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ABSTRACT

Application of Lie Symmetries to Difference Equations
and Boundary Value Problems

Sümeyra ÇAĞLAK

Department of Mathematics

Doctor of Philosophy Thesis

Advisor: Assoc. Prof. Dr. Özgür YILDIRIM

Lie groups of point transformations are applied to nonlinear hyperbolic partial

differential equations in particular the sine-Gordon equation. Point symmetries of

finite difference scheme for the sine-Gordon equation are obtained via methods

developed from the existing literature. The method is extended to nonlinear

partial difference equations and based on an algorithm that determines infinitesimal

generators of the equation. Symmetries that leave the equation and the mesh invariant

simultaneously is presented. It is shown that the sine-Gordon equation conserves

the entire symmetry of the original differential form in its finite-difference model.

Boundary value problems for differential and difference equations are also considered

and the invariance of their boundary curves and boundary conditions under the Lie

point symmetries of the associated equations is analyzed in both differential and

difference forms. Symmetries affect the equations, mesh, boundaries and boundary

conditions at the same time. The invariant discretization of the difference problem

corresponding to boundary value problem for the sine-Gordon equation is studied.

Keywords: Lie group analysis, Finite difference schemes, Point symmetries,

Hyperbolic equations, Nonlinear boundary value problems.
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ÖZET

Lie Simetrilerinin Fark Denklemlerine ve Sınır Değer
Problemlerine Uygulanması

Sümeyra ÇAĞLAK

Matematik Anabilim Dalı

Doktora Tezi

Danı̧sman: Doç. Dr. Özgür YILDIRIM

Lie nokta dönüşüm grupları, doğrusal olmayan hiperbolik kısmi diferansiyel

denklemlere özellikle sinüs-Gordon denklemine uygulandı. Sinüs-Gordon

denkleminin sonlu fark şemasının nokta simetrileri, mevcut literatürden geli̧stirilen

yöntemlerle elde edildi. Metot doğrusal olmayan kısmi diferansiyel denklemlere

geni̧sletildi ve denklemin sonsuz küçük üreteçlerini belirleyen algoritmaya

dayandırıldı. Denklemi ve latisi aynı anda deği̧smez bırakan simetriler gösterildi.

Sinüs-Gordon denkleminin, orijinal diferansiyel formun tüm simetrisini sonlu fark

modelinde koruduğu gösterildi. Diferansiyel ve fark denklemleri için sınır değer

problemleri de ele alındı ve hem diferansiyel hem de fark formlarında sınır eğrilerinin

ve sınır koşullarının deği̧smezliği, ilgili denklemlerin Lie nokta simetrileri altında

analiz edildi. Simetriler denklemleri, latisi, sınırları ve sınır koşullarını aynı anda

etkiler. Sinüs-Gordon denklemi için sınır değer problemine karşılık gelen fark

probleminin deği̧smez ayrıklaştırılması çalı̧sıldı.

Anahtar Kelimeler: Lie grup analizi, Sonlu fark şemaları, Nokta simetrileri,

Hiperbolik denklemler, Doğrusal olmayan sınır değer problemleri.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
Introduction

1.1 Literature Review

1.1.1 General Overview to Symmetry

Symmetry has a universal, amazing effect in nature since the beginning of life. It is

an outstanding and powerful tool clarifying the regulations of the physical laws. A

typical example of this feature is performing experiments in various places at several

times. Since physical laws are invariant with respect to space translation and rotation

and time translation, experiments can again be done [1].

Brian J. Cantwell expresses symmetry as an immense part of our conscious life and

gives distinguished symmetry examples from nature in his excellent book [2]. The

symmetries existing in physical laws rule the natural world. These symmetries provide

us to understand of complex physical events and to formulate physical laws, simplify

solving problems and improve our understanding of nature.

Since symmetry is a native and simple concept in nature, it has an important role

in different branches of science especially in several areas of mathematics such as

analysis, differential geometry, algebra, differential equations, numerical analysis; in

chemistry, engineering and in many subjects of physics such as classical mechanics,

quantum mechanics, atomic structure, high energy physics, scattering theory, shock

waves and so on. In general, a symmetry is a transformation of an object leaving

the object apparently unchanged. This feature may appear in all areas of life.

Particularly, in the study of symmetries in mathematics, our objects are differential

or difference equations and our transformations are point symmetries, contact

symmetries, generalized symmetries, etc. preserving these equations or connecting

them [3].

Symmetries are defined by qualities of their associated objects and this provides us to

characterize and learn these objects. This might be observed trivial for symmetries of

geometric objects. But in the course of symmetry analysis in mathematics, i.e., in the
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research of symmetries of differential or difference systems, symmetries inform critical

data about structure of the equation such as solution set of the equations, integrability

or linearization of the equations, etc. Inverse group classification is a remarkable

example of this result. It states that a differential equation can be denoted in regard

to differential invariants of the Lie symmetry group admitted by the equation [4].

1.1.2 Historical Development of Lie Groups

In the nineteenth century the Norwegian mathematician Sophus Lie proposed to

improve a general theory to integrate ordinary differential equations (ODEs). The

theory advanced by Evariste Galois and Niels Henrik Abel to solve algebraic equations

led the way him to realize his aim. He developed the theory of continuous groups of

transformations and applied it to differential equations during the period 1872–1899

[5, 6]. Now, we briefly give the outlines of history of Lie group theory [7, 8] that allow

us to understand Lie’s viewpoint.

1.1.2.1 Lie Group Theory and Abstract Algebra

In the beginning of the nineteenth century famous mathematicians like Lagrange,

Gauss, and Abel examined a method for solving higher-order algebraic equations.

They wanted to find an algebraic equation with reduced order having a solution

set that consists of functions of the corresponding higher order equation. Galois

developed a general criteria for solving algebraic equations. Galois theory was based

on the notion of groups which are symmetries implicit in the solution set of algebraic

equations commuting the roots of the equations. Camille Jordan who was studying

with two doctorate students named Sophus Lie and Felix Klein wrote a book about

Galois Theory in 1870. Lie began his mathematical studies when he was 26 at the

University of Christiania. After he took course about Galois theory from Ludwig Sylow,

he decided with Klein to investigate a procedure for solving differential equations like

Galois theory for solving algebraic equations. In Galois theory functions of a Galois

group commute roots of the corresponding polynomial; in Lie’s theory transformations

of a Lie group move solutions of the corresponding differential equation into solutions.

Another connection between abstract algebra and Lie group theory is about solvability

of equations. In abstract algebra a polynomial is solvable if and only if the Galois group

corresponding to the polynomial is solvable. Similarly, in the study of differential

equations if an equation admits a solvable Lie group then it is solvable. A system of

ODEs acts like an auxiliary polynomial equation corresponding to the Galois group of

a polynomial and is used to examine its algebraic solvability.
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1.1.2.2 Lie Group Theory and Differential Geometry

Lie’s interest was focused on geometry when he started university. He concerned with

the studies of both Jean-Victor Poncelet and Julius Plucker about line geometry. He

considered a tetrahedral line complex ς and a set T consisting of transformations that

act on vertices of the tetrahedral. In Lie’s group theory the elements of T correspond

to transformations of a Lie group and vertices of tetrahedron ς correspond to orbits of

the group. For the study of differential equations he examined a complex cone with

vertex a ∈ ς and the set of all lines passing through the vertex point. Then the problem

is to determine all surfaces having the feature that each point of surfaces intersects

with the cone at the point a. This means that to find tangent vector field of surfaces

which intersect with the cone at only one straight line. The geometrical meaning of

this problem can be expressed by a first-order partial differential equation (PDE) as

f (x , y, z, a, b) = 0, a =
∂ z
∂ x

, b =
∂ z
∂ y

, (1.1)

which will be later defined as differential equation admitting (three-parameter x , y, z)

group of transformations T . Geometrically any transformation of T moves one surface

into another.

Lie and the scholar of Plucker, Klein dealt with similar geometry problems. Klein

played important role in Lie’s academic performance. They studied together with

Jordan on homogeneous curves invariant under a group that are called W-Curves.

This work directed to Lie’s attention to consider one-parameter subgroups of a group of

projective transformations and led him to explore contact (tangent) transformations,

that map surfaces in a space including points and their tangents. He was influenced

by the studies of Gaston Darboux which combine the subjects differential geometry

and differential equations. These studies contributed to develop Lie groups. Lie and

Klein worked on geometry, symmetry, and group theory together for a while, then they

turned to different areas shortly after.

Lie directed to his study from contact transformations to groups of transformations

when he was professor in Norway and this brought about the idea of Lie groups.

He worked on stability groups of differential equations for integrating the equations.

Lie was inspired from Galois’ hypothesis of commuting roots of algebraic equations,

and considered a point transformation leaving a differential equation invariant if it

commutes the solutions of the equation. This was the starting point of the theory of

Lie groups. Lie found out that continuous symmetries of a differential equation could

be used for solving the differential equation or reducing its order.

3



1.1.2.3 Studies about Lie Group Theory of Differential Equations

The method of symmetry analysis is mainly used to obtain exact solutions of

differential equations. For an ODE symmetries can help to find its general solution

reducing the order of the equation. For a PDE a symmetry group decreases the

number of independent variables in the equation and this is sometimes resulted

in reducing a PDE to an ODE. Symmetries also supply particular solutions called

group invariant solutions. Group invariant solutions produce some special functions

and satisfy boundary conditions for a boundary value problem (BVP). In many

nonlinear systems of differential equations these solutions are only exact solutions

and provide important information for mathematical and physical applications [9].
While obtaining group invariant solutions the invariants of a Lie symmetry group are

described as new variables in the corresponding differential equation. For a PDE the

number of independent variables n ≥ r is reduced by r if the equation admits an

r-parameter symmetry group. Then any solution of the reduced differential equation

forms a particular solution of the original differential equation. Elementary examples

of Lie groups are translations, rotations, scalings.

A differential equation has infinitely many solutions by means of additive constants.

If there is a proper initial condition then the solution is unique. Symmetries

are transformations defined on the set of solutions of a differential equation and

integration constants can be thought as parameter of the admitted symmetry group.

Hence symmetries are used to map a solution of a differential equation to another

solution. This leads to obtain new exact solutions from known ones or to produce

series of exact solutions.

Another application of symmetries is to determine equivalent differential equations

and connect them to each other. Equivalent differential equations that can be

transformed to each other by point transformations, i.e., equivalent differential

equations have the similar symmetry groups with respect to the same point

transformations. An advantage of this property is to linearize nonlinear equations

finding a linear differential equation similar to a nonlinear one. In fluid mechanics,

the system of one-dimensional shallow-water equations, which is similar to a system

of linear differential equations by a hodograph transformation is an apparent example

of this situation [10].

Lie symmetries evaluate the entire set of point symmetries of a differential equation.

There are two different approaches to determine all group of point transformations,

i.e., point symmetries for differential equations. In the first approach every continuous

or discrete point symmetry of the given differential equation corresponds to a bijective

transformation of the associated Lie algebra. This condition results in a restriction on

4



the general form of a transformation that can be a group of point symmetries of the

equation. This restricted form of a general point transformation is substituted into the

determining equations that evaluate the symmetries of a given differential equation

and the continuous symmetries are separated into factors. Thus the group of discrete

symmetries is determined [11]. There are some subalgebras which are invariant under

any bijective transformation of the given Lie algebra. These algebras simplify the use

of the first method. The second method computed complete point symmetries of a

differential equation in a simpler way using information on the set of transformation

group admitted by a differential equation.

In the construction of group-invariant or partially invariant solutions action of

invariants of a Lie symmetry group is important. Invariants of a Lie symmetry

group can be determined using the infinitesimal generators of the Lie symmetry

group, solving a semi-linear characteristic system of differential equations that are

obtained from the generators [4]. In the method of moving frame that is based

on finite symmetry transformations, differential invariants of the symmetry group

acting on differential terms in a finite order are obtained following the same way

[12]. According to inverse group classification any differential equation can be

symbolized with respect to the differential invariants of the symmetry group admitted

by the equation. Thereby, the general type of differential equations represented by a

symmetry group is found out using differential invariants.

The presence of conservation laws in physics and mathematics is of significant

inference and application area of symmetries. In 1918 Noether [13] realized the

classical relation between symmetries and conservation laws proving her well-known

theorem. Conservation laws help us to know the characteristics of the corresponding

differential equations and give essential information about the integrability of these

equations.

Lie pointed out that the concept of infinitesimal operator which generates a one

parameter group include all existing integration theories. Even though, the Lie’s

discovery was not used in the study of differential equations for a while and only the

abstract part of Lie group theory developed. In his study about The Theory of Differen-

tial Equations published in 1906, Forsyth [14] wrote about theory of Lie groups and

Bäcklund transformations. The first few chapters of the book by Cohen [15] describe

the notion of a Lie’s theory and the concept of invariance under a transformation

group. However, studies about the theory of Lie groups were interrupted until after

World War II. As nonlinear problems were studied more and more often, importance

of symmetries was recognized and Lie’s ideas began to attract attention again. The

term Lie group was added to literature in 1928 by Hermann Weyl. In the United

5



States, the study of Birkhoff [16] and Sedov [17] related the subjects group invariance

and dimensional analysis applying Lie groups to problems of fluid mechanics. Lie

symmetry method for differential equations were exploited systematically to obtain

general solutions of any type of problems including complex nonlinear ones of

mathematical physics in Russian school led by Ovsiannikov [4]. During the last

few decades, many scientists have interested in Lie’s theory and numerous study has

invested for the theory or application of symmetry analysis of differential equations

[2, 4, 9, 10, 18–27].

For a differential equation the admitted Lie group is calculated by an algorithm

which is based on infinitesimals of the group and consists of three steps: writing

determining equations, splitting these equations with respect to arbitrary elements

and solving these equations [4, 19, 20, 28]. Miller [29] studied on relation between

invariant solutions and separation of variables. Applications of Lie symmetry method

to numerical analysis can be found in studies of Shokin and Dresner [30–32]. The

method is applied to control theory by Shaft [33], Ramakrishan and Schaettler [34].
The process of the method for applying to BVPs is given in books [35–37] and in papers

[38, 39]. Kaya and Iskandarova [40, 41] studied Lie symmetry analysis of BVPs for

some fractional differential equations. There are also many important articles [42–46]
(and the references given therein) about symmetry analysis and classification of heat

and wave equations.

Lie group theory is applied to differential equations in an algorithmic way. But the

determination of Lie groups of differential equations by hand is time-consuming and

there may be many errors. As the number of the symmetry variables, and the order

of the differential equations increases, solving the related equations becomes more

complicated. There are many packages that use software programs with symbolic

manipulations, such as Mathematica, Macsyma, Maple, Reduce, Axiom, MuPAD [47–

51] to perform symmetry analysis of differential equations.

1.1.2.4 Studies about Lie Group Theory of Difference Equations

Lie symmetry method is a powerful tool when studying differential equations in many

respects such as reducing the order of an ODE, obtaining invariant solutions for PDEs,

conservation quantities, or relating different differential equations by equivalence

transformations. Constructing finite difference schemes that preserve symmetries of

its continuous model has become an important application area in the last 30 years.

Substantial efforts have been devoted to extending symmetry integration techniques of

finite difference equations [26, 27, 52–55]. Traditionally, these symmetry integration

methods rely on the infinitesimal generators of the Lie groups admitted by the
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equation.

Symmetry analysis of difference equations and meshes on which difference equations

are written can be done using several methods. Yanenko [56] and Shokin [31],
applied the Lie group theory to finite difference equations with the viewpoint

of differential approximation. Thus, they have set down conditions to preserve

continuous symmetries of a differential equation in its finite difference form. They

performed numerical experiments and obtained difference schemes that are more

accurate than non-invariant ones, after a frame transformation. Ames et al. [57]
showed that, in some cases, the method of differential approximation produces

accurate difference schemes like higher order numerical methods. Hoarau et al.

[58] developed a “semi-invariant scheme” using the differential approximation that

is invariant with respect to the symmetry group of the corresponding differential

equation.

In the method of Dorodnitsyn, the set of all difference invariants of the corresponding

Lie group is used to construct the invariant difference schemes. The starting point of

this technique is a differential equation and its Lie symmetry group. Then a difference

scheme- i.e., a difference equation and a mesh- that preserves all symmetries of the

given differential equation is searched. The process of this method is presented in the

papers of Dorodnitsyn and co-workers [59–63] and summarized in the book [26].

