered Media Samples 

Simulation results for Model A for 500-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.16. 
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Figure 4.16 Simulation Result for Model A at 500-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [117] 

Although the rebars can be displayed in all results, the best viewing for air gap 

between the pavement is obtained in Figure 4.16a. The transmission of the EM wave 

from one medium to another can be observed better in the field distribution 

obtained from TM mode. In Figure 4.16b Although the air gap between the pavement 

is not clearly visible, the transition from the air environment to the pavement and 

the encountering of the electromagnetic wave with the horizontal rebar are very 

evident. In Figures 4.16c and 4.16e, although the air gaps between the pavements 

are not as much as in the Figure 4.16a, they can be seen in Figures 4.16c and 4.16e. 

It is clear from the figures in the second column that the TM mode is suitable for 

different layer detection. In figures 4.16d and 4.16f the transition of the TM wave is 
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clearly observed in all the simulated frequencies. In this instance, lower frequencies 

are more convenient for material characterization and higher frequencies are 

suitable for rebar detection. 

Simulation results for Model B for 400-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.17. 
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Figure 4.17 Simulation Result for Model B at 400-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [117] 

In Figure 4.17 the electromagnetic wave provides less interaction with the rebar in 

terms of the cross-sectional area less time steps needed. The rebars can be displayed 

in all results, the best viewing for air gap between the pavement is obtained in Figure 

4.17a. The transmission of the EM wave from one medium to another can be 

observed better in the field distribution obtained from TM mode as can be seen in 

figures obtained for Model A. In Figure 4.17b, the air gap between the pavement is 

not clearly visible, the transition from the air environment to the pavement and the 

encountering of the electromagnetic wave with the horizontal rebar are very 
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evident. In Figures 4.17c and 4.17e, although the air gaps between the pavements 

are not as much as in the Figure 4.17a, they can be seen in Figures 4.17c and 4.17e. 

It is clear from the figures in the second column that the TM mode is suitable for 

different layer detection. In figures 4.17d and 4.17f the transition of the TM wave is 

clearly observed in all the simulated frequencies. In this instance, lower frequencies 

are more convenient for material characterization and higher frequencies are 

suitable for rebar detection. 

Simulation results for Model C for 250-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.18. 
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Figure 4.18 Simulation Result for Model C at 250-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [117] 

In Figure 4.18a, 4.18c and 4.18e Ex field distributions at 250-time steps are obtained 

at 1.5 GHz, 3.0 GHz and 6.0 GHz respectively. Ez field distributions at 1.5 GHz, 3.0 

GHz and 6.0 GHz for 250 time steps are given in 4.18b, 4.18d and 4.18f respectively. 

In this physical model, there is no further layer and rebar under the concrete, so no 



100 

 

more time steps are needed. Since lower frequencies are more suitable for material 

characterization Figure 4.18a and 4.18b are the best results for this physical model. 

Simulation results for Model D for 400-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.19. 
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Figure 4.19 Simulation Result for Model D at 400-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [117] 

In Figure 4.19a, 4.19c and 4.19e Ex field distributions at 400-time steps are obtained 

at 1.5 GHz, 3.0 GHz and 6.0 GHz respectively. Ez field distributions at 1.5 GHz, 3.0 

GHz and 6.0 GHz for 250 time steps are given in 4.18b, 4.18d and 4.18f respectively. 

Since the layered part examined by sending electromagnetic wave is thinner than 

other physical models, the time step is shorter. In this model, a structure consisting 

of two different materials is examined. In this model, more time steps are required 

than the Model C because the material to be simulated is deeper. As a result, in 

Figure 4.19a and 4.19b the soil layer is clearer. 
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Simulation results for Model E for 450-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.20. 
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Figure 4.20 Simulation Result for Model E at 450-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 sGHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [118] 

In Figure 4.20a, 4.20c and 4.20e Ex field distributions at 1.5 GHz, 3.0 GHz and 6.0 

GHz frequencies for 450-time steps for Model F are given respectively. In Figures 

4.20b, 4.20d and 4.20f the Ez electric field distribution of the TM mode at 1.5 GHz, 

3.0 GHz and 6.0 GHz frequencies at 450-time steps are given. While the gaps 

between the masonries can be seen more clearly in the figures obtained from the TE 

mode, the separation of the layers can be better visualized in the TM mode. In Figure 

4.20c even though the coarse aggregates are visible, the layers are almost 

indistinguishable so 1.5 GHz frequency is more suitable for material 

characterization than 3.0 GHz and in Figure 4.20e everything is seen seamlessly. In 

Figure 4.21e layers are no longer fully distinguishable but aggregates are slightly 

visible. 



102 

 

Simulation results for Model F for 450-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.21. 
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Figure 4.21 Simulation Result for Model F at 450-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [118] 

In Figure 4.21a, 4.21c and 4.21e Ex field distributions at 1.5 GHz, 3.0 GHz and 6.0 

GHz frequencies for 450-time steps for Model F are given respectively. In Figures 

4.21b, 4.21d and 4.21f the Ez electric field distribution of the TM mode at 1.5 GHz, 

3.0 GHz and 6.0 GHz frequencies at 450-time steps are given. 

In Figure 4.21c the mortar layer is completely blurred but the rebars remains clearly 

visible and thickness differences between them can be observed in all results. At all 

frequencies that numerical models are simulated the rebar can be clearly but higher 

frequency namely at 6.0 GHz rebar is clearer. 

The layered media may be encountered in bridge, road or different structures are 

designed as a numerical simulation experiment. The capability of the FDTD method 
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for simulation of layered media containing pavement, mortar concrete rebar and 

even soil is investigated. The layers of the rectangular structure with pavement, 

concrete and the rebar inside it are successfully viewed. In the physical models that 

contain rebar, the rebar can be displayed better at higher frequency in a word at 6.0 

GHz. Also, different pavement and concrete surfaces are observed in such a way that 

the thickness of the layers is noticeable, and the best simulation results is obtained 

at 1.5 GHz and 3.0 GHz frequencies for microwave radar NDT technique. 

4.4 Cylindrical Concrete Types 

FRP composites are widely used for the improvement and strengthening of 

structures due to their lightness and robustness [122, 123]. Structural reinforcement 

using FRP composites is investigated for two different conditions. Structural 

reinforcement can be done by covering FRP composites outside of the concrete pile 

containing defects (delamination, void, crack) and FRP tubes. Although these 

composite structures are more robust to corrosion and biological threats than 

conventional piles, delamination or other defects in the concrete may occur. 

Materials that have different dielectric properties can be specified via radar NDT. The 

response of the concrete filled FRP tube including rebar and FRP wrapped concrete 

structure containing void and delamination is investigated by numerical methods 

[124, 125]. 

4.4.1 Definition of Cylindrical Concrete Types with Defects  

Covering the bored piles with plastic or using fiber-reinforced polymer piles is an 

important solution method in order to make the bored piles resistant to moisture, 

such as the seaside or river sides, which are extremely exposed to water and 

moisture. Composite pile research continues using many different types of materials. 

Composite piles are highly preferred in load bearing or fender application. FRP piles 

filled with concrete, reinforced plastic matrix piles, glass fiber reinforced plastic piles 

and glass fiber pultrude piles are the most commonly used composite piles. The 

preferred reasons for these piles are to be high weight resistant, suitable for deep 

foundations and resistance to environmental threats. The most commonly used 

composite pile is obtained by filling the fiber reinforced polymer heap of FRP with 

concrete. The glass fibers are used as the main reinforcement fiber in many FRP 
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shells is that they are light weight, low cost and heat resistant. FRP composites have 

higher tensile strength than steel, it is a structural advantage. The fiber reinforced 

shell is resistant to tensile, the concrete core is resistant to compressive. In this 

subsection, three different cylindrical concrete structures are examined, and 

simulation results are obtained [126]. 

 

Figure 4.22 Cylinder A: Two-Layered FRP Tube with Concrete Core and Rebar 

[126] 

The two-dimensional geometry is divided into cells of much smaller size than the 

wavelength. The computational domain is a quadratic region of 0.5 0.5m m . The 

numerical domain is obtained by dividing into 200 grids both the x-axis and the y-

axis, 0.0025x y m =  =  and 120x y  =   . In the first numerical experiment, a 

three-layered cylinder with eight embedded rebar is used to test the method. The 
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thickness of the FRP epoxy layer and epoxy layer is 0.025 m and the diameter of 

inner concrete cylinder is 0.35 m. 

 

Figure 4.23 Cylinder B: One-Layered FRP Tube with Concrete Core and Crack 

[126] 

In experiment given in Figure 4.23 one-layered concrete cylinder is investigated. 

