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ABSTRACT

MATHEMATICAL MODELING TO PREDICT THE ANEMIA
BASED ON MEDICAL DATA

Arshed A. AHMAD

Department of Mathematics

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Murat SARI

Different diseases and diagnostic methods using various tests produced large amounts

of complex medical data. Therefore, huge number of patient records in clinical cen-

ters, hospitals, and other health institutions have created the need for developed and

accurate medical applications to help doctors. Since anemia is one of the most com-

mon health problems in recent era, the aim of this thesis is to predict anemia from a

population through biomedical variables of individuals (the blood variables, age, and

sex) and the anemia types using the currently produced mathematical models. This

work is carried out using the dataset consisting of 539 subjects provided from blood

laboratories. This thesis basically focuses on mathematical modeling to predict the

anemia problem based on medical data. The main problems associated with medi-

cal diagnose involve the identification of highly accurate prediction models. For the

first step, a mathematical method based on multiple linear regression (MLR) analysis

has been applied to a reliable model that investigate if there exists a relation between

the anemia and the biomedical variables and to provide the more realistic one. For

the second step, a multiple nonlinear regression analysis has been used for a reliable

model that research if there exists a mathematical relation between the observational

variables and the anemia types. The parameter values produced are all seen to be

the optimum values obtained from the multiple regression approaches, to provide the

more realistic one. At the last step, optimum medical models based on biomedical

variables are produced and an effective technique is used in investigating the opti-

mum parameters of the models. To achieve this, the particle swarm optimization

(PSO) algorithm has effectively been applied in predicting the parameters of the mod-

xv



els through the biomedical variables. Optimum values of the parameters produced

from the PSO algorithm are used here to obtain more realistic models. The current

models have been compared with the other ones and the results have been seen to be

better. The models based on the variables and outcomes are expected to serve as a

good indicator of disease diagnosis for health providers and planning treatment sched-

ules for their patients. Thus, the study has been seen to be beneficial especially for

those are interested in biomedical models arising in various fields of medical science,

especially anemia.

Keywords: Anemia, Medical modelling, Mathematical modelling, Regression model,

Particle swarm optimization, Nonlinear model.

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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ÖZET

TIBBİ VERİLERE DAYALI ANEMİYİ TAHMİN ETMEK
İÇİN MATEMATİKSEL MODELLEME

Arshed A. AHMAD

Matematik Bölümü

Doktora Tezi

Danı̧sman: Prof. Dr. Murat SARI

Birden fazla test kullanan farklı hastalıklar ve tanı yöntemleri büyük miktarlarda kar-

maşık tıbbi veriler üretmi̧stir. Bu nedenle, klinik merkezler, hastaneler ve diğer sağlık

kurumlarındaki çok sayıda hasta kaydı, hastanın kritik durumda olup olmadığına

bakılmaksızın veya uzaktan takip gerektirmeksizin doktorların ve terapistlerin vakaları

araştırmasına yardımcı olmak için geli̧smi̧s ve doğru tıbbi uygulamalara ihtiyaç duy-

muştur. Anemi günümüzde en sık rastlanan sağlık sorunlarından biri olduğundan,

bu tezin amacı bireylerin biyomedikal deği̧skenlerini (kan deği̧skenleri, yaş ve cin-

siyet) kullanarak anemi olup olmadıklarını bulmak ve halihazırda üretilen matem-

atiksel modelleri kullanarak anemi türünü tahmin etmektir. Bu çalı̧sma, kan laboratu-

varlarından sağlanan 539 denekten oluşan veri ile gerçekleştirilmi̧stir. Bu tez, temel

olarak tıbbi verilere dayalı anemi problemini tahmin etmek için matematiksel mod-

ellemeye odaklanmaktadır. Tıbbi teşhislerle ili̧skili temel problemler, doğru tahmin

modellerinin tanımlanmasını içerir. İlk adım için, anemi ve biyomedikal deği̧skenler

arasında bir ili̧ski olup olmadığını araştıran ve daha gerçekçi olanı sağlayan güvenilir

bir model için çoklu doğrusal regresyon analizine dayanan bir matematiksel yöntem

uygulanmı̧stır. İkinci adım için, gözlemsel deği̧skenler ve anemi türleri arasında bir

ili̧ski olup olmadığını araştıran güvenilir bir model için doğrusal olmayan çoklu re-

gresyon analizi yöntemi kullanılmı̧stır. Üretilen parametre değerlerinin hepsinin, daha

gerçekçi olanı sağlamak için çoklu regresyon yaklaşımlarından elde edilen optimum

değerler olduğu görülmektedir. Son adımda, biyomedikal deği̧skenlere dayanan op-

timum doğrusal tıbbi model üretilir ve modelin optimum parametrelerinin araştırıl-

masında etkili bir teknik kullanılır. Bunu başarmak için, parçacık sürüsü optimizasy-
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onu (PSO) algoritması, modelin parametrelerini biyomedikal deği̧skenler aracılığıyla

tahmin etmede etkili bir şekilde uygulanmı̧stır. PSO algoritmasından üretilen parame-

trelerin optimum değerleri burada daha gerçekçi bir model elde etmek için kullanılır.

Mevcut modeller diğer yöntemlerle karşılaştırıldığında; mevcut sonuçların daha iyi

olduğu görülmektedir. Deği̧skenlere ve sonuçlara dayanan modelin, sağlık hizmeti

sunanlar açısından hastalık teşhisi için iyi bir araç ve hastalar için doğru tedavi plan-

laması beklenmektedir. Bu nedenle, çalı̧smanın özellikle tıp biliminin bir çok farklı

alanında ve anemi teşhisinde ortaya çıkan biyomedikal modellerle ilgilenenler için

yararlı olacağı görülmüştür.

Anahtar Kelimeler: Anemi, Tıbbi modelleme, Matematiksel modelleme, Regresyon

modeli, Parçacık sürü optimizasyonu, Doğrusal olmayan model.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

This chapter presents an overview of the anemia problems and their solution tech-

niques that have been offered in the literature. Also, the goal of this research and the

hypothesis of the thesis are given respectively.

1.1 The Literature Review

A data model is an abstract model that organizes elements of the data and standardizes

how they relate to each other and to the properties of real-world entities. A data model

is based on data, data relationship, and data constraint. A data model provides the

details of information to be stored and is of basic use when the result is the generation

of algorithm for an application or the preparation of a functional specification to aid

a computer software make decision. Therefore, the study of observational data to dis-

cover their relations and to summarize the behavior of data are both understandable

and useful for human [1, 2].

In recent years, data has occupied great interest in information systems. This is be-

cause existing computers are able to create and store almost unlimited datasets. In

fact, database and information technology have grown systematically from primal file

processing systems to complicated and powerful database systems [3].

So, a data model focuses on representing the data as a user sees it in the "real world".

It serves as a bridge between the concepts that make up the real-world processes and

the physical representation of those concepts in a database [3].

Health data is any information related to the physical or mental health conditions of in-

dividuals, reproductive outcomes, causes of death, and quality of life of the individual

or population. Health information includes clinical metrics along with environmental,

1



social, economic and behavioral information related to health and wellness. A lot of

data is collected, stored, processed and used when individuals interact with healthcare

systems. A large collection of such data collected by health providers may be included

to that. Increased collection data of patients is a major component of digital health.

Thus, medical data refer to health-related information associated with patient care

regularly or as a part of a clinical trial program [4, 5].

Medical diagnosis is considered as a very important issue that requires adequate and

proper implementation, hence, designing accurate models in this area would be very

beneficial in diagnosing process and health providers take advantage of models to

diagnose very complicate cases with a large number of patients in time with prede-

fined diagnosing models based the models. An automatic medical diagnosing model

is possible to be extremely advantageous by bringing the whole materials, tools, and

objectives together in order to make a relation with a diagnosis target.

Medical data analysis and diagnosing diseases as acknowledged discovery is important

but hard missions and naturally is based on years of practice of a professional as seen

in Saez et al. [6]. As pointed out by Liu et al. [7], initial medical diagnosis model

from patients’ medical reports in early time has an important meaning for accurate

health treatment.

mathematical model is a relationship that includes all variables of a problem. There-

fore, it is a description of a system that uses mathematical concepts and language. A

model can help to explain a system, to study the effects of different components and to

make predictions about the behavior of a system. This process of repeated iteration is

a typical modelling project and is one of the most useful aspects of modelling in terms

of improving our understanding of how the system works. Note that, a mathematical

model depends on the data model. Thus, a key determinant of the potentiality of a

given model to help in such measures is the availability of data to parameterize the

model. It is therefore important to understand the types of data that are necessary for

a modeling project to be successful.

In mathematical modeling, the values of dependent variables depend on the values

of independent variables. The dependent variables represent the output whose varia-

tion is being studied. The independent variables represent inputs or causes, potential

reasons for variation.

2



It is helpful to divide up the process of a model into four categories of activity: building,

studying, testing and use.

In general, defects found at the studying and testing stages are corrected by return-

ing to the building stage. Note that if any changes are made to the model, then the

studying and testing stages must be repeated [8].

A pictorial representation of potential routes through the stages of modelling can be

seen in Figure 1.1.

Figure 1.1 Process of modelling

The data model focuses on what data is required and how it should be organized rather

than what operations will be performed on the data. A data model is independent of

hardware or software constraints. The data model focuses on representing the data as

the user sees it in the real world, therefore, it serves as a bridge between the concepts

that make up real-world events [8, 9].

The construction progress of mathematical models considered to produce medical out-

puts is a growing field in medical science. Mathematical models used for various

reasons are important equipments to deal with the behavior of a medical problem.

Mathematical modeling has been realized to be a fundamentally important tool for

the analysis of pathological characteristics. Therefore, finding a response to a medical

model with high performance is of major interest and thus the medical model can de-

scribe the relationship between the biomedical variables and the diseases. Therefore,

the researchers used the mathematical model to predict their problems, especially

their medical problems, such as Sari et al. [10] proposed two systems, artificial neu-

ral network, and adaptive neuro-fuzzy inference system, to predict the low back pain

level. A particle swarm optimization (PSO) and K-means clustering algorithm have

been combined to predict tibial rotation pathologies through divided datasets into

three clusters by Sari et al. [11]. Also, Sari and Cetiner [12] used the artificial neural

networks to predict the effect of physical factors on tibial motion through gender, age,
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body mass, and height. Li et al. [13] studied the prediction of the risks of congen-

ital heart disease in pregnant women by using the artificial neural network through

hospital-based case-control study. Combining the genetic algorithm with the neural

network are predicting the risk of cardiovascular disease by Amma [14]. Sisodia and

Sisodia [15] used three machine learning algorithms, Decision Tree, SVM, and Naive

Bayes to predict diabetes. Also, Zou et al. [16] adapted the decision tree approach,

random forest, and neural network to predict diabetes mellitus.

Also, various researchers used mathematical models to predict anemia and blood dis-

ease problems, such as Martínez-Martínez et al. [17] used machine learning tech-

niques to predict the hemoglobin (HB) level in hemodialysis patients. Reymann et al.

[18] proposed an algorithm to predict blood glucose levels through support vector re-

gression model. Altrock et al. [19] developed a mathematical model that describes the

aging and survival of sickle susceptible and normal RBCs. Implementations of some

classification algorithms have been seen through various methods in the literature such

as Naïve Bayes, Neural network, Decision Tree (J48), and Support Vector Machine to

predict anemia types (chronic anemia, iron deficiency anemia, anemia of renal dis-

ease, thalassemia, and aplastic anemia) through Mean Corpuscular Volume (MCV),

Hematocrit (HCT), HB, Mean Corpuscular Hemoglobin Concentration (MCHC), Red

Cell Distribution Width (RDW) by Abdullah and Al-Asmari [20]. An application of a

multilayer perceptron neural network to estimate missing values and predict the de-

gree of post-operative anemia by Yu et al. [21]. Two anemia types, iron deficiency,

and thalassemia were investigated with white blood cell (WBC), RBC, HB, HCT, MCV,

mean corpuscular hemoglobin (MCH), MCHC, RDW, and PLT by five classification al-

gorithms and a vote algorithm were used by Hasani and Hanani [22]. El-Halees and

Shurrab [23] predicted a blood tumor by using three different methods of data mining

which are association rules, rule induction, and deep learning and through WBC, RBC,

HB, HCT, MCV, MCH, MCHC, RDW, PLT. Two algorithms were examined Hamdi et al.

[24], support vector regression and differential evolution algorithms for prediction of

continuous blood glucose, their algorithm achieved high prediction accuracy. Tetschke

et al. [25] built a mathematical model which has ability to capture the most impor-

tant features to predict of RBC Count after blood loss through HB, HCT, MCH, RBC.

A simple coronary disease prediction model was developed using a gradient boosting
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decision tree algorithm by using WBC, RBC, MCHC, HCT, MCV, PLT, HB Meng et al.

[26]. Jaiswal et al. [27] suggested machine learning algorithms, Naive Bayes, random

forest, and decision tree algorithm for the prediction of anemia disease with HB, RBC,

HCT, MCH, MCV.

Multiple regression analysis (MRA) is a statistical tool that predicts the value of a

dependent variable based on the multi-independent variables. Thus, once the multi-

ple variables related to a dependent variable are determined, any information about

all predictor variables can be realized and used to make more accurate predictions.

