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ABSTRACT

Vectorial Cyclic Codes and Their Algebraic Structures
Siimeyra BEDIR

Department of Mathematics

Doctor of Philosophy Thesis

Adpvisor: Prof. Dr. Bayram Ali ERSOY

In Algebraic Coding Theory, constructing codes with optimal parameters, discovering
new code families and subfamilies, proposing new algebraic coding methods,
generalizing and applying these methods to various algebraic structures or
constructing best known codes in different and preferably more efficient ways have

all been important research subjects.

In this study, polycyclic codes, which are based on polycyclic shift that creates
vector-circulant matrices, are examined over different algebraic structures. The term
"multi polycyclic codes" is contributed to the literature, with introducing generator and
parity check conditions and duality theorems especially over skew polynomial rings.

Moreover, a polycyclic code construction method is proposed over matrix spaces.

Keywords: Linear codes, Polycyclic codes, Vector-circulant matrices, Pseudo-cyclic
codes

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

xi



OZET

Vektorel Devirli Kodlar ve Cebirsel Yapilari
Siimeyra BEDIR

Matematik Anabilim Dali

Doktora Tezi

Danisman: Prof. Dr. Bayram Ali ERSOY

Cebirsel Kodlama Teorisi'nde optimal parametrelere sahip kodlar iiretilmesi, yeni kod
aileleri ve alt ailelerinin kesfedilmesi, yeni cebirsel kodlama metodlarinin 6nerilmesi,
bu metodlarin cesitli cebirsel yapilar tizerinde genellestirilmesi ve uygulanmasi veya
bilinen en iyi kodlarin farkli ve tercihen daha etkili yollarla olusturulmasi 6nemli

arastirma alanlari olagelmistir.

Bu calismada, vektor-devirli matrisler olusturmay1 saglayan coklu devir lineer
dontisimi temelli coklu devirli kodlar, degisik cebirsel yapilar iizerinde ele alinmistir.
"Multi polycyclic" kod tamimi literatiire kazandirilmis, bununla birlikte iirete¢ ve
parite-kontrol durumlar1 ve duallik teoremleri Ozellikle skew polinom halkalar
lizerinde sunulmustur. Ayrica, matris uzaylarn lizerinde ¢oklu devirli kod {iretme

metodu onerilmistir.

Anahtar Kelimeler: Lineer kodlar, Goklu devirli kodlar, Vektor-devirli matrisler,

Pseudo-devirli kodlar
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Introduction

1.1 Literature Review

Algebraic Coding Theory, specifically the "Error Correcting Codes" has been attracting
many researchers for years in terms of relating the more practical and industrial
research areas of Information Transmission and Information Security to theoretical
backgrounds with underlying algebraic structures. There are many books covering
Coding Theory and its applications. But the core ones which this thesis will mainly be
referring to for the main concepts of Coding Theory are books of Xing and Ling [1],
Huffman and Pless [2] and Peterson and Weldon [3].

First studies of error correcting codes started over Finite Fields [4]. There are still
remarkable research on codes over finite fields mostly dealing with optimal code
search [5]. Studies are extended to codes over finite chain rings in recent years [6-8].

In algebraic coding theory, not only building new construction methods, exploring

optimal parameters, finding new codes and new algebraic structures, but building new

criss-cross relationships between known construction methods and existing algebraic

structures also bring out promising results. One example of this might be construction
"o

of codes over matrix spaces. "Gabudilin codes", "array codes", "codes correcting lattice
errors" are all of this kind [9-11].

Another algebraic structure that highly attracted the coding theorists has been Skew
Polynomial Rings [12]. Thanks to its noncommutative structure, applying the
well known code construction methods over skew polynomial rings has resulted in

obtaining codes with optimal parameters directly.

Polycyclic codes were first introduced in [3], as "pseudo-cyclic codes" corresponding
to shortened codes. After more than thirty years, a direct construction method
has been introduced for this family of codes [13]. Similar to cyclic or constacyclic
codes, polycyclic codes were examined as an efficient direct construction method for
obtaining codes with good parameters [14-16].



