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ABSTRACT

MATHEMATICAL MODELING TO PREDICT THE ANEMIA
BASED ON MEDICAL DATA

Arshed A. AHMAD

Department of Mathematics

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Murat SARI

Different diseases and diagnostic methods using various tests produced large amounts
of complex medical data. Therefore, huge number of patient records in clinical cen-
ters, hospitals, and other health institutions have created the need for developed and
accurate medical applications to help doctors. Since anemia is one of the most com-
mon health problems in recent era, the aim of this thesis is to predict anemia from a
population through biomedical variables of individuals (the blood variables, age, and
sex) and the anemia types using the currently produced mathematical models. This
work is carried out using the dataset consisting of 539 subjects provided from blood
laboratories. This thesis basically focuses on mathematical modeling to predict the
anemia problem based on medical data. The main problems associated with medi-
cal diagnose involve the identification of highly accurate prediction models. For the
first step, a mathematical method based on multiple linear regression (MLR) analysis
has been applied to a reliable model that investigate if there exists a relation between
the anemia and the biomedical variables and to provide the more realistic one. For
the second step, a multiple nonlinear regression analysis has been used for a reliable
model that research if there exists a mathematical relation between the observational
variables and the anemia types. The parameter values produced are all seen to be
the optimum values obtained from the multiple regression approaches, to provide the
more realistic one. At the last step, optimum medical models based on biomedical
variables are produced and an effective technique is used in investigating the opti-
mum parameters of the models. To achieve this, the particle swarm optimization
(PSO) algorithm has effectively been applied in predicting the parameters of the mod-

XV



els through the biomedical variables. Optimum values of the parameters produced
from the PSO algorithm are used here to obtain more realistic models. The current
models have been compared with the other ones and the results have been seen to be
better. The models based on the variables and outcomes are expected to serve as a
good indicator of disease diagnosis for health providers and planning treatment sched-
ules for their patients. Thus, the study has been seen to be beneficial especially for
those are interested in biomedical models arising in various fields of medical science,
especially anemia.

Keywords: Anemia, Medical modelling, Mathematical modelling, Regression model,
Particle swarm optimization, Nonlinear model.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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OZET

TIBBI VERILERE DAYALI ANEMIYI TAHMIN ETMEK
ICIN MATEMATIKSEL MODELLEME

Arshed A. AHMAD

Matematik Bolumi

Doktora Tezi

Danisman: Prof. Dr. Murat SARI

Birden fazla test kullanan farkli hastaliklar ve tan1 yontemleri biiyiik miktarlarda kar-
masik tibbi veriler {iretmistir. Bu nedenle, klinik merkezler, hastaneler ve diger saglik
kurumlarindaki ¢ok sayida hasta kaydi, hastanin kritik durumda olup olmadigina
bakilmaksizin veya uzaktan takip gerektirmeksizin doktorlarin ve terapistlerin vakalar:
arastirmasina yardimci olmak i¢in gelismis ve dogru tibbi uygulamalara ihtiya¢ duy-
mustur. Anemi giiniimiizde en sik rastlanan saglik sorunlarindan biri oldugundan,
bu tezin amaci bireylerin biyomedikal degiskenlerini (kan degiskenleri, yas ve cin-
siyet) kullanarak anemi olup olmadiklarini bulmak ve halihazirda {iretilen matem-
atiksel modelleri kullanarak anemi tiirtinii tahmin etmektir. Bu ¢alisma, kan laboratu-
varlarindan saglanan 539 denekten olusan veri ile gerceklestirilmistir. Bu tez, temel
olarak tibbi verilere dayali anemi problemini tahmin etmek icin matematiksel mod-
ellemeye odaklanmaktadir. Tibbi teshislerle iligkili temel problemler, dogru tahmin
modellerinin tanimlanmasini icerir. Ilk adim icin, anemi ve biyomedikal degiskenler
arasinda bir iligki olup olmadigini arastiran ve daha gercekg¢i olani saglayan giivenilir
bir model icin coklu dogrusal regresyon analizine dayanan bir matematiksel yontem
uygulanmustir. ikinci adim icin, gdzlemsel degiskenler ve anemi tiirleri arasinda bir
iliski olup olmadigini arastiran giivenilir bir model icin dogrusal olmayan ¢oklu re-
gresyon analizi yontemi kullanilmistir. Uretilen parametre degerlerinin hepsinin, daha
gercekci olani saglamak icin coklu regresyon yaklasimlarindan elde edilen optimum
degerler oldugu goriilmektedir. Son adimda, biyomedikal degiskenlere dayanan op-
timum dogrusal tibbi model iiretilir ve modelin optimum parametrelerinin arastiril-
masinda etkili bir teknik kullanilir. Bunu basarmak icin, parcacik siiriisii optimizasy-
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onu (PSO) algoritmasi, modelin parametrelerini biyomedikal degiskenler araciligiyla
tahmin etmede etkili bir sekilde uygulanmistir. PSO algoritmasindan iiretilen parame-
trelerin optimum degerleri burada daha gercekgi bir model elde etmek icin kullanilir.
Mevcut modeller diger yontemlerle karsilastirildiginda; mevcut sonuclarin daha iyi
oldugu goriilmektedir. Degiskenlere ve sonuclara dayanan modelin, saglik hizmeti
sunanlar acisindan hastalik teshisi icin iyi bir ara¢ ve hastalar icin dogru tedavi plan-
lamasi1 beklenmektedir. Bu nedenle, calismanin 6zellikle tip biliminin bir cok farkl
alaninda ve anemi teshisinde ortaya cikan biyomedikal modellerle ilgilenenler i¢in
yararli olacagi gortilmistiir.

Anahtar Kelimeler: Anemi, Tibbi modelleme, Matematiksel modelleme, Regresyon
modeli, Parcacik siirii optimizasyonu, Dogrusal olmayan model.

YILDIZ TEKNIiK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

INTRODUCTION

This chapter presents an overview of the anemia problems and their solution tech-
niques that have been offered in the literature. Also, the goal of this research and the

hypothesis of the thesis are given respectively.

1.1 The Literature Review

A data model is an abstract model that organizes elements of the data and standardizes
how they relate to each other and to the properties of real-world entities. A data model
is based on data, data relationship, and data constraint. A data model provides the
details of information to be stored and is of basic use when the result is the generation
of algorithm for an application or the preparation of a functional specification to aid
a computer software make decision. Therefore, the study of observational data to dis-
cover their relations and to summarize the behavior of data are both understandable
and useful for human [[1}, 2[].

In recent years, data has occupied great interest in information systems. This is be-
cause existing computers are able to create and store almost unlimited datasets. In
fact, database and information technology have grown systematically from primal file
processing systems to complicated and powerful database systems [3]].

So, a data model focuses on representing the data as a user sees it in the "real world".
It serves as a bridge between the concepts that make up the real-world processes and
the physical representation of those concepts in a database [[3].

Health data is any information related to the physical or mental health conditions of in-
dividuals, reproductive outcomes, causes of death, and quality of life of the individual

or population. Health information includes clinical metrics along with environmental,



social, economic and behavioral information related to health and wellness. A lot of
data is collected, stored, processed and used when individuals interact with healthcare
systems. A large collection of such data collected by health providers may be included
to that. Increased collection data of patients is a major component of digital health.
Thus, medical data refer to health-related information associated with patient care
regularly or as a part of a clinical trial program [4, [5].

Medical diagnosis is considered as a very important issue that requires adequate and
proper implementation, hence, designing accurate models in this area would be very
beneficial in diagnosing process and health providers take advantage of models to
diagnose very complicate cases with a large number of patients in time with prede-
fined diagnosing models based the models. An automatic medical diagnosing model
is possible to be extremely advantageous by bringing the whole materials, tools, and
objectives together in order to make a relation with a diagnosis target.

Medical data analysis and diagnosing diseases as acknowledged discovery is important
but hard missions and naturally is based on years of practice of a professional as seen
in Saez et al. [|6]. As pointed out by Liu et al. [[7], initial medical diagnosis model
from patients’ medical reports in early time has an important meaning for accurate
health treatment.

mathematical model is a relationship that includes all variables of a problem. There-
fore, it is a description of a system that uses mathematical concepts and language. A
model can help to explain a system, to study the effects of different components and to
make predictions about the behavior of a system. This process of repeated iteration is
a typical modelling project and is one of the most useful aspects of modelling in terms
of improving our understanding of how the system works. Note that, a mathematical
model depends on the data model. Thus, a key determinant of the potentiality of a
given model to help in such measures is the availability of data to parameterize the
model. It is therefore important to understand the types of data that are necessary for
a modeling project to be successful.

In mathematical modeling, the values of dependent variables depend on the values
of independent variables. The dependent variables represent the output whose varia-
tion is being studied. The independent variables represent inputs or causes, potential

reasons for variation.



It is helpful to divide up the process of a model into four categories of activity: building,
studying, testing and use.

In general, defects found at the studying and testing stages are corrected by return-
ing to the building stage. Note that if any changes are made to the model, then the
studying and testing stages must be repeated [8]].

A pictorial representation of potential routes through the stages of modelling can be

seen in Figure

Building ——=) Studying ——) Testing —=) Use

Figure 1.1 Process of modelling

The data model focuses on what data is required and how it should be organized rather
than what operations will be performed on the data. A data model is independent of
hardware or software constraints. The data model focuses on representing the data as
the user sees it in the real world, therefore, it serves as a bridge between the concepts
that make up real-world events [8, [9]].

The construction progress of mathematical models considered to produce medical out-
puts is a growing field in medical science. Mathematical models used for various
reasons are important equipments to deal with the behavior of a medical problem.
Mathematical modeling has been realized to be a fundamentally important tool for
the analysis of pathological characteristics. Therefore, finding a response to a medical
model with high performance is of major interest and thus the medical model can de-
scribe the relationship between the biomedical variables and the diseases. Therefore,
the researchers used the mathematical model to predict their problems, especially
their medical problems, such as Sari et al. [[10]] proposed two systems, artificial neu-
ral network, and adaptive neuro-fuzzy inference system, to predict the low back pain
level. A particle swarm optimization (PSO) and K-means clustering algorithm have
been combined to predict tibial rotation pathologies through divided datasets into
three clusters by Sari et al. [[11]]. Also, Sari and Cetiner [[12]] used the artificial neural

networks to predict the effect of physical factors on tibial motion through gender, age,



body mass, and height. Li et al. [[13] studied the prediction of the risks of congen-
ital heart disease in pregnant women by using the artificial neural network through
hospital-based case-control study. Combining the genetic algorithm with the neural
network are predicting the risk of cardiovascular disease by Amma [[14]]. Sisodia and
Sisodia [[15] used three machine learning algorithms, Decision Tree, SVM, and Naive
Bayes to predict diabetes. Also, Zou et al. [[16] adapted the decision tree approach,
random forest, and neural network to predict diabetes mellitus.

Also, various researchers used mathematical models to predict anemia and blood dis-
ease problems, such as Martinez-Martinez et al. [[17]] used machine learning tech-
niques to predict the hemoglobin (HB) level in hemodialysis patients. Reymann et al.
[18] proposed an algorithm to predict blood glucose levels through support vector re-
gression model. Altrock et al. [19]] developed a mathematical model that describes the
aging and survival of sickle susceptible and normal RBCs. Implementations of some
classification algorithms have been seen through various methods in the literature such
as Naive Bayes, Neural network, Decision Tree (J48), and Support Vector Machine to
predict anemia types (chronic anemia, iron deficiency anemia, anemia of renal dis-
ease, thalassemia, and aplastic anemia) through Mean Corpuscular Volume (MCV),
Hematocrit (HCT), HB, Mean Corpuscular Hemoglobin Concentration (MCHC), Red
Cell Distribution Width (RDW) by Abdullah and Al-Asmari [20]. An application of a
multilayer perceptron neural network to estimate missing values and predict the de-
gree of post-operative anemia by Yu et al. [21]]. Two anemia types, iron deficiency,
and thalassemia were investigated with white blood cell (WBC), RBC, HB, HCT, MCV,
mean corpuscular hemoglobin (MCH), MCHC, RDW, and PLT by five classification al-
gorithms and a vote algorithm were used by Hasani and Hanani [22]]. El-Halees and
Shurrab [23]] predicted a blood tumor by using three different methods of data mining
which are association rules, rule induction, and deep learning and through WBC, RBC,
HB, HCT, MCV, MCH, MCHC, RDW, PLT. Two algorithms were examined Hamdi et al.
[24], support vector regression and differential evolution algorithms for prediction of
continuous blood glucose, their algorithm achieved high prediction accuracy. Tetschke
et al. [25] built a mathematical model which has ability to capture the most impor-
tant features to predict of RBC Count after blood loss through HB, HCT, MCH, RBC.

A simple coronary disease prediction model was developed using a gradient boosting



decision tree algorithm by using WBC, RBC, MCHC, HCT, MCV, PLT, HB Meng et al.
[26]]. Jaiswal et al. [27] suggested machine learning algorithms, Naive Bayes, random
forest, and decision tree algorithm for the prediction of anemia disease with HB, RBC,
HCT, MCH, MCV.