Therefore, researchers applied regression techniques to predict anemia and blood dis-

eases by models based on blood variables, such as relating soil lead levels to predict

children’s blood lead levels through a multivariate linear regression model by Lewin et

al. [28]. Prediction of anemia was done by Makh et al. [29] in intrauterine growth by

applying linear regression analysis. Also, Foster et al. [30] applied the MRA to predict

anemia on unenhanced computed tomography of the thorax through HB, HCT. Vincent

et al. [31] built a multivariable logistic regression model to find out chemotherapy-

induced anemia in patients with non-advanced cell lung cancer through HB testing.

Also, Schneider et al. [32] applied a multiple regression for identifying risk factors

related to anemia and iron deficiency in a sample of children. Lee et al. [33] used a

simple regression analysis to identify the relationship between HB or HCT level and

dural sinus density. The development of a set of 14 models with a genetic risk score,

a set of these models were used by Milton et al. [34] to forecast fetal hemoglobin in

patients with sickle cell anemia, the association was tested using a linear regression

model. Determining risk factors for anemia in children depending on the hemoglobin

concentration in the blood were determined Dey and Raheem [35] using a multilevel

regression model. Building a linear regression model was built by Hsieh et al. [36]

through pulse transit time to predict blood pressure. Chen and Miaou [37] proposed

an anemia testing approach by applying a Kalman filter and a regression method.

Determinants of childhood anemia was evaluated by Habyarimana et al. [38] by ap-

plying the quantile regression model and the test of the HB. Aishah et al. [39] verified

the relation of fasting blood glucose, cholesterol, and blood pressure levels in healthy

subjects and applied the MLR approach.

The PSO is a randomized, population-based method that helps with optimization prob-
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lems. The method works with a set of possible solutions and constraints on an opti-

mization problem. The optimization problem must have a target status then the algo-

rithm runs to solve the problem and provide the best values. Also, it is used on the

mathematical models to find the best parameters for the model. Therefore, researchers

apply the PSO to improve the efficiency of the models that work to predict anemia and

blood diseases. Moreover, the PSO was used to improve the simultaneous selection

of the parameters for the calibration of the model using the support vector regres-

sion method that estimates blood glucose concentrations [40]. Back-propagation was

considered the back-propagation neural network at first, then the PSO based back-

propagation networks were applied by Sharma et al. [41] to diagnose the anemia in

pregnant women. Blood glucose detection was done by Dai et al. [42] through two

artificial neural networks were used as a basic structure of the PSO-ANN model.

Along the literature survey of disease knowledge discoveries, many mathematical

models have been tested through various methods and promising results have been

obtained. However, investigations in disease prediction are still an open field because

of several reasons like:

- There are always new diseases and new tests to discover those diseases.

- Most of the prediction of diseases have not reached the saturation point.

- Scientists always develop new mathematical models and optimization algorithms

that give more accurate solutions.

In this study, a mathematical method based on multiple regression analysis has been

applied to reliable models that investigate whether there exists a relation between the

anemia types and the biomedical variables or not.

1.2 Objectives of the Thesis

This thesis aims at investigating the performance of the MRA and the PSO in order to

obtain optimal parameters of the model and at having a capable model representing

anemia problems through blood variables, sex, and age.

To achieve this major aim, two objectives are outlined:

1. To derive a new mathematical model to study the effect of the blood variables,

sex, and age on the anemia types through a large group of the blood variables.
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2. To accurately estimate the parameters of the model.

1.3 Hypothesis of the Thesis

The proposed medical models can be properly applied to identify anemia types

through the observational variables. Medical models are able to produce very accurate

results to be a good guide for the diagnosis of the anemia types to health providers

and planning treatment schedules for their patients.

1.4 Overview of the Thesis

This thesis consists of six chapters. Chapter 1 presents literature review, objectives,

and hypothesis of the thesis. The remaining contents are organized as follows:

Chapter 2 describes the problem and summarizes the conventional methods which

were applied to the problem. The applied techniques to models were reviewed.

Chapter 3 proposes a multiple linear regression model which is produced through

biomedical information to predict the anemia. This prediction has been made by ap-

plying the MRA to a mathematical model. The study is conducted in terms of data

consisting of 539 subjects provided from blood laboratories. The produced results

based on the model were compared. Finally, the linear regression model has been

analyzed and discussed.

Chapter 4 presents the details of multiple nonlinear regression analysis used in the

model that investigate whether there exists a relation between the anemia and the

biomedical variables or not. This work has been carried out in terms of the data in

a similar way of Chapter 3. The model results of two rival methods were compared.

Finally, the model has been analyzed and discussed.

Chapter 5 focuses on predicting the anemia through biomedical variables by using the

optimum models. To achieve this, the particle swarm optimization algorithm has effec-

tively been applied in predicting the parameters of the model through the biomedical

variables. The study was conducted in terms of the data in a similar way of Chapter 3.

Finally, the models have been analyzed through the optimum values of the parameters

produced from the PSO algorithm and discussed.

Some final remarks and recommendations were reported in Chapter 6.
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2
BASIC CONCEPTS

2.1 Introduction

This chapter displays a general review of medical problems and a review of the tech-

niques for solving these problems that have been offered in the literature until the date

of performing this study. This chapter especially focuses on mathematical models to

identify an appropriate technique for solving the problem.

The following sections of this chapter are arranged as follows: Section 2.2 provides

a brief description of anemia problems and blood variables. An extensive review of

techniques applied to the anemia prediction is presented in Section 2.3.

2.2 Anemia Problems

Anemia is defined clinically as hemoglobin value that is below the appropriate ref-

erence range for an individual. This decrease in the hemoglobin level leads to de-

creased oxygen delivery to organs of a body and therefore appears in the symptoms

of a headache, fatigue, inability to focus, attention, weakness, exhaustion, chest pain,

cold hands, and feet. As signified in the literature [43, 44, 45, 46], the anemia was

initially thought to be associated primarily with the infectious, inflammatory diseases.

Also, it is a lower hemoglobin level below the normal limits determined by the World

Health Organization (WHO) [43]. As pointed out by Hébert et al. [44], anemia is

one of the most common cases among blood diseases worldwide. There are many

types of anemia. Depending on the types, the symptoms of anemia can range from

short episodes to chronic conditions. Each type of anemia produces a different case,

ranging from moderate to severe and each has its own causes. Anemia can be either
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temporarily or long-term disease.

2.2.1 The Literature Review

In the current study, the data for each subject readings of blood variables are

Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin (MCH),

White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin Concen-

tration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex and age.

In addition, the anemia types in this study are iron deficiency anemia (1), deficiency

vitamin B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5).

The corresponding blood variables can be briefly introduced as follows. The HB is

a portable protein inside the RBC and contains iron atoms, and that carries oxygen

from the lungs to the body’s tissues and returns carbon dioxide from the tissues back

to the lungs. The RBCs are concave cells are useless nucleus contains the HB. The

MCH is the calculated value derived from the HB measurement and a number of red

cells. The WBCs are the cells of the immune system that are involved in protecting the

body against infectious disease. The HCT is percentage of the RBCs volume of total

blood volume. The MCHC is the calculated concentration of HB in a specific volume

of RBC. The PLT is an irregular, disc-shaped element in the blood that assists in blood

clotting. The PLTs are usually classed as blood cells as well. Average size of the red

cells in a sample is measured by the MCV. The other biophysical variables, sex and age,

are considered. Because natural HB in the body varies from male to female, and thus

male: 1, female: 2. Yet, natural HB in the body varies according to age [43, 44].

In the literature, many studies were carried out [47, 48, 49, 50, 51] by using relatively

less number of input variables to predict the type of anemia. The methods used in the

corresponding studies produced relatively less accurate results. For the blood vari-

ables, HB, RBC, MCV, MCH, and Red Cell Distribution Width (RCDW); a study were

carried out by Sirachainan et al. [47] to create a mathematical model identifying iron

deficiency anemia. They found out a model for detecting beta thalassemia carriers

by using the MCV and MCH [48]. Jimnez [49] used the RBC, HB, and HCT for diag-

nostic value of the common blood disease tests in the distinction between thalassemia

and anemia due to iron deficiency. Another researcher [50] considered the MCV, MCH,

HCT, and HB exploring the relationship between iron deficiency anemia and academic
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achievement third-grade high school female students. Piplani et al [51] used the HB,

RBC, MCV, and MCH to assess the validity of 12 different indices to distinguish beta

thalassemia trait from the iron deficiency. Despite all those pioneering advances in

these fields, the corresponding studies used a relatively limited number of blood vari-

ables or a very few numbers of anemia types, usually considered beta thalassemia or

iron deficiency anemia.

2.3 The Methods

A medical problem of frequently encountered is that of having a set of data produced

from medical analysis, so they are normally too large to derive a mathematical model

and to define a set of parameters that characterize the model. In this section, the

following techniques are given for solving the medical problem.

2.3.1 Multiple Regression Analysis

The MRA is a useful statistical process that can be used to determine the level of

influence of some independent variables on dependent variables and to estimate re-

lationships between the variables. Also, it is a powerful technique used to predict

the unknown value from two or more known variables. More specifically, the MRA

helps a person understands how to change the typical value of a dependent variable

when changing one of the independent variables, while the other independent vari-

ables are installed. Multiple regression model allows to analyze the relative effects of

these independent or expected variables on the dependent variable and these complex

datasets often lead to false conclusions if they are not correctly analyzed [52, 53, 54].

Regression analysis entered social science through the work of Legendre in 1805 and

Karl Gauss in 1809. The first form of regression was the least-squares method. Gauss

issued another development of the least-squares theory in 1821 with a version of the

Gauss-Markov theorem [55, 56]. Galton invented the term regression in the 19th

century to depict a biological phenomenon [55, 56].

For Galton, the term regression had only biological meaning, but later, Yule and Pear-

son edited Galton’s work to a more general statistical background, so, Pearson used

multiple regression for the first time, 1908, to learn more about the relationship among
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several independent variables and a dependent variable [57, 58].

Since multiple regression is a neural network without a hidden layer only, the input

and output layer, a regression model can be considered as consisting of just a single

neuron. So, regression model, each input is related to each output, in this case there

is only a single output, as seen in Figure 2.1 [59].

Figure 2.1 Multiple regression is a single-layer neural network

Many researchers have considered the MRA to deal with different problems such as

a simple model for weather predicting through the parameters of weather [60], de-

velopment of a model a dynamic manufacturing system for reducing the gap between

theory and real-time data of the system [61], evaluating the energy performance of

commercial buildings and to predict any possibility for energy consumption decrease

through developing energy consumption indicators for the buildings [62], actual per-

formance of the proton exchange membrane through three temperatures, four flow

rates, and two flow patterns [63], hydrogen storage on MgeH2 and LiNH2 under dif-

ferent temperature [64], and wind turbine power curve [65].

Most regression models propose that Yi is a function of X i and B, with ε representing

random statistical noise:

Yi = f (X i, B) + ε. (2.1)

Estimating the function f (X i, B) that fits with the data is the goal of the researcher.

Therefore, we must specify the shape of the function f . Sometimes, the form of this

function depends on knowing the relationship between Yi and X i, so, a suitable form

is chosen for f .
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Once the researcher determines the model, various forms of regression analysis pro-

vide tools to estimate the parameters B, such as the least-squares to find the value of

B by minimizing the sum of the square errors, can be represented as follows:

∑

i

(Yi − f (X i, B))2. (2.2)

2.3.1.1 Multiple Linear Regression Analysis

In linear regression, relationships are represented by using linear prediction functions

that estimate unknown model parameters from the data. Linear regression focuses

on the probability distribution of the response in the light of prediction values, rather

than the common probability distribution of all these variables. It was the first type

of regression analysis to be fully studied and widely used in practical applications.

Also, the models that are linearly dependent on their unknown parameters are easier

than nonlinear models associated with their parameters and because the statistical

properties for resulting estimators are easier to identify.

A linear regression model that contains more than one predictor variable is called a

multiple linear regression model. A MLR model with k predictor variables and inde-

pendent observations

y= B0 + B1 x1 + B2 x2 + ...+ Bk xk + ε= B0 +
k
∑

i=1

Bi x i + ε. (2.3)

The observations recorded for each of these n levels can be expressed in the following

way

y1 = B0 + B1 x11+B2 x12 + ...+ Bk x1k + ε1

y2 = B0 + B1 x21+B2 x22 + ...+ Bk x2k + ε2

...

yi = B0 + B1 x i1+B2 x i2 + ...+ Bk x ik + εi

...

yn = B0 + B1 xn1+B2 xn2 + ...+ Bk xnk + εn.

(2.4)

The dependent observations y1, y2, ..., yn, and the independent observations x1, x2

, ..., xk, have n levels. Then x i j represents the ith level of the jth predictor variable, x j.
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System (2.4) can be represented as follows:

y= BX+ ε, (2.5)

Here

y=
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
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
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(2.6)

where y,X,B and ε stand for the observations, the regression coefficients and an un-

observed random variable that adds noise to the linear relationship between the de-

pendent variable and regressors, respectively. In matrix notation, these equations can

be written as:


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




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yn















=
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


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
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



+















ε1

ε2
...

εn















. (2.7)

To obtain the regression model, B should be known. Therefore, B is estimated by using

the least square estimates as follows

B̂= (XT X)−1XT y, (2.8)

where XT represents the transpose of the matrix X while (XT X)−1 represents inverse

of the matrix (XT X). Knowing the estimate B̂, the MLR model can now be expressed

as [66, 67]

ŷ= B̂X, (2.9)

where ŷ is the estimated value for y from the regression.
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2.3.1.2 Multiple Nonlinear Regression Analysis

The multiple regression approach has ability to determine the relative effectiveness

of one or more variables of the model. In multiple regression, the data is used to

describe a relationship between the state variables for the model of interest. Nonlinear

regression analysis model can then be given as

y= f (X,B) + ε, (2.10)

where y,X,B, f () and ε indicate the observations, the vector of the regression coeffi-

cients, the known nonlinear regression function and the unobserved random variable

that adds noise to the nonlinear relationship between the dependent variable and the

regressors, respectively.

