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ABSTRACT

Numerical and Synchronizational Behaviors of Some
Evolution Equations

Shko Ali TAHIR

Department of Mathematics

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Murat SARI

Co-advisor: Prof. Dr. Abderrahman BOUHAMIDI

This study provides several new combined methods to capture the numerical
behaviour of nature, governed by the nonlinear advection-diffusion-reaction equa-
tion, in one and two dimensions. To achieve this, the implicit backward differenti-
ation formula-spline (BDFS), the optimal five-stage and fourth-order strong stability
preserving Runge-Kutta (SSPRK54)-spline and the modified cubic B-spline-SSPRK54
methods are proposed. Without any linearization, the given problems through the
proposed schemes are converted to a system of nonlinear and linear differential equa-
tions. The current methods are seen to be very reliable alternatives in solving the
problem by conserving the physical properties of nature. In addition, the generalized
synchronization behaviours of nonlinear advection-diffusion-reaction processes, with-
out losing their natural properties, are investigated to demonstrate the effectiveness
of the proposed technique and to reduce computational difficulties in capturing nu-
merical solutions for advection dominant cases. Within the framework of this thesis, a
new version of the synchronization methods, based on the design of response systems,
is also proposed to solve the synchronization problem discussed here. This technique
utilizes the driver configuration to monitor the synchronized motions. To show the
effectiveness and feasibility of those approaches, various numerical simulations are
carried out.

Keywords: Nonlinear advection-diffusion-reaction, Dynamical system, Chaos, Syn-

chronization, Approximation theory.
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ÖZET

Bazı Evolüsyon Denklemlerinin Nümerik ve
Senkronizasyonal Davranışları

Shko Ali TAHIR

Matematik Bölümü

Doktora Tezi

Danı̧sman: Prof. Dr. Murat SARI

Eş-Danı̧sman: Prof. Dr. Abderrahman BOUHAMIDI

Bu çalı̧sma, doğrusal olmayan adveksiyon-difüzyon-reaksiyon denklemi tarafın-
dan yönetilen doğanın nümerik davranı̧sını bir ve iki boyutta yakalamak için birkaç
yeni kombine yöntem sunmaktadır. Bunu gerçekleştirmek için, kapalı geri fark-
spline (BDFS) ile SSPRK54-spline ve modifiye kübik B-spline-SSPRK54 yaklaşımlarını
barındıran optimum beş aşamalı ve dördüncü mertebeden kuvvetli stabiliteye sahip
yöntemler önerilmektedir. Herhangi bir doğrusallaştırma yapmaksızın, önerilen şe-
malar aracılığıyla ele alınan problemler, doğrusal olmayan ve doğrusal diferansiyel
denklem sistemlerine dönüştürülür. Doğal özellikleri muhafaza ederek, problemin
çözümünde önerilen yöntemlerin güvenilir alternatifler olduğu görülmektedir. Ayrıca,
viskozite katsayısının düşük degerinde, doğal özelliklerini kaybetmeden doğrusal
olmayan adveksiyon-difüzyon-reaksiyon süreçlerinin genelleştirilmi̧s senkronizasyon
davranı̧sları, önerilen tekniğin etkinliğini göstermek ve adveksiyon-baskın durum-
lar için nümerik çözümleri yakalamadaki hesaplama güçlüklerini azaltmak amacıyla
araştırılmı̧stır. Bu tez çerçevesinde, burada ele alınan senkronizasyon problemini
çözmek için cevabi sistemlerin tasarlanmasına dayalı, senkronizasyon yöntemlerinin
yeni bir versiyonu da önerilmektedir. Bu teknik senkronize edilmi̧s hareketleri izlemek
için ana yapılandırmayı kullanır. Bu yaklaşımların etkinliğini ve uygulanabilirliğini
göstermek için çeşitli nümerik simülasyonlar yapılmı̧stır.

Anahtar Kelimeler: Doğrusal olmayan adveksiyon-difüzyon reaksiyonu, Dinamik
sistem, Kaos, Senkronizasyon, Yaklaşım teorisi.

YILDIZ TEKNİK ÜNİVERSİTESİ
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1
INTRODUCTION

The nonlinear advection-diffusion-reaction (ADR) problems have been taken much at-

tention in studying many problems encountered in science such as viscous fluid flow,

filtration of liquid, gas dynamics, heat conduction, biological species and chemical re-

actions [58, 145]. Such a prediction was investigated to approximate their solutions

numerically, while it is not easy to crack these problems analytically. In the process

of historical development, these model equations have been considered by many re-

searchers for both conceptual understanding of physical flows and testing various nu-

merical methods with having challenges of small or large values of the viscosity and

independent parameters. The major difficulty of the nonlinear ADR equations with

forcing terms is producing their numerical solutions without any linearization. Re-

searchers are still investigating new techniques to find the solution of the nonlinear

ADR problems with the aim of improving accuracy, especially when the initial and

boundary functions are not smooth or are available only at the grid points. For the

nonlinear ADR processes with low values of the viscosity coefficient, several interac-

tions between reaction, convection and diffusion mechanisms can be observed [67].
Thence, many characteristics of chaos such as instability and limited predictability in

time can be existed in the nonlinear ADR problems. Some researchers have pointed

out that there exists close relationship between chaos and nonlinear ADR processes

[161, 184, 255]. Further studies carried out herein, the dynamical behavior and gen-

eralized synchronization (GS) of two dependent or independent nonlinear processes

are discussed. Study of synchronization behaviors of the nonlinear ADR equations

remains new and mostly unexplored field. Since the nonlinear coupled ADR model

cannot synchronize, some controller functions should be designed and applied to force

the driver system to synchronize with response system. One of the reasons for this is

that motivated us to examine the phenomenon and develop suitable synchronization

control function via the classical Lyapunov direct method. In the present work, due to

aforementioned aims, we propose various newly combined techniques for the approx-

imate solution of the nonlinear ADR processes and solving synchronization problems

of nonlinear coupled models. Let us now give some important key definitions and
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properties that will be useful for the later chapters.

1.1 Principal Terminology

Advection, diffusion and synchronization are main parts consisting of principal ter-

minology. Their physical meaning and mathematical representation bring the whole

picture of understanding of them and developing numerical solution techniques.

1.1.1 Advection

Advection plays a fundamental role in the field of physics, engineering, and applied

mathematics. The amount of substance traverses the cross-section over which the

count is performed depending on nature of the transporting process by bulk motion,

this process is called advection. A well-known example is the advection of the pollu-

tants in a river by bulk water flow downstream. The one dimensional concentration

gradient of the pollutant is described mathematically as a vector field and given by

means of partial differentials equations (PDEs) as:

∂ u
∂ t
+ v
∂ u
∂ x
= 0, (1.1)

where v is fluid velocity. u means concentration, amount of heat or mass transfer. The

smooth function u= u(x , t) represents physical processes that can be in one or many

dimensional space. Figure 1.1 presents the important property of advection as given:

the shape and amplitude are unchanged. However, the position moves to the direction

of velocity.

Figure 1.1 Schematic solution of the advection problem in one dimension

1.1.2 Diffusion

The word has a latin root, which means "to spread out". A well-known spread out is a

substance transport from an area of high concentration to an area of low concentration

in both fluids and solids, without requiring any bulk fluid motion. There are various

problems in the physical sciences that we associate with the idea of diffusion, for
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instance: electrons, ions diffuse, macroscopic, atomistic and molecular approaches.

Besides, we introduce the concept of the diffusion in mathematics. It includes all

topics of concentration, heat, momentum, information and that can be diffused, by

means of the PDEs. One dimensional form of the diffusion equation is given by:

∂ u
∂ t
= λ

∂ 2u
∂ x2

, (1.2)

where λ > 0 is the molecular diffusivity. From Figure 1.2, we can conclude that the

diffusion has the following properties: the shape spreads or diffuses, the amplitude

decreases and the position spreads but stays at center fixed.

Figure 1.2 Schematic solution of the diffusion problem in one dimension

1.1.3 Model equations

Structure of the nonlinear ADR model plays an important role for describing the

relation among the reaction mechanisms, convection effect and diffusion transport.

They arise in various fields of science such as fluid dynamics, financial mathe-

matics, turbulence, traffic flow, shock waves, gas dynamics, heat conduction, etc

[70, 120, 153, 195, 199]. The nonlinear ADR equation can be expressed as

∂ u
∂ t
(x , t) =L (4u,5u, u, x , t) +N (4u,5u, u, x , t), (x , t) ∈ Ω= [a, b]× [t0, T].

(1.3)

Here, L (4u,5u, u, x , t) = a24 u(x , t) + a15 u(x , t) + a0 u(x , t) is a linear partial

differential operator of the second order, ai are constant coefficients, and N defines

a nonlinear differential part. The initial and boundary conditions are given by

u(x , t0) = u0(x), u(a, t) = g1(t), u(b, t) = g2(t), (1.4)

where both boundary functions g1, g2 and initial function u0 are known. Even though

some researchers assume that the boundary functions g1 and g2 are differentiable, it is

not necessary for all the times. In the present research, we only assume that the bound-
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ary functions g1 and g2 are defined on the time interval [t0, T] without requiring the

differentiability of these functions. In the ADR equation, ∂ u
∂ t (x , t) is the accumulation

term. This term provides the change of concentration over the time. The advection

term presents the gradient of concentration corresponding to distances and it is con-

sidered by the term 5u. The term 4u is the diffusion. It provides the divergence of

scalar gradient with a constant diffusivity. From Figure 1.3, it can be deduced that

the nonlinear ADR equation has the following characteristics: the shape spreads and

diffuses, the amplitude decreases and the position changes with the direction of ve-

locity. It is noticeable that, the ADR equations are highly nonlinear equations because

they present the interaction between reaction, convection and diffusion mechanisms.

The nonlinear ADR equations also contain free parameters. Thus, examination of the

physical and numerical properties of the nonlinear ADR equation becomes quite com-

plex. A large number of researchers have mainly carried out to handle such problems

by reducing the computational difficulties on capturing their numerical solutions and

keeping their real features of the nature at low value of the viscosity at various free

parameters. Therefore we concentrate on analysis of the nonlinear physical phenom-

ena without losing their natural properties. To achieve the aforementioned aims, the

BDFS, SSPRK54S and modified cubic B-spline SSPRK54 methods are considered. The

relative importance of chaotic advection, diffusion and reaction within nonlinear ADR

models have extensively been pointed out by [235, 240]. Synchronization can be

considered as the adaptation of objects to each other’s behavior. Recently, in some re-

searches attention has been paid on generalized synchronization of PDEs [118, 172].
Thus, study of synchronization behaviors of the nonlinear ADR equation remains new

and mostly unexplored field. Therefore, next we address the dynamical and general-

ized synchronization (GS) of coupled chaotic identical and nonidentical models.

Figure 1.3 Schematic solution of the nonlinear ADR problem in one dimension

1.1.4 Synchronization

The origin of a word has a greek root, syn = common and chronos = time, which

means to show the same behaviour over time or to occur at the same time, in which

two or more systems interact with each other resulting in a joint evolution on some of
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their dynamical properties. Thus, synchronization of two or more dynamical systems

generally means that one system somehow follows from the behaviour of another.

Chaotic phenomena have been seen to be new kinds of oscillating system for the suc-

cessful applications in different scientific fields including physics, chemistry, ecology,

biology, etc. Chaotic oscillators are found in many dynamical systems of various ori-

gins. Their behaviors are characterized by instability and limited predictability in time.

The original work on synchronization was introduced in coupled pendulum by Huy-

gens [44]. Since this discovery has been carried out, it has attracted very considerable

attention over the past three decades in different scientific fields including physical and

biological processes. The surprising synchronization phenomena generated between

coupled chaotic systems has been discovered by Pecora and Carroll [149]. They pro-

posed that "synchronization can be observed even in chaotic systems" [156]. Then,

the synchronization of coupled chaotic systems has been extensively and intensively

studied. They split the system into two subsystems, the first one is the driver system

and the second one is the response system and may be given in the following form:

¨

ẋ(t) = H(x(t)) driver,

ẏ(t) = G(y(t)) +ψ(x(t), y(t)) response,
(1.5)

where the functions H : Rn −→ Rn and G : Rm −→ Rm are continuous vector valued

functions. The vector x(t) ∈ Rn represents the driving signal and y(t) ∈ Rm repre-

sents the response signal. The function ψ : Rk1 −→ Rm is a controller function, here

k1 = m + n. After this discovery, several types of synchronization were discovered

such as: identical or complete synchronization appears as the coincidence of states of

interacting systems, phase synchronization which means the phases of chaotic oscilla-

tors in a closely controlled phase relationship, lag synchronization appears as having

a parameter mismatch in mutually coupled chaotic oscillator. This type of lag syn-

chronizations has important technological implications in engineering systems. In

the case of synchronization of driver-response systems, the designed controller makes

the trajectories of the state variables of the driver system to track the trajectories of

the response system. This fact may pose a trouble in using the results of theoret-

ical analyses in practical applications of synchronized chaos. Thus, we investigate

general methods to detect the existence of the transformation and study this kind of

synchronous behavior. Besides, we present the dynamical and GS of two dependent

chaotic nonlinear ADR processes with forcing terms, which unidirectionally coupled

in the driver-response configuration.
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1.2 Literature Review

Numerical solutions of nonlinear ADR models with source functions have been subject

to a huge number of studies by many researchers for both conceptual understanding

of mathematical and physical reasons. In the process of historical development, var-

ious versions of the schemes have been analyzed and implemented successfully to

investigate the nonlinear ADR models with challenging values of the viscosity and

independent parameters.

In particular, the Burgers equation represents some of the interesting nonlinear

ADR phenomena. For the past century, the Burgers equation which has attracted

much attention in studying many problems encountered. Bateman [83] considered

the ADR equation in his work along with its corresponding initial and boundary con-

ditions. Later, Burgers [120] provided the mathematical modelling of turbulence by

using (1.3). Hopf and Cole [57, 114] provided independently that this equation

can be transformed to the linear diffusion equation and solved exactly for an arbi-

trary initial condition. The infinite and finite domains for solving the Burgers equa-

tion were suggested by Benton and Platzman [65]. Accurate solution of the Burg-

ers model by using the Galerkin method with fully upwind cubic functions was dis-

cussed in the references [37, 96]. Some other studies [66, 90, 97] have considered

the space-time finite elements incorporating characteristics for the Burgers equation.

Sari and Gurarslan [179] presented the sixth-order compact finite difference method

to approximate the solution of the nonlinear Burgers equation. Here, the authors

combined the tridiagonal sixth-order compact finite difference scheme in space and

the low-storage third-order total variation diminishing RK scheme in time. Many

researchers have paid particular attention to solving this problem using various nu-

merical approaches, such as Fourier expansion scheme [205], finite element methods

[5, 138, 164, 170, 171, 228, 238, 252], variational method [62, 155, 233], homo-

topy analysis method [4, 166, 173, 174], spectral collocation method [11, 63], fi-

nite volume method [1], differential quadrature methods [16, 18, 210], Haar wavelet

[190, 208]. In many studies, researchers have used linearization of nonlinear terms

to produce numerical solution of the Burgers equation, which are likely to move away

from nature of problems, taking into account various assumptions. For more de-

tails see references [10, 68, 87, 139, 207, 218, 227, 232]. The Fisher equation is

an important model for describing the process of interaction between diffusion and

reaction. There have been vast variety of numerical techniques to obtain solution

of the Fisher equation. Canosa [112, 113] considered numerical solutions for the

Fisher equation by using a space derivative method. In dealing with the Fisher pro-

cesses, various numerical techniques to investigate the Fisher models were developed

[54, 71, 75, 76, 77, 129, 160, 176, 177, 185, 201, 220, 234, 236, 241, 246, 249, 250].
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The generalized Burgers-Fisher equation (GBFE) and the generalized Burgers-Huxley

equation (GBHE) with forcing terms can also be presented to be good examples of

the nonlinear ADR processes. In fact, the GBFEF and GBHEF have been applied to

describe the interaction between diffusion and transports, convection and reaction

mechanisms. In the past few years, a great deal of effort has been spent to compute

the solution of these models. The GBFEF was first studied by Fisher, with free of forc-

ing terms to describe the propagation of gene in a habitat [199]. Mickens and Gumel

[59] gave the non standard finite difference method for the approximation solutions

of the GBFE. Kaya and El-Sayed [52] introduced the numerical and explicit solutions

of the GBFE. In these works [89, 103, 104, 137], the authors proposed approximate

solutions for the GBHE and GBFE by using the adomian decomposition method. The

spectral collocation scheme in space and the fourth order Runge Kutta method in time

to solve the GBFE were considered by Golbabai and Javidi [8, 168]. Sari et al. [181]
investigated the numerical solution of the GBFE and GBHE by using a compact finite

difference method with minimal computational cost. Sari et al. [178] also used the

higher order finite difference schemes in space and RK4 scheme in time to produce

numerical solutions of the GBHE. Dehghan et al. [163] considered the interpolation

scaling functions and the mixed collocation difference scheme for solving the GBHE.

Recently, many researchers have paid their attention to produce numerical solution of

these problems by investigating various methods. For instance, differential quadrature

methods [6, 180, 203, 243], series-based methods [21, 22, 34, 86, 95, 110, 175, 215],
finite difference schemes [35, 117, 130, 154, 244, 245].

In the last few years, another numerical technique was widely used to solve math-

ematical models with higher degree piecewise polynomials. Among them, the spline

based methods come into existence to solve the nonlinear ADR models in the com-

putational mathematics. First, Schoenberg [105] found mathematical relations of

the splines in the context of piecewise polynomial approximations. The continu-

ity, smoothness and local supports of the spline functions were defined by Boor and

Prenter [42, 197]. Also these methods have additional advantages over some rival

techniques such as they are relatively easy in use and are of computational cost effi-

ciency. Bickley [248] published a study on solutions of the two-point boundary value

problem by using the cubic spline interpolation method. Following this research, Fyfe

[51] worked on this approach and concluded that the spline method was better than

the usual finite difference method. Hence, the applications of spline interpolation of

the boundary value problems were developed [12, 20, 55, 125]. Types of piecewise

polynomial spline functions are utilized with other numerical techniques for getting

the solutions of the nonlinear ADR equations while they are playing important roles

together in their computation. This means that any B-spline basis functions are often

governed by the spline function that have minimal support with respect to degree,
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smoothness and domain partition. The first reference to the B-spline function was in-

troduced by Schoenberg [106], who presented it as the piecewise smooth polynomial

approximation. Fundamental properties of the spline functions and their limits were

proposed by various researchers [40, 41, 82]. Rubin and Graves [223] used the cu-

bic spline interpolation based on the quasi-linearisation scheme to solve the Burgers

equation. The spline collocation method was developed to solve the Burgers equation,

for instance, see [9, 99, 101, 109, 111, 136, 151, 158, 189, 194, 213, 217, 222, 230].
The finite difference scheme with the cubic splines interpolating space derivatives in

solving the Burgers equation was developed by some authors [3, 36, 38, 47, 60, 61,

128, 143, 144, 157, 159, 192, 193, 237]. Zhu and Wang [43] proposed a method for

solving the Burgers equation via a spline approach. Various numerical methods based

on of the modified cubic B-splines in space were studied in [30, 73, 186, 212]. There

has been vast variety of numerical techniques based on splines to obtain solution of the

ADR problems such as quadratic B-splines method [15, 93, 182], cubic B-spline meth-

ods [17, 98, 231], trigonometric quadratic B-spline algorithms [28, 33, 72, 209, 211],
exponential modified cubic B-spline differential quadrature method [29, 183]. Zhu

and Kang [49] presented the numerical solution of the Burgers–Fisher equation based

on the cubic B-spline scheme and a forward difference to approximate the time deriva-

tive of the dependent variable.

For the last few decades, chaotic phenomena were seen to be new types of oscillat-

ing system for the successful applications in different scientific fields including physics,

chemistry, ecology, biology, etc [91]. In the literature, the large number of researchers

had extensively concentrated on the identical synchronization [146, 149, 156], the

generalized synchronization [121, 147, 187]. Several different studies of synchro-

nization were also proposed: the active control methods such as adaptive control,

feedback control, sliding mode control, adaptive lag synchronization for chaotic sys-

tem [64, 94, 122, 124, 216, 224, 251, 254]. It is clear that, the behavior of the non-

linear ADR problems can be visualized in chaotic synchronization. Some researchers

pointed out that there exists close relationship between chaos and nonlinear ADR

problems [26, 56, 78, 260]. However, in the case of synchronization of the transfor-

mation between the advection and diffusion terms, the designed controller makes the

trajectories of the state variables of the driver to track the trajectories of the response

problem. This fact may pose a trouble in using the results of theoretical analyses in

practical applications of synchronized chaos of the nonlinear ADR processes. One of

the reasons for this is that motivated us to focus on analysis of the nonlinear physi-

cal phenomena on capturing numerical behavior of nature governed by the nonlinear

coupled ADR equations with source functions.

The iterature tells us that the nonlinear coupled ADR models are characterized

by the reaction and diffusion or by the interaction between advection and diffusion
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[102, 226, 242]. In recent years, many researchers have paid particular attention to

solving these problems using various numerical approaches [27, 123, 131, 133, 135,

162, 165, 169, 229, 239, 253, 257, 259]. Several authors paid their attention to pro-

duce approximation solution of the nonlinear coupled ADR problem by taking into

account various assumptions [7, 87, 119, 200, 219, 232]. Various numerical tech-

niques to investigate the coupled ADR model by using tensor product were developed

[107, 204, 225, 258]. Study of synchronization behaviors of the nonlinear ADR equa-

tion remains new and mostly unexplored field. Throughout the last two decades, the

ADR models have attracted a lot of attention to get the accurate results by using var-

ious methods under synchronization techniques. Basto et al. [161] considered the

Chebyshev spectral solutions of the Burgers equation at low values of the viscosity

values for synchronization. In the case that the nonlinear coupled ADR model cannot

synchronize, some control functions should be designed. Thus, the two theorems for

proposing controllers functions for the generalized synchronization were studied in

[24, 80, 84, 118, 132, 148, 172, 196]. The Lyapunov method was also studied for

the stability of the synchronization of chaotic models for instance, see [23, 32, 256].
Moreover, Yuan et al. [142] studied the synchronization of the PDEs by combining the

PDEs theory with the Lyapunov method. Some numerical methods have been devel-

oped in trying to get the accurate results of the nonlinear ADR models under various

conditions. Our aim is to find efficient schemes for these types of physical problems

with conserving the physical properties of nature.

1.3 Objectives

Beyond what has been stated, this research consists of five phases. The first phase

mainly focuses on capturing numerical behavior of the nonlinear ADR processes with

forcing terms, without doing any linearization. To achieve this, we present the BDFS,

SSPRK54S and the modified cubic B-spline-SSPRK54 methods. Comparison between

the current methods is carried out in dealing with the nonlinear ADR problems to check

the efficiency and utility of the proposed schemes. In the second phase, we propose

analysis of a synchronization of coupled chaotic identical and nonidentical dynami-

cal systems producing generalized synchronization in drive-response systems. Thus,

we have investigated general methods to detect the existence of the transformation

and study this kind of synchronous behavior. In the case of the drive-response meth-

ods, efforts to a systematic method that guide the development of solutions to syn-

chronization problems, when trajectories of driving and response systems are strongly

connected, then two close states in the state space of the response system correspond

to the two close states in the space of the driving system. The third phase mainly

focuses on analysis of the physical phenomena without losing their natural properties

9



and reduces the computational difficulties on capturing numerical behavior of nature

governed by the coupled Burgers equations with source functions. To achieve this, the

BDFS method is proposed, in the sense that, it does not require either linearization,

or tensor product. Next phase, by combining the BDFS scheme with the Lyapunov

method, the GS is studied for designing control function of the coupled nonlinear

ADR equations. The proposed technique effectively guarantees the stability of gener-

alized chaotic synchronization of the nonlinear ADR model by constructing a driver

system to implement the generalized synchronization with a response chaotic system

by using the Lyapunov stability theory for the low value of the viscosity coefficients.

In the last phase, the development of the BDFS scheme for solving the 2D nonlinear

ADR model with appropriate initial and boundary conditions.

To accomplish the stated aims, some of the important properties of the current

methods are as follows:

1. Neither linearization nor transforming the process is required.

2. Boundary and initial functions are defined on the time interval without requiring

the differentiability of these functions.

3. The produced solutions are not presented only at the grid points but also at

optional points in the solution domain.

4. The BDFS scheme is unconditionally stable.

5. The proposed methods replace the one and two dimensional ADR problems by

ODEs.

6. The designed controller functions enable the state variables of the drive system

to globally synchronize with the state variables of the response system in chaotic

models.

7. The GS scheme implements directly the synchronization and stabilization of

physical, biological and chemical problems which are well-intended chaotic sys-

tems with fast synchronization speed.

8. Theoretical results of the current methods are effectively guaranteed for the

stability of generalized chaotic synchronization.

9. Development and verification of the BDFS with the Lyapunov method are given

to ensure the GS of the coupled nonlinear ADR model.