The method of Levi and his collaborators [53, 55, 64–68] starts from a difference

equation and a mesh. Then a group of transformations leaving the mesh invariant

for the given difference system is obtained. This supplies solving the equations,

transforming solutions into solutions, classifying and identifying equations. This

method can be applied for different types of meshes not necessarily uniform.

Infinitesimal generators with coordinates of dependent and independent variables are

used when only point symmetries are considered. But, if we want to find a difference

model that conserves the entire set of symmetries of a differential equation in the

continuous limit, we have to generalize the concept of point symmetries.

Fels and Olver [12, 69–71] improved an alternative method of equivariant moving

frames essentially for symmetry preserving difference models. This approach is

based on transformation of difference variables in the discrete space according to

the symmetries of corresponding PDEs. In this case the considered symmetries leave

invariant the final version of the transformed difference model. Ozbenli and Vedula

[72] presented a numerical approach to develop higher-order accurate invariant

numerical schemes with desired order of accuracy or to solve PDEs.

The method of Dorodnitsyn and Levi is based on infinitesimal criterion and needs to

7



solve a system of PDEs while the method of equivariant moving frames needs to solve

a system of algebraic equations. In both methods difference invariants which converge

to differential invariants of the corresponding symmetry group in the continuous limit

are produced. Both approaches are used to construct invariant ordinary and partial

difference schemes in the literature.

1.2 Objective of the Thesis

In mathematical modeling of natural phenomena and problems that occur in

engineering, physics, biology and various branches of science are generally nonlinear.

Linear superposition principle is not proper for nonlinear differential equations to

obtain exact solutions. Hence the well-known techniques like the Fourier method,

the Laplace transform method can not be applied to nonlinear differential equations.

Actually, to construct a general theory for solving nonlinear differential equations is

not possible. However, various solution methods such as the method of compatible

differential constraints, the inverse scattering transform method, sine–cosine method,

tanh-method, the exp-function method, the method of additional generating

conditions, similarity reductions method (Lie symmetry method), (G′/G)-expansion

method, homogenous balance method and the transformed rational function method

have improved for the study of nonlinear problems. Lie symmetry is the most

commonly used method among them. Many classical methods such as separation of

variables method, the method of integrating factor, self-similar solutions, the method

of undetermined coefficients are particular cases of this technique. The method

provides a comprehensive way to solve differential equations converting difficult

nonlinear conditions to simple linear ones. Another advantage of this method is its

applicability to any type of equations including ordinary or partial, linear or nonlinear,

constant or variable coefficient. A deficiency of this method appears in the study of

first-order ODEs. Because they admit infinite dimensional Lie groups and moreover

there is not any standard technique to obtain an one-dimensional Lie group for them.

As a result of this situation Lie symmetry method is applied to problems of biology or

epidemiology less than problems of physics. This is because, in general, the problems

in these fields are modelling of first-order ODEs while the problems in physics are of

second-order. However, Nucci [73] applied Lie symmetry method to an epidemiologic

model which describes human immunodeficiency virus (HIV) transmission in male

homosexual/bisexual groups.

A striking feature of symmetries is to obtain group invariant solutions. Invariant

solutions provide us to characterize the associated differential equations with respect

to linearity, integrability or solvability of them. Thus Lie symmetry analysis has been

8



employed to find new exact solutions in the study of PDEs by many researchers

and there are numerous publications in this field. But there is not much work

about Lie group study of partial difference equations. The main purpose of this

thesis is consequently to apply Lie symmetry method to some difference models that

approximate to PDEs particularly the sine-Gordon equation. This type of equation

was chosen because it is a kind of wave equations that are one of the most practical

models in many areas of science like fluid mechanics, plasma physics, hydrodynamics

and general relativity. The studies about finding exact solutions and classification

of wave equations have continued to be an important area of interest. Some of the

well-known examples are shock waves, water waves, solitons and solitary waves.

The sine-Gordon equation is a nonlinear hyperbolic PDE consisting of the sine of the

unknown function. This type of equation was first introduced by Bour [74] and

rediscovered by Frenkel and Kontorova [75] in their work on crystal dislocations.

Such equations were studied by many researchers in the 1970s due to the existence of

soliton solutions. The sine–Gordon equations are of particular interest as a model field

theory for elementary particles in quantum theory. However, it also has been used as

a model in the theory of the splay waves in lipid membranes and magnetic flux on

a Josephson line, solid state physics, nonlinear optics, Bloch-wall motion, stability of

fluid motions and the motion of a rigid pendulum attached to a stretched wire.

In the present research we aim to analyze difference scheme for the sine-Gordon

equation by means of Lie symmetries. We want to construct invariant finite difference

schemes that conserve the symmetries of the differential equation being simulated

into the finite difference simulation and to obtain point symmetries of the discrete

sine-Gordon equation improving a methodology from the current one. We also

propose to determine invariance of some BVPs for the sine-Gordon equation with

respect to the Lie groups admitted by the governing equations.

1.3 Hypothesis

In order to practice Lie symmetry method on partial difference equations we

concentrate on difference model of the sine-Gordon equation. We will use a process

for obtaining Lie point symmetries acting on the difference equation and the mesh

simultaneously. The procedure is in line with a variation of that used by Levi et

al. [53] with some developments. In [53], a method is presented to evaluate point

symmetries of an ordinary difference equation. We extend this method to nonlinear

partial difference equation in particular the discrete sine-Gordon equation in the

multidimensional case. We will construct the difference equation on a mesh given by

9



discretely varying two equations. We will use infinitesimal generators with coordinates

of dependent and independent variables to determine the point symmetries. The

symmetry transformations left invariant the solution set of the difference scheme.

A PDE cannot express any natural model without additional (initial or boundary)

conditions. However the studies about Lie symmetry analysis of BVPs (we assume

initial value problems as a particular case of BVPs) is very limited. Applications of Lie

symmetries on BVPs have some difficulties since every symmetry of a BVP must be a

symmetry of the given equation, the domain and the boundary data at the same time.

But the prescribed initial or boundary conditions are generally not invariant under

the transformation groups of the corresponding equations. Within the framework of

these criteria we will analyze the invariance of BVP for differential and discrete form

of the sine-Gordon equation under the Lie group of point transformations admitted

by the associated equation. The point symmetries act on the boundary conditions,

the equations and the mesh. In order to preserve structure of boundary curves we

will choose an unbounded domain for the problem in the differential case and a mesh

which is a set of points lying in the plane and stretching in all directions with no

boundaries for the discrete problem. We will use an invariance definition developed

by Chernica [76] for a wide class of BVPs. The mentioned definition was used in the

application of Lie symmetries to BVPs for PDEs (see, e.g., [76, 77] and the papers cited

therein). We attempt to use the given definition for a nonlinear discrete problem.

When studying BVPs we ignore the solutions that do not satisfy the boundary

conditions. Hence symmetry of boundary data and symmetry of domain are necessary

conditions for symmetries of BVPs while symmetry of differential equation is not. As a

result of this situation, a BVP may have different symmetries to those of the differential

equation. The same idea is equally valid for BVPs of difference equations. In this

context, we will examine symmetry preserving finite difference model of BVP for the

sine-Gordon equation.

This thesis is organized as follows: The second chapter introduces basic theory of

Lie groups and explains how Lie symmetry method is used in differential, difference

equations and BVPs for PDEs. Section 3 investigates our main results which consist of

applications of Lie symmetry method to the discrete sine-Gordon equation and some

BVPs for this equation. It generalizes some approaches and definitions to the case of

partial difference equations. The last chapter is devoted to results and discussion of

the research.

10



2
Lie Symmetry Analysis of Differential and Difference

Equations

The concept of symmetry is seen in all mathematical models represented by differential

equations. The term of continuous groups developed by Sophus Lie provides to

understand the symmetry underlying differential equations. Lie group theory for

differential equations was motivated from Galois’ group theory for algebraic equations.

Lie group analysis is an effective way for integration, linearization and obtaining

general solutions of differential equations.

Dimensional analysis provides us to determine basic dimensions and elementary

quantities that can be seen in real world problems. If the considered problem expresses

a BVP for a system of PDEs, then dimensional analysis can reduce the number of

independent variables. There is a connection between dimensional analysis and

finding solutions of BVPs for PDEs by means of invariance under a Lie group. For PDEs,

reducing the number of independent variables via dimensional analysis is a particular

case of reduction by invariance with respect to scaling (stretching) transformations

group. The scaling transformations of dimensional analysis are examples of Lie

groups.

In the study of Lie group analysis of differential equations there are much broader

classes of transformations other than scalings. A Lie group admitted by a differential

equation consists of transformations that take a solution of the equation into

another solution. Lie groups are classified according to the space of variables on

which they act. A Lie group of point transformations affects the dependent and

independent variables of the corresponding differential equation. A Lie group of

contact or tangent transformations affects dependent variables, independent variables

and all first derivatives of the dependent variables. Furthermore, there are also

higher-order symmetries or Lie-Bäcklund groups which are generalization of contact

transformations group and affect independent variables, dependent variables and

their derivatives to some fixed order. In contrast to point symmetries or contact

11



symmetries, they act on an infinite-dimensional space. However, Lie’s algorithm can

be extended to determine these groups of transformations. Noether [13] showed that

if there exist higher-order symmetries they can be applied to the theory of conservation

laws.

The theory of Lie groups is based on infinitesimal generators. A Lie transformations

group is described by infinitesimal generator of the group. Information of

corresponding infinitesimal generator is essential for the application of Lie groups

to differential or difference equations. A Lie group of transformations or an

infinitesimal generator admitted by a differential equation can be computed by

an algorithmic process which is called Lie’s algorithm. Prolongation of a Lie

transformations group and accordingly its infinitesimal generator is necessary to act

on the terms with derivative. For a given linear or nonlinear differential equation,

infinitesimal generators of the admitted group is determined solving a system of linear

homogeneous equations (determining equations). These equations can be solved

using symbolic manipulation programs [2, 48–51, 78]. For a multiparameter Lie

group, infinitesimal generators corresponding each parameter construct a Lie algebra.

The theory of Lie group analysis of difference equations is also given by infinitesimal

generator acting on the space differential and difference variables and almost same

processes with differential equations are valid.

In this chapter, we give a brief overview for group analysis of differential and difference

equations, which is presented in [4, 9, 10, 20, 22, 24, 26].

2.1 Basic Theory of Lie Groups

The notion of symmetry of objects in nature makes more clear symmetries of

differential equations. In the previous chapter we have mentioned that symmetry of

a geometrical object is a transformation which maps the object to itself, i.e., it leaves

the appearance of the object the same. Invertibility and preserving of structure are

the necessary conditions for a transformation to be a symmetry. Trivial symmetries

which are transformations mapping each point to itself are seen in any geometrical

object. In the plane, the set of horizontal lines, shown in Figure 2.1, has an infinite

number of symmetries. Because rotating, shifting or flipping them about x-axis or

y-axis or both, again gives the set of horizontal lines in the plane. The transformations

T1 : (x , y) → (eαx , y), T2 : (x , y) → (αx , y), T3 : (x , y) → (x + α, y) are trivial

symmetries for this set of lines since they move each line into itself.

Discrete symmetries of geometrical objects are independent of some continuous
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Figure 2.1 The family of lines y = k

parameters and they define non-continuous transformations for objects. For example,

rotations of a square by multiples of right angles conserve the square’s original

appearance and form a discrete rotational symmetry. The unit circle x2 + y2 = 1

admits the reflections about the y-axis T : (x , y) → (x ,−y) as a discrete symmetry

because the transformed points are still on the unit circle, that is x2+ (−y)2 = 1. But

trivial symmetries and discrete symmetries are not appropriate for our research. In this

thesis, we study on symmetries which are dependent of some continuous parameters,

for example the rotations of the unit circle about its centre by any number. These

rotations form a continuous group of transformations. Now, we adapt the concept of

symmetry to differential equations. The materials of this section are based on contents

of [11, 20, 22, 24, 26].

2.1.1 Lie Group of Transformations

We first introduce the concept of group to better understand Lie groups. We generally

study on n-dimensional Euclidean space in this chapter.

Definition 2.1 (Group). A set of elements G with a binary operation ψ is called a

group if the following four conditions (group axioms) are satisfied:

1. (Closure property) Composition of any two elements form a third element in the

set. That is, for any A, B ∈ G, ψ(A, B) ∈ G.

2. (Identity element) There is a unique identity element I ∈ G such that

ψ(A, I) =ψ(I , A) = A.

3. (Inverse element) For each element A∈ G the set contains a unique element A−1

such that

ψ(A, A−1) =ψ(A−1, A) = I .
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4. (Associative property) For any A, B, C ∈ G:

ψ(A,ψ(B, C)) =ψ(ψ(A, B), C).

Moreover, a subset of G that forms a group with the same binary operationψ is called

a subgroup of G.

Definition 2.2 (One-parameter transformations group). Let x ∈ D ⊂ Rn, i.e., x =
(x1, x2, · · · , xn) and

x = X (x;α) (2.1)

be the set of transformations for each x ∈ D and parameter α ∈ E ⊂ R, with

ψ(α,β) defining a composition law of parameters α,β ∈ E. Then this set forms a

one-parameter transformations group if group axioms hold:

1. (Closure property) For each α ∈ E, the transformations are one-to-one and onto.

2. (Inverse element) The set E with operation ψ constitutes a group structure.

3. (Identity element) There exists an identity element α0 such that

X (x ,α0) = x (2.2)

for each x ∈ D. That is, x = x when α= α0 is the identity element.

4. (Associative property) If x = X (x;α) and x = X (x;β), then

x = X (x;ψ(α,β).

Definition 2.3 (One-parameter Lie transformations group). A one-parameter

transformations group describes a one-parameter Lie transformations group if the

following conditions are satisfied:

5. α is a continuous parameter, i.e., E is an interval in R.

6. X is infinitely differentiable with respect to x ∈ D and it is an analytic function

of α ∈ E.

7. ψ(α,β) is an analytic function of α and β , α,β ∈ E.

A one-parameter Lie group is parametrized with respect to analyticity of the group

operation ψ such that the group operation is transformed to the ordinary sum in real

space.

Some examples for one-parameter transformations group are given as:
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• The translations group on a vector (x1, x2, . . . , xn) ∈ Rn,

x i = x i +α, i = 1,2, . . . , n.

• The group of rotations on the plane,

x1 = x1 cosα+ x2 sinα, x2 = −x1 sinα+ x2 cosα.

• The group of scalings on the plane,

x1 = αx1, x2 = α
2 x2, 0< α <∞.

• The group of projective transformations on the plane,

x1 =
x1

1−αx1
, x2 =

x2

1−αx1
.

Consider a point (x , y) in the plane and a one-parameter (α) Lie transformations group

Tα : (x , y)→ (x , y) = (X (x , y;α), Y (x , y;α))

acting on this point. As the parameter α changes, the point (x , y) moves following a

continuous path as shown in Figure 2.2. This curve is named orbit of the group.

Figure 2.2 Orbit of a one-parameter Lie group

2.1.2 Group Generators and Lie Equations

Consider a one-parameter Lie transformations group (2.1). The expansion of (2.1)

into Taylor’s series in α about some neighborhood α= 0 , with initial condition (2.2)

gives the infinitesimal transformation

x = x +αξ(x) +O(α2) (2.3)
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where

ξ(x) =
∂ X (x;α)
∂ α

|α=0. (2.4)

The terms with order α2 and higher are ignored to linearize x and consequently to

obtain the slope of the curve which is the orbit of the group. Since the function ξ(x)
is the tangent vector to the curve on which the point x is mapped to the point x , it is

called the tangent vector field of Lie transformations group (2.1). The components of

ξ(x) are called the infinitesimals of (2.1).

The first-order differential operator

X = X (x) =
n
∑

i=1

ξi(x)
∂

∂ x i
(2.5)

is called the infinitesimal generator of one-parameter Lie transformations group (2.1).

Given an infinitesimal transformation (2.3) or an infinitesimal generator (2.5) a group

of transformations (2.1) is found by integrating the following system of ODEs which

is called the Lie equations:
d x
dα
= ξ(x), x |α=0 = x . (2.6)

There is another way to determine a Lie transformations group from its infinitesimal

generator using the Taylor series expansion:

Theorem 2.1. A one-parameter Lie transformations group of form (2.1) with infinitesi-

mal generator (2.5) is expressed in terms of a power series

x = eαX x = x +αX x +
1
2
α2X 2 x + · · ·=

∞
∑

k=0

αk

k!
X k x , (2.7)

where the operator X k = X k(x) is defined by X k = X X k−1, k = 1,2, . . ..