1.2 Objective of the Thesis

This thesis concentrates on the construction method of polycyclic codes, which
depends actually on a vector-circulant linear transformation. This invertible
transformation is represented with companion matrices of polynomials which creates
the base quotient ring. The way that this transformation and its inverse affects the

codewords, builds an interesting code structure.

The main results of this study involve examining structural properties of polycyclic
codes and their duals, generators and dual generators over finite fields, finite chain
rings and skew polynomial rings; introducing a vectorial cyclic construction of
codes over matrix spaces and introducing multi-polycyclic codes and their algebraic

structures over both finite fields and skew polynomial rings.

1.3 Original Contribution

Even though the construction method had been previously defined, this study includes
many original applications. One of them is applying the construction method to
codes over matrix spaces. Another original part is characterization of dual generator
polynomials of polycyclic codes. Finally, multi polycyclic codes over skew polynomial
rings with clarifications on generator and parity check conditions are also of original

work.



2

Preliminaries

Coding theory can be considered as an inter-disciplinary research field, tying up
communications, electronics, computer sciences and mathematics over decades. The
practice lies basically over attaining reliable information transmission and storage
via noisy communication channels. The simplest diagram for the information

transmission is given in Figure 2.1.

[Message Source]—> Encoder

Channel| < noise

Receiver Decoder

Figure 2.1 Information transmission

Consider ASCII encoding where every single character (letters, numbers, etc.) is
represented with an 8-bits {0, 1}-string. It encodes the message words in human
language to words that computers can understand.

This way of coding is called "source coding", which may fail to detect errors that
happen during transmission, since every single bit change (error) results a reasonably
misinterpreted new message. With spending a little cost on speed and storage,
adding some more bits, "channel decoding", increases redundancy and enhances error
detection.

Involving channel decoding, the above diagram becomes as in Figure 2.2.



(Message Source]—{Source EncoderHChannel Encoder

Channel | «— noise

Source DecoderHChannel Decoder

Figure 2.2 Channel encoding

Error correcting is a different story, which sometimes require a retransmission, mostly
applicable in two-way channels. However, there are information storage systems, like
when the equipment is not rewritable, that employ one-way channels, where asking
for retransmission is not possible. In any case, error-correcting capability is affected
by the very same algebraic structural dependencies as the code’s error-detecting

capability.

There are also differences in communication systems in terms of operating the
information sequence that is transmitted. One type of coding which is called "block
codes" divides the information sequence into equally long sections or blocks before
processing them. Whereas another type called "tree codes" operates on the sequence

without breaking it.

Consequently, being affected by somewhat conflicting dependencies, coding theory

has its basic natural goals and/or problems, which can be summarized as follows

Find codes with higher error-detection and correction capabilities (requires
additional length),

Obtain fast and effective encoding and decoding methods,

Enhance easy transmission,

Transfer maximum amount of information per time.

2.1 Basic Definitions

Definition 2.1. A set A = {a;,a,,...,a,} with cardinality q is referred to as a code
alphabet whose elements are called code symbols. A g-ary word of length n over the

alphabet A is a sequence ¢ = c;c,...c, where c; €A, Vi.

Definition 2.2. A g-ary block code C over the alphabet A is a non-empty set of g-ary

words having the same length n. Elements of C are called codewords.

4



Definition 2.3. The Size of a code C is the number of codewords in C, and denoted
by |C|.

Definition 2.4. The Information Rate of a code C with length n over A is defined to
be log, |C|/n.

Definition 2.5. The Minimum (Hamming) Distance of a code C is

d(C)=min{d(x,y):x,y €C,x #y}

where d(x,y) stands for the distance with respect to the Hamming metric between

codewords x, y; namely, the number of places where x and y differ.

A code in general, with length n, size M and minimum distance d is denoted with its

parameters as an (n, M, d)-code.