10. A complementary goal of this work is to investigate and improve the 2D nonlin-

ear ADR problems by the BDFS scheme.
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1.4 Thesis Overview

This thesis consists of seven chapters: following the introduction chapter, in Chapter

2, we present the derivation of the nonlinear ADR equation. Chapter 3 presents some

properties concerning the cubic splines, B-splines and natural spline in space. Be-

sides, we propose a new scheme for solving the Burgers equation by modifying cubic

B-spline approximation in space. Beside, we further propose a generalized method

by designing new response systems for solving synchronization problems of coupled

chaotic identical and nonidentical dynamical systems. Later, analyses of the BDF and

SSPRK54 methods to solve differential equations are discussed. Chapter 4 introduces

implementation of the currents methods to handle some nonlinear ADR problems and

chaotic systems in time and space. İn Chapter 5, we provide the BDFS method for the

2D nonlinear ADR problems. Chapter 6 is devoted to illustrative examples to discuss

the effectiveness of the current methods. Chapter 7 is consisting of final remarks and

recommendations in the thesis.
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2
NONLINEAR ADR EQUATIONS

This chapter presents derivation of the nonlinear ADR equations. This model is one of

the most used models in the computational mathematics and physics. It presents how

the concentration of one or more substances distributed in an occasion. For example

river moves under the influence of three processes, which are advection, diffusion,

and reaction. This model presents the fluid equation introduced by Navier in 1822

[48] and successively studied by several authors: Cauchy in 1823 [19], Poisson in

1829, Saint Venant in 1837, finally, Stokes in 1845 [74]. Thus, they developed the

nonlinear ADR problem describing the velocity field and fluid with the initial and

boundary conditions based on the conservation of mass.

The nonlinear ADR equation can be derived by using the mass balance equation.

First, we derive the nonlinear ADR equation by balancing the difference between the

total mass of material entering and leaving the element. To apply the nonlinear ADR

equation to the conversation of mass, the difference between the total mass entering

and leaving the control volume must be equal to the rate of the total mass inside the

control volume. It is considered that the mass balance for the total control volume

with the transport occurs in the x-direction can be written as follows (see Figure 2.1)

V
∂ u
∂ t

︸ ︷︷ ︸

change o f the mass
in the total volume in∆t

= AFin
︸︷︷︸

mass entering
the total cont rol volume in∆t

− AFout
︸ ︷︷ ︸

mass leaving
the total cont rol volume in∆t

, (2.1)

where, V [L3] is the volume,
∂ u
∂ t
[M L−3T−1] is the concentration over t, A [L2] is the

area, Fin [M L−2T−1] and Fout [M L−2T−1] are the fluxes. By dividing equation (2.1)

by volume V , one obtains

∂ u
∂ t

=
A
V
Fin −

A
V
Fout .

=
A
V
(Fin −Fout) .

(2.2)
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Figure 2.1 Mass balance for a control volume

The flux is changing in the x-direction with the gradient
∂F
∂ x

in the form

Fout =Fin +
∂F
∂ x

.∆x . (2.3)

Substituting equation (2.3) into (2.2) leads to

∂ u
∂ t
=

A
V

�

Fin −
�

Fin +
∂F
∂ x

.∆x
��

. (2.4)

The term
A
V

indicates the change of x in positive direction, thus
V
A
= ∆x . Equation

(2.4) becomes the general transport equation in x direction as given

∂ u
∂ t
= −

∂F
∂ x

. (2.5)

Equation (2.5) is derived for the conservative tracer of the materials. Here, we con-

sider that all fluids have same the densities of viscosity without loss or addition of

matter. Thus, the control volume is not changing as the time progresses. However, F
can be flow, dispersion, advection etc. In this research, we present the advection and

dispersion as the two important models of the transport of fluid. We explain these two

models of the transport in the x - direction as:

FAdvect ionF lux =
∂ x
∂ t

.u, (2.6)

and

FDispersiveF lux = −Ddis
∂ u
∂ x

. (2.7)

FAdvect ionF lux provides the number of particles moving from control volumes in unit

time per unit area. Ddis is the dispersion coefficient. By taking into account the nota-

tion of the advection and dispersion flux, equation (2.5) becomes:

∂ u
∂ t
= −

∂F
∂ x
= −

∂

∂ x

�

FAdvect ionF lux +FDispersiveF lux

�

. (2.8)

Substitution of equations (2.6) and (2.7) into (2.8), one obtains:
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∂ u
∂ t
= −

∂

∂ x
(
∂ x
∂ t

.
︸︷︷︸

f luid veloci t y
v in x direct ion

u)−
∂

∂ x
(−Ddis

∂ u
∂ x
). (2.9)

Rearranging the above expressions, we find out

∂ u
∂ t
= −v

∂ u
∂ x
+ Ddis

∂ 2u
∂ x2

. (2.10)

In the real life, we live in the three dimensional space, since the same rules exists for

the mass balance and transport in all possible dimensions (see Figure 2.2).

Figure 2.2 Control volume

Now, equation (2.5) is summarized as follows

∂ u
∂ t
= −

3
∑

i=1

∂Fi

∂ x i
, (2.11)

where, x1 = x , x2 = y and x3 = z. Equation (2.11) leads to

∂ u
∂ t
= −

�

∂Fx

∂ x
+
∂Fy

∂ y
+
∂Fz

∂ z

�

. (2.12)

Rate of mass of fluid within the total control volume is given by using the sum of the

net mass flow rates in each direction. Using expressions (2.6)-(2.9) into (2.12), one

gets the total mass balance and transport in all dimensions.

∂ u
∂ t
=

3
∑

i=1

�

−vi.
∂ u
∂ x i
+ (Ddis)i.

∂ 2u
∂ x2

i

�

, (2.13)

where, v1 = r, v2 = v, v3 = w, (Ddis)1 = (Ddis)x , (Ddis)2 = (Ddis)y and (Ddis)3 = (Ddis)z.
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Equation (2.13) can be rearranged into the form of the 3D nonlinear ADR model, one

obtains

∂ u
∂ t
+ r.

∂ u
∂ x
+ v.

∂ u
∂ y
+w.

∂ u
∂ z
= (Ddis)x .

∂ 2u
∂ x2

+ (Ddis)y .
∂ 2u
∂ y2

+ (Ddis)z.
∂ 2u
∂ z2

. (2.14)

It is noticeable that, equation (2.14) demonstrates that the advection processes are

governed by the velocity. The model (2.14) is also developed primarily for a non-

conservative material, which can be expressed in the following form:

∂ u
∂ t
+ r.

∂ u
∂ x
+ v.

∂ u
∂ y
+w.

∂ u
∂ z
= (Ddis)x .

∂ 2u
∂ x2

+(Ddis)y .
∂ 2u
∂ y2

+(Ddis)z.
∂ 2u
∂ z2
+
�

∂ u
∂ t

�

React ion
Kinet ics

.

We thus consider that the nonlinear ADR problem with the external sources given by

(2.14) is

∂ u
∂ t
+ r.

∂ u
∂ x
+ v.

∂ u
∂ y
+w.

∂ u
∂ z

= (Ddis)x .
∂ 2u
∂ x2

+ (Ddis)y .
∂ 2u
∂ y2

+ (Ddis)z.
∂ 2u
∂ z2

+
�

∂ u
∂ t

�

React ion
Kinet ics

±
�

∂ u
∂ t

�

Ex ternal
.

(2.15)

Here, we mention that the diffusion coefficient Ddis and the velocity v are assumed to

be constant. Then the 3D nonlinear ADR model leads to

∂ u
∂ t
(x , t) =5.(Ddis 5 u)− ~v.5 u+ f1(χ, t), (2.16)

where f1 is the source function for χ = (x , y, z), 5 =
�

∂

∂ x
,
∂

∂ y
,
∂

∂ z

�

is the gradient,

5.= div is the divergence operator and ~v = (r, v, w) is the velocity in three dimensions.

We implement the current methods to solve these problems by using various numerical

approaches, in the following chapters.
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3
METHODS

In the field of computational mathematics, the approximate methods are most used

ones to solve problem (1.3)-(1.4). The numerical analysis leads us to find the approxi-

mate solutions for the nonlinear ADR problems, while the current models are not easy

to obtain their analytical solutions. Development of numerical methods for seeking

accurate and efficient solutions of these models with small values of the viscosity and

free parameters, still remains as a challenging task. To compute the solutions of the

proposed problem, we have here developed various combined methods which attempt

to combine a natural, spline and B-spline cubic methods in space and backward differ-

entiation formula scheme in time. In the last few decades, spline functions are defined

as piecewise polynomial functions being fundamental tools for numerical methods to

get solutions of differential equations because of their smoothness and well behav-

ior. The corresponding natural splines are cubic splines whose second derivatives at

the boundary points are zero and minimizing strain energy. The B-splines are spe-

cial spline functions that can be used to define piecewise polynomials by satisfying

an appropriate linear combination. The spline functions have minimal support cor-

responding to the domain partition, degree and smoothness. In the present work,

due to aforementioned advantages, we propose three newly combined methods; the

BDFS, the SPRK54S and the modified cubic B-splines-SSPRK54 methods. For the last

two decades, concepts of synchronization and chaos provide some tools for analyzing

nonlinear problems and dynamical systems, with the goal of establishing conditions

under which synchronization can occur in such problems. Besides, we further study

synchronization behaviors of the nonlinear ADR and well defined chaotic problems.

Thence, the concept of the GS of chaotic systems is studied by considering two new

techniques for constructing the chaotic synchronization between two identical or non-

identical problems.
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3.1 Spatial Variation

3.1.1 Splines

In this section, we briefly give some properties concerning interpolating cubic spline,

B-spline and natural spline. The first reference to the spline functions in the field of

mathematics was given by Schoenberg [105]. Later on, the splines became the most

important tool in various fields of mathematics such as approximation theory, numer-

ical analysis and partial differential equations, etc. The main idea of spline functions

are defined as piecewise polynomial functions which are the fundamental tool for ap-

proximation schemes to obtain the solution of differential equations because of their

smoothness and well-posedness. The B-splines are special spline functions that can be

used to define piecewise polynomial by satisfying an appropriate linear combination.

They have minimal support with respect to a given degree and smoothness. They are

also used as basis functions to solve many practical problems, for more details see

[42, 152, 165].
LetC l[a, b] denotes the classical space of l-times continuously differentiable func-

tions on the interval [a, b]. We consider Ωm as a set of m+7 points (see Figures 3.1).

Figure 3.1 B-spline functions with nonuniform knots

x−3 < x−2 < x−1 < a = x0 < x1 < . . .< xm = b < xm+1 < xm+2 < xm+3, (3.1)

where x i = a + ih for i = −3, . . . , m + 3 with h =
b− a

m
. The subset

�

x0, . . . , xm

	

is a uniform partition of the interval [a, b] ⊂ R. Let fs be a function defined on the

interval [a, b]. The cubic spline sh interpolating the function fs at points x0, . . . , xm is

the unique function in C 2[a, b] satisfying the following conditions











sh(x i) = fs(x i) for i = 0, . . . , m,

s′′h (a) = s′′h (b),

(3.2)

17



and minimizing the following energy

Es(u) =

∫ b

a

[u′′(x)]2d x ,

where u is an arbitrary function in C 2[a, b]. The cubic spline is the unique function

sh for which
∫ b

a

[s′′h (x)]
2d x ≤

∫ b

a

[u′′(x)]2d x ,

holds among all twice continuously differentiable function u ∈ C 2[a, b] interpolating

the function fs at the points x0, . . . , xm and satisfying the condition u′′(a) = u′′(b). Let

S (Ωm) denote the space of all cubic splines over the set Ωm. Recall that the dimension

of this space is dim(S (Ωm)) = m+ 3. Then, we recall that the fundamental B-spline

function is here the cubic-spline at nodes −2,−1, 0,1, 2, supported by the interval

[−2,2] and is given by the following expression

B(x) =















































































0 if x < −2 or x ≥ 2,

1
6
(2+ x)3 if −2≤ x < −1,

1
6
(4− 6x2 − 3x3) if −1≤ x < 0,

1
6
(4− 6x2 + 3x3) if 0≤ x < 1,

1
6
(2− x)3 if 1≤ x < 2.

(3.3)

The well-known B-spline functions Bi for i = −1, . . . , m+ 1 are defined by

Bi(x) = B
� x − x i

h

�

. (3.4)

The set
�

B−1, . . . , Bm+1

	

is a basis of the space S (Ωm). The interval support of the

function Bi is [x i−2, x i+2] (see Figures 3.2). The values of the B-splines Bi and their

derivatives at points x i are summarized in Table 3.1.

A cubic spline function s ∈ S (Ωm) over the set Ωm can be written as a linear

combination of the cubic B-splines as
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s(x) =
m+1
∑

i=−1

αiBi(x), ∀x ∈ [a, b]. (3.5)

For the interpolating cubic spline sh satisfying the conditions (3.2) we have

Table 3.1 B-spline values and its derivatives at points x i

x x i−2 x i−1 x i x i+1 x i+2

Bi(x) 0 1/6 4/6 1/6 0
B′i(x) 0 −1/2h 0 1/2h 0
B′′i (x) 0 1/h2 −2/h2 1/h2 0

Figure 3.2 Cubic B-spline values at x i

sh(xk) =
m+1
∑

i=−1

αiBi(xk) = fs(xk), 0≤ k ≤ m, (3.6)

with

s′′h (a) =
1
h2
α−1 −

2
h2
α0 +

1
h2
α1, and s′′h (b) =

1
h2
αm−1 −

2
h2
αm +

1
h2
αm+1.

Now, we consider the natural cubic splines which require that the second derivatives

vanishing at the boundaries of the interval [a, b]. So, the boundary conditions s′′h (a) =
s′′h (b) = 0 lead to

α−1 = 2α0 −α1 and αm+1 = 2αm −αm−1. (3.7)

By taking into account the interpolating conditions at boundary points x0 = a and

xm = b, we obtain

sh(x0) =
1
6

�

α−1 + 4α0 +α1

�

= fs(x0),
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sh(xm) =
1
6

�

αm−1 + 4αm +αm+1

�

= fs(xm),

together with relations (3.7), we obtain

α0 = fs(x0) and αm = fs(xm). (3.8)

Considering the interpolating conditions sh(x i) = fs(x i) for i = 1, . . . , m − 1 and the

values given in Table 3.1, we can compute the rest of the coefficients α1, . . . ,αm−1 by

solving the linear system A1 φs = Φs of size (m−1)×(m−1), where the vectors φs =

(α1, . . . ,αm−1)T and Φs = (Φs,1, . . . ,Φs,m−1)T with Φs,1 = fs(x1)−
1
6

fs(x0), Φs,i = fs(x i)

for i = 2, . . . , m− 2 and Φs,m−1 = fs(xm−1)−
1
6

fs(xm). The matrix A1 is given by

A1 =
1
6



















4 1 0 · · · 0

1 4 1
...

0
.. . . . . . . . 0

... 1 4 1

0 · · · 0 1 4



















. (3.9)

As pointed out in reference [165], the following result on a priori bounds for the

interpolation error is expressed as follows:

Theorem 3.1. Let fs be a function belonging toC 4[a, b] and sh be the interpolating cubic

spline satisfying the conditions (3.2). Then, for l = 0,1, 2,3, there exists a non-negative

constant Ck > 0 such that

|| f (l)s − s(l)h ||∞ ≤ Ckh4−l || f (4)s ||∞ ,

where ‖ fs‖∞ is the classical L∞ - norm in C [a, b] given by

‖ fs‖∞ = sup
x∈[a,b]

| f (4)s (x)| .

Even when the interpolated function fs is only in C 2[a, b], we have the following

a prior bounds for the interpolation error with respect to L∞ - norm.

Theorem 3.2. Let fs be a function belonging to C 2[a, b] and sh be the interpolating

cubic spline satisfying conditions (3.2). Then, there exists a nonnegative constant C > 0

such that

|| fs − sh||∞ ≤ Ch2|| f (2)s ||∞ .

Remark 1. The previous theorem is also valid when fs belongs to the classical Sobolev

space W 2,∞]a, b[.
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This theorem illustrates the perfectiveness of the approximation by the cubic

spline. Indeed, by interpolating a continuous twice differentiable function only at

discrete points on the interval [a, b], the derivatives of the cubic spline up to the sec-

ond order are also good approximation of the derivatives of the function fs. Now,

we give a description of the current method for solving the nonlinear ADR equations

(1.3)-(1.4). We use the proposed method based on a natural spline defined as a com-

bination of the classical cubic and splines with coefficients depending on the time, by

substituting the approximations of the derivatives. The required solution of (1.3) is

approximated by a cubic interpolating spline in the following form

sh(x , t) =
m+1
∑

i=−1

αi(t)Bi(x), (3.10)

where αi(t) are the unknown time dependent coefficients. Let us take the following

vector valued functions,

B(x) =







B1(x)
...

Bm−1(x)






and φ(t) =







φ1(t)
...

φm−1(t)






=







α1(t)
...

αm−1(t)






, (3.11)

of size (m−1)×1. The function sh(x , t) and their derivatives have the following form































































































sh(x , t) = α−1(t)B−1(x) +α0(t)B0(x) +B(x)Tφ(t) +αm(t)Bm(x)
+ αm+1(t)Bm+1(x),

∂ sh

∂ t
(x , t) = α′−1(t)B−1(x) +α′0(t)B0(x) +B(x)Tφ

′
(t) +α′m(t)Bm(x)

+ α′m+1(t)Bm+1(x),

∂ sh

∂ x
(x , t) = α−1(t)B′−1(x) +α0(t)B′0(x) +B

′(x)Tφ(t) +αm(t)B′m(x)

+ αm+1(t)B′m+1(x),

∂ 2sh

∂ x2
(x , t) = α−1(t)B′′−1(x) +α0(t)B′′0 (x) +B

′′(x)Tφ(t) +αm(t)B′′m(x)

+ αm+1(t)B′′m+1(x).

(3.12)

The current method consists of substituting u and its derivatives in (1.3) by the ex-

pression of sh and its derivatives given by (3.12). So, by evaluating the equation at

points x i for i = 0, . . . , m, we reach the following relations. For each external points
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x0 and xm, we have

∂ sh

∂ t
(x0, t) = a2

∂ 2sh

∂ x2
(x0, t) + a1

∂ sh

∂ x
(x0, t) + a0sh(x0, t) + F(φ(t), x0, t), (3.13)

∂ sh

∂ t
(xm, t) = a2

∂ 2sh

∂ x2
(xm, t) + a1

∂ sh

∂ x
(xm, t) + a0sh(xm, t) + F(φ(t), xm, t), (3.14)

where F is the function representing the nonlinear part. The natural spline conditions

and the relations (3.7) and (3.8), give rise to

α0(t) = u(x0, t) = g1(t),
αm(t) = u(xm, t) = g2(t),
α−1(t) = 2α0(t)−α1(t),
αm+1(t) = 2αm(t)−αm−1(t).

(3.15)

By taking the relations (3.13)-(3.15), we obtain

α′0(t) =
�

a0 +
a1

h

�

g1(t)−
a1

h
α1(t) + F(φ(t), x0, t),

α′m(t) =
�

a0 −
a1

h

�

g2(t) +
a1

h
αm−1(t) + F(φ(t), xm, t).

(3.16)

Now, from (3.12) and (3.16), by evaluating the equation at points x1 and xm−1, we

reach

B(x1)
Tφ′(t) =

�2a0

3
+

a1

6h
−

2a2

h2

�

φ1(t) +
�a0

6
−

a1

2h
+

a2

h2

�

φ2(t) +
�a2

h2
+

a1

3h

�

g1(t)

+ F(φ(t), x1, t)−
1
6

F(φ(t), x0, t), (3.17)

and

B(xm−1)
Tφ′(t) =

�a0

6
+

a1

2h
+

a2

h2

�

φm−2(t) +
�2a0

3
−

a1

6h
−

2a2

h2

�

φm−1(t)

+
�a2

h2
−

a1

3h

�

g2(t) + F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t).(3.18)

Also, at points x i for i = 2, . . . , m− 2, we obtain

B(x i)
Tφ′(t) =

�

a2B′′(x i) + a1B′(x i) + a0B(x i)
�T
φ(t) + F(φ(t), x i, t). (3.19)
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For i = 2, . . . , m− 2, use of Table 3.1 leads to

a2B′′(x i) + a1B′(x i) + a0B(x i) =









































0
...

0
a0

6
+

a1

2h
+

a2

h2
−→ i − 1

2a0

3
−

2a2

h2
−→ i

a0

6
−

a1

2h
+

a2

h2
−→ i + 1

0
...

0









































. (3.20)

The approximating cubic spline sh must also satisfy initial condition (1.4) at points

x0, . . . , xm and at initial time t0 :











sh(x0, t0) = u0(x0), for i = 0,

sh(x i, t0) = u0(x i), for i = 1, ..., m− 1,

sh(xm, t0) = u0(xm), for i = m.

(3.21)

By virtue of (3.12) and the relations (3.15), we end up with the condition

A1φ(t0) = φ0, (3.22)

where φ0 is the vector given by

φ0 = [u0(x1)−
1
6

u0(x0), u0(x2), . . . , u0(xm−2), u0(xm−1)−
1
6

u0(xm)]
T ,

and the matrix A1 of size (m− 1)× (m− 1) is given in (3.9).

Now, equations (3.17), (3.18), (3.19) and (3.22) can be written more compactly as

follows:















A1
dφ(t)

d t
= Dφ(t) +Φ(φ(t)),

A1φ(t0) = φ0,

(3.23)
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where matrix D of size (m− 1)× (m− 1) is

D =





















d0 +
a1

6h
d1 0 · · · 0

d ′1 d0 d1
...

0
.. . . . . . . . 0

... d ′1 d0 d1

0 · · · 0 d ′1 d0 −
a1

6h





















. (3.24)

For d0 =
2a0

3
−

2a2

h2
, d1 =

a0

6
−

a1

2h
+

a2

h2
, and d ′1 =

a0

6
+

a1

2h
+

a2

h2
. The vector valued

function Φ is given by

Φ(φ(t)) = [Φ1(φ(t)),Φ2(φ(t)), . . . ,Φm−2(φ(t)),Φm−1(φ(t))]
T

Φ1(φ(t)) =
�a2

h2
+

a1

3h

�

g1(t) + F(φ(t), x1, t)−
1
6

F(φ(t), x0, t),

Φm−1(φ(t)) =
�a2

h2
−

a1

3h

�

g2(t) + F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t),

Φi(φ(t)) = F(φ(t), x i, t) for i = 2, . . . , m− 2.

Next section presents the modified cubic B-spline scheme to approximate the solution

of the nonlinear ADR equation in space.

3.1.2 Modified Cubic B-spline-SSPRK54

Here, we have developed a striking numerical method for solving the nonlinear ADR

equation (1.3)-(1.4). To achieve this, we accept a modified cubic B-spline approxi-

mation in space. It produces a system of first ODEs and obtains always a diagonal

matrix. We do not meet the question of the linearizion and transformation processes.

Consider the mesh points a = x0 < x1 < . . . < xm = b with uniform length h. Our

numerical scheme for solving (1.3) is to find an approximation sm(x , t) to the exact

solution u(x , t) which can be expressed in terms of the cubic B-splines as trial func-

tions as given in equation (3.10). The cubic B-spline B j(x) with required properties

at the knots are given by [197]
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B j(x) =
1
h3







































0 x < x j−2 or x ≥ x j−2,

(x − x j−2)3 x j−2 ≤ x < x j−1,

h3 + 3h2(x − x j−1) + 3h(x − x j−1)2 − 3(x − x j−1)3 x j−1 ≤ x < x j,

h3 + 3h2(x j+1 − x) + 3h(x j+1 − x)2 − 3(x j+1 − x)3 x j ≤ x < x j+1,

(x j+2 − x)3 x j+1 ≤ x < x j+2

0 otherwise,
(3.25)

where the set of splines {B−1, B0, . . . , Bm, Bm+1} construct a basis over the domain [a, b].
By using the spline function (3.10) and cubic splines (3.25), the values of B-spline

B j(x) and their derivatives can be calculated at nodes x j in term of the time parameters

α j by (3.12) where smj = sm(x j). In order to obtain a tridiagonal matrix system of

differential equations, we have defined new cubic B-spline basis functions to solve

equation (1.3) as follows:

B0(x) = B0(x) j = 0

B1(x) = B1(x)− B−1(x) j = 1

B j(x) = B j(x) j = 2,3, . . . , m− 2

Bm−1 = Bm−1(x)− BN+1(x) j = m− 1

Bm = Bm(x) j = m.

(3.26)

Now assume the approximation solution is given by

sm(x) =
m
∑

j=0

α j(t)B j(x) ∀x ∈ [a, b]. (3.27)

Then, we apply the proposed method to obtain approximate solution (3.27) with the

modified set of cubic B-splines given by (3.26) at the knots. The rest of our numerical

scheme for solving the nonlinear ADR equation can be seen in the following sections.