2.1.3 Invariance under a Lie Group

Definition 2.4. Let f (x) be an infinitely differentiable function. Then it is called an

invariant function of Lie transformations group (2.1) if the following equation holds:

f (x) = f (x). (2.8)

The following theorem shows a very simple way for determining invariance of a

function under a Lie group using the infinitesimal generator of the group.

Theorem 2.2 (Invariance Condition). For a function f (x) to be invariant with respect
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to a Lie transformations group (2.1) necessary and sufficient condition is

X f (x) = 0. (2.9)

Equation (2.9) is called invariance condition of the function f (x) under a Lie group (2.1).

The following example shows simply how to find invariants of a Lie group and is given

in [26].

Example. The group of Galilei transformations in two dimensional space is given by

x1 = x1 +αx2, x2 = x2. (2.10)

The corresponding infinitesimal generator is

X = x2
∂

∂ x1
. (2.11)

Then the group invariants are computed using equation (2.9) for operator (2.11) by

x2
∂ F
∂ x1

= 0. (2.12)

The solution of (2.12) gives the only invariant for group (2.10) as

F1 = x2.

2.1.4 Canonical Coordinates

Canonical variables of a Lie group provide to express the given Lie group and the

corresponding infinitesimal generator in a simple form by shifting an element of the

group.

Theorem 2.3. Every one-parameter Lie transformations group (2.1) with the generator

(2.5) can be reduced to the group of translations

yi = yi, i = 1,2, . . . , n− 1, (2.13)

yn = yn +α, (2.14)

with the generator

Y =
∂

∂ yn
,

introducing new coordinates y = (y1, y2, . . . , yn) called canonical coordinates and defined
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by the following first-order linear PDEs:

X yi(x) = 0, i = 1, 2, . . . , n− 1, (2.15)

X yn(x) = 1. (2.16)

Example. Consider the rotations group

x1 = x1 cosα− x2 sinα, (2.17)

x2 = x1 sinα+ x2 cosα (2.18)

generated by the infinitesimal operator

X = x1
∂

∂ x2
− x2

∂

∂ x1
.

Using equation (2.15), we get

y1(x1, x2) = k

as the general solution of
d x2

d x1
= −

x1

x2
.

That is

y1 =
q

x2
1 + x2

2 .

Now from formula (2.16), a particular solution of equation

d y2

d x2
=

1
x1
=

1
Æ

y2
1 − x2

2

gives the second canonical coordinate as

y2 = θ = arcsin
x2

y1
.

Consequently canonical coordinates of rotations group (2.17), (2.18) are obtained as

polar coordinates

(y1, y2) = (r,θ ) = (
q

x2
1 + x2

2 , arcsin
x2

y1
). (2.19)

These coordinates are written with respect to the rotations group (2.17), (2.18) in the

normal form

r = r,

θ = θ +α.
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2.1.5 Group of Point Transformations and Prolonged Transformations

In mathematics, we can see prolongation of diffeomorphisms, flows, vector fields,

group actions, and so on. Now, for our purpose, we introduce prolongation of a vector

field.

Definition 2.5. A group of transformations of the form

x = X (x , y;α), (2.20)

y = Y (x , y;α), (2.21)

is called a one-parameter Lie point transformations group in the space of n + m

variables where x = (x1, x2, . . . , xn) ∈ Rn represents n independent variables and

y = (y1, y2, . . . , ym) ∈ Rm represents m dependent variables.

A Lie group of point transformations and its infinitesimal generator act on the

differential terms by extending the group to a space of dependent variables,

independent variables and derivatives of dependent variables with finite order.

We notate the entire set of first order partial derivatives of the dependent variable y

with respect to the independent variable x by ∂ y:

∂ y =

�

∂ y1

∂ x1
,
∂ y1

∂ x2
, . . . ,

∂ y1

∂ xn
,
∂ y2

∂ x1
,
∂ y2

∂ x2
, . . . ,

∂ y2

∂ xn
, . . . ,

∂ ym

∂ x1
,
∂ ym

∂ x2
, . . . ,

∂ ym

∂ xn

�

. (2.22)

This set consists of nm elements. Generally, for k ≥ 1 we notate the entire set

of kth-order partial derivatives of the dependent variable y with respect to the

independent variable x by ∂ k y which consists of the elements

yµi1 i2...ik
=

∂ k yµ

∂ x i1∂ x i2 · · ·∂ x ik

with µ= 1, 2, . . . , m and i j = 1,2, . . . , n, j = 1,2, . . . , k.

Apparently, for transforming partial derivatives of the dependent variables, we need

prolongations of transformations in a one-parameter Lie group (2.20), (2.21) on

the space of dependent variables and independent variables (x , y) to the space

of dependent variables, independent variables and partial derivatives of dependent

variables (x , y,∂ y,∂ 2 y, . . . ,∂ k y) with k > 2. Consequently, the infinitesimal

generator of Lie group (2.20), (2.21) is prolonged to infinitesimal generators in the

space with derivatives.

For prolongation of a one-parameter transformation group to the space with first order
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derivatives, we consider the infinitesimal generator

X = ξi ∂

∂ x i
+ηk ∂

∂ yk
+ ζk

i

∂

∂ yk
i

, (2.23)

where i = 1, . . . , n, k = 1, . . . , m and ζk
i are some functions of x i, yk and yk

i .

The definition and geometric meaning of the derivatives are preserved if the following

equations are invariant under the group of transformations (2.20), (2.21):

dk y = yk
i d x i, k = 1, 2, . . . , m. (2.24)

The invariance of the differential variables, i.e., equations (2.24) under the group of

transformations defined by operator (2.23) requires the following prolongation formu-

las:

ζk
i = Di(η

k)− yk
j Di(ξ

j), i = 1, . . . , n, k = 1, . . . , m (2.25)

where

Di =
∂

∂ x i
+ yk

i

∂

∂ yk
, i = 1, . . . , n, (2.26)

is the total derivative operator with respect to the variable x i.

The second-order prolongation formulas allow us to find the transformation of second

derivatives and they are obtained by the same way as:

ζk
ji = Di(ζ

k
j )− yk

s j Di(ξ
s), i, j = 1, . . . , n, k = 1, . . . , m. (2.27)

By a similar process, prolongation formulas for finding coordinates of third and higher

order derivatives are obtained. Hereafter, we represent the operator of a Lie group

of transformations prolonged to the desired number of derivatives by the number of

derivative or by "prX " :

X (k) = ξi ∂

∂ x i
+ηk ∂

∂ yk
+ ζk

i

∂

∂ yk
i

+ ζk
i j

∂

∂ yk
i j

+ · · · . (2.28)

From formulas (2.25) and (2.27) it is easy to see that the prolonged operator is linear

and homogeneous with respect to the terms of the initial operator.

2.1.6 Multiparameter Lie Group of Transformations and Lie Algebras

In the previous sections, we only emphasize on one-parameter Lie transformations

groups. But there are also multiparameter Lie transformations groups as an example

classes of scalings in dimensional analysis. Similar to the analysis of one-parameter
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Lie transformations group, infinitesimal generators are the basic elements in the

analysis of multiparameter Lie transformations group. Every infinitesimal generator

can be expressed in an exponential form which corresponds to a one-parameter

Lie transformations group. Since this group is a subgroup of a multiparameter

Lie transformations group, the theory of multiparameter Lie transformations groups

is equal to the theory of infinitesimal generators of one-parameter subgroups.

An r-parameter Lie transformations group can be constructed by composition of

infinitesimal generators of one-parameter transformation groups.

Let

x = X (x;α) (2.29)

be an r-parameter Lie point transformations group with variables x = (x1, x2, . . . , xn),
parameters α = (α1,α2, . . . ,αr), and the composition operation for parameters

denoted by

Θ(α,β) = (ψ1(α,β),ψ2(α,β), . . . ,ψr(α,β)).

The composition operation is defined to satisfy the group axioms such that α = 0

corresponds to the identity element α1 = α2 = · · ·= αr = 0 and Θ(α,β) is an analytic

function in its domain.

For a multiparameter Lie transformations group, each parameter r corresponds to

an infinitesimal generator. The set of infinitesimal generators of an r-parameter Lie

transformations group (2.29) forms an r-dimensional vector space Lr called a Lie al-

gebra or r-dimensional Lie algebra on which an operation called the commutator is

defined.

Definition 2.6. For an r-parameter Lie transformations group (2.29) with

infinitesimal generators Xm, m = 1, 2, . . . , r the commutator (Lie bracket) of Xm and

Xn is a first-order operator

[Xm, Xn] = XmXn − XnXm. (2.30)

The commutator operation satisfies the following properties

• (Bilinear)

[aXm + bXn, X p] = a[Xm, X p] + b[Xn, X p],

[Xm, aXn + bX p] = a[Xm, Xn] + b[Xm, X p],
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• (Antisymmetric or skew-symmetric)

[Xm, Xn] = −[Xn, Xm],

• (Jacobi identity)

[Xm, [Xn, X p]] + [Xn, [X p, Xm]] + [X p, [Xm, Xn]] = 0.

Definition 2.7. The vector space of infinitesimal generators of multiparameter Lie

group Lr is called a Lie algebra if the commutator [X , Y ] ∈ Lr when X , Y ∈ Lr .

Definition 2.8. A subalgebra of a Lie algebra L is a subset J ⊂ L satisfying [Xm, Xn] ∈ J

when Xm, Xn ∈ J . Further, a subalgebra J ⊂ L is called an ideal or normal subalgebra

of L if [X , Y ] ∈ J for all X ∈ J , Y ∈ L.

Definition 2.9. A Lie algebra Lr is called an r-dimensional solvable Lie algebra if there

exists a chain of subalgebras

{0}= L0 ⊂ L1 ⊂ . . . ⊂ Lr

in such a way that dim (Lm) = m and Lm−1 is a normal subalgebra of Lm for each m.

Solvable Lie algebras are important subjects in the study of higher-order ODEs.

2.1.7 Contact (Tangent) Transformations

Contact transformations have a wide application field in mechanics and the study

of differential equations for a long time. They transforms the dependent variables,

independent variables and the first derivatives in a differential equation.

For the case n independent variables (x1, x2, . . . , xn) and a single dependent variable

y the group of contact transformations is of the form

x i = X i(x , y, y1;α), i = 1,2, . . . , n,

y = Y (x , y, y1;α), yi = Yi(x , y, y1;α),
(2.31)

where y1 represents the set of all partial derivatives yi. The group of transformations

(2.31) is not always equivalent to the group of point transformations prolonged for

the first derivatives of a single dependent variable y . A group of point transformations

is a subset of a group of contact transformations.

The invariance condition under a group of contact transformations is given by

infinitesimal generator of the group similar to the case of point transformations group.
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A second-order ODE admits infinitely many contact transformations while a first-order

ODE admits infinitely many point transformations. In contrast to second-order ODEs,

for third- and higher-order ODEs group of contact transformations can be computed

splitting the determining equation.

Example. The third-order ODE y ′′′ = 0 has 10-dimensional Lie transformations group

generated by the operators

X1 =
∂

∂ y
, X2 = x

∂

∂ y
, X3 = x2 ∂

∂ y
, X4 = y

∂

∂ y
, X5 =

∂

∂ x
, X6 = x

∂

∂ x
,

X7 = x2 ∂

∂ x
+ x y

∂

∂ y
, X8 = 2y ′

∂

∂ x
+ y ′2

∂

∂ y
,

X9 = (y − x y ′)
∂

∂ x
−

x y ′2

2
∂

∂ y
−

y ′2

2
∂

∂ y ′
,

X10 =

�

x y −
x2 y ′

2

�

∂

∂ x
+

�

y2 −
x2 y ′2

4

�

∂

∂ y
+

�

y y ′ −
x y ′2

2

�

∂

∂ y ′
,

where X1, X2, . . . , X7 are point transformations groups and X8, X9, X10 are contact

transformations groups.

Higher-order symmetries or Lie-Bäcklund groups are generalization of point or contact

transformations groups with some additional properties. Since it is not related to our

research, we are not focusing on the subject here.

2.2 Application of Lie Symmetries to Ordinary Differential Equa-

tions

Lie symmetries and integration have important roles in the study of ODEs. A kth-order

ODE can be geometrically described as a surface in the (k + 2)–dimensional space

having elements that consist of the independent variable, the dependent variable

and derivatives of the dependent variable with order k. Thus the solution set of the

ODE can be considered as special curves on this surface. In this respect, a symmetry

corresponds to a mapping which moves each solution curve into solution curves; a first

integral corresponds to a quantity which is preserved on each solution curve. In other

words, a symmetry is a one-parameter transformations group that acts on the elements

of the (k+ 2)–dimensional space and maps one solution into another solution. A first

integral is a quadrature which is described by a function of the independent variable,

dependent variable and derivatives of dependent variable to order k− 1 and which is

constant on each solution.
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Lie stated that the order of an ODE can be reduced by one if the equation admits a

one–parameter Lie group of point transformation. Then, the solution of the original

ODE arises from the solution of the reduced equation and a quadrature form. For a

kth-order ODE if the corresponding symmetry group is an r–parameter solvable group

of point transformations, then the order of the equation can be reduced by r splitting

the equation to an (k−r)th-order equation and r quadratures. But the order of reduced

equation is not k− r according to the original independent and dependent variables.

Conversely, in the integrating factor technique, the order of the reduced equation is

k− r with respect to the original independent and dependent variables.

For a first-order ODE, reducing by symmetries results in the quadrature of the

equation. Actually this gives a first integral and corresponding integration factor.

For a kth-order ODE, a first integral supplies a quadrature and reduces the order of

the equation by one. In the study of ODEs, Lie symmetry reduction approach and

integrating factor approach are complementary.

The order of an ODE can also be reduced by using the canonical coordinates or

determining the differential invariants in the prolonged space.

For an ODE admitting a Lie transformations group, there exist particular types of

solutions. These solutions are defined by the curves which are invariant under the

corresponding Lie transformations group and called invariant solutions. Invariant

solutions of first-order ODEs can be computed in an algebraic way. Invariant solutions

of higher-order ODEs are computed in an algebraic way or via the solution of the

first-order ODE for the invariant curves of the group.

In this section, we briefly illustrate how the symmetry method is applied to ODEs. The

following materials are based on contents of [20, 22, 24].

Consider a one-parameter Lie group of point transformations

x = X (x , y;α), y = Y (x , y;α) (2.32)

with the infinitesimal generator

X = ξ(x , y)
∂

∂ x
+η(x , y)

∂

∂ y
. (2.33)

An ODE

y ′ =
d y
d x
= f (x , y) (2.34)

admits a one-parameter Lie group of point transformations (2.32) is called point

symmetry if the form of the differential equation is preserved with respect to
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transformations of variables (2.32). That is, the equation

d y
d x
= f (x , y) (2.35)

is satisfied for the same function f as before changing variables. For higher-order

equations the same definition is valid. Infinitesimal generator (2.33) of a Lie group

admitted by a differential equation is called an admitted operator or infinitesimal sym-

metry of the equation. Invariance condition of ODE (2.34) under a Lie group generated

by operator (2.33) is given by

X (y ′ − f (x , y)) = 0. (2.36)

Consider the first order ODEs

d y
d x
= f (x),

d y
d x
= g(y).

In the first equation, since d y/d x = f (x), the slopes d y/d x of the solution curves y =
u(x , c1) do not depend on the variable y . Hence any solution curve can be shifted in

the y-direction into another solution curve through the mapping (x , y) 7→ (x , y + c1).
Similarly, for d y/d x = g(y) the slopes d y/d x of the solution curves y = v(x , c2) are

independent of x , so any of these curves can be shifted in the x-direction into any

other by mapping (x , y) 7→ (x + c2, y).

There are two ways to obtain the general solution of ODE (2.34) using the

infinitesimals of an admitted point symmetry (2.32):

1. the method of canonical coordinates,

2. using an integrating factor.

2.2.1 The Method of Canonical Coordinates

Theorem 2.4. A first-order ODE

d y
d x
= f (x , y) (2.37)

admitting a Lie group as translations about its dependent variable is seperable.