Multiple regression analysis (MRA) is a statistical tool that predicts the value of a
dependent variable based on the multi-independent variables. Thus, once the multi-
ple variables related to a dependent variable are determined, any information about
all predictor variables can be realized and used to make more accurate predictions.
Therefore, researchers applied regression techniques to predict anemia and blood dis-
eases by models based on blood variables, such as relating soil lead levels to predict
children’s blood lead levels through a multivariate linear regression model by Lewin et
al. [28]. Prediction of anemia was done by Makh et al. [29] in intrauterine growth by
applying linear regression analysis. Also, Foster et al. [30]] applied the MRA to predict
anemia on unenhanced computed tomography of the thorax through HB, HCT. Vincent
et al. [[31] built a multivariable logistic regression model to find out chemotherapy-
induced anemia in patients with non-advanced cell lung cancer through HB testing.
Also, Schneider et al. [I32]] applied a multiple regression for identifying risk factors
related to anemia and iron deficiency in a sample of children. Lee et al. [33]] used a
simple regression analysis to identify the relationship between HB or HCT level and
dural sinus density. The development of a set of 14 models with a genetic risk score,
a set of these models were used by Milton et al. [I34] to forecast fetal hemoglobin in
patients with sickle cell anemia, the association was tested using a linear regression
model. Determining risk factors for anemia in children depending on the hemoglobin
concentration in the blood were determined Dey and Raheem [35]] using a multilevel
regression model. Building a linear regression model was built by Hsieh et al. [36]
through pulse transit time to predict blood pressure. Chen and Miaou [37]] proposed
an anemia testing approach by applying a Kalman filter and a regression method.
Determinants of childhood anemia was evaluated by Habyarimana et al. [I38]] by ap-
plying the quantile regression model and the test of the HB. Aishah et al. [[39] verified
the relation of fasting blood glucose, cholesterol, and blood pressure levels in healthy
subjects and applied the MLR approach.

The PSO is a randomized, population-based method that helps with optimization prob-



lems. The method works with a set of possible solutions and constraints on an opti-
mization problem. The optimization problem must have a target status then the algo-
rithm runs to solve the problem and provide the best values. Also, it is used on the
mathematical models to find the best parameters for the model. Therefore, researchers
apply the PSO to improve the efficiency of the models that work to predict anemia and
blood diseases. Moreover, the PSO was used to improve the simultaneous selection
of the parameters for the calibration of the model using the support vector regres-
sion method that estimates blood glucose concentrations [[40]]. Back-propagation was
considered the back-propagation neural network at first, then the PSO based back-
propagation networks were applied by Sharma et al. [41]] to diagnose the anemia in
pregnant women. Blood glucose detection was done by Dai et al. [42]] through two
artificial neural networks were used as a basic structure of the PSO-ANN model.
Along the literature survey of disease knowledge discoveries, many mathematical
models have been tested through various methods and promising results have been
obtained. However, investigations in disease prediction are still an open field because
of several reasons like:

- There are always new diseases and new tests to discover those diseases.

- Most of the prediction of diseases have not reached the saturation point.

- Scientists always develop new mathematical models and optimization algorithms
that give more accurate solutions.
In this study, a mathematical method based on multiple regression analysis has been
applied to reliable models that investigate whether there exists a relation between the

anemia types and the biomedical variables or not.

1.2 Objectives of the Thesis

This thesis aims at investigating the performance of the MRA and the PSO in order to
obtain optimal parameters of the model and at having a capable model representing
anemia problems through blood variables, sex, and age.
To achieve this major aim, two objectives are outlined:

1. To derive a new mathematical model to study the effect of the blood variables,

sex, and age on the anemia types through a large group of the blood variables.



2. To accurately estimate the parameters of the model.

1.3 Hypothesis of the Thesis

The proposed medical models can be properly applied to identify anemia types
through the observational variables. Medical models are able to produce very accurate
results to be a good guide for the diagnosis of the anemia types to health providers

and planning treatment schedules for their patients.

1.4 Overview of the Thesis

This thesis consists of six chapters. Chapter 1 presents literature review, objectives,
and hypothesis of the thesis. The remaining contents are organized as follows:
Chapter 2 describes the problem and summarizes the conventional methods which
were applied to the problem. The applied techniques to models were reviewed.
Chapter 3 proposes a multiple linear regression model which is produced through
biomedical information to predict the anemia. This prediction has been made by ap-
plying the MRA to a mathematical model. The study is conducted in terms of data
consisting of 539 subjects provided from blood laboratories. The produced results
based on the model were compared. Finally, the linear regression model has been
analyzed and discussed.

Chapter 4 presents the details of multiple nonlinear regression analysis used in the
model that investigate whether there exists a relation between the anemia and the
biomedical variables or not. This work has been carried out in terms of the data in
a similar way of Chapter 3. The model results of two rival methods were compared.
Finally, the model has been analyzed and discussed.

Chapter 5 focuses on predicting the anemia through biomedical variables by using the
optimum models. To achieve this, the particle swarm optimization algorithm has effec-
tively been applied in predicting the parameters of the model through the biomedical
variables. The study was conducted in terms of the data in a similar way of Chapter 3.
Finally, the models have been analyzed through the optimum values of the parameters
produced from the PSO algorithm and discussed.

Some final remarks and recommendations were reported in Chapter 6.
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2

BASIC CONCEPTS

2.1 Introduction

This chapter displays a general review of medical problems and a review of the tech-
niques for solving these problems that have been offered in the literature until the date
of performing this study. This chapter especially focuses on mathematical models to
identify an appropriate technique for solving the problem.

The following sections of this chapter are arranged as follows: Section 2.2 provides
a brief description of anemia problems and blood variables. An extensive review of

techniques applied to the anemia prediction is presented in Section 2.3.

2.2 Anemia Problems

Anemia is defined clinically as hemoglobin value that is below the appropriate ref-
erence range for an individual. This decrease in the hemoglobin level leads to de-
creased oxygen delivery to organs of a body and therefore appears in the symptoms
of a headache, fatigue, inability to focus, attention, weakness, exhaustion, chest pain,
cold hands, and feet. As signified in the literature [43] (44, 45| 46]], the anemia was
initially thought to be associated primarily with the infectious, inflammatory diseases.
Also, it is a lower hemoglobin level below the normal limits determined by the World
Health Organization (WHO) [[43]]. As pointed out by Hébert et al. [44]], anemia is
one of the most common cases among blood diseases worldwide. There are many
types of anemia. Depending on the types, the symptoms of anemia can range from
short episodes to chronic conditions. Each type of anemia produces a different case,

ranging from moderate to severe and each has its own causes. Anemia can be either



temporarily or long-term disease.

2.2.1 The Literature Review

In the current study, the data for each subject readings of blood variables are
Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin (MCH),
White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin Concen-
tration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex and age.
In addition, the anemia types in this study are iron deficiency anemia (1), deficiency
vitamin B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5).

The corresponding blood variables can be briefly introduced as follows. The HB is
a portable protein inside the RBC and contains iron atoms, and that carries oxygen
from the lungs to the body’s tissues and returns carbon dioxide from the tissues back
to the lungs. The RBCs are concave cells are useless nucleus contains the HB. The
MCH is the calculated value derived from the HB measurement and a number of red
cells. The WBCs are the cells of the immune system that are involved in protecting the
body against infectious disease. The HCT is percentage of the RBCs volume of total
blood volume. The MCHC is the calculated concentration of HB in a specific volume
of RBC. The PLT is an irregular, disc-shaped element in the blood that assists in blood
clotting. The PLTs are usually classed as blood cells as well. Average size of the red
cells in a sample is measured by the MCV. The other biophysical variables, sex and age,
are considered. Because natural HB in the body varies from male to female, and thus
male: 1, female: 2. Yet, natural HB in the body varies according to age [43| 44].

In the literature, many studies were carried out [[47, /48,149, 50, 51]] by using relatively
less number of input variables to predict the type of anemia. The methods used in the
corresponding studies produced relatively less accurate results. For the blood vari-
ables, HB, RBC, MCV, MCH, and Red Cell Distribution Width (RCDW); a study were
carried out by Sirachainan et al. [47] to create a mathematical model identifying iron
deficiency anemia. They found out a model for detecting beta thalassemia carriers
by using the MCV and MCH [48]]. Jimnez [[49] used the RBC, HB, and HCT for diag-
nostic value of the common blood disease tests in the distinction between thalassemia
and anemia due to iron deficiency. Another researcher [[50] considered the MCV, MCH,

HCT, and HB exploring the relationship between iron deficiency anemia and academic



achievement third-grade high school female students. Piplani et al [[51]] used the HB,
RBC, MCV, and MCH to assess the validity of 12 different indices to distinguish beta
thalassemia trait from the iron deficiency. Despite all those pioneering advances in
these fields, the corresponding studies used a relatively limited number of blood vari-
ables or a very few numbers of anemia types, usually considered beta thalassemia or

iron deficiency anemia.

2.3 The Methods

A medical problem of frequently encountered is that of having a set of data produced
from medical analysis, so they are normally too large to derive a mathematical model
and to define a set of parameters that characterize the model. In this section, the

following techniques are given for solving the medical problem.

2.3.1 Multiple Regression Analysis

The MRA is a useful statistical process that can be used to determine the level of
influence of some independent variables on dependent variables and to estimate re-
lationships between the variables. Also, it is a powerful technique used to predict
the unknown value from two or more known variables. More specifically, the MRA
helps a person understands how to change the typical value of a dependent variable
when changing one of the independent variables, while the other independent vari-
ables are installed. Multiple regression model allows to analyze the relative effects of
these independent or expected variables on the dependent variable and these complex
datasets often lead to false conclusions if they are not correctly analyzed [|52} 53], 54]].
Regression analysis entered social science through the work of Legendre in 1805 and
Karl Gauss in 1809. The first form of regression was the least-squares method. Gauss
issued another development of the least-squares theory in 1821 with a version of the
Gauss-Markov theorem [55], 56]]. Galton invented the term regression in the 19th
century to depict a biological phenomenon [|55} [56].

For Galton, the term regression had only biological meaning, but later, Yule and Pear-
son edited Galton’s work to a more general statistical background, so, Pearson used

multiple regression for the first time, 1908, to learn more about the relationship among
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several independent variables and a dependent variable [|57, [58]].

Since multiple regression is a neural network without a hidden layer only, the input
and output layer, a regression model can be considered as consisting of just a single
neuron. So, regression model, each input is related to each output, in this case there

is only a single output, as seen in Figure [2.1|[59]].

Input layer

Output layer

—  » Y

Figure 2.1 Multiple regression is a single-layer neural network

Many researchers have considered the MRA to deal with different problems such as
a simple model for weather predicting through the parameters of weather [[60], de-
velopment of a model a dynamic manufacturing system for reducing the gap between
theory and real-time data of the system [|61]], evaluating the energy performance of
commercial buildings and to predict any possibility for energy consumption decrease
through developing energy consumption indicators for the buildings [|62]], actual per-
formance of the proton exchange membrane through three temperatures, four flow
rates, and two flow patterns [63]], hydrogen storage on MgeH2 and LiNH2 under dif-
ferent temperature [[64/], and wind turbine power curve [65]].

Most regression models propose that Y; is a function of X; and B, with € representing
random statistical noise:

Y, = f(X;,B) +e. (2.1)

Estimating the function f(X;, B) that fits with the data is the goal of the researcher.
Therefore, we must specify the shape of the function f. Sometimes, the form of this
function depends on knowing the relationship between Y; and X;, so, a suitable form

is chosen for f.
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Once the researcher determines the model, various forms of regression analysis pro-
vide tools to estimate the parameters B, such as the least-squares to find the value of

B by minimizing the sum of the square errors, can be represented as follows:
D (Y~ f(X,, ) 2.2)

2.3.1.1 Multiple Linear Regression Analysis

In linear regression, relationships are represented by using linear prediction functions
that estimate unknown model parameters from the data. Linear regression focuses
on the probability distribution of the response in the light of prediction values, rather
than the common probability distribution of all these variables. It was the first type
of regression analysis to be fully studied and widely used in practical applications.
Also, the models that are linearly dependent on their unknown parameters are easier
than nonlinear models associated with their parameters and because the statistical
properties for resulting estimators are easier to identify.

A linear regression model that contains more than one predictor variable is called a
multiple linear regression model. A MLR model with k predictor variables and inde-
pendent observations

k

y=B0+le1+Bzx2+...+kak+e=BO+ZBixi+e. (2.3)

i=1
The observations recorded for each of these n levels can be expressed in the following

way

Y1 =Bg+B;x;;+Byx5 + ... + Byxy + €,

yz = BO +B1X21+B2X22 +..+ kaZk + 62

(2.4)
Yi =By +BiX;1+ByXiy + ... + Bixy + €;

Y, =By +Bix,;+ByX; 5 + ... + By X + €,

The dependent observations y,, ¥, ..., ¥,, and the independent observations x;, x,

, -+» X, have n levels. Then x;; represents the ith level of the jth predictor variable, x;.
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System (2.4) can be represented as follows:

y=BX+e, (2.5)
Here
_J’1_ | I Xy Xpp e xlk_ _Bo_ -61_
S S e R Ll I g e
| Vn | |1 Xy X oo X | By | | €n

where y,X,B and e stand for the observations, the regression coefficients and an un-
observed random variable that adds noise to the linear relationship between the de-
pendent variable and regressors, respectively. In matrix notation, these equations can

be written as:

Y1 1 xy3p X9p o0 Xqp B, €1
Yo 1 x5 Xop oo Xy B, €
= . . . . N (2.7)
_yn_ | 1 xnl XnZ xnk_ _Bk_ _en_

To obtain the regression model, B should be known. Therefore, B is estimated by using

the least square estimates as follows
B=(X"X)"'X"y, (2.8)

where X” represents the transpose of the matrix X while (X"X)™! represents inverse
of the matrix (X"X). Knowing the estimate B, the MLR model can now be expressed
as [166, 167]

y = BX, (2.9)

where ¥ is the estimated value for y from the regression.
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2.3.1.2 Multiple Nonlinear Regression Analysis

The multiple regression approach has ability to determine the relative effectiveness
of one or more variables of the model. In multiple regression, the data is used to
describe a relationship between the state variables for the model of interest. Nonlinear

regression analysis model can then be given as

y=f(X,B) +e, (2.10)

where y, X, B, f() and € indicate the observations, the vector of the regression coeffi-
cients, the known nonlinear regression function and the unobserved random variable
that adds noise to the nonlinear relationship between the dependent variable and the
regressors, respectively.