3.1.3 Generalized Synchronization (GS)

The problem of chaotic synchronization is related to trajectories starting arbitrarily

and close to each other as the time tends to infinity. Identical synchronization of two

chaotic systems may occur when the systems are coupled or when one chaotic system

drives another chaotic system [90, 156]. However, many real systems are in gen-

eral nonidentical due to the parameters of two coupled systems do not match, or the

coupled systems belong to different classes. So, the possibility of the transformation

between drive and response dynamical variables these include the GS can be very com-
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plicated. This issue may pose a trouble in practical application of synchronized chaos.

Our aim is to analyse synchronization of a coupled chaotic identical and nonidentical

dynamical systems producing generalized synchronization in drive-response systems.

Thus, we have investigated general methods to detect the existence of the transfor-

mation and study this kind of synchronous behavior. In the case of the drive-response

methods, efforts to a systematic method that guides the development of solutions

to synchronization problems, when trajectories of driving and response systems are

strongly connected, then two close states in the space state of the response system

correspond to two close states in the space of the driving system. Here, we consider

two approaches for constructing chaotic unidirectionally synchronization between the

two systems. The systems are either both identical or both nonidentical or each one

different from the other. First, we apply the classical Lyapunov stability theory in syn-

chronization of real systems. Secondly, we study a case when the nonlinear part of

response system is required to be smooth enough. Then, we use the expansion of such

a function to establish the global synchronization of the chaotic dynamical systems.

We present that, these techniques can be implemented directly to any experiments

and does not require mutual feedback.

Let us consider the first approach (1.5), by assuming the functions H and G as sum

of linear and nonlinear parts given by

H(x(t)) =Q1 x(t) + fg(x(t)) and G(y(t)) =Q2 y(t) + gg(y(t)),

where the matrices Q1 and Q2 of size n× n and m×m are assumed to consist of con-

stants, respectively. The functions fg : Rn −→ Rn and gg : Rm −→ Rm represent the

nonlinear parts of H and G, respectively. Some of the outputs from the driver system

are used to drive the response system. This means that, there exists a relation between

the two coupled systems, which could be a smooth function Υ : Rn −→ Rm, transforms

the trajectories on the attractor of the first system into those on the attractor of the sec-

ond system. We assume that the driver system in (1.5) is unstable at their equilibrium

points. It is suitable to introduce the error system e given by

e(t) = y(t)− Υ (x(t)).

Definition 3.1. System (1.5) is global generalized synchronization with respect to vector

function Υ , if the controller function ψ exists and satisfies the following property:

lim
t−→∞

‖e(t)‖= lim
t−→∞

‖y(t)− Υ (x(t))‖= 0 , (3.28)

for all initial conditions.

26



One can consider the Lyapunov function given by

Λ(t) =
1
2

e(t)TQ3 e(t). (3.29)

The notation ()T stands for the transpose operator and Λ is positive definite function

and is independent of time. In a practical example, we select the matrix Q3 starts to

be equal to the identity matrix. We assume that the error system e(t) is small enough

and satisfies a differential equation of the form

ė(t) = −Q4(t)e(t), (3.30)

where Q4 is an appropriate matrix. We have

ė(t) = ẏ(t)−JΥ (x(t)) ẋ(t) =Q2 y(t)+ gg(y(t))+ψ(x(t), y(t))−JΥ (x(t))H(x(t)),
(3.31)

where JΥ is the Jacobian matrix of the function Υ . According to condition (3.30) it

follows that, the corresponding controller function ψ exists and is given by

ψ(x(t), y(t)) = −Q4(t)e(t) +JΥ (x(t))H(x(t))−Q2 y(t)− gg(y(t)). (3.32)

Then, system (1.5) becomes

¨

ẋ(t) = H(x(t)) driver,

ẏ(t) = −Q4(t)e(t) +JΥ (x(t))H(x(t)) response.
(3.33)

Thus, we have the following results:

Theorem 3.3. Assume that

(i) Υ is a continuously differentiable function,

(ii) The matrix QT
4 (t)Q3 +Q3Q4(t) is a positive definite matrix.

Then, system (3.33) is a global generalized synchronization with respect to the vector

function Υ .
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Proof: The derivative of the Lyapunov function Λ is given by

Λ̇(t) =
1
2

�

ė(t)TQ3e(t) + e(t)TQ3e(t)
�

=
−1
2

�

(Q4(t)e(t))TQ3 + eTQ3Q4(t)e(t)
�

,

=
−1
2

eT (t)
�

QT
4 (t)Q3 +Q3Q4(t)

�

e(t).
(3.34)

Since QT
4 (t)Q3+Q3Q4(t) is a positive definite matrix and from the Lyapunov stability

theory, it follows that ‖e(t)‖ −→ 0 as t −→∞ and system (1.5) is globally generalized

synchronous with respect to the vector function Υ . It is also possible to consider an-

other hypothesis which guarantees the global generalized synchronization of chaotic

systems.

In the second approach, we assume that function gg in (1.5) is sufficiently smooth

and ‖e(t)‖ is small enough. So, we have the following expansion,

gg(y(t)) = gg(Υ (x(t)) + e(t)) = gg(Υ (x(t))) + Jg(Υ (x(t)))e(t) + o(‖e(t)‖),

where Jg(Υ (x(t))) is the Jacobian matrix of gg at point Υ (x(t)). It follows that

gg(y(t)) may be approximated by the sum gg(Υ (x(t))) + Jg(Υ (x(t)))e(t). The re-

sponse system in (1.5) can be approximated by

ẏ(t) =Q2 y(t) + gg(Υ (x(t))) + Jg(Υ (x(t)))e(t) +ψ(x(t), y(t)).

Then,

ė(t) =Q2 y(t)+gg(Υ (x(t)))+Jg(Υ (x(t)))e(t)+ψ(x(t), y(t))−JΥ (x(t))H(x(t)) = −Q4(t)e(t).

One can thus obtain

ψ(x(t), y(t)) = −
�

Jg(Υ (x(t)))+Q4(t)
�

e(t)+JΥ (x(t))H(x(t))−Q2 y(t)−gg(Υ (x(t))).
(3.35)

Here, system (1.5) becomes











ẋ(t) = H(x(t)) driver,

ẏ(t) = gg(y(t))− gg(Υ (x(t)))−
�

Jg(Υ (x(t))) +Q4(t)
�

e(t)

+ JΥ (x(t))H(x(t)) response.
(3.36)

Now, if we set Q5(t) = Q4(t)−Q2 and if matrix Q4(t) commutes with Q2 then Q5(t)
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commutes with Q2 and the solution of the differential equation (3.30) is given by

e(t) = e−Q5(t)ω(t), (3.37)

where ω(t) is the solution of the differential system

ω̇(t) = −Q2 ω(t).

The solution ω(t) satisfies the condition

||ω(t)|| ≤ C1 eλL t , (3.38)

where λL denotes the maximum Lyapunov exponent of the response system in (1.5)

and C1 is a positive constant. Furthermore, we assume that matrix Q5 satisfies the

condition

||e−Q5(t)|| ≤ C2 e−ϑ(t), (3.39)

where C2 is a positive constant and function ϑ is assumed to be a non-negative function

satisfying the following property

lim
t→+∞

ϑ(t)
t
= ` > λL. (3.40)

Thus, we reach the following results:

Theorem 3.4. Assume that

(i) Υ and gg are continuously differentiable functions,

(ii) Matrices Q2 and Q4(t) commute and matrix Q5(t) =Q4(t)−Q2 satisfies conditions

(3.39)-(3.40).

Then, system (3.36) is global generalized synchronization with respect to vector function

Υ .

Proof: From (3.37), we have

‖e(t)‖ ≤ ‖e−Q5(t)‖‖w(t)‖.

According to (3.38) and (3.39) it follows that

||e(t)|| ≤ C eλL t−ϑ(t), (3.41)
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where C is a positive constant. The property (3.40) gives that ‖e(t)‖ −→ 0 as t −→∞,

for any set of initial conditions. Hence we have completed the proof of system (3.36)

that it is global generalized synchronization with respect to the vector function Υ .

Remark 2. In a practical example we select matrix Q5 to be independent of time in

the form Q5 = k2Im, where Im is the identity matrix of size m×m and k2 is a coupling

parameter of synchronization. So, matrix Q5 commutes with any matrix and we have

Q4 =Q2 + k2Im. It follows that

e−Q5 t = e−k2 t Im,

and

||e−Q5 t ||= e−k2 t .

In this case, function ϑ is given by ϑ(t) = k2 t. Condition (3.39) is satisfied and we

have thus condition (3.41) in the form

||e(t)|| ≤ C e(λL−k2)t .

Condition (3.40) is satisfied for

k2 > λL,

where the maximum Lyapunov exponent is approximately equal to the largest eigen-

value of matrix Q2. To ensure that ‖e(t)‖ is small enough for all t, and the value of

the parameter k2 must be large enough.

Thence, the proposed algorithms replace equations (1.3)-(1.4) and system (1.5) by

an ODE system. Then, we solve the resulting system in time by the following schemes.

3.2 Temporal Variation

In the literature, it is possible to find several methods to solve the resulting ODEs

(3.23), (3.33) and (3.36) in time. It is noticeable that, these problems are highly

nonlinear equations because they present the interaction between reaction, convec-

tion and diffusion mechanisms [67] and contain free parameters. Since stiffness is a

property of differential equations widely varying time scales which means some com-

ponents of the solution decay much more rapidly than others. So, the explicit methods

do not work with stiff problems or even if work they are extremely slow. Due to stiff-

ness of the obtained ODEs, in this study we focus on the BDF and SSPRK54 methods

for solving the resulting ODEs in time. The BDF method is one of the most impor-

tant tool to solve differential equations. For comparison purposes, we also provide

the SSPRK54 method for solving ODEs in time. Note that in this method, the SSP
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property also guarantees the stability properties which are necessary in the numerical

solutions of ODEs.

3.2.1 BDF

Backward differentiation formulae (BDF) are implicit multi-step methods for numeri-

cally solving the initial-value problems (3.23). They are the most widely used methods

for solving ODEs due to their stability properties. In addition, the BDF formulae are

based on numerical differentiation. The time interval [t0, T] is divided into N subin-

tervals with the time step ∆t =
T − t0

N
with the knots tn = t0 + n∆t for n= 0, . . . , N .

The BDF method applied to (3.23) gives rise to the following approximations

A1φn −τh
�

Dφn +Φ(φn)
�

−
p
∑

j=0

η jAφn− j = 0, (3.42)

where φn = [φ1,n, . . . ,φm−1,n]T is an approximation obtained by the BDF method of

vector φ(t) given by (3.11) at t = tn. The coefficients η j and τ are given in Table 3.2

for the p-step BDF formula.

Table 3.2 Coefficients of the BDF p-step method for p = 6

p τ η0 η1 η2 η3 η4 η5 η6

1 1 -1

2
2
3

4
3

−1
3

3
6

11
18
11

−9
11

2
11

4
22
25

48
25

−36
25

16
25

−3
25

3
25

5
60
137

300
137

−300
137

200
137

−75
137

−12
137

−12
137

6
60
137

300
137

−300
137

200
137

−75
137

−72
147

−75
147

10
147

At each time step n, we have to solve equation (3.42) for φn by rearranging in the

following form

G (φn) = (A1 −η0 I)φn −τh
�

Dφn +Φ(φn)
�

−
p
∑

j=1

η j A1 φn− j = 0, (3.43)

where I is the (m − 1) × (m − 1) identity matrix. Equation (3.43) can efficiently be

solved by using the Newton method with starting guess taken from the last time step.

Here, the Newton method for the approximation of φn generates iterations (ξk) given

by
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¨

ξ0

ξk+1 = ξk − [JG (ξk)]−1G (ξk), k > 0
(3.44)

where JG (ξk) is the Jacobian matrix of G at point ξk. We have

JG (ξk) = (A1 −η0I)−τh(D+ JΦ(ξk)), (3.45)

with JΦ being the Jacobian matrix of Φ. The value of the interpolating spline sh given

by (3.10) at time tn is

sh(x , tn) = α−1(tn)B−1(x)+α0(tn)B0(x)+B(x)T y(t)+αm(tn)Bm(x)+αm+1(tn)Bm+1(x).

Here the coefficients αi(tn) are not known exactly. But they are approximated by the

coefficients denoted by bαi,n and which are computed by the BDF method and given by

bαi,n = φi,n, i = 1, . . . , m− 1,

bα0,n = u(x0, tn) = g1(tn),
bαm,n = u(xm, tn) = g2(tn),
bα−1,n = 2bα0,n −φ1,n = 2g1(tn)−φ1,n,

bαm+1,n = 2bαm,n −φm−1,n = 2g2(tn)−φm−1,n.

(3.46)

The value sh(x , tn) approximated by spline sh given by (3.10) at time tn for n= 0, . . . , N

are expressed in terms of the values bsn,h(x) where bsn,h be the cubic spline as

bsn,h(x) =
m+1
∑

i=−1

bαi,nBi(x).

We have thus sh(x , tn)w bsn,h(x) for all x ∈ [a, b].

3.2.1.1 Convergence of the BDFS method

Here, we give a result on the convergence of the proposed method. For the sake of

simplicity, we consider that the errors stemmed from the Newton method in the BDF

method are neglected. Our study is based on the following theorem which gives some

results on the convergence of the BDF method applied to ODEs of type (3.23). The

theorem can be found in reference [79].

Theorem 3.5. For
dφ(t)

d t
= A −1

1 Dφ(t) +A −1
1 Φ(φ(t)) if A −1

1 D is diagonalizable and

the derivatives of Φ are bounded (up to order p+ 1). Then, the p-step BDF method is
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convergent for tn+p ∈ [t0, T] and

‖φ(tn+p)−φn+p‖∞ ≤ Cp

�

e(n+2)Cp∆t maxi=0,...,p−1 ‖φ(t i)−φi‖∞

+
(∆t)p max

t∈[t0,T]
‖φ(p+1)(t)‖∞(eCp∆t(n+1) − 1)

min
i=2,...,m−1

|ηp −∆tυi|

�

,

where Cp > 0 is a non-negative constant and υi are the eigenvalues of the matrix A −1
1 D.

The following theorems give error estimates when the function u( . , tn) is approx-

imated by the function bsn,h. In the rest of this section we assume that A −1
1 D is diago-

nalizable and the derivatives of Φ are bounded (up to order p+ 1).

Theorem 3.6. We assume that the solution u of (1.3) is such that the functions u( . , tn) :

x ∈ [a, b] 7−→ u(x , tn) are inC 2[a, b] for n= 0, . . . , N. Then, we have the error bounds

‖u( . , tn)−bsn,h‖∞ ≤ Ch2‖
∂ 2u( . , tn)
∂ x2

‖∞ + (m+ 1) ‖φ(tn)−φn‖∞ , (3.47)

where C > 0 is a non-negative constant.

Proof: For all x ∈ [a, b], we have

|u(x , tn)−bsn,h(x)| ≤ |u(x , tn)− sh(x , tn)|+ |sh(x , tn)−bsn,h(x)|.

By virtue of Theorem 3.2, we get the error estimates

|u(x , tn)− sh(x , tn)| ≤ Ch2‖
∂ 2u( . , tn)
∂ x2

‖∞.

We recall that

sh(x , tn)−bsn,h(x) =
m+1
∑

i=−1

�

αi(tn)− bαi,n

�

Bi(x).

Since 0≤ Bi(x)≤ 1, it follows that

|sh(x , tn)−bsn,h(x)| ≤
m+1
∑

i=−1

�

�αi(tn)− bαi,n

�

�.

So, by considering (3.7) and (3.8), we reach

m+1
∑

i=−1

�

�αi(tn)− bαi,n

�

� = 2|α1(tn)− bα1,n|+
m−2
∑

i=2

|αi(tn)− bαi,n|+ 2|αm−1(tn)− bαm−1,n|

≤ (m+ 1) ‖φ(tn)−φn‖∞.
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Then, for all x ∈ [a, b], we obtain

|u(x , t)−bsn,h(x)| ≤ Ch2‖
∂ 2u( . , tn)
∂ x2

‖∞ + (m+ 1) ‖φ(tn)−φn‖∞ .

It follows that

‖u( . , tn)−bsn,h‖∞ ≤ Ch2‖
∂ 2u( . , tn)
∂ x2

‖∞ + (m+ 1) ‖φ(tn)−φn‖∞ , (3.48)

for n= 0, . . . , N .

Theorem 3.7. If we assume that the solution u of (1.3) is such that the functions u( . , tn) :

x ∈ [a, b] 7−→ u(x , tn) are inC 4[a, b] for n= 0, . . . , N. Then, we have the error bounds

‖u( . , tn)−bsn,h‖∞ ≤ Ch4‖
∂ 4u( . , tn)
∂ x4

‖∞ + (m+ 1) ‖φ(tn)−φn‖∞ , (3.49)

where C > 0 is a non-negative constant.

Proof: The proof of this theorem is similar to Theorem 3.6 by applying Theorem 3.1

instead of Theorem 3.2.

Theorem 3.8. We assume that the solution u of (1.3) is such that the functions u( . , tn) :

x ∈ [a, b] 7−→ u(x , tn) are inC 2[a, b] for n= 0, . . . , N. Then, we have the error bounds

‖u( . , tn)−bsn,h‖∞ ≤ C
�

h2‖
∂ 2u( . , tn)
∂ x2

‖∞

+ (m+ 1) eC∆t
�

max
i=0,...,p−1

‖φ(t i)−φi‖∞ +
(∆t)p max

t∈[t0,T]
‖φ(p+1)(t)‖∞

min
i=2,...,m−1

|ηp − (∆t)υi|

��

,

(3.50)

where C > 0 is a non-negative constant. Furthermore, if ∆t ≤ ε0 and h ≤ h0 where ε0

and h0 are sufficiently small non-negative constants and if the starting values for the BDF

method are supposed to be in a sufficiently small neighborhood of the exact solution then

the convergence of the proposed method holds.

Proof: According to Theorem 3.6, we have

‖u( . , tn)−bsn,h‖∞ ≤ Ch2‖
∂ 2u( . , tn)
∂ x2

‖∞ + (m+ 1) ‖φ(tn)−φn‖∞ . (3.51)

34



Using Theorem 3.5, the p-step BDF method is convergent for tn+p ∈ [t0, T] and

‖φ(tn+p)−φn+p‖∞ ≤ Cp

�

e(n+2)Cp∆t max
i=0,...,p−1

‖φ(t i)−φi‖∞

+
(∆t)p max

t∈[t0,T]
‖φ(p+1)(t)‖∞(eCp∆t(n+1) − 1)

min
i=2,...,m−1

|ηp −∆tυi|

�

,

where Cp > 0 is a non-negative constant and υi are the eigenvalues of the matrix

A−1D. It follows that

‖φ(tn+p)−φn+p‖∞ ≤ Cpe(N+2)Cp∆t
�

max
i=0,...,p−1

‖φ(t i)−φi‖∞+
(∆t)p max

t∈[t0,T]
‖φ(p+1)(t)‖∞

min
i=2,...,m−1

|ηp −∆tυi|

�

.

(3.52)

By considering (3.51) and (3.52), we obtain the error estimate (3.50). The error

estimates hold for ∆t ≤ ε0 and h ≤ h0 where ε0 and h0 are sufficiently small non-

negative constants. Inequality (3.50) shows that if the starting values are supposed to

be in a sufficiently small neighbourhood of the exact solution then the convergence of

the method holds.

3.2.2 SSPRK54

Now, we present the SSPRK54 methods to numerically approximate the solution of

the ODE (3.23), (3.33) and (3.36). The SSPRK54 method has order at most four.

However, we pay attention to the optimal five-stage, fourth order method [206]. The

SSP is a more suitable approach in high order time discretization schemes preserve

the strong stability properties in any norm of the spatial discretization with first-order

Euler time stepping. In order to have stability when using explicit numerical schemes,

we require to apply the CFL (Courant–Friedrichs–Lewy) condition [141]. Thus, the

optimal SSPRK54 scheme is made more efficient by the CFL. The optimally of this

scheme is guaranteed by using an approach based on global optimization. Therefore,

the proposed method needs less storage space and low cost. In addition this is why

we interested in the SSPRK54 scheme. For starting the current scheme, let the time

interval [t0, T] is divided into N subintervals as previously mentioned. At each time

step n, we have to solve φn of equation (3.23) and rearrange it in the following form

R(φn) = (A1 − I)φn −
�

Dφn +Φ(φn)
�

= 0, (3.53)

where I is an (m− 1)× (m− 1) identity matrix thus,
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φ1 = φn + 0.391752226571890∆tR(φn)

φ2 = 0.444370493651235φn + 0.555629506348765φ1 + 0.368410593050371∆tR(φ1)

φ3 = 0.620101851488403φn + 0.379898148511597φ2 + 0.251891774271694∆tR(φ2)

φ4 = 0.178079954393132φn + 0.821920045606868φ3 + 0.544974750228521∆tR(φ3)

φn+1 = 0.517231671970585φ2 + 0.096059710526147φ3 + 0.063692468666290∆tR(φ3)

+ 0.386708617503269φ4 + 0.226007483236906∆tR(φ4).

The efficiency and accuracy of the BDFS, SSPRK54S, modified B-spline-SSPRK54

and GS methods have been tested for different cases of the nonlinear ADR and chaotic

dynamical problems, in later chapters.
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4
IMPLEMENTATION TO NONLINEAR ADR EQUATIONS

AND CHAOTIC SYSTEMS

In this chapter, we demonstrate the applicability of the previous methods to some

model problems of nonlinear ADR equations with initial and boundary conditions and

well-defined chaotic systems. The proposed schemes for solving the models (1.3)-

(1.4) can be categorized in three essential groups: the BDFS, SSPRK54S and modified

cubic B-spline-SSPRK54 methods. The proposed methods are realized to be efficient

for these types of nonlinear ADR physical problems. Moreover, we demonstrate the

effectiveness of the proposed control function via GS method. We address the problem

of synchronization of identical and nonidentical chaotic systems (1.5) by considering

physical and biological problems. Then, the concepts between the properties of chaotic

and coupled nonlinear ADR problems are going to be discussed as well.

4.1 Numerical Solutions of Nonlinear ADR Equations

by using BDFS and SSPRK54S Schemes

For the approximate solution of the nonlinear ADR problems (1.3)-(1.4), we accept

the BDFS and SSPRK54S techniques in different cases. The generalized Burgers-Fisher

equation with forcing terms (GBFEF) and the generalized Burgers-Huxley equation

with forcing terms (GBHEF) can be considered to be good examples of the nonlinear

ADR models. They present the high importance for describing the interaction between

diffusion and transports, convection and reaction mechanisms.

4.1.1 GBFEF

The GBFEF was first studied by Fisher, with free of forcing term, to describe the prop-

agation of gene in a habitat [39, 199]. The GBFEF as the dynamic spread of a com-

bustion front was presented by Kolmogorov et al. [14]. Consider the GBFEF of the

form
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∂ u
∂ t
−λ
∂ 2u
∂ x2
+γ1uδ

∂ u
∂ x
−γ2u(1−uδ)− f (x , t) = 0, (x , t) ∈ Ωm = [a, b]×[t0, T], (4.1)

with the initial and boundary conditions given by

u(x , t0) = u0(x), (4.2)

u(a, t) = g1(t), u(b, t) = g2(t). (4.3)

The functions g1, g2 and the initial function u0 are known. The λ, γ1, γ2 are real

parameters, δ is a positive integer, 0 < λ ≤ 1 and 0 < C ≤ 1. The structure of the

GBFEF can be seen as a useful model for describing the relation between the reaction

mechanisms, convection effect and diffusion transport. It also arises in various fields

such as financial mathematics, turbulence, fluid mechanics, traffic flow, shock waves

and gas dynamics. In this example, the presented numerical schemes in solving (4.1)

are to find an approximation sh(x , t) to the exact solution u(x , t) given in equation

(3.10). By rearranging equation (4.1) as the form of (1.3), we obtain linear part and

nonlinear part, involving the forcing term, respectively as

L (
∂ 2u
∂ x2

,
∂ u
∂ x

, u, x , t) = λux x + γ2u,

and

N (
∂ 2u
∂ x2

,
∂ u
∂ x

, u, x , t) = −γ1uδux − γ2uuδ + f (x , t).

Now, a0 = γ2, a1 = 0 and a2 = λ. Considering the relations (3.16), we obtain

α′0(t) = γ2 g1(t) + F(φ(t), x0, t),

α′m(t) = γ2 g2(t) + F(φ(t), xm, t),

(4.4)

where

F(φ(t), x0, t) =
�

1− (g1(t))
δ
�

−
γ1

h
(g1(t))

δ
�

g1(t)−α1(t)
�

+ f (x0, t),

and

F(φ(t), xm, t) =
�

1− (g2(t))
δ
�

−
γ1

h
(g2(t))

δ
�

αm−1(t)− g2(t)
�

+ f (xm, t).