Proof. Let T : (x , y) → (x , y) = (x , y + α) be a symmetry of equation (2.37) with
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α ∈ R. Since

f (x , y +α) = f (x , y) =
d y
d x
=

d y(x , y)
d x(x , y)

=
y x + y ′ y y

x x + y ′x y
=

d y
d x
= f (x , y),

the function f does not depend on y . So we have separable form of differential

equation d y
d x = f (x). �

According to Theorem 2.4, if a Lie group of a differential equation of form (2.37)

is equivalent to a translational symmetry- i.e., transformed to the group translations

about the dependent variable- then solution of the equation can be obtained easily. A

linear or nonlinear first-order ODE

y ′ =
d y
d x
= f (x , y) (2.38)

with a symmetry group generated by the operator

X = ξ(x , y)
∂

∂ x
+η(x , y)

∂

∂ y
(2.39)

is solved with the method of canonical coordinates following the steps:

1. Obtain canonical coordinates r, s by solving equations

X r = 0,

Xs = 1,
(2.40)

for given infinitesimal generator (2.39).

2. Substitute the canonical variables r and s in equation (2.38) letting s be new

dependent variable and r be new independent variable. Then equation (2.38)

will take the integrable form

ds
dr
= g(s) or

ds
dr
= h(r). (2.41)

3. Integrate equation (2.41), substitute the expressions r = r(x , y) and s = s(x , y)
in the solution s = φ(r, C) , so the solution of equation (2.38) is obtained.

Example. [24] Consider the differential equation

y ′ =
y
x
+

y3

x3
. (2.42)
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Let us obtain solution of equation (2.42) using canonical coordinates. Since equation

(2.42) is in the form of homogeneous differential equation, it admits the group of

scaling transformation

x = eε x , y = eε y

with infinitesimal generator

X = x
∂

∂ x
+ y

∂

∂ y
, (2.43)

where
ξ(x , y) = ∂ X (x ,y;ε)

∂ ε

�

�

�

ε=0
= ∂ eε x

∂ ε

�

�

ε=0 = eε x |ε=0 = x ,

η(x , y) = ∂ Y (x ,y;ε)
∂ ε

�

�

�

ε=0
= ∂ eε y

∂ ε

�

�

�

ε=0
= eε y|ε=0 = y.

Indeed
d y
d x
=

d(eε y)
d(eε x)

=
d y
d x

.

Hence the transformation group x = eε x , y = eε y leaves equation (2.42) invariant.

1. Solving the first-order linear PDEs (2.40) that defines canonical coordinates r, s

for (2.43), we get

r =
y
x

, s = ln x .

2. Substituting the canonical coordinates r, s in equation (2.42) gives

y ′ =
d y
d x
=

d(x r)
d x

= r + x
dr
d x
= r + x

dr
ds

ds
d x
= r + x r ′

1
x
= r + r ′.

Thus equation (2.42) becomes

ds
dr
=

1
r3

. (2.44)

3. Integration of equation (2.44) with canonical variables yields

s = −
1

2r2
+ C .

Finally, substituting r = y
x and s = ln x gives

y = ±
x

p
C − ln x2

.
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2.2.2 Lie’s Integrating Factor

Consider a first-order ODE formulated by

M(x , y)d x + N(x , y)d y = 0. (2.45)

If the equation (2.45) admits a point transformations group with the infinitesimal

generator

X = ξ(x , y)
∂

∂ x
+η(x , y)

∂

∂ y

and ξM +ηN 6= 0, then the function

µ=
1

ξM +ηN
(2.46)

which is called Lie’s integrating factor is an integrating factor for the equation (2.45).

Example. [24] The Riccati-type of equation

y ′ =
2
x2
− y2, (x 6= 0) (2.47)

admits the group of scaling transformations

x = eαx , y = e−α y,

generated by the operator

X = x
∂

∂ x
− y

∂

∂ y
.

Equation (2.47) can be written in the form of equation (2.45) as

d y +
�

y2 −
2
x2

�

d x = 0. (2.48)

Substituting

ξ= x , η= −y, M = y2 −
2
x2

, N = 1,

into (2.46) gives the integrating factor

µ=
x

x2 y2 − x y − 2
.

For the solution of equation (2.47), we multiply equation (2.48) with the integrating

factor and obtain the exact differential equation

x
x2 y2 − x y − 2

d y +
1

x2 y2 − x y − 2
x2 y2 − 2

x
d x = 0. (2.49)
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Now, we can solve this equation with known methods. Using the identity

x2 y2 − 2
x

= y +
x2 y2 − x y − 2

x
,

we rewrite equation (2.49) as

d(x y)
x2 y2 − x y − 2

+
d x
x
= 0. (2.50)

For the first term of this equation, we use v = x y and write

d(x y)
x2 y2 − x y − 2

=
dv

v2 − v − 2
=

1
3

�

1
v − 2

−
1

v + 1

�

dv.

Integrating this term results with

∫

1
v2 − v − 2

dv =
1
3

ln
�

v − 2
v + 1

�

.

Returning equation (2.50) with original variables gives

d
�

1
3

ln
�

x y − 2
x y + 1

�

+ ln x
�

= 0.

As a last step, we integrate this equation and get the solution of equation (2.47) as

y =
2x3 + c

x(x3 − c)
,

where c is an arbitrary constant. Since the functions y = 2/x and y = −1/x satisfy

differential equation (2.47), these are also solutions of the equation called invariant

solutions.

2.2.3 Invariant Solutions

A Lie transformations group G admitted by an ODE provides a significant property for

the equation. The symmetry transformations map any solution- i.e., integral curve- of

the equation into another solution. That is, the transformations of the group replace

the integral curves with each other leaving some of the integral curves the same. Such

integral curves are called invariant solutions.

Invariant solutions shows a simple way to obtain general solutions to differential

equations. This method is used for first order ODEs with two known infinitesimal

generators.
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Example. [24] (General solution of an ODE obtained from invariant solutions)

Consider the equation

y ′ =
y
x
+

y2

x3
(2.51)

with two known infinitesimal symmetries

X1 = x2 ∂

∂ x
+ x y

∂

∂ y
, X2 = x

∂

∂ x
+ 2y

∂

∂ y
.

From the invariance condition X2(I) = 0, the only independent invariant is found as

y/x2. Then, the invariant solution is obtained by taking k = y/x2 or y = kx2 with an

arbitrary constant k 6= 0. In this case, the equation (2.51) reduces to

y ′ −
y
x
−

y2

x3
= 2kx − kx − k2 x = k(1− k)x = 0.

Hence k = 1, and in this case the invariant solution simply is

y = x2. (2.52)

Now, under the projective transformation

x =
x

1− ax
, y =

y
1− ax

(2.53)

generated by X1, the invariant solution (2.52) is written in the form of new variables

y = x2,

and substituting the expressions (2.53) for x and y , the equation becomes

y
1− ax

=
x2

(1− ax)2
.

Finally, denoting the parameter a by C , the general solution of equation (2.51) is

obtained as

y =
x2

1− C x
. (2.54)
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2.2.4 Extension to Higher Order Ordinary Differential Equations

The order of a higher order ODE can be reduced step-by-step if there exists a

multiparameter Lie transformations group admitted by the equation. Furthermore, if

an ODE of order n has an r-parameter group, the order of the differential equation can

be reduced to n− r with the restriction that the corresponding Lie algebra is solvable.

Consider an ODE of order n of the form

y (n) = f (x , y, y ′, . . . , y (n−1)), n≥ 2. (2.55)

If X (x , y) is the infinitesimal generator of a one-parameter group of (2.55) and

r(x , y), s(x , y) are the canonical variables, we have that

X (r, s) =
∂

∂ s
.

Writing (2.55) in terms of canonical variables gives

s(n) = Ω(r, s, s′, ..., s(n−1)), s(k) =
dks
drk

(2.56)

for some function Ω. Since (2.56) is invariant under the group of translations in

s-direction, we have that

Ωs = 0.

Therefore, (2.56) takes the form

s(n) = Ω(r, , s′, ..., s(n−1)).

Thus, for v = ds/dr writing (2.55) in terms of canonical variables reduces the order

of (2.55) to the following ODE of order n− 1,

v(n−1) = Ω(r, v, ..., v(n−2)), v(k) =
dk+1s
drk+1

.

Consequently, solving this simplified equation, we can get the solution of the equation

(2.55).

Example. [10] Consider the nonlinear second order ODE

y ′′ =
y ′2

y
+
�

y −
1
y

�

y ′. (2.57)
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The differential equation (2.57) admits one-parameter Lie group

x = x + ε, y = y

whose infinitesimal generator is

X (x , y) =
∂

∂ x
. (2.58)

Thus, the tangent vector field is (ξ (x , y) ,η (x , y)) = (1,0). Using this, we can find

the set of new coordinates solving equations

X r = 0, Xs = 1. (2.59)

Solving these equations for operator (2.58) yields the canonical variables

r (x , y) = y, s (x , y) = x . (2.60)

So, we have

s̃ =
ds
dr
=

d x
d y
=
�

y ′
�−1

.

Choosing v = y ′, i.e., v = (s̃)−1, differential equation (2.57) becomes

dv
dr
=

y ′′

y ′
=

v
r
+ r −

1
r

(2.61)

which directly leads to a linear differential equation. The general solution of (2.61) is

v(r) = r2 − 2c1r + 1.

Then, we have that

s(r) =

∫

1
r2 − 2c1r + 1

dr.

Solving the last integral and writing resulted equation in terms of the original variables

using (2.60), gives the general solution of (2.55)

y =











c1 −
Æ

c2
1 − 1 tanh

�
Æ

c2
1 − 1 (x + c2)

�

, c2
1 > 1,

c1 − (x + c2)
−1, c2

1 = 1,

c1 −
Æ

1− c2
1 tan

�
Æ

1− c2
1 (x + c2)

�

, c2
1 < 1,

where c1 and c2 are arbitrary constants.

Example. [26] This example shows how to find a Lie group admitted by an ODE. For
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the second-order ODE

y ′′ =
1
y3

, (2.62)

we look for the symmetry group generated by the operator

X = ξ(x , y)
∂

∂ x
+η(x , y)

∂

∂ y
.

We need the prolongation of this operator to the first and second order derivatives

X (2) = ξ(x , y)
∂

∂ x
+η(x , y)

∂

∂ y
+ ζ1

∂

∂ y ′
+ ζ2

∂

∂ y ′′
, (2.63)

where

ζ1 = D(η)− y ′D(ξ),

ζ2 = D(ζ1)− y ′′D(ξ) = D2(η)− 2y ′′D(ξ)− y ′D2(ξ),

D =
∂

∂ x
+ y ′

∂

∂ y
+ y ′′

∂

∂ y ′
+ y ′′′

∂

∂ y ′′
+ · · · .

Applying prolonged operator (2.63) to equation (2.62) gives

D2(η)− 2y ′′D(ξ)− y ′D2(ξ) = −
3η
y4

,

or equivalently,

ηx x + 2ηx y y ′ +ηy y(y
′)2 +ηy y ′′ − 2y ′′(ξx + ξy y ′)

− y ′(ξx x + 2ξx y y ′ + ξy y(y
′)2 + ξy y ′′) +

3
y4
η= 0.

(2.64)

Substituting the points of equation (2.62) into (2.64) gives the determining equation

ηx x + 2ηx y y ′ +ηy y(y
′)2 +ηy

1
y3
− 2

1
y3
(ξx + ξy y ′)

− y ′(ξx x + 2ξx y y ′ + ξy y(y
′)2 + ξy

1
y3
) +

3
y4
η= 0.

(2.65)

Solving this equation gives the coordinates of infinitesimal generator that we seek.

We consider equation (2.65) as a polynomial according to powers of y ′ and obtain the
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following overdetermined system of equations by equating coefficients:

ξy y = 0, ηy y − 2ξx y = 0,

2ηx y − 3
ξy

y3
− ξx x = 0,

ηx x + (ηy − 2ξx)
1
y3
+

3η
y4
= 0.

(2.66)

The first two equations of (2.66) gives

ξ= f (x)y + g(x), η= fx y2 + h(x)y + p(x).

We substitute these results into the third and fourth equations of (2.66) and equate

the coefficients with respect to powers of y to obtain the general solution

ξ(x) = Ax2 + 2Bx + C , η(x , y) = (Ax + B)y,

where A, B, C are arbitrary constants. We obtain three-dimensional symmetry group

by choosing zero any two of the constants as follows

X1 =
∂

∂ x
, X2 = 2

∂

∂ x
+ y

∂

∂ y
, X3 = x2 ∂

∂ x
+ x y

∂

∂ y
. (2.67)

Thereby, equation (2.62) is invariant under one-parameter transformations groups

generated by operators (2.67). The transformations of each group can be found

solving corresponding Lie equations,

x = x +α, y = y;

x = e2αx , y = eα y;

x =
x

1−αx
, y =

y
1−αx

.

(2.68)

Prolongations of transformations (2.68) to the first and second derivatives are

obtained as
x = x +α, y = y, y ′ = y ′, y ′′ = y ′′;

x = e2αx , y = eα y, y ′ = e−α y ′, y ′′ = e−3α y ′′;

x =
x

1−αx
, y =

y
1−αx

,

y ′ = αy + (1−αx)y ′, y ′′ = (1−αx)3 y ′′.

(2.69)

By substituting transformations (2.69) into equation (2.62), we notice that the

equation does not change, that is

y ′′ =
1
(y)3
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at the point (x , y , y ′, y ′′). Consequently, the symmetry group leaves invariant the

equation, but moves the point by the transform (x , y, y ′, y ′′)→ (x , y , y ′, y ′′).

2.3 Application of Lie Symmetries to Partial Differential Equations

In the case of PDEs, invariance of the given equation and its accompanying boundary

conditions under a one-parameter transformations group leads to a reduction of one

in the number of independent variables. The invariants of the group become the new

variables.

The infinitesimal generator of a Lie point transformations group admitted by a given

PDE is determined by an algorithm with respect to the infinitesimal criterion for the

invariance of a PDE.

Invariance of a PDE under a Lie point transformations group supplies special solutions

called invariant solutions or similarity solutions. These solutions are invariant under

a subgroup of the Lie group admitted by the PDE and obtained solving PDEs with

fewer independent variables than appear in the given PDE. Invariant solutions can be

obtained for BVPs. In this case, the solutions are invariant under a subgroup of a Lie

group admitted by the given PDE that leaves invariant the corresponding boundary

curves and boundary conditions. Self-similar (auto model) solutions which form a

subset of invariant solutions can be constructed from invariance under scaling groups.

Invariant solutions of a scalar PDE or a system of PDE can be obtained using an

admitted point transformations group by two techniques:

• The Invariant Form Method: Firstly, the characteristic equations resulting from

the invariance conditions (infinitesimal criteria) are solved and the invariant

form is obtained. Then solution of the given PDE in this invariant form gives the

invariant solution.

• The Direct Substitution Method [35]: Firstly, an independent variable is

selected as a parameter. Then invariance conditions and necessary differential

consequences are substituted into the given PDE. In this way, all derivatives

with respect to the selected (parametric) independent variable are annihilated

and one independent variable is reduced in the given PDE. Substituting solution

of the reduced PDE into either invariance conditions or the given PDE gives the

invariant solutions. In this method, invariant solutions are determined without

explicitly solving characteristic equations that arise from invariance conditions.

These two methods can be improved for obtaining invariant solutions of PDEs
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from an admitted multiparameter point transformations group.

Lie group of point transformations of a PDE corresponds to geometric movements

in its solution set. Similar to the case ODEs, a Lie group of point transformations

admitted by a PDE geometrically describes an integral curve of a vector field which

is tangent to the surface defined by the given PDE. Point symmetries of PDEs also

preserve the meaning of the derivatives in the prolonged (or jet) space that includes

coordinates given by the independent variables, dependent variables and all their

partial derivatives up to a fixed finite order. Superposition of all point symmetries

admitted by a PDE form a Lie group which has an algebraic structure. Lie algebra of

this group is given by an operation that is commutator of the infinitesimal generators

of the point symmetries admitted by the given PDE.

In this section, we present constructing the solutions of PDEs with the view point of

invariance under Lie point transformations groups. The following materials are based

on content of [22].

2.3.1 Invariance for Partial Differential Equations

A symmetry group for PDEs is defined in the same way as ODEs.