The thickness of the FRP epoxy layer that used to strengthen the concrete is 0.025 

m and diameter of the concrete column is 0.4 m. A branching crack is identified in 

the middle of the concrete core, and the part advancing to the right is defined more 

thinly than the crack in the middle. The purpose of defining the size of the crack 

differently is to investigate whether it is possible to detect the thinness and 

thickness, that is, the size difference, in simulation. In addition to the crack, three 

voids are identified. Two of these voids are the same size, but one is smaller. Here 

too, it is aimed to observe the size difference between the voids. 
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Figure 4.24 Cylinder C: Concrete Cylinder with Styrfoam and Rebar 

In the cylinder C, only concrete cylinder is examined, and it does not contain FRP 

shell. The numerical domain is divided into 200 grids both the x-axis and the y-axis, 

0.0025x y m =  = . The concrete cylinder contains two rebars and two styrofoam 

balls. Since the dielectric constant of the styrofoam is very close to the dielectric 

constant of the air, a styrofoam ball is used to express the void in the concrete 

structure. 

4.4.2 Simulation Results of Cylindrical Concretes 

Simulation results for Cylinder A for 400-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.25. 
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Figure 4.25 Simulation Result for Cylinder A at 400-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz [126] 
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Although the results obtained from the TE and TM modes differ in rectangular 

models and the TM mode gives better results in material characterization, there is 

no significant difference between the results in the cylindrical models. In Figure 

4.25a, 4.25c and 4.25e Ex field distributions at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies for 400-time steps for Cylinder C are given respectively. In Figure 4.25b, 

4.25d and 4.25f Ez field distributions at 1.5 GHz, 3.0 GHz and 6.0 GHz frequencies for 

400-time steps for Cylinder A are given respectively. In Figure 4.25a and 4.25b the 

layers of FRP tube and rebars can be seen clearly, the layers are best determined at 

1.5 GHz frequency. At 3.0 GHz, the distinction between layers becomes indistinct, 

and at 6.0 GHz, the layers cannot be determined at all. For the observation of the 

rebars, the frequency does not matter, but at 6.0 GHz the layers are not visible, so 

the rebars come to the fore. 

Simulation results for Cylinder B for 400-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.26, 4.27. 
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Figure 4.26 Simulation Result for Cylinder B at 400-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz [126] 
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Figure 4.27 Simulation Result for Cylinder B at 400-Time Step: (a) Ex Field 

Distribution for 3.0 GHz, (b) Ez Field Distribution for 3.0 GHz, (c) Ex Field 

Distribution for 6.0 GHz, (d) Ez Field Distribution for 6.0 GHz [126] 

In Figure 4.26a, 4.27a and 4.27c Ex field distributions at 1.5 GHz, 3.0 GHz and 6.0 

GHz frequencies for 400-time steps for Cylinder B are given respectively. In Figure 

4.26b, 4.27b and 4.27d Ez field distributions at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies for 400-time steps for Cylinder B are given respectively. In the Cylinder 

B the crack inside the composite pile is like delamination and the right part of the 

crack is thinner than the left part. In the case of Cylinder, A, no significant difference 

is observed between the results obtained from the TE and TM mode, but differences 

emerge here. In Figure 4.26a both crack and voids can be seen clearly. In Figure 

4.26b while the crack is not clearly visible, the voids can be seen. When the results 

at 3.0 GHz frequency are compared, both fracture and gap can be detected in TE 

mode, while no fracture is detected in TM mode. 
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Simulation results for Cylinder C for 400-time step at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies are given in Figure 4.28. 
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Figure 4.28 Simulation Result for Cylinder C at 400-Time Step: (a) Ex Field 

Distribution for 1.5 GHz, (b) Ez Field Distribution for 1.5 GHz, (c) Ex Field 

Distribution for 3.0 GHz, (d) Ez Field Distribution for 3.0 GHz, (e) Ex Field 

Distribution for 6.0 GHz, (f) Ez Field Distribution for 6.0 GHz 
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In Figure 4.28a, 4.28c and 4.28e Ex field distributions at 1.5 GHz, 3.0 GHz and 6.0 

GHz frequencies for 400-time steps for Cylinder C are given respectively. In Figure 

4.28b, 4.28d and 4.28f Ez field distributions at 1.5 GHz, 3.0 GHz and 6.0 GHz 

frequencies for 400-time steps for Cylinder C are given respectively. Since there is 

no FRP shell in the simulation setup here and the electromagnetic wave interacts 

directly with the concrete, iron and foam can be displayed in almost all the results. 

The optimal frequency for void imaging is 1.5 GHz, while rebar detection is almost 

frequency independent. 
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5  
CONCRETE STRUCTURE SPECIMENS AND 

MEASUREMENTS 

 

Concrete samples are heterogeneous material containing fine aggregate, coarse 

aggregate, sand, cement, water and a certain amount of chemicals in it. Concretes 

are divided into three main groups according to their unit weights. Those weighing 

approximately 2400 kg/m³ are called normal concrete and are the most commonly 

used concrete type for carrier purposes. Lightweight concretes are those with a unit 

weight of less than 2400 kg/m³. Concrete with a unit weight of more than 2600 

kg/m³ is called heavy concrete [127]. 

Ground Penetrating Radar (GPR), a remote sensing technology, is an important 

method used to view underground, concrete blocks and asphalt floors. In the GPR 

system, electromagnetic waves are sent to the ground, and the signals reflected from 

the soil are collected and processed, so that the underground or inside the sample is 

displayed. In this way, information such as depth, shape, size and water density of 

the target object is obtained. Targets can be classified as a long, thin, spherical or 

cylindrical object or a planar soil layer according to their electrical and geometric 

structure. System performance depends on basic antenna and radar parameters 

such as frequency band, transmitter power, antenna gain, dynamic range calculated 

by taking into account the electrical loss of the environment (soil, asphalt, concrete, 

etc.) and the scattering characteristics of the buried object. The capabilities of the 

software and hardware units determine the performance of the whole system. GPR 

technology is used in many research areas such as researching the infrastructure of 

cities, researching tunnels, mining surveys, detecting underground pipes and cables, 

asphalt control surveys, archaeological research, and military field research [119]. 

The features of GPR systems differ according to the features of the applications in 

which they are used. The GPR method is also used in underground mapping studies, 

finding the anomaly mass underground, mapping the karst areas, finding metallic or 
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non-metallic structures (gas pipes, waste pipes, telephone cables, etc.), mapping the 

underground mine areas, determining the changes of lateral discontinuities, 

determining the bedrock depth. It is used for mapping river and lake floors, 

investigating and mapping landslide planes [121]. Since this method does not cause 

any damage, it is also used in bridge and tunnel research. For this reason, it is used 

in the examination of new tunnels and bridges, in deciding the suitability of the 

ground on which the structures will be built, in determining the final state of the 

structure in renovation works, and in researching columns and connection places. 

In addition, it is used in tunnel surveys, determination of parking and garage areas, 

foundation thickness determination studies, determination of the places behind 

concrete or walls and measuring concrete thicknesses [119]. 

5.1 Molding the Concrete Samples 

Four of the concrete models simulated in Chapter 4 are created and measured at 

microwave frequencies, and the results are expressed in this section. It is 

determined that the produced concretes gained most of their compressive strength 

when they were 28 days old. Concrete is a material that gains strength over time. 

The strength gain, which is very fast in the first 7 days, continues slowly. Concrete 

reaches approximately 70% of its strength at 28 days of age, which is generally 

predicted in 7 days. For this reason, the 28-day strength of the concrete significantly 

affects the humidity and temperature of the environment, especially in the first 

week. In all international and national regulations, the 28-day strength standard 

strength is accepted. The 28-day characteristic compressive strength of concrete 

used in reinforced concrete generally varies between 140 and 500 kgf./cm². The 

compressive strength of concrete is measured on 28-day-old cylindrical (15 cm 

diameter, 30 cm height) or cube (15 cm sided) specimens stored under standard 

curing conditions (in 20 °C ±2 °C lime-saturated water) [129]. Concrete strength and 

classes are shown in Table 5.1. 
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Table 5.1 Concrete Types and Strengths 

Concrete Types fck, cylinder (N/mm2) fck, cube(N/mm2) 

BS 16 (C 16) 16 20 

BS 18 (C 18) 18 22 

BS 20 (C 20) 20 25 

BS 25 (C 25) 25 30 

BS 30 (C 30) 30 37 

BS 35 (C 35) 35 45 

BS 40 (C 40) 40 50 

BS 45 (C 45) 45 55 

BS 50 (C 50) 50 60 

The general name of materials such as sand, gravel, crushed stone used in concrete 

production is aggregate. Approximately 60-70% of a concrete sample consists of 

aggregates and is an important component of concrete. In order to obtain a durable 

and economical concrete, the aggregates used in the mixture must have certain 

properties. Durable, workable and high quality concrete can be obtained by using 

suitable aggregates. The use of more sand and less coarse aggregate than 

conventional concrete also increases the ability to pass through the reinforcement, 

that is, it affects the fluidity of the concrete. However, decreasing the coarse 

aggregate ratio reduces the compressive strength. It is the best solution to use both 

crushed and natural aggregate together for the optimization of workability and 

compressive strength of concrete [129]. 