The decoding procedure, which is actually the rule for finding the most possible
codeword to be sent when a message is received with error, is tied with the capabilities
of the channel in terms of detecting or correcting errors. This capability is shown to
be highly dependent to the minimum distance of the code. A code C with minimum

distance d, can detect up to d — 1 errors and correct up to |(d —1)/2] errors [1].

Upon the fundamental definitions above, there comes the main problem of coding
theory; given a g-ary alphabet, a length n and a minimum distance d, find a code
with these parameters and the maximal possible number M of codewords. Therefore,
"good" codes are those with small n for fast transmission, large M to permit a wide

variety of messages and large d for detecting and correcting large number of errors.

For a fixed n and d, an (n, M, d)-code with the largest possible size M is called an
optimal code. There are upper and lower bounds for these optimal numbers for both
linear and nonlinear codes. The reader may refer to [1] for the descriptions of well
known bounds. This study will consider the up-to-date conditions of constructions

given in [17] for codes with good parameters as well as for optimal codes.

2.2 Linear Codes

Definition 2.6. Let F, be a finite field with q elements. A linear code C of length n

over F, is a subspace of the vector space F ".

Due to their algebraic, structural and computational advantages, such as being
mathematically descriptive, providing easy encoding and decoding, etc. linear codes

have taken more attention among algebraic coding theoretical research.

5



Linear codes are considered as subspaces of vector spaces. In this point of view, each
codeword is regarded as a vector rather than being a sequence of symbols and the
algebraic structure over which the code is defined is exactly the alphabet for linear
codes!. The size of a linear code is identified with its dimension(k) as a subspace, i.e.
M = g*. A linear code C over F, with length n, dimension k and minimum distance
d is therefore expressed as an [n, k, d],-code. The orthogonal complement of a linear
code is defined to be the dual code of C and denoted by C*.

One of the most mathematically advantageous aspects of studying linear codes is the
ability to use the correspondence between vectors and polynomials. Thereby one can
regard a codeword as either a vector or as its corresponding polynomial and all the

computational flexibility of polynomial rings helps a lot in the big picture.

Being a subspace also provides linear codes to be expressible with its basis vectors.
Having the basis means having the general information about the whole code. The
basis vectors form the rows of so-called generator matrix G of a linear code C. On
the other hand, rows of a parity-check matrix H for C is formed by the basis vectors
of C1. Generator and parity check matrices are used in encoding and decoding
linear codes respectively and they enhance faster procedures compared to arbitrary
nonlinear codes. The subspace definition of linear codes may be given in two ways;
giving G as a basis for C, or defining C as the null space of H. Combining both gives
us the equation GH"" = 0.

Another advantage of a linear code arise while computing its minimum distance. Its
linear structure allows the minimum distance to be directly the smallest Hamming

weight of its nonzero codewords.

Before giving details about common classes of linear codes, the following image will
help us figure out the structural generalizations among them. We will soon have more

information about their specifications and relations.

'In order to keep the definition simple, the alphabet for linear codes are kept as finite fields. How-
ever, linear codes can also be defined over rings.



Linear Codes
............... Polycyclic Codes
N - CDnstacycIic Codes

--= Cyclic Codes

Figure 2.3 Generalization of some classes of linear codes

2.2.1 Cyclic Codes

Algebraically, besides linearity, more structures such as cyclicity has allowed easier
implementation of codes. Cyclic codes were first introduced in 1957 [4].

Definition 2.7. A linear code C is called cyclic if whenever (cy,cy,...,c,_1) isin C so

is its cyclic shift (¢,_1,Co, €15+ -»Cpg)-

Cyclic codes are invariant subspaces of F," under the transformation which applies
cyclic shift to a vector. Cyclic codes involve the practical use of the following

COI’I’ESpOl’ldeHCC

i F"— F[x]/(x"—1) @2.1)
(CorCpy-vvsCpg) —> CoF+CiX + .o Cpgx™ L.