Nonlinear least squares are in the form of least squares analysis used to fit a set of
observations with a model that is nonlinear in unknown parameters. The basis of the
method is to approximate the model by a linear one and to refine the parameters by

successive iterations [|68],69]]. First, let

Yi=f(X,B)+e€,1<i<n, (2.11)
and
k
Q=) (v~ f(X;,B)) (2.12)
i=1
In order to find
B =argminQ, (2.13)

first each of the partial derivatives of Q is found with respect to B;. Then, each of
the partial derivatives is taken to be equal to 0 and the parameters B, are replaced by
By, 0 < k < n. The functions to be found are nonlinear in the estimates B,

The regression analysis uses the optimization to estimate the parameters of the model
by minimizing the sum of the square error. So, the optimization involves minimizing

some form of summed squared deviations between the data and the fitted model. This
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assumes that a mathematical model has been selected. So, thus, a form of optimization

could be considered as the best way of selecting a suitable model [70, [71[].

2.3.1.3 Sums of Squares

Sum of squares is a statistical tool used to determine the dispersion of data as well
as the suitability of data in the regression analysis model. The sum of squares got its
name because it is calculated by finding the sum of squared differences. Therefore,
the sum of the smaller squares indicates a fitting model where there is less variation
in the data.

The three main types of sum of squares are the sum of squares total (SST), the sum
of squares regression (SSR), and the sum of square errors (SSE; also known as the
residual sum of squares).

The SST is a variation in the values of a dependent variable from the sample mean of
the dependent variable. Basically, the SST determines the overall variance in a sample

(see Figure[2.2]) and calculated by
SST = (y;,— 7). (2.14)
j=1

where y; and y indicate the dependent observations and the mean of dependent ob-
servations, respectively.

The SSR describes how extent the regression model represents the fit data; therefore,
it indicates how good the regression model in explaining the data. The formula for

computing the SSR is (see Figure |2.2):

SSR= (J;— 7). (2.15)
j=1
where J; and y indicate the estimated value and the mean of dependent observations,
respectively.
The SSE basically measures the variation of modeling errors. In general, a small value
of the SSE indicates that the model of regression can better interpret the data, while a

big value of the SSE indicates that the model interprets the data poorly. The SSE can
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be found (see Figure by

n n
— 52 2
SSE= Y (y;— ) =Y e (2.16)
j=1 j=1
where y; and J; indicate the dependent observations and the estimated value, respec-
tively.
The total sum of squares can be decomposed into the sum of squares explained by

the regression and the sum of square errors as seen in Figure [67, 168, 69, [70] as

follows,
SST =SSR+ SSE. (2.17)
y
A
(v, xi)
A T T . —
SSE —
1 S e e s~ — - — - - SST
SSR —
7| SEOER ST SR o s St —— - —
1 = x
X

Figure 2.2 Explanation of the sum of squares

2.3.1.4 Determination of the Coefficient

Determination of the coefficient is a measure used in statistical analysis that assesses
the model success in interpreting and predicting future results. It indicates the level
of variance shown in the dataset. Determination of the coefficient, also known as R?,

is used as a guideline to measure the accuracy of the model,

., SSR SSE

=—=1——. (2.18)
SST SST

It is the square of the correlation coefficient. The goodness-of-fit of the regression
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line in the estimation of the dependent variable uses the independent variable. In
other words, R? is a measure showing the rate of the contribution of the independent
variables in the change of dependent variable. It ranges between zero to one, 0 <
R? < 1. When R? tends to be very high and closer to 1, the relationship is better, and a
model becomes very reliable for future prediction. However, small R? does not imply
that the model is bad. On the other hand, a value O indicates that the model fails
to accurately design the data. It also allows R? to display the degree of correlation

between the variables of interest [|67, 68, (69, [70]].

2.3.1.5 Residual Analysis

The residual of the observed value is the difference between the observed value and
the estimated value. In regression analysis, the observations y; may be different from
the fitted values y; (the predicted value) obtained from the model (see Figure [2.3).

The vector of residuals, e;, is thus given by:

e =Y — i (2.19)
y
A
-
Yi el
.27 e
/ o
° G
ei{ P 4
/’.“\__-"
e Vi
/,,
T e
o -~
> X

Figure 2.3 Explaining the residual

The mean square error (MSE) is the measure of the average square difference between

the estimated values and the actual value. Also, the MSE of a regression is a number
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computed from the sum of squares of the computed residuals. The smaller MSE closes

to fit the data. Then it is given by

n

1 2
MSE =~ Z 2. (2.20)

j=1

The root mean square error (RMSE) is a common measure of the differences between
sample values predicted by a model estimated and values observed [[67, |68, 69, [70]].
Then it is given by

RMSE = vMSE. (2.21)

2.3.2 Particle Swarm Optimization

The PSO proposed by Kennedy and Earhart [[72]] has been used to solve various opti-
mization problems. They inspired from social behavior of bird flocking or fish school-
ing, these animals have a major role in the development of the algorithm. So, the
researchers used the PSO to estimate the parameters of models and implemented dif-
ferent strategies of mathematical methods to predict and to optimize problems. For
instance, the PSO algorithm is applied to 28 well-known nonlinear regression models
and the results display that the PSO algorithm provides accurate outcomes for esti-
mating the parameter of their nonlinear regression models [73]]. The PSO algorithm
applied for finding the nonlinear model parameters [74]], estimating the parameters
of multiple linear regression models [[75]], the researchers used the PSO, genetic al-
gorithm, and multiple regression in the estimation of soil mechanical resistance value
[76]], and estimation of the parameters was done for the nonlinear multi-regression
model based on Choquet integral through a PSO algorithm [[77]].

The method optimizes a problem by trying to improve a solution. Each particle traces
its coordinates in the area of problem that relates to the best solutions carried out so
far. This value is called Pbest. Another "best" value that is tracked by the PSO is the best
value, obtained so far by any particle in the neighbors of the particle. This location
is called lbest. When the particle considers the whole population as its topological
neighbors, the best value is a global best and is called Gbest. The PSO idea consists of,
at each time step, changing the velocity of each particle towards the Pbest and [best

locations.
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In the PSO, simple software agents, called particles, move in the search space for im-
provement. These randomly selected particles search solution space using the infor-
mation of their neighborhood, personal information, and randomness. The position
of a particle represents a candidate solution to the existing improvement problem.
All particles look for better sites in the search space by changing their velocity at the
end of each iteration. Because of each iteration, the position and velocity vectors are

expressed as follows:

Vit+1 = C‘)Vit + Clrl(Pbest _Xit) + Czrz(Gbest _Xit) (2.22)

X=X+ (2.23)

where t,w,cy,Cy, 71,79, Vi', X5, Py, and G, indicate iteration number, weight pa-
rameter, acceleration coefficients (cognitive parameter, social parameter), random
numbers uniformly distributed between 0 and 1, velocity of individual i at iteration
t, position of individual i at iteration ¢, the best local value of each particle, the best
value of swarm, respectively [[78, 79, [80]].

We can see how the best position of the particle, Pbest, and the best position of the
group, Gbest, affect the velocity of the particle in the next iteration. Therefore, the
essential concept of the PSO is to accelerate each particle to the position of Pbest and
Gbest, with a random weighted acceleration at each step (see Figure [2.4).

The update velocity for particles consists of three components in equations (2.22) and
(2.23), in the two-dimensional search space. Therefore, Figure illustrates how the
three components of particle velocity move to the best global position in time steps t

and t+1, respectively [[81]].
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Figure 2.4 Update of a velocity and position for a particle in a 2D
search space

2.4 Why These Methods

A major advantage of data analysis using the multiple regression model is the ability to
determine the relative effect of one or more predictor variables on the value. Also, the
estimates from a wide category of potential parameter estimates are used under the
usual assumptions for the process modeling. Moreover, it uses the data very efficiently,
and good results can be available with small data sets. Also, as an extremely important
feature in the regression, the ideal parameters are obtained from the least squares
regression by evaluating unknown parameters.

Despite the recognized advantages of conventional methods, most of them suffer from
various disadvantages such as high cost, difficulty in use, and time-consuming. In this
case, optimization can be recalled as a very good alternative to the corresponding
methods. In the recent years, the PSO has been successfully applied to many areas to
simplify optimization problems that had previously experienced serious difficulties. It
is demonstrated that the PSO produces better results in a faster, cheaper way and the
simplicity of the implementation, is the most attractive feature of this algorithm. An-
other reason that makes the PSO attractive is that it is reliable, robust, and considered

as an effective meta-heuristic optimization algorithm.
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3

ANEMIA MODELLING USING THE MULTIPLE LINEAR
REGRESSION ANALYSIS

3.1 Introduction

A mathematical model is an essential tool for analyzing pathological characteristics
and it can be used for various reasons as in the literature [[10, [11], (12} [82] 83} |84, |85,
86/, 187, 188]]. To assess situations seen in hospitals, any disease condition has several
effects for a single disease. So, most outcomes in real life problems are affected by
multiple input variables.

This chapter aims at predicting pathological subjects from a population through phys-
ical biomedical variables (eight blood variables, sex, and age) and output (Anemia
types). It is important to predict the type of anemia because there has been an in-
crease in the incidence of anemia among different segments of society. To make the
best biomedical decisions, medical predictions play a very important role in the process
of diagnosis and planning treatment for health providers. So, our goal is to develop
a new mathematical model to study the effect of the blood variables, sex, and age
on the types of anemia. Our model, different from the mathematical models given in
the literature 38,89, 47, (90, [48] has also been successfully used in the prediction of
several types of anemia through a large group of blood variables, sex, and age.

To the best knowledge of the author, more general models representing the behaviour
closer to nature have been produced for the first time. The more number of input
variables makes the derived model more realistic in the biomedicine. Thus, for such
a realistic model, for such a large number of input variables a study has been ac-
complished here. Therefore, this study is believed to be an important contribution to

predict the types of anemia.
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Despite very effective, striking and frontier studies in the literature, researchers have
used models with limited number of variables. Therefore, the present study focuses
on the determination of the type of anemia through a very large number of the obser-
vational variables, more realistic one. Since many researchers have commonly con-
sidered the MRA among the modelling techniques to deal with various problems in-
cluding anemia [38, 160, |61}, (63} (91}, (92} [93], (94, [95| (96|, [97]], the multiple analysis is
taken into account in modelling the current biomedical problem.

The remainder of the chapter is organized as follows: Section 3.2 highlight the study
samples, explain linear regression analysis procedure and test the model. Building
the linear model of data by the regression analysis has been given in Section 3.3.
Regression model has been analyzed and discussed in Section 3.4. Finally, conclusions

and future research directions have been detailed.

3.2 Materials and Methods

3.2.1 Study Samples

As pointed out by the corresponding researchers, anemia is one of the most common
blood diseases worldwide. The diagnosis of anemia depends on the concentration of
hemoglobin less than the normal limits followed by the World Health Organization
(WHO), and it is worth noting that the concentration of hemoglobin varies by age and
sex as seen in Table [3.1| [43]].

Anemia is classified into several types and those types differ in terms of their causes.
Some types of anemia are hereditary. These types may affect children and may cause
health problems for a lifetime. Women after adulthood may experience iron deficiency
anemia, blood loss during the menstrual cycle, the most common type, may occur
during pregnancy due to excessive need of minerals in the blood by the fetus during
pregnancy, older people may be exposed to anemia due to malnutrition and other

medical conditions [[43]].
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Table 3.1 Hemoglobin thresholds used to define anemia [|43]]

Age or gender group Hemoglobin threshold (g/1)
Children (0.50-4.99 yrs) 110
Children (5.00-11.99 yrs) 115
Children (12.00-14.99 yrs) 120
Non-pregnant women (=>15.00 yrs) 120
Pregnant women 110
Men (=15.00 yrs) 130

The data were collected from observations of blood variables in order to identify a
healthy or infected person and involved 539 subjects provided from blood laboratories
in Iraq. Individuals between 6-56 years old have been taken into consideration and
included 248 males, 291 females. Subjects are consisting of 211 healthy ones and of
328 anemic ones to build the model. The number of variables studied and selected
for building the model is eleven, the independent variables identified are ten and
a dependent variable. The dependent variable consists of six different outputs are
healthy (0) and five blood diseases are iron deficiency anemia (1), deficiency vitamin
B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5).