Nonlinear least squares are in the form of least squares analysis used to fit a set of

observations with a model that is nonlinear in unknown parameters. The basis of the

method is to approximate the model by a linear one and to refine the parameters by

successive iterations [68, 69]. First, let

yi = f (X i,B) + εi, 1≤ i ≤ n, (2.11)

and

Q =
k
∑

i=1

(yi − f (X i,B))
2. (2.12)

In order to find

B̂ = arg min
B

Q, (2.13)

first each of the partial derivatives of Q is found with respect to B j. Then, each of

the partial derivatives is taken to be equal to 0 and the parameters Bk are replaced by

B̂k, 0≤ k ≤ n. The functions to be found are nonlinear in the estimates B̂k.

The regression analysis uses the optimization to estimate the parameters of the model

by minimizing the sum of the square error. So, the optimization involves minimizing

some form of summed squared deviations between the data and the fitted model. This
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assumes that a mathematical model has been selected. So, thus, a form of optimization

could be considered as the best way of selecting a suitable model [70, 71].

2.3.1.3 Sums of Squares

Sum of squares is a statistical tool used to determine the dispersion of data as well

as the suitability of data in the regression analysis model. The sum of squares got its

name because it is calculated by finding the sum of squared differences. Therefore,

the sum of the smaller squares indicates a fitting model where there is less variation

in the data.

The three main types of sum of squares are the sum of squares total (SST), the sum

of squares regression (SSR), and the sum of square errors (SSE; also known as the

residual sum of squares).

The SST is a variation in the values of a dependent variable from the sample mean of

the dependent variable. Basically, the SST determines the overall variance in a sample

(see Figure 2.2) and calculated by

SST =
n
∑

j=1

(y j − ȳ)2. (2.14)

where y j and ȳ indicate the dependent observations and the mean of dependent ob-

servations, respectively.

The SSR describes how extent the regression model represents the fit data; therefore,

it indicates how good the regression model in explaining the data. The formula for

computing the SSR is (see Figure 2.2):

SSR=
n
∑

j=1

( ŷ j − ȳ)2. (2.15)

where ŷ j and ȳ indicate the estimated value and the mean of dependent observations,

respectively.

The SSE basically measures the variation of modeling errors. In general, a small value

of the SSE indicates that the model of regression can better interpret the data, while a

big value of the SSE indicates that the model interprets the data poorly. The SSE can
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be found (see Figure 2.2) by

SSE =
n
∑

j=1

(y j − ŷ j)
2 =

n
∑

j=1

e2
j . (2.16)

where y j and ŷ j indicate the dependent observations and the estimated value, respec-

tively.

The total sum of squares can be decomposed into the sum of squares explained by

the regression and the sum of square errors as seen in Figure 2.2 [67, 68, 69, 70] as

follows,

SST = SSR+ SSE. (2.17)

Figure 2.2 Explanation of the sum of squares

2.3.1.4 Determination of the Coefficient

Determination of the coefficient is a measure used in statistical analysis that assesses

the model success in interpreting and predicting future results. It indicates the level

of variance shown in the dataset. Determination of the coefficient, also known as R2,

is used as a guideline to measure the accuracy of the model,

R2 =
SSR
SST

= 1−
SSE
SST

. (2.18)

It is the square of the correlation coefficient. The goodness-of-fit of the regression
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line in the estimation of the dependent variable uses the independent variable. In

other words, R2 is a measure showing the rate of the contribution of the independent

variables in the change of dependent variable. It ranges between zero to one, 0 ≤

R2 ≤ 1. When R2 tends to be very high and closer to 1, the relationship is better, and a

model becomes very reliable for future prediction. However, small R2 does not imply

that the model is bad. On the other hand, a value 0 indicates that the model fails

to accurately design the data. It also allows R2 to display the degree of correlation

between the variables of interest [67, 68, 69, 70].

2.3.1.5 Residual Analysis

The residual of the observed value is the difference between the observed value and

the estimated value. In regression analysis, the observations yi may be different from

the fitted values ŷi (the predicted value) obtained from the model (see Figure 2.3).

The vector of residuals, ei, is thus given by:

ei = yi − ŷi. (2.19)

Figure 2.3 Explaining the residual

The mean square error (MSE) is the measure of the average square difference between

the estimated values and the actual value. Also, the MSE of a regression is a number
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computed from the sum of squares of the computed residuals. The smaller MSE closes

to fit the data. Then it is given by

MSE =
1
n

n
∑

j=1

e2
j . (2.20)

The root mean square error (RMSE) is a common measure of the differences between

sample values predicted by a model estimated and values observed [67, 68, 69, 70].

Then it is given by

RMSE =
p

MSE. (2.21)

2.3.2 Particle Swarm Optimization

The PSO proposed by Kennedy and Earhart [72] has been used to solve various opti-

mization problems. They inspired from social behavior of bird flocking or fish school-

ing, these animals have a major role in the development of the algorithm. So, the

researchers used the PSO to estimate the parameters of models and implemented dif-

ferent strategies of mathematical methods to predict and to optimize problems. For

instance, the PSO algorithm is applied to 28 well-known nonlinear regression models

and the results display that the PSO algorithm provides accurate outcomes for esti-

mating the parameter of their nonlinear regression models [73]. The PSO algorithm

applied for finding the nonlinear model parameters [74], estimating the parameters

of multiple linear regression models [75], the researchers used the PSO, genetic al-

gorithm, and multiple regression in the estimation of soil mechanical resistance value

[76], and estimation of the parameters was done for the nonlinear multi-regression

model based on Choquet integral through a PSO algorithm [77].

The method optimizes a problem by trying to improve a solution. Each particle traces

its coordinates in the area of problem that relates to the best solutions carried out so

far. This value is called Pbest. Another "best" value that is tracked by the PSO is the best

value, obtained so far by any particle in the neighbors of the particle. This location

is called lbest. When the particle considers the whole population as its topological

neighbors, the best value is a global best and is called Gbest. The PSO idea consists of,

at each time step, changing the velocity of each particle towards the Pbest and lbest

locations.
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In the PSO, simple software agents, called particles, move in the search space for im-

provement. These randomly selected particles search solution space using the infor-

mation of their neighborhood, personal information, and randomness. The position

of a particle represents a candidate solution to the existing improvement problem.

All particles look for better sites in the search space by changing their velocity at the

end of each iteration. Because of each iteration, the position and velocity vectors are

expressed as follows:

Vi
t+1 =ωVi

t + c1r1(Pbest − X i
t) + c2r2(Gbest − X i

t) (2.22)

X i
t+1 = X i

t + Vi
t+1 (2.23)

where t,ω, c1, c2, r1, r2, Vi
t , X i

t , Pbest and Gbest indicate iteration number, weight pa-

rameter, acceleration coefficients (cognitive parameter, social parameter), random

numbers uniformly distributed between 0 and 1, velocity of individual i at iteration

t, position of individual i at iteration t, the best local value of each particle, the best

value of swarm, respectively [78, 79, 80].

We can see how the best position of the particle, Pbest, and the best position of the

group, Gbest, affect the velocity of the particle in the next iteration. Therefore, the

essential concept of the PSO is to accelerate each particle to the position of Pbest and

Gbest, with a random weighted acceleration at each step (see Figure 2.4).

The update velocity for particles consists of three components in equations (2.22) and

(2.23), in the two-dimensional search space. Therefore, Figure 2.4, illustrates how the

three components of particle velocity move to the best global position in time steps t

and t+1, respectively [81].
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Figure 2.4 Update of a velocity and position for a particle in a 2D
search space

2.4 Why These Methods

A major advantage of data analysis using the multiple regression model is the ability to

determine the relative effect of one or more predictor variables on the value. Also, the

estimates from a wide category of potential parameter estimates are used under the

usual assumptions for the process modeling. Moreover, it uses the data very efficiently,

and good results can be available with small data sets. Also, as an extremely important

feature in the regression, the ideal parameters are obtained from the least squares

regression by evaluating unknown parameters.

Despite the recognized advantages of conventional methods, most of them suffer from

various disadvantages such as high cost, difficulty in use, and time-consuming. In this

case, optimization can be recalled as a very good alternative to the corresponding

methods. In the recent years, the PSO has been successfully applied to many areas to

simplify optimization problems that had previously experienced serious difficulties. It

is demonstrated that the PSO produces better results in a faster, cheaper way and the

simplicity of the implementation, is the most attractive feature of this algorithm. An-

other reason that makes the PSO attractive is that it is reliable, robust, and considered

as an effective meta-heuristic optimization algorithm.
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3
ANEMIA MODELLING USING THE MULTIPLE LINEAR

REGRESSION ANALYSIS

3.1 Introduction

A mathematical model is an essential tool for analyzing pathological characteristics

and it can be used for various reasons as in the literature [10, 11, 12, 82, 83, 84, 85,

86, 87, 88]. To assess situations seen in hospitals, any disease condition has several

effects for a single disease. So, most outcomes in real life problems are affected by

multiple input variables.

This chapter aims at predicting pathological subjects from a population through phys-

ical biomedical variables (eight blood variables, sex, and age) and output (Anemia

types). It is important to predict the type of anemia because there has been an in-

crease in the incidence of anemia among different segments of society. To make the

best biomedical decisions, medical predictions play a very important role in the process

of diagnosis and planning treatment for health providers. So, our goal is to develop

a new mathematical model to study the effect of the blood variables, sex, and age

on the types of anemia. Our model, different from the mathematical models given in

the literature [38, 89, 47, 90, 48] has also been successfully used in the prediction of

several types of anemia through a large group of blood variables, sex, and age.

To the best knowledge of the author, more general models representing the behaviour

closer to nature have been produced for the first time. The more number of input

variables makes the derived model more realistic in the biomedicine. Thus, for such

a realistic model, for such a large number of input variables a study has been ac-

complished here. Therefore, this study is believed to be an important contribution to

predict the types of anemia.
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Despite very effective, striking and frontier studies in the literature, researchers have

used models with limited number of variables. Therefore, the present study focuses

on the determination of the type of anemia through a very large number of the obser-

vational variables, more realistic one. Since many researchers have commonly con-

sidered the MRA among the modelling techniques to deal with various problems in-

cluding anemia [38, 60, 61, 63, 91, 92, 93, 94, 95, 96, 97], the multiple analysis is

taken into account in modelling the current biomedical problem.

The remainder of the chapter is organized as follows: Section 3.2 highlight the study

samples, explain linear regression analysis procedure and test the model. Building

the linear model of data by the regression analysis has been given in Section 3.3.

Regression model has been analyzed and discussed in Section 3.4. Finally, conclusions

and future research directions have been detailed.

3.2 Materials and Methods

3.2.1 Study Samples

As pointed out by the corresponding researchers, anemia is one of the most common

blood diseases worldwide. The diagnosis of anemia depends on the concentration of

hemoglobin less than the normal limits followed by the World Health Organization

(WHO), and it is worth noting that the concentration of hemoglobin varies by age and

sex as seen in Table 3.1 [43].

Anemia is classified into several types and those types differ in terms of their causes.

Some types of anemia are hereditary. These types may affect children and may cause

health problems for a lifetime. Women after adulthood may experience iron deficiency

anemia, blood loss during the menstrual cycle, the most common type, may occur

during pregnancy due to excessive need of minerals in the blood by the fetus during

pregnancy, older people may be exposed to anemia due to malnutrition and other

medical conditions [43].
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Table 3.1 Hemoglobin thresholds used to define anemia [43]

Age or gender group Hemoglobin threshold (g/l)

Children (0.50–4.99 yrs) 110

Children (5.00–11.99 yrs) 115

Children (12.00–14.99 yrs) 120

Non-pregnant women (≥15.00 yrs) 120

Pregnant women 110

Men (≥15.00 yrs) 130

The data were collected from observations of blood variables in order to identify a

healthy or infected person and involved 539 subjects provided from blood laboratories

in Iraq. Individuals between 6-56 years old have been taken into consideration and

included 248 males, 291 females. Subjects are consisting of 211 healthy ones and of

328 anemic ones to build the model. The number of variables studied and selected

for building the model is eleven, the independent variables identified are ten and

a dependent variable. The dependent variable consists of six different outputs are

healthy (0) and five blood diseases are iron deficiency anemia (1), deficiency vitamin

B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5).