Thus, by evaluating equations (3.12) and (4.4) at points x1 and xm−1, one obtains
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4
6
α′1(t) +

1
6
α′2(t) =

�2γ2

3
−

2λ
h2

�

α1(t) +
�γ2

6
+
λ

h2

�

α2(t) +
� λ

h2

�

g1(t)

+ F(φ(t), x1, t)−
1
6

F(φ(t), x0, t),

(4.5)

1
6
α′m−2(t) +

4
6
α′m−1(t) =

�γ2

6
+
λ

h2

�

αm−2(t) +
�2γ2

3
−

2λ
h2

�

αm−1(t) +
� λ

h2

�

g2(t)

+ F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t).
(4.6)

At points x i, i = 2, . . . , m− 2, we give

1
6
α′i−1 +

4
6
α′i +

1
6
α′i+1 =

�γ2

6
+
λ

h2

�

αi−1(t) +
�2γ2

3
−

2λ
h2

�

αi(t) +
�γ2

6
−
λ

h2

�

αi+1(t)

+ F(φ(t), x i, t),

,

(4.7)

where

F(φ(t), x1, t) = −
γ1

2h

�1
6

g1(t) +
4
6
α1(t) +

1
6
α2(t)

�δ�

g1(t)−α2(t)
�

−
γ2

6

�

g1(t) + 4α1(t) +α2(t)
��1

6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

�δ�

+ f (x1, t),

F(φ(t), xm−1, t) = −
γ1

2h

�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�δ�

αm−2(t)− g2(t)
�

−
�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�δ�

+ f (xm−1, t),

F(φ(t), x i, t) = −
γ1

2h

�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

�δ�

αi−1(t)−αi+1(t)
�

−
γ2

6

�

αi−1(t) + 4αi(t) +αi+1(t)
�

−
�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

�δ
+ f (x i, t) .

The approximating cubic spline sh must also satisfy the initial condition (4.2) at points

x0, . . . , xm and at initial time t0 :











sh(x0, t0) = u0(x0), for i = 0,

sh(x i, t0) = u0(x i), for i = 1, ..., m− 1,

sh(xm, t0) = u0(xm), for i = m.

(4.8)

By virtue of (3.7), (3.8) and (3.12), we obtain
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A1 φ(t0) = φ0, (4.9)

where φ0 = [6u0(x1) − g1(t0), 6u0(x2), . . . , 6u0(xm−2), 6u0(xm−1) − g2(t0)]T and the

matrix A1 of size (m− 1)× (m− 1) is given by (3.9).

Now, equations (4.5), (4.6), (4.7) and (4.9) are expressed as in the following ODEs















A1
dφ(t)

d t
= Dφ(t) +Φ(φ(t)),

A1 φ(t0) = φ0.

(4.10)

The matrix D of size (m−1)× (m−1) is given (3.24) for d0 =
2γ2

3
−

2λ
h2

, d1 =
γ2

6
+
λ

h2

and d ′1 =
γ2

6
+
λ

h2
. The vector valued function Φ is given by

Φ(φ(t)) = [Φ1(φ(t)),Φ2(φ(t)), . . . ,Φm−2(φ(t)),Φm−1(φ(t))]
T ,

Φ1(φ(t)) =
� λ

h2

�

g1(t) + F(φ(t), x1, t)−
1
6

F(φ(t), x0, t),

Φm−1(y(t)) =
� λ

h2

�

g2(t) + F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t),

Φi(φ(t)) = F(φ(t), x i, t) for i = 2, . . . , m− 2.

Now, we solve the system (4.10) by using the BDF and SSPRK54 methods, as men-

tioned in previous chapter.

4.1.2 GBHEF

The GBHEF being a nonlinear ADR model is of high importance for presenting the

interaction between advection, diffusion, reaction and transports mechanisms. First,

the GBHEF equation was investigated in references [126, 167], with free of forcing

term. The GBHEF can be presented by the following form:

∂ u
∂ t
−λ
∂ 2u
∂ x2
+γ1uδ

∂ u
∂ x
−γ2u(1−uδ)(uδ−C)− f (x , t) = 0, (x , t) ∈ Ωm = [a, b]×[t0, T],

(4.11)

with the initial and boundary conditions given by

u(x , t0) = u0(x), (4.12)

u(a, t) = g1(t), u(b, t) = g2(t). (4.13)
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Here, λ, γ1, γ2 and δ are physical constants. In this example, we use the proposed

numerical schemes to find an approximation sh(x , t) to the exact solution u(x , t) given

by (3.10). By rearranging equation (4.11) in the form of (1.3), we can define the linear

part and nonlinear part, involving the forcing term, respectively as

L (
∂ 2u
∂ x2

,
∂ u
∂ x

, u, x , t) = λux x − γ2 Cu,

N (
∂ 2u
∂ x2

,
∂ u
∂ x

, u, x , t) = −γ1uδux + γ2uuδ − γ2Cu− γ2uu2δ + γ2Cuuδ + f (x , t).

Now, from the above parts, we get a0 = −γ2 C , a1 = 0 and a2 = λ. Considering the

relations (3.16), one finds

α′0(t) = −γ2C g1(t) + F(φ(t), x0, t),

α′m(t) = −γ2C g2(t) + F(φ(t), xm, t),

(4.14)

where

F(φ(t), x0, t) =
�

γ2 g1(t)g1(t))δ
��

1 − (g1(t))δ + C
�

−
γ1

h
(g1(t))δ

�

g1(t) − α1(t)
�

+
f (x0, t),
F(φ(t), xm, t) =

�

γ2 g2(t)g2(t))δ
��

1− (g2(t))δ + C
�

−
γ1

h
(g2(t))δ

�

αm−1(t)− g2(t)
�

+
f (xm, t).
Now, from (3.12) and (4.14), by evaluating these equations at points x1 and xm−1,

one obtains

4
6
α′1(t) +

1
6
α′2(t) =

�−2γ2C
3

−
2λ
h2

�

α1(t) +
�−γ2C

6
+
λ

h2

�

α2(t) +
� λ

h2

�

g1(t)

+ F(φ(t), x1, t)−
1
6

F(φ(t), x0, t),
(4.15)

1
6
α′m−2(t) +

4
6
α′m−1(t) =

�γ2

6
+
λ

h2

�

αm−2(t) +
�2γ2

3
−

2λ
h2

�

αm−1(t) +
� λ

h2

�

g2(t)

+ F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t).
(4.16)

At points x i, i = 2, . . . , m− 2, we obtain

1
6
α′i−1 +

4
6
α′i +

1
6
α′i+1 =

�−γ2C
6
+
λ

h2

�

αi−1(t) +
�−2γ2C

3
−

2λ
h2

�

αi(t)

+
�−γ2C

6
−
λ

h2

�

αi+1(t) + F(φ(t), x i, t),

(4.17)
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where
F(φ(t), x1, t) =

�

− γ2

�

g1(t) +α1(t) +α2(t)
��1

6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

�δ�

×
��1

6
g1(t) +

4
6
α1(t) +

1
6
α2(t)

�δ
− C

�

−
γ1

2h

�1
6

g1(t) +
4
6
α1(t) +

1
6
α2(t)

�δ�

g1(t)−α2(t)
�

,

F(φ(t), xm, t) =
�

− γ2

�

αm−2(t) + 4αm−1(t) + g2(t)
��

1−
�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�δ�

×
��1

6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�δ
− C

�

−
γ1

2h

�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�δ�

αm−2(t)− g2(t)
�

,

F(φ(t), x i, t) =
�

− γ2

�

αi−1(t) + 4αi(t) +αi+1(t)
��

1−
�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

�δ�

−
γ1

2h

�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

�δ�

αi−1(t)−αi+1(t)
�

.

The approximating cubic spline sh must also satisfy the initial condition (4.2) at

points x0, . . . , xm and at initial time t0 as given in (4.8). Now, equations (4.9), (4.15),

(4.16) and (4.17) are expressed compactly as in the following ODEs















A1
dφ(t)

d t
= Dφ(t) +Φ(φ(t)),

A1 φ(t0) = φ0,

(4.18)

where the matrix D of size (m− 1)× (m− 1) is given (3.24) for d0 =
−2γ2C

3
−

2λ
h2

,

d1 =
−γ2C

6
+
λ

h2
, and d ′1 =

−γ2C
6
+
λ

h2
. The vector valued function Φ is given by

Φ(φ(t)) = [Φ1(φ(t)),Φ2(φ(t)), . . . ,Φm−2(φ(t)),Φm−1(φ(t))]
T ,

Φ1(φ(t)) =
� λ

h2

�

g1(t) + F(φ(t), x1, t)−
1
6

F(φ(t), x0, t),

Φm−1(φ(t)) =
� λ

h2

�

g2(t) + F(φ(t), xm−1, t)−
1
6

F(φ(t), xm, t),

Φi(φ(t)) = F(φ(t), x i, t) for i = 2, . . . , m− 2.

Now, we solve the system (4.18) by using the BDF and SSPRK54 methods, as proposed

in the previous section.
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4.1.3 A New Approach for the Nonlinear Coupled ADR Equations

with Source Functions via the BDFS Scheme

This section focuses on analysis of the nonlinear physical phenomena of coupled ADR

models via the BDFS scheme. We capture numerical behavior of the physical environ-

ment governed by the nonlinear coupled Burgers equations with source functions. It

is recognized that these models are characterized by the interaction of reaction and

diffusion [69, 85, 191]. The Coupled Burgers equation was first presented by Esipov

[221]. It can be seen that examination of the physical and numerical properties of

the nonlinear coupled Burgers equation is quite complex. Thus, by preserving the ac-

tual physical properties of nature, and not using matrix or tensor products, behaviour

of the physical environment governed by the coupled Burgers equation with source

functions has thus been investigated effectively. To achieve this, the BDFS method

combines the cubic spline defined in space with the BDF scheme in time. Hence this

work produces a block matrix system of first ODEs in time. The currently combined

approaches are directly applicable to solve our problems without any further trans-

formation. The block matrix system is solved by the BDF scheme which is usually

implemented together with the Newton method to solve nonlinear differential equa-

tions at each step. The Thomas algorithm is also used in the solution of the linear part

of the system obtained as a result of the application of the BDFS method.

Consider the coupled nonlinear Burgers equation with source functions in the form

∂ u1

∂ t
−λ1

∂ 2u1

∂ x2
+λ2u1

∂ u1

∂ x
+ γ1(u1u2)x = f2(x , t),

∂ u2

∂ t
−λ3

∂ 2u2

∂ x2
+λ4u2

∂ u2

∂ x
+ γ2(u1u2)x = f3(x , t),

(4.19)

with the initial conditions

u1(x , t0) = u1,0(x), u2(x , t0) = u2,0(x), (4.20)

and the boundary conditions

u1(a, t) = g1(t), u1(b, t) = g2(t),
u2(a, t) = g3(t), u2(b, t) = g4(t),

(4.21)

where (x , t) ∈ Ω= [a, b]× [t0, T]; λ1, λ2, λ3, λ4, γ1 and γ2 are real parameters. The

functions g1, g2, g3 and g4 are known. The functions f2 and f3 are the source terms.

The required solutions of (4.19)-(4.21) u1(x , t) and u2(x , t) are approximated by the

cubic interpolating splines s1,h and s2,h respectively, as
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s1,h(x , t) =
m+1
∑

i=−1

αi(t)Bi(x),

s2,h(x , t) =
m+1
∑

j=−1

β j(t)B j(x),

(4.22)

where αi(t) and β j(t) are unknowns based on the time. The cubic splines s1,h and s2,h

are the unique functions in C 2([a, b]) and satisfying the following conditions











s1,h(x i, t) = u1(x i, t) for i = 0, . . . , m,

s′′1,h(a, t) = s′′1,h(b, t),

(4.23)











s2,h(x j, t) = u2(x j, t) for j = 0, . . . , m,

s′′2,h(a, t) = s′′2,h(b, t).

(4.24)

By using the cubic splines s1,h and s2,h in conditions (4.23) and (4.24), one can obtain

s1,h(xk, t) =
m+1
∑

i=−1

αi(t)Bi(xk) = u1(xk, t), 0≤ k ≤ m, (4.25)

s2,h(xk, t) =
m+1
∑

j=−1

β j(t)B j(xk) = u2(xk, t), 0≤ k ≤ m, (4.26)

with

s′′1,h(a, t) =
1
h2
α−1 −

2
h2
α0 +

1
h2
α1, and s′′1,h(b, t) =

1
h2
αm−1 −

2
h2
αm +

1
h2
αm+1,

s′′2,h(a, t) =
1
h2
β−1 −

2
h2
β0 +

1
h2
β1, and s′′2,h(b, t) =

1
h2
βm−1 −

2
h2
βm +

1
h2
βm+1.

According to the natural cubic splines at the boundary conditions, the expression











α−1(t) = 2α0(t)−α1(t),

αm+1(t) = 2αm(t)−αm−1(t),

(4.27)











β−1(t) = 2β0(t)− β1(t),

βm+1(t) = 2βm(t)− βm−1(t),

(4.28)

can be obtained. Taking into account of the interpolating conditions at the boundary
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points x0 = a and xm = b yields

s1,h(x0, t) =
1
6

�

α−1(t) + 4α0(t) +α1(t)
�

= u1(x0, t),

s2,h(x0, t) =
1
6

�

β−1(t) + 4β0(t) + β1(t)
�

= u2(x0, t),

and

s1,h(xm, t) =
1
6

�

αm−1(t) + 4αm(t) +αm+1(t)
�

= u1(xm, t),

s2,h(xm, t) =
1
6

�

βm−1(t) + 4βm(t) + βm+1(t)
�

= u2(xm, t).

Then substitution of the above expressions into (4.27) and (4.28) as:

α0(t) = u1(x0, t) and αm(t) = u1(xm, t), (4.29)

β0(t) = u2(x0, t) and βm(t) = u2(xm, t). (4.30)

Now, according to the above procedure, numerical solutions of the coupled Burgers

equation with source functions are produced. One can then consider the following

vector valued functions

w(t) =

�

φ1(t)
φ2(t)

�

, where φ1(t) =







α1(t)
...

αm−1(t)






and φ2(t) =







β1(t)
...

βm−1(t)






. (4.31)

By substituting s1,h and s2,h with their derivatives u1 and u2 in (4.19) at points x i and

x j for i = 0 and m, j = 0 and m, one reaches

∂ s1,h

∂ t
(x0, t) = λ1

∂ 2s1,h

∂ x2
(x0, t) + F1(φ1(t), x0, t), (4.32)

∂ s1,h

∂ t
(xm, t) = λ1

∂ 2s1,h

∂ x2
(xm, t) + F1(φ1(t), xm, t), (4.33)

and

∂ s2,h

∂ t
(x0, t) = λ3

∂ 2s2,h

∂ x2
(x0, t) + F2(φ2(t), x0, t), (4.34)

∂ s2,h

∂ t
(xm, t) = λ3

∂ 2s2,h

∂ x2
(xm, t) + F2(φ2(t), xm, t), (4.35)

where F1 and F2 are the functions representing the nonlinear parts. By taking into
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account the relations (4.27)-(4.35), one obtains

α′0(t) = F1(w(t), x0, t),
α′m(t) = F1(w(t), xm, t),

(4.36)

where

F1(w(t), x0, t) =
λ2

2h
g1(g1 −α1) +

γ1

h

�

g1(g3 − β1) + g3(g1 −α1)
�

− f2(x0, t),

F1(w(t), xm, t) =
λ2

h
g2(αm−1 − g2) +

γ1

h

�

g2(βm−1 − g4) + g4(αm−1 − g4)
�

− f2(xm, t),

β ′0(t) = F2(w(t), x0, t),
β ′m(t) = F2(α(t),β(t), xm, t),

(4.37)

F2(w(t), x0, t) =
λ4

2h
g3(g3 − β1) +

γ2

h

�

g3(g1 −α1) + g1(g3 − β1)
�

− f3(x0, t),

F2(w(t), xm, t) =
λ4

h
g4(βm−1 − g4) +

γ2

h

�

g4(αm−1 − g4) + g2(βm−1 − g2)
�

− f3(xm, t).

Now, by evaluating (4.36) and (4.37), in (4.19) at points x i and x j for i = 1, . . . , m−1,

j = 1, . . . , m− 1, one finds

4
6
α′1(t) +

1
6
α′2(t) =

−2
h2
α1(t) +

1
h2
α2(t) +

1
h2

g1(t) + F1(w(t), x1, t)−
1
6

F1(w(t), x0, t),
(4.38)

and

1
6
α′m−2(t) +

4
6
α′m−1(t) =

1
h2
αm−2(t) +

1
h2
αm−1(t) +

1
h2

g2(t) + F1(w(t), xm−1, t)

−
1
6

F1(w(t), xm, t).
(4.39)

Thus, at points x i for i = 2, . . . , m− 2, we obtain

1
6
α′i−1 +

4
6
α′i +

1
6
α′i+1 =

1
h2
αi−1(t) +

−2
h2
αi(t) +

1
h2
αi+1(t) + F1(w(t), x i, t),

(4.40)

where

F1(w(t), x1, t) = −
λ2

2h

�1
6

g1(t) +
4
6
α1(t) +

1
6
α2(t)

��

g1(t)−α2(t)
�

−
γ1

12h

�

(g1(t) + 4α1(t) +α2(t))(g1 −α2(t))

+ (g1(t) + 4α1(t) +α2(t))(g3 − β2(t))
�

+ f2(x1, t),
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F1(w(t), xm−1, t) = −
λ2

2h

�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�

(αm−2(t)− g2(t))

−
γ1

12h

�

(βm−2(t) + 4βm−1(t) + g4(t))(αm−2(t)− g2) + (αm−2(t) + 4αm−1(t)

+ g2(t))(βm−2(t)− g4)
�

+ f2(xm−1, t),

F1(w(t), x i, t) = −
λ2

2h

�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

��

αi−1(t)−αi+1(t)
�

−
γ1

12h

�

(αi−1(t) + 4αi(t) +αi+1(t))(βi−1(t)− βi+1(t)) + (βi−1(t) + 4βi(t)

+ βi+1(t))(αi−1(t)−αi+1(t))
�

+ f2(x i, t),

4
6
β ′1(t)+

1
6
β ′2(t) =

−2
h2
β1(t)+

1
h2
β2(t)+

1
h2

g3(t)+F2(α(t),β(t), x1, t)−
1
6

F2(w(t), x0, t),
(4.41)

and

1
6
β ′m−2(t) +

4
6
β ′m−1(t) =

1
h2
βm−2(t) +

1
h2
βm−1(t) +

1
h2

g4(t) + F2(w(t), xm−1, t)

−
1
6

F2(w(t), xm, t).
(4.42)

Then, at points x j for j = 2, . . . , m− 2, one can have

1
6
β ′i−1 +

4
6
β ′i +

1
6
β ′i+1 =

1
h2
βi−1(t) +

−2
h2
βi(t) +

1
h2
αi+1(t) + F2(w(t), x i, t),

(4.43)

where

F2(w(t), x1, t) = −
λ4

2h

�1
6

g3(t) +
4
6
β1(t) +

1
6
β2(t)

��

g3(t)− β2(t)
�

−
γ2

12h

�

(g2(t) + 4β1(t) + β2(t))(g3 − β2(t)) + (g2(t) + 4β1(t)

+ β2(t))(g1 −α2(t))
�

+ f3(x1, t),

F2(w(t), xm−1, t) = −
λ4

2h

�1
6
βm−2(t) +

4
6
βm−1(t) +

1
6

g4(t)
�

(βm−2(t)− g4(t))

−
γ2

12h

�

(αm−2(t) + 4αm−1(t) + g2(t))(βm−2(t)− g4)

+ (βm−2(t) + 4βm−1(t) + g4(t))(αm−2(t)− g2)
�

+ f3(xm−1, t),
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F2(w(t), x i, t) = −
λ4

2h

�1
6
βi−1(t) +

4
6
βi(t) +

1
6
βi+1(t)

��

βi−1(t)− βi+1(t)
�

−
γ2

12h

�

(βi−1(t) + 4βi(t) + βi+1(t))(αi−1(t)−αi+1(t))

+ (αi−1(t) + 4αi(t) +αi+1(t))(βi−1(t)− βi+1(t))
�

+ f3(x i, t).

The approximated cubic splines s1,h and s2,h must also satisfy the initial conditions

(4.20) at points x0, . . . , xm and at the initial time t0, one can have











s1,h(x0, t0) = u1,0(x0), for i = 0,

s1,h(x i, t0) = u1,0(x i), for i = 1, ..., m− 1,

s1,h(xm, t0) = u1,0(xm), for i = m,

(4.44)

and










s2,h(x0, t0) = u2,0(x0), for j = 0,

s2,h(x j, t0) = u2,0(x j), for j = 1, ..., m− 1,

s2,h(xm, t0) = u2,0(xm), for j = m.

(4.45)

Thus, by virtue of (4.44) and (4.45), we have

A2w(t0) = w0, (4.46)

where A2 =

�

A1 0

0 A1

�

with size 2(m − 1) × 2(m − 1) and the (m − 1) × (m − 1)

matrix A1 is tridiagonal matrix.

w0 =























α1(t0)
...

αm−1(t0)
β1(t0)

...

βm−1(t0).























=









































6u1,0(x1)− g1(t0)
6u1,0(x2)

...

6u1,0(xm−2)
6u1,0(xm−1)− g2(t0)
6u2,0(x1)− g3(t0)

6u2,0(x2)
...

6u2,0(xm−2)
6u2,0(xm−1)− g4(t0)









































.
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Now, equations (4.38)-(4.43) and (4.46) are summarized as ODEs given by















A2
dw(t)

d t
= Dw(t) +Φ(w(t)),

A2w(t0) = w0.

(4.47)

Here the matrixD=

�

D 0

0 D

�

is of the size 2(m−1)×2(m−1) and the (m−1)×(m−1)

matrix D is a tridiagonal matrix (3.24). The vector valued function is then given by

Φ(w(t)) =

�

ζ1(w(t))
ζ2(w(t))

�

=









































ζ1,1w(t)
ζ1,2w(t)

...

ζ1,m−2w(t)
ζ1,m−1w(t)
ζ2,1w(t)
ζ2,2w(t)

...

ζ2,m−2w(t)
ζ2,m−1w(t)









































,

where

ζ1,1(w(t)) =
λ1

h2
g1(t) + F1(w(t), x1, t)−

1
6

F1(w(t), x0, t),

ζ1, m− 1(w(t)) =
λ1

h2
g2(t) + F1(w(t), xm−1, t)−

1
6

F1(w(t), xm, t),

ζ1,i(w(t)) = F1(w(t), x i, t) for i = 2, . . . , m− 2,

and

ζ2,1(w(t)) =
λ3

h2
g3(t) + F2(w(t), x1, t)−

1
6

F2(w(t), x0, t),

ζ2,m−1(w(t)) =
λ3

h2
g4(t) + F2(w(t), xm−1, t)−

1
6

F2(w(t), xm, t),

ζ2,i(w(t)) = F2(w(t), x i, t) for i = 2, . . . , m− 2.

Now, by using the BDF method, the first order ordinary differential equation system

(4.47) is solved. The time interval [t0, T] is divided into N subintervals with time step

∆t =
T − t0

N
and knots tn = t0 + n∆t for n = 0, . . . , N . The BDF method applied to

(4.47) gives arise to the following approximations

49





















A1 yn −τh
�

D yn + ζ1(wn)
�

−
p
∑

j=0

η jA1 yn− j = 0,

A1zn −τh
�

Dzn + ζ2(wn)
�

−
p
∑

j=0

η jA1zn− j = 0,
(4.48)

where wn = [φ1,n,φ2,n]T is an approximation obtained by the BDF method of the

vector w(t) given by (4.31). The coefficients η j and τ are known. At each time step

n, we have to solve equation (4.48) for wn by rearranging it



















G1(φ1,n) = (A1 −η0 I)φ1,n −τh
�

Dφ1,n + ζ1(wn)
�

−
p
∑

j=1

η jA1φ1,n− j = 0,

G2(φ2,n) = (A1 −η0 I)φ2,n −τh
�

Dφ2,n + ζ2(wn)
�

−
p
∑

j=1

η jA1φ2,n− j = 0,
(4.49)

where I is the (m − 1) × (m − 1) identity matrix. Equation (4.49) can efficiently be

solved by using the Newton method. Here, the Newton method for the approximation

of wn generates iterations, ξk, given by

¨

ξ0

ξk+1 = ξk − [JG (ξk)]−1G (ξk), k > 0
(4.50)

where, JG (ξk) is the Jacobian matrix of G at the point ξk. We have

JG (ξk) = (A2 −η0I)−τh(D+ JΦ(ξk)), (4.51)

where I =

�

I 0

0 I

�

is the 2(m− 1)× 2(m− 1) identity matrix and JΦ is the Jacobian

matrix of Φ given by

JΦ(w(t)) =























∂ ζ1,1

∂ α1
. . .

∂ ζ1,1

∂ αm−1
...

. . .
...

∂ ζ1,m−1

∂ α1
. . .

∂ ζ1,m−1

∂ αm−1

∂ ζ1,1

∂ β1
. . .

∂ ζ1,1

∂ βm−1
...

. . .
...

∂ ζ1,m−1

∂ β1
. . .

∂ ζ1,m−1

∂ βm−1
∂ ζ2,1

∂ α1
. . .

∂ ζ2,1

∂ αm−1
...

. . .
...

∂ ζ2,m−1

∂ α1
. . .