Here the samples for people and for each subject readings of blood variables are
[43] [44]] Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin
(MCH), White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin
Concentration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex
and age. The anemia types and blood variables for our data are displayed in Table

3.2
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Table 3.2 Some samples from the data

HB RBC MCH WBC MCV HCT MCHC PLT Sex Age Anemia type

175 5.55 31.6 141 92 509 345 318 2 23 0
16.3 6.07 269 816 809 49.1 332 349 1 23
11.1 4.38 253 5.8 81 356 311 227 1 11
11.1 4.85 22.8 10 81 394 281 274 2 16

9 347 258 23 88 304 295 148 1 11
146 44 304 598 108 158 282 330 2 29
81 3.6 224 12 78 28.1 287 472 1 15
392 6.6 168 8.3 60 23.7 279 443 2 17
83 258 319 124 103 267 309 458 1 11
79 288 274 1755 83 239 331 703 1 16
6.8 577 11.7 119 49 284 238 573 2 11

g A DN W W NN R = O

3.2.2 Multiple Linear Regression Model

Consider a MLR model with k predictor variables, independent observations
k
y:B0+B1x1 +BZX2+...+Bka+6=BO+ZBiXi+6. (3.1)

i=1

The observations recorded for each of these n levels can be expressed in the following

way

yl - BO +le11+Bzx12 + ... +ka1k + 61

Yo =By +BiX91+ByXgy + ... + By Xor + €5

(3.2)
Y; =By +Bix;;+ByX;y + ... + By X + €;

Yn=Bg+Bix,;+ByXx,; 5+ ... + Bpx + €,

The dependent observations y,, ys, ..., ¥,, and the independent observations x;, x,

,-+» X, have n levels. Then x;; represents the ith level of the jth predictor variable, x;.
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System (3.2) can be represented as follows:

y=BX+e, (3.3)
with
_J’l- | I Xy Xpp e xlk- _Bo- -61-
S S it R Ll I g RREP
1% N I Y PN I P

where y,X,B and e stand for the observations, the regression coefficients and an un-
observed random variable that adds noise to the linear relationship between the de-
pendent variable and regressors, respectively.

To obtain the regression model, B should be known. Therefore, B is estimated by using

the least square estimates as follows
B=X"X)"'X"y, (3.5)

where X" represents the transpose of the matrix X while (X"X)™! represents inverse
of the matrix (X"X). Knowing the estimate B, the MLR model can now be expressed
as [|66), [67]]

§ = BX, (3.6)

where y is the estimated value for y from the regression.

3.2.3 Test for the Model

The linear regression model estimation is selected and the sum of square tests. The

computation formula can be given as follows:

SST = (v, =¥V, (3.7)
j=1

SSR= (J;— 7V, (3.8)
j=1
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n

SSE= > (y;—5)*= Y e (3.9)
j=1

=1
The coefficient of determination is a measure showing the rate of the contribution of
the independent variables in the interpretation of the change in the dependent variable

as known from the literature [[70, [71]]. It is given as follow:

, SSR __ SSE

=—=1——. (3.10)
SST SST

A terminological difference arises in the expression mean squared error (MSE). The
MSE of a regression is a measure of the average of the sum of squared error and
how the concentration of data around the regression model. The smaller the MSE,

whenever the results are more accurate [70, 71]. Then it is given by

n

1 2
MSE—HZIIej. (3.11)
]:

3.3 Building Linear Regression Analysis Model

The currently produced MLR model is a linear equation determined as previously men-

tioned in Section 3.2.2. The obtained model is as follows:

y =B, + B,HB + B,RBC + B;MCH + B,WBC + B;MCV
(3.12)

+BgHCT +B,MCHC + BgPLT + BySex + BjpAge + €

where y is type of the anemia and B;, 0 < i < 10, are the parameters to be determined.

The linear regression model, as explained in Section 3.2.2, is estimated as

y=6.377 —0.224HB — 0.224RBC — 0.029M CH + 0.001WBC
+0.0005MCV —0.016HCT + 0.007MCHC + 0.001PLT (3.13)

—0.311Sex —0.009Age.

Here the coefficient values of the linear model have been obtained through the multi-

ple regression approach, to find the model that is more realistic (see Table [3.9).
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As previously mentioned, the model can be represented in matrix form as follows:

v =BX
where
4 1 HBy RBCj,
N Yo 1 Hby RBCy,
y= X = ) ) )
| V539 | | 1 HBs3o1 RBCGisg,

. Agesszo o |

Ageqqg
Agesg

(3.14)

6.377 |
—0.224
—0.224
~0.029

0.001

0.0005
~0.016

0.007

0.001
~0.311

—0.009 |
(3.15)

Here ¥ and X represent the estimates for output (types of the anemia) and the inde-

pendent observations matrix, respectively.

3.4 Results and Discussion

Different strategies of mathematical methods are implemented to analyze blood vari-

ables, as in the literature [47, 48| 50, [98]. The MRA has been taken into account

by many researchers [138, 160, (61}, 163}, [91], (92, 193], (94, 95| 96| [97]] while dealing with

various anemia problems at different levels. However, they used a limited number of

blood variables and they did not study a relationship for the prediction of the types

of anemia. Therefore, the current study concentrates on the investigation of the re-

lationship between a very large number of blood variables and the types of anemia.

Various versions of models, based on the variables, are derived (see Table |3.3)).
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Table 3.3 Various forms of the multiple linear models: blood variables, sex,

and age.
Models R>  MSE
Model 1 for (HB, sex and age) 0.568 0.935
Model 2 for (RBC, sex and age) 0.174 1.787
Model 3 for (MCH, sex and age) 0.255 1.611
Model 4 for (WBC, sex and age) 0.229 1.667
Model 5 for (MCV, sex and age) 0.190 1.752
Model 6 for (HCT, sex and age) 0.649 0.759
Model 7 for (MCHC, sex and age) 0.243 1.637
Model 8 for (PLT, sex and age) 0.271 1.577
Model 9 for (HB, RBC, sex and age) 0.686 0.680
Model 10 for (MCH, WBC, sex and age) 0.304 1.509
Model 11 for (MCV, HCT, sex and age) 0.649 0.760
Model 12 for (MCHC, PLT, sex and age) 0.314 1.486
Model 13 for (WBC, MCV, HCT, MCHC, sex and age) 0.668 0.723
Model 14 for (HB, RBC, MCH, PLT, sex and age) 0.698 0.656

The models produced in terms of larger number of blood variables show better correla-
tion than the models produced in terms of less number of blood variables for predicting
the types of anemia in equation (3.13). However, naturally some of the variables are
of more effect than others.

After the essential requirements have been verified for the multivariate analysis in
equation (3.13), the variables have been included for the MLR analysis. Those vari-
ables consist of regression coefficients B, the blood variables (HB, RBC, MCH, WBC,
MCV, HCT, MCHC, PLT), sex, and age. Therefore, the MLR shows the synergistic effect
of predicting the types of anemia better than the ones used fewer blood variables. The
enter method of the MLR has been used in the current analysis. All the variables were
introduced into the regression model as selected by the enter method of the MLR.

In the outcome of the current analysis, it has been found that there is a more signif-
icant relation (R?=0.699) of the MLR model. It means that 69.90% of the change in

the relationship between all blood variables, sex, and age for the types of anemia is
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explained.

Also, the diagnosis of anemia depends on hemoglobin thresholds used to define ane-
mia followed by the WHO for age, and it is worth noting that the concentration of
hemoglobin varies by age. Here we classify the data into three categories as age (6-
11) years old, (12-14) years old, and (=15) years old as seen in Table [431].

We have compared the results for the age group (6-56) with other classified age groups
(6-11), (12-14), and (15-56). It has been found out that the results produced for the
age group (6-56) are better than all other classified groups (see Tables[3.41{3.7)). This
difference is believed to stem from the decreasing the data as seen in Table

In the outcome of the current analysis, it has been found that there is more significant
relation of the MLR model for the data (6-56) comparison to the other cases (6-11),
(12-14), and (15-56). It explains 69.90% of the change in the relationship between
all blood variables, sex, age and the types of anemia as seen in Table It is the best
comparison to the results 48.2%, 83.8%, and 68.6% for the three categories (6-11),
(12-14), and (15-56), respectively, as seen in Tables 3.6
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Table 3.4 Various forms of linear regression models: Blood variables, sex
and age (6-11).

Models R? RMSE

Model 1 for (HB, sex and age) 0.315 0.82956
Model 2 for (RBC, sex and age) 0.247 0.86971
Model 3 for (WBC, sex and age) 0.034 0.98506
Model 4 for (PLT, sex and age) 0.045 0.97960
Model 5 for (HB, RBC, sex and age) 0.333 0.82221
Model 6 for (MCH, WBC, sex and age) 0.039 0.98658
Model 7 for (MCV, HCT, sex and age) 0.385 0.78956
Model 8 for (MCHC, PLT, sex and age) 0.092 0.95889
Model 9 for (HB, RBC, MCH, sex and age) 0.375 0.79909
Model 10 for (WBC, MCV, HCT, sex and age) 0.417 0.77142
Model 11 for (HB, MCHC, PLT, sex and age) 0.392 0.78824
Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.420 0.77270
Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.431 0.76579

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC, 0.482 0.74322
PLT, sex and age)
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Table 3.5 Various forms of linear regression models: Blood variables, sex
and age (12-14).

Models R? RMSE

Model 1 for (HB, sex and age) 0.666 0.64123
Model 2 for (RBC, sex and age) 0.567 0.73044
Model 3 for (WBC, sex and age) 0.201 0.99263
Model 4 for (PLT, sex and age) 0.261 0.95426
Model 5 for (HB, RBC, sex and age) 0.678 0.64979
Model 6 for (MCH, WBC, sex and age) 0.383 0.89857
Model 7 for (MCV, HCT, sex and age) 0.385 0.89766
Model 8 for (MCHC, PLT, sex and age) 0.536 0.77954
Model 9 for (HB, RBC, MCH, sex and age) 0.755 0.58501
Model 10 for (WBC, MCV, HCT, sex and age) 0.397 0.91793
Model 11 for (HB, MCHC, PLT, sex and age) 0.798 0.53143
Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.580 0.79267
Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.757 0.60328

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC, 0.838 0.58174
PLT, sex and age)
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Table 3.6 Various forms of linear regression models: Blood variables, sex
and age (15-56).

Models R? RMSE

Model 1 for (HB, sex and age) 0.562 0.95026
Model 2 for (RBC, sex and age) 0.034 1.41107
Model 3 for (WBC, sex and age) 0.134 1.33618
Model 4 for (PLT, sex and age) 0.193 1.28994
Model 5 for (HB, RBC, sex and age) 0.677 0.81736
Model 6 for (MCH, WBC, sex and age) 0.272 1.22649
Model 7 for (MCV, HCT, sex and age) 0.638 0.86461
Model 8 for (MCHC, PLT, sex and age) 0.295 1.20694
Model 9 for (HB, RBC, MCH, sex and age) 0.680 0.81427
Model 10 for (WBC, MCV, HCT, sex and age) 0.642 0.86102
Model 11 for (HB, MCHC, PLT, sex and age) 0.580 0.93290
Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.665 0.83370
Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.685 0.80897

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC, 0.686 0.81159

PLT, sex and age)
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Table 3.7 Various forms of linear regression models: Blood variables, sex
and age (6-56).

Models R? RMSE

Model 1 for (HB, sex and age) 0.568 0.96685
Model 2 for (RBC, sex and age) 0.174 1.33677
Model 3 for (WBC, sex and age) 0.229 1.29106
Model 4 for (PLT, sex and age) 0.271 1.25593
Model 5 for (HB, RBC, sex and age) 0.686 0.82466
Model 6 for (MCH, WBC, sex and age) 0.304 1.22844
Model 7 for (MCV, HCT, sex and age) 0.649 0.87201
Model 8 for (MCHC, PLT, sex and age) 0.314 1.21903
Model 9 for (HB, RBC, MCH, sex and age) 0.692 0.81825
Model 10 for (WBC, MCV, HCT, sex and age) 0.656 0.86483
Model 11 for (HB, MCHC, PLT, sex and age) 0.582 0.95278
Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.668 0.85008
Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.698 0.80985

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC, 0.699 0.81171

PLT, sex and age)

Thus, it is concluded that the regression model with the blood variables, sex, and age

are seen to be significant (p < 0.000). That means simultaneous consideration of

the blood variables, sex, and age has a significant effect on the relationship on the

determination of the types of anemia (see Table [3.8).

Table 3.8 Analysis of the variance for the correlation in equation (3.13)

Sum of Squares Degrees of freedom Mean Square  F-Stat  P-Value

Regression 809.354 10 80.935 122.838 0.000
Residual 347.889 528 0.659
Total 1157.243 538

The standardized coefficient (Beta) compares the effect force of each individ-

ual blood variables, sex, and age to the types of anemia. It is thus given by

StandardizedBeta; = B; * SD(X;)/SD(Y) .

The HB absolute value of the Beta coefficient is (—0.663) has the strongest relationship
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with the types of the disease comparison to the other variables RBC (—0.345), Sex
(—0.106), HCT (—0.100), MCH (—0.090), PLT (0.080), Age (—0.065), WBC (0.016),
MCHC (0.016) and MCV (—0.001). The interpretation of the Beta value for the HB
signifies that for every change in the HB, the dependent variable will be changed by
the Beta coefficient value (see Table [3.9)).