Here the samples for people and for each subject readings of blood variables are

[43, 44] Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin

(MCH), White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin

Concentration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex

and age. The anemia types and blood variables for our data are displayed in Table

3.2.
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Table 3.2 Some samples from the data

HB RBC MCH WBC MCV HCT MCHC PLT Sex Age Anemia type

17.5 5.55 31.6 14.1 92 50.9 34.5 318 2 23 0

16.3 6.07 26.9 8.16 80.9 49.1 33.2 349 1 23 0

11.1 4.38 25.3 5.8 81 35.6 31.1 227 1 11 1

11.1 4.85 22.8 10 81 39.4 28.1 274 2 16 1

9 3.47 25.8 2.3 88 30.4 29.5 148 1 11 2

1.46 4.4 30.4 59.8 108 15.8 28.2 330 2 29 2

8.1 3.6 22.4 12 78 28.1 28.7 472 1 15 3

3.92 6.6 16.8 8.3 60 23.7 27.9 443 2 17 3

8.3 2.58 31.9 12.4 103 26.7 30.9 458 1 11 4

7.9 2.88 27.4 17.55 83 23.9 33.1 703 1 16 4

6.8 5.77 11.7 11.9 49 28.4 23.8 573 2 11 5

3.2.2 Multiple Linear Regression Model

Consider a MLR model with k predictor variables, independent observations

y= B0 + B1 x1 + B2 x2 + ...+ Bk xk + ε= B0 +
k
∑

i=1

Bi x i + ε. (3.1)

The observations recorded for each of these n levels can be expressed in the following

way

y1 = B0 + B1 x11+B2 x12 + ...+ Bk x1k + ε1

y2 = B0 + B1 x21+B2 x22 + ...+ Bk x2k + ε2

...

yi = B0 + B1 x i1+B2 x i2 + ...+ Bk x ik + εi

...

yn = B0 + B1 xn1+B2 xn2 + ...+ Bk xnk + εn

(3.2)

The dependent observations y1, y2, ..., yn, and the independent observations x1, x2

, ..., xk, have n levels. Then x i j represents the ith level of the jth predictor variable, x j.
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System (3.2) can be represented as follows:

y= BX+ ε, (3.3)

with

y=















y1

y2
...

yn















,X=















1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

...

1 xn1 xn2 . . . xnk















,B=















B0

B1
...

Bk















,ε=















ε1

ε2
...

εn















(3.4)

where y,X,B and ε stand for the observations, the regression coefficients and an un-

observed random variable that adds noise to the linear relationship between the de-

pendent variable and regressors, respectively.

To obtain the regression model, B should be known. Therefore, B is estimated by using

the least square estimates as follows

B̂= (XT X)−1XT y, (3.5)

where XT represents the transpose of the matrix X while (XT X)−1 represents inverse

of the matrix (XT X). Knowing the estimate B̂, the MLR model can now be expressed

as [66, 67]

ŷ= B̂X, (3.6)

where ŷ is the estimated value for y from the regression.

3.2.3 Test for the Model

The linear regression model estimation is selected and the sum of square tests. The

computation formula can be given as follows:

SST =
n
∑

j=1

(y j − ȳ)2, (3.7)

SSR=
n
∑

j=1

( ŷ j − ȳ)2, (3.8)
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SSE =
n
∑

j=1

(y j − ŷ j)
2 =

n
∑

j=1

e2
j . (3.9)

The coefficient of determination is a measure showing the rate of the contribution of

the independent variables in the interpretation of the change in the dependent variable

as known from the literature [70, 71]. It is given as follow:

R2 =
SSR
SST

= 1−
SSE
SST

. (3.10)

A terminological difference arises in the expression mean squared error (MSE). The

MSE of a regression is a measure of the average of the sum of squared error and

how the concentration of data around the regression model. The smaller the MSE,

whenever the results are more accurate [70, 71]. Then it is given by

MSE =
1
n

n
∑

j=1

e2
j . (3.11)

3.3 Building Linear Regression Analysis Model

The currently produced MLR model is a linear equation determined as previously men-

tioned in Section 3.2.2. The obtained model is as follows:

y=B0 + B1HB + B2RBC + B3MCH + B4W BC + B5MCV

+ B6HC T + B7MCHC + B8P LT + B9Sex + B10Age+ ε
(3.12)

where y is type of the anemia and Bi, 0≤ i ≤ 10, are the parameters to be determined.

The linear regression model, as explained in Section 3.2.2, is estimated as

ŷ=6.377− 0.224HB − 0.224RBC − 0.029MCH + 0.001W BC

+ 0.0005MCV − 0.016HC T + 0.007MCHC + 0.001P LT

− 0.311Sex − 0.009Age.

(3.13)

Here the coefficient values of the linear model have been obtained through the multi-

ple regression approach, to find the model that is more realistic (see Table 3.9).
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As previously mentioned, the model can be represented in matrix form as follows:

ŷ= B̂X (3.14)

where

ŷ=
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(3.15)

Here ŷ and X represent the estimates for output (types of the anemia) and the inde-

pendent observations matrix, respectively.

3.4 Results and Discussion

Different strategies of mathematical methods are implemented to analyze blood vari-

ables, as in the literature [47, 48, 50, 98]. The MRA has been taken into account

by many researchers [38, 60, 61, 63, 91, 92, 93, 94, 95, 96, 97] while dealing with

various anemia problems at different levels. However, they used a limited number of

blood variables and they did not study a relationship for the prediction of the types

of anemia. Therefore, the current study concentrates on the investigation of the re-

lationship between a very large number of blood variables and the types of anemia.

Various versions of models, based on the variables, are derived (see Table 3.3).
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Table 3.3 Various forms of the multiple linear models: blood variables, sex,
and age.

Models R2 MSE

Model 1 for (HB, sex and age) 0.568 0.935

Model 2 for (RBC, sex and age) 0.174 1.787

Model 3 for (MCH, sex and age) 0.255 1.611

Model 4 for (WBC, sex and age) 0.229 1.667

Model 5 for (MCV, sex and age) 0.190 1.752

Model 6 for (HCT, sex and age) 0.649 0.759

Model 7 for (MCHC, sex and age) 0.243 1.637

Model 8 for (PLT, sex and age) 0.271 1.577

Model 9 for (HB, RBC, sex and age) 0.686 0.680

Model 10 for (MCH, WBC, sex and age) 0.304 1.509

Model 11 for (MCV, HCT, sex and age) 0.649 0.760

Model 12 for (MCHC, PLT, sex and age) 0.314 1.486

Model 13 for (WBC, MCV, HCT, MCHC, sex and age) 0.668 0.723

Model 14 for (HB, RBC, MCH, PLT, sex and age) 0.698 0.656

The models produced in terms of larger number of blood variables show better correla-

tion than the models produced in terms of less number of blood variables for predicting

the types of anemia in equation (3.13). However, naturally some of the variables are

of more effect than others.

After the essential requirements have been verified for the multivariate analysis in

equation (3.13), the variables have been included for the MLR analysis. Those vari-

ables consist of regression coefficients B, the blood variables (HB, RBC, MCH, WBC,

MCV, HCT, MCHC, PLT), sex, and age. Therefore, the MLR shows the synergistic effect

of predicting the types of anemia better than the ones used fewer blood variables. The

enter method of the MLR has been used in the current analysis. All the variables were

introduced into the regression model as selected by the enter method of the MLR.

In the outcome of the current analysis, it has been found that there is a more signif-

icant relation (R2=0.699) of the MLR model. It means that 69.90% of the change in

the relationship between all blood variables, sex, and age for the types of anemia is
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explained.

Also, the diagnosis of anemia depends on hemoglobin thresholds used to define ane-

mia followed by the WHO for age, and it is worth noting that the concentration of

hemoglobin varies by age. Here we classify the data into three categories as age (6-

11) years old, (12-14) years old, and (≥15) years old as seen in Table 3.1 [43].

We have compared the results for the age group (6-56) with other classified age groups

(6-11), (12-14), and (15-56). It has been found out that the results produced for the

age group (6-56) are better than all other classified groups (see Tables 3.4-3.7). This

difference is believed to stem from the decreasing the data as seen in Table 3.5.

In the outcome of the current analysis, it has been found that there is more significant

relation of the MLR model for the data (6-56) comparison to the other cases (6-11),

(12-14), and (15-56). It explains 69.90% of the change in the relationship between

all blood variables, sex, age and the types of anemia as seen in Table 3.7. It is the best

comparison to the results 48.2%, 83.8%, and 68.6% for the three categories (6-11),

(12-14), and (15-56), respectively, as seen in Tables 3.4-3.6.
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Table 3.4 Various forms of linear regression models: Blood variables, sex
and age (6-11).

Models R2 RMSE

Model 1 for (HB, sex and age) 0.315 0.82956

Model 2 for (RBC, sex and age) 0.247 0.86971

Model 3 for (WBC, sex and age) 0.034 0.98506

Model 4 for (PLT, sex and age) 0.045 0.97960

Model 5 for (HB, RBC, sex and age) 0.333 0.82221

Model 6 for (MCH, WBC, sex and age) 0.039 0.98658

Model 7 for (MCV, HCT, sex and age) 0.385 0.78956

Model 8 for (MCHC, PLT, sex and age) 0.092 0.95889

Model 9 for (HB, RBC, MCH, sex and age) 0.375 0.79909

Model 10 for (WBC, MCV, HCT, sex and age) 0.417 0.77142

Model 11 for (HB, MCHC, PLT, sex and age) 0.392 0.78824

Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.420 0.77270

Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.431 0.76579

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC,

PLT, sex and age)

0.482 0.74322
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Table 3.5 Various forms of linear regression models: Blood variables, sex
and age (12-14).

Models R2 RMSE

Model 1 for (HB, sex and age) 0.666 0.64123

Model 2 for (RBC, sex and age) 0.567 0.73044

Model 3 for (WBC, sex and age) 0.201 0.99263

Model 4 for (PLT, sex and age) 0.261 0.95426

Model 5 for (HB, RBC, sex and age) 0.678 0.64979

Model 6 for (MCH, WBC, sex and age) 0.383 0.89857

Model 7 for (MCV, HCT, sex and age) 0.385 0.89766

Model 8 for (MCHC, PLT, sex and age) 0.536 0.77954

Model 9 for (HB, RBC, MCH, sex and age) 0.755 0.58501

Model 10 for (WBC, MCV, HCT, sex and age) 0.397 0.91793

Model 11 for (HB, MCHC, PLT, sex and age) 0.798 0.53143

Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.580 0.79267

Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.757 0.60328

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC,

PLT, sex and age)

0.838 0.58174
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Table 3.6 Various forms of linear regression models: Blood variables, sex
and age (15-56).

Models R2 RMSE

Model 1 for (HB, sex and age) 0.562 0.95026

Model 2 for (RBC, sex and age) 0.034 1.41107

Model 3 for (WBC, sex and age) 0.134 1.33618

Model 4 for (PLT, sex and age) 0.193 1.28994

Model 5 for (HB, RBC, sex and age) 0.677 0.81736

Model 6 for (MCH, WBC, sex and age) 0.272 1.22649

Model 7 for (MCV, HCT, sex and age) 0.638 0.86461

Model 8 for (MCHC, PLT, sex and age) 0.295 1.20694

Model 9 for (HB, RBC, MCH, sex and age) 0.680 0.81427

Model 10 for (WBC, MCV, HCT, sex and age) 0.642 0.86102

Model 11 for (HB, MCHC, PLT, sex and age) 0.580 0.93290

Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.665 0.83370

Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.685 0.80897

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC,

PLT, sex and age)

0.686 0.81159
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Table 3.7 Various forms of linear regression models: Blood variables, sex
and age (6-56).

Models R2 RMSE

Model 1 for (HB, sex and age) 0.568 0.96685

Model 2 for (RBC, sex and age) 0.174 1.33677

Model 3 for (WBC, sex and age) 0.229 1.29106

Model 4 for (PLT, sex and age) 0.271 1.25593

Model 5 for (HB, RBC, sex and age) 0.686 0.82466

Model 6 for (MCH, WBC, sex and age) 0.304 1.22844

Model 7 for (MCV, HCT, sex and age) 0.649 0.87201

Model 8 for (MCHC, PLT, sex and age) 0.314 1.21903

Model 9 for (HB, RBC, MCH, sex and age) 0.692 0.81825

Model 10 for (WBC, MCV, HCT, sex and age) 0.656 0.86483

Model 11 for (HB, MCHC, PLT, sex and age) 0.582 0.95278

Model 12 for (WBC, MCV, HCT, MCHC, sex and age) 0.668 0.85008

Model 13 for (HB, RBC, MCH, PLT, sex and age) 0.698 0.80985

Model 14 for (HB, RBC, MCH, WBC, MCV, HCT, MCHC,

PLT, sex and age)

0.699 0.81171

Thus, it is concluded that the regression model with the blood variables, sex, and age

are seen to be significant (p < 0.000). That means simultaneous consideration of

the blood variables, sex, and age has a significant effect on the relationship on the

determination of the types of anemia (see Table 3.8).

Table 3.8 Analysis of the variance for the correlation in equation (3.13)

Sum of Squares Degrees of freedom Mean Square F-Stat P-Value

Regression 809.354 10 80.935 122.838 0.000

Residual 347.889 528 0.659

Total 1157.243 538

The standardized coefficient (Beta) compares the effect force of each individ-

ual blood variables, sex, and age to the types of anemia. It is thus given by

StandardizedBeta j = B j ∗ SD(X j)/SD(Y ) .

The HB absolute value of the Beta coefficient is (−0.663) has the strongest relationship
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with the types of the disease comparison to the other variables RBC (−0.345), Sex

(−0.106), HCT (−0.100), MCH (−0.090), PLT (0.080), Age (−0.065), WBC (0.016),

MCHC (0.016) and MCV (−0.001). The interpretation of the Beta value for the HB

signifies that for every change in the HB, the dependent variable will be changed by

the Beta coefficient value (see Table 3.9).

The t-test was used to measure the partial effect of the variables HB, RBC, MCH, WBC,

MCV, HCT, MCHC, PLT, sex, and age on the types of anemia. Notice that these variables

have been seen to affect the types of anemia but in varying rates (see Table 3.9). The

histogram of the residuals which confirm that the data are distributed according to a

normal distribution with a mean of zero and a standard deviation of 0.991 (see Figure

3.1).