  

a b 

Figure 5.1 Preparation of Concrete Samples: (a) Preparation of Concrete Mix, (b) 

Keeping the Samples in the Curing Tank 
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Another important component of concrete is cement. Generally, cement dosage is 

recommended to be between 350 kg/m3 and 450 kg/m3. Since the cement dosage of 

500 kg/m3 or more will increase the drying shrinkage of the concrete, the risk of 

cracks and fractures in the concrete increases. Portland cement is used in the 

concrete samples prepared for the measurement in our study. A photograph of the 

preparation phase of the concrete used when creating the measured samples and a 

photograph of the concrete samples being kept in the curing tank for 28 days after 

preparation are given in Figure 5.1. 

  

a b 

Figure 5.2 Physical Structure of Rectangular Models: (a) Case A, (b) Case B [114] 

Concrete specimens are prepared in accordance with the simulation setup in given 

in Case A and Case B. In Figure 5.2a a defect is created on the concrete surface by 

using rectangles that narrow down in width but remain constant in height and 

Figure 5.2b, using successive circles a wider crack is created. Four rebars are used 

in both specimens. Instead of using standard molds while creating concrete samples, 

molds are created from styrofoam and samples are prepared in accordance with the 

dimensions given in the simulation setups. In order to obtain the cracks on the 

surface of the concrete samples, styrofoam cuts are made in accordance with the 

simulation measurements. The extruded form of the rectangular concrete samples, 

which were measured, is presented in Figure 5.2. 
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a b 

Figure 5.3 Physical Structure of Cylindrical Models: (a) Cylinder B, (b) Cylinder C 

Two of the samples measured are selected from the cylindrical models. Cylindrical 

concrete samples are prepared in accordance with the simulation setup given in 

Cylinder B and Cylinder C. Cylindrical samples are prepared using standard 

cylindrical molds, which are also used in pressure measurements. Although the first 

of the model presented in Figure 5 is given out of the mold, a photograph of the 

second sample in its preparation stage is given. The internal crack, which is very 

complexly expressed in the simulation setup, is obtained by using styrofoam in the 

sample. In the second sample, standard rebar is used and styrofoam is used to obtain 

the void. After the concrete solidified in the molds, it is taken out, kept in the curing 

tank for 28 days, then dried in air for more than six months and made ready for 

measurement. 

5.2 Measurement of Concrete Samples 

In many microwave applications, the electromagnetic properties of the material 

need to be known. Especially in simulations, knowing the complex electromagnetic 

parameters ( ), ,    of the material is important for the accuracy of the simulation 

results. Measurements of these parameters at microwave frequencies are made 

using free space, cavity resonators, open-ended coaxial probe and transmission line 

techniques. The simplest material characterization technique in the broad and 
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medium frequency bands is transmission line techniques. These techniques can be 

divided into reflection (single port measurements) and pass reflection (two port 

measurements) techniques. In the transmission and reflection techniques, the 

scattering parameters are measured by placing the material inside a coaxial line or 

a waveguide. This measurement is usually performed using a network analyzer. One 

of the most valuable devices in the microwave NDT technique is the microwave 

network analyzer with one or more ports and each port can pass, absorb and reflect 

electromagnetic energy. The advantages of this device are that it has the flexibility 

required to test the use of microwave NDT in specific applications, it contains 

microprocessors that provide calibration and customization for each application, 

which make it easy to use. 

5.2.1 Vivaldi Antenna and Vivaldi Antenna Array 

The development of ultra-wideband radar systems, the development of additional 

antenna designs that can provide appropriate performance, and the fact that a lot of 

work has been done on the propagation of high-energy electromagnetic waves have 

also led to the development of the GPR method.  

Extremely wideband antennas stand out and become very attractive for two 

reasons. they are coming. First, features such as high communication speed, low 

power consumption and low cost make extreme broadband antennas increasingly 

in demand. Second, today's devices require antennas operating at different 

frequencies for various wireless transmission functions. For this reason, working 

bands and functions are increasing gradually, which causes difficulties in antenna 

design such as antenna space limitation, multi-antenna interference. Many 

broadband antennas can be used to replace very narrowband antennas, which can 

effectively reduce the number of antennas. The operating frequency range where 

the antenna parameters such as input impedance, radiation pattern, gain and 

efficiency are at the desired level can be defined as the bandwidth of an antenna. 

Vivaldi antenna, Pacman antenna, round bowtie antenna, slit bowtie antenna, horn 

antennas are the most widely used extreme broadband antennas today. 

For a GPR system to work successfully, it must have an appropriate signal-to-noise 

ratio, an adequate signal-to-noise ratio, adequate target resolution, and depth 
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resolution. The energy source can be an amplitude, frequency or phase modulated 

wave signal. The choice of bandwidth, repetition rate and average power depends 

on path loss and target sizes. The transmitting and receiving antenna are usually the 

same antenna and are selected to meet the characteristics of the generated 

waveform. The receiving antenna must be suitable for the modulation type and have 

a sufficient dynamic range for the path losses to be encountered. Range performance 

of the GPR system; can be obtained by considering factors such as path loss, target 

reflectivity, clutter and range of the system. Spatial analysis of radar system; can be 

determined by considering depth and plan analysis separately. 

A series of broadband antennas have been designed for Ground Penetrating Radar 

applications. While the wave can penetrate deeper in measurements made in the 

low frequency band, designs are made in the high frequency band to provide better 

resolution imaging for GPR systems. While trying to increase the gains of the 

antennas used in GPR systems, on the other hand, efforts are being made to further 

increase the bandwidth. Considering the bandwidth and gain conditions, studies 

have been carried out on different antenna types such as bow tie antennas, horn 

antennas and Vivaldi antennas for GPR applications. Bow tie antennas are widely 

used for GPR applications due to their high gain value. Large antennas are often used 

in the GPR system to increase the scan depth or to easily scan shallow targets. Horn 

antennas with high gain value and bandwidth are also used, as the energy must be 

spread on the ground for detection. Vivaldi antenna is frequently used in GPR 

systems because of its high efficiency, high antenna gain, wide bandwidth and 

simple geometry. 

  

a b 

Figure 5.4 Vivaldi Antenna Geometry: (a) 3-D view (b) Top view [130] 
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The Vivaldi antenna is an example of a broadband antenna. The first designed 

Vivaldi antenna showed a gain of 10 dB and a bandwidth from 2 GHz to 40 GHz with 

−20 dB side-lugs. In later broadband applications, antenna arrays are designed using 

Vivaldi antenna geometry [130]. Vivaldi antennas have radiation characteristics 

such as high gain, broadband performance, constant beam width and low side lobe 

level. The general view of the Vivaldi antenna is presented in Figure 5.4. A planar 

waveguide feeding can also be used in the Vivaldi antenna design, which provides a 

wide bandwidth. In Vivaldi antennas, the beam width is almost constant over the 

entire bandwidth. Also, Vivaldi antennas exhibit symmetrical radiation, that is, the 

beam width is approximately the same in both the E plane and the H plane. As the 

antenna length increases, the beam width becomes narrower. The taper ratio has a 

significant effect on the antenna's bandwidth and beam width. In general, as the 

taper ratio increases, the beam width in the E-plane increases, the beam width in 

the H-plane decreases, and the bandwidth increases. 

Generally, the main beam of a single antenna is relatively wide, and each antenna 

has low gain values. Antenna arrays are used to increase the gain and reduce the 

main beam width. An antenna array is created by placing several of a single Vivaldi 

antenna at equal intervals in one direction and feeding them with signals of the same 

phase and size. This structure is called a regular linear sequence. Antenna arrays 

have many advantages over a single antenna. Antenna gain can be increased, and 

beam width can be reduced with antenna array design. The radiation pattern of the 

antenna array is affected by the radiation pattern of a single antenna and the 

radiation pattern of the array factor. The array factor depends on the number of 

elements, the spacing between the elements, the magnitude of the signal sent to each 

element, and the phase of the signal sent to each element. 

While designing the antenna array, the design is made by considering the 

wavelength at the highest operating frequency. The distance between the antennas 

should be smaller than the wavelength at the highest operating frequency. 

Otherwise, the maximum points will appear on the side flaps as well. The number of 

elements in the antenna array determines the array orientation. Increasing the 

number of antennas and antenna spacing results in a narrowing of the main beam 
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and an improvement in array orientation. The number of antennas must be adjusted 

to achieve the desired beam width and side-auricular levels [131]. At the same time, 

increasing the number of antennas results in an increase in the area required to 

implement the designed array. However, since the increase in the number of 

antennas will increase the cost, an optimum selection must be made. 

5.2.2 Measurement Setup 

In the solution of many electromagnetic problems, the main aim is to develop 

optimization algorithms suitable for the best result by modeling system 

performances. From this point of view, it is necessary to optimize the system so that 

the power transmission systems used in electromagnetic circuit systems can be 

designed with as little loss as possible, so that the used amplifiers and matching 

circuits can reach the desired power transmission. For this purpose, the parameters 

of N-port circuits are defined by impedance, admittance and scattering matrices, as 

is known from classical circuit theory [131]. However, some undesirable situations 

arise in the definition of these parameters. Defining impedance and admittance 

matrices as terminated with zero or infinite load does not guarantee that they work 

for every circuit. In order to eliminate this problem, scattering parameters are used 

because scattering matrices are defined for gates terminated with a finite load and 

can be used for almost any circuit. The problems arising in the direct measurement 

of voltage and current values at microwave frequencies, the difficulties in expressing 

them and the possibility of direct measurement of scattering (S) parameters have 

significantly increased the use of the S matrix in solving problems. 