Definition 2.10. Consider a kth-order PDE

F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0, (2.70)

where x = (x1, x2, . . . , xn) denotes the n independent variables, y denotes the

dependent variable, and ∂ l y denotes the l-th order partial derivatives of y with respect

to x with ∂ l y/∂ x i1∂ x i2 . . .∂ x il = yi1 i2...i j
, il = 1, 2, . . . , n, for l = 1,2, . . . , k. The PDE

is invariant under one-parameter Lie transformations group

x = X (x , y;ε),
y = Y (x , y;ε),

(2.71)

if and only if its k-th extension, defined by

x = X (x , y;ε),
y = Y (x , y;ε),
∂ y = ∂ Y (x , y,∂ y;ε),

...

∂ k y = ∂ kY (x , y,∂ y, ...,∂ k y;ε),

leaves invariant the surface (2.70). This case is expressed by transformations group
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(2.71) is a point symmetry admitted by PDE (2.70).

A one-parameter Lie group of point transformations (2.71) leaves invariant the set of

all solutions of PDE (2.70) if and only if (2.70) admits (2.71).

Theorem 2.5 (Infinitesimal Criteria for the Invariance of a PDE). Let

X = ξi(x , y)
∂

∂ x i
+η(x , y)

∂

∂ y
(2.72)

be the infinitesimal generator of Lie point transformations group (2.71) and

X (k) =ξi(x , y)
∂

∂ x i
+η(x , y)

∂

∂ y
+η(1)i (x , y,∂ y)

∂

∂ yi
+ · · ·

+η(k)i1 i2...ik
(x , y,∂ y,∂ 2 y, ...,∂ k y)

∂

∂ yi1 i2...ik

(2.73)

be the k-th extended infinitesimal generator of (2.72), where η(1)i and η( j)i1 i2...i j
, i j =

1,2, ..., n for j = 1,2, ..., k are the extended infinitesimals, in terms of ξ(x , y) =
(ξ1(x , y),ξ2(x , y), ...,ξn(x , y)) , η (x , y). Then one-parameter Lie point transforma-

tions group (2.71) is admitted by PDE (2.70), i.e., is a point symmetry of PDE (2.70) if

and only if

X (k)F(x , y,∂ y,∂ 2 y, ...,∂ k y) = 0 when F(x , y,∂ y,∂ 2 y, ...,∂ k y) = 0. (2.74)

2.3.2 Invariant Solutions for Partial Differential Equations

Definition 2.11. y = ψ(x) is an invariant solution of PDE (2.70) obtained from its

admitted point symmetry generated by operator (2.72) if and only if:

1. y =ψ(x) is an invariant surface of (2.72);

2. y =ψ(x) is a solution of (2.70).

As a consequence of this definition, we can say that for a solution of PDE (2.70) to be an

invariant solution under point symmetry generated by operator (2.72), the necessary

and sufficient conditions are

1. X (y −ψ(x)) when y =ψ(x). This results with the equation

ξi(x ,ψ(x))
∂ψ(x)
∂ x i

= η(x ,ψ(x)); (2.75)
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2. F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0 when y =ψ(x), i.e.,

F(x ,ψ(x),∂ψ(x),∂ 2ψ(x), . . . ,∂ kψ(x)) = 0. (2.76)

Invariant solutions of PDEs can be obtained in two ways:

(I) Invariant Form Method

This procedure starts with solving first-order PDE (2.75). The corresponding

characteristic equations for PDE (2.75) with y =ψ(x) is

d x1

ξ1(x , y)
=

d x2

ξ2(x , y)
= · · ·=

d xn

ξn(x , y)
=

d y
η(x , y)

. (2.77)

From the solution of the system of n first-order ODEs (2.77), we obtain n functionally

independent constants as r1(x , y), r2(x , y), . . . , rn−1(x , y), s(x , y) with ∂ s/∂ y 6= 0.

Then the general solution y =ψ(x) of PDE (2.75) is given, implicitly, in the invariant

form

s(x , y) = Θ(r1(x , y), r2(x , y), . . . , rn−1(x , y)), (2.78)

where Θ is an arbitrary differentiable function of r1(x , y), r2(x , y), . . . , rn−1(x , y).
Since r1(x , y), r2(x , y), . . . , rn−1(x , y), s(x , y) are n group invariants of point

symmetry (2.72), they form n canonical coordinates for the Lie point transformations

group (2.71). Let rn(x , y) be the (n+ 1)-th canonical coordinate satisfying

X rn = 1.

By substituting these canonical variables in PDE (2.70) a k-th order PDE with

independent variables r1, r2, . . . , rn and dependent variable s can be obtained and this

new PDE would admit the one-parameter Lie translations group

ri = ri, i = 1,2, . . . , n− 1,

rn = rn +α,

s = s.

Therefore, the variable rn would not appear explicitly in the new PDE and hence

solutions obtained implicitly in the form (2.78) would be solutions of the new

PDE. These are invariant solutions of PDE (2.70). Consequently, such solutions are

determined solving a reduced differential equation with n− 1 independent variables

r1, r2, . . . , rn−1 which are called similarity variables and a dependent variable s. The

reduced differential equation is obtained rewriting PDE (2.70) in terms of invariant

form (2.78). If ∂ ξ/∂ y ≡ 0, then ri = ri(x), i = 1,2, . . . , n− 1 and if n = 2 then the
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given PDE is reduced to an ODE.

(II) Direct Substitution Method

In this approach, we do not have to solve explicitly invariance condition (2.75) or

characteristic equations (2.77). We start with the equation which is written from

first-order PDE (2.75)

∂ y
∂ xn

=
η(x , y)
ξn(x , y)

−
n−1
∑

i=1

ξi(x , y)
ξn(x , y)

∂ y
∂ x i

, (2.79)

with assumption ξn(x , y) 6= 0. Then substituting equation (2.79) and its differential

relations directly into given PDE (2.70), for all terms in (2.70) including derivatives of

y with respect to xn gives a reduced differential equation. The reduced equation has

order at most k including the dependent variable y , the n− 1 independent variables

x1, x2, . . . , xn−1, and the parameter xn. Each solution of this reduced differential

equation describes an invariant solution for PDE (2.70) with respect to the invariance

under point symmetry (2.72) and provides invariance condition (2.79) and given PDE

(2.70). If n= 2 then the given PDE is reduced to an ODE. Since this method does not

deal with integration of the characteristic equations it is easier than the Invariant Form

Method.

Determining Equations for Point Symmetries of a PDE

Consider a k-th order PDE (k ≥ 2, l ≤ k)

yi1 i2...il = f (x , y,∂ y,∂ 2 y, ...,∂ k y), (2.80)

where f (x , y,∂ y,∂ 2 y, ...,∂ k y) is independent of yi1 i2...il . PDE (2.80) admits the

one-parameter Lie point transformations group generated by the operator

X = ξi(x , y)
∂

∂ x i
+η(x , y)

∂

∂ y
. (2.81)

Its k-th extension is formulated by (2.73), if and only if ξ(x , y) and η(x , y) satisfy the

determining equation

η
(l)
i1 i2...i l

= ξ j
∂ f
∂ x j

+η
∂ f
∂ y
+η(1)j

∂ f
∂ y j

+ · · ·+η(k)j1 j2... jk

∂ f
∂ y j1 j2... jk

(2.82)

when y satisfies (2.80).
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2.3.3 Examples

The following examples show some applications of Lie symmetries to PDEs.

Example. [24] (Group transformations of solutions of heat equation)

The linear heat equation

ut − ux x = 0 (2.83)

is invariant under the heat representation of the Galilean transformation:

t = t, x = x + 2at, u= ue−(ax+a2 t) (2.84)

generated by the operator

X = 2t
∂

∂ x
− xu

∂

∂ u
. (2.85)

Any solution

u= Φ(t, x)

of the heat equation can be mapped into a new solution by the group of

transformations (2.84). Since the heat equation is invariant under this group, it is

written in the form ut − ux x = 0. By using the new variables t, x , u, the solution is

written as

u= Φ(t, x).

Then substituting the expressions (2.84) for t, x , u, and solving the resulting equation

ue−(ax+a2 t) = Φ(t, x + 2at)

for u, one obtains the new solution

u= eax+a2 tΦ(t, x + 2at) (2.86)

with the parameter a. For example, for the simple solution u = x , letting Φ(t, x +
2at) = x + 2at in (2.86), the new solution

u= (x + 2at)eax+a2 t

is obtained.

Example. [79] (Reducing a PDE system to ODE system)

For a two-dimensional incompressible laminar fluid flow, boundary layer equations
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are given by
∂ u
∂ x
+
∂ v
∂ y
= 0,

u
∂ u
∂ x
+ v
∂ u
∂ y
=
∂ 2u
∂ y2

+ U
∂ U
∂ x

,

u(x , 0) = 0, v(x , 0) = 0, u(x ,∞) = U(x).

(2.87)

This example shows that the PDEs (2.87) admit scaling symmetry and how to reduce

the equations to ODEs. The scaling transformation for the equations (2.87) can be

written as

x = eαa x , y = eαb y, u= eαcu, v = eαd v, U = eαeU . (2.88)

Substituting (2.88) in (2.87), we have the equations in terms of new variables

∂ u
∂ x
+ eα(b+c−a−d) ∂ v

∂ y
= 0,

u
∂ u
∂ x
+ eα(b+c−a−d)v

∂ u
∂ y
= eα(2b+c−a) ∂

2u

∂ y2 + eα2(c−e)U
∂ U
∂ x

,

u(x , 0) = 0, v(x , 0) = 0, u(x ,∞) = eα(c−e)U(x).

(2.89)

In order to admit the group of scaling transformations (2.88), the equations (2.87)

should be invariant under the group, i.e., the transformed equations (2.89) should be

in the same form as the original equation. For the invariance condition, the parameters

satisfy the equations

b = (a− c)/2, d = (c − a)/2, e = c.

Then, the group of scaling transformations admitted by the equations (2.87) is

obtained as

x = eαa x , y = eα(a−c)/2 y, u= eαcu, v = eα(c−a)/2v, U = eαcU (2.90)

with the infinitesimal generator

X = αa
∂

∂ x
+α

a− c
2

∂

∂ y
+αc

∂

∂ u
+α

c − a
2

∂

∂ v
+αc

∂

∂ U
. (2.91)

From the invariance criterion and letting c = ma, where m is another parameter, we

get the invariant variable and functions as

ξ= y x (m−1)/2, u= xm f (ξ), v = x (m−1)/2 g(ξ), U = kxm, (2.92)

where k is constant. Putting these terms in (2.87), the PDE system is reduced to the
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ODE system
mf + ((m− 1)/2)ξ f ′ + g ′ = 0,

mf 2 + ((m− 1)/2)ξ f f ′ + g f ′ = f ′′ +mk2,

f (0) = 0, g(0) = 0, f (∞) = k.

(2.93)

Example. [24] (The Burgers Equation)

The Burgers equation

ut = ux x + uux (2.94)

has five linearly independent symmetries generated by infinitesimal operators

X1 =
∂

∂ t
, X2 =

∂

∂ x
, X3 = t

∂

∂ x
−
∂

∂ u
,

X4 = 2t
∂

∂ t
+ x

∂

∂ x
− u

∂

∂ u
, X5 = t2 ∂

∂ t
+ t x

∂

∂ x
− (x + tu)

∂

∂ u
.

(2.95)

Consider the group of transformations generated by X5

t =
t

1− at
, x =

x
1− at

, u= u(1− at)− ax . (2.96)

Using these transformations, any known solution u=ψ(t, x) of the Burgers equation

is mapped to the following one-parameter set of new solutions:

u=
ax

1− at
+

1
1− at

ψ
� t

1− at
,

x
1− at

�

.

Invariance of the Burgers equation with respect to the symmetry group of translation

in time (x = x , t = t + a, u= u) generated by X1 yields the stationary solution

u=ψ(x)

which is an important solution in physical applications. Substituting this solution into

the Burgers equation gives

ψ′′ +ψψ′ = 0. (2.97)

Integrating (2.97) once yields

ψ′ +
ψ2

2
= C1,
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and integrating again by setting C1 = 0, C1 = v2 > 0, C1 = −w2 < 0 the solutions

ψ(x) =
2

x + C
,

ψ(x) = v tanh
�

C +
v
2

x
�

,

ψ(x) = w tan
�

C −
w
2

x
�

(2.98)

are obtained.

2.4 Application of Lie Symmetries to Difference Equations

Lie symmetry method provides a convenient and practical way to solve and classify

differential equations and also characterize their solution sets. Therefore it has

been applied to differential equations for many years. However, application of Lie

symmetries to discrete equations, i.e., difference equations or differential-difference

equations has recently been introduced.

An ODE or PDE is discretized in order to solve it numerically by replacing differential

derivatives with discrete derivatives. Some characteristic properties of the equation

such as linearizability, Hamiltonian structure, integrability, conservation laws, point

symmetries or generalized symmetries should be preserved in the discretization.

Symmetry-preserving difference schemes, i.e., difference equations and meshes can

have more accurate numerical results than standard schemes which do not conserve

the geometrical properties of differential equations. Lie symmetries are used in the

study of discrete equations on the basis of three subjects that spring from the questions:

• Which type of symmetries will be used?

• How will the symmetries be calculated?

• What can be done with these symmetries?

Various processes have been developed for applying Lie symmetry method to

difference equations. The problem of construction invariant difference schemes which

preserve symmetries of the original continuous equation was firstly investigated by

Dorodnitsyn and coworkers [60, 62, 63, 80, 81]. In this approach, a differential

equation and its Lie group are given objects. Lie symmetry groups admitted by

differential models of many physical problems are already determined [4, 20].
The procedure then continues by discretizing the given differential equation while

preserving its symmetry properties. A mesh is chosen and the infinitesimal generators
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are prolonged to all points of the mesh. By using these prolonged generators,

invariants of the given group that act on the mesh are determined. These invariants are

then combined to approximate the given differential equation to a difference equation.

Hereby, an invariant difference scheme which consists of a difference equation and

equations expressing the mesh points is obtained. In the continuous limits, the

mesh equations generally converge to some trivial identities. The transformations

of the group act on the equation and on the mesh. Actually, this method is an

example of inverse group classification, using group of transformations that act on

discrete space. For a given Lie group, inverse group classification provides to find all

differential equations which admit the given group as a symmetry using differential

invariants of the group. In the method of Dorodnitsyn, the maximal Lie symmetry

group of a differential equation is chosen and then using difference invariants, a

difference approximation of the differential equation is constructed. In the numerical

experiments of difference schemes obtained by this approach, the mesh points may

not remain fixed.

In a different approach improved by Levi and collaborators [53, 55, 64, 65, 67, 68,

82, 83], a system of difference equations on a fixed mesh is given. A Lie group of

transformations is then determined which leaves the mesh invariant. Several methods

exist in this approach according to the conditions on the transformations and the

techniques used to find the symmetries. The obtained symmetries may not solve the

given difference equation or corresponding differential equation. But they can be

used to obtain a symmetry reduction, i.e., a reduction in the number of independent

variables. The symmetries act on the equation and on the mesh. It is necessary to

adapt the concept of point symmetries to difference equations in order to comprise all

point symmetries of the corresponding differential equation in the continuous limit.

Infinitesimal generators acting on the discrete space of dependent and independent

variables are used to determine point symmetries. Even if the considered equations

are nonlinear, symmetries are calculated solving a system of linear equations.

The method of Fels and Olver [12, 69–71, 84, 85] is an alternative approach to

construct invariant difference schemes using moving frames. Firstly, Lie symmetry

group of a given differential equation and a moving frame for this group are

determined. A moving frame is a function that maps a unique element of the group

transforming a given point to a point of a submanifold which is a cross-section to the

orbits of the group. Since the chosen submanifold has a general property, moving

frames are constructed easily and they are used to move an arbitrary function to an

invariant function. In this way, existing difference schemes are mapped to a new

scheme which is invariant under the Lie group admitted by the given equation. An

advantage of this procedure is to use existing difference schemes. Hence existing
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numerical results can be used to implement invariant difference schemes obtained by

this method.

In recent paper [86], Bihlo et al. introduced another approach to obtain invariant

difference schemes that approximate multidimensional systems of differential

equations. In this approach a system of differential equations and its symmetry

group are considered as auxilary objects. Then the system of differential equation

is expressed in terms of computational coordinates and the corresponding symmetry

transformations are prolonged to the system of computational variables. An invariant

difference scheme is constructed with the help of the prolonged transformations.