∂ ζ2,m−1

∂ αm−1

∂ ζ2,1

∂ β1
. . .

∂ ζ2,1

∂ βm−1
...

. . .
...

∂ ζ2,m−1

∂ β1
. . .

∂ ζ2,m−1

∂ βm−1























.

The linear part of the Jacobian matrix whose solution can be solved by using the

Thomas algorithm. The approximate solutions s1,h and s2,h given by (4.22) at time tn
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are

¨

s1h(x , tn) = α−1(tn)B−1(x) +α0(tn)B0(x) +B(x)T y(t) +αm(tn)Bm(x) +αm+1(tn)Bm+1(x),
s2h(x , tn) = β−1(tn)B−1(x) + β0(tn)B0(x) +B(x)T y(t) + βm(tn)Bm(x) + βm+1(tn)Bm+1(x).

Here, the coefficients αi(tn) and βi(tn) are approximated by bαi,n and bβi,n and given by

bαi,n = yi,n, for, i = 1, . . . , m− 1,

bα0,n = u1(x0, tn) = g1(tn),
bαm,n = u1(xm, tn) = g2(tn),
bα−1,n = 2bα0,n − y1,n = 2g1(tn)− y1,n,

bαm+1,n = 2bαm,n − ym−1,n = 2g2(tn)− ym−1,n,

(4.52)

bβi,n = zi,n, for, i = 1, . . . , m− 1,
bβ0,n = u2(x0, tn) = g3(tn),
bβm,n = u2(xm, tn) = g4(tn),
bβ−1,n = 2bβ0,n − z1,n = 2g3(tn)− z1,n,
bβm+1,n = 2bβm,n − zm−1,n = 2g4(tn)− zm−1,n.

(4.53)

The values s1h(x , tn) and s2h(x , tn) of the spline s1h and s2h at time tn for n = 0, . . . , N

are presented in terms of the values bsn,1h(x) and bsn,2h(x). Here bsn,1h and bsn,2h indicate

the cubic splines given in the form, respectively,

bsn,1h(x) =
m+1
∑

i=−1

bαi,nBi(x),

bsn,2h(x) =
m+1
∑

i=−1

bβi,nBi(x).
(4.54)

We thus have s1h(x , tn)w bsn,1h(x) and s2h(x , tn)w bsn,2h(x) for all x ∈ [a, b].

4.2 Modified Cubic B-spline Basis Functions

In this section, a striking approximation method for solving the Burgers equation with

source term is considered. The structure of the Burgers equation takes into account

both nonlinear advection and diffusion terms for simulating the physical behavior of

the motion and its shock wave behavior when the viscosity value is small. This numer-

ical scheme is based on the modified cubic B-splines in space variable. The obtained

results have been computed without using any linearization and transformation pro-

cesses. The produced diagonal system has been solved by the SSPRK54 scheme.
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Consider the Burgers equation with source term of equation (1.3) as follows:

∂ u
∂ t
(x , t)−λ

∂ 2u
∂ x2

+ u
∂ u
∂ x
− f (x , t) = 0, (x , t) ∈ Ωm = [a, b]× [t0, T], (4.55)

with the initial and boundary conditions are given by

u(x , t0) = u0(x), (4.56)

u(a, t) = g1(t), u(b, t) = g2(t), (4.57)

where g1, g2 and u0 are known functions. Here, f (x , t) represents the source term.

The rest of our numerical scheme can be expressed as follows:

At boundaries (4.57) for x = x0 and x = xm the approximation solution (3.27) be-

comes

sm(x0, t) = α0(t)B0(x0) +α1(t)B1(x0) = g1(t)
sm(xN , t) = αm−1(t)Bm−1(xm) +αm(t)BN (xm) = g2(t).

(4.58)

Substitution of the approximate solution (3.27) in (4.55) leads to

m
∑

j=0

α′j(t)B j(x) = −
�

m
∑

j=0

α j(t)B j(x)
��

m
∑

j=0

α j(t)B ′j(x)
�

+λ
�

m
∑

j=0

α j(t)B ′′ j(x)
�

+ f (x , t),

(4.59)

where α′(t) is the first derivative with respect to t. The cubic B-splines basis B ′ j(x)
and B ′′ j(x) denote the first and second differentiation with respect to x . Let us dis-

cretize the domain [a, b] into grid points and let us take x = x j for j = 0, . . . , m in

equation (4.59). We thus obtain

m
∑

j=0

α′j(t)B j(x j) = −
�

m
∑

j=0

α j(t)B j(x j)
��

m
∑

j=0

α j(t)B ′j(x j)
�

+λ
�

m
∑

j=0

α j(t)B ′′ j(x i)
�

+ f (x j, t).

(4.60)

By using the approximation values of sm(x j), s
′

m(x j) and s
′′

m(x j) given by equations

(3.12) at the knots in equation (4.60), we find the following difference equations

with the variables α(t),
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4α′0 = g ′0(t) j = 0,

α′j−1 + 4α′j +α
′
j+1 =

−3
h
(α j−1 + 4α j +α j+1)(α j+1 −α j−1)

+
6λ
h2
(α j−1 − 2α j +α j + 1) j = 1, 2, . . . , m− 1,

4α′m = g ′1(t) j = m.
(4.61)

Now, using equations (4.61), we obtain the following system with m + 1 equations

and m+ 1 unknowns, as follows

A3 φ
′
= Φ1, (4.62)

where

A3 =



















4 0 0 · · · 0

1 4 1
...

0
.. . . . . . . . 0

... 1 4 1

0 · · · 0 0 4



















.

For φ′ =
�

α′0,α′1, . . . ,α′m−1,α′m
�T

, Φ1 =
�

Φ1,0,Φ1,1, . . . ,Φ1,N−1,Φ1,m

�T
, correspond-

ing to the knots are evaluated as:

Φ1,0 = g ′0(t) for j = 0;

Φ1, j = −
3
h
(α j−1 + 4α j + α j+1)(α j+1 − α j−1) +

6λ
h2
(α j−1 − 2α j + α j+1) for j =

1, . . . , m− 1,

Φ1,m = g ′1(t) for j = m.

Initial vector φ0 can be obtained by using the initial and boundary conditions at

t = 0. We then have the following relations

sm(x0, 0) = g0(0) for j = 0;

sm(x j, 0) = u0(x j) for j = 1, . . . , m− 1,

sm(xm, 0) = g1(0) f or j = m.

The above equations yield a tridiagonal matrix system by using the approximate

solution (3.27) as given

A3 φ = Φ2. (4.63)

φ0 =
�

α0
0,α0

1, . . . ,α0
m−1,α0

m

�T
, Φ2 =

�

g0(0), u0(x1), . . . , u0(xm−1), g1(0)
�T

.
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Then, we apply the SSPRK54 method to solve the first order ordinary differential equa-

tion system (4.62). Once the parameter α0 = α(t0) has been determined at a specified

time level, we can compute the solution at the required time level by using iterations.

We use the Thomas algorithm to solve the tridiagonal system encountered in (4.63),

and then the SSPRK54 method to solve the ODE system.

4.3 Designing a Response Approach in Chaotic Sys-

tems

This section is to discuss the GS method by designing new response systems for solv-

ing synchronization problems of coupled chaotic identical and nonidentical models.

To demonstrate the effectiveness of the proposed control functions, we address the

problem of synchronization of identical and nonidentical chaotic systems by consider-

ing various numerical examples from physical and biological problems. We consider

here the chaotic systems to find an access to Section 4.4.

4.3.1 Synchronization of Two Identical Systems

4.3.1.1 Memristor system

Consider the problem of synchronization of identical systems with dimension spaces

n = m = 4 concerning the Memristor chaotic systems. The Memristor was postulated

as the fourth nonlinear circuit element by Chua [150]. This Memristor system may be

described via the following nonlinear differential equations with respect to the fun-

damental basic circuit elements, resistance, capacitance, inductance and Memristor

[45]. We then have































































C11
dv11

d t
= i3 −W1(%1)v11

L22
di3
d t

= v22 − v11

C22
dv22

d t
= −i3 + G1v22

d%1

d t
= v11

. (4.64)

The parameters v11, v22 are the voltages. i3 is the current. Nonlinear function W1

is called the Memristance. We set x1 = v11, x2 = i3, x3 = v22, x4 = %1, ι1 =
1

C11
,

54



ι2 =
1

C22
, ι3 =

G1

C22
and L22 = 1. Then, system (4.64) can be transformed to a first

order differential equation system as































































d x1

d t
= ι1(x2 −W1(x4)x1)

d x2

d t
= x3 − x1

d x3

d t
= −ι2 x2 + ι3 x3

d x4

d t
= x1

, (4.65)

where function W1(x4) is defined as

W1(x4) =











ρ1 i f |x4|< 1

ρ2 i f |x4|> 1

. (4.66)

The response is similarly chosen to the Memristor system (4.65) given by































































d y1

d t
= ι1(y2 −W1(y4)y1) +ψ1(x(t), y(t))

d y2

d t
= y3 − y1 +ψ2(x(t), y(t))

d y3

d t
= −ι2 y2 + ι3 y3 +ψ3(x(t), y(t))

d y4

d t
= y1 +ψ4(x(t), y(t)).

(4.67)

To achieve the reduced order synchronization behavior between two identical Mem-

ristor systems, we consider that the Memristor systems as the driver system (4.65)

and as the response system (4.67). Then, we apply the first approach method for

this problem, by rewriting the driver-response system as (3.33). One can rewrite the

response system (4.67) in the form

ẏ(t) = −Q4(t)e(t) +JΥ (x(t))H(x(t)),
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where

Q2 =











0 ι1 0 0

−1 0 1 0

0 −ι2 ι3 0

1 0 0 0











and gg(y) =











−αW1(y4)y1

0

0

0











.

Now, to solve the synchronization of this problem with the control functionsψ(x , y) as

calculated by (3.32), one can define the identity vector function as Υ (x1, x2, x3, x4) =
(y1, y2, y3, y4)T . For the sake of the simplicity, we consider Q4 = k2I4. Thence, to

demonstrate the effectiveness of the proposed control function, we solve the driver-

response systems by using the RK4 scheme with the initial conditions x(0) and y(0)
by presenting simulation results.

4.3.1.2 Hindmarsh-Rose (HR) neuronal system

Here, we mainly study the role of neural synchronization in physical diseases, and par-

ticularly in the case of heart attack, where the neural activity takes place in many part

of human body, such as the heart muscles. The problem of chaos in the heart muscles

will decrease when neurons begin to convince to fire in synchronous with them. The

dynamic variables during this process are the neurons membrane potential, which are

changed and control a vast number of ionic channels. In general, it describes three

different states of the membrane potential which can be Resting, Spiking and Bursting.

Some papers investigated synchronization of two HR neurons [50]. Hereafter, some

information about neural activity and synchronization, we present the dynamics of

the membrane potential in the axon of neuron with a three dimensional system which

is known as the HR model







































d x1

d t
= x2 + ι4 x2

1 − x3
1 − x3 +ρ3(t)

d x2

d t
= 1− ι5 x2

1 − x2

d x3

d t
= ι6(ι7(x1 − C33)− x3)

. (4.68)

where x1, x2 and x3 represent the membrane potential, the recovery variable and the

exchange of ions through slow ionic channels respectively. ρ3(t) is the externally ap-

plied current at time t, ι6 is a recovery variable; which is very small. The parameter

C33 is the x-coordinate of the leftmost equilibrium point of the model without adapta-

tion. Parameters ι4,ι5, ι6 and ι7 are given in biological phenomena. To study synchro-

nization motions of the two identity coupled HR neuronal systems, it is assumed that

system (4.68) is considered to be the drive system, and the response system is given
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by







































d y1

d t
= y2 + ι4 y2

1 − y3
1 − y3 +ρ3(t) +ψ1(x(t), y(t))

d y2

d t
= 1− ι5 y2

1 − y2 +ψ2(x(t), y(t))

d y3

d t
= ι6(ι7(y1 − yµ)− C) +ψ3(x(t), y(t))

. (4.69)

To solve the synchronization problems, one can rewrite systems (4.68) and (4.69) as

(3.33). Thus, the response system (4.69) can be rewritten as:

ẏ(t) = −Q4(t)e(t) +JΥ (x(t))H(x(t)),

where

Q2 =







0 1 −1

0 −1 0

ι6ι7 0 −ι6






and gg(y) =







ι4 y2
2 − y3

2 + I

1− ι5 y2
2

0






.

The control function ψ(x , y) can be determined by (3.32), one can propose the iden-

tity vector function as Υ (x1, x2, x3) = (y1, y2, y3)T . We produce numerical results

using the RK4 method for the driver-response systems, by considering Q4 = k2I3 at

initial points, x(0) and y(0).

4.3.1.3 Belousov-Zhabotinsky (BZ) reaction

We suggest modeling of the BZ reaction in chemistry. The reaction is important math-

ematically because exhibits many characteristics of chaos. Considering the reaction

rates and flow rate, the simple mathematical model consisting of two “rate” equations

can be written as [108].



















d x1

d t
= (−x1

3 − ι8 x1 + ι9)− ι10 x2

d x2

d t
=
(x1 − x2)
ι11

,

, (4.70)

where x1 = [HBrO2] and x2 = [Br−]. The characterization of chaos in the BZ reaction

relied on the rate of parameters which are fed into the system. Here, to study synchro-

nization motions of the two identity modeling of the BZ reaction system, it is assumed

that system (4.70) is considered to be the drive system, and thus the response system

is given by
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d y1

d t
= (−y1

3 − ι8 y1 + ι9)− ι10 y2 +ψ1(x(t), y(t))

d y2

d t
=
(y1 − y2)
ι11

+ψ2(x(t), y(t)).

. (4.71)

Then, system (4.71) can be rewritten as

ẏ(t) = −Q4(t)e(t) +JΥ (x(t))H(x(t)),

where

Q2 =

�

−ι8 −ι9
1/ι11 −1/ι11

�

and gg(y) =

�

−y3
1 + γ
0

�

.

The control function ψ(x , y) is given by (3.32), one obtains the identity vector func-

tion as Υ (x1, x2) = (y1, y2)T . Thus, we provide numerical results using the RK4

method for solving the driver-response systems with initial conditions x(0) and y(0).
For the sake of the simplicity, we consider Q4 = k2I2.

4.3.2 Synchronization of Two Nonidentical Systems

4.3.2.1 Lorenz and Rössler systems

Here, we consider two nonidentical chaotic systems in both cases of n < m and

n > m. We take the well systems of Lorenz and Rössler [91]. The Lorenz system is

defined by the three dimensional ordinary differential equations as follows







































d x1

d t
= ι12(x2 − x1)

d x2

d t
= ι13 x1 − x2 − x1 x3

d x3

d t
= −ι14 x3 + x1 x2

. (4.72)

The Rössler system is designed by four nonlinear ordinary differential equation system
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d y1

d t
= −y2 − y3

d y2

d t
= y1 + ι15 y2 + y4

d y3

d t
= y1 y3 + ι16

d y4

d t
= −ι17 y3 + ι18 y4

. (4.73)

To illustrate Theorem 3.4 for the first case n < m, the Lorenz system is chosen as the

drive system and the Rössler as the response system which can be redefined as

ẏ(t) = gg(y(t))− gg(Υ (x(t)))−
�

Jg(Υ (x(t))) +Q4(t)
�

e(t) +JΥ (x(t))H(x(t)),

where

Q2 =











0 −1 −1 0

1 ι15 0 1

0 0 0 0

0 0 −ι17 ι18











and gg(y) =











0

0

y1 y3 + ι16

0











.

In the second case, for n > m, we adopt the Rössler system as the drive, and making

the Lorenz system as the response. Then, we rewrite the system in the form

ẏ = −Q4(t)e(t) +JΥ (x(t))H(x(t)),

where

Q2 =







−ι12 ι12 0

ι13 −1 0

0 0 −ι14






and gg(y) =







0

−y1 y3

y1 y3






.

The control function ψ(x , y) can be determined by (3.35). The vector function is

given by Υ (x1, x2, x3) = (y1, y2, y3, y1 + y2 + y3)T which is the nonidentity function.

We choose the matrix to be Q4 = Q2 +Q5, where Q5 = k2I4. We obtain the behaviour

of synchronization by using the very large value of the coupling strength. We produce

numerical results using the RK4 method for the nonidentical driver-response systems

at initial points x(0) and y(0).
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4.4 Synchronization of the Nonlinear ADR Processes

via the BDFS and Lyapunov Methods

This section dynamical and GS of two dependent chaotic nonlinear ADR processes with

forcing term, which unidirectionally coupled in the driver-response configuration. By

combining the BDFS scheme with the Lyapunov direct method, the GS is studied for

designing controller function of the coupled nonlinear ADR equations without any

linearization. This technique utilizes the driver configuration to monitor the synchro-

nized motions. The nonlinear coupled model is described by the incompressible fluid

flow coupled to thermal dynamics, and motivated by the Boussinesq equations. Let us

consider the nonlinear coupled Burgers equations with source functions as:

∂ u1

∂ t
−λ1

∂ 2u1

∂ x2
+λ2u1

∂ u1

∂ x
= f1(x , t) + k2u2(x , t) driver,

∂ u2

∂ t
−λ3

∂ 2u2

∂ x2
+λ4u1

∂ u2

∂ x
= f2(x , t) response,

(4.74)

with initial conditions

u1(x , t0) = u1,0(x), u2(x , t0) = u2,0(x), (4.75)

and boundary conditions

u1(a, t) = g1(t), u1(b, t) = g2(t),
u2(a, t) = g3(t), u2(b, t) = g4(t).

(4.76)

Here, (x , t) = [a, b]×[t0, T]. The function u2 can be viewed as a temperature field. λ3

is the thermal conductivity, λ1 is a viscosity coefficient, λ2 and λ4 are constants. k2 is

the coefficient of the thermal expansion and also the coupling strength. The function

u1 represents the velocity. The functions g1, g2, g3 and g4 are known. The f1 and

f2 are the source terms. The outputs from the driver are used to drive the response.

Thus, there exists a relation between the coupled Burgers equation, which could be a

temperature u2, transforms the trajectories on the attractor of the first equation into

those on the attractor of the second equation. Numerical results have been produced

by using the BDFS method for the proposed driver-response. The required solutions of

(4.74)-(4.76) u1(x , t) and u2(x , t) are approximated by the cubic interpolating splines

s1,h and s2,h, respectively, as given in (4.22). By determining unknown time dependent

coefficients αi(t) and β j(t), now, we consider the natural cubic splines at the boundary

conditions, we can obtain the expressions α−1(t), αm+1(t), β−1(t) and αm+1(t) as given

in (4.27) - (4.28). Later, by interpolating the conditions at the boundary points x0 = a
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and xm = b yields

s1,h(x0, t) =
1
6

�

α−1(t) + 4α0(t) +α1(t)
�

= u1(x0, t),

s2,h(x0, t) =
1
6

�

β−1(t) + 4β0(t) + β1(t)
�

= u2(x0, t),

s1,h(xm, t) =
1
6

�

αm−1(t) + 4αm(t) +αm+1(t)
�

= u1(xm, t),

s2,h(xm, t) =
1
6

�

βm−1(t) + 4βm(t) + βm+1(t)
�

= u2(xm, t).

Now, α0(t), αm(t), β0(t) and βm(t) substitution of the above expressions into (4.27)

and (4.28) leads to

α0(t) = u1(x0, t) and αm(t) = u1(xm, t), (4.77)

β0(t) = u2(x0, t) and βm(t) = u2(xm, t). (4.78)

Then, we use s1,h and s2,h with their derivatives in (4.74) at points x i and x j for i =
0 and m, j = 0 and m, one reaches

∂ s1,h

∂ t
(x0, t) = λ1

∂ 2s1,h

∂ x2
(x0, t) + F1(α(t),β(t), x0, t), (4.79)

∂ s1,h

∂ t
(xm, t) = λ1

∂ 2s1,h

∂ x2
(xm, t) + F1(α(t),β(t), xm, t), (4.80)

and

∂ s2,h

∂ t
(x0, t) = λ3

∂ 2s2,h

∂ x2
(x0, t) + F2(α(t),β(t), x0, t), (4.81)

∂ s2,h

∂ t
(xm, t) = λ3

∂ 2s2,h

∂ x2
(xm, t) + F2(α(t),β(t), xm, t), (4.82)

where F1 and F2 are the functions indicating the nonlinear parts. By taking into ac-

count the relations (4.27), (4.28), (4.77), (4.78) (4.79), (4.80), (4.81) and (4.82) ,

one can have
α′0(t) = F1(α(t),β(t), x0, t),
α′m(t) = F1(α(t),β(t), xm, t).

(4.83)

F1(α(t),β(t), x0, t) =
λ2

2h
g1(g1 −α1) +

k2

2h
g3(g3 − β1) + g3(g3 −α1)

�

− f1(x0, t),

F1(α(t),β(t), xm, t) =
λ2

h
g2(αm−1− g2)+

k2

h
g4(βm−1− g4)+ g4(αm−1− g4)

�

− f1(xm, t).
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β ′0(t) = F2(α(t),β(t), x0, t),
β ′m(t) = F2(α(t),β(t), xm, t),

(4.84)

F2(α(t),β(t), x0, t) =
λ4

2h
g3(g3 − β1) + g1(g3 − β1)

�

− f2(x0, t),

F2(α(t),β(t), xm, t) =
λ4

h
g4(βm−1 − g4) + g2(βm−1 − g2)

�

− f2(xm, t).

Thus, by using (4.83) and (4.84), in (4.74) at points x i and x j for i = 1, . . . , m − 1,

j = 1, . . . , m− 1, one finds

4
6
α′1(t) +

1
6
α′2(t) =

−2
h2
α1(t) +

1
h2
α2(t) +

1
h2

g1(t)

+ F1(α(t),β(t), x1, t)−
1
6

F1(α(t),β(t), x0, t),
(4.85)

1
6
α′m−2(t) +

4
6
α′m−1(t) =

1
h2
αm−2(t) +

1
h2
αm−1(t) +

1
h2

g2(t)

+ F1(α(t),β(t), xm−1, t)−
1
6

F1(α(t),β(t), xm, t).
(4.86)

Then, at points x i for i = 2, . . . , m− 2, we obtain

1
6
α′i−1+

4
6
α′i+

1
6
α′i+1 =

1
h2
αi−1(t)+

−2
h2
αi(t)+

1
h2
αi+1(t)+F1(α(t),β(t), x i, t), (4.87)

where

F1(α(t),β(t), x1, t) = −
λ2

2h

�1
6

g1(t) +
4
6
α1(t) +

1
6
α2(t)

��

g1(t)−α2(t)
�

+
k

12h

�

(g2(t) + 4β1(t) + β2(t))
�

+ f1(x1, t),

F1(α(t),β(t), xm−1, t) = −
λ2

2h

�1
6
αm−2(t) +

4
6
αm−1(t) +

1
6

g2(t)
�

(αm−2(t)− g2(t))

+
k2

12h

�

(βm−2(t) + 4βm−1(t) + g4(t))
�

+ f1(xm−1, t),

F1(α(t),β(t), x i, t) = −
λ2

2h

�1
6
αi−1(t) +

4
6
αi(t) +

1
6
αi+1(t)

��

αi−1(t)−αi+1(t)
�

+
k2

12h

�

(βi−1(t) + 4βi(t) + βi+1(t))
�

+ f1(x i, t),

4
6
β ′1(t) +

1
6
β ′2(t) =

−2
h2
β1(t) +

1
h2
β2(t) +

1
h2

g3(t)

+ F2(α(t),β(t), x1, t)−
1
6

F2(α(t),β(t), x0, t),

(4.88)
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1
6
β ′m−2(t) +

4
6
β ′m−1(t) =

1
h2
βm−2(t) +

1
h2
βm−1(t) +

1
h2

g4(t)

+ F2(α(t),β(t), xm−1, t)−
1
6

F2(α(t),β(t), xm, t).

(4.89)

Then, at points x j for j = 2, . . . , m− 2, one finds

1
6
β ′i−1 +

4
6
β ′i +

1
6
β ′i+1 =

1
h2
βi−1(t) +

−2
h2
βi(t) +

1
h2
αi+1(t) + F2(α(t),β(t), x i, t),

(4.90)

F2(α(t),β(t), x1, t) = −
λ4

2h

�1
6

g3(t) +
4
6
β1(t) +

1
6
β2(t)

��

g3(t)− β2(t)
�

+ f2(x1, t),

F2(α(t),β(t), xm−1, t) = −
λ4

2h

�1
6
βm−2(t) +

4
6
βm−1(t) +

1
6

g4(t)
�

(βm−2(t)− g4(t))

+ f1(xm−1, t),

F2(α(t),β(t), x i, t) = −
λ4

2h

�1
6
βi−1(t) +

4
6
βi(t) +

1
6
βi+1(t)

��

βi−1(t)− βi+1(t)
�

+ f2(x i, t).