In its most general definition, the scattering parameters represent the waves 

arriving at the gates on the circuit and reflected from the gates on the circuit and are 

the most practical parameters to use. From a design and software process 

perspective, using scattering parameters provides benefits related to results in 

numerical stability and error optimization. The scattering matrix, in its simplest 

form, can be defined as the measure of the interrelationships of the waves arriving 

at and reflected from the circuit gates. 

Network analyzers designed for this purpose are used to detect these sizes on the 

circuit. In addition, the elements in the S matrix correspond to quantities that have 
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a physical meaning. It is possible to summarize this situation with two items: Firstly, 

the values in the diagonal of the matrix obtained by terminating the other gates in a 

non-reflective way in a circuit with N gates represent the reflection coefficients of 

the non-terminated gate. Secondly, all elements except the diagonal show the 

coefficients that reveal the extent of the transmission between the gates. S-

parameters are the most common way of representing VNA measurements, and they 

can be measured directly with the VNA. The S-parameters obtained from the VNA 

measurement are usually in the form of a symmetric matrix with rows and columns 

equal to the number of ports [133]. 

In a circuit with N gates, the waves arriving at and reflected from the gates are 

denoted by ia  and ib , respectively. The ia  and ib  values can be defined in terms 

of incident and reflected voltage ( ),i iV V+ −  or current ( ),i iI I+ −  waves and 

characteristic impedances as in equations (5.1) and (5.2). 
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The generalized scattering matrix of a circuit with N gates and the general form of 

each element of the matrix can be expressed by equations (5.3) and (5.4). 
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Similarly, in particular, the S matrix and elements of the S matrix of a two-port 

microwave circuit can be expressed as in equations (5.5) and (5.6). 
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In this study, reflection and transmission coefficients are obtained from the 

parameters obtained by measuring [132]. 

  

a b 

Figure 5.5 Measurement Setup for Rectangular Models: (a) Case A, (b) Case B 

[114] 

For the S-parameter Sij, the subscript i indicates the exciting port (input port) and 

the subscript j denotes the output port. Diagonal elements of the S-matrix represent 

reflection and off-diagonal elements of this matrix are used to explain transmission 

from port j to port i. For example, S11 is the reflection seen looking into port 1. S21 

can be find by applying an incident wave at port 1 and measuring the outcoming 

wave at port 2. This is equivalent to the transmission from port 1 to port 2. Because 

of the symmetry S21 is equivalent to the S12. In order to calculate reflection and 

scattering coefficients of our samples at microwave frequencies, VNA designed for 

simultaneous measurement of S-parameters of networks with more than two ports 

is used. 

In Figure 5.5 measurement setup is given for rectangular concrete models. 

Measurement is made in an anechoic chamber using Vivaldi antenna array, VNA, 

computer, and specimen under test (SUT). Eight Vivaldi antennas are placed in 

SUT 

Vivaldi 
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Array VNA 
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contact with the defect layer of concrete. Since the concrete is placed in contact with 

eight antennas in the measurement setup, eight sources are used in the simulations. 

Measurements are made in the 0.4-4.0 GHz frequency range. 

  

a b 

Figure 5.6 Measurement Setup for Cylindrical Models: (a) Cylinder B, (b) Cylinder 

C 

The physical structures of the cylindrical models and measurement setup is given in 

Figure 5.6. In the first concrete sample, there are two rebars and two styrofoam balls 

to express the void since its dielectric constant is very close to the dielectric constant 

of air. In the second concrete sample, although there is no rebar, instead of using 

styrofoam with a smooth surface, a broken styrofoam is used to express the 

branching crack in the concrete. 

5.3 Calculating the Reflection and Transmission Coefficient 

The scattering parameter, or in other words the S-parameter, measured with the aid 

of the transmitting and receiving radar antennas is known as the forward 

transmission gain. In microwave measurements, reflection and transmission 

coefficients are obtained from the measured or simulated scattering parameters. 

Since the system that provides the measurement of the scattering parameters is 

symmetrical in the y-axis, the scattering matrix is also symmetrical ( )12 21S S= . 

According to this the scattering parameters can be given as follows: 
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where,   is reflection coefficient, T  is transmission coefficient, 1R  and 2R  are the 

reference plane transducers on the two ports. The reflection and transmission 

coefficients from the scattering parameters ( )11 12 21 21, , ,S S S S  can be found as 

follows: 

2 1K K =  −  
(5.8) 
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2
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Positive or negative sign in the equation (5.8) is selected according to the value 

satisfying the 1   condition and transmission coefficient can be calculated as in 

(5.9). 
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Electric and magnetic permeability constants can also be calculated using scattering 

parameters. 
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where   can be defined as follows: 
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The scattering parameter, or in other words the S-parameter, measured with the aid 

of the transmitting and receiving radar antennas is known as the forward 

transmission gain. It is not possible to express the complex permittivity value 
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directly in terms of the transmission coefficient *T . The magnitude of *T  expressed 

in decibel (dB) can be expressed in terms of 
*

21S  as [105]: 

( )* *

21 2110.log .dBT S S=
 

(5.14) 

where dBT  is a real number and 
*

21S  is the complex conjugate of 
*

21S . 

The measurement and FDTD calculation results for rectangular concrete samples 

are presented in Figure 5.7. 

Case A Case B 

  

a b 

  

c d 

  

e f 

Figure 5.7 Measurement Result: (a) S-parameters for Case A, (b) S-parameters for 

Case B, (c) Reflection Coefficient for Case A, (d) Reflection Coefficient for Case B, 

(e) Transmission Coefficient for Case A, (f) Transmission Coefficient for Case B 
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The S11 and S12 parameters for Case A and Case B are presented in Figures 5.7 (a, b), 

respectively. The reflection and transmission coefficients are calculated using the S-

parameters obtained from the measurement by coefficient calculation formula [48]. 

In addition, the reflection and transmission coefficients are computed with the 

FDTD method [45], and the results are compared in Figures 5.7 (c-f). It is seen that 

the measurement results and the FDTD results are overlapped. 

The measurement and FDTD calculation results for cylindrical concrete samples are 

presented in Figure 5.8. 

Cylinder B Cylinder C 

  
a b 

  
c d 

  
e f 

Figure 5.8 Measurement Results: (a) S-parameters for Cylinder B, (b) S-

parameters for Cylinder C, (c) Reflection Coefficient for Cylinder B, (d) Reflection 

Coefficient for Cylinder C, (e) Transmission Coefficient for Cylinder B, (e) 

Transmission Coefficient for Cylinder C 
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The S11 and S12 parameters for Cylinder B and Cylinder C are presented in Figures 

5.9 (a, b), respectively. The reflection and transmission coefficients are calculated 

using the S-parameters obtained from the measurement by coefficient calculation 

formula given in equations (5.8) and (5.10). In addition, the reflection and 

transmission coefficients are computed with the FDTD method [45], and the results 

are compared in Figures 5.8 (c-f). It can be seen that the measurement results and 

the FDTD results overlap. 
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6  
RESULTS AND DISCUSSION 

 

In this thesis, simulation of rectangular concretes with different crack types, 

concrete structures containing different building materials, and cylindrical 

concretes containing defects is carried out by microwave radar NDT method for 

non-destructive testing. In addition, some of the simulated samples are physically 

created and measured in an anechoic chamber with the help of the Vivaldi antenna 

array, and the reflection and transmission coefficients obtained with FDTD and the 

reflection and transmission coefficients obtained from microwave radar 

measurement are compared. The findings obtained in this study are summarized 

below. 

• The definition of non-destructive testing technique has been made, the types 

of non-destructive testing techniques and their usage purposes have been 

mentioned in summary. The advantages and disadvantages of non-

destructive testing methods are compared to each other and their usage 

areas are discussed. The NDT methods used in the inspection of concrete 

structures have been specified, and since it will be used in this study, the 

microwave radar NDT method is explained in more detail and its advantages 

are emphasized. 

• Maxwell’s equations are discretized in space and time using the FDTD 

algorithm to simulate of how the electromagnetic wave propagates in 

concrete which includes rebar, cracks and other defects. The advantages of 

the FDTD method are briefly mentioned and discretizing the Maxwell's curl 

equations are explained. By examining the 3-D update equation of the FDTD 

method, its reduction to 2-D and 1-D has been studied in detail. The update 

equations of the field components in the relevant group are obtained by 

dividing the field components into two groups as TEz and TMz mode.  
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• Sources create electric and magnetic fields in the FDTD space. Therefore, 

resources are necessary components of FDTD simulation, and their types 

vary according to the problem to be applied. In general terms, the sources 

used in numerical solutions are introduced and the Gaussian pulse used in 

this study is examined. Since the numerical calculations must be terminated 

after a certain step, the absorber boundary condition is mentioned and the 

PML boundary condition, which is the most advantageous boundary 

condition in FDTD calculations, is introduced. 