Moreover, some differential equations that determine the location of mesh points are

discretized using the difference invariants.

In this chapter we present some preliminaries and notations about transformation

groups and prolongations in space of discrete variables that are used in the study of

group analysis of difference equations and are given in [26].

2.4.1 Transformation Groups in Space of Discrete Variables

Finite-difference operators are defined on a finite subset of the countable set of

mesh points and this provides the operators nonlocality property. The nonlocality

of operators leads to some particular features that are absent in differential model

such as right and shift differentiations with corresponding shift operators, uniform

and nonuniform meshes and certain properties of the Leibniz rule. Because of the

nonlocality of difference operators, transformations group can disrupt the proportions,

orthogonality and some geometric properties of the mesh. Distortion of the mesh

structure can affect difference equations. For example, if orthogonality of the mesh

is distorted, geometric meaning of difference derivatives may not be preserved. Thus

invariance criterion for the meshes should be given.

Now, we introduce some definitions and notations given in [26]. First consider

one-dimensional case with independent variable x , dependent variable u. Let Z be

the space of sequences (x , u, u1, u2, ...) where u1, u2, . . . are differential variables, us

is the s-th derivative. Here z represents a vector which consists of finitely many

elements of (x , u, u1, u2, ...) and z i represents i-th coordinate of the vector. In space Z

a transformation D is defined by the rule

D(x) = 1, D(u) = u1, . . . , D(us) = us+1, s = 1,2, . . . .

The space of analytic functions F(z) of finitely many variables z is represented by A.
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Associating D with the action of the first-order linear differential operator

D =
∂

∂ x
+ u1

∂

∂ u
+ u2

∂

∂ u1
+ · · ·+ us+1

∂

∂ us
+ · · · , (2.99)

generalizes the differentiation operator to functions in A and D(F(z)) ∈ A.

Consider the sequences of formal power series

f i(z, a) =
∞
∑

k=0

Ai
k(z)a

k, i = 1, 2, . . . , (2.100)

with a parameter a, where Ai
k(z) ∈ A and Ai

0 ≡ z i, z i is the i-th coordinate of a vector

in Z . The set of sequences

�

f 1(z, a), f 2(z, a), . . . , f s(z, a), . . .
�

of formal power series (2.100) is represented by Z̃ . The sequences (x , u, u1, u2, ...) are

included in space of such sequences and Z ⊂ Z̃ .

In the space Z̃ , the group of formal transformations generated by the total derivative

operator (2.99) is constructed. Then the transformations of the group are established

by the exponential operator Ta = eaD,

z i = eaD(z i) =
∞
∑

s=0

as

s!
D(s)(z i).

The point z is transformed to the point z ∈ Z̃ with coordinates

x = Ta (x) = x + a,

u= Ta (u) =
∞
∑

s=0

as

s!
us,

u1 = Ta (u1) =
∞
∑

s=0

as

s!
us+1,

· · · · · · · · ·

uk = Ta (uk) =
∞
∑

s=0

as

s!
us+k,

· · · · · · · · ·

(2.101)

The transformations (2.101) are the expansions of the function u= u(x) to the Taylor

series at the point x + a and hence the transformations group (2.101) generated by

operator (2.99) is called Taylor group. The definition and geometric meaning of the
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derivatives (u1, u2, ...) are preserved under the Taylor group. That is, the Taylor group

leaves invariant the system of equations

du= u1d x ,

du1 = u2d x ,

· · · · · · · · ·

dus = us+1d x ,

· · · · · · · · ·

(2.102)

The Taylor group is a higher-order symmetry group and a useful tool for studying in

the space of difference variables.

By setting an arbitrary parameter a = h > 0 and by using the generator (2.99) of the

Taylor group, right and left discrete shift operator are obtained respectively as

S
+h
= ehD =

∞
∑

s=0

hs

s!
Ds, (2.103)

S
−h
= e−hD =

∞
∑

s=0

(−h)s

s!
Ds, (2.104)

where D is a derivative operator in Z̃ .

Using shift operators S
+h

and S
−h

, a pair of right and left finite-difference differentiation

operators are obtained as

D
+h
=

1
h
(S
+h
− 1) =

∞
∑

s=1

hs−1

s!
Ds, (2.105)

D
−h
=

1
h
(1− S

−h
) =

∞
∑

s=1

(−h)s−1

s!
Ds. (2.106)

The countable set

w
h
= {xα = S

+h

(x)}, α= 0,±1,±2, . . . , (2.107)

of values of independent variable x is called uniform difference mesh.

The finite-difference (or discrete) derivative of order s is denoted by us
h

and defined by
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a special form of formal power series:

u1
h
= D
+h
(u),

u2
h
= D
−h

D
+h
(u),

u3
h
= D
+h

D
−h

D
+h
(u),

· · · · · · · · ·

(2.108)

The sequences
�

u1
h

, u2
h

, u3
h

, . . .
�

of finite-difference derivatives are denoted by Z
h

and

the product of the spaces Z
h

and Z̃ is denoted by Z̃
h
,

Z̃
h
=
�

x , u, u1, u2, . . . ; u1
h

, u2
h

, . . .
�

.

2.4.1.1 Formulation in the Multidimensional Case

The following materials are based on the content of [26]. Let Z be the space of

sequences (x , u, u1, u2, ...) where x =
�

x i | i = 1,2, ..., n
	

are independent variables

and u=
�

uk | k = 1,2, ..., m
	

are dependent variables. The partial derivatives are given

by u1 =
�

uk
i

	

which is the set of mn first partial derivatives, u2 =
¦

uk
i j

©

which is the

set of second partial derivatives, etc. The derivation is given by two operators

D1 =
∂

∂ x1
+ u1

∂

∂ u
+ u11

∂

∂ u1
+ u21

∂

∂ u2
+ ...,

D2 =
∂

∂ x2
+ u2

∂

∂ u
+ u12

∂

∂ u1
+ u22

∂

∂ u2
+ ...,

where

u1 =
∂ u
∂ x1

, u11 =
∂ 2u

∂ (x1)2
, u21 =

∂ 2u
∂ x2∂ x1

, ...

in the case n = 2 and x =
�

x1, x2
�

. For simplicity we neglect the superscript k on

uk. The operators D1 and D2 generate two permuting Taylor groups [60] with finite

transformations T 1
a = eaD1 and T 2

a = eaD2 . The shift operators

S1
±h
= e±h1D1 ≡

∑

s≥0

(±h1)
s

s!
Ds

1, (2.109)

S2
±h
= e±h2D2 ≡

∑

s≥0

(±h2)
s

s!
Ds

2 (2.110)

48



are obtained setting the arbitrary parameter values as h1, h2 > 0. Using the shift

operators a couple of differentiation operators in discrete space are given by

Di
+h
= ±

1
h
(Si
±h
− 1), i = 1,2. (2.111)

A uniform orthogonal difference mesh is defined by the set of points

§

Sα
±h1

�

x1
�

, Sβ
±h2

�

x2
�

ª

, α,β = 0, 1,2, ...,

in the
�

x1, x2
�

-plane and denoted by ω
h

.

2.4.1.2 Invariance Criterion for Uniform and Orthogonal Meshes

In the space of discrete variables (x , u, u1, u2, . . . ; u1
h

, u2
h

, . . .), under a Lie group of

transformations G1 generated by the operator

X = ξ
∂

∂ x
+η

∂

∂ u
+
∑

s≥1

ζs ∂

∂ us
+
∑

m≥1

ζ
h

m ∂

∂ um
h

, (2.112)

the transformations acting on the mesh space are defined as

h+ = S
+h
(x)− x = f (S

+h
(z), a)− f (z, a), (2.113)

h− = x − S
−h
(x) = f (z, a)− f (S

−h
(z), a). (2.114)

Uniformity of a mesh is conserved by the action of right and left finite-difference

differentiation operators.

Theorem 2.6. [26] The group of transformations G1 preserves the uniformity (h+ = h−)
of the mesh w

h
if and only if the condition

D
+h

D
−h
(ξ(z)) = 0 (2.115)

is satisfied at each point z of the given mesh.

The following theorem states the invariance criterion for orthogonal meshes.

Theorem 2.7. [26] A Lie group of transformations G1 leaves invariant an orthogonal

mesh w
h

that is uniform or nonuniform if and only if the condition

Di
±h
(ξ j) = −Dj

±h

(ξi), i 6= j, (2.116)
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is satisfied at each point z of the given mesh.

An orthogonal mesh w
h

directed to an angle α with the coordinate axes preserves its

orthogonality if the following condition

D2
+h
(ξ1) cosα− D1

+h
(ξ1) sinα+ D2

+h
(ξ2) sinα+ D1

+h
(ξ2) cosα= 0

is satisfied.

2.4.2 Prolongation Formulas for Finite-Difference Derivatives

In this thesis, we consider only the prolongation of discrete variables in

two-dimensional case. For other situations, the detailed information is given in [26].

In two dimensional case with dependent variable u, independent variables t, x and

mesh variables h1, h2, we denote the spaces of differential variables, difference

variables and the product of those spaces which is the space of sequences of formal

power series by

Z̃ = (t, x , u, ut , ux , ut x , . . .), (2.117)

Z
h
= (t, x , u, ut

h
, ux

h
, ut x

h
, . . . , h1, h2), (2.118)

Z̃
h
= (t, x , u, ut , ux , . . . , ut

h
, ux

h
, ut x

h
, . . . , h1, h2), (2.119)

where

ui j =
∂ 2u
∂ x i∂ x j

, ui j
h

= Dj
+h

Di
+h
(u), . . . , ω

h
=ω1

h
×ω2

h
(2.120)

and ωi
h

is the difference mesh in the i-th direction, respectively.

Transformations in Z̃
h

are defined by the sequence of series with analytic coefficients,

z j∗ =
∑

s≥0

Aj
s(z)a

s, Aj
0 = z j, (2.121)

where z j is a coordinate of the vector (t, x , u, ut , ux , . . . , ut
h

, ux
h

, ut x
h

, . . .). These series

form one-parameter groups generated by infinitesimal operators

X = ξt ∂

∂ t
+ ξx ∂

∂ x
+ηk ∂

∂ uk
+
∑

s≥1

ζi1 i2...is

∂

∂ ui1 i2...is

+
∑

l≥1

ζi1 i2...il

∂

∂ ui1 i2...il

. (2.122)
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Prolongating the operator (2.122) for the variables h1 and h2 gives

X = · · ·+ h1D1
+h
(ξt)

∂

∂ h1
+ h2D2

+h
(ξx)

∂

∂ h2
. (2.123)

For the first-order difference derivatives the coordinates of prolongation operator are

given by formulas

ζt
h
= D1
+h
(η)− ut

h
D1
+h
(ξt)− S1

+h
(ux)D1

+h
(ξx), (2.124)

ζx
h
= D2
+h
(η)− S2

+h
(ut)D2

+h
(ξt)− ux

h
D2
+h
(ξx). (2.125)

If the considered mesh is invariantly uniform or invariantly orthogonal then the

corresponding formulas for invariant meshes must be satisfied in addition to

prolongation formulas (2.124)-(2.125).

2.5 Application of Lie Symmetries to Boundary Value Problems

Application of Lie groups to BVPs for ODEs is easier than the case for PDEs. For a

BVP of an ODE, the order of the ODE is reduced by an admitted integrating factor or

symmetry group (point or higher-order). In integrating factor reduction, the original

variables and in symmetry reduction, differential invariants of the group are used to

obtain a BVP for a lower order ODE.

A BVP for a scalar PDE, or system of PDEs, is invariant under a Lie transformations

group if the group leaves invariant the boundary, the boundary conditions, and the

equations of the BVP simultaneously. However, the concerned boundary conditions

are usually not invariant under the symmetry of the considered PDEs. Hence studies

about Lie symmetry analysis of BVPs are very limited. The solution of a BVP is

an invariant solution of the corresponding Lie group of point transformations if

the BVP is well-posed. But in the case of a linear BVP, point symmetries do not

have to leave invariant the boundary conditions of the given problem. Moreover,

when applying Lie symmetries to a linear nonhomogeneous PDE, invariance of the

associated homogeneous PDE is sufficient. Because a homogeneous PDE is always

invariant under a uniform scaling of its dependent variables. In this case, some of

the boundary conditions may not be invariant (this called as incomplete invariance)

under the symmetry admitted by the PDE. Invariant solutions and invariant forms are

obtained from invariance of the corresponding homogeneous BVP. A superposition of

invariant solutions or invariant forms can be used for the construction of solutions of

the given BVP. In the case of invariance of a BVP under a multiparameter Lie point

transformations group, general solution of the given BVP is obtained in an easier way.
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In the study of Lie symmetry analysis of BVPs, invariance of boundary and boundary

curve is essential but invariance of the associated equation is not necessary. It is

because there are BVPs that have Lie symmetries different from the corresponding

equation’s symmetries. As a simple example for this situation we can consider the

simplest 3rd− order ODE

y ′′′ = 0,

which has seven Lie point symmetries:

X1 = 1, X2 = x , X3 = y, X4 = y ′, X5 = x y ′,

X6 = x2, X7 = 2x y − x2 y ′.

Applying the initial condition y ′′(0) = 0 results in reduction order of given the ODE

to

y ′′ = 0,

which has eight Lie point symmetries

X1 − X5, X6 = y y ′, X7 = x y − x2 y ′, X8 = y2 − x y y ′.

It is generally more difficult to work with BVPs defined at free boundaries than with

standard BVPs defined at fixed boundaries. However, application of the Lie symmetry

method to BVPs with moving boundaries is sometimes more useful just for solving

given BVPs. Because such boundaries can depend on invariant variables which reduce

the given BVP to a BVP for a lower order differential equation. For this reason,

when applying the Lie symmetry method to BVPs researchers studied BVPs with free

boundaries rather than BVPs with fixed boundaries [18, 87, 88].

Invariance of a BVP under a Lie group is determined by infinitesimal generator of the

group. In this direction, first definition of invariance for a BVP was given by Bluman

[22].

Consider a k-th order (k ≥ 2) scalar PDE denoted by

F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0, (2.126)

where x = (x1, x2, . . . , xn) represents the coordinates corresponding to its n

independent variables, y represents the coordinate corresponding to its dependent

variable, and ∂ j y represents the coordinates with components ∂ j y/∂ x i1∂ x i2 . . .∂ x i j
=

yi1 i2...i j
, i j = 1,2, . . . , n, for j = 1, 2, . . . , k, corresponding to all j-th order partial

derivatives of y with respect to x .

52



We rewrite PDE (2.126) with respect to the components of l-th order partial derivatives

of y:

F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = yi1 i2...il − f (x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0 (2.127)

where f (x , y,∂ y,∂ 2 y, . . . ,∂ k y) does not depend explicitly on yi1 i2...il .

Now, consider a BVP for PDE (2.127) defined on a domain D in x-space [x =
(x1, x2, . . . , xn)] with boundary conditions

Ba(x , y,∂ y, . . . ,∂ k−1 y) = 0, (2.128)

described on boundary surfaces

Ωa(x) = 0, a = 1,2, . . . , s. (2.129)

We assume that BVP (2.127)-(2.129) has a unique solution. Consider an infinitesimal

generator of the form

X = ξi(x)
∂

∂ x i
+η(x , y)

∂

∂ y
, (2.130)

which defines a point symmetry acting on both (x , y)-space as well as on its projection

to x-space.

Definition 2.12 (Bluman’s definition for invariance of BVPs). The point symmetry X of

form (2.130) is admitted by BVP (2.127)-(2.129) if and only if:

1. X (k)F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0 when F(x , y,∂ y,∂ 2 y, . . . ,∂ k y) = 0;

2. XΩa(x) = 0 when Ωa(x) = 0, a = 1,2, . . . , s;

3. X (k−1)Ba(x , y,∂ y, . . . ,∂ k−1 y) = 0 when Ba(x , y,∂ y, . . . ,∂ k−1 y) = 0 on Ωa(x) =
0, a = 1,2, . . . , s.

This definition is applicable for BVPs with standard boundaries. But there are also BVPs

with free boundaries or with boundary conditions defined at infinity. Because BVPs

defined at free boundaries have moving surfaces such as Ωb(x) = 0, b = 1, 2, . . . , q,

where Ωb(x) are unknown functions. These functions are considered as additional

variables. Another major defect of this definition arises for the case BVPs in the

unbounded domain. When the boundary conditions for x =∞ is considered, the

second axiom is meaningless. Thus Chernica et al. [76, 77], proposed a new definition

of invariance for BVPs which extends Bluman’s definition to all possible boundary

53



conditions. They formulated the definition of invariance for BVPs at the case of

operators of conditional symmetry describing what kind of transformations can be

applied to transform boundary conditions at infinity to those containing no conditions

at infinity.