Table 3.9 Analysis of the multiple regression coefficients given in equation
(3.13)

Unstandardized Coefficients Standardized Coefficients

B Std. Error Beta t-Stat P-Value

(Const.) 6.377 0.552 11.563 0.000

HB -0.224 0.062 -0.663 -3.581 0.000

RBC -0.224 0.066 -0.345 -3.392 0.001

MCH -0.029 0.015 -0.090 -1.931 0.054

WBC 0.001 0.003 0.016 0.549 0.583

MCV 0.0005 0.008 -0.001 -0.015 0.988

HCT -0.016 0.028 -0.100 -0.575 0.565

MCHC 0.007 0.016 0.016 0.464 0.643

PLT 0.001 0.000 0.080 2.637 0.009

Sex -0.311 0.074 -0.106 -4.191 0.000

Age -0.009 0.004 -0.065 -2.303 0.022

To find out the extent of spread the random error around the linear regression model,

the MLR use the mean square residuals, MSE=0.659 (see Table 3.8). Small values of

the MSE indicate the concentration of data around the linear regression model (see

Figure 3.2).
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Table 3.10 Comparison of the MLR results with the results of the linear
deep learning method

Methods SSE MSE R2

Linear Regression Analysis 347.889 0.659 0.699

Linear Deep Learning Methods (LSTM) 349.869 0.665 0.695

LSTM: Long Short Term Memory

In this study, comparing criteria are constructed on the principle of whether the tech-

nique provides a suitable prediction or not. This task is achieved by comparing with

the deep learning method (LSTM) [99]. The results demonstrate that the linear re-

gression has the best fit to the initial dataset comparing to the deep learning method

(LSTM) (see Table 3.10). Therefore, the present study provides an accurate model for

prediction of the types of anemia.

Figure 3.1 Histogram of the residuals
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Figure 3.2 Normal P–P Plot of Regression Standardized Residual

3.5 Conclusions

The MLR model, for the first time, have been derived in forecasting the types of ane-

mia. The results revealed that the regression model is very promising and is capable

of making the prediction. In the analysis of the current anemia problem, the multi-

ple regression method has been found to be more accurate than linear deep learning

methods. It has been concluded that the model is expected to be helpful for diagno-

sis of the types of anemia to health providers and designing appropriate treatment

programs for their patients.
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4
ANEMIA PREDICTION WITH MULTIPLE NONLINEAR

REGRESSION ANALYSIS

4.1 Introduction

A mathematical model is a platform for understanding the behavior of a physical or

a biophysical system. Mathematical modelling can be used for various reasons. How

well any particular objective achieved depends on both the state of knowledge about

the system and how well the modelling is done. As seen in the literature [10, 12, 83,

84, 87, 100, 101], mathematical modeling has been shown to be an essential tool for

also analyzing pathological characteristics. To assess situations seen in hospitals, any

disease condition has several effects (inputs) for a single disease (output). So, most

outcomes in real life problems are affected by multiple input variables. To understand

such relationships, the used models that consider more than one input to produce

a single output. As signified in the literature [45, 46, 102], the anemia of chronic

inflammation and it was initially thought to be associated primarily with the infectious,

inflammatory diseases.

This chapter aims at predicting pathological subjects from a population through phys-

ical observational variables (eight blood variables, sex, and age) and output (types

of disease). It is important to predict the type of anemia because there has been an

increase in the incidence of anemia among different segments of society. To make

the best biomedical decisions, medical predictions play a very important role in the

process of diagnosis and planning treatment for health providers. Thus, our goal is to

derive a new mathematical model to study the effect of the blood variables, sex, and

age on the types of anemia. Our model, differ from the mathematical models given

in the literature [37, 50, 89, 47, 90, 48], have also been successfully used in the pre-
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diction of several types of anemia through a large group of blood variables, sex, and

age.

To the best knowledge of the authors, a more general model representing the be-

haviour closer to nature have been produced for the first time. The more number of

input variables makes the derived model more realistic in the biomedicine. Thus, for

such a realistic model, for such a large number of input variables, a study has been

accomplished here. Therefore, this study is believed to be an important contribution

to predict the types of anemia.

Despite very effective, striking and frontier studies in the literature, researchers have

used models with a limited number of variables. Therefore, the present study fo-

cuses on the determination of the type of anemia through a very large number of the

observational variables, more realistic one. Since many researchers have commonly

considered the MRA among the modelling techniques to deal with various problems

including anemia [37, 38, 60, 61, 62, 63, 64, 65, ?, 92, 93, 94, 95, 97, 103], the multi-

ple analysis is taken into account in modelling the current biomedical problem based

on estimating optimum values in the set of the fitting parameters of the model.

The remainder of the chapter is organized as follows: Section 4.2 highlight the study

samples, explain nonlinear regression analysis procedure and test the model. Build-

ing the model of data by the regression analysis has been given in Section 4.3. The

produced results for the model are given in Section 4.4. The regression model has

been analyzed and discussed in Section 4.5. Finally, conclusions and future research

directions have been detailed.

4.2 Materials and Methods

4.2.1 Study Samples

Here the samples for people and for each subject readings of blood variables are

Hemoglobin (HB), Red Blood Cells (RBC), Mean Corpuscular Hemoglobin (MCH),

White Blood Cell (WBC), Hematocrit (HCT), Mean Corpuscular Hemoglobin Concen-

tration (MCHC), Platelets (PLT), Mean Corpuscular Volume (MCV) and sex and age

[43, 44].

For the data, it is considered that blood diseases are iron deficiency anemia (1), de-
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ficiency vitamin B12 (2), thalassemia (3), sickle cell (4) and spherocytosis (5). The

anemia types and blood variables for our data are displayed in Table 4.1 and Figure

4.1.

Table 4.1 Some samples from the data

HB RBC MCH WBC MCV HCT MCHC PLT Sex Age Anemia type

17.5 5.55 31.6 14.1 92 50.9 34.5 318 2 23 0

16.3 6.07 26.9 8.16 80.9 49.1 33.2 349 1 23 0

11.1 4.38 25.3 5.8 81 35.6 31.1 227 1 11 1

11.1 4.85 22.8 10 81 39.4 28.1 274 2 16 1

9 3.47 25.8 2.3 88 30.4 29.5 148 1 11 2

1.46 4.4 30.4 59.8 108 15.8 28.2 330 2 29 2

8.1 3.6 22.4 12 78 28.1 28.7 472 1 15 3

3.92 6.6 16.8 8.3 60 23.7 27.9 443 2 17 3

8.3 2.58 31.9 12.4 103 26.7 30.9 458 1 11 4

7.9 2.88 27.4 17.55 83 23.9 33.1 703 1 16 4

6.8 5.77 11.7 11.9 49 28.4 23.8 573 2 11 5

The chapter aims at predicting pathological subjects from a population in terms of

various biomedical information. Therefore, the data were collected from observations

of blood variables in order to identify a healthy or infected person and involved 539

subjects provided from blood laboratories in Iraq. Individuals between 6-56 years old

have been taken into consideration and included 248 males, 291 females. Subjects

are consisting of 211 healthy ones and of 328 anemic ones to build the model. The

dependent variable consists of six different outputs (healthy: 0 and five blood diseases:

1-5). Therefore, the corresponding dependent and independent variables based on

data are used to improve health standards of individuals.

39



(a) (b)
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(e) (f)

(g) (h)
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(i) (j)

Figure 4.1 Anemia Types and blood variables: (a) HB and the anemia types; (b)
RBC and the anemia types; (c) MCH and the anemia types; (d) WBC and the

anemia types; (e) MCV and the anemia types; (f) HCT and the anemia types; (g)
MCHC and the anemia types; (h) PLT and the anemia types; (i) Sex and the anemia

types; (j) Age and the anemia types

4.2.1.1 Multiple Nonlinear Regression Model

Nonlinear regression analysis model can be given as

y= f (X,B) + ε, (4.1)

where y,X,B, f () and ε indicate the observations, the vector of the regression coeffi-

cients, the known nonlinear regression function and the unobserved random variable

that adds noise to the nonlinear relationship between the dependent variable and re-

gressors, respectively.

The basis of the method is to approximate the model by a linear one and to refine the

parameters by successive iterations [68, 69]. First, let

yi = f (X i, B) + εi, 1≤ i ≤ n, (4.2)

and

Q =
k
∑

i=1

(yi − f (X i, B))2. (4.3)

In order to find

B̂ = arg min
B

Q, (4.4)

first each of the partial derivatives of Q is found with respect to B j. Then, each of
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the partial derivatives is taken to be equal to 0 and the parameters Bk are replaced by

B̂k, 0 ≤ k ≤ n. The functions to be solved are nonlinear in the parameter estimates

B̂k. The regression analysis is using the optimization to estimate the parameters of the

model by minimizing the sum of the squared error function. So, a form of optimization

could be considered as the best way in selecting a suitable model [71, 104].

4.2.2 Test for the Model

The regression model estimation is selected with the confidence interval of 95% and

adjusted sum of square tests (Type III). The computation formulae can be given as

follows:

SST =
n
∑

j=1

(y j − ȳ)2, (4.5)

SSR=
n
∑

j=1

( ŷ j − ȳ)2, (4.6)

SSE =
n
∑

j=1

(y j − ŷ j)
2 =

n
∑

j=1

e2
j . (4.7)

The coefficient of determination is a measure showing the rate of the contribution of

the independent variables in the interpretation of the change in the dependent variable

as known from the literature [70, 71], small R2 does not imply that the model is not

significant. It is given as follow:

R2 =
SSR
SST

= 1−
SSE
SST

. (4.8)

4.2.3 Residual Analysis

In the regression analysis, the observations yi may be different from the fitted values

ŷi obtained from the model. The difference between these two values is the residual,

ei. The vector of residuals, ei, is thus given by:

ei = yi − ŷi. (4.9)

A terminological difference arises in the expression mean squared error (MSE). The
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MSE of a regression is a measure of the average of the sum of squared error and

how the concentration of data around the regression model. The smaller the MSE,

whenever the results are more accurate [70, 71, 104]. Then it is given by

MSE =
1
n

n
∑

j=1

e2
j . (4.10)

4.3 Building Nonlinear Regression Analysis Model

Important problems can usually be represented by mathematical models. Building

multiple regression model of a data is one of the most challenging problems. Now,

attention is paid to the model building process in the sense that it is attempted to

find the best relation between the independent variables and the dependent variable

y so that the final complete model is investigated in the regression model. Given

the problem and data but without a model, the model building process can often be

aided by graphs that help visualize the relationship between the different variables in

data [70, 104]. Main steps in building a model of a dataset are given by conducting

regression analysis (see Figure 4.2).
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Figure 4.2 Main steps in the regression analysis procedure

In the regression model, linear regression is used first to determine whether a partic-

ular type of curve can be fit into our data. If enough fitness cannot be obtained by

using the linear regression, then it may be needed to choose a nonlinear regression.

Although the linear regression can represent curves, it is restricted in the forms of

curves that can be contained for the data. Sometimes the curve specified in the data

cannot be contained. Nonlinear regression can be suitable with many types of data,

but it may require more effort to find the best fit and explain the role of independent

variables.

For various approaches as pointed out in the literature [65, 98], a nonlinear model is

usually expected to fit better than their linear rivals.

A nonlinear regression model describes a nonlinear relationship between the depen-

dent and the independent variables. As is the case in the linear regression model, a

multiple nonlinear model, based on the data, is built in Section 4.2.1.1. The produced

model is as follows:

ŷ=
B0

E1 + E2
+ ε (4.11)
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E1 = B1(HB)6 + B2(RBC)5 + B3(MCH)4 + B4(W BC)3 + B5(Sex)2

E2 = B6(HC T ) + B7(MCHC)
1
2 + B8(P LT )

1
3 + B9(MCV )

1
4 + B10(Age)

where y stands for the types of anemia. In principle, many nonlinear models can

be proposed in dealing with the anemia problem. In this connection, here, several

attempts have been made to obtain the best results, depending on the biomedical

variables and the power of each input variable of interest. Other nonlinear model

types for the data were also taken into consideration and it was observed that the

current model was the best among these models to obtain accurate results. In addition,

those powers of the variables in the model have been investigated and the regression

analysis has been taken to find the optimum parameter values of the model (see Table

4.4), so as to obtain the best fitting for the data. It is well-known that the model order

is chosen according to the number of bends you need on your structure. Each increase

in the exponent produces one more bend in the fitted structure. Therefore, it is tried

to be found the multivariable nonlinear function that best fits the specific structure in

the data. The accepted nonlinear regression model is then estimated as

ŷ=
2489.986

E1 + E2
(4.12)

Here the denominator of equation is separated into two parts as E1, E2. Thus, the

separated parts are clearly expressed as:

E1 = 0.001(HB)6 + 0.014(RBC)5 − 0.001(MCH)4 + 0.0001(W BC)3 + 18.711(Sex)2

E2 = −60.591(HC T ) − 297.972(MCHC)
1
2 − 26.450(P LT )

1
3 + 1367.932(MCV )

1
4 +

1.469(Age).

Here ŷ represent the estimates for the types of anemia. The coefficient values of the

nonlinear model have been optimized for the multiple regression approaches, to find

the more realistic model (see Table 4.4).

4.4 Nonlinear Model Results

This study here focuses on the discovery of a possible relationship between the blood

variables and the types of anemia through the nonlinear model and explains the signif-

icance level of the model (see Table 4.2). Various types of models, based on different

possibilities, have been produced through the biomedical variables (see Table 4.3).
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The regression approach has been taken to forecast the best parameters with the op-

timum residual sum of squares value (see Table 4.4 and Figure 4.3). It is important

to note that, the nonlinear deep learning (LSTM) and nonlinear regression neural

network methods have also been used to compare our model results. The results re-

vealed that the currently derived model is seen to be better than the other two rivals

(see Table 4.5).