Each codeword (cy, ¢y, ...,c,_;) is associated to a polynomial ¢, +c;x +...+c,_;x"!

in F,[x] and every cyclic code corresponds to an ideal of F[x]/(x" —1). The
representation matrix for the cyclic shift transformation, which we will denote by
T (getting the corresponding polynomial as a subscript), is precisely the companion
matrix of the polynomial x™ — 1 and any monic divisor of this polynomial generates a
cyclic code. At the first hand, we have got the advantage of identifying a code with only
one polynomial, which is called a generator polynomial for C, rather than a matrix
of basis vectors. Moreover, the dimension of C is determined directly to be k if the

degree of the generator polynomial is n — k.

Let C be a cyclic [n, k, d],-code over a finite field F,, generated by g(x) = g, + g;x +
s+ g xk e, € = (g(x)) < F[x]/(x®—1) with n7'(g(x)) = g. Then the

generator matrix G of C can be obtained as follows

7



g 01 O 0
ngn_l 00 1
G=| gT2 , where T.ooy=| 0 0 ° 0 (2.2)
: 0 - 0 1
| 8ol | 10 0
We get
8o &1 " &n
G— g.n—l fgo ) g'n—z (2.3)
& 0 &1 8o d,.,
and G becomes the following matrix with rank k
g & &t O 0
0 & g &n— 0
e pr = ‘ (2.4)
0O -~ 0 & & " &xd,.,

Expression 2.2 points out that the cyclic code C as a subspace, is invariant under the
cyclic shift transformation and G can also be obtained by evaluating g(x) with T,._;,
i.e G=g(Tw_y)[18].

The dual code of a cyclic code C is also cyclic. Reciprocal of the polynomial h(x) =
x"—1/g(x), denoted with h?(x), generates the dual code of C. Parity check matrix H
for C can be obtained from evaluating h(T!. .) [18-20].

x—1

2.2.2 Constacyclic Codes

Constacyclic codes are a one step more generalized type of linear codes. The definition
was first introduced by [21] in 1968.

Definition 2.8. Let a € F:; A linear code C is called a—constacyclic if whenever

(cgsC15---5Cp_q) is in C so is its a—constacyclic shift (ac,_;, ¢y, 15 - -5 Cpos)-

An a—constacyclic code corresponds to an ideal of F[x]/(x™ —a). The representation
matrix for a—constacyclic shift, which we will denote by T,._, is the companion
matrix of the polynomial x™ — a and any monic divisor of this polynomial generates

an a—constacyclic code.



Let C be an a—constacyclic [n, k, d ],-code over a finite field F,, generated by g(x) =
o+ g X+ +g, . x"* ie. C=(g(x))<F[x]/(x"—a). Then the generator matrix
G of C can be obtained as follows

g 01 0 ---0
8Tnq 00 1
2 .
G=| gT;._, where Ty =1 0 0 0 (2.5)
5 0 - 0 1
n—1
| 8Ty |0, | a 0 o]
We obtain a generator matrix as an a—twistulant matrix
&o &1 &n—1
agn1 & 8n—
G = ' 4 2 (2.6)
ag; ot a8 8o

nxn

Similar to the cyclic case, G can also be obtained by evaluating g(x) with T,._,, i.e
G=g(T._,)[18].

1

The dual code of an a—constacyclic code C is shown to be an a™ —constacyclic code

[22]. A parity check matrix for C can be obtained by evaluating h(T};_ ). For a

concrete generating polynomial of the dual code we will give a general theorem in
Chapter 5.

2.2.3 Polycyclic Codes

Polycyclic codes over finite fields were first introduced in [3]. Although every
polycyclic code corresponds to a shortened cyclic code over finite fields, polycyclic
codes have attracted many researchers with their rich algebraic structure especially in

terms of introducing a direct construction [13-16].

Let ¢ = (¢y, ¢y, -..,C,_1) be any vector in F}. We fix a shift vector v = (vy, v¢,...,V,_1)

and define the following linear transformation on F;

T, :(CosCqpevvrCpo1) = (VoCpo1>Co+ V1Ch1s+++»Cpog + Vp_1Cn_1) 2.7)

It has the following representation matrix which is exactly the companion matrix for



f(x)=x"—v(x) and we have 7,(c) = c.Tyn_,(y)-

(001 0 - 0 |
0 0 1
Tonvy=| 0 0 0 (2.8)
0 0 1
| Yo V1ot Vna VY |

The following small example illustrates the case.