• Three different types of cracks that may be encountered in a concrete 

structure are defined. Rectangles are used one after another which 

deepening and shrinking downward for defining a surface crack. Circles are 

utilized to identify defect due to a wide breakage of the concrete surface. An 

interior crack whose depth and structure cannot be determined from the 

surface is considered as the Riemann integral domain. This domain is defined 

as the region between two curves as in the integral expression and is divided 

into smaller subdomains. The crack is expressed by assuming that these 

subregions are filled with air. Since the region formed by these subregions 

does not have a smooth shape, the most realistic crack definition is made. 

• The simulation setups of six different layered rectangular structures with 

different construction materials are prepared. Some of these rectangular 

structures contain pavements, while one contains both mortar and 

pavement. One contains rebar and voids, while one contains soil at the base. 

Microwave radar technique non-destructive examination is also carried out 

for concrete filled composite piles used in environments with very high 

humidity. 

• In simulations, it is investigated which mode is more advantageous in which 

situations by comparing the field distributions from both TEz mode and TMz 

mode. While TM mode is more suitable for observing the propagation of the 

EM wave as it propagates from one medium to a different medium and to 

detect fewer deep cracks, TE mode gives better results in determining the 

shapes of the deep cracks and the positions of the rebars. Surface cracks, 

rebars, and internal crack are simulated at 1.5 GHz, 3.0 GHz and 6.0 GHz 
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frequencies, 2-D and 3-D states of the field distributions are given. In the 

simulation, as the frequency increases, the scattering of the wave also 

increases, making it difficult to detect defects and rebars. For this reason, it 

has been observed that the crack and rebar detection simulation give better 

results around the 1.5 GHz frequency. 

• In order to validate the results obtained from the simulation setup, concrete 

samples of two of the rectangular geometries and two of the cylindrical 

geometries discussed in the simulation setup were prepared. For this 

purpose, a rectangular sample with deep surface crack and rebar and a 

rectangular sample with shallow surface crack and rebar are prepared. 

Similar to the simulation setup described in the section on cylindrical 

concrete structures, a cylindrical concrete sample containing internal crack 

and a cylindrical concrete sample containing rebar and air gap are prepared. 

The prepared four concrete samples are dried in air and measured non-

destructively in an anechoic chamber using the Vivaldi antenna array and 

VNA. The reflection and transmission coefficients expressed with the help of 

the scattering parameters obtained from the measurement using VNA and 

the reflection and transmission coefficients calculated with the help of the 

FDTD approach are compared for verification purposes. Reflection and 

transmission coefficients obtained by FDTD approach and reflection and 

transmission coefficients obtained from measurement of rectangular 

concrete samples with different surface cracks and cylindrical concrete 

samples with internal crack and defects overlap. Since measurement, which 

is an experimental study, requires time and cost, it has been observed that 

modeling air-dry concrete using the FDTD approach gives reliable results.



131 

 

REFERENCES 

[1] T. V. Fursa, M. V. Petrov, and D. D. Dann, “Developing a nondestructive 
method for revealing defective areas in reinforced concrete under bending 
conditions”, Russian Journal of Nondestructive Testing, vol. 55, no. 4, pp. 
293-298, 2019. 

[2] O. Büyüköztürk and H. C. Rhim, “Radar imaging of concrete specimens for 
non-destructive testing”, Construction and Building Materials, vol. 11, no. 3, 
pp. 195-198, 1997. 

[3] O. Büyüköztürk, “Imaging of concrete structures”, NDT & E International, 
vol. 31, no. 4, pp. 233-243, 1998. 

[4] O. Büyüköztürk and H. C. Rhim, “Modeling of electromagnetic wave 
scattering by concrete specimens”, Cement and concrete research, vol. 25, 
no. 5, pp. 1011-1022, 1995. 

[5] L. Jiao, Q. Ye, X. Cao, D. Huston, and T. Xia, “Identifying concrete structure 
defects in GPR image”, Measurement, vol. 160, 107839, 2020. 

[6] M. A. Rasol, V. Pérez-Gracia, F. M. Fernandes et. al., “GPR laboratory tests 
and numerical models to characterize cracks in cement concrete specimens, 
exemplifying damage in rigid pavement” Measurement, vol. 158,107662, 
2020. 

[7] T. Y. Yu, B. Boyaci, and H. F. Wu, “Simulated transient electromagnetic 
response for the inspection of GFRP-wrapped concrete cylinders using 
radar NDE”, Research in Nondestructive Evaluation, vol. 24, no. 3, pp. 125-
153, 2013. 

[8] H. C. Rhim and O. Büyüköztürk, “Wideband microwave imaging of concrete 
for nondestructive testing”, Journal of Structural Engineering, vol. 126, no. 
12, pp. 1451-1457, 2000. 

[9] T. Takagi, J. R Bowler, and Y. Yoshida, “Electromagnetic nondestructive 
evaluation” vol. 1, IOS press, 1997. 

[10] J. Lachowicz and M. Rucka, “Experimental and numerical investigations for 
GPR evaluation of reinforced concrete footbridge”, 2016 16th International 
Conference on Ground Penetrating Radar (GPR) pp. 1-6, IEEE, 2016. 

[11] S. Zhao, I. L Al-Qadi, and S. Wang, “Prediction of thin asphalt concrete 
overlay thickness and density using nonlinear optimization of GPR data”, 
NDT & E International, vol. 100, pp. 20-30, 2018. 

[12] J. Lachowicz and M. Rucka, “A concept of heterogeneous numerical model of 
concrete for GPR simulations”, 9th International Workshop on Advanced 
Ground Penetrating Radar (IWAGPR), pp. 1-4 IEEE, 2017. 

[13] J. Lachowicz and M. Rucka, “A novel heterogeneous model of concrete for 
numerical modelling of ground penetrating radar”, Construction and 
Building Materials, 227, 116703, 2019 

[14] T. Asakura, M. Toyoda, and T. Miyajima, “Numerical and experimental 
investigation on structure-borne sound transmission in multilayered 
concrete structures”, Journal of Sound and Vibration, vol. 413, pp. 1-25, 
2018. 



132 

 

[15] S. Kawataki, T. Tanaka, S. Doi, S. Uchida, and M. Q. Feng, “Nondestructive 
inspection of voids in concrete by multi-layered scanning method with 
electromagnetic waves”, IEEE International Conference on Mechatronics 
(ICM) pp. 336-341, IEEE, 2017. 

[16] Y. K. Zhu, G. Y. Tian, R. S Lu, and H. Zhang, “A review of optical NDT 
technologies” Sensors, vol. 11, no. 8, pp. 7773-7798, 2011. 

[17] H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to 
health monitoring in civil engineering”, Engineering structures, vol. 26, no. 
11, pp. 1647-1657, 2004. 

[18] X. Gao, Y. Li, X. Zhou, X. Dai, Y. Zhang, D. You, N. Zhang, “Multidirectional 
magneto-optical imaging system for weld defects inspection”, Optics and 
Lasers in Engineering, 124, 105812, 2020. 

[19] R. Ambu, F. Aymerich, F. Ginesu, and P. Priolo, “Assessment of NDT 
interferometric techniques for impact damage detection in composite 
laminates” Composites Science and Technology, vol. 66, no. 2, pp. 199-205, 
2006. 

[20] M. S. Safizadeh and T. Azizzadeh, “Corrosion detection of internal pipeline 
using NDT optical inspection system”, NDT & E International, vol. 52, pp. 
144-148, 2012. 

[21] B. A. Graybeal, B. M. Phares, D. D. Rolander, M. Moore, and G. Washer, “Visual 
inspection of highway bridges”, Journal of nondestructive evaluation, vol. 
21, no. 3, pp. 67-83, 2002. 

[22] A. Carcione, P. Blanloeuil, and M. Veidt, “Demodulation technique to identify 
nonlinear characteristics of vibro-acoustic NDT measurements”, Journal of 
Sound and Vibration, 466, 115014, 2020. 

[23] A. Mirmiran and S. Philip, “Comparison of acoustic emission activity in steel-
reinforced and FRP-reinforced concrete beams”, Construction and Building 
Materials, vol. 14, no. 6, pp. 299-310, 2000. 

[24] P. Duffour, M. Morbidini, and P. Cawley, “Comparison between a type of 
vibro-acoustic modulation and damping measurement as NDT techniques”, 
NDT & E International, vol. 39, no. 2, pp. 123-131, 2006 

[25] R. Ludwig, Z. You, and R. Palanisamy,” Numerical simulations of an 
electromagnetic acoustic transducer-receiver system for NDT 
applications”, IEEE Transactions on Magnetics, vol. 29, no. 3, pp. 2081-2089, 
1993. 

[26] N. S. V. N Hanuman, and T. Bose, “Acoustic nondestructive evaluation of 
Glass-Fibre Reinforced Plastic (GFRP) Plate”, NDE Conference & Exhibition 
of the society for NDT (ISNT), 2018. 