Firstly, we give the definition of invariance for a BVP presented in [76]. For our

purpose, we consider a BVP for a PDE with one dependent variable u and two

independent variables t, x

ut = f (x , u,∂ u,∂ 2u, . . . ,∂ ku), (2.131)

described on a domain ω ∈ R2 with smooth boundaries. There exist three kinds of

boundary conditions that can be seen in problems:

ωa(t, x) = 0 : Ba(t, x , u,∂ u, . . . ,∂ kau) = 0, a = 1, 2, . . . , s, (2.132)

Wb(t, x) = 0 : Bb(t, x , u,∂ u, . . . ,∂ kbu, Wb,
∂Wb

∂ t
,
∂Wb

∂ x
) = 0, b = 1, 2, . . . , r, (2.133)

γc(t, x) =∞ : Γc(t, x , u,∂ u, . . . ,∂ kc u) = 0, c = 1, 2, . . . ,q, (2.134)

where ka, kb, kc < k are given numbers, ωa(t, x), and γc(t, x) are known functions.

The functions Wb(t, x) define free boundary curves and one they have to be found.

We assume that all functions arising in (2.131)-(2.134) are given such that a classical

solution of this BVP exists.

Let us assume that PDE (2.131) admits a one-parameter Lie group generated by the

operator

X = ξt(t, x , u)
∂

∂ t
+ ξx(t, x , u)

∂

∂ x
+η(t, x , u)

∂

∂ u
. (2.135)

For the application of this group to BVP (2.131)-(2.134), we prolong operator (2.135)

to the space of variables (t, x , u, W ):

prX = ξt(t, x , u, W )
∂

∂ t
+ ξx(t, x , u, W )

∂

∂ x
+η(t, x , u, W )

∂

∂ u
+ ζ(t, x , u, W )

∂

∂W
.

(2.136)

Definition 2.13 (Chernica’s first definition for invariance of BVPs). BVP (2.131)-(2.134)

is invariant under the Lie group X̃ (2.136) if and only if

1. PDE (2.131) is invariant with respect to the k-th prolongation of the Lie group

generated by operator (2.135);

2. Each equation given by condition (2.132) is invariant with respect to the ka-th

prolongation of the Lie group generated by operator (2.135);

54



3. Each equation given by condition (2.133) is invariant with respect to the kb-th

prolongation of the Lie group with infinitesimal generator (2.136);

4. Each equation given by condition (2.134) is invariant with respect to the kc-th

prolongation of the Lie group with infinitesimal generator (2.135).

Although this definition is suitable for the broader classes of BVPs, there are some

BVPs where no definition of invariance under a Lie group can be applied. Because the

corresponding differential equation have a trivial symmetry only or is not invariant

under any symmetry group. For this reason in [77], a new definition which is valid

for more general types of symmetries including Q-conditional symmetry is developed.

Consider a BVP for PDE (2.127) with boundary conditions (2.128) and conditions

defined at infinity:

γc(x) =∞ : γc(x , y,∂ y, . . . ,∂ kc y) = 0, c = 1,2, . . . , p∞, (2.137)

where kc < k and p∞ are given numbers and γc(x) are specified functions that extends

the domain on which the BVP is defined to infinity in some directions. We assume that

all functions arising in (2.127), (2.128), (2.129), and (2.137) are given such that a

classical solution of this BVP exists.

Let us assume that the operator

Q = ξi(x , y)
∂

∂ x i
+η(x , y)

∂

∂ y
(2.138)

is a Q-conditional symmetry of PDE (2.127) satisfying the criterion

Q(k)F(x , y,∂ y,∂ 2 y, . . . ,∂ k y)|F(x ,y,∂ y,∂ 2 y,...,∂ k y)=0 = 0, (2.139)

where Q(k) is the k-th prolongation of Q and Q(y) = 0 with Q(y) = ξi(x , y)yx i
−

η(x , y).

Let us consider for each c = 1, 2, . . . , p∞ the manifold:

M = {γc(x) =∞ : γc(x , y,∂ y, . . . ,∂ kc y) = 0} (2.140)

in the extended space of variables x , y, yx , . . . , y (kc)
x . We assume that there exists a

smooth bijective transformation of the form:

t = g(x), w= h(x , y) (2.141)
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where h(x , y) is a smooth function, g(x) is a smooth vector function that maps the

manifold M into

M ∗ = {γ∗c(t) = 0 : γ∗c(t, y,∂ y, . . . ,∂ k∗c y) = 0} (2.142)

of the same dimensionality in the extended space t, w, wt , . . . , w(kc)
t (k

∗
c ≤ kc) and t =

t1, . . . , tn.

Definition 2.14 (Chernica’s second definition for invariance of BVPs). BVPs (2.127),

(2.128), and (2.137) are Q-conditionally invariant under operator (2.130) if:

1. Criterion (2.139) is satisfied;

2. Q(Ωa(x)) = 0 when Ωa(x) = 0, Ba|Ωa(x)=0 = 0, a = 1, . . . , s;

3. Q(k)(Ba(x , y,∂ y, . . . ,∂ k−1 y)) = 0 when Ωa(x) = 0 and Ba|Ωa(x)=0 = 0, a =
1, . . . , s;

4. There exists a smooth one-to-one and onto transform (2.141) that maps M into

M ∗ with the same dimension;

5. Q∗(γ∗c(t)) = 0 when γ∗c(t) = 0, c = 1, 2, . . . , p∞;

6. (Q∗)(k
∗
c )(γ∗c(t, y,∂ y, . . . ,∂ k∗c y)) = 0 when γ∗c(t) = 0 and γ∗c |γ∗c (t)=0 = 0, c =

1,2, . . . , r.

This definition is the same with Definition 2.12 if Q is a Lie symmetry transformation

and there is not any boundary condition defined at infinity.
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3
Main Results

Lie symmetry method represents a valuable and useful alternative to the study of

difference equations as well as differential equations. This method has many practical

applications. For example, discretization of differential equations preserving its

characteristic properties such as conservation laws, Hamiltonian structure gives better

numerical results. Lie symmetries have been applied to difference equations in several

aspects; determining of symmetry group of a difference equation leaving the mesh on

which the equation is written invariant, reducing the number of variables in equations,

constructing invariant difference models for a given differential equation.

Symmetry analysis of BVPs is also a crucial application. A differential equation without

boundary conditions does not represent any real phenomenon. Hence invariant BVPs

under a symmetry group form a prominent, substantial models for the governing

equations.

The sine-Gordon equation is a type of classical wave equations with a nonlinear

sine source term. The sine-Gordon equation arises in differential geometry and

in many branches of physics including relativistic field theory, Josephson junctions,

dislocations in crystals, self-induced transparency in optics, charge-density waves in

one-dimensional metals or mechanical trasmission lines. The equation has soliton

solutions.

This chapter is devoted to our main results which consist of the application of Lie

symmetries to the sine-Gordon equation. Throughout this research our original work

is on the sine-Gordon equation and concluded with two significant results:

• A symmetry group for the discrete sine-Gordon equation leaving the mesh

invariant is obtained.

• Invariance conditions for the discrete BVP of the sine-Gordon equation under

the symmetry group of the related equation are determined.
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3.1 Lie Point Symmetries of Difference Scheme for the sine-

Gordon Equation

The studies about Lie symmetry analysis of difference equations spring from several

approaches. Some of these approaches [12, 62, 80] deal with construction invariant

difference schemes that conserve all symmetries of the original differential equation

while others [53, 55, 64] deal with computing the symmetry group admitted by a

difference equation.

In this section, we examine the difference equation for sine-Gordon equation with

respect to Lie symmetry analysis [89]. Firstly, we construct a difference equation for

the sine-Gordon equation according to the method of Dorodnitsyn. We use difference

invariants and study on a five-point uniform and orthogonal mesh. The structure of the

mesh is preserved satisfying invariance criteria for uniform and orthogonal meshes.

As a second step of our study, we investigate the set of point symmetries of the discrete

sine-Gordon equation. We used a variation of Levi’s procedure given in [53]. They

proposed an algorithm to find symmetry group of an ordinary difference equation.

Specifically, in our procedure we deal with a nonlinear PDE. Hence we extend Levi’s

method for partial difference equations. We study on a fixed mesh given by two

equations. Applying infinitesimal generator criterion to the difference model of the

sine-Gordon equation, we obtain a system of linear equations. Even if our main

consideration is a nonlinear equation, in the process we work with linear equations.

Since we only look for point symmetries, infinitesimal generator acting on the space

of dependent and independent variables is used.

In this section we present the applications of these methods. In the first approach, we

begin with a differential equation and then try to form an invariant difference scheme

approximating the given equation. Let us consider the equation

ux t = sin u. (3.1)

Equation (3.1) admits three-parameter point transformation group (e.g., see [20])
generated by operators

X1 =
∂

∂ x
, X2 =

∂

∂ t
, X3 = x

∂

∂ x
− t

∂

∂ t
. (3.2)

Equation (3.1) is equivalent to the equation which is called the sine-Gordon equation

vr r − vss = sin v, (3.3)
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via the point transformation

r = x + t, s = x − t, u(x , t) = v(r, s). (3.4)

The operators

X1 =
∂

∂ r
, X2 =

∂

∂ s
, X3 = s

∂

∂ r
+ r

∂

∂ s
(3.5)

describes symmetry group of equation (3.3).

For an invariant discretization of equation (3.1), a mesh on which the continuous

limit of the equation exists should be determined so that it is invariant with respect

to the group defined by the operators (3.2). Since the transformation group given

by the operators (3.2) leaves invariant the dependent variable u, the invariance of

the mesh can be considered independently from the invariance of the difference

equation approximating (3.1). Thus, we can use the simplest orthogonal mesh that

is uniform in both directions. The invariance conditions for uniform meshes (2.115)

and for orthogonal meshes (2.116) hold for all operators of (3.2). The solutions of

the difference equation approximating (3.1) satisfy these conditions.

Any of the variables uk
n, uk

n+1, uk
n−1, uk+1

n , uk+1
n+1, uk+1

n−1, uk−1
n , uk−1

n−1, uk−1
n+1 can approximate the

right-hand side of (3.2) at (x , t, u) since the given variables are invariants of the group

(3.2). We prefer to use uk
n. The function

I10 = hxht (3.6)

is also an invariant in the space of discrete variables. Now, second-order

approximations to the mixed derivative ux t are constructed as

ux t ≈
�

uk+1
n+1 − uk+1

n−1

2hx
−

uk−1
n+1 − uk−1

n−1

2hx

�

1
2ht
+O(h2) (3.7)

which finally implies the equation

uk+1
n+1 − uk+1

n−1 − uk−1
n+1 + uk−1

n−1

4hxht
= sin uk

n. (3.8)

Using Taylor expansions, we show that difference equation (3.8) on an orthogonal

mesh leads to a second-order approximation to the differential equation (3.1)

preserving all the symmetry (3.2) of the equation in differential form :

uk+1
n+1 − uk+1

n−1 − uk−1
n+1 + uk−1

n−1

4hxhy
− sin uk

n = ux y − sin u+O(h2
x + h2

y). (3.9)
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By the group of transformations (3.4), the difference equation (3.8) is taken into the

equation
vk+1

n+1 − vk+1
n−1 − vk−1

n+1 + vk−1
n−1

4hrhs
= sin vk

n , (3.10)

where hr and hs are mesh variables, and thus a symmetry preserving difference system,

i.e., an invariant difference equation and a mesh for differential equation (3.3) are

constructed. Since equation (3.1) is invariant under the point transformations group

(3.4), mapping operators (3.2) into operators (3.5), equation (3.10) on the diagonal

orthogonal mesh admits the complete group defined by operators (3.5).

Now, we present the second approach applying a method that extends the method

of Levi et al. [53] used for ordinary differential equations to the partial differential

equations sin particular to the sine-Gordon equation

ut t − ux x = sin u. (3.11)

We consider the following finite-difference scheme on the uniform mesh

F :
û− 2u+ ǔ

τ2
−

u+ − 2u+ u−
h2

= sin u, (3.12)

Ω : t̂ − 2t + ť = 0, x+ − 2x + x− = 0 (3.13)

for equation (3.11). Here difference equation (3.12) is formed on a five-point stencil,

τ, h are mesh variables and the translations on the mesh variables given with t̂ =
t+τ, ť = t−τ, x+ = x+h, x− = x−h, û= u(t+τ, x), ǔ= u(t−τ, x), u+ = u(t, x+
h), u− = u(t, x − h). The infinitesimal generator prolonged to the finite-difference

differentiation variables in the discrete subspace

(t, x , t̂, ť, x+, x−, u, û, ǔ, u+, u−)

is given by

prX = ξt ∂

∂ t
+ ξx ∂

∂ x
+η

∂

∂ u
+ ξ̂t

∂

∂ t̂
+ ξ̌t

∂

∂ ť
+ ξx

+

∂

∂ x+

+ξx
−
∂

∂ x−
+ η̂

∂

∂ û
+ η̌

∂

∂ ǔ
+η+

∂

∂ u+
+η−

∂

∂ u−
. (3.14)

Applying this prolongation operator to difference scheme (3.12)-(3.13) to provide the

invariance criterions prX F = 0, prXΩ = 0 with F = 0,Ω = 0, we get the system of

equations

η(−2h2 + 2τ2 − h2τ2 cos u) + (ξ̌t − ξ̂t)[τ(u+ − 2u+ u−) + h2τ sin u]
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+(ξx
+ + ξ

x
−)[h(û− 2u+ ǔ)− hτ2 sin u] + (η̂+ η̌)h2 − (η+ +η−)τ2 = 0, (3.15)

ξ̂t − 2ξt + ξ̌t = 0, (3.16)

ξx
+ − 2ξx + ξx

− = 0. (3.17)

Firstly, we consider equation (3.16) to obtain infinitesimal transformation for the

variable t. Using equation (3.12), we write the term û in tems of ǔ and u and

substituting the obtained term in equation (3.16) gives

ξt

�

t̂, x ,
h2(2u− ǔ) +τ2(u+ − 2u+ u−) + h2τ2 sin u

h2

�

−2ξt(t, x , u) + ξt( ť, x , ǔ) = 0. (3.18)

Differentiating equation (3.18) with respect to the variable ǔ, we obtain the equation

−ξ̂t
û + ξ̌

t
ǔ = 0,

which is resulted that ξ̂t
û and ξ̌t

ǔ are not depend on t, that is

ξ̂t
û = ξ̌

t
ǔ = a(x).

From the last equation, we get the result that ξt is linear in u

ξt(t, x , u) = a(x)u+ b(t, x).

Now, we seek for the coefficients of ξt . Substituting the last expression in equation

(3.18) gives the equation

a(x)(û− 2u+ ǔ) + b( t̂, x)− 2b(t, x) + b( ť, x) = 0. (3.19)

Considering equation (3.19) as a polynomial and equating coefficients, we get a(x) =
0 and

b(2t − ť, x)− 2b(t, x) + b( ť, x) = 0.

Differentiating the last equation according to the variables t and ť respectively, we

obtain b t̂ t̂( t̂, x) = 0 and integrating the differential equation gives

b(t, x) = b1(x)t + b0(x).

Consequently from the invariance of mesh in time variable, we find the coordinate in
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the prolongation operator for the time variable as

ξt = b1(x)t + b0(x). (3.20)

We perform the same process for ξx and obtain the infinitesimal for the variable x as

ξx = d1(t)x + d0(t). (3.21)

Now, we use ξt and ξx to find the last coordinate of the generator (3.14). Substituting

the infinitesimals ξt and ξx in equation (3.15) gives

η(t, x , u)(−2h2 + 2τ2 − h2τ2 cos u)− 2τ2 b1(x)(u+ − 2u+ u− + h2 sin u)

+2h2d1(t)(û− 2u+ ǔ−τ2 sin u)

+

�

η̂

�

t̂, x ,
h2(2u− ǔ) +τ2(u+ − 2u+ u−) + h2τ2 sin u

h2

�

+η̌( ť, x , ǔ)
�

h2 − (η+ +η−)τ2 = 0. (3.22)

We differentiate this expression with respect to ǔ and u respectively to eliminate these

terms and get

2h2d1(t) + (−η̂û + η̌ǔ) = 0, (3.23)

η̂ûû( t̂, x , û) = 0. (3.24)

Integrating equation (3.24) twice gives we get the infinitesimal which is linear in u

η= α1(x)u+α0(t, x).