Example 2.1. Let ¢ = (cy, ¢;,C,) be a vector in some vector space F;. Let v = (vy, V1, V5)
be the shift vector.

Thus we have

0O 1 O
T=] 0 0 1
Vo V1 Vo

And the transformation T, maps ¢ = (cy, ¢;,¢5) to the vector T,(c) = (vycy, Co+ V1o, ¢1 +

V5Cy) as follows;

0O 1 O
Tv(c)=c~T=[c0 o) cz]- 0 0 1 Z[VOCZ Co+ViCy c1+v2c2]
Vo Vi V2

Here, T is exactly the companion matrix for f (x) = x3 — (v + v;x + v,x?).

Definition 2.9 (Polycyclic Code). A linear code C with length n over a finite field F,
is called polycyclic with respect to the vector v = (vy, V1,...,V,_1) € F;, if whenever
¢ = (cy,€q1,.--5C,1) is in C, so is its v—polycyclic shift (voc,_1,¢co + V1Cpo1s+-+>Chon +

Vn—lcn—l)-

A polycyclic code with respect to v is invariant under 7, and corresponds to an ideal
of F[x]/(x™ — v(x)). Any monic divisor of the polynomial x" — v(x) generates a
v—polycyclic code.

Let C be a v—polycyclic [n, k,d],-code over a finite field F,, generated by g(x) =
So+ g x+-+ g, x"F ie. C=(g(x)) < F[x]/(x"—v(x)). Then the generator
matrix G of C can be obtained as follows

10



g
ng”—v(x)

2
ng"—v(x)

n—1

L ng”—v(x) i

So we get G as a v— vector circulant matrix [23]

g
7,(8)
72(8)

| T (e) |

nxn

nxn

(2.9)

(2.10)

G can also be obtained by evaluating g(x) with T,n_,(,), i.e., G = g(Tu_,()) [20].

Notice that any cyclic code is polycyclic with respect to v = (1,0,...,0) with

v(x) = 1 and any constacyclic code with respect to a, is polycyclic with respect to

v=(a,0,...,0) with v(x) = a.

11



3

The Dual Code and Sequential Codes

3.1 Dual Code of a Polycyclic Code
The dual code of a polycyclic code is a type of "sequential code" [14].

Definition 3.1 (Sequential Codes). A linear code C with length n over a finite field
F is called sequential with respect to the the vector w = (wq, w,...,w,_1), if there
is a function ¢, : F* — F such that whenever ¢ = (cy,¢y,...,¢,_1) is in C, so is

((Pa)(COJ Cl: RN Cn—l): C(), Cl) R Cn—Z)'

Let C be a polycyclic code with respect to v = (vy,Vvy,...,V,_1), With generating
polynomial g(x) = gy + g;x + -+ + g,_1x" 1, and let h(x) = (x" —v(x))/g(x). Set
w =", —=Va_1/Vo,—Va_2/Vos--.,—V1/Vo). And consider the following transformation
on F"

Po(€orCrseevsCpoq) = (Wyq1Co+ WhoC ++++ WoCh_1,C05C1se -5 Cns) (3.1)

The matrix representation for p,, is exactly (Tx_nl_v(x))”, and note that v, should be

invertible in any case.

The dual code of a polycyclic code with respect to v = (vy,Vq,...,V,q) iS
therefore a sequential code with respect to w = (v;',—v,_/Vy,...,—V1/V,), Where
Pu(CorCryeresCrq) = Wy1Co + W,_5C + - + wyC,_;. A parity check matrix H can
either be obtained by evaluating h(T;_,,) or hR((TX‘,}_V(X))”).

Having sequential codes defined, the generalizations in Figure (2.3) becomes as in the
below figure 1.

! Actually, the familiy of sequential codes are wide. Here we only refer them as the dual codes of
polycyclic codes.