[27] M. Hirao, H. Ogi, and H. Yasui,” Contactless measurement of bolt axial stress 
using a shear-wave electromagnetic acoustic transducer”, Ndt & E 
International, vol. 34, no. 3, pp. 179-183, 2001. 

[28] R. Murayam and K. Misumi, “Development of a non-contact stress 
measurement system during tensile testing using the electromagnetic 
acoustic transducer for a Lamb wave”, NDT & E International, vol. 39, no. 4, 
pp. 299-303, 2006. 

[29] G. R. Stultz, R. W. Bono, and M. I. Schiefer, “Fundamentals of resonant 
acoustic method NDT”, Advances in powder metallurgy and particulate 
materials, vol. 3, no. 11, 2005. 



133 

 

[30] M. Scheerer, A. Peldszus, M. Stadtschnitzer, and R. Wagner, “Modern 
acoustic NDT methods for the off-and online detection of damages in 
composite aeronautic structures”, Proc. 3rd IALCCE, Vienna, Austria, pp. 
1430-1437, 2012. 

[31] R. Hamid, K. M Yusof, and M. F. M. Zain, “A combined ultrasound method 
applied to high performance concrete with silica fume”, Construction and 
Building Materials, vol. 24, no. 1, pp.  94-98, 2010. 

[32] H. Azari, S. Nazarian, and D. Yuan, “Assessing sensitivity of impact echo and 
ultrasonic surface waves methods for nondestructive evaluation of 
concrete structures”, Construction and Building Materials, vol. 71, pp. 384-
391, 2014. 

[33] I. Solodov and G. Busse, “New advances in air-coupled ultrasonic NDT using 
acoustic mode conversion”, Proc. EC NDT, 2006. 

[34] Y. Z. Pappas, A. Kontsos, T. H Loutas, and V. Kostopoulos, “On the 
characterization of continuous fibres fracture by quantifying acoustic 
emission and acousto-ultrasonics waveforms”, NDT & E International, vol. 
37 no. 5, pp. 389-401, 2004. 

[35] X. Zhang, T. Jackson, and E. Lafond, “Stiffness properties and stiffness 
orientation distributions for various paper grades by non-contact laser 
ultrasonics”, NDT & E International, vol.39 no. 7, pp. 594-601, 2006. 

[36] D. G. Aggelis, E. Z. Kordatos, D. V. Soulioti, and T. E. Matikas, “Combined use 
of thermography and ultrasound for the characterization of subsurface 
cracks in concrete”, Construction and Building Materials, vol. 24, no. 10, pp. 
1888-1897, 2010. 

[37] L. J. Jacobs and R. W. Whitcomb, “Laser generation and detection of 
ultrasound in concrete”, Journal of nondestructive evaluation, vol. 16, no. 2, 
pp.57-65, 1997. 

[38] C. Payan, A. Quiviger, V. Garnier, J. F. Chaix, and J. Salin, “Applying diffuse 
ultrasound under dynamic loading to improve closed crack 
characterization in concrete”, The Journal of the Acoustical Society of 
America, vol. 134, no. 2, EL211-EL216, 2013. 

[39] I. N. Prassianakis and P. Giokas, “Mechanical properties of old concrete 
using destructive and ultrasonic non-destructive testing methods”, 
Magazine of Concrete Research, vol. 55, no. 2, pp. 171-176, 2003. 

[40] Z. M. Sbartaï, D. Breysse, M. Larget, and J. P. Balayssac, “Combining NDT 
techniques for improved evaluation of concrete properties”, Cement and 
Concrete Composites, vol. 34, no. 6, pp. 725-733, 2012. 

[41] M. J. Lovejoy, “Magnetic particle inspection: a practical guide”, Springer 
Science & Business Media, 2012. 

[42] J. R. Bowler and N. Bowler, “Evaluation of the magnetic field near a crack 
with application to magnetic particle inspection”, Journal of Physics D: 
Applied Physics, vol. 35, no. 18, 2237, 2002. 

[43] D. C. Jiles, “Review of magnetic methods for nondestructive evaluation (Part 
2)”, NDT international, vol. 23, no. 2, pp. 83-92, 1990. 

[44] A. Zolfaghari and F. Kolahan, “Reliability and sensitivity of magnetic particle 
nondestructive testing in detecting the surface cracks of welded 
components” Nondestructive Testing and Evaluation, vol. 33, no. 3, pp. 290-
300, 2018. 



134 

 

[45] S. K. Burke and R. J.  Ditchburn, “Review of literature on probability of 
detection for magnetic particle nondestructive testing”, 2013. 

[46] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, “Electromagnetic and eddy 
current NDT: a review”, Insight, vol. 43, no. 5, pp. 302-306, 2001. 

[47] A. Sophian, G. Y Tian, D. Taylor, and J. Rudlin,” A feature extraction technique 
based on principal component analysis for pulsed Eddy current NDT”, NDT 
& e International, vol. 36, vol. 1, pp.37-41, 2003. 

[48] M. Pan, Y. He, G. Tian, D. Chen, and F. Luo,” Defect characterization using 
pulsed eddy current thermography under transmission mode and NDT 
applications”, Ndt & E International, vol. 52, pp. 28-36, 2012. 

[49] D. Zhou, G. Y. Tian, B. Zhang, M. Morozov, and H. Wang, “Optimal features 
combination for pulsed eddy current NDT.” Nondestructive Testing and 
Evaluation, vol. 25, no. 2, pp. 133-143, 2010. 

[50] Y. Yu, Y. Zou, M. Al Hosani, and G. Tian,” Conductivity invariance 
phenomenon of eddy current NDT: Investigation, verification, and 
application”, IEEE Transactions on Magnetics, vol. 53, no. 1, pp. 1-7, 2016. 

[51] G. Y. Tian, A. Sophian, D. Taylor, and J. Rudlin,” Wavelet-based PCA defect 
classification and quantification for pulsed eddy current NDT”, IEE 
Proceedings-Science, Measurement and Technology, vol. 152, no. 4, pp. 141-
148, 2005. 

[52] Y. Y. Hung, Y. S. Chen, S. P. Ng, L. Liu, Y. H. Huang, B. L. Luk, and P. S. Chung, 
“Review and comparison of shearography and active thermography for 
nondestructive evaluation”, Materials Science and Engineering: R: Reports, 
vol. 64, no. 5, pp. 73-112, 2009. 

[53] S. M. Shepard, “Introduction to active thermography for non‐destructive 
evaluation”, Anti-Corrosion Methods and Materials, 1997. 

[54] C. Ibarra-Castanedo, J. M. Piau, S. Guilbert, N. P. Avdelidis, M. Genest, A. 
Bendada, and X. P. Maldague, “Comparative study of active thermography 
techniques for the nondestructive evaluation of honeycomb structures”, 
Research in Nondestructive Evaluation, vol. 20, no. 1, pp. 1-31, 2009. 

[55] B. B. Lahiri, S. Bagavathiappan, P. R. Reshmi, J. Philip, T. Jayakumar, and B. 
Raj, “Quantification of defects in composites and rubber materials using 
active thermography”, Infrared Physics & Technology, vol. 55 no. 2, pp. 191-
199, 2012. 

[56] M. Lizaranzu, A. Lario, A. Chiminelli, and I. Amenabar, “Non-destructive 
testing of composite materials by means of active thermography-based 
tools” Infrared Physics & Technology, vol. 71, pp. 113-120, 2015. 

[57] A. P. Chrysafi, N. Athanasopoulos, and N. J. Siakavellas,” Damage detection 
on composite materials with active thermography and digital image 
processing”, International journal of thermal sciences, vol. 116, pp. 242-
253, 2017. 

[58] N. P. Migoun and N. V. Delenkovsky, “The ways of penetrant testing 
applicability for rough surfaces”, Proceedings of 17th World Conf. on NDT, 
Shanghai, China (p. 25), 2008. 

[59] N. P. Migoun and N. V. Delenkovskii, “Improvement of penetrant-testing 
methods”, Journal of Engineering Physics and Thermophysics, vol. 82, no. 4, 
pp. 734-742, 2009. 



135 

 

[60] D. E. Bray and D. McBride, “Nondestructive testing techniques” NASA 
STI/Recon Technical Report A, 93, 17573, 1992. 

[61] U. Zscherpel, U. Ewert, and K. Bavendiek, “Possibilities and Limits of Digital 
Industrial Radiology: -The new high contrast sensitivity technique-
Examples and system theoretical analysis”, International Symposium on 
Digital industrial Radiology and Computed Tomography, pp. 25-27, 2007. 

[62] R. Halmshaw, “Industrial radiology: theory and practice”, Springer Science 
& Business Media, vol. 1, 2012. 

[63] H. Berger, “Trends in radiologic NDT”, Materials Evaluation, vol. 52, no. 11, 
1994. 

[64] U. Ewert, K. Bavendiek, J. Robbins, U. Zscherpel, C. Bueno, T. Gordon, and D. 
Mishra,” New compensation principles for enhanced image quality in 
industrial radiology with digital detector arrays”, Materials Evaluation, vol. 
68, no. 2, pp. 163-168, 2010. 