Table 4.2 Analysis of variance and R2

Source Sum of Squares Degrees of freedom Mean Squares

Regression 2185.852 11 198.714

Residual 271.148 528 0.514

Uncorrected Total 2457.000 539

Corrected Total 1157.243 538

R2=1-(Residual Sum of Squares)

/(Corrected Sum of Squares) 0.766
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Table 4.3 Various forms of the multiple nonlinear regression models: blood
variables, sex, and age

Models E1, E2 in model equation (4.12) R2 MSE

Model 1 for (HB, sex and age) E1 = 0.001(HB)6 + 18.711(Sex)2, E2 =

1.469(Age)

0.551 0.971

Model 2 for (RBC, sex and age) E1 = 0.014(RBC)5+18.711(Sex)2, E2 =

1.469(Age)

0.069 2.014

Model 3 for (MCH, sex and age) E1 = −0.001(MCH)4 + 18.711(Sex)2,

E2 = 1.469(Age)

0.000 4.490

Model 4 for (WBC, sex and age) E1 = 0.0001(W BC)3 + 18.711(Sex)2,

E2 = 1.469(Age)

0.188 1.757

Model 5 for (MCV, sex and age) E1 = 18.711(Sex)2, E2 =

1367.932(MCV )1/4 + 1.469(Age)

0.215 1.699

Model 6 for (HCT, sex and age) E1 = 18.711(Sex)2, E2 =

−60.591(HC T ) + 1.469(Age)

0.366 1.372

Model 7 for (MCHC, sex and age) E1 = 18.711(Sex)2, E2 =

−297.972(MCHC)1/2 + 1.469(Age)

0.216 1.697

Model 8 for (PLT, sex and age) E1 = 18.711(Sex)2, E2 =

−26.450(P LT )1/3 + 1.469(Age)

0.196 1.739

Model 9 for (HB, RBC, sex and

age)

E1 = 0.001(HB)6 + 0.014(RBC)5 +

18.711(Sex)2,E2 = 1.469(Age)

0.555 0.964

Model 10 for (MCH, WBC, sex and

age)

E1 = −0.001(MCH)4 +

0.0001(W BC)3 + 18.711(Sex)2,

E2 = 1.469(Age)

0.000 4.397

Model 11 for (MCV, HCT, sex and

age)

E1 = 18.711(Sex)2, E2 =

−60.591(HC T )+1367.932(MCV )1/4+

1.469(Age)

0.371 1.364

Model 12 for (MCHC, PLT, sex and

age)

E1 = 18.711(Sex)2, E2 =

−297.972(MCHC)1/2 −

26.450(P LT )1/3 + 1.469(Age)

0.261 1.602

Model 13 for (WBC, MCV, HCT,

MCHC, sex and age)

E1 = 0.0001(W BC)3 + 18.711(Sex)2,

E2 = −60.591(HC T ) −

297.972(MCHC)1/2 +

1367.932(MCV )1/4 + 1.469(Age)

0.381 1.348

Model 14 for (HB, RBC, MCH, PLT,

sex and age)

E1 = 0.001(HB)6 + 0.014(RBC)5 −

0.001(MCH)4 + 18.711(Sex)2, E2 =

−26.450(P LT )1/3 + 1.469(Age)

0.671 0.715
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Table 4.4 Optimization of the residual sum of squares to estimate the
parameters by the regression optimization

Iteration Number 1 50 100 122 141 171

Residual Sum of

Squares

2457.001 2422.585 1493.893 271.296 271.148 271.148

Constant b0 68.912 5.888 213375.919 320324.494 45059.962 2489.986

HB b1 -234.704 0.259 0.062 0.161 0.023 0.001

RBC b2 -211.649 -0.366 0.290 1.821 0.259 0.014

MCH b3 -80.854 0.759 0.762 -0.083 -0.012 -0.001

WBC b4 -689.697 -0.069 -0.068 -0.007 -0.001 -0.00005

MCV b5 -991415.201 -3405.904 -1583.487 2270.951 339.312 18.711

HCT b6 -80326.882 -226.747 96.364 -7720.240 -1098.810 -60.591

MCHC b7 -305965.063 -860.494 430.136 -39602.005 -5400.125 -297.972

PLT b8 -266546.846 -761.492 162.005 -3493.601 -477.549 -26.450

Sex b9 -531827.894 -1500.534 622.720 178493.976 24782.155 1367.932

Age b10 -82254.965 -239.766 230.978 168.767 26.561 1.469

Table 4.5 Comparison of the results of the multiple nonlinear regression
with the two methods

Methods SSE MSE R2

Nonlinear Regression Analysis 271.148 0.514 0.766

Nonlinear Deep Learning Methods (LSTM) 273.465 0.560 0.760

Nonlinear Regression Neural Networks 287.826 0.534 0.752

LSTM: Long Short Term Memory

Figure 4.3 The behaviour of the residual sum of square errors by
the regression optimization when the iteration is 171
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4.5 Discussion and Analysis

Nonlinear models play a very important role in life since many natural phenomena

such as biology, medicine, chemistry, physics, and others are represented by the corre-

sponding models. In this respect, the necessity of a nonlinear model to predict types

of anemia is revealed. Therefore, it is here concentrated on the prediction of types

of anemia through the biomedical parameters under the consideration of the fitted

nonlinear model.

In the literature, many researchers [92, 94, 95, 97, 103] have considered anemia prob-

lems at various levels, through the multiple nonlinear regression analysis. Note that

researchers in the literature [37, 38, 89, 90, 98] used a very limited number of blood

variables or a few anemia types and various nonlinear models for the investigation of

different diseases and did not pay enough attention to the relationship between such

a very large number of blood variables and those types of anemia. Here it is focused

on a nonlinear model investigating the relationship between a large number of the

blood variables and the types of anemia.

At the same time, other nonlinear models to the data have been considered, and the

most accurate results for the model (4.12) have been found. These variables consist

of HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT, sex, and age. The current analysis

was considered to fit a nonlinear model presenting the link between observational

variables (blood variables, age, and sex) and the types of anemia. Several types of

models, based on the variables, are derived (see Table 4.3) in terms of less number

of blood variables for the prediction of the types of anemia. The model produced in

equation (4.12), see Table 4.2, in terms of a larger number of blood variables show a

better correlation than the models produced in Table 4.3. Therefore, this study here

concentrates on the discovery of the relationship between as large as possible, more

realistic, blood variables and the types of anemia through the current model.

The model has been seen to be significantly effective on the prediction of the types of

anemia (R2 = 0.766). The model explains 76.60% of the change in the relationship

between the observational variables and the types of anemia. That is, as realized from

Table 4.2, all the variables used have a significant effect on the model.

The model uses the mean square residuals to measure the extent of distributing the
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random error around the model, MSE = 0.514 (see Table 4.2). Small values of the

MSE indicate the concentration of data around the regression line. The MSE indicates

that the residuals are naturally distributed. In addition, the multiple regression uses

the sum of square errors to measure how well the data fit the model. Thus, SSE =

271.148 means that the data fits for the model. One can notice that the current model

(R2 = 0.766, MSE = 0.514, SSE = 271.148). Therefore, the model is seen to be more

realistic in predicting the effect of blood variables, age, and sex on the types of anemia.

The values B refer to the estimated parameter values of the real parameters obtained

by the regression optimization when the SSE indicating the estimated residual sum of

squares value, which started at 2456.997 and through the optimization, it has been

obtained as 271.148 (see Table 4.4 and Figure 4.3). Estimating the parameters of the

model is a difficult task for classical algorithms for improvement. The starting values

of the parameters have been selected. Therefore, the regression technique has been

taken to obtain the optimum solution. In the estimation process, the residual sum of

squares reaches its level of stability at the iteration of 141.

In the current study, it was observed to the results of the regression analysis better

than Neural Networks (see Table 4.5). This is because the nonlinear regression model

is easy to implement and expected to provide optimum estimates. Additionally, the

regression model is a special neural network model with no hidden layers, that is,

consisting of just a single neuron, it acts upon multi-inputs to produce one output.

So, we can compute the optimal regression model directly and efficiently. The ANNs

cannot compute an optimal model directly, when adding an activation function and

possibly hidden layers. In this case, there are no guarantees that the process will

converge, or that we will find the best model. It is also a lot slower than the direct

solution. So, in the regression analysis, we are forced to use an iterative solution: an

algorithm that goes through steps, usually improving the model with each step.

This chapter addresses the anemia forecasting issue by the nonlinear regression in

comparing with two rival methods, the nonlinear deep learning method (LSTM) and

the nonlinear regression neural network [105]. The computed results reveal that the

multiple nonlinear regression has the best fit to the initial dataset comparing to the

two competitors (see Table 4.5). Thence, this study presents a relatively very accurate

nonlinear model for predicting anemia types. Additionally, since the convergence be-
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havior of the nonlinear regression analysis is shown that it is in a rapid convergence

tendency, reaches its level of stability at the iteration of 141 and the iteration number

is limited to 171 iterations (see Table 4.4 and Figure 4.3).

4.6 Conclusions

Multiple nonlinear regression model, for the first time, has been derived in predicting

the anemic diseases. The parameter values produced have all been seen to be the op-

timum values obtained from the multiple nonlinear regression approach, to find the

approach that is more realistic. It has also been seen that the proposed multiple non-

linear regression method has a very rapid convergence tendency. The results confirm

that the multiple nonlinear regression model is adequate and has a high ability to pre-

dict. In the analysis of the current anemia problem, the multiple nonlinear regression

method has been found to be more accurate than nonlinear deep learning methods

and nonlinear regression neural network. It has been concluded that the model is

expected to be helpful for diagnosis of the types of anemia to health providers and

designing appropriate treatment programs for their patients.
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5
PARAMETER ESTIMATION TO ANEMIA MODELS USING

THE PARTICLE SWARM OPTIMIZATION

5.1 Introduction

The progress of medical models considered to produce medical outputs is important

tools to deal with the behavior of a medical problem. They depend on the quality

of any particular objective achieved on the state of knowledge about the system and

how well successful modeling. As indicated in the literature [10, 12, 83, 86, 88, 106],

mathematical medical modelling has been realized to be a fundamentally important

tool for the analysis of pathological characteristics. Response to a medical model to

limits of performance is of major interest and thus the current medical model describes

the relationship, between the biomedical variables and the diseases. The observational

data may be modelled by a function linearly. Here the parameters for each of the

variables in the linear medical model are estimated that to be the optimal model for

more accurate prediction of anemia through the biomedical information.

Many models have been produced in dealing with various medical problems in the

literature such as congenital heart disease [107], diabetic nephropathy [108], osteo-

porosis [109], and cancers [110, 111]. A frequently encountered medical problem is

that of having a set of data, which one wishes to describe it by a mathematical model

and determine a set of parameters that characterize the model. In this study, the major

emphasis will be the fitting parameters of the model assumed to have some particular

medical or mathematical significance through estimating best values in the set of the

parameters. Therefore, the main aim here is to develop a medical model to study the

effect of the blood variables, sex, and age on the pathologies through a large group

of the variables because there has been an increase in the incidence of anemia among
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different segments of society.

Some other estimation methods [35, 112, 113, 114] to analyze disease problems in

addition to anemia. Heuristic algorithms can be effectively used to find the optimal

parameters for the linear model in plenty of medical studies. Therefore, the PSO is one

of the most efficient optimization algorithms that are used for a wide range of complex

optimization problems. In computational science, the PSO is a computational method

that works to improve the problem by repeatedly trying to improve the candidate

solution. Therefore, these candidate solutions are created by the method repeatedly

for improving the possibility of being the actual solution.

The PSO inspired by the behaviour of social models for flocking birds or fish educa-

tion are based on individual improvement and social collaboration [78, 115, 116, 117,

118]. In this study, the PSO approach has been proposed to estimate the best param-

eter values of the linear medical model. This algorithm is common in the academic

community as a typical tool because of its ability to optimize complex search spaces.

Thus, the above advantages of the PSO sent us to use in dealing with the current med-

ical problem. It should be borne in mind that fewer blood variables may cause the

problem not to be effectively represented.

This chapter is structured as follows. The next section discusses the study samples

of the medical dataset, explain the models procedure, the PSO algorithm, and how

to test the model. Section 5.3 estimate parameters of the medical models. Section

5.4 presents the results and discussion. Finally, conclusions and recommendation for

future work have been detailed.

5.2 Materials and Methods

5.2.1 Study Samples of the Medical Dataset

The data used here were collected from observations of anemia and included (539

subjects, 211 healthy subjects, 328 sick subjects) provided from blood laboratories in

Iraq and we have taken observations of the ages of individuals between (6-56) years.

Here, we have some blood diseases are Iron deficiency anemia (1), Deficiency Vitamin

B12 (2), Thalassemia (3), Sickle cell (4) and Spherocytosis (5). For each disease, we

have samples for the individuals and for each individual readings of the blood vari-
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ables are Hemoglobin (HB), Red Blood Cell (RBC), Mean Corpuscular Hemoglobin

(MCH), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), Haematocrit

(HCT), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), and

sex (male (1) and female (2)), and age. The number of variables studied for the model

is consisting of ten independent variables and a dependent variable. The dependent

variable consists of six different types of output (healthy subject: 0 and blood diseases:

1-5).