The t-test was used to measure the partial effect of the variables HB, RBC, MCH, WBC,
MCV, HCT, MCHC, PLT, sex, and age on the types of anemia. Notice that these variables
have been seen to affect the types of anemia but in varying rates (see Table[3.9). The
histogram of the residuals which confirm that the data are distributed according to a

normal distribution with a mean of zero and a standard deviation of 0.991 (see Figure
3.1).

Table 3.9 Analysis of the multiple regression coefficients given in equation
(3.13)

Unstandardized Coefficients Standardized Coefficients

B Std. Error Beta t-Stat  P-Value
(Const.) 6.377 0.552 11.563  0.000
HB -0.224 0.062 -0.663 -3.581  0.000
RBC -0.224 0.066 -0.345 -3.392  0.001
MCH -0.029 0.015 -0.090 -1.931 0.054
WBC 0.001 0.003 0.016 0.549  0.583
MCV 0.0005 0.008 -0.001 -0.015  0.988
HCT -0.016 0.028 -0.100 -0.575  0.565
MCHC 0.007 0.016 0.016 0.464 0.643
PLT 0.001 0.000 0.080 2.637  0.009
Sex -0.311 0.074 -0.106 -4.191  0.000
Age -0.009 0.004 -0.065 -2.303  0.022

To find out the extent of spread the random error around the linear regression model,
the MLR use the mean square residuals, MSE=0.659 (see Table [3.8). Small values of

the MSE indicate the concentration of data around the linear regression model (see

Figure[3.2)).
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Table 3.10 Comparison of the MLR results with the results of the linear
deep learning method

Methods SSE MSE  R?
Linear Regression Analysis 347.889 0.659 0.699
Linear Deep Learning Methods (LSTM) 349.869 0.665 0.695

LSTM: Long Short Term Memory

In this study, comparing criteria are constructed on the principle of whether the tech-
nique provides a suitable prediction or not. This task is achieved by comparing with
the deep learning method (LSTM) [99]]. The results demonstrate that the linear re-
gression has the best fit to the initial dataset comparing to the deep learning method
(LSTM) (see Table . Therefore, the present study provides an accurate model for

prediction of the types of anemia.

Dependent Variable: Diseases
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Figure 3.1 Histogram of the residuals
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Figure 3.2 Normal P-P Plot of Regression Standardized Residual

3.5 Conclusions

The MLR model, for the first time, have been derived in forecasting the types of ane-
mia. The results revealed that the regression model is very promising and is capable
of making the prediction. In the analysis of the current anemia problem, the multi-
ple regression method has been found to be more accurate than linear deep learning
methods. It has been concluded that the model is expected to be helpful for diagno-
sis of the types of anemia to health providers and designing appropriate treatment

programs for their patients.
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4

ANEMIA PREDICTION WITH MULTIPLE NONLINEAR
REGRESSION ANALYSIS

4.1 Introduction

A mathematical model is a platform for understanding the behavior of a physical or
a biophysical system. Mathematical modelling can be used for various reasons. How
well any particular objective achieved depends on both the state of knowledge about
the system and how well the modelling is done. As seen in the literature [[10} 12} [83),
84,187,100, [101]], mathematical modeling has been shown to be an essential tool for
also analyzing pathological characteristics. To assess situations seen in hospitals, any
disease condition has several effects (inputs) for a single disease (output). So, most
outcomes in real life problems are affected by multiple input variables. To understand
such relationships, the used models that consider more than one input to produce
a single output. As signified in the literature [45] |46, [102]], the anemia of chronic
inflammation and it was initially thought to be associated primarily with the infectious,
inflammatory diseases.

This chapter aims at predicting pathological subjects from a population through phys-
ical observational variables (eight blood variables, sex, and age) and output (types
of disease). It is important to predict the type of anemia because there has been an
increase in the incidence of anemia among different segments of society. To make
the best biomedical decisions, medical predictions play a very important role in the
process of diagnosis and planning treatment for health providers. Thus, our goal is to
derive a new mathematical model to study the effect of the blood variables, sex, and
age on the types of anemia. Our model, differ from the mathematical models given

in the literature [[37, 50, 89, /47, 90), [48]], have also been successfully used in the pre-
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diction of several types of anemia through a large group of blood variables, sex, and
age.

To the best knowledge of the authors, a more general model representing the be-
haviour closer to nature have been produced for the first time. The more number of
input variables makes the derived model more realistic in the biomedicine. Thus, for
such a realistic model, for such a large number of input variables, a study has been
accomplished here. Therefore, this study is believed to be an important contribution
to predict the types of anemia.

Despite very effective, striking and frontier studies in the literature, researchers have
used models with a limited number of variables. Therefore, the present study fo-
cuses on the determination of the type of anemia through a very large number of the
observational variables, more realistic one. Since many researchers have commonly
considered the MRA among the modelling techniques to deal with various problems
including anemia [[37, 38,160, 161,162, 63, 64,65, ?,[92, (93], [94,95],97,103]], the multi-
ple analysis is taken into account in modelling the current biomedical problem based
on estimating optimum values in the set of the fitting parameters of the model.

The remainder of the chapter is organized as follows: Section 4.2 highlight the study
samples, explain nonlinear regression analysis procedure and test the model. Build-
ing the model of data by the regression analysis has been given in Section 4.3. The
produced results for the model are given in Section 4.4. The regression model has
been analyzed and discussed in Section 4.5. Finally, conclusions and future research

directions have been detailed.

4.2 Materials and Methods

4.2.1 Study Samples

Here the samples for people and for each subject readings of blood variables are
Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin (MCH),
White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin Concen-
tration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex and age
(43} [44].

For the data, it is considered that blood diseases are iron deficiency anemia (1), de-
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ficiency vitamin B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5). The
anemia types and blood variables for our data are displayed in Table [4.1] and Figure

Table 4.1 Some samples from the data

HB RBC MCH WBC MCV HCT MCHC PLT Sex Age Anemia type

175 5.55 31.6 14.1 92 509 345 318 2 23 0
16.3 6.07 269 816 809 49.1 332 349 1 23
11.1 438 253 58 81 356 311 227 1 11
11.1 4.85 22.8 10 81 394 281 274 2 16
9 347 258 23 88 304 295 148 1 11
146 44 304 598 108 158 282 330 2 29
81 36 224 12 78 28.1 287 472 1 15
392 6.6 168 8.3 60 23.7 279 443 2 17
83 2,58 319 124 103 26.7 309 458 1 11
79 288 274 1755 83 239 331 703 1
2

6.8 577 11.7 119 49 284 238 573

16
11

ga A A WO WO N DN = = O

The chapter aims at predicting pathological subjects from a population in terms of
various biomedical information. Therefore, the data were collected from observations
of blood variables in order to identify a healthy or infected person and involved 539
subjects provided from blood laboratories in Iraq. Individuals between 6-56 years old
have been taken into consideration and included 248 males, 291 females. Subjects
are consisting of 211 healthy ones and of 328 anemic ones to build the model. The
dependent variable consists of six different outputs (healthy: 0 and five blood diseases:
1-5). Therefore, the corresponding dependent and independent variables based on

data are used to improve health standards of individuals.
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Figure 4.1 Anemia Types and blood variables: (a) HB and the anemia types; (b)
RBC and the anemia types; (c) MCH and the anemia types; (d) WBC and the
anemia types; (e) MCV and the anemia types; (f) HCT and the anemia types; (g)
MCHC and the anemia types; (h) PLT and the anemia types; (i) Sex and the anemia
types; (j) Age and the anemia types

4.2.1.1 Multiple Nonlinear Regression Model

Nonlinear regression analysis model can be given as

y=f(X,B)+e, “4.1)

where y, X, B, f () and € indicate the observations, the vector of the regression coeffi-
cients, the known nonlinear regression function and the unobserved random variable
that adds noise to the nonlinear relationship between the dependent variable and re-
gressors, respectively.

The basis of the method is to approximate the model by a linear one and to refine the

parameters by successive iterations [68, 69]. First, let

yi=f(Xi,B)+€i,1SiSn, (4.2)
and
k
Q=D (yi—f(X, B (4.3)
i=1
In order to find
B=arg mBin Q, (4.4)

first each of the partial derivatives of Q is found with respect to B;. Then, each of
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the partial derivatives is taken to be equal to 0 and the parameters B, are replaced by
B,,0 < k < n. The functions to be solved are nonlinear in the parameter estimates
B,. The regression analysis is using the optimization to estimate the parameters of the
model by minimizing the sum of the squared error function. So, a form of optimization

could be considered as the best way in selecting a suitable model [[71], [104].

4.2.2 Test for the Model

The regression model estimation is selected with the confidence interval of 95% and
adjusted sum of square tests (Type III). The computation formulae can be given as

follows:

SST =D (y; =3 (4.5)

j=1
SSR= D (5, =7V (4.6)

j=1
SSE= Y (y;— ) =Y e 4.7)

=1 j=1

The coefficient of determination is a measure showing the rate of the contribution of
the independent variables in the interpretation of the change in the dependent variable
as known from the literature [[70, [71]], small R* does not imply that the model is not

significant. It is given as follow:

x2_ SSR_ . SSE

=—=1-—. .8
SST SST (4.8)

4.2.3 Residual Analysis

In the regression analysis, the observations y; may be different from the fitted values
y,; obtained from the model. The difference between these two values is the residual,

e;. The vector of residuals, e;, is thus given by:
e =Y~V (4.9)
A terminological difference arises in the expression mean squared error (MSE). The
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MSE of a regression is a measure of the average of the sum of squared error and
how the concentration of data around the regression model. The smaller the MSE,

whenever the results are more accurate [[70, 71, [104]. Then it is given by

1 2
MSE =~ Z 2. (4.10)

4.3 Building Nonlinear Regression Analysis Model

Important problems can usually be represented by mathematical models. Building
multiple regression model of a data is one of the most challenging problems. Now,
attention is paid to the model building process in the sense that it is attempted to
find the best relation between the independent variables and the dependent variable
y so that the final complete model is investigated in the regression model. Given
the problem and data but without a model, the model building process can often be
aided by graphs that help visualize the relationship between the different variables in
data [70, [104]]. Main steps in building a model of a dataset are given by conducting

regression analysis (see Figure [4.2)).
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Figure 4.2 Main steps in the regression analysis procedure

In the regression model, linear regression is used first to determine whether a partic-
ular type of curve can be fit into our data. If enough fitness cannot be obtained by
using the linear regression, then it may be needed to choose a nonlinear regression.
Although the linear regression can represent curves, it is restricted in the forms of
curves that can be contained for the data. Sometimes the curve specified in the data
cannot be contained. Nonlinear regression can be suitable with many types of data,
but it may require more effort to find the best fit and explain the role of independent
variables.

For various approaches as pointed out in the literature [|65} [98]], a nonlinear model is
usually expected to fit better than their linear rivals.

A nonlinear regression model describes a nonlinear relationship between the depen-
dent and the independent variables. As is the case in the linear regression model, a
multiple nonlinear model, based on the data, is built in Section 4.2.1.1. The produced

model is as follows:

B,

——+te€ (4.11)
E, +E,

y=
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E, = B,(HB)® + B,(RBC)® + B;(MCH)* + B,(WBC)® + Bs(Sex)?
E,=Bg(HCT)+B,(MCHC)? + Bg(PLT)’ + Bo(MCV)3 + Bo(Age)

where y stands for the types of anemia. In principle, many nonlinear models can
be proposed in dealing with the anemia problem. In this connection, here, several
attempts have been made to obtain the best results, depending on the biomedical
variables and the power of each input variable of interest. Other nonlinear model
types for the data were also taken into consideration and it was observed that the
current model was the best among these models to obtain accurate results. In addition,
those powers of the variables in the model have been investigated and the regression
analysis has been taken to find the optimum parameter values of the model (see Table
4.4]), so as to obtain the best fitting for the data. It is well-known that the model order
is chosen according to the number of bends you need on your structure. Each increase
in the exponent produces one more bend in the fitted structure. Therefore, it is tried
to be found the multivariable nonlinear function that best fits the specific structure in
the data. The accepted nonlinear regression model is then estimated as
2489.986

j=""""" 4.12
Y= TE +E, (4.12)

Here the denominator of equation is separated into two parts as E;, E,. Thus, the
separated parts are clearly expressed as:

E, = 0.001(HB)® + 0.014(RBC)® — 0.001(M CH)* + 0.0001(WBC)? + 18.711(Sex)>
E, = —60.591(HCT) — 297.972(MCHC)? — 26.450(PLT)? + 1367.932(MCV)7 +
1.469(Age).

Here ¥ represent the estimates for the types of anemia. The coefficient values of the
nonlinear model have been optimized for the multiple regression approaches, to find

the more realistic model (see Table 4.4]).

4.4 Nonlinear Model Results

This study here focuses on the discovery of a possible relationship between the blood
variables and the types of anemia through the nonlinear model and explains the signif-
icance level of the model (see Table . Various types of models, based on different
possibilities, have been produced through the biomedical variables (see Table [4.3).
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The regression approach has been taken to forecast the best parameters with the op-
timum residual sum of squares value (see Table and Figure [4.3)). It is important
to note that, the nonlinear deep learning (LSTM) and nonlinear regression neural
network methods have also been used to compare our model results. The results re-
vealed that the currently derived model is seen to be better than the other two rivals

(see Table[4.5).

Table 4.2 Analysis of variance and R?