[65] C. Colla, P. C. Das, D. McCann, and M. C. Forde, “Sonic, electromagnetic and 
impulse radar investigation of stone masonry bridges” NDT & E 
International, vol. 30, no. 4, pp. 249-254, 1997. 

[66] T. Yu, T. K. Cheng, A. Zhou, and D. Lau, “Remote defect detection of FRP-
bonded concrete system using acoustic-laser and imaging radar 
techniques”, Construction and Building Materials, vol. 109, pp. 146-155, 
2016. 

[67] G. De Angelis, M. Meo, D. P. Almond, S. G. Pickering, and S. L. Angioni, “A new 
technique to detect defect size and depth in composite structures using 
digital shearography and unconstrained optimization” Ndt & E 
International, vol. 45, no. 1, pp. 91-96, 2012. 

[68] M. M. Tajdini and C. M.Rappaport, “An efficient forward model of ground 
penetrating radar for sensing deteriorated bridge decks, IEEE Antennas and 
Propagation Society International Symposium (APSURSI), pp. 1022-1023, 
IEEE, 2013. 

[69] M. M. Tajdini and C. M. Rappaport,” Analytic analysis of ground penetrating 
radar wave scattering of reinforced concrete bridge decks”, IEEE 
International Geoscience and Remote Sensing Symposium-IGARSS, pp. 
4066-4069, IEEE, 2013. 

[70] O. Buyukozturk and B. Hearing, “Crack propagation in concrete composites 
influenced by interface fracture parameters”, International Journal of Solids 
and Structures, vol. 35, no. 31, pp. 4055-4066, 1998. 

[71] O. Büyüköztürk and T. Y. Yu, “Structural health monitoring and seismic 
impact assessment”, Proceedings of the 5th National Conference on 
Earthquake Engineering, 2003. 

[72] M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, ”30 GHz linear 
high-resolution and rapid millimeter wave imaging system for NDE”, IEEE 
transactions on antennas and propagation, vol. 61, no. 9, pp. 4733-4740, 
2013. 

[73] C. Y. Yeh and R. Zoughi, “A novel microwave method for detection of long 
surface cracks in metals”, IEEE Transactions on Instrumentation and 
Measurement, vol. 43, no. 5, pp. 719-725, 1994. 

[74] L. Jiao, Q. Ye, X. Cao, D. Huston, and T. Xia, “Identifying concrete structure 
defects in GPR image”, Measurement, vol. 160, 107839, 2020. 



136 

 

[75] O. Gunes and O. Buyukozturk, “Simulation-based microwave imaging of 
plain and reinforced concrete for nondestructive evaluation”, International 
Journal of Physical Sciences, vol. 7, no. 3, pp. 383-393, 2012. 

[76] T. Yu, T. K. Cheng, A. Zhou, and D. Lau, “Remote defect detection of FRP-
bonded concrete system using acoustic-laser and imaging radar 
techniques”, Construction and Building Materials, vol. 109, pp. 146-155, 
2016. 

[77] K. Agred, G. Klysz, and J. P. Balayssac, “Location of reinforcement and 
moisture assessment in reinforced concrete with a double receiver GPR 
antenna” Construction and Building Materials, vol. 188, pp. 1119-1127, 
2018. 

[78] Q. Feng, J. Cui, Q. Wang, S. Fan, Q. Kong, “A feasibility study on real-time 
evaluation of concrete surface crack repairing using embedded 
piezoceramic transducers”, Measurement, vol. 122, pp. 591-596, 2018. 

[79] K. H. Lee, C. C. Chen, F. L Teixeira, and R. Lee, “Modeling and investigation of 
a geometrically complex UWB GPR antenna using FDTD”, IEEE Transactions 
on Antennas and Propagation, vol. 52, no. 8, pp. 1983-1991, 2004. 

[80] F. M. Fernandes and J. C. Pais,” Laboratory observation of cracks in road 
pavements with GPR”, Construction and Building Materials, vol. 154, pp. 
1130-1138, 2017. 

[81] R. Combrinck, L. Steyl, and W. P. Boshoff, “Influence of concrete depth and 
surface finishing on the cracking of plastic concrete”, Construction and 
Building Materials, vol. 175, 621-628, 2018. 

[82] D. Feng, X. Wang, and B. Zhang,” Specific evaluation of tunnel lining multi-
defects by all-refined GPR simulation method using hybrid algorithm of 
FETD and FDTD”, Construction and Building Materials, vol. 185, pp. 220-
229, 2018. 

[83] H. Rathod and R. Gupta, “Sub-surface simulated damage detection using 
Non-Destructive Testing Techniques in reinforced-concrete slabs” 
Construction and Building Materials, vol. 215, pp. 754-764, 2019. 

[84] W. W. L. Lai, X. Derobert, and P. Annan, “A review of Ground Penetrating 
Radar application in civil engineering: A 30-year journey from Locating and 
Testing to Imaging and Diagnosis”, Ndt & E International, vol. 96, pp. 58-78, 
2018. 

[85] M. A. Rasol, V. Pérez-Gracia, M. Solla, J. C.  Pais, F. M. Fernandes, and C. 
Santos, “An experimental and numerical approach to combine Ground 
Penetrating Radar and computational modeling for the identification of 
early cracking in cement concrete pavements”, NDT & E International, vol. 
115, 102293, 2020. 

[86] E. A. Jiya, N. S. N. Anwar, S. A. Bala, and E. Bello, “Microwave imaging 
technique for detection of multiple Line cracks in concrete material”, 
International Journal of Human and Technology Interaction (IJHaTI), vol. 2, 
no. 2, pp. 49-56, 2018. 

[87] D. M. Sullivan, “Electromagnetic simulation using the FDTD method” John 
Wiley & Sons, 2013. 

[88] K. S. Kunz, and R. J. Luebbers, “The finite difference time domain method for 
electromagnetics” CRC press, 1993. 



137 

 

[89] A. Z. Elsherbeni and V. Demir, “The finite-difference time-domain method 
for electromagnetics with MATLAB simulations”, SciTech Publishing, 2009. 

[90] A. Taflove and S. C. Hagness, “Computational electrodynamics”, vol. 28, 
Norwood, MA: Artech house publishers, 2000. 

[91] K. Belli, H. Zhan, S. Wadia-Fascetti, and C. Rappaport, “Comparison of the 
accuracy of 2D VS. 3D FDTD air-coupled GPR modeling of bridge deck 
deterioration”, Research in Nondestructive Evaluation, vol. 20, no. 2, pp. 94-
115, 2009. 

[92] D. Insana and C. M. Rappaport, “Using FDFD technique in two-dimensional 
TE analysis for modeling clutter in wall penetrating radar, International 
Journal of Antennas and Propagation, 2014. 

[93] K. Yee, “Numerical solution of initial boundary value problems involving 
Maxwell's equations in isotropic media”, IEEE Transactions on antennas 
and propagation, vol. 14, no. 3, pp. 302-307, 1996. 

[94] J. P. Berenger, “A perfectly matched layer for the absorption of 
electromagnetic waves”, Journal of computational physics, vol. 114, no. 2, 
pp. 185-200, 1994. 

[95] J. P. Berenger, “Perfectly matched layer for the FDTD solution of wave-
structure interaction problems”, IEEE Transactions on antennas and 
propagation, vol. 44, no. 1, pp. 110-117, 1996. 

[96] W. V. Andrew, C. A. Balanis, and P. A. Tirkas, “A comparison of the Berenger 
perfectly matched layer and the Lindman higher-order ABC's for the FDTD 
method”, IEEE Microwave and guided wave letters, vol. 5, no. 6, pp. 192-
194, 1995. 

[97] J. P. Berenger, “Three-dimensional perfectly matched layer for the 
absorption of electromagnetic waves”, Journal of computational physics, 
vol. 127, no. 2, pp. 363-379, 1996. 

[98] J. C. Veihl and R. Mittra, “An efficient implementation of Berenger's perfectly 
matched layer (PML) for finite-difference time-domain mesh truncation”, 
IEEE Microwave and Guided Wave Letters, vol. 6, no. 2, pp. 94, 1996. 

[99] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium 
for the truncation of FDTD lattices”, IEEE transactions on Antennas and 
Propagation, vol. 44, no. 12, pp. 1630-1639, 1996. 

[100] G. Mur, “Absorbing boundary conditions for the finite-difference 
approximation of the time-domain electromagnetic-field equations”, IEEE 
transactions on Electromagnetic Compatibility, no. 4, pp. 377-382, 1981. 

[101] W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from 
modified Maxwell's equations with stretched coordinates”, Microwave and 
optical technology letters, vol. 7, no. 13, pp. 599-604, 1994. 

[102] R. Holland, “Finite-difference time-domain (FDTD) analysis of magnetic 
diffusion” IEEE transactions on electromagnetic compatibility, vol. 36, no. 1, 
pp. 32-39, 1994. 