One has (4.46), and equations (4.87)-(4.89) are summarized as the system of ordinary

differential equations as given in 4.47. From the hypothesis of the Lyapunov method,

synchronization of the proposed model is studied at optimal value of the coupling

strength. Again the system (4.47) is given

dw(t)
d t

=A −1
2 (Dw(t) +Φ(w(t))) , (4.91)

where A2 is a tridiagonal matrix defining a regular system when the eigenvalues are

all different and the real parts of them are negative. The matrix A2 is considered

to be negative definite. Thus, (4.74)-(4.76) is globally generalized synchronous with

respect to the coupling strength at the optimal value.

Furthermore, the stability requires that t > t0 + T and k > 0. Then, the BDF method

is applied, the first-order ordinary differential equation system (4.91) is solved. The

time interval [t0, T] is divided into N subintervals with the time step ∆t =
T − t0

N
with the knots tn = t0 + n∆t for n = 0, . . . , N . The method applied to (4.91) gives

arise to the following approximations. The values s1,h(x , tn) and s2,h(x , tn) of the spline

s1,h and s2,h at time tn for n = 0, . . . , N are presented in terms of the values bsn,1h(x)
and bsn,2h(x). Here bsn,1h and bsn,2h indicate the cubic splines given in (4.54). Thus, we

obtain s1,h(x , tn)w bsn,1h(x) and s2,h(x , tn)w bsn,2h(x) for all x ∈ [a, b]. In the following

chapters, numerical examples illustrating the accuracy of the present approach are

given.
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5
TWO DIMENSIONAL NONLINEAR ADR PROBLEMS

Two-dimensional ADR processes with forcing terms have various kinds of practical ap-

plications in applied mathematics, such as turbulence and viscous fluid [81, 116, 247].
In this chapter, we provide the BDFS method for solving the 2D ADR processes with

forcing terms, without any linearization, and keeping the originality of nature. Here,

we are going to develop our earlier work by using the 2D spline, B-spline and natural

spline methods in space. A system of first order ODEs is produced. The BDF scheme is

particularly suitable for the large scale and stiff ODE problems. Thus, after successful

discretization in space, the BDF method allows an efficient implementation for solv-

ing the resulting system in time. In recent years, many researchers have paid their

particular attention to solving these problems using various numerical approaches,

particularly interested in the 2D Burgers equation. Fletcher [115] found the exact

solution of the 2D Burgers equation by using the Hopf-Cole transformation. Many

authors have used many numerical and analytical techniques for solving the 2D Burg-

ers equation such as: finite element and finite difference methods [46], the similarity

reductions [2], finite difference scheme [25], Eulerian Lagrange method [53], Lattice

Boltzmann method [127], Haar wavelet method [258], Galerkin method [250], the

modified bi-cubic B-spline functions [31, 92].
The 2D ADR equation arising in various fields of science is considered as

∂ u
∂ t
(x , y, t) =Ld(

∂ 2u
∂ x2

,
∂ u
∂ x

,
∂ u
∂ y

,
∂ 2u
∂ x∂ y

,
∂ 2u
∂ y2

, u, x , y, t) +Nd(
∂ 2u
∂ x2

,
∂ u
∂ x

,
∂ u
∂ y

,
∂ 2u
∂ x∂ y

,
∂ 2u
∂ y2

, u, x , y, t),

(5.1)

for (x , y, t) ∈ Ωd×[t0, T], where Ωd = [a, b]×[c, d]. Ld is a linear partial differential

operator of second order and Nd defines a non-linear differential part. The initial

condition at t0

u(x , y, t0) = u0(x , y), (x , y) ∈ Ωd ∪ ∂Ωd , (5.2)

and boundary conditions are given by
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ua(y, t, u(a, y, t), ux(a, y, t), uy(a, y, t)) = g1(y, t),
ub(y, t, u(b, y, t), ux(b, y, t), uy(b, y, t)) = g2(y, t),
uc(x , t, u(x , c, t), ux(x , c, t), uy(x , c, t)) = g3(x , t),
ud(x , t, u(x , d, t), ux(x , d, t), uy(x , d, t)) = g4(x , t).

(5.3)

The boundary functions g1, g2, g3, g4 and initial function u0 are known. In many

practical and physical situations the boundary functions are not differentiable or their

derivatives are not available. So, in this study, we only assume that the boundary

conditions are defined on the time interval without any further requirement. We give

an introduction of the BDFS technique to analyse the 2D ADR equation in detail, in

the following section.

5.1 Description of the Method

For the approximate solution of the 2D ADR processes (5.1)-(5.3) in C l(Ωd) where

the classical space of l-times continuously differentiable functions on the interval Ωd

is considered. Then, we define the solution u on a rectangle Ωd (see Figure 5.1)

Ωd = {(x , y)| a ≤ x ≤ b and c ≤ y ≤ d}.

Figure 5.1 Knot insertions into product surface of two dimensions

Let us consider uniform subdivisions of the space interval Ωd as set of m+7 knots
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x−3 < x−2 < x−1 < a = x0 < x1 < . . . < xm1
= b < xm1+1 < xm1+2 < xm1+3

and

y−3 < y−2 < y−1 < c = y0 < y1 < . . . < ym2
= d < ym2+1 < ym2+2 < ym2+3

(5.4)

with x i = a + ih1 and y j = c + jh2 for i, j = −3, . . . , m1,2 + 3 where h1 =
b− a
m1

and

h2 =
d − c
m2

. The subset
�

x0, . . . , xm1

	

and
�

y0, . . . , ym2

	

are uniform partitions of the

domain [a, b]× [c, d] ⊂ R×R. The exact solution of (5.1)-(5.3) is approximated by

a cubic interpolating spline on a rectangle Ωd . The cubic spline shd interpolating the

function u at the knots x0, . . . , xm1
and y0, . . . , ym2

is the unique function in C 2(Ωd)
satisfying the following conditions



























shd(x i, y j) = u(x i, y j) for i = 0, . . . , m1, j = 0, . . . , m2

s
′′

hd(a, y j) = s
′′

hd(b, y j),

s
′′

hd(x i, c) = s
′′

hd(x i, d),

(5.5)

Let S (Ωd) denote the space of all the cubic splines over the set Ωd . It is well known

that the dimension of this space is dim(S (Ωd)) = (m1 + 3)(m2 + 3). We denote by

{Bi(x)}
m1
i=0 and {B j(y)}

m2
j=0 basis of the space S (Ωd). The values of the B-splines Bi(x)

and B j(y) with their derivatives at knots x i and y j, respectively are given in Table 3.1.

It can be shown that the basis Bi j(x , y) as the linear space of the cubic splines defined

on the rectangle Ωd (see Figure 5.2).

Figure 5.2 Division of the rectangle Ωd by knots

A cubic spline function shd ∈ S (Ωd) over the set Ωd may be written as a linear

combination of the cubic Bi j(x , y) of the form

shd(x , y) =
m1+1
∑

i=−1

m2+1
∑

j=−1

αi, jBi(x)B j(y), ∀(x , y) ∈ [a, b]× [c, d], (5.6)

66



where, the coefficients {α}m1,m2
i, j=−1 are unknown coefficients. Let us take the following

vector valued functions,

B1(x) =







B−1(x)
...

Bm1−1(x)






and B2(x) =







B−1(y)
...

Bm2−1(y)






(5.7)

For the interpolating cubic spline shd by satisfying the conditions (5.5), one has

shd(xk3
, yk4
) =

m1+1
∑

i=−1

m2+1
∑

j=−1

αi, jBi(xk3
)B j(yk4

), 0≤ k3 ≤ m1, 0≤ k4 ≤ m2, (5.8)

By considering the natural cubic splines which require that the second derivatives are

neglected at the boundaries of the rectangleΩd . So, the boundary conditions are given

by

s′′hd(a, yk4
) = s′′hd(b, yk4

) = 0, (5.9)

and

s′′hd(xk3
, c) = s′′hd(xk3

, d) = 0. (5.10)

It can be required that the interpolating conditions shd(x i, y j) = u(x i, y j) with the

Bi j(x , y) and their derivative values taken at certain lines. This approach is presented

in more detail in the following steps:

1. at i = 1 for 1≤ j ≤ m2 − 1,

2. at i = m1 − 1 for 1≤ j ≤ m2 − 1,

3. at j = 1 for 1≤ i ≤ m1 − 1,

4. at j = m2 − 1 for 1≤ i ≤ m1 − 1,

5. at 2≤ i ≤ m1 − 2 and 2≤ i ≤ m1 − 2.

Considering equations (5.8)-(5.10) and the interpolating conditions at boundary

points, we have











s′′hd

�

a, yk4
, t
�

= 0

shd(a, yk4
, t) = g1(a, yk4

, t) k4 = 0, . . . , m2

. (5.11)
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By taking into account equation (5.8), the equation (5.11) becomes

α−1,k4−1+4α−1,k4
+α−1,k4+1 = 2

�

α0,k4−1 + 4α0,k4
+α0,k4+1

�

−
�

α1,k4−1 + 4α1,k4
+α1,k4+1

�

,

(5.12)

and

α0,k4−1 + 4α0,k4
+α0,k4+1 = 6g1(a, yk4

, t), for k4 = 0, . . . , m2 (5.13)

For k4 = 0, by using the relation (5.12)-(5.13), one finds the vector values of α0,k4
as

follows















































4α0,0 +α0,1 = 6g1(a, y0, t)−α0,−1,

α0,0 + 4α0,1 +α0,2 = 6g1(a, y1, t),

... =
...

α0,m2−1 + 4α0,m2
= 6g1(a, ym2

, t)−α0,m2+1.

(5.14)

We continue to use the 2D natural spline conditions and the above relations at bound-

ary points, we get











s′′hd

�

b, yk4
, t
�

= 0

shd(b, yk4
, t) = g2(b, yk4

, t) k4 = 0, . . . , m2

. (5.15)

By using expression (5.8) into the equation (5.15), one obtains

αm1+1,k4−1 + 4αm1+1,k4
+αm1+1,k4+1 = 2

�

αm1,k4−1 + 4αm1,k4−1 +αm1,k4+1

�

−
�

αm1−1,k4−1 + 4αm1−1,k4
+αm1−1,k4+1

�

,
(5.16)

and

αm1,k4−1 + 4αm1,k4
+αm1,k4+1 = 6g1(b, yk4

, t), for k4 = 0, . . . , m2. (5.17)

By taking into account the relations (5.16)-(5.17) at k4 = m2, we obtain the vector

values of αm1,k4
as
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4αm1,m2
+αm1,m2+1 = 6g2(b, y0, t)−αm1,m2−1,

αm1,m2
+ 4αm1,m2+1 +αm1,m2+2 = 6g2(b, y1, t),

... =
...

αm1,m2−1 + 4αm1,m2
= 6g2(b, ym2

, t)−αm1,m2+1.

(5.18)

The 2D natural spline conditions with the above relations at the other boundary points

are considered as











s′′hd

�

xk3
, c, t

�

= 0

shd(xk3
, c, t) = g3(xk3

, c, t) k3 = 0, . . . , m1

. (5.19)

Rewriting the above equation (5.19) into (5.8), we have

αk3−1,−1+4αk3,−1+αk3+1,−1 = 2
�

αk3−1,0 + 4αk3,0 +αk3+1,0

�

−
�

αk3−1,1 + 4αk3,1 +αk3+1,1

�

,

(5.20)

and

αk3−1,0 + 4αk3,0 +αk3+1,0 = 6g3(yk3
, c, t), for k3 = 0, . . . , m1. (5.21)

By using the expressions (5.20)-(5.21) at k3 = 0, we find out the vector values of αk3,0















































4α0,0 +α1,0 = 6g3(y0, c, t)−α−1,0,

α0,0 + 4α1,0 +α2,0 = 6g3(y1, c, t),

... =
...

αm1−1,0 + 4αm1,0 = 6g3(ym1,0, t)−αm1+1,0.

(5.22)

Considering the 2D natural spline conditions and the above relations at boundary

points together, one obtains
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s′′hd

�

xk3
, d, t

�

= 0

shd(xk4
, d, t) = g4(xk3

, d, t) k3 = 0, . . . , m1

. (5.23)

Substituting shd with their derivatives from (5.8) into (5.23) gives

αk3−1,m2+1 + 4αk3,m2+1 +αk3+1,m2+1 = 2
�

αk3−1,m2
+ 4αk3−1,m2

+αk3+1,m2

�

−
�

αk3−1,m2−1 + 4αk3,m2−1 +αk3+1,m2−1

�

,
(5.24)

and

αk3−1,m2
+ 4αk3,m2

+αk3+1,m2
= 6g4(xk3

, d, t), for k3 = 0, . . . , m1. (5.25)

For k3 = m1, by taking the relation (5.24)-(5.25) we then have the vector values of

αk3,m2















































4αm1,m2
+αm1+1,m2

= 6g4(x0, d, t)−αm1−1,m2
,

αm1,m2
+ 4αm1+1,m2

+αm1+2,m2
= 6g4(x1, d, t),

... =
...

αm1−1,m2
+ 4αm1,m2

= 6g4(xm1
, d, t)−αm1+1,m2

.

(5.26)

Now, the relations (5.12) and (5.21) at k3 = 0 and k4 = 0 are expressed as in the

following cases, where k3 = 0, equation (5.12) is

α0,−1 + 4α0,0 +α0,1 = 6g1(a, c, t). (5.27)

For k4 = 0 equation (5.21) becomes

α−1,0 + 4α0,0 +α1,0 = 6g3(a, c, t). (5.28)

One can consider the two boundary points to be equal at the points a and c and then

we obtain

α0,−1 +α0,1 = α−1,0 +α1,0. (5.29)
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Also, at points k3 = 1, . . . , m1 − 1 and k4 = 1, . . . , m2 − 1, we then reach

B1(xk3
)Tα

′

i, j(t)B2(yk4
) = −

�

B1(xk3
)Tαi, j(t)B2(yk4

)
�

�

B
′

1(xk3
)Tαi, j(t)B2(yk4

) +B2(xk3
)Tαi, j(t)B

′

2(xk4
)
�

= F(αi, j(t), xk3
, yk4

, t).
(5.30)

The approximating 2D cubic spline shd must also satisfy initial condition (5.2) at points

x0, . . . , xm1
and y0, . . . , ym2

at initial time t0:











shd(x0, yk4
, t0) = u0(x0, yk4

), for k4 = 0, . . . , m2,

shd(xk3
, yk4

, t0) = u0(xk3
, yk4
), for k3, k4 = 1, ..., m1,2 − 1,

shd(xm1
, ym2

, t0) = u0(xm1
, ym2

), for k3, k4 = m1, m2.

(5.31)

By using the above equation, we find out the condition

Ad φd(t0) = (φd)0, (5.32)

where

Ad =



















A1 0 0 · · · 0

0 A1 0
...

0
.. . . . . . . . 0

... 0 A1 0

0 · · · 0 0 A1



















, (5.33)

and

φd =
�

αi, j(t)
�

1≤i≤m1−1
1≤ j≤m2−1

=

















φ1,1(t) φ1,2(t) · · · φ1,m2−1(t)
φ2,1(t) φ2,2(t) · · · φ2,m2−1(t)

...
...

...
...

...
...

φm1−1,1(t) φm1−1,2(t) · · · φm1−1,m2−1(t)

















. (5.34)

(φd)0 is the matrix of size (m1 − 1)× (m2 − 1) and A1 is given in (3.9).
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Now, the above equations can be written more compactly as the ODEs form:











Ad φ
′

d Bd = −
�

AT
d φd Bd

� �

(A
′

d)
T φd B

′

d

�

+ Fd(αd(t), x , y, t),

Ad φd(t0) = φd,0,

(5.35)

where

Bd(x) =

�

B1(x)
B2(y)

�

. (5.36)

We will consider the BDF scheme or any other suitable method for solving the large

scale (5.35) ODE system in time. They from (5.35)











φ
′

d = −φd

�

(A
′

d)
T φd B

′

d

�

+
�

AT
d

�−1
Fd(φd(t), x , y, t)

�

BT
d

�−1
≡ Fd(t,αd(t))

φd(t0) =
�

AT
d

�−1
φd,0, t0 ≤ t ≤ T.

(5.37)

The BDF scheme applied to the (5.37) yields

(φd)%+1 =
p
∑

j=0

η j (φd)%− j + hd τ Fd(t%+1, (φd)%+1). (5.38)

Here hd is the mesh grid, t%+1 = hd + t%, (φd)%+1 ≡ φd(t%+1), τ and η j are the co-

efficients for the p-step BDF formula given in Table 3.2. Hence, we obtain the 2D

ADR equation in a large matrix valued form. We will then rewrite the BDF scheme for

ODEs in term of matrix operations. An implementation of the proposed method is in

preparation and will be done for the 2D Burgers equation.
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6
NUMERICAL ILLUSTRATIONS

In this chapter we demonstrate the accuracy and efficiency of the proposed methods

given in previous chapters for different models. For this purpose, we first give vari-

ous numerical results of the nonlinear ADR problems with forcing terms to investigate

the accuracy of the BDFS, SSPRK54S and modified B-spline-SSPRK54 methods. Be-

sides, we address the problem of GS of identical and nonidentical chaotic systems.

By considering various numerical examples from physical and biological problems to

demonstrate the effectiveness of the proposed control function, the results are pre-

sented. In order to show that there is close relation between the generalized chaotic

synchronization and nonlinear ADR models, various numerical examples illustrating

the accuracy of the present approach are given. Accuracy of the proposed methods

are assessed in terms of the relative and absolute errors. Comparison between the

proposed methods is carried out in dealing with various problems to check the effi-

ciency and utility of the proposed schemes. The numerical solutions obtained by these

methods are tabulated and compared with some works in the literature for different

meaningful physical parameters. All computations have been carried out using the

currently produced computer codes in MATLAB 2018 on a workstation with 16 signif-

icant decimal digits.

6.1 Numerical Examples

The computational domain [a, b] is discredited on the equally spaced points x ′i =

a+ i
b− a

k
, for i = 0, . . . , k. It is important to note that the produced solutions are not

presented only at the grid points but also at optional points in the solution domain. In

order to measure the accuracy of the proposed schemes, the relative errors e1, e2 and

e∞ are defined by
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k −→ e1(k) =
‖U − Sk‖1

‖U‖1
=

N
∑

n=0

�

k
∑

i=0

|u(x ′i , tn)− sh,n(x
′
i)|

�

N
∑

n=0

�

N
∑

n=0

|u(x ′i , tn)|

� , (6.1)

k −→ e2(k) =
‖U − Sk‖2

‖U‖2
=

√

√

√

N
∑

n=0

�

k
∑

i=0

|u(x ′i , tn)− sh,n(x
′
i)|

2

�

√

√

√

N
∑

n=0

�

N
∑

n=0

|u(x ′i , tn)|2
�

, (6.2)

k −→ e∞(k) =
‖U − Sk‖∞
‖U‖∞

=
max

0≤n≤N

�

max
0≤i≤k

|u(x ′i , tn)− sh,n(x
′
i)|
�

max
0≤n≤N

�

max
0≤i≤k

|u(x ′i , tn)|
� , (6.3)

where U = (u(x ′i , tn)) and Sk = (sh,n(x ′i)) are the matrices of size (N + 1) × (N + 1)
whose entries are the values of the exact and numerical solutions, respectively, at

points (x ′i , tn) with step size h=
b− a

k
and time step size∆t =

T − t0

N
. The numerical

solutions produced here are at a set of points x ′i which are different from the set of

points on the B-spline discretizations.

Example 1

In this example we consider the nonlinear problem, with free external force, known

as the Burgers equation

ut = λux x − uux , (6.4)

for (x , t) ∈ [0, 1]× [1,2]. The initial condition is

u(x , 1) =
x

1+
1
p

C
exp(

x2

4λ
)
= u0(x), (6.5)

where C = e1/(8λ), and the boundary conditions are

u(0, t) = g1(t) = 0 and u(1, t) =
1

t
�

1+ C
s

t
C

exp(
1

4λt
)
�

= g2(t) . (6.6)

The exact solution [100] is given by
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u(x , t) =
x

t
�

1+ C
s

t
C

exp( x2

4λt )
�

, (x , t) ∈ [0, 1]× [1,2] . (6.7)

For various time values, comparison between the numerical and exact solutions is

carried out as seen in Figures 6.1a and 6.1b. In these figures, we observe that the

numerical and the exact solutions are in good agreement. The behaviour of the solu-

tion is exhibited under the consideration of the physical constants. At any time t with

small value of λ, the solution curves are very steep. For the time passed the steepness

remains unchanged. Thus, this is a challenging situation that we have obtained the

steep solutions. The relative and absolute errors for the computation are presented for

∆t = 1E−03 and∆t = 1E−04 with different values of λ and k in Tables 6.1 and 6.2.

It is concluded from the comparison of the results in these tables that the proposed

scheme is very accurate for for different values of λ. The relative error e∞ is plotted as

a function in Figures 6.2a and 6.2b for ∆t = 1E − 03 and ∆t = 1E − 04, respectively.

Notice that the error decreases as k increases for different values of λ. It can be seen

that the theoretical convergence and the computational error results are found to be

in good agreement when the relatively smaller spatial steps are used. The numerical

results are performed for various values of the parameters ∆t, λ and k. Note that

the numerical convergence is in agreement with the theoretical convergence given

in Theorem 3.8. The physical behavior of the solutions is presented in Figures 6.3a

and 6.3b. By comparing various λ values, effects of the advection dominant cases are

clearly exhibited.

(a) λ= 0.005 and ∆t = 1e− 03 (b) λ= 0.0005 and ∆t = 1e− 04

Figure 6.1 Numerical and exact solutions of the Burgers equation
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Table 6.1 Comparison of the errors for various values of λ, k with ∆t = 1E − 03

BDFS (e∞(k))
k λ= 5 λ= 5E − 01 λ= 5E − 02 λ= 5E − 03 λ= 5E − 04

100 3E-07 4E-07 2E-06 6E-06 2E-05
300 2E-07 2E-06 3E-07 1E-05 3E-04
500 2E-06 1E-06 3E-05 7E-04 5E-05
700 2E-05 5E-05 3E-04 4E-03 8E-03
900 2E-06 2E-05 1E-04 6E-04 7E-04

Table 6.2 Comparison of the errors for different values of λ, k with
∆t = 1E − 04

BDFS (e∞(k))
k λ= 5 λ= 5E − 01 λ= 5E − 02 λ= 5E − 03 λ= 5E − 04

200 2E-08 5E-08 5E-05 1E-04 2E-05
400 8E-08 1E-07 14E-07 4E-05 48E-04
600 5E-08 8E-07 6E-06 1E-05 2E-04
800 4E-07 57E-07 3E-06 1E-05 12E-04

1000 3E-07 44E-07 2E-06 6E-04 7E-03

(a) ∆t = 1E − 03 and t = 2 (b) ∆t = 1E − 04 and t = 2

Figure 6.2 The presentation of relative errors e∞ for various time steps

(a) Exact solution (b) Numerical solution

Figure 6.3 Exact and numerical solutions for ∆t = 1E − 04 and λ= 0.005
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Example 2

In the second example, we consider the Burgers equation with the forcing function

ut = λux x − uux + f (x , t), (6.8)

in the domain [0, 1] × [0, 1] with the boundary conditions and the initial condition,

given by











u(x , 0) = 0,

u(0, t) = 0,

u(1, t) = 0.

(6.9)

The external force is taken to be

f (x , t) = πsin(πx)cos(πt) +πsin(πt)sin(πt)sin(πx)cos(πx)
+ λπ2sin(πt)sin(πx),

such that the exact solution reads

u(x , t) = sin(xπ)sin(tπ), for (x , t) ∈ [0,1]× [0, 1] . (6.10)

Comparison of the computed and exact solutions is presented in Figure 6.4. As in

the previous example, we observe that the proposed method exhibits highly accurate

results. Tables 6.3 and 6.4 give various values of the relative error e∞(k) for ∆t =
1E − 03 and ∆t = 1E − 04, respectively, for different values of λ and k. The relative

errors e∞ is plotted as a function for ∆t = 1E − 03 and ∆t = 1E − 04 in Figures 6.5a

and 6.5b, respectively. From these tables and figures, we can see that the relative error

e∞(k) decreases as the value of k increases. We also observe in this example that the

theoretical results on the convergence are confirmed by the numerical ones. Physical

behaviour of the problem has been presented in a comparative way in Figures 6.6a

and 6.6b.

Table 6.3 Relative error e∞(k) for various values of λ, k with ∆t = 1E − 03 in
Example 2

k λ= 5 λ= 5E − 01 λ= 5E − 02 λ= 5E − 03 λ= 5E − 04
200 3E-06 41E-05 1E-06 3E-04 1E-04
600 2E-06 1E-06 3E-05 7E-04 5E-05

1000 1E-06 2E-06 21E-05 5E-04 6E-05
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Table 6.4 Relative error e∞(k) for various values of λ, k with ∆t = 1E − 04 for
Example 2

k λ= 5 λ= 5E − 01 λ= 5E − 02 λ= 5E − 03 λ= 5E − 04
100 7E-07 4E-06 1E-07 3E-06 1E-05
500 6E-07 3E-07 5E-06 3E-04 1E-05
900 8E-07 2E-07 1E-05 9E-04 2E-04

Figure 6.4 Exact and numerical solutions for λ= 0.05 and ∆t = 1E − 03

(a) ∆t = 1E − 03 and t = 1 (b) ∆t = 1E − 04 and t = 1

Figure 6.5 The relative errors e∞

(a) Exact solution (b) Numerical solution

Figure 6.6 Exact and numerical solutions for ∆t = 1E − 04 and λ= 0.005
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Example 3

In the present example, we consider the nonlinear problem as the Fisher equation,

with free external force, given by

ut = λux x +µu(1− u), (x , t) ∈ [a, b]× [0, 1], (6.11)

where a = −0.2 and b = 0.8, with the initial and boundary conditions

u(x , 0) =



1+ e

√

√

√

µ

6
x





−2

, u(a, t) = u(b, t) = 0 .