Source Sum of Squares Degrees of freedom Mean Squares
Regression 2185.852 11 198.714
Residual 271.148 528 0.514
Uncorrected Total 2457.000 539

Corrected Total 1157.243 538

R?=1-(Residual Sum of Squares)
/(Corrected Sum of Squares) 0.766
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Table 4.3 Various forms of the multiple nonlinear regression models: blood
variables, sex, and age

Models E,, E, in model equation (4.12) R* MSE

Model 1 for (HB, sex and age) E, = 0.001(HB)® + 18.711(Sex)?, E, = 0.551 0.971
1.469(Age)

Model 2 for (RBC, sex and age) E, =0.014(RBC)°+18.711(Sex)?, E, = 0.069 2.014
1.469(Age)

Model 3 for (MCH, sex and age) E, = —0.001(MCH)* + 18.711(Sex)?, 0.000 4.490
E, = 1.469(Age)

Model 4 for (WBC, sex and age) E, = 0.0001(WBC)® + 18.711(Sex)?, 0.188 1.757
E, =1.469(Age)

Model 5 for (MCV, sex and age) E, = 18.711(Sex)?, E, = 0.215 1.699
1367.932(MCV)Y4 4+ 1.469(Age)

Model 6 for (HCT, sex and age) E, = 18.711(Sex)?, E, = 0.366 1.372
—60.591(HCT) + 1.469(Age)

Model 7 for (MCHGC, sex and age) E; = 18.711(Sex)?, E, = 0.216 1.697
—297.972(MCHC)"? + 1.469(Age)

Model 8 for (PLT, sex and age) E, = 18.711(Sex)?, E, = 0.196 1.739
—26.450(PLT)"> + 1.469(Age)

Model 9 for (HB, RBC, sex and E, = 0.001(HB)® + 0.014(RBC)° + 0.555 0.964

age) 18.711(Sex)? E, = 1.469(Age)

Model 10 for (MCH, WBC, sexand E, = —0.001(MCH)* + 0.000 4.397

age) 0.0001(WBC)®> +  18.711(Sex)?,
E, =1.469(Age)

Model 11 for (MCV, HCT, sex and E, = 18.711(Sex)?, E, = 0.371 1.364

age) —60.591(HCT)+1367.932(MCV)"/*+
1.469(Age)

Model 12 for (MCHC, PLT, sex and E; = 18.711(Sex)?, E, = 0.261 1.602

age) —297.972(MCHC)'? -
26.450(PLT)Y? 4+ 1.469(Age)

Model 13 for (WBC, MCV, HCT, E, = 0.0001(WBC)® + 18.711(Sex)?, 0.381 1.348

MCHC, sex and age) E, = —60.591(HCT) —
297.972(MCHC)'? +
1367.932(MCV)Y4 4+ 1.469(Age)

Model 14 for (HB, RBC, MCH, PLT, E, = 0.001(HB)® + 0.014(RBC)® — 0.671 0.715

sex and age)

0.001(MCH)* + 18.711(Sex)?, E, =
—26.450(PLT)"? + 1.469(Age)
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Table 4.4 Optimization of the residual sum of squares to estimate the
parameters by the regression optimization

Iteration Number 1 50 100 122 141 171
Residual Sum of 2457.001 2422585  1493.893  271.296  271.148  271.148
Squares
Constant b | 68912 5888  213375.919 320324.494 45059.962 2489.986
HB by, | -234.704 0.259 0.062 0.161 0.023 0.001
RBC b, | -211.649 -0.366 0.290 1.821 0.259 0.014
MCH by | -80.854 0.759 0.762 -0.083 -0.012  -0.001
WBC b, | -689.697  -0.069 -0.068 -0.007 -0.001  -0.00005
MCcV bs | -991415.201 -3405.904 -1583.487  2270.951  339.312  18.711
HCT be | -80326.882 -226.747  96.364  -7720.240 -1098.810  -60.591
MCHC b, | -305965.063 -860.494  430.136  -39602.005 -5400.125 -297.972
PLT b | -266546.846 -761.492  162.005  -3493.601  -477.549  -26.450
Sex by | -531827.894 -1500.534  622.720  178493.976 24782.155 1367.932
Age by | -82254.965 -239.766  230.978 168.767  26.561 1.469
Table 4.5 Comparison of the results of the multiple nonlinear regression
with the two methods
Methods SSE MSE R®

Nonlinear Regression Analysis

Nonlinear Deep Learning Methods (LSTM)

Nonlinear Regression Neural Networks

271.148 0.514 0.766
273.465 0.560 0.760
287.826 0.534 0.752

LSTM: Long Short Term Memory
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Figure 4.3 The behaviour of the residual sum of square errors by
the regression optimization when the iteration is 171
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4.5 Discussion and Analysis

Nonlinear models play a very important role in life since many natural phenomena
such as biology, medicine, chemistry, physics, and others are represented by the corre-
sponding models. In this respect, the necessity of a nonlinear model to predict types
of anemia is revealed. Therefore, it is here concentrated on the prediction of types
of anemia through the biomedical parameters under the consideration of the fitted
nonlinear model.

In the literature, many researchers [92}(94, (95,97, 103] have considered anemia prob-
lems at various levels, through the multiple nonlinear regression analysis. Note that
researchers in the literature [[37, 38, 89, 90, 98] used a very limited number of blood
variables or a few anemia types and various nonlinear models for the investigation of
different diseases and did not pay enough attention to the relationship between such
a very large number of blood variables and those types of anemia. Here it is focused
on a nonlinear model investigating the relationship between a large number of the
blood variables and the types of anemia.

At the same time, other nonlinear models to the data have been considered, and the
most accurate results for the model (4.12) have been found. These variables consist
of HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT, sex, and age. The current analysis
was considered to fit a nonlinear model presenting the link between observational
variables (blood variables, age, and sex) and the types of anemia. Several types of
models, based on the variables, are derived (see Table in terms of less number
of blood variables for the prediction of the types of anemia. The model produced in
equation (4.12), see Table in terms of a larger number of blood variables show a
better correlation than the models produced in Table Therefore, this study here
concentrates on the discovery of the relationship between as large as possible, more
realistic, blood variables and the types of anemia through the current model.

The model has been seen to be significantly effective on the prediction of the types of
anemia (R* = 0.766). The model explains 76.60% of the change in the relationship
between the observational variables and the types of anemia. That is, as realized from
Table [4.2} all the variables used have a significant effect on the model.

The model uses the mean square residuals to measure the extent of distributing the
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random error around the model, MSE = 0.514 (see Table [4.2). Small values of the
MSE indicate the concentration of data around the regression line. The MSE indicates
that the residuals are naturally distributed. In addition, the multiple regression uses
the sum of square errors to measure how well the data fit the model. Thus, SSE =
271.148 means that the data fits for the model. One can notice that the current model
(R?>=0.766, MSE = 0.514,SSE = 271.148). Therefore, the model is seen to be more
realistic in predicting the effect of blood variables, age, and sex on the types of anemia.
The values B refer to the estimated parameter values of the real parameters obtained
by the regression optimization when the SSE indicating the estimated residual sum of
squares value, which started at 2456.997 and through the optimization, it has been
obtained as 271.148 (see Table [4.4land Figure [4.3). Estimating the parameters of the
model is a difficult task for classical algorithms for improvement. The starting values
of the parameters have been selected. Therefore, the regression technique has been
taken to obtain the optimum solution. In the estimation process, the residual sum of
squares reaches its level of stability at the iteration of 141.

In the current study, it was observed to the results of the regression analysis better
than Neural Networks (see Table[4.5)). This is because the nonlinear regression model
is easy to implement and expected to provide optimum estimates. Additionally, the
regression model is a special neural network model with no hidden layers, that is,
consisting of just a single neuron, it acts upon multi-inputs to produce one output.
So, we can compute the optimal regression model directly and efficiently. The ANNs
cannot compute an optimal model directly, when adding an activation function and
possibly hidden layers. In this case, there are no guarantees that the process will
converge, or that we will find the best model. It is also a lot slower than the direct
solution. So, in the regression analysis, we are forced to use an iterative solution: an
algorithm that goes through steps, usually improving the model with each step.

This chapter addresses the anemia forecasting issue by the nonlinear regression in
comparing with two rival methods, the nonlinear deep learning method (LSTM) and
the nonlinear regression neural network [[105/]]. The computed results reveal that the
multiple nonlinear regression has the best fit to the initial dataset comparing to the
two competitors (see Table[4.5)). Thence, this study presents a relatively very accurate

nonlinear model for predicting anemia types. Additionally, since the convergence be-
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havior of the nonlinear regression analysis is shown that it is in a rapid convergence
tendency, reaches its level of stability at the iteration of 141 and the iteration number

is limited to 171 iterations (see Table [4.4|and Figure [4.3)).

4.6 Conclusions

Multiple nonlinear regression model, for the first time, has been derived in predicting
the anemic diseases. The parameter values produced have all been seen to be the op-
timum values obtained from the multiple nonlinear regression approach, to find the
approach that is more realistic. It has also been seen that the proposed multiple non-
linear regression method has a very rapid convergence tendency. The results confirm
that the multiple nonlinear regression model is adequate and has a high ability to pre-
dict. In the analysis of the current anemia problem, the multiple nonlinear regression
method has been found to be more accurate than nonlinear deep learning methods
and nonlinear regression neural network. It has been concluded that the model is
expected to be helpful for diagnosis of the types of anemia to health providers and

designing appropriate treatment programs for their patients.
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5}

PARAMETER ESTIMATION TO ANEMIA MODELS USING
THE PARTICLE SWARM OPTIMIZATION

5.1 Introduction

The progress of medical models considered to produce medical outputs is important
tools to deal with the behavior of a medical problem. They depend on the quality
of any particular objective achieved on the state of knowledge about the system and
how well successful modeling. As indicated in the literature [[10, (12} 83], 86/, 88, 106]],
mathematical medical modelling has been realized to be a fundamentally important
tool for the analysis of pathological characteristics. Response to a medical model to
limits of performance is of major interest and thus the current medical model describes
the relationship, between the biomedical variables and the diseases. The observational
data may be modelled by a function linearly. Here the parameters for each of the
variables in the linear medical model are estimated that to be the optimal model for
more accurate prediction of anemia through the biomedical information.

Many models have been produced in dealing with various medical problems in the
literature such as congenital heart disease [[107]], diabetic nephropathy [[108]], osteo-
porosis [109], and cancers [[110, 111]]. A frequently encountered medical problem is
that of having a set of data, which one wishes to describe it by a mathematical model
and determine a set of parameters that characterize the model. In this study, the major
emphasis will be the fitting parameters of the model assumed to have some particular
medical or mathematical significance through estimating best values in the set of the
parameters. Therefore, the main aim here is to develop a medical model to study the
effect of the blood variables, sex, and age on the pathologies through a large group

of the variables because there has been an increase in the incidence of anemia among
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different segments of society.

Some other estimation methods [135] (112} (113} [114] to analyze disease problems in
addition to anemia. Heuristic algorithms can be effectively used to find the optimal
parameters for the linear model in plenty of medical studies. Therefore, the PSO is one
of the most efficient optimization algorithms that are used for a wide range of complex
optimization problems. In computational science, the PSO is a computational method
that works to improve the problem by repeatedly trying to improve the candidate
solution. Therefore, these candidate solutions are created by the method repeatedly
for improving the possibility of being the actual solution.

The PSO inspired by the behaviour of social models for flocking birds or fish educa-
tion are based on individual improvement and social collaboration [[78,115,[116, 117,
118]]. In this study, the PSO approach has been proposed to estimate the best param-
eter values of the linear medical model. This algorithm is common in the academic
community as a typical tool because of its ability to optimize complex search spaces.
Thus, the above advantages of the PSO sent us to use in dealing with the current med-
ical problem. It should be borne in mind that fewer blood variables may cause the
problem not to be effectively represented.

This chapter is structured as follows. The next section discusses the study samples
of the medical dataset, explain the models procedure, the PSO algorithm, and how
to test the model. Section 5.3 estimate parameters of the medical models. Section
5.4 presents the results and discussion. Finally, conclusions and recommendation for

future work have been detailed.

5.2 Materials and Methods

5.2.1 Study Samples of the Medical Dataset

The data used here were collected from observations of anemia and included (539
subjects, 211 healthy subjects, 328 sick subjects) provided from blood laboratories in
Iraq and we have taken observations of the ages of individuals between (6-56) years.
Here, we have some blood diseases are Iron deficiency anemia (1), Deficiency Vitamin
B12 (2), Thalassemia (3), Sickle cell (4) and Spherocytosis (5). For each disease, we

have samples for the individuals and for each individual readings of the blood vari-
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ables are Hemoglobin (HB), Red Blood Cell (RBC), Mean Corpuscular Hemoglobin
(MCH), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), Haematocrit
(HCT), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), and
sex (male (1) and female (2)), and age. The number of variables studied for the model
is consisting of ten independent variables and a dependent variable. The dependent
variable consists of six different types of output (healthy subject: 0 and blood diseases:

1-5).