[103] B. Wei, S. Q Zhang, F. Wang, and D. Ge, “A novel UPML FDTD absorbing 
boundary condition for dispersive media”, Waves in Random and Complex 
Media, vol. 20, no. 3, pp. 511-527, 2010. 

[104] S. A. Cummer, “A simple, nearly perfectly matched layer for general 
electromagnetic media”, IEEE microwave and wireless components letters, 
vol. 13, no. 3, pp. 128-130, 2003. 



138 

 

[105] T. Y. Yu, “Condition assessment of GFRP-retrofitted concrete cylinders using 
electromagnetic waves”, Doctoral dissertation, Massachusetts Institute of 
Technology, 2008. 

[106] H. C. Rhim and O. Büyüköztürk, “Electromagnetic properties of concrete at 
microwave frequency range”, Materials Journal, vol. 95, no. 3, pp. 262-271, 
1998.  

[107] H. Chung, J. Cho, S. G. Ha, S. Ju and K. Y. Jung, “Accurate FDTD dispersive 
modeling for concrete materials”, ETRI Journal, vol. 35, no. 5, pp. 915-918, 
2013. 

[108] D. Hughes, R. Zoughi, “A method for evaluating the dielectric properties of 
composites using a combined embedded modulated scattering and near-
field microwave nondestructive testing technique, Proceedings of the 18th 
IEEE Instrumentation and Measurement Technology Conference, 
Rediscovering Measurement in the Age of Informatics (Cat. No. 01CH 
37188), vol. 3, pp. 1882-1886, IEEE, 2001. 

[109] D. Hughes and R. Zoughi, “A novel method for determination of dielectric 
properties of materials using a combined embedded modulated scattering 
and near-field microwave techniques-Part I: Forward model”, IEEE 
Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp. 2389-
2397, 2005. 

[110] S. I. Ganchev, S. Bakhtiari, and R. Zoughi, “A novel numerical technique for 
dielectric measurement of generally lossy dielectrics”, IEEE Transactions on 
Instrumentation and Measurement, vol. 41, no. 3, pp. 361-365, 1992. 

[111] T. Asakura, M. Toyoda, and T. Miyajima, “Numerical and experimental 
investigation on structure-borne sound transmission in multilayered 
concrete structures”, Journal of Sound and Vibration, vol. 413, pp. 1-25, 
2018. 

[112] M. V. Mohod and K. N. Kadam, “A comparative study on rigid and flexible 
pavement: A review”, IOSR Journal of Mechanical and Civil Engineering 
(IOSR-JMCE), vol. 13, no. 3, pp. 84-88, 2016. 

[113] Technical Tutoring, Available online: http://www.hyper 
ad.com/tutoring/math/calculus/construction_of_the_riemann_integral.ht
m (accessed on 15th November 2020). 

[114] U. S. Sener, and S. Eker, “Nondestructive Approach for Complex-Shaped 
Cracks in Concrete Structures by Electromagnetic Waves with FDTD 
Technique”, Mathematical Problems in Engineering, 2021 

[115] W. C. Chew, J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song, “Fast solution 
methods in electromagnetics”, IEEE Transactions on Antennas and 
Propagation, vol. 45, no. 3, pp. 533-543, 1997. 

[116] A. Benedetto, F. Tosti, L. B. Ciampoli, and F. D’amico, “An overview of 
ground-penetrating radar signal processing techniques for road 
inspections”, Signal processing, vol. 132, pp. 201-209, 2017. 

[117] U. S. Sener, and S. Eker, “A Novel Heterogeneous Model of Layered 
Structures for Numerical Modeling and Simulation at Microwave 
Frequencies via FDTD”, European Journal of Technique, vol. 10, no. 2, pp. 
289-300, 2020. 



139 

 

[118] U. S. Sener, and S. Eker, “Microwave Non-Destructive Testing Technique for 
Material Characterization of Concrete Structures via Electromagnetic 
Waves with FDTD”, ACES Journal, vol. 35, no. 11 pp. 1390-1391, IEEE, 2020. 

[119] P. Shangguan and I. L. Al-Qadi, “Calibration of FDTD simulation of GPR signal 
for asphalt pavement compaction monitoring”, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1538-1548, 2014. 

[120] M. Solla, R. Asorey-Cacheda, X. Núñez-Nieto, and B. Conde-Carnero, 
“Evaluation of historical bridges through recreation of GPR models with the 
FDTD algorithm” Ndt & E International, vol. 77, pp.19-27, 2016. 

[121] L. Binda, G. Lenzi, and A. Saisi, “NDE of masonry structures: use of radar 
tests for the characterisation of stone masonries”, Ndt & E International, vol. 
31, no. 6, pp. 411-419, 1998. 

[122] O. Büyüköztürk, M. J. Buehler, D. Lau, and C. Tuakta, “Structural solution 
using molecular dynamics: Fundamentals and a case study of epoxy-silica 
interface”, International Journal of Solids and Structures, vol. 48, no. 14, pp. 
2131-2140, 2011. 

[123] O. Büyüköztürk and T. Y. Yu, “Understanding and assessment of debonding 
failures in FRP-concrete systems”, Seventh International Congress on 
Advances in Civil Engineering, pp. 11-13, 2006. 

[124] O. Gunes, O. Buyukozturk, and E. Karaca, “A fracture-based model for FRP 
debonding in strengthened beams”, Engineering Fracture Mechanics, vol. 
76, no. 12, pp. 1897-1909, 2009. 

[125] G. Ji, G. Li, and W. Alaywan, “A new fire resistant FRP for externally bonded 
concrete repair”, Construction and Building Materials, vol. 42, pp. 87-96, 
2013. 

[126] U. S. Sener, and S. Eker, “Microwave Non-Destructive Testing Technique for 
Defect Detection of Composite Piles via Electromagnetic Waves with FDTD”, 
2019 International Applied Computational Electromagnetics Society 
Symposium (ACES) pp. 1-2, IEEE, 2019. 

[127] P. K. Mehta, “Concrete. Structure, properties and materials”, 1986. 
[128] M. I. Mousa, M. G. Mahdy, A. H. Abdel-Reheem, and A. Z. Yehia, “Self-curing 

concrete types; water retention and durability”, Alexandria Engineering 
Journal, vol. 54, no. 3, pp. 565-575, 2015. 

[129] V. Kodur, and W. Khaliq, “Effect of temperature on thermal properties of 
different types of high-strength concrete”, Journal of materials in civil 
engineering, vol. 23, no. 6, pp. 793-801, 2011. 

[130] C. A. Balanis, “Antenna theory: analysis and design”, John wiley & sons, 
2015. 

[131] E. P. Li, E. X. Liu, L. W. Li and M. S. Leong, “A coupled efficient and systematic 
full-wave time-domain macro modeling and circuit simulation method for 
signal integrity analysis of high-speed interconnects”, IEEE Transactions on 
Advanced packaging, vol. 27, no. 1, pp. 213-223, 2004. 

[132] F. Costa, M. Borgese, M. Degiorgi, and A. Monorchio, “Electromagnetic 
characterization of materials by using transmission/reflection (T/R) 
devices”, Electronics, vol. 6, no. 4, 95, 2017. 

[133] C. Xu, “Computational Electrodynamics and Simulation in High Speed 
Circuit Using Finite Difference Time Domain (FDTD) Method”, Master 
thesis, St. Cloud State University, 2018. 



140 

 

PUBLICATIONS FROM THE THESIS 

 

Conference Papers 

1. U. S. Sener, and S. Eker, “Microwave Non-Destructive Testing Technique for 
Defect Detection of Composite Piles via Electromagnetic Waves with FDTD”, 
2019 International Applied Computational Electromagnetics Society 
Symposium (ACES) pp. 1-2, IEEE, 2019. 

2. U. S. Sener, and S. Eker, “Condition Investigations of Concrete Cylinders Using 
Electromagnetic Waves at Microwave Frequencies”, 2021 International Applied 
Computational Electromagnetics Society Symposium (ACES) pp. 1-2, IEEE, 
2021. 

 

Papers 

1. U. S. Sener, and S. Eker, “Microwave Non-Destructive Testing Technique for 
Material Characterization of Concrete Structures via Electromagnetic Waves 
with FDTD”, ACES Journal, vol. 35, no. 11 pp. 1390-1391, IEEE, 2020. 
(https://doi.org/10.47037/2020.ACES.J.351164)  

2. U. S. Sener, and S. Eker, “A Novel Heterogeneous Model of Layered Structures for 
Numerical Modeling and Simulation at Microwave Frequencies via FDTD”, 
European Journal of Technique, vol. 10, no. 2, pp. 289-300, 2020. 
(https://doi.org/10.36222/ejt.777489) 

3. U. S. Sener, and S. Eker, “Nondestructive Approach for Complex-Shaped Cracks 
in Concrete Structures by Electromagnetic Waves with FDTD Technique”, 
Mathematical Problems in Engineering, 2021. 
(https://doi.org/10.1155/2021/6624982) 

 

https://doi.org/10.47037/2020.ACES.J.
https://doi.org/10.36222/ejt.777489
https://doi.org/10.1155/2021/6624982