Substituting this term into equation (3.22) and equating coefficients of u, cos u and

sin u in the resulting equation gives

α0 = α1 = d1 = b1 = 0.

Thus, we obtain the solution of the determining system (3.15)-(3.17) as

η= 0,ξt = b0(x),ξ
x = d0(t), (3.25)

where b0 and d0 are arbitrary functions of x and t, respectively. In particular

choosing the arbitrary functions as x and t we obtain three-parameter group of point

transformations

X1 =
∂

∂ t
, X2 =

∂

∂ x
, X3 = x

∂

∂ t
+ t

∂

∂ x
(3.26)

for difference scheme (3.12)-(3.13). This shows that the difference equation (3.12)
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on the uniform and orthogonal mesh (3.13) preserves the point symmetries of its

differential form (3.11). In the space of finite-difference variables, extending to all

variables, the group generators can be written as

X1 =
∂

∂ t
+
∂

∂ t̂
+
∂

∂ ť
, X2 =

∂

∂ x
+
∂

∂ x+
+
∂

∂ x−
,

X3 = x
∂

∂ t
+ t

∂

∂ x
+ x

∂

∂ t̂
+ x

∂

∂ ť
+ t

∂

∂ x+
+ t

∂

∂ x−
.

3.2 Symmetry Analysis of the Nonlinear Discrete Boundary Value

Problem for the Wave Equation

A BVP for a differential or difference equation admits a Lie group of transformations

if the boundary curve, the boundary conditions and the corresponding equation

are severally invariant under the given transformation group. However, in general

invariance of all parts of a BVP are not satisfied at the same time. There are several

definitions for invariance of a BVP. In this chapter, we examine the invariance of the

sine-Gordon equation using the definition given in [77]. We consider both cases in

differential and difference form. The crucial point of our work is to study on a discrete

problem with difference equations. Actually, there is not much work about invariance

of BVPs for difference equations. We apply transformation groups obtained in the

last section to the boundary conditions. The groups and hence their generators are

prolonged to the first order derivatives to act on boundaries with derivatives. We

choose an unbounded domain to conserve invariance of the boundaries.

3.2.1 Lie Group Analysis of Boundary Value Problem for the sine-Gordon Equa-

tion

In this section, we analyze BVP for the nonlinear sine-Gordon equation in differential

form with respect to invariance under Lie groups of point transformations of the

related equation.

Let us consider the nonlinear hyperbolic problem

ut t − ux x = sin u, t > 0, −∞< x <∞, (3.27)

u(0, x) = ϕ(x), (3.28)

ut(0, x) =ψ(x). (3.29)
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The equation (3.27) admits three-dimensional Lie group [20] spanned by the

operators

X1 =
∂

∂ t
, X2 =

∂

∂ x
, X3 = x

∂

∂ t
+ t

∂

∂ x
. (3.30)

These operators generate the one-parameter Lie groups

T1 : t = t + ε1, x = x , u= u; (3.31)

T2 : t = t, x = x + ε2, u= u; (3.32)

T3 : t = t + xε3, x = x + tε3, u= u, (3.33)

respectively. Since group the T1 corresponds to translation on the variable t, the

invariance of the boundary curve t = 0 is not preserved. Thus BVP (3.27)-(3.29)

is not invariant with respect to the group T1.

For the invariance of boundary condition (3.28) with respect to the symmetry group

T2, the equations

t|t=0 = 0, [u−ϕ(x)]|u−ϕ(x)=0 = 0 (3.34)

must be satisfied. The first equation of (3.34) is an identity, while the second equation

results

ϕ(x) = ϕ(x + ε2). (3.35)

For the invariance of boundary condition (3.29), we need the first prolongation of the

operator X2. Using the prolongation formula for the first-order derivatives

X (1) = X + (ηt + utηu − ut(ξ
0
t + utξ

0
u)− ux(ξ

1
t + utξ

1
u))

∂

∂ ut

+ (ηx + uxηu − ut(ξ
0
x + uxξ

0
u)− ux(ξ

1
x + uxξ

1
u))

∂

∂ ux
,

(3.36)

where ξ0,ξ1 are infinitesimals with respect to the variables t and x respectively, we

get

X (1)2 =
∂

∂ x
. (3.37)

Applying this operator to condition (3.29), we have

t|t=0 = 0, [ut −ψ(x)]|ut−ψ(x)=0 = 0 (3.38)

which gives

ψ(x) =ψ(x + ε2). (3.39)
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BVP (3.27)-(3.29) is invariant under the group of transformations T2 if and only if

equations (3.35) and (3.39) are satisfied. These equations result that the functions

ϕ(x) and ψ(x) are constant functions.

Following the same way, we obtain the invariance criterions of boundary condition

(3.28) with respect to the symmetry group T3 if the equations

t + xε3 = 0 when t = 0,

u−ϕ(x + tε3) = 0 when u−ϕ(x) = 0

are satisfied. The first equation results with x = 0 or ε3 = 0 that gives the trivial group.

Hence we arrive at boundary condition (3.28) is invariant under the transformations

group T3 with the restriction

x = 0, ϕ(x) = ϕ(x + tε3). (3.40)

In order to examine invariance of boundary condition (3.29), we apply the first

prolongation of the operator X3, which is obtained from formula (3.36)

X (1)3 = x
∂

∂ t
+ t

∂

∂ x
− ux

∂

∂ ut
− ut

∂

∂ ux
, (3.41)

to (3.29) and get

x = 0,ψ(x)−ψ(x + tε3) = uxε3. (3.42)

Combining equations (3.40) and (3.42), we conclude that BVP (3.27)-(3.29) is

invariant under the group of transformations T3 with restriction ux(t, 0) = 0 and

conditions that

• if t = 0 for all arbitrary functions ϕ(x) and ψ(x),

• if t 6= 0 then ϕ(x) and ψ(x) are constant functions.

Considering all situations examined above, one infers that BVP (3.27)-(3.29) admits

two-parameter Lie group T2 ◦ T3 that corresponds to symmetries t = t + xε3, x =
x + tε3 + ε2, u= u if and only if ϕ(x) and ψ(x) are constant functions.
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3.2.2 Lie Group Analysis of the Difference Scheme of Boundary Value Problem

for the sine-Gordon Equation

In this section, we examine the Lie point symmetries of difference model for nonlinear

problem (3.27)-(3.29).

In the previous section, for the sine-Gordon equation (3.27), we presented the

five-point difference scheme

û− 2u+ ǔ
h2

1

−
u+ − 2u+ u−

h2
2

= sin u (3.43)

on the uniform and orthogonal mesh

t̂ − 2t + ť = 0, x+ − 2x + x− = 0. (3.44)

Difference equation (3.43) on the set of a finite number of points (x k
n, tk

n) can be

expressed as

E1 :
uk+1

n − 2uk
n + uk−1

n

h2
1

−
uk

n+1 − 2uk
n + uk

n+1

h2
2

= sin uk
n (3.45)

on the uniformly spaced orthogonal mesh

E2 : tk+1
n − tk

n = h1, E3 : x k+1
n − x k

n = 0, (3.46)

E4 : tk
n+1 − tk

n = 0, E5 : x k
n+1 − x k

n = h2. (3.47)

In paper [55], Levi et al. mentioned certain independence criteria for difference

schemes in two dimensional case. This criteria provides to calculate the values of

(x , t, u) at all points starting from the reference point (x k
n, tk

n) and a given number of

neighboring points and guarantees existence of solution of the system. In [55], Levi

et al. imposed the following condition on the Jacobian

|J |=
�

�

�

�

∂ (E1, E2, E3, E4, E5)
∂ (tk+1

n , x k+1
n , tk

n+1, x k
n+1, uk+1

n )

�

�

�

�

6= 0 (3.48)

for instance to move upward and to the right along the curves passing through

(x k
n, tk

n) (with either k or n fixed). Difference scheme (3.45)-(3.47) satisfy certain

independence criteria (3.48) by

tk
n = h1k+ t0, x k

n = h2n+ x0. (3.49)
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Now, using difference equation (3.43) for the BVP (3.27)-(3.29), we consider the

following difference problem

û− 2u+ ǔ
h2

1

−
u+ − 2u+ u−

h2
2

= sin u, (3.50)

u0
n = ϕ

h(x), (3.51)

û1
n − u0

n

τ+
=ψh(x). (3.52)

In this study, for simplicity we use the following notation (t, x , u, ut
h

, ux
h

, ut x
h

, . . . , h1, h2)

for difference variables in two-dimensional case. With respect to these symbols we

rewrite difference model (3.50)-(3.52) as

ut t
h
− ux x

h
= sin u, (3.53)

u(0, x) = ϕh(x), (3.54)

ut
h
(0, x) =ψh(x). (3.55)

Difference equation (3.53) admits three-parameter groups generated by the operators

[89]

X1 =
∂

∂ t
, X2 =

∂

∂ x
, X3 = x

∂

∂ t
+ t

∂

∂ x
. (3.56)

These operators describe Lie symmetry groups which correspond to the translation

about time variable, the translation in space axis and rotation, respectively. Since

time translation violates invariance of the boundary surface t = 0, difference scheme

(3.53)-(3.55) does not admit symmetry group generated by X1.

The invariance of boundary surface t = 0 with respect to the transformation group

generated by the operators X2 is trivial. Boundary condition (3.54) is invariant under

the symmetry of space translation X2 if the equation

u−ϕh(x + ε2) = 0 when u−ϕh(x) = 0

is satisfied. This results the condition

ϕh(x) = ϕh(x + ε2). (3.57)

For the invariance of boundary condition (3.55) we require the first-order prolongation

67



formulas in space of discrete variables. From (3.37) we know the coordinates for

continuous derivatives in the prolongation of the operator X2, and are zero. Using

formulas (2.124)-(2.125), we obtain the coordinates of the first-order difference

derivatives

ζt
h
= D1
+h
(0)− ut

h
D1
+h
(0)− S1

+h
(ux)D1

+h
(1) = 0, (3.58)

ζx
h
= D2
+h
(0)− S2

+h
(ut)D2

+h
(0)− ux

h
D2
+h
(1) = 0 (3.59)

for the operator X2 with η = 0,ξt = 0,ξx = 1. In this case, X2
h

(1) = X2 where X2
h

(1) is

the first prolongation of the operator X2 in discrete space. Applying this prolongation

to condition (3.55) we get the criterion

ψh(x) =ψh(x + ε2). (3.60)

In consequence of criteria (3.57) and (3.60), one can say that difference scheme

(3.53)-(3.55) is invariant with respect to the transformation group defined by the

operator X2 if and only if ϕh(x) and ψh(x) are constant functions.

Using the same procedure, we obtain the invariance criterion of condition (3.54) under

the rotation group spanned by the operator X3 as

t + xε3 = 0 when t = 0, u−ϕh(x + tε3) = 0 when u−ϕh(x) = 0

which results

x = 0,ϕh(x) = ϕh(x + tε3). (3.61)

We need to prolong operator (3.41) for first-order difference derivatives to analyze

invariance of condition (3.55) under the symmetry group generated by this operator.

Substituting η= 0,ξt = x ,ξx = t for the operator X3 in formulas (2.124)-(2.125) we

get the coefficients

ζt
h
= −ux , ζx

h
= −ut (3.62)

and the prolongation operator

X3
h

(1) = x
∂

∂ t
+ t

∂

∂ x
− ux

∂

∂ ut
− ut

∂

∂ ux
− ux

∂

∂ ut
h

− ut
∂

∂ ux
h

, (3.63)

which generates the group t = t + xε3, x = x + tε3, u = u, ut = ut − uxε3, ux =
ux − utε3, ut

h
= ut

h
− uxε3, ux

h
= ux

h
− utε3.

Applying this operator to boundary condition (3.55) gives
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t + xε3 = 0 when t = 0, ut
h
− uxε3 −ψh(x + tε3) = 0 when ut

h
−ψh(x) = 0,

and consequently,

x = 0, ψh(x)−ψh(x + tε3) = uxε3. (3.64)

From equations (3.61) and (3.64), we deduce that difference scheme (3.53)-(3.55) is

invariant under the group of transformations X3 with restriction on the first continuous

derivative with respect to x variable, ux(t, o) = 0, in two cases: if t = 0 for all arbitrary

functions ϕh(x) and ψh(x); if t 6= 0 then ϕh(x) and ψh(x) are constant functions.

We omit the coordinates for the mesh variables in the prolongation operators X2
h

(1)

and X3
h

(1). Indeed, infinitesimals of the operator X2 are η = 0, ξt = 0, ξx = 1, and

substituting these variables in D1
+h
(ξt) and D2

+h
(ξx) gives zero.

For the operator X3, the infinitesimals are η = 0, ξt = x , ξx = t and we calculate

D1
+h
(ξt) and D2

+h
(ξx) for these variables as

D1
+h
(x) =

1
h
(S1

h
− 1) = (D1 +

h1

2!
D2

1 + · · · )(x) = 0, (3.65)

D2
+h
(t) =

1
h
(S2

h
− 1) = (D2 +

h1

2!
D2

2 + · · · )(t) = 0, (3.66)

where

D1 =
∂

∂ t
+ ut

∂

∂ u
+ ut t

∂

∂ ut
+ ux t

∂

∂ ux
+ ..., (3.67)

D2 =
∂

∂ x
+ ux

∂

∂ u
+ ut x

∂

∂ ut
+ ux x

∂

∂ ux
+ .... (3.68)
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4
Results and Discussion

Lie symmetry method is a beneficial and effective solution method for differential

and difference equations. It has the ability to combine the existing techniques. Even

if Lie symmetries are tools for solving differential and difference equations, they

have many valuable applications. They can classify equations according to their

linearity or integrability. Invariant solutions are constructed from invariance under

Lie symmetry groups. These solutions are practical importance by means of obtaining

new solutions from known ones. For ODEs, invariant solutions are obtained solving

algebraic equations reduced from the given equation. For PDEs, these solutions are

determined solving PDEs with reduced independent variables.

Lie symmetry analysis of discrete equations has come into prominence in recent years

from several points of view. Similar to differential equations, the main operator is

infinitesimal generators in the study of difference equations. Lie symmetries can be

used to obtain more accurate and stable results for difference equations.

Invariance of BVPs relies on invariance of all boundary conditions of the given

problem. Since it is a difficult process to leave invariant boundary curves and

conditions under a Lie group at the same time, application of Lie groups to BVPs is

not a highly studied topic. Some definitions and theorems are investigated to apply

Lie symmetries to wider class of BVPs.

In this thesis, Lie symmetries are applied to some specific differential and difference

models. The main model of our research is sine-Gordon equation which is nonlinear

and has significant impacts in interdisciplinary studies of mathematics and physics.

We have improved a procedure from the recent literature to obtain Lie point

symmetries of finite difference scheme for one-dimensional sine-Gordon equation.

This process relies on an algorithm used for infinitesimal generators of the symmetry

group. It is observed that the discrete sine-Gordon equation preserves the symmetries

of its differential form. This is an essential conclusion from the view point of
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constructing invariant difference schemes.

We considered the boundary value problem for sine-Gordon equation in differential

and difference form which is defined on an unbounded domain and mesh, respectively.

We applied the invariance definition for boundary value problems given in [77] and

obtained invariance conditions for the problems under the group of transformations

admitted by continuous and discrete sine-Gordon equation. The symmetry operators

act on the difference scheme, meshes, boundary conditions and preserve uniformness

and orthogonality of the mesh. We used the prolongation formulas in discrete space

that are formulated by Dorodnitsyn in [26] to analyze the invariance of the boundary

conditions with derivative. We have observed that difference scheme (3.53)-(3.55) is

invariant under the same restrictions with respect to the symmetry groups generated

by (3.56) with differential form (3.27)-(3.29).

The present study has only investigated the point transformations of the considered

models. Further studies will concentrate on the generalized symmetries of particularly

difference models. The current research was limited by scalar differential or difference

equations. One potential application of our technique would be systems of some

differential or difference equations.
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