5.2.2 Modelling

5.2.2.1 Linear Model

A linear model is an engine behind a multitude of data applications used for many
forms of prediction. Therefore, processes are governed by linear models in various
fields of science such as the estimation of the parameters of a linear medical model
for predicting anemia.
A linear medical model describes a linear relationship between the dependent and
independent variables. The derived model is as follows:

k

y:B0+B1xl +B2X2+...+kak+€=BO+ZBiXi+€. (5.1)
i=1

The linear model with k predictor variables and the observations recorded for each of

these n levels can be expressed in the following style

Yo =By +BiX91+ByX9, + ... + By Xor + €5

(5.2)
Yi= BO +lei1+B2Xi2 +... +kaik + €;

Yn=Bg+Bix,;1+Byx 5+ ... + Bx + €,

Here y4,Y5,..., ¥y, and Xxq, X, ..., X, stand for the dependent and independent obser-

vations, respectively.
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System (5.2) can be reexpressed in a more compact way:

y=BX+e, (5.3)
with
_J’l- | I Xy Xpp xlk- _Bo- -61-
S it B Ll I g P
1% N I Y PN I P

where y,X,B and € indicate to the observations, the parameters of the model and the
unobserved random variable that adds noise to the linear relationship, respectively.
To obtain the linear model, B should be known. B is estimated by minimizing the sum
of the squared error function SSE(B) under the consideration of the PSO. Knowing the
estimates B, the linear model can now be expressed as [66)} [67]]

A

¥ = BX, (5.5)

where ¥ is the estimated value for y.

5.2.2.2 Nonlinear Model

Nonlinear models are important tools because life is nonlinear and many physical
processes and natural phenomena encountered in the physical environment such as
biology, medicine, chemistry, physics, and other areas are better represented by a non-
linear model. Therefore, most processes are governed by nonlinear models in various
fields of science such as the estimation of the parameters of a nonlinear medical model
for predicting the anemia types.

A nonlinear model can be given in a basic form,

y=f(x,b) +e, (5.6)

where y,x, b, f() and € indicate the observations, the vector of the coefficients, the

known nonlinear function and the unobserved random variable that adds noise to the
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nonlinear relationship, respectively.

A nonlinear medical model describes the relationship between the dependent and
independent variables when the behaviour of the model is nonlinear. Many nonlinear
models can be proposed for dealing with anemia problem. In this regard, here, several
attempts have been made to obtain the best results, depending on the biomedical
variables and the exponent of each input variable of interest. Other types of nonlinear
models for the data were also considered and it was noted that the current model was

the best among these models to obtain accurate results.

_ bO
"~ E,+E,

y +€ (5.7)

Here the denominator of equation (5.7) is separated into two parts as E;, E,. Thus,

the separated parts are clearly expressed as:

E; = b;(HB)® + by(RBC)® + by(MCH)* + b, (WBC)® + bs(Sex)?
E, = by(HCT)+ b,(MCHC)? + bg(PLT)? + bo(MCV)3 + b,o(Age).

Here y is the type of anemia, b;,0 < i < 10, are the parameters to be determined.
Here HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT indicate Hemoglobin, Red Blood
Cell, Mean Corpuscular Hemoglobin, White Blood Cell, Mean Corpuscular Volume,

Haematocrit, Mean Corpuscular Hemoglobin Concentration, Platelets, respectively.

5.2.3 Particle Swarm Optimization

The PSO is a population-based stochastic approach, invented by Eberhart and Kennedy
[[72], for solving continuous and discrete problems. They inspired from social behavior
of bird flocking or fish schooling, these animals have a major role in the development
of the algorithm.

The method optimizes a problem by trying to improve a solution. Each particle traces
its coordinates in the area of the problem that relates to the best solutions carried out
so far. This value is called pbest. Another "best" value that is tracked by the PSO is the
best value, obtained so far by any particle in the neighbors of the particle. This location
is called lbest. When the particle considers the whole population as its topological
neighbors, the best value is a global best and is called gbest. The PSO idea consists of,

at each time step, changing the velocity of each particle towards the pbest and [best
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locations.

In the PSO, simple software agents, called particles, move in the search space for im-
provement. These randomly selected particles search solution space using the infor-
mation of their neighborhood, personal information, and randomness. The position
of a particle represents a candidate solution to the existing improvement problem.
All particles look for better sites in the search space by changing their velocity at the
end of each iteration. Because of each iteration, the position and velocity vectors are

expressed as follows:

ViH_1 = le_t + Clrl(Pbest _Xit) + CZrZ(Gbest _Xit) (5.8)
Xit+1 :Xit + ‘/it+1 (5.9)

where t,w,cq,Cy, 71,79, Vi', X;", Ppse and G, indicate iteration number, weight pa-
rameter, acceleration coefficients (cognitive parameter, social parameter), random
numbers uniformly distributed between 0 and 1, velocity of individual i at iteration
t, position of individual i at iteration t, the best local value of each particle, the best

value of swarm, respectively [|78, 79, [80].

5.2.4 Test for the Model

The coefficient of the determination, usually referred to as R?, is a measure explaining
the change in the relationship between all blood variables, sex, and age and the anemia
types.

Here, we present some initial considerations. Consider the variance of the observa-
tions y by analyzing the total sum of squares, denoted by SST and the sum of squared

errors, denoted by SSE. That is,

SST = ;=) (5.10)
j=1
and
SSE= > (y;— )= e (5.11)
j=1 j=1

Now, the coefficient of the determination is defined by
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_ SST—SSE
~ §sST

R? (5.12)

If the percentage explained by the coefficient of the determination is small, compati-
bility may not be very appropriate.

A terminological difference arises in the expression root mean squared error (RMSE).
It is the square root of the average squared differences between the prediction and
actual observations. The RMSE indicate the concentration of data around the model.
In other words, it tells us how the data is centered around the most appropriate line

(66, 67, [70]. It is very common to use the RMSE in the predictions. Then it is given

by
RMSE = vMSE. (5.13)
Thus, it is given by
1,
MSE = Hzef' (5.14)

5.3 Estimation of the Parameters of the Model

5.3.1 Linear Model

The currently linear medical model is a linear equation for our data. The model is as

follows:

y =B, + B;HB + B,RBC + B;MCH + B,WBC + B;MCV
(5.15)

+BgHCT +B,MCHC + BgPLT + BySex + B;jAge + €

where y is the type of anemia and B;, 0 < i < 10, are the parameters to be determined.
Here HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT stand for Hemoglobin, Red Blood
Cell, Mean Corpuscular Hemoglobin, White Blood Cell, Mean Corpuscular Volume,
Haematocrit, Mean Corpuscular Hemoglobin Concentration, Platelets, respectively.

As previously mentioned, the model can be represented in a more compact form as

follows:

¥ =BX (5.16)
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where

1 Hb RBC ... Age B
§= Y2 X= .21 .22 8€210 B= 1 (5.17)
| V539 | | 1 HBs3gy RBCszgp ... Agessg | | B1o |

Here §, X and B represent the estimates for output (anemia), the independent obser-
vations matrix, and estimated parameters, respectively.

This study aims at estimating the parameters B by minimizing the sum of the squared
error function SSE(B) under the consideration of the PSO.

Hence, the fitness function in the PSO search engine is selected as the SSE(B), specif-

ically:

SSE(B) = Z(yl~ — f(x;, B)). (5.18)

For the linear model in equation (5.15),

539
SSE(B) = » [y,—(Bo+ B,HB + B,RBC + ByMCH +B,WBC + BsMCV
i=1 (5.19)

+B¢HCT +B,MCHC + BgPLT + BySex + By,Age)]>.

Here y; are the dependent observations, B;,0 < i < 10, are the parameters to be
determined.

In this chapter, the PSO is effectively used to estimate the parameters of the linear
medical model in deriving an accurate model by finding a rapid convergence of the
minimum value of the sum of the squared error in fewer iterations provides accurate
estimates for parameter estimation of the linear medical model (see Tables [5.1}{5.5)).
The settings for the main parameters of the PSO method (w, c¢;, ¢,, and the size of the
swarm) determine how to optimize the search space. Usually decreases the parameter
w from around 0.9 to around 0.4 during the computation, the appropriate value for
the parameter w provides a balance between the global and local exploration capacity
of the swarm and thus a better solution [73] 116} (117, [118]. If the parameter w is

much less than one, only a small momentum of the previous time step is preserved,
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thus rapid changes in the direction are possible with this setting. High settings near
1 facilitate global searching. The usual choices for acceleration coefficients are ¢; and
¢y, usually, ¢, is equal to c, and ranges between O and 4. The size of swarm plays a
very important role in the PSO, as is the durability and complexity of the algorithm.
By inspiring from the literature [|73}, (117, [118], we have produced our PSO algorithm

as given in Figure (5.1
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Initialize the PSO parameters
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Calculate fitness of the initial population
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Calculate particle velocity

v

| Update particle position |

Figure 5.1 The PSO algorithm for the estimation of the parameters
of the linear model

5.3.2 Nonlinear Model

The nonlinear function f in (5.6) has parameters given by b = (b4, b,, ...). This study
aims at estimating the parameters b obtained by minimizing the sum of the squared

error function SSE(b) under the consideration of the PSO.
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Hence, the cost (fitness) function in the PSO search engine is selected as the SSE(b),
specifically:
SSE(b) = > (y, — f (x;, b)) (5.20)
i=1

For instance, for the model in equation (5.7),

539 b
SSE(b) =D [vi— 3
1 2

i=1

12 (5.21)

where E; = b;(HB)® + by(RBC)® + by(MCH)* + b, (WBC)? + bs(Sex)?
E, = by(HCT)+ b,(MCHC)? + bg(PLT)? + bo(MCV)3 + b,o(Age).

Here y; are the dependent observations, b;,0 < i < 10, are the parameters to be
determined.

The main parameters of the PSO method are w, ¢, c,, and the size of the swarm. The
settings for these parameters are decided according to how to optimize the search
space. The inertia weight is used to control the effect of the previous history of veloc-
ities on the current velocity. Thus, the parameter w regulates the trade-off between
the global and local exploration capabilities of the swarm and also provides a balance
between the global and local exploration capacity of the swarm and to find a better
solution [|73, [74} [119]]. The usual choices for acceleration coefficients are cognitive
parameter c¢; and social parameter c,, usually, ¢, is equal to ¢, ranged between 0 and
4. The swarm size plays a very important role in the PSO, as is the complexity and
sturdiness of the algorithm. From the literature [|73, [120], we have inspired our PSO

algorithm as shown in Figure (5.2
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Figure 5.2 The PSO algorithm for the estimation of the parameters
of the nonlinear model
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5.4 Discussion

5.4.1 Linear Model

The current study focuses to obtain the best estimate of the parameters through the
PSO for the currently derived linear model to detect the link between the biomedical
variables and anemia.

As opposed to the PSO approach, classical methods in dealing with linear models
have some disadvantages as seen in the previous works [[11], (74} 75| 121, [122l], where
they require many mathematical operations; like the Jacobean matrix, and matrix
operations.

The researchers estimated parameters of a great number of models by using the PSO
in the literature [[73] 76, [77, (123, 124, (125, [126]]. They discussed different prob-
lems/models by using their own approaches. We have here studied a linear model for
a great number of biomedical data of anemia through the PSO to estimate the param-
eters for the model and investigating the relationship between many blood variables
and the anemia types as opposed to researchers in the literature [37,38},89, [90]], they
used a very limited number of blood variables or a few the anemia types.

Here, we have estimated the parameters of the linear model through the PSO algo-
rithm (see Tables(5.1}j5.4), and the produced results for various versions of the model
by the minimum error (see Table . In the estimation, when the number of itera-
tions is increasing, the error is decreasing as seen in Figures Notice that the

iteration reaches its optimum level at 4500.
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Table 5.1 Parameter estimation by the PSO algorithm when the iteration is
500.

Biomedical Variables Parameters B;,0 <1 < 10 SST SSE(B) RMSE R?

Constant -3.167 1157.243 1817.378 1.836 O
HB -0.726
RBC -0.634
MCH 0.901
WBC 0.009
MCV 0.125
HCT 0.062
MCHC -1.408
PLT 0.257
Sex 0.465
Age 0.010

Sum of Squares Error

100 150 200 250 300 350 400 450 500
iteration

Figure 5.3 Sum of square errors of the PSO algorithm when the
iteration is 500
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Table 5.2 Parameter estimation by the PSO algorithm when the iteration is
1000.

Biomedical Variables Parameters B;,0 <i <10 SST SSE(B) RMSE R?

Constant 7.799 1157.243 1080.449 1.416 0.066
HB 1.399
RBC 1.141
MCH -0.275
WBC -0.018
MCV 0.114
HCT -0.743
MCHC -0.149
PLT 0.002
Sex 0.596
Age 0.023

Sum of Squares Error

0 100 200 300 400 500 600 700 800 900 1000
iteration

Figure 5.4 Sum of square errors of the PSO algorithm when the
iteration is 1000
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Table 5.3 Parameter estimation by the PSO algorithm when the iteration is
2000.

Biomedical Variables Parameters B;,0 <i < 10 SST SSE(B) RMSE R?

Constant 5.603 1157.243 405.983 0.868 0.649
HB 0.252
RBC 0.270
MCH 0.146
WBC 0.0002
MCV 0.053
HCT -0.304
MCHC -0.038
PLT 0.0008
Sex -0.208
Age -0.013

18000 T T

16000 |~ -
14000 |- —
12000 |~ -
10000 |- -
8000 - -
6000 |~ =
4000 -
2000 — -

1 1 | T I T T T T
0
o 200 400 600 800 1000 1200 1400 1600 1800 2000

iteration

Sum of Squares Error

Figure 5.5 Sum of square errors of the PSO algorithm when the
iteration is 2000
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Table 5.4 Parameter estimation by the PSO algorithm when the iteration is

4500.