5.2.2 Modelling

5.2.2.1 Linear Model

A linear model is an engine behind a multitude of data applications used for many

forms of prediction. Therefore, processes are governed by linear models in various

fields of science such as the estimation of the parameters of a linear medical model

for predicting anemia.

A linear medical model describes a linear relationship between the dependent and

independent variables. The derived model is as follows:

y= B0 + B1 x1 + B2 x2 + ...+ Bk xk + ε= B0 +
k
∑

i=1

Bi x i + ε. (5.1)

The linear model with k predictor variables and the observations recorded for each of

these n levels can be expressed in the following style

y1 = B0 + B1 x11+B2 x12 + ...+ Bk x1k + ε1

y2 = B0 + B1 x21+B2 x22 + ...+ Bk x2k + ε2

...

yi = B0 + B1 x i1+B2 x i2 + ...+ Bk x ik + εi

...

yn = B0 + B1 xn1+B2 xn2 + ...+ Bk xnk + εn

(5.2)

Here y1, y2, ..., yn, and x1, x2, ..., xk, stand for the dependent and independent obser-

vations, respectively.
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System (5.2) can be reexpressed in a more compact way:

y= BX+ ε, (5.3)

with

y=















y1

y2
...

yn















,X=
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1 x11 x12 . . . x1k
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...
...

...
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
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
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
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
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ε1
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...

εn















(5.4)

where y,X,B and ε indicate to the observations, the parameters of the model and the

unobserved random variable that adds noise to the linear relationship, respectively.

To obtain the linear model, B should be known. B is estimated by minimizing the sum

of the squared error function SSE(B) under the consideration of the PSO. Knowing the

estimates B̂, the linear model can now be expressed as [66, 67]

ŷ= B̂X, (5.5)

where ŷ is the estimated value for y.

5.2.2.2 Nonlinear Model

Nonlinear models are important tools because life is nonlinear and many physical

processes and natural phenomena encountered in the physical environment such as

biology, medicine, chemistry, physics, and other areas are better represented by a non-

linear model. Therefore, most processes are governed by nonlinear models in various

fields of science such as the estimation of the parameters of a nonlinear medical model

for predicting the anemia types.

A nonlinear model can be given in a basic form,

y = f (x , b) + ε, (5.6)

where y, x , b, f () and ε indicate the observations, the vector of the coefficients, the

known nonlinear function and the unobserved random variable that adds noise to the
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nonlinear relationship, respectively.

A nonlinear medical model describes the relationship between the dependent and

independent variables when the behaviour of the model is nonlinear. Many nonlinear

models can be proposed for dealing with anemia problem. In this regard, here, several

attempts have been made to obtain the best results, depending on the biomedical

variables and the exponent of each input variable of interest. Other types of nonlinear

models for the data were also considered and it was noted that the current model was

the best among these models to obtain accurate results.

y =
b0

E1 + E2
+ ε (5.7)

Here the denominator of equation (5.7) is separated into two parts as E1, E2. Thus,

the separated parts are clearly expressed as:

E1 = b1(HB)6 + b2(RBC)5 + b3(MCH)4 + b4(W BC)3 + b5(Sex)2

E2 = b6(HC T ) + b7(MCHC)
1
2 + b8(P LT )

1
3 + b9(MCV )

1
4 + b10(Age).

Here y is the type of anemia, bi, 0≤ i ≤ 10, are the parameters to be determined.

Here HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT indicate Hemoglobin, Red Blood

Cell, Mean Corpuscular Hemoglobin, White Blood Cell, Mean Corpuscular Volume,

Haematocrit, Mean Corpuscular Hemoglobin Concentration, Platelets, respectively.

5.2.3 Particle Swarm Optimization

The PSO is a population-based stochastic approach, invented by Eberhart and Kennedy

[72], for solving continuous and discrete problems. They inspired from social behavior

of bird flocking or fish schooling, these animals have a major role in the development

of the algorithm.

The method optimizes a problem by trying to improve a solution. Each particle traces

its coordinates in the area of the problem that relates to the best solutions carried out

so far. This value is called pbest. Another "best" value that is tracked by the PSO is the

best value, obtained so far by any particle in the neighbors of the particle. This location

is called lbest. When the particle considers the whole population as its topological

neighbors, the best value is a global best and is called gbest. The PSO idea consists of,

at each time step, changing the velocity of each particle towards the pbest and lbest
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locations.

In the PSO, simple software agents, called particles, move in the search space for im-

provement. These randomly selected particles search solution space using the infor-

mation of their neighborhood, personal information, and randomness. The position

of a particle represents a candidate solution to the existing improvement problem.

All particles look for better sites in the search space by changing their velocity at the

end of each iteration. Because of each iteration, the position and velocity vectors are

expressed as follows:

Vi
t+1 =ωVi

t + c1r1(Pbest − X i
t) + c2r2(Gbest − X i

t) (5.8)

X i
t+1 = X i

t + Vi
t+1 (5.9)

where t,ω, c1, c2, r1, r2, Vi
t , X i

t , Pbest and Gbest indicate iteration number, weight pa-

rameter, acceleration coefficients (cognitive parameter, social parameter), random

numbers uniformly distributed between 0 and 1, velocity of individual i at iteration

t, position of individual i at iteration t, the best local value of each particle, the best

value of swarm, respectively [78, 79, 80].

5.2.4 Test for the Model

The coefficient of the determination, usually referred to as R2, is a measure explaining

the change in the relationship between all blood variables, sex, and age and the anemia

types.

Here, we present some initial considerations. Consider the variance of the observa-

tions y by analyzing the total sum of squares, denoted by SST and the sum of squared

errors, denoted by SSE. That is,

SST =
n
∑

j=1

(y j − ȳ)2, (5.10)

and

SSE =
n
∑

j=1

(y j − ŷ j)
2 =

n
∑

j=1

e2
j . (5.11)

Now, the coefficient of the determination is defined by
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R2 =
SST − SSE

SST
. (5.12)

If the percentage explained by the coefficient of the determination is small, compati-

bility may not be very appropriate.

A terminological difference arises in the expression root mean squared error (RMSE).

It is the square root of the average squared differences between the prediction and

actual observations. The RMSE indicate the concentration of data around the model.

In other words, it tells us how the data is centered around the most appropriate line

[66, 67, 70]. It is very common to use the RMSE in the predictions. Then it is given

by

RMSE =
p

MSE. (5.13)

Thus, it is given by

MSE =
1
n

n
∑

j=1

e2
j . (5.14)

5.3 Estimation of the Parameters of the Model

5.3.1 Linear Model

The currently linear medical model is a linear equation for our data. The model is as

follows:
y=B0 + B1HB + B2RBC + B3MCH + B4W BC + B5MCV

+ B6HC T + B7MCHC + B8P LT + B9Sex + B10Age+ ε
(5.15)

where y is the type of anemia and Bi, 0≤ i ≤ 10, are the parameters to be determined.

Here HB, RBC, MCH, WBC, MCV, HCT, MCHC, PLT stand for Hemoglobin, Red Blood

Cell, Mean Corpuscular Hemoglobin, White Blood Cell, Mean Corpuscular Volume,

Haematocrit, Mean Corpuscular Hemoglobin Concentration, Platelets, respectively.

As previously mentioned, the model can be represented in a more compact form as

follows:

ŷ= B̂X (5.16)
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where

ŷ=
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(5.17)

Here ŷ, X and B̂ represent the estimates for output (anemia), the independent obser-

vations matrix, and estimated parameters, respectively.

This study aims at estimating the parameters B by minimizing the sum of the squared

error function SSE(B) under the consideration of the PSO.

Hence, the fitness function in the PSO search engine is selected as the SSE(B), specif-

ically:

SSE(B) =
n
∑

i=1

(yi − f (x i, B))2. (5.18)

For the linear model in equation (5.15),

SSE(B) =
539
∑

i=1

[yi−(B0 + B1HB + B2RBC + B3MCH + B4W BC + B5MCV

+ B6HC T + B7MCHC + B8P LT + B9Sex + B10Age)]2.

(5.19)

Here yi are the dependent observations, Bi, 0 ≤ i ≤ 10, are the parameters to be

determined.

In this chapter, the PSO is effectively used to estimate the parameters of the linear

medical model in deriving an accurate model by finding a rapid convergence of the

minimum value of the sum of the squared error in fewer iterations provides accurate

estimates for parameter estimation of the linear medical model (see Tables 5.1-5.5).

The settings for the main parameters of the PSO method (ω, c1, c2, and the size of the

swarm) determine how to optimize the search space. Usually decreases the parameter

ω from around 0.9 to around 0.4 during the computation, the appropriate value for

the parameterω provides a balance between the global and local exploration capacity

of the swarm and thus a better solution [73, 116, 117, 118]. If the parameter ω is

much less than one, only a small momentum of the previous time step is preserved,
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thus rapid changes in the direction are possible with this setting. High settings near

1 facilitate global searching. The usual choices for acceleration coefficients are c1 and

c2, usually, c1 is equal to c2 and ranges between 0 and 4. The size of swarm plays a

very important role in the PSO, as is the durability and complexity of the algorithm.

By inspiring from the literature [73, 117, 118], we have produced our PSO algorithm

as given in Figure 5.1.
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Figure 5.1 The PSO algorithm for the estimation of the parameters
of the linear model

5.3.2 Nonlinear Model

The nonlinear function f in (5.6) has parameters given by b = (b1, b2, ...). This study

aims at estimating the parameters b obtained by minimizing the sum of the squared

error function SSE(b) under the consideration of the PSO.
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Hence, the cost (fitness) function in the PSO search engine is selected as the SSE(b),

specifically:

SSE(b) =
n
∑

i=1

(yi − f (x i, b))2. (5.20)

For instance, for the model in equation (5.7),

SSE(b) =
539
∑

i=1

[yi −
b0

E1 + E2
]2, (5.21)

where E1 = b1(HB)6 + b2(RBC)5 + b3(MCH)4 + b4(W BC)3 + b5(Sex)2

E2 = b6(HC T ) + b7(MCHC)
1
2 + b8(P LT )

1
3 + b9(MCV )

1
4 + b10(Age).

Here yi are the dependent observations, bi, 0 ≤ i ≤ 10, are the parameters to be

determined.

The main parameters of the PSO method are ω, c1, c2, and the size of the swarm. The

settings for these parameters are decided according to how to optimize the search

space. The inertia weight is used to control the effect of the previous history of veloc-

ities on the current velocity. Thus, the parameter ω regulates the trade-off between

the global and local exploration capabilities of the swarm and also provides a balance

between the global and local exploration capacity of the swarm and to find a better

solution [73, 74, 119]. The usual choices for acceleration coefficients are cognitive

parameter c1 and social parameter c2, usually, c1 is equal to c2 ranged between 0 and

4. The swarm size plays a very important role in the PSO, as is the complexity and

sturdiness of the algorithm. From the literature [73, 120], we have inspired our PSO

algorithm as shown in Figure 5.2.
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Figure 5.2 The PSO algorithm for the estimation of the parameters
of the nonlinear model
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5.4 Discussion

5.4.1 Linear Model

The current study focuses to obtain the best estimate of the parameters through the

PSO for the currently derived linear model to detect the link between the biomedical

variables and anemia.

As opposed to the PSO approach, classical methods in dealing with linear models

have some disadvantages as seen in the previous works [11, 74, 75, 121, 122], where

they require many mathematical operations; like the Jacobean matrix, and matrix

operations.

The researchers estimated parameters of a great number of models by using the PSO

in the literature [73, 76, 77, 123, 124, 125, 126]. They discussed different prob-

lems/models by using their own approaches. We have here studied a linear model for

a great number of biomedical data of anemia through the PSO to estimate the param-

eters for the model and investigating the relationship between many blood variables

and the anemia types as opposed to researchers in the literature [37, 38, 89, 90], they

used a very limited number of blood variables or a few the anemia types.

Here, we have estimated the parameters of the linear model through the PSO algo-

rithm (see Tables 5.1-5.4), and the produced results for various versions of the model

by the minimum error (see Table 5.5). In the estimation, when the number of itera-

tions is increasing, the error is decreasing as seen in Figures 5.3-5.6. Notice that the

iteration reaches its optimum level at 4500.
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Table 5.1 Parameter estimation by the PSO algorithm when the iteration is
500.

Biomedical Variables Parameters Bi, 0≤ i ≤ 10 SST SSE(B) RMSE R2

Constant -3.167 1157.243 1817.378 1.836 0

HB -0.726

RBC -0.634

MCH 0.901

WBC 0.009

MCV 0.125

HCT 0.062

MCHC -1.408

PLT 0.257

Sex 0.465

Age 0.010

Figure 5.3 Sum of square errors of the PSO algorithm when the
iteration is 500
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Table 5.2 Parameter estimation by the PSO algorithm when the iteration is
1000.

Biomedical Variables Parameters Bi, 0≤ i ≤ 10 SST SSE(B) RMSE R2

Constant 7.799 1157.243 1080.449 1.416 0.066

HB 1.399

RBC 1.141

MCH -0.275

WBC -0.018

MCV 0.114

HCT -0.743

MCHC -0.149

PLT 0.002

Sex 0.596

Age 0.023

Figure 5.4 Sum of square errors of the PSO algorithm when the
iteration is 1000
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Table 5.3 Parameter estimation by the PSO algorithm when the iteration is
2000.