The exact solution of the Fisher equation (6.11) is given by

u(x , t) =



1+ e

√

√

√

µ

6
x−

5µ
6

t





−2

. (6.12)

The numerical solutions are computed with the parameters λ = 1, ∆t = 1E − 03,

∆t = 1E − 04 for different values of k and µ. In Figures 6.7a and 6.7b the exact and

numerical solutions are presented for comparison purposes. The numerical solutions

are seen to be good agreement with the exact ones and the sharp behaviours come

out. As λ decreases, the curves become very steep. Thus, the results obtained by

the proposed method captures the nature of the problem. The numerical solutions to

the reaction-diffusion equation (6.11) shows that the reaction is more effective than

diffusion, this is why effects of the reaction clearly are seen in the solutions. The

relative and absolute errors are presented in Tables 6.5 and 6.6 for different values of

the parameters k,∆t and µ. We have seen from the corresponding table that the errors

obtained by the BDFS scheme is quite small. The quantitative and qualitative results

of the proposed method are highly challenging. The relative errors for small and

large values of µ are plotted in Figures 6.8a and 6.8b. The behavior of the numerical

solutions is in agreement with the exact solution as seen in Figures 6.9a and 6.9b.

Table 6.5 Relative errors of the proposed methods for the Fisher equation with
∆t = 1E − 04

BDFS (e∞(k))
k µ= 1000 µ= 2000 µ= 3000 µ= 4000 µ= 5000 µ= 5000

300 1E-04 7E-05 3E-05 7E-04 2E-02 1E-06
420 6E-05 3E-05 1E-05 4E-04 1E-02 7E-02
540 4E-05 2E-05 1E-05 2E-04 6E-03 4E-02
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Table 6.6 Relative errors of the proposed methods for the Fisher equation with
∆t = 1E − 03

BDFS (e∞(k))
k µ= 100 µ= 300 µ= 500 µ= 700 µ= 900

120 2E-08 22E-08 2E-06 28E-06 4E-05
240 64E-07 6E-07 61E-07 6E-05 98E-05
360 2E-07 29E-07 28E-07 2E-05 3E-05
480 1E-06 16E-06 19E-06 2E-05 3E-05
600 1E-06 4E-05 18E-05 2E-04 3E-04

(a) λ= 1 and ∆t = 1E − 03 (b) λ= 0.05 and ∆t = 1E − 04

Figure 6.7 Exact and numerical solutions of the Fisher equation for µ= 1000

(a) ∆t = 1E − 03 and t = 1 (b) ∆t = 1E − 04 and t = 1

Figure 6.8 Relative errors e∞ of the Fisher equation for various values of ∆t
and µ
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(a) Exact solution (b) Numerical solution

Figure 6.9 Exact and numerical solutions corresponding to ∆t = 1E − 04,
µ= 120 and λ= 1

Example 4

Consider equation (4.1) in the following form

ut −λux x + γ1uδux − γ2u(1− uδ) = 0, (6.13)

with the initial condition

u(x , 0) =
�1
2
+

1
2

tanh(
� −γ1δ

2(δ+ 1)

�

x)
�1/δ
= u0(x), (6.14)

and the boundary conditions

u(0, t) =
�1
2
+

1
2

tanh
� −γ1δ

2(δ+ 1)

�

−
� γ1

δ+ 1
+
γ2(δ+ 1)
γ1

��

t
��1/δ

= g1(t), (6.15)

u(1, t) =
�1
2
+

1
2

tanh
� −γ1δ

2(δ+ 1)

�

1−
� γ1

δ+ 1
+
γ2(δ+ 1)
γ1

��

t
��1/δ

= g2(t). (6.16)

Exact solution of equation (6.13) is given by

u(x , t) =
�1
2
+

1
2

tanh
� −γ1δ

2(δ+ 1)

�

x −
� γ1

δ+ 1
+
γ2(δ+ 1)
γ1

��

t
��1/δ

. (6.17)

This example is provided in the domain (x , t) ∈ Ω= [−1,1]× [0,1] with various val-

ues of parameters λ, δ, γ1, γ2 and∆t by the current methods. In Table 6.7, the relative

errors are computed with various parameters.The BDFS results are still very accurate
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while the SSPRK54S did not work (N.W.) for larger values of δ. Also, the BDFS results

demonstrated that the relative errors decrease as the parameter δ increases. The rela-

tive and absolute errors for the computation are considered for various time levels and

δ = 1, 4, 40, 50 in Table 6.8 and compared with those available in the literature. It

is concluded from the comparison of the obtained results in these tables that the pro-

posed methods are very accurate for all values of δ > 0. We have depicted the BDFS,

SSPRK54S solutions and exact solution for different time values in Figures 6.10a and

6.10b. It can be seen from the produced results that the BDFS presents more accurate

results than the SSPRK54S. The physical behavior of the solutions is illustrated in Fig-

ure 6.11. In conclusion, the computed results in the present problem, show that, the

BDFS method has no restriction on the choice of parameter values.

Table 6.7 Relative errors of the proposed methods for Problem (6.13)

λ= 0.01, δ = 500, γ1 = γ2 = 0.01, ∆t = 1E − 4

Errors SSPRK54S BDFS
e1 N.W. 4.03E − 7
e2 N.W. 4.13E − 7
e∞ N.W. 3.82E − 6

λ= 0.0005, δ = 10000, γ1 = γ2 = 1, ∆t = 1E − 4

Errors SSPRK54S BDFS
e1 N.W. 2.29E − 8
e2 N.W. 2.01E − 8
e∞ N.W. 6.97E − 7

(a) BDFS and exact solutions (b) SSPRK54S and exact solutions

Figure 6.10 Computed solutions of Problem (6.13) for λ= 1, γ1 = γ2 = 0.01,
δ = 8, h= 0.002 and ∆t = 1E − 03
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Table 6.8 Comparisons of the errors for Problem (6.13)

λ= δ = 1, γ1 = γ2 = 0.001

SSPRK54S BDFS Ref. [88] Ref. [202] Ref. [214]

Errors ∆t = 1E − 2 ∆t = 1E − 4
e1 3.72E − 4 2.38E − 3 - - - - - - - - -
e2 3.78E − 4 4.15E − 4 - - - - - - - - -
e∞ 4.64E − 4 3.41E − 4 - - - - - - - - -
L∞ 5.93E − 9 5.82E − 8 1.93E − 5 6.44E − 7 1.22E − 9

δ = 4, λ= 1, ∆t = 1E − 4

SSPRK54S BDFS Ref. [202] Ref. [214] Ref. [49]

Errors γ1 = −0.01,γ2 = 1 β = 1,γ2 = 0.5
e1 1.07E − 2 1.55E − 4 - - - - - - - - -
e2 1.16E − 2 5.85E − 5 - - - - - - - - -
e∞ 1.43E − 2 5.64E − 5 - - - - - - - - -
L∞ 2.03E − 5 4.82E − 8 1.22E − 5 1.08E − 8 1.44E − 6

λ= 1, ∆t = 1E − 4

SSPRK54S BDFS Ref. [88] Ref. [202] Ref. [214]

Errors δ = 50,γ1 = γ2 = 0.001 δ = 2,β = γ2 = 1
e1 1.67E − 3 1.02E − 5 - - - - - - - - -
e2 3.52E − 4 4.15E − 7 - - - - - - - - -
e∞ 1.33E − 4 6.34E − 7 - - - - - - - - -
L∞ 3.07E − 7 3.37E − 9 2.5E − 4 2.1E − 6 1.7E − 7

λ= 1,γ1 = 0 ∆t = 1E − 4

SSPRK54S BDFS Ref. [202] Ref. [214] Ref. [181]

Errors δ = 40,γ2 = 0.001 δ = 8,γ2 = 1
e1 2.47E − 5 3.88E − 7 - - - - - - - - -
e2 2.82E − 5 4.01E − 7 - - - - - - - - -
e∞ 1.83E − 5 3.94E − 10 - - - - - - - - -
L∞ 4.85E − 9 2.03E − 17 1.19E − 11 5.5E − 16 3.6E − 11
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(a) Exact solution (b) SSPRK54S solution

(c) BDFS solution

Figure 6.11 Computed solutions of Problem (6.13) for λ= 1, γ1 = γ2 = 0.01,
δ = 8, h= 0.002 and ∆t = 1E − 03

Example 5

We consider the GBFE with an external force f (x , t)

ut −λux x + γ1uδux − γ2u(1− uδ) = f (x , t), (6.18)

in the domain [−1,1]× [−1,1] with the homogeneous Dirichlet boundary conditions

and the homogeneous initial condition, namely











u(0, t) = 0

u(1, t) = 0

u(x , 0) = 0.

(6.19)

We choose the external source as
f (x , t) = (π)2sin(xπ)sin(tπ) +πλcos(xπ)sin(tπ)(sin(xπ)sin(tπ))δ

− γ1(sin(πx)sin(πt)(1− (sin(xπ)sin(tπ))δ) +πsin(πx)cos(πt).
The exact solution is

u(x , t) = sin(xπ)sin(tπ) (x , t) ∈ [−1, 1]× [−1,1]. (6.20)
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Various relative errors for problem (6.18) by using the BDFS and SSPRK54S methods

have been considered in Table 6.9. Thus, the results produced by the BDFS method

are accurate while the SSPRK54S does not work for large values of δ. For various time

values, comparison between the BDFS, SSPRK54S approximation and exact solution

is carried out as seen in Figures 6.12a and 6.12b. In the figures, we observe that the

BDFS and exact solutions are in good agreement. Physical behaviour of the problem

(6.18) has been captured in Figure 6.13. It can be seen that the proposed scheme is

in very good agreement with the exact one and exhibits physical characteristics of the

problem correctly.

Table 6.9 Relative errors of the GBFEF for the proposed methods

λ= 0.01, δ = 1, γ1 = γ2 = 1, ∆t = 1E − 3

e1,2,∞ SSPRK54S BDFS
e1 2.19E − 1 8.49E − 3
e2 1.44E − 1 8.55E − 3
e∞ 1.86E − 1 7.88E − 3

λ= 0.001, δ = 4, γ1 = −0.01, γ2 = 1, ∆t = 1E − 4

e1,2,∞ SSPRK54S BDFS
e1 1.04E − 1 3.47E − 3
e2 1.34E − 1 4.95E − 4
e∞ 1.63E − 1 5.74E − 4

λ= 0.0001, δ = 500, γ1 = γ2 = 0.01, ∆t = 1E − 4

e1,2,∞ SSPRK54S BDFS
e1 N.W. 4.17E − 3
e2 N.W. 4.92E − 5
e∞ N.W. 4.33E − 5

λ= 0.0001, δ = 10000, γ1 = γ2 = 1, ∆t = 1E − 5

e1,2,∞ SSPRK54S BDFS
e1 N.W. 2.48E − 3
e2 N.W. 3.66E − 3
e∞ N.W. 3.28E − 3
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(a) BDFS and exact solutions (b) SSPRK54S and exact solutions

Figure 6.12 Computed solutions of Problem (6.18) for
λ= 0.01,γ1 = γ2 = 0.001, δ = 4 and ∆t = 1E − 02

(a) Exact solution (b) SSPRK54S solution

(c) BDFS solution

Figure 6.13 Computed solutions of Problem (6.18) for λ= 0.001, γ1 = 0.001,
γ2 = 1, δ = 8 and ∆t = 1E − 03

Example 6

In this problem, we consider the GBHE of the form of equation (4.11) with the exact

solution given by
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u(x , t) =
�C

2
+

C
2

tanh
�

a1

�

x − a2 t
���1/δ

, (6.21)

where

a1 =
−γ1δ+δ

Æ

γ2
1 + 4γ2(1+δ)

4(1+δ)
C ,

and

a2 =
Cγ1

(1+δ)
−
(1+δ− C)(−γ1 +

Æ

γ2
1 + 4γ1(1+δ))

2(1+δ)
.

Here, γ1, γ2, δ, λ are parameters and C = 0.1. Initial and boundary conditions are

taken from the exact solution. Approximate solutions of this problem are obtained

by using δ as 1, 8, 500, 10000 for various values of γ1, γ2 and λ in the domain

(x , t) ∈ Ω = [−1,1]× [0,1]. In Table 6.10, accuracy of the current schemes is exam-

ined by computing the relative errors for large values of δ and smaller values of λ.

Here, it can be concluded that the BDFS results are in good agreement with the exact

solution for large values of δ while the SSPRK54S does not work (N.W.). The relative

and absolute errors are documented in Table 6.11 and are compared with some previ-

ous works. We have noticed from the corresponding table that the errors obtained by

the BDFS and SSPRK54S methods are quite small and furthermore, better than most

of the schemes available in the literature. Physical behavior of the problem is captured

in Figure 6.14. Note that behaviour of the problem with the BDFS is in good agree-

ment with exact solution at free of choice of the physical parameters. The BDFS and

SSPRK54S solutions with exact solution of this example are plotted in Figure 6.15. It

can be concluded that the BDFS scheme solutions are very compatible with the exact

solution and, more accurate than the SSPRK54S method.

Table 6.10 Relative errors of the GBHE for the proposed methods

λ= 0.001, γ1 = γ2 = 1000, δ = 500
∆t = 1E − 4 , C = 0.0001

e1,2,∞ SSPRK54S BDFS
e1 N.W. 7.94E − 3
e2 N.W. 8.07E − 3
e∞ N.W. 1.08E − 2

λ= 0.0001 γ1 = 1, γ2 = 5, δ = 10000
∆t = 1E − 4 , C = 1

e1,2,∞ SSPRK54S BDFS
e1 N.W. 4.00E − 4
e2 N.W. 2.33E − 4
e∞ N.W. 3.15E − 5
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Table 6.11 Comparison of the errors for Problem (6.21)

λ= δ = 1, γ1 = γ2 = 0.001, C = 0.001

SSPRK54S BDFS Ref. [88] Ref. [202] Ref. [214]

Errors ∆t = 1E − 3 ∆t = 1E − 4
e1 5.10E − 5 6.67E − 7 - - - - - - - - -
e2 5.22E − 5 6.90E − 7 - - - - - - - - -
e∞ 7.63E − 6 8.91E − 8 - - - - - - - - -
L∞ 6.73E − 11 1.02E − 17 1.93E − 7 3.74E − 8 4.26E − 17

δ = 8, λ= γ2 = 1, ∆t = 1E − 4

SSPRK54S BDFS Ref. [89] Ref. [202] Ref. [214]

Errors C = 0.01,γ1 = 80 C = 0.0001,γ1 = 100
e1 1.07E − 2 1.55E − 4 - - - - - - - - -
e2 1.16E − 2 5.85E − 5 - - - - - - - - -
e∞ 1.43E − 2 5.64E − 5 - - - - - - - - -
L∞ 2.03E − 5 4.82E − 8 4.58E − 8 1.27E − 8 5.55E − 17

(a) Exact solution (b) SSPRK54S solution

(c) BDFS solution

Figure 6.14 Computed solutions of Problem (6.21) for λ= 0.01,
γ1 = γ2 = 0.1,δ = 40, ∆t = 1E − 3 and C = 0.1 with h= 0.002
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(a) BDFS and exact solutions (b) SSPRK54S and exact solutions

Figure 6.15 Computed solutions of Problem (6.21) for λ= 1, γ1 = 0.01,
γ2 = 0.5, δ = 80 and ∆t = 1e− 04 with h= 0.02

Example 7

In this problem, we demonstrate accuracy of the modified B-spline-SSPR54 scheme.

In order to measure the accuracy of the current scheme, we discretize the solution

domain [a, b] into uniformly grid sizes h by new equally spaced points x ′i , for i =
0, . . . , k. For our discretization with the forward Euler, the linear stability yields the

restriction and given by: CFL= λ∆t/h2 and we present the relative error as defined

in (6.3). We also consider the exact solution of equation (4.55) as given in reference

[99]

u(x , t) =
x/t

1+
p

t/t0ex2/4λt
, t ≥ 1; 0≤ x ≤ 1,

where t0 = e1/8λ. The initial condition is taken from the exact solution when

t = 1. Boundary conditions are u(0, t) = u(1, t) = 0. The numerical solution

provides shock like solution of the Burgers equation with those given in the paper

[99]. Approximate solutions of this problem illustrate the propagation of shock for

λ = 5E − 03,5E − 04, 5E − 05 and λ = 5E − 06 at various values of the time and

space steps. Figures 6.16a and 6.16b show the shock for the viscosity λ as 5E − 04

and 5E−03, respectively. From these figures, we have observed the initial shocks are

of sharp behaviour and, this steepness continues during time progression. In the same

figures, the agreement between the numerical and the exact solutions appears satisfac-

torily. So that, the behaviours of the problem are in very good agreement for different

kinematic viscosities. They also keep the correct physical characteristics of the cur-

rent problem. Figures 6.17a and 6.17b provide that the produced solutions become
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sharper, than the previous ones, with various kinematic viscosity values λ = 5E − 05

and λ= 5E−06, respectively. Here, we have concluded that the steepness remains al-

most unchanged as the time progresses. The same figures also show the effectiveness

of the current scheme with small kinematic viscosity. In Table 6.12, we present e∞
errors at various values of x , t for various time and spatial increments and, compare

with some works presented in the literature. We have seen that the numerical solu-

tions are observed to be very close to the exact solution. And also, the comparisons

presented that the current method offers better results than the numerical schemes

considered by the literature [99]. The physical behavior of the current problem at

various λ values are depicted in Figure 6.18.

(a) λ= 5E − 04 (b) λ= 5E − 03

Figure 6.16 Numerical and exact solutions of Example 7 at different times
produced for the various parameters

Table 6.12 Comparison of the present results with the literature for
λ= 5E − 04, ∆t = 1E − 02 and h= 5E − 03

x t Ref. [99] Present Method Exact
0.1 1.7 0.058830 0.058821 0.058820
0.3 1.7 0.176480 0.176472 0.176470
0.5 2.5 0.200010 0.200004 0.200000
0.7 3.25 0.215390 0.215380 0.215380
0.9 3.25 0.123580 0.124354 0.124350
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(a) CFL=1.4E − 03, λ= 5E − 05, ∆t = 1.1E − 04

(b) CFL=1.4E − 02, λ= 5E − 06, ∆t = 1.1E − 02

Figure 6.17 Numerical and exact solutions of Example 7 at t = 1.5

(a) CFL=1.1E − 02, λ= 5E − 03 (b) CFL=1.4E − 02, λ= 5E − 06

Figure 6.18 Physical behavior of the computed solution for Example 7 at
various λ values
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Example 8

The exact solution for the problem (4.55) is [114]

u(x , t) = 2πv

∑∞
j=1 ja jsin( jπx)e− j2π2vt

a0 + 2
∑∞

j=1 a jcos( jπx)e− j2π2vt
,

where

a j =

∫ 1

0

e−(2πv)−1(1−cos(πv))cos( jπx)d x for all j ≥ 1.

The initial and boundary conditions for this example are

u(0, t) = u(1, t) = 0 and u(x , 0) = sin(πx) (x , t) ∈ Ω= [0, 1]× [0, T].

The produced results together with exact solutions are documented in Tables 6.13 and

6.14. It is seen that the agreement between the exact and numerical solutions appear

satisfactorily. In the same tables, we compare between the proposed scheme and some

previous works [188, 99]. Figure 6.19 provides the physical behavior of the various λ

values for various CFL conditions. Here, we have observed that the physical behavior

of this problem cannot be kept for λ < 1E − 03. The current scheme exhibits more

accurate results than the rival methods. The approximation solutions are visualized

at various values of the parameters λ, ∆t and CFL in Figures 6.20a, 6.20b and 6.20c.

The initial shock is very steep λ= 1E − 02. Here, it can be observed that the discrete

results are found to be in very good agreement with the exact solution. The exact

values are not practical to make comparison for the small values of λ because of slow

convergence of the Fourier series result.

Table 6.13 Comparison of the present results with the literature for λ= 1,
∆t = 1E − 04 and h= 1E − 01

x Ref. [188] Ref. [99] Present Method Exact
0.1 0.10831 0.10898 0.10818 0.10954
0.2 0.20724 0.20862 0.20709 0.20979
0.3 0.28799 0.29013 0.28788 0.29190
0.4 0.34273 0.34564 0.34273 0.37158
0.5 0.36531 0.36895 0.36551 0.35905
0.6 0.35223 0.35633 0.35266 0.30991
0.7 0.30400 0.30748 0.30396 0.30991
0.8 0.22358 0.22606 0.22318 0.12069
0.9 0.11860 0.11988 0.11813 0.12069
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Table 6.14 Comparison of the present results with the literature for λ= 1,
∆t = 1E − 04 and h= 5E − 02

x Ref. [188] Ref. [99] Present Method Exact
0.1 0.10920 0.10937 0.10914 0.10954
0.2 0.20912 0.20946 0.20900 0.20979
0.3 0.29088 0.29140 0.29071 0.29190
0.4 0.34658 0.34728 0.34639 0.34792
0.5 0.36997 0.37083 0.36979 0.37158
0.6 0.35740 0.35826 0.35716 0.35905
0.7 0.30847 0.30917 0.30814 0.30991
0.8 0.22676 0.22725 0.22644 0.22782
0.9 0.12012 0.12038 0.11992 0.12069

(a) CFL=1.1E − 02, λ= 1E − 03

(b) CFL=1.4E − 02, λ= 1E − 04

Figure 6.19 Physical behavior of the computed solution for Example 8 at
various values of λ and CFL
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(a) λ= 1E − 02, ∆t = 1E − 03, and
CFL=4E − 03

(b) λ= 1E − 01, ∆t = 1E − 03 and
CFL=4E − 02

(c) λ= 1, ∆t = 1E − 03 and
CFL=4E − 01

Figure 6.20 Numerical and exact solutions of Example 8 at t = 5E − 01 for
various values of the parameters

6.2 Numerical Results of Synchronization of Identical

and Nonidentical Chaotic Systems

Various numerical simulations are performed to verify the effectiveness of the pro-

posed control function. We provide the problem of GS of identical and nonidentical

systems with various dimension spaces. The interval time [t0, T] is dividing into N

subintervals [tn, tn+1] with tn = t0+n∆t with n= 0, · · · , N ∆t =
T − t0

N
. Let xn and

yn present the approximation of the vectors x(tn) and y(tn), respectively. To measure

the accuracy of the proposed methods, the relative error Re defined by

tn 7−→ Re(tn) =

√

√

√

√

√

√

√

√

√

N
∑

n=0

‖yn − Υ (xn)‖2

N
∑

n=0

‖Υ (xn)‖2

, (6.22)
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and the partial relative error function re defined by

tn 7−→ re(tn) =
‖yn − Υ (xn)‖
‖Υ (xn)‖

. (6.23)

The globally generalized synchronization with respect to control function Υ is also

confirmed by the following simulation results.

Example 9

In this example, we propose the GS of identical systems with spatial dimension n =
m= 4 concerning the Memristor chaotic systems (4.65)-(4.67) with initial conditions

x(0) = (1, 1,1, 1)T and y(0) = (10, 20,50, 20)T , respectively. The interval time is

[t0, T] = [0, 20] with N = 50000. The orbit states of the Memristor system (4.65) has

a chaotic attractor portrayed for the parameter values fixed as ι1 = 4, ι2 = 1, ι3 = 0.65,

ρ1 = 0.2 and ρ2 = 10, as shown in Figure 6.21. Figure 6.22 provides the relative

error given by (6.22). The relative error re represented by (6.23) is in Figure 6.23,

and it illustrates the behavior of the error, properly. Figure 6.24 depicts the behaviour

between various components of the systems for different values of parameter k2. The

synchronization is seen when k2 becomes the larger and larger. We observe that the

error decreases as k2 increases for the synchronizational motion of the chaotic system

(4.67).