Biomedical Variables

Parameters B;,0 <i < 10

SST

SSE(B) RMSE

R2

Constant 6.345 1157.243 347.989 0.803 0.699
HB -0.201
RBC -0.461
MCH -0.033
WBC 0.001
MCV 0.003
HCT -0.022
MCHC 0.003
PLT 0.001
Sex -0.306
Age -0.009

14000 T

12000 |-

10000 |-

o
S
3
S
T

6000 [~

Sum of Squares Error

4000

L |

T T T T T T T T
0
) 500 1000 1500 2000 2500 3000 3500 4000 4500
iteration

Sum of square errors of the PSO algorithm when the
iteration is 4500

Figure 5.6
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Table 5.5 Parameter estimation of the various forms by the PSO algorithm
when the iteration is 4500.

Models SSE  RMSE R®

Model 1 for (HB, sex and age) 500.117 0.963 0.568
Model 2 for (RBC, sex and age) 956.017 1.332 0.174
Model 3 for (MCH, sex and age) 862.084 1.265 0.255
Model 4 for (WBC, sex and age) 891.756 1.286 0.229
Model 5 for (MCV, sex and age) 937.336 1.319 0.190
Model 6 for (HCT, sex and age) 406.077 0.868 0.648
Model 7 for (MCHC, sex and age) 876.008 1.275 0.243
Model 8 for (PLT, sex and age) 843.894 1.251 0.271
Model 9 for (HB, MCH, sex and age) 496.170 0.959 0.571
Model 10 for (RBC, WBC, sex and age) 885.520 1.282 0.235
Model 11 for (MCV, PLT, sex and age) 829.614 1.241 0.283
Model 12 for (MCHC, HCT, sex and age) 389.654 0.850 0.663
Model 13 for (HB, WBC, HCT, sex and age) 384.303 0.844 0.667
Model 14 for (MCV, MCHC, RBC, sex and age) 844.280 1.252 0.270
Model 15 for (HB, RBC, MCH, WBC, sex and age) 353.664 0.810 0.690
Model 16 for (MCV, HCT, MCHC, PLT, sex and age) 378.580 0.838 0.670

In this study, the size of the swarm is taken to be according to the structure of the
linear medical model, the number of estimated parameters, and searching space be-
tween (-10 and 10). The acceleration coefficients; cognitive parameter c¢; and social
parameter ¢, are selected as 1 and 3, respectively. The algorithm is set to stop after
different iterations and different independent experiments to check the durability of
the estimation strategy.

Estimating the parameters of the medical model is a difficult task for classical methods
of optimization. The starting values for the parameters are randomly selected from
the search area. The B values refer to the estimated parameter values for the real
parameters obtained by the PSO. After different independent attempts have been made
and different iterations 500, 1000, 2000 and 4500 have been taken to obtain the best
parameters, and then we have obtained the best estimated parameters with iterations
of 4500 (see Tables and Figures [5.3}[5.6).

Since the PSO algorithm is random inherently, convergence behavior and final esti-

mated values can be of attention. For the medical model, the behavior of the error
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function is interpreted through the PSO approach, which consists of the values evalu-
ated during the process of minimization (see Figures [5.3}[5.6)).

The parameter value is suitable for the model, when SSE = 347.989,RMSE =
0.803,and R? = 0.699 by the PSO. This is important because the SSE measures how
well the data fit the model and means a better fit the model with the data and small
values of the RMSE indicate the concentration of data around the model line. The
medical model of interest has been seen to be effective significantly, on the prediction
of the anemia types, which explain 69.90% of the change in the relation of the model
between the observational variables and the anemia types.

The results obtained from the SSE,RMSE,and R? by using the PSO at the iteration of
4500, that the models produced in terms of a great number of blood variables a better
relationship appear than the models produced in terms of fewer number of blood

variables for predicting the anemia types (see Tables |5.4)5.5)).

5.4.2 Nonlinear Model

The current study concentrates on getting the best estimation of the parameters
through the PSO for the currently derived nonlinear medical model to discover the
effect of the blood variables, sex, and age on the anemia types. Thus, the parameters
of the nonlinear medical model are estimated through the PSO algorithm (see Table
[5.6]), and the produced results for various versions of the models through the mini-
mum error are illustrated in (Table . In the estimation step, when the number
of iteration increases, the error is decreasing as seen in Figures Notice that
the iteration reaches its optimum level at 3000. It is important to note that, nonlin-
ear regression analysis, the nonlinear deep learning (LSTM) and nonlinear regression
neural network methods have also been applied to compare our model results. The

results detected that the currently derived model is better than the other competitors

(see Table[5.8)).
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Table 5.6 Estimation of the parameters of the nonlinear medical model by
the PSO algorithm

Iteration Number 100 500 1000 3000
MSE 2.071 0.717 0.510 0.503
SST 1157.243 1157.243 1157.243 1157.243
SSE(b) 1116.277 386.518 275.358  271.148
R? 0.036 0.666 0.762 0.766
Constant b, | -283.184 -211.634 -439.808 -337.966
HB b, -0.001 -0.0001 -0.0001 -0.0002
RBC b, -0.025 -0.0001 0.029 -0.002
MCH b, 0.0001 0.0001 0.0003  -0.00009
WBC b, -1.177 0.0001  0.000006 0.00002
MCV bs -9.257 -1.456 1.006 -2.600
HCT be 0.0001 -0.895 -7.688 -8.733
MCHC b, | -10.285 1.720 -72.156 -40.975
PLT bg -2.359 -0.673 -9.352 -3.851
Sex by -4.206 1.551 -115.177 -191.734
Age bio | -2.024 -0.909 0.159 -0.256

2500

2000

1500

1000

Sum of Squares Error

1 1 1
0 50 100 150 200 250 300 350 400 450 500
iteration

Figure 5.7 Behaviour of the sum of square errors by the PSO when
the iteration is 500
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Figure 5.8 Behaviour of the sum of square errors by the PSO when
the iteration is 1000
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Figure 5.9 Behaviour of the sum of square errors by the PSO when
the iteration is 3000
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Table 5.7 Parameters Estimation of the nonlinear medical model by the
PSO algorithm in various forms

Models SSE R*>  MSE
Model 1 for (HB, sex and age) 519.588 0.551 0.971
Model 2 for (RBC, sex and age) 940.242 0.188 1.744
Model 3 for (MCH, sex and age) 889.922 0.231 1.650
Model 4 for (WBC, sex and age) 939.826 0.188 1.757
Model 5 for (MCV, sex and age) 908.792 0.215 1.699
Model 6 for (HCT, sex and age) 734.005 0.366 1.372
Model 7 for (MCHC, sex and age) 907.781 0.216 1.697
Model 8 for (PLT, sex and age) 930.375 0.196 1.739
Model 9 for (HB, RBC, sex and age) 514.533 0.555 0.964
Model 10 for (MCH, WBC, sex and age) 882.851 0.237 1.638
Model 11 for (MCV, HCT, sex and age) 728.407 0.371 1.364
Model 12 for (MCHC, PLT, sex and age) 855.350 0.261 1.602
Model 13 for (WBC, MCV, HCT, MCHC, sex and age) 716.885 0.381 1.348
Model 14 for (HB, RBC, MCH, PLT, sex and age) 380.217 0.671 0.715

Table 5.8 Comparison of the PSO results with the other methods

Methods SSE  MSE  R?
PSO 271.148 0.503 0.766
Nonlinear regression analysis 271.148 0.514 0.766

Nonlinear Deep Learning Methods (LSTM) 273.465 0.560 0.760
Nonlinear Regression Neural Networks 287.826 0.534 0.752

LSTM: Long Short Term Memory

Researchers of previous studied have used a very limited number of blood variables or
a few types of anemia [37, [38], [90] to investigate various diseases, and they kept the
number of observational variables and the anemia types in their studies very modest
as opposed to the current study. Therefore, here, we focus on an optimum nonlinear

medical model investigating the relationship between many blood variables and types

of anemia.

As opposed to the PSO approach, classical ways in dealing with the nonlinear model

have some disadvantages as seen in the previous works [[11], 74} [75, 121}, [122[] with
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required a lot of cumbersome operations like matrix operations, gradient operations,
and the Jacobean matrix. In the past [73| [74, |76, [77, 126, [127, [128]], researchers
estimated the parameters of a large number of various models by using the PSO. In the
corresponding literature, they discussed various models/problems by using their own
approaches. We have here studied a nonlinear model for a large amount of medical
data on anemia to estimate the parameters of the model through the PSO.

In this work, the swarm size is calculated according to the structure of the nonlinear
medical model, the number of estimated parameters, and the search space (-1000 and
10). The algorithm parameters c¢; and c, were selected as 1 and 3, respectively. The
termination criterion was defined as the iteration limit. Specifically, the algorithm was
set to stop after different independent experiments for different iterations to verify the
robustness of the estimation strategy.

Estimating the parameters of the nonlinear medical model for improvement is a com-
plicated task for classical algorithms. The b values refer to the estimated parameter
values for the real parameters that the PSO obtains after randomly specifying the initial
parameters of the model from the search space. After making different independent
attempts and different iterations, 100, 500, 1000, and 3000 were taken to get the best
parameters, and we achieved that goal at 3000 iterations (see Table and Figures
5.9).

Since the PSO algorithm is inherently random, the behavior of convergence and the
final estimated parameters values can be of interest. For the nonlinear medical model,
the behavior of the error function is explained by the PSO approach which consists of
the values estimated during the minimization process (see Figures |5.7H5.9). If Fig-
ures|5.7H5.9|are examined closely, the superiority variation to estimation accuracy for
the parameter values of the medical model when SSE = 271.149, MSE = 0.503,and
R? = 0.766 by the PSO may be seen. This is important because the SSE and the MSE
measure how well the data fit the model and anemia types, and concentration of data
around the model line, which means a better fit for the model with the data. The model
has been seen to be significantly effective on the prediction of anemia types, and the
model explains 76.60% of the change in the relationship between the observational
variables and the anemia types.

From the results obtained in Tables and we see through the SSE,MSE,and
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R? by using the PSO that the models produced in terms of a larger number of blood
variables show a better correlation than the models produced in terms of fewer blood
variables for predicting anemia types at the iteration of 3000.

This study addresses the anemia prediction issue by the PSO compared to other
methods including nonlinear regression analysis, the nonlinear deep learning method
(LSTM), and the nonlinear regression neural network. The computed results showed

that the PSO has the best fit to the initial dataset compared to the others (see Table

5.8).

5.5 Conclusions

This study has discovered the anemia types through biomedical information under the
consideration of eight different blood variables, sex, and age of individuals. Therefore,
it has developed an alternative for estimating the parameter approach that depends
on the PSO algorithm in medical models. As opposed to classical methods, it has
been seen that the PSO approach is more advantageous, it requires less mathematical
operations to estimate medical model parameters. It can be concluded that the PSO
algorithm has been considered as an effective and very appropriate estimating method
for the current and similar to current medical models. The parameter values produced
are seen to be the most up-to-date and maybe the best. Thus, the PSO algorithm shows
the tendency of rapid convergence for the model with the knowledge that the number

of parameters is eleven.
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6

RESULTS AND DISCUSSION

This chapter presents the total conclusion to the work reported in this thesis. This
study has forecasted the anemia through biomedical data under the consideration of
the blood variables, sex, and age of individuals. The observational blood variables are
HB, RBC, MCH, WBC, MCV, HCT, MCHC, and PLT.

First, the MLR model has been derived for representing the anemia types. The results
revealed that the regression model is very fitted one and is capable of representing
the problem. In the analysis of the current anemia problem, the multiple regression
method has been found to be slightly more accurate than linear deep learning meth-
ods.

Secondly, a multiple nonlinear regression model has been derived for representing the
anemia. The parameter values produced have all been seen to be the optimum values
obtained from the multiple nonlinear regression approach. It has also been seen that
the proposed multiple nonlinear regression method has a very rapid convergence ten-
dency. The results confirmed that the multiple nonlinear regression model is adequate
and has a high ability to predict. The multiple nonlinear regression method has been
found to be slightly more accurate than the nonlinear deep learning methods and the
nonlinear regression neural network.

Thirdly, an alternative approach has been developed for estimating the parameter that
relies on the PSO algorithm in the medical models. The PSO method has been used
to estimate model parameters, the PSO approach presented here does not require any
additional calculations. As opposed to the PSO approach, classical methods have some
disadvantages because they require many intricate mathematical operations. It can be
concluded that the PSO algorithm has been seen to be an effective and very suitable

parameter estimation method for the current medical models. The parameter values
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produced are the latest and best results for securing a more realistic approach. Thus,
the PSO algorithm showed the tendency of rapid convergence for the models with
the knowledge that the number of parameters is eleven. The PSO approach has been
found to be more accurate than the nonlinear deep learning method and the nonlinear
regression neural network.

It has been concluded that the models are expected to be helpful for the diagnosis of
the anemia types to health providers and designing an appropriate treatment program
for their patients. It can be accepted that the use of relatively less number of data with
the current approach could have weakened importantly our results and observations.
For further research, these mathematical models may be attempted to improve under

the consideration of various computational methods.
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