Biomedical Variables Parameters Bi, 0≤ i ≤ 10 SST SSE(B) RMSE R2

Constant 5.603 1157.243 405.983 0.868 0.649

HB 0.252

RBC 0.270

MCH 0.146

WBC 0.0002

MCV 0.053

HCT -0.304

MCHC -0.038

PLT 0.0008

Sex -0.208

Age -0.013

Figure 5.5 Sum of square errors of the PSO algorithm when the
iteration is 2000
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Table 5.4 Parameter estimation by the PSO algorithm when the iteration is
4500.

Biomedical Variables Parameters Bi, 0≤ i ≤ 10 SST SSE(B) RMSE R2

Constant 6.345 1157.243 347.989 0.803 0.699

HB -0.201

RBC -0.461

MCH -0.033

WBC 0.001

MCV 0.003

HCT -0.022

MCHC 0.003

PLT 0.001

Sex -0.306

Age -0.009

Figure 5.6 Sum of square errors of the PSO algorithm when the
iteration is 4500
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Table 5.5 Parameter estimation of the various forms by the PSO algorithm
when the iteration is 4500.

Models SSE RMSE R2

Model 1 for (HB, sex and age) 500.117 0.963 0.568

Model 2 for (RBC, sex and age) 956.017 1.332 0.174

Model 3 for (MCH, sex and age) 862.084 1.265 0.255

Model 4 for (WBC, sex and age) 891.756 1.286 0.229

Model 5 for (MCV, sex and age) 937.336 1.319 0.190

Model 6 for (HCT, sex and age) 406.077 0.868 0.648

Model 7 for (MCHC, sex and age) 876.008 1.275 0.243

Model 8 for (PLT, sex and age) 843.894 1.251 0.271

Model 9 for (HB, MCH, sex and age) 496.170 0.959 0.571

Model 10 for (RBC, WBC, sex and age) 885.520 1.282 0.235

Model 11 for (MCV, PLT, sex and age) 829.614 1.241 0.283

Model 12 for (MCHC, HCT, sex and age) 389.654 0.850 0.663

Model 13 for (HB, WBC, HCT, sex and age) 384.303 0.844 0.667

Model 14 for (MCV, MCHC, RBC, sex and age) 844.280 1.252 0.270

Model 15 for (HB, RBC, MCH, WBC, sex and age) 353.664 0.810 0.690

Model 16 for (MCV, HCT, MCHC, PLT, sex and age) 378.580 0.838 0.670

In this study, the size of the swarm is taken to be according to the structure of the

linear medical model, the number of estimated parameters, and searching space be-

tween (-10 and 10). The acceleration coefficients; cognitive parameter c1 and social

parameter c2 are selected as 1 and 3, respectively. The algorithm is set to stop after

different iterations and different independent experiments to check the durability of

the estimation strategy.

Estimating the parameters of the medical model is a difficult task for classical methods

of optimization. The starting values for the parameters are randomly selected from

the search area. The B values refer to the estimated parameter values for the real

parameters obtained by the PSO. After different independent attempts have been made

and different iterations 500, 1000, 2000 and 4500 have been taken to obtain the best

parameters, and then we have obtained the best estimated parameters with iterations

of 4500 (see Tables 5.1-5.4 and Figures 5.3-5.6).

Since the PSO algorithm is random inherently, convergence behavior and final esti-

mated values can be of attention. For the medical model, the behavior of the error
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function is interpreted through the PSO approach, which consists of the values evalu-

ated during the process of minimization (see Figures 5.3-5.6).

The parameter value is suitable for the model, when SSE = 347.989, RMSE =

0.803,and R2 = 0.699 by the PSO. This is important because the SSE measures how

well the data fit the model and means a better fit the model with the data and small

values of the RMSE indicate the concentration of data around the model line. The

medical model of interest has been seen to be effective significantly, on the prediction

of the anemia types, which explain 69.90% of the change in the relation of the model

between the observational variables and the anemia types.

The results obtained from the SSE,RMSE,and R2 by using the PSO at the iteration of

4500, that the models produced in terms of a great number of blood variables a better

relationship appear than the models produced in terms of fewer number of blood

variables for predicting the anemia types (see Tables 5.4,5.5).

5.4.2 Nonlinear Model

The current study concentrates on getting the best estimation of the parameters

through the PSO for the currently derived nonlinear medical model to discover the

effect of the blood variables, sex, and age on the anemia types. Thus, the parameters

of the nonlinear medical model are estimated through the PSO algorithm (see Table

5.6), and the produced results for various versions of the models through the mini-

mum error are illustrated in (Table 5.7). In the estimation step, when the number

of iteration increases, the error is decreasing as seen in Figures 5.7-5.9. Notice that

the iteration reaches its optimum level at 3000. It is important to note that, nonlin-

ear regression analysis, the nonlinear deep learning (LSTM) and nonlinear regression

neural network methods have also been applied to compare our model results. The

results detected that the currently derived model is better than the other competitors

(see Table 5.8).
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Table 5.6 Estimation of the parameters of the nonlinear medical model by
the PSO algorithm

Iteration Number 100 500 1000 3000

MSE 2.071 0.717 0.510 0.503

SST 1157.243 1157.243 1157.243 1157.243

SSE(b) 1116.277 386.518 275.358 271.148

R2 0.036 0.666 0.762 0.766

Constant b0 -283.184 -211.634 -439.808 -337.966

HB b1 -0.001 -0.0001 -0.0001 -0.0002

RBC b2 -0.025 -0.0001 0.029 -0.002

MCH b3 0.0001 0.0001 0.0003 -0.00009

WBC b4 -1.177 0.0001 0.000006 0.00002

MCV b5 -9.257 -1.456 1.006 -2.600

HCT b6 0.0001 -0.895 -7.688 -8.733

MCHC b7 -10.285 1.720 -72.156 -40.975

PLT b8 -2.359 -0.673 -9.352 -3.851

Sex b9 -4.206 1.551 -115.177 -191.734

Age b10 -2.024 -0.909 0.159 -0.256

Figure 5.7 Behaviour of the sum of square errors by the PSO when
the iteration is 500
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Figure 5.8 Behaviour of the sum of square errors by the PSO when
the iteration is 1000

Figure 5.9 Behaviour of the sum of square errors by the PSO when
the iteration is 3000
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Table 5.7 Parameters Estimation of the nonlinear medical model by the
PSO algorithm in various forms

Models SSE R2 MSE

Model 1 for (HB, sex and age) 519.588 0.551 0.971

Model 2 for (RBC, sex and age) 940.242 0.188 1.744

Model 3 for (MCH, sex and age) 889.922 0.231 1.650

Model 4 for (WBC, sex and age) 939.826 0.188 1.757

Model 5 for (MCV, sex and age) 908.792 0.215 1.699

Model 6 for (HCT, sex and age) 734.005 0.366 1.372

Model 7 for (MCHC, sex and age) 907.781 0.216 1.697

Model 8 for (PLT, sex and age) 930.375 0.196 1.739

Model 9 for (HB, RBC, sex and age) 514.533 0.555 0.964

Model 10 for (MCH, WBC, sex and age) 882.851 0.237 1.638

Model 11 for (MCV, HCT, sex and age) 728.407 0.371 1.364

Model 12 for (MCHC, PLT, sex and age) 855.350 0.261 1.602

Model 13 for (WBC, MCV, HCT, MCHC, sex and age) 716.885 0.381 1.348

Model 14 for (HB, RBC, MCH, PLT, sex and age) 380.217 0.671 0.715

Table 5.8 Comparison of the PSO results with the other methods

Methods SSE MSE R2

PSO 271.148 0.503 0.766

Nonlinear regression analysis 271.148 0.514 0.766

Nonlinear Deep Learning Methods (LSTM) 273.465 0.560 0.760

Nonlinear Regression Neural Networks 287.826 0.534 0.752

LSTM: Long Short Term Memory

Researchers of previous studied have used a very limited number of blood variables or

a few types of anemia [37, 38, 90] to investigate various diseases, and they kept the

number of observational variables and the anemia types in their studies very modest

as opposed to the current study. Therefore, here, we focus on an optimum nonlinear

medical model investigating the relationship between many blood variables and types

of anemia.

As opposed to the PSO approach, classical ways in dealing with the nonlinear model

have some disadvantages as seen in the previous works [11, 74, 75, 121, 122] with
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required a lot of cumbersome operations like matrix operations, gradient operations,

and the Jacobean matrix. In the past [73, 74, 76, 77, 126, 127, 128], researchers

estimated the parameters of a large number of various models by using the PSO. In the

corresponding literature, they discussed various models/problems by using their own

approaches. We have here studied a nonlinear model for a large amount of medical

data on anemia to estimate the parameters of the model through the PSO.

In this work, the swarm size is calculated according to the structure of the nonlinear

medical model, the number of estimated parameters, and the search space (-1000 and

10). The algorithm parameters c1 and c2 were selected as 1 and 3, respectively. The

termination criterion was defined as the iteration limit. Specifically, the algorithm was

set to stop after different independent experiments for different iterations to verify the

robustness of the estimation strategy.

Estimating the parameters of the nonlinear medical model for improvement is a com-

plicated task for classical algorithms. The b values refer to the estimated parameter

values for the real parameters that the PSO obtains after randomly specifying the initial

parameters of the model from the search space. After making different independent

attempts and different iterations, 100, 500, 1000, and 3000 were taken to get the best

parameters, and we achieved that goal at 3000 iterations (see Table 5.6 and Figures

5.7-5.9).

Since the PSO algorithm is inherently random, the behavior of convergence and the

final estimated parameters values can be of interest. For the nonlinear medical model,

the behavior of the error function is explained by the PSO approach which consists of

the values estimated during the minimization process (see Figures 5.7-5.9). If Fig-

ures 5.7-5.9 are examined closely, the superiority variation to estimation accuracy for

the parameter values of the medical model when SSE = 271.149, MSE = 0.503,and

R2 = 0.766 by the PSO may be seen. This is important because the SSE and the MSE

measure how well the data fit the model and anemia types, and concentration of data

around the model line, which means a better fit for the model with the data. The model

has been seen to be significantly effective on the prediction of anemia types, and the

model explains 76.60% of the change in the relationship between the observational

variables and the anemia types.

From the results obtained in Tables 5.6 and 5.7, we see through the SSE,MSE,and
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R2 by using the PSO that the models produced in terms of a larger number of blood

variables show a better correlation than the models produced in terms of fewer blood

variables for predicting anemia types at the iteration of 3000.

This study addresses the anemia prediction issue by the PSO compared to other

methods including nonlinear regression analysis, the nonlinear deep learning method

(LSTM), and the nonlinear regression neural network. The computed results showed

that the PSO has the best fit to the initial dataset compared to the others (see Table

5.8).

5.5 Conclusions

This study has discovered the anemia types through biomedical information under the

consideration of eight different blood variables, sex, and age of individuals. Therefore,

it has developed an alternative for estimating the parameter approach that depends

on the PSO algorithm in medical models. As opposed to classical methods, it has

been seen that the PSO approach is more advantageous, it requires less mathematical

operations to estimate medical model parameters. It can be concluded that the PSO

algorithm has been considered as an effective and very appropriate estimating method

for the current and similar to current medical models. The parameter values produced

are seen to be the most up-to-date and maybe the best. Thus, the PSO algorithm shows

the tendency of rapid convergence for the model with the knowledge that the number

of parameters is eleven.
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6
RESULTS AND DISCUSSION

This chapter presents the total conclusion to the work reported in this thesis. This

study has forecasted the anemia through biomedical data under the consideration of

the blood variables, sex, and age of individuals. The observational blood variables are

HB, RBC, MCH, WBC, MCV, HCT, MCHC, and PLT.

First, the MLR model has been derived for representing the anemia types. The results

revealed that the regression model is very fitted one and is capable of representing

the problem. In the analysis of the current anemia problem, the multiple regression

method has been found to be slightly more accurate than linear deep learning meth-

ods.

Secondly, a multiple nonlinear regression model has been derived for representing the

anemia. The parameter values produced have all been seen to be the optimum values

obtained from the multiple nonlinear regression approach. It has also been seen that

the proposed multiple nonlinear regression method has a very rapid convergence ten-

dency. The results confirmed that the multiple nonlinear regression model is adequate

and has a high ability to predict. The multiple nonlinear regression method has been

found to be slightly more accurate than the nonlinear deep learning methods and the

nonlinear regression neural network.

Thirdly, an alternative approach has been developed for estimating the parameter that

relies on the PSO algorithm in the medical models. The PSO method has been used

to estimate model parameters, the PSO approach presented here does not require any

additional calculations. As opposed to the PSO approach, classical methods have some

disadvantages because they require many intricate mathematical operations. It can be

concluded that the PSO algorithm has been seen to be an effective and very suitable

parameter estimation method for the current medical models. The parameter values
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produced are the latest and best results for securing a more realistic approach. Thus,

the PSO algorithm showed the tendency of rapid convergence for the models with

the knowledge that the number of parameters is eleven. The PSO approach has been

found to be more accurate than the nonlinear deep learning method and the nonlinear

regression neural network.

It has been concluded that the models are expected to be helpful for the diagnosis of

the anemia types to health providers and designing an appropriate treatment program

for their patients. It can be accepted that the use of relatively less number of data with

the current approach could have weakened importantly our results and observations.

For further research, these mathematical models may be attempted to improve under

the consideration of various computational methods.
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5. M. Sari, A. A. Ahmad and T. Coşgun, Mathematical Modelling of a Medical

Problem Using Multiple Linear Regression, International Conference on Applied

Mathematics in Engineering (ICAME), Balikesir, Turkey, 2018.
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