(a) (b)

Figure 6.21 Chaotic attractors of system ( 4.65)
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Figure 6.22 Behaviour of the relative error Re(tn)

Figure 6.23 Behaviour of the relative error re(tn)

Example 10

In this problem, the proposed method is applied to synchronizational behaviour of two

identical HR neuron systems (4.68). We focus on the GS of two well defined chaotic

systems in which the control method can be applied to the drive-response synchro-

nization of the HR neurons. The time interval is taken to be [t0, T] = [0, 200]. The

chaotic Bursting system (4.68) exhibits a well defined chaotic attractor with constant

values: ι4 = 3; ι5 = 5; ι6 = 4; C33 = −8/5; ρ3 = 3.25 and ι7 = 0.005, and the initial

conditions x(0) = (−0.54,−1,3) and y(0) = (0.54,1,−3) of the drive and response

systems respectively as shown in Figure 6.25. The hypothesis of Theorem 3.3 are

confirmed and we have the synchronization analysis between the drive and response

systems. The results are also confirmed by various simulations for a coupling strength

k2 which is small enough. The relative error re (6.23) is presented in Figure 6.26. We

demonstrate that the convergence of the relative error converges to zero. Figure 6.27

presents the time series of component x1 from the drive system and component y1

from the response system.
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Figure 6.24 Time series for x i(t), yi(t)(i = 1, 2,3, 4) at various values of the
coupling constant k2 = 0, 0.5, 1.5
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(a) (b)

Figure 6.25 Chaotic bursting of neuronal system

Figure 6.26 Behaviour of the relative error re(tn)

Figure 6.27 Synchronization between two identical HR neurons systems:
amplitudes y1 according x1 at various coupling strengths k2 = 0, 0.1, 0.2
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Example 11

In this example, the GS is applied to study synchronization motions of two identical

(4.70). The chaotic attractor (4.70) displays at parameter values: ι8 = 0.000005;

ι9 = 0.00009; ι10 = 10000 and ι11 = 0.5, and the initial condition x(0) = (0, 0) as

shown in Figure 6.28. In this figure, one obtains the chaotic attractors by choosing

the sufficiently best parameter values in problem (4.70).

(a) (b)

Figure 6.28 Chaotic modeling of the BZ reaction

The time interval is taken to be [t0, T] = [0, 1.5]. Notice that the theoretical re-

sults of Theorem 3.3 is also satisfied by the numerical results, and we illustrate the

behaviour of the GS by using a small value of the coupling strength k2. Also, suc-

cesses in designing of coupled control functions have the fast GS in the mechanistic

understanding of these often complex reactions. In Figure 6.30, we conclude that

the drive system is synchronized with the response system for the coupling strengths

k2 ≥ 0.013. The graph of the relative error re(tn) (6.23) is illustrated in Figure 6.29

and it figures out that the convergence of the results has currently been satisfied.

Figure 6.29 Behaviour of the relative error re(tn)
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Figure 6.30 Synchronization between two identical BZ reaction systems:
amplitudes y1 according x1 at various values of the coupling strengths

k2 = 0.001, 0.01, 0.013

Example 12

Here, the current approaches are applied to investigate the GS behaviour of two non

identical chaotic systems (4.72) and (4.73) in both cases of n< m and n> m. One

can obtain that the Lyapunov exponents are positive, and showing that the famous

Lorenz and Rössler systems exhibit the chaotic attractor with the parameter values

ι12 = 10, ι13 = 8/3, ι14 = 28, ι15 = 0.25, ι16 = 3, ι17 = 0.5 and ι18 = 0.05. The

initial conditions are x(0) = (10,10, 10)T and y(0) = (1, 1, 1, 1)T , respectively; in the

time interval [t0, T] = [0,20] with N = 50000 (see Figuer 6.31). Notice that the

theoretical results of Theorem 3.4 are also satisfied by the approximate results, and

we catch the synchronization by using the large value of the coupling strength k2. In

Figure 6.32, we obtain that the drive system is synchronized with the response system

for the coupling k2 ≥ 7.58. The graph of the relative error re (6.23) is represented in

Figure 6.33 and it finds out the convergence of the currently results computed. The

same systems were also studied in references [13, 134, 198].
In the second case for n > m, we consider the Rössler system as the drive,

and making the Lorenz system as the response. In our simulation, we set the cou-

pling k2 = 0.5, while the initial conditions are given: x(0) = (−5,−5,10, 10)T and

y(0) = (10, 10,10)T and the time interval is taken to be [t0, T] = [0, 2500]. Fig-

ure 6.34 represents that the error state converges to zero, in this case; we confirmed

the Theorem 3.3 to estimate the small coupling strength. The designed controller

functions, the drive and response system are well synchronized.
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(a) (b)

Figure 6.31 Chaotic attractor of the Lorenz and Rössler systems

Figure 6.32 Time series for x i(t), yi(t)(i = 1, 2, 3, 4) at various values of the
coupling constant k2 = 7.58, 10, 20
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Figure 6.33 Behaviour of the relative error re(tn)

Figure 6.34 Error state (e1, e2, e3)

6.3 Numerical Solutions of Coupled ADR Equations

In this section, we investigate the accuracy of the BDFS method governed by the non-

linear coupled Burgers equations with source functions. We consider the discrete ap-

proximation of u1(x , t) and u2(x , t) by s1,h and s2,h. Here, the BDFS solutions are not

presented only at the grid points but also at optional points in the solution domain.

To measure the accuracy of the proposed scheme, the relative error L∞(k) defined by

k −→ L∞(k) = ‖W− Sk‖∞ = max
0≤n≤2N

�

max
0≤i≤2k

|W(x ′i , t2n)− S(x ′i)|
�

, (6.24)
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where the vector functionW( . , t2n) =

�

u1( . , tn)
u2( . , tn)

�

is approximated by the vector func-

tion S(x2n, .) =

�

bsn,1h

bsn,2h

�

.

Example 13

We set the parameters λ2 = λ4 = −2 and γ1 = γ2 = 1 in equation (4.19) leads to

∂ u1

∂ t
−λ1

∂ 2u1

∂ x2
− 2u1

∂ u1

∂ x
+ (u1u2)x = f2(x , t),

∂ u2

∂ t
−λ3

∂ 2u2

∂ x2
− 2u2

∂ u2

∂ x
+ (u1u2)x = f3(x , t).

(6.25)

The initial and boundary conditions are taken from the exact solution, where exact

solution of equation (6.25) is given by [123]

¨

u1(x , t) = e−tsin(x) x ∈ [−3,3], t > 0,

u2(x , t) = e−tsin(x).
(6.26)

Numerical solutions have been produced by taking time steps ∆t = 0.001 for the val-

ues of the parameters λ1 = λ3 = 1, 0.05 and 0.005, respectively. In this problem,

the source functions are free. In Table 6.15, absolute errors for the computation are

calculated and compared with the literature [140, 204]. From the tabulated results,

it can be noted that, the BDFS methods have been seen to be accurate in comparison

with the exact solution and the available literature. The absolute errors are docu-

mented in Table 6.16 for small values of the viscosity. Here, it is concluded that the

presented scheme appears very satisfactory for low viscosity, while it is not the case

in the corresponding literature. Figure 6.35 shows the numerical and exact solutions

of u1(x , t) and u2(x , t) with ∆t = 0.01 at t = 1. Here, it can be deduced that there is

an excellent agreement between the numerical and exact solutions. Behavior of the

solutions are presented in Figure 6.36. It can be seen that, the proposed scheme is in

very good agreement with the exact one and exhibits physical characteristics of the

problem correctly.
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Table 6.15 Absolute errors at various time values for u1(x , t) with ∆t = 0.001
in Example 13

Errors t BDFS Ref. [140] Ref. [204]

L2

0.1 3.45E − 08 5.30E − 05 2.05E − 06
0.5 4.09E − 07 2.67E − 04 1.02E − 05
1 1.43E − 07 5.38E − 04 2.04E − 05

L∞
0.1 2.15E − 08 4.08E − 05 1.86E − 06
0.5 4.00E − 07 1.62E − 04 6.22E − 06
1 1.20E − 07 1.98E − 04 7.56E − 06

Table 6.16 Absolute errors for u1(x , t) at ∆t = 0.001 in Example 13

Errors t λ1 = λ3 = 0.05 λ1 = λ3 = 0.005

L2

0.1 5.22E − 06 2.02E − 03
0.5 1.01E − 04 4.61E − 02
0.9 1.13E − 03 7.19E − 02

L∞
0.1 5.21E − 05 4.91E − 03
0.5 1.25E − 03 9.85E − 02
0.9 2.01E − 03 9.71E − 02

(a) (b)

Figure 6.35 Computed solutions for (a) u1(x , t) and (b) u2(x , t) of Example 13
at t = 1 with λ1 = λ3 = 0.05

Example 14

Consideration of the parameters λ1 = λ3 = 1 and λ2 = λ4 = 2, in equation (4.19)

gives

∂ u1

∂ t
−
∂ 2u1

∂ x2
+ 2u1

∂ u1

∂ x
+ γ1(u1u2)x = f2(x , t),

∂ u2

∂ t
−
∂ 2u2

∂ x2
+ 2u2

∂ u2

∂ x
+ γ2(u1u2)x = f3(x , t).

(6.27)

The exact solution is given by
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(a) (b)

Figure 6.36 Computed solutions of Example 13 for u1(x , t) with ∆t = 0.001 for
λ1 = λ3 = 0.05



















u1(x , t) = a1

�

1− 2a2

�

2γ1 − 1
4γ1γ2 − 1

��

tanh (a2(x − 2a2 t)) ,

u2(x , t) = a1

��

2γ2 − 1
2γ1 − 1

�

− 2a2

�

2γ1 − 1
4γ1γ2 − 1

��

tanh (a2(x − 2a2 t)) ,

(6.28)

where a2 = a1
4γ1γ2 − 1
4γ1 − 2

and a1, γ1, γ2 are arbitrary constants. The initial and bound-

ary conditions are taken from the exact solution. The source functions are neglected

in this example. Numerical solutions of this problem are obtained for the domain

(x , t) ∈ [−10, 10] with various values of γ1 and γ2. The BDFS solutions have been

computed and compared with the exact solution in Table 6.17 at different time levels

where t > 0. It can be seen that, the BDFS is more accurate than those available in

the literature [140, 204]. In Figure 6.37, we present the numerical and exact solu-

tions of u1(x , t). Here, it can be noted that the BDFS results show excellent agreement

with the exact solution. We have depicted the behavior of the solution u1(x , t) in Fig-

ure 6.38. In conclusion, we can see that the theoretical results on the convergence are

confirmed by the numerical counterparts.

Table 6.17 The errors at various time values for u1(x , t) at ∆t = 1E − 03

Errors t γ1 γ2 BDFS Ref. [140] Ref. [204]

L2 0.5
1E-01 3E-01 4.879E − 07 6.631E − 04 6.736E − 04
3E-01 3E-02 6.060E − 07 6.903E − 04 7.326E − 04

L∞ 1
1E-01 3E-01 5.455E − 08 8.151E − 05 8.258E − 05
3E-01 3E-02 9.142E − 08 8.541E − 05 9.182E − 05
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Figure 6.37 Computed solutions of Example 14 for u1(x , t) with t = 0.5 and
γ1 = γ2 = 0.01

(a) (b)

Figure 6.38 Computed solutions of Example 14 for u1(x , t) with ∆t = 0.01 for
γ1 = γ2 = 0.01

Example 15

Here, we consider the nonlinear coupled Burgers equation (4.19) with free source

functions given by

∂ u1

∂ t
−λ1

∂ 2u1

∂ x2
+ 2u1

∂ u1

∂ x
+ γ1(u1u2)x = f2(x , t),

∂ u2

∂ t
−λ3

∂ 2u2

∂ x2
+ 2u2

∂ u2

∂ x
+ γ2(u1u2)x = f3(x , t).

(6.29)

The exact solution of equation (6.29) is given by [204]

¨

u1(x , t) = e−tsin(x) x ∈ [1, 4], t > 0,

u2(x , t) = cos(t)cos(x).
(6.30)

This problem is solved for various selections of λ1 , λ3, γ1 and γ2 at different time

levels. Absolute errors for u2(x , t) have been calculated and compared with some
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previous works in Table 6.18. Here, it can be observed that, the errors obtained by the

BDFS scheme are quite small and furthermore, better than most of available methods

in the literature. In Table 6.19, the accuracy of the proposed schemes is examined by

computing the errors for small values of the viscosity. It can be deduced that, the BDFS

results are in good agreement with the exact solutions. Behavior of the BDFS solutions

for u1(x , t) and u2(x , t) and exact solutions are exhibited in Figure 6.39. The results

are illustrated in a qualitative way in Figure 6.40. It reveals that the BDFS solutions

are highly accurate and very close to the exact solutions.

Table 6.18 The errors at various times for u2(x , t) with ∆t = 1E − 03,
λ1 = λ3 = 2

Errors t γ1 γ2 BDFS Ref. [140] Ref. [204]

L2 0.5
1E-01 3E-01 1.300E − 06 4.890E − 04 9.057E − 04
3E-01 3E-02 4.356E − 06 7.056E − 04 1.591E − 04

L∞ 1
1E-01 3E-01 9.005E − 07 4.113E − 05 4.770E − 05
3E-01 3E-02 9.789E − 07 9.779E − 05 3.617E − 05

(a) (b)

(c) (d)

Figure 6.39 Computed solutions of Example 15 with u1(x , t) and u2(x , t) for
λ1 = λ3 = 0.001, ∆t = 0.001
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Table 6.19 The errors at various time values with ∆t = 0.005, λ1 = λ3 = 0.001

Errors t BDFS

L2
0.5 2.23E − 04
0.9 1.03E − 04

L∞
0.5 3.46E − 03
0.9 1.99E − 02

(a) (b)

Figure 6.40 Comparison between the BDFS and exact solutions (a) u1(x , t) and
(b) u2(x , t) for Example 15 with t = 0.7, λ1 = λ3 = 0.001

Example 16

Consider the nonlinear coupled Burgers equation with source functions, namely

∂ u1

∂ t
−λ1

∂ 2u1

∂ x2
+ 2u1

∂ u1

∂ x
+ γ1(u1u2)x = f2(x , t),

∂ u2

∂ t
−λ3

∂ 2u2

∂ x2
+ 2u2

∂ u2

∂ x
+ γ2(u1u2)x = f3(x , t).

(6.31)

in the domain [0, 1]× [t0, T] with the boundary and initial conditions, given by











u1(x , 0) = ex , u2(x , 0) = x2 + 1,

u1(0, t) = 1+ t2, u2(0, t) = et ,

u1(1, t) = e+ t2 u2(1, t) = 1+ et .

(6.32)

The source functions are taken to be

f2(x , t) = 2t −λ1ex + 2ex(ex + t2) + 2γ1 xex ,

f3(x , t) = et − 2λ3 + 4x(x2 + et) + 2γ2 xex ,

such that the exact solutions are

u1(x , t) = ex + t2, and u2(x , t) = x2 + t2. (6.33)
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The comparison between the numerical and exact solutions for various time values

are shown in Figure 6.41. In these figures, we can see that, the numerical and exact

solutions are in good agreement. Behaviour of the problem has been explained in a

comparative way in Figure 6.42 for u1(x , t). The numerical solutions are seen to be

good agreement with the exact ones. In Table 6.20, accuracy of the proposed schemes

is examined by computing the errors for∆t = 0.001 with λ1 = λ3 = 1. The errors are

presented in Tables 6.21-6.22 for u2(x , t) for different time values with ∆t = 1E − 4,

λ1 = λ3 = 0.1. It can be seen that, the theoretical convergence and the computational

errors are found to be in good agreement. In conclusion, the BDFS is seen to be a very

good choice for solving the nonlinear coupled Burgers equations with source functions.

(a) (b)

Figure 6.41 Computed solutions of Example 16 for (a) u1(x , t) and (b) u2(x , t)
with t = 1.5, λ1 = λ3 = 1

(a) (b)

Figure 6.42 Computed solutions of Example 16 for u2(x , t) with t ≥ 1,
∆t = 0.001 over [1, 2]

109



Table 6.20 Absolute errors of Example 16 for u1(x , t) at various time values
with ∆t = 0.001, λ1 = λ3 = 1

Errors t BDFS

L2
1.1 4.01E − 05
1.9 3.03E − 05

L∞
1.1 3.06E − 04
1.9 3.99E − 03

Table 6.21 Absolute errors for u2(x , t) at ∆t = 1E − 4 and λ1 = λ3 = 0.1 over
[1,2] in Example 16

Errors t BDFS

L2
1.1 6.01E − 05
1.9 7.07E − 03

L∞
1.1 8.01E − 04
1.9 5.99E − 03

Table 6.22 Absolute errors for u2(x , t) at ∆t = 1E − 4, λ1 = λ3 = 0.001 over
[1, 10] in Example 16

Errors t BDFS

L2
1.5 2.41E − 03
9 4.48E − 02

L∞
1.5 6.61E − 02
9 2.69E − 02

6.4 Simulation Results of Synchronization of the Non-

linear ADR Processes

In this section, a numerical example illustrating the accuracy of the present approach

is given. The solution domain [a, b] is disretized using the equally spaced points.

In order to explain the synchronization of the driver and the response (4.74)-(4.76)

equations, the error norm is given by

lim
t→∞
‖L∞‖= lim

t→∞
‖V− Sk‖= lim

t→∞

�

max
0≤n≤2N

�

max
0≤i≤2q

|V(x ′i , t2n)− S(x ′i)|
��

. (6.34)

The vector function V( . , t2n) =

�

u1( . , tn)
u2( . , tn)

�

is approximated by the vector function

S(x2n, .) =

�

bsn,1h

bsn,2h

�

.
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Example 17

In this example, the parameters are set as: λ1 = λ3 = 0.00001 and λ2 = λ4 = 1.

The initial and boundary conditions are obtained from the exact solution. The exact

solution of equation (4.74) are represented by the velocity u1 and the temperature u2

as given by

u1(x , t) = e−t(x −
x2

2
),

u2(x , t) = x(1− x).

The source functions are taken to be

f1(x , t) = e−t
�

−x +
x2

2
+λ1 +λ2

�

x −
x2

2
(1− x)

�

− k2(x(1− x))
�

,

f2(x , t) = 2λ4e−t
�

x −
x2

2

�

.

The computational domain for this problem is [0, 1]×[1, T]. Various cases for lim
t→∞
‖.‖

are given at various values of k2 and t in Table 6.23. Full synchronization of the pro-

posed coupled model has been observed for k2 ≥ 0.24. As shown in the simulation,

the synchronizational behaviour in the fluid that occurs with decreasing viscosity con-

stant. We can see that the chaotic behaviour and instability situations of the nonlinear

coupled equations with forcing function in Figure 6.43. As can be seen, the synchro-

nization is observed in Figure 6.44 when k2 becomes larger with small value of the

viscosity coefficient. The results are also confirmed by the simulations for a nonlinear

coupling ADR model.
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Table 6.23 Absolute errors for u2(x , t) at various time and k2 values for
∆t = 0.001 and λ1 = λ3 = 0.00001

lim
t→∞
‖.‖ t k2 BDFS

L∞

1

0.01

4.01E − 05
2 1.04E − 01

3.5 3.02E − 03
5 4.44E − 02
7 4.01E − 03

10 6.98E − 02
lim

t→∞
‖.‖ t k2 BDFS

L∞

1

0.24

4.01E − 05
2 3.03E − 09

3.5 2.22E − 08
5 1.66E − 08
7 6.09E − 07

10 3.77E − 09

(a) (b)

(c) (d)

Figure 6.43 Chaotic attractors for the nonlinear coupling in the temperature
field at k2 = 0, 0.0001, 0.005, 0.01
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.44 Nonlinear coupling with the driver for k2 = 0.001, 0.01, 0.1, 0.16,
0.24113



7
RESULTS AND DISCUSSION

The motivation for this research is to investigate the synchronization, stabilization,

convergence in capturing numerical solutions of the nonlinear ADR processes and

some chaotic problems. With keeping real features of nature, reducing the com-

putational cost and also without requirement of extra storage space, the BDFS and

SSPRK54S methods have been proposed to numerically capture the behaviour of phys-

ical environment represented by the nonlinear ADR equations with forcing terms. It

should be pointed out that the schemes lead to an ordinary differential equation with-

out using any transformation for the given model. Since the linearization of the sys-

tems loses their real features, the proposed schemes have been shown to be effec-

tively applicable to such problems in terms of numerical and theoretical results. The

produced results revealed that the proposed approach is a rapidly convergent and a

reliable alternative in solving the nonlinear ADR equation with also source functions.

Notice that the current methods have been figured out to be more effective than the

literature for the problem of interest. The computed results have revealed that the

BDFS method is more accurate and computationally more economical in compari-

son with the SPRK54S method. The BDFS method has also been realized to be more

reliable than the SSPRK54S, even a very important alternative for the research soci-

ety, in analysing the problem by conserving the physical properties of nature. The

results showed that the BDFS scheme is relatively free of choice of the physical pa-

rameters. Yet, we have explored the utility of a combined scheme based on modified

cubic B-spline basis functions in space with the SSPRK54 scheme in time for solving

the ADR equation. The results have been computed without using any linearization

or transformation. The produced results show that the proposed scheme is efficient

and reliable for solving these models for quite small values of the viscosity constant.

The instabilities observed for the interaction between reaction, convection and diffu-

sion mechanisms, since the ADR equations are highly nonlinear models. Many chaotic

behaviors characterized by instability and limited predictability in time. Thus, the rel-

ative importance of chaotic advection and diffusion in nonlinear ADR processes can

be connected with the GS dynamics of nonlinear models.
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The synchronization problems of coupled chaotic identical and nonidentical mod-

els has also been studied. Next aim of this thesis is to study coupled systems that do

not have mutual feedback but they were organized as a drive system and a response

system through some communication channels between them. We have also discussed

the asymptotic stability by considering various coupling strengths and a new response

system proposed in each case of the present methods are given as: First, we have pro-

posed that this phenomenon of chaotic synchronism may construct a response system

via the Lyapunov stability to carry out the generalized synchronization with the de-

rive system for a given smooth invertible function. We have then considered a new

hypothesis from the nonlinear part of the response system under some sufficient con-

ditions which showed that the global generalized synchronization between chaotic

systems. The methods may be implemented directly in any numerical simulations for

synchronization of chaotic systems with different dimensions and have the fast syn-

chronization speed. Numerical results have also illustrated the effectiveness of the

proposed approaches. Thus, synchronization of two models generally means that one

model somehow follows the motion of another. As a result, let us recall that syn-

chronization is observed that even chaotic problems could synchronize when they are

coupled. In this work, some numerical analysis of the nonlinear physical phenomena

without losing their natural properties and by reducing the computational difficulties

on capturing numerical behavior of nature governed by the nonlinear coupled ADR

equations have been done. With keeping real features of nature and also reducing the

computational cost and without requirement extra storage space, the BDFS method

has been proposed to numerically capture the behaviour of physical environment rep-

resented by the nonlinear coupled ADR equation with forcing terms. Under these

natural circumstances, the proposed scheme has been shown to be effectively appli-

cable to such problems. The current results revealed that the proposed approach is

a rapidly convergent and a reliable alternative in solving the nonlinear coupled ADR

equation with source functions. As a further contribution of this thesis, the dynamical

and GS of two dependent chaotic nonlinear ADR processes with forcing terms, which

unidirectionally coupled in the driver-response configuration, by combining the BDFS

scheme with the Lyapunov method, the GS has been studied for designing a control

function of the coupled nonlinear ADR equations. Since the nonlinear coupled ADR

model cannot synchronize itself, some control functions should be designed and ap-

plied to synchronize such problems. In the investigation of the real-world processes

without losing their natural properties, this article has addressed the GS behaviour

defined by the nonlinear coupled ADR equations, by combing the BDFS and Lyapunov

methods. In the current method, it has been importantly concluded that the nonlinear

coupled ADR model can be synchronized under the consideration of a proposed con-

trol function. As a result, from the produced numerical simulation, the temperature
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drives the velocity field and the velocity field provides the advection term at very small

viscosity value. Further work addresses in detail the improvement of a combination

of the classical 2D cubic B-splines and natural splines in space. This scheme appears

to be an interesting approach for the approximations of 2D nonlinear ADR problems.

Since, without any linearization, the given problem through the BDFS scheme is con-

verted to a system of nonlinear and linear equations. To conclude, we have observed

the following results:

• Without requiring differentiability of the initial and boundary functions, we have

obtained the numerical solution of the nonlinear ADR problems,

• By using equally spaced points, the produced solutions have not only been ob-

tained at the grid points but also at optional points for various choices of grid

sizes and time steps.

• The computed results have been computed without using either any lineariza-

tion or transforming the model,

• The BDF scheme has been implemented using the Newton and Thomas algo-

rithms to solve the nonlinear and linear parts of the resulting system at each

iteration respectively,

• With keeping real features of nature, all of the current schemes illustrated the

behaviour of shock behaviours,

• The results showed that the proposed schemes have relatively been free of choice

of the physical parameters,

• The current methods have been figured out to be more effective than the litera-

ture for the problem of interest,

• The designed controllers enabled the state variables of the response system to

globally synchronize the state variables of the driver system in current problems,

• Some control functions have been designed and applied to synchronize such

coupled ADR chaotic problems,

• It has been concluded that the nonlinear coupled ADR chaotic model can be

synchronized under the consideration of a proposed control function at a very

small viscosity value.

Open problems and some recommendations are presented as follows:

» By considering the proposed schemes, the numerical solution of the nonlinear

ADR problems involving Neumann or Robin boundary conditions can be inves-

tigated.
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» The chaotic network and the phenomena of synchronization in the network of

the nonlinear ADR equations can be studied.

» Synchronization of the 2D nonlinear ADR problems can be investigated.
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