12



Linear Codes
--------------- Polycyclic Codes

------ Constacyclic Codes

--= Cyclic Codes

-------- Sequential Codes

Figure 3.1 Sequential codes in the generalization of linear codes

Polycyclic codes and their duals are fully characterized over finite fields and finite
chain rings [13, 16, 20]. They have been constructed as module-6 codes using skew
polynomial rings [24].

Polycyclic codes have an ideal structure, and over the corresponding polynomial ring,
we are able to find a generating polynomial/ a generating vector and this provides
constructing a vector-circulant generating matrix. However, sequential codes do not
have an ideal structure. The transformation does not correspond to multiplication
by x in the polynomial correspondence. So, the question is: How can we obtain a
generating polynomial/ generating vector a for the dual code of a polycyclic code so
that we obtain a direct construction as follows

a

po(a)
H=| - pi(a) - => aq=???

put@ -]
The problem of finding a concrete generator for the dual code of polycyclic codes over
rings will be solved in Chapter 4 and a more concrete generalization of the duality
theorems for multi-twisted and multi polycyclic codes will be covered in Chapter 5.
Here we will give our method for polycyclic codes over finite fields which will provide

a slight introduction to those more complex applications.

13



3.2 Shortening and Puncturing on Linear Codes

Shortening procedure is exactly as follows: Let C’ be an [n, k’, d"]-linear code over F,.
For a fixed 1 < i < n, form the subset A of C’ consisting of the codewords with the i*"
position equal to 0. Delete the i** position from all the words in A to form a code C.
Then C is an [n— 1, k,d]-linear code over F, with k' =1 <k <k’,d > d’' [1].

A polycyclic code with generating polynomial g(x) = g, +g;x+---+ g,_1x" ! can be
obtained by shortening a cyclic code C’ generated by g(x).

On the other hand, puncturing procedure is as follows: Let C’ be an [n + r,k,d +
r]-linear code over F,. Choose a codeword in C’ with weight d + r. Choose its r
non-zero coordinates, and delete these coordinates from all the codewords of C’. Then

the new code C, is an [n, k, d ]-linear code over F, [1].

The dual code of a polycyclic code with generating polynomial g(x) = go+g;x+---+
g,_1x""! can be obtained by puncturing the dual code of a cyclic code C’ generated

by g(x).

3.3 From Shortening and Puncturing to Polycyclic Codes and Their
Duals

Following the intuitions we get from the above correspondences, we derived a formula
to obtain a generating vector for the dual codes of polycyclic codes. We used the cyclic
code generated by g(x) as a divisor of x¥ —1 where N is the smallest length for which

f(x) divides xV¥ — 1. The proof will be given in the noncommutative case.

Theorem 3.1. Let h(x)g(x) = f(x), deg(fx) = n, deg(g(x)) = n—k and let N be
smallest number for which f (x) divides xN — 1. Let p(x) = % = Zf’z_onpixi and let C
be the polycyclic code generated by g(x) of length n. Then the dual code C* is generated

by the vector a = (ay, ay, .. .,a,_,) and its n — k — 1 sequential shifts, where

i—1

@9 = Poho, @ = D\ Pynosfyivjy 1S i<n—1.

j=0

We will give the proof in Chapter 4 for polycyclic codes over skew polynomial rings,
which will trivially hold for commutative case. The following small example illustrates

the theorem.

Example 3.1. Let F be the finite field with 4 elements; F, = {0,1,a,a* = a + 1}. Let
g(x)=a?+ax?+x3 h(x) =1+ax+x? and f(x) = g(x)h(x) = x> +ax®+x2+x+a?.

14



Let Ty(, be the companion matrix of f(x).
Consider the polycyclic code C generated by g(x) over F,.

We obtain the generating matrix of C as follows;

G—|:'“ g :| _|:a2 0 a 1 0:|
- - 2

e g.Tf(X) e oes O a 0 a 1 oes
We have f(x)|x'®—1 and we set N = 15.

In this case we have

xN—1

f(x)

=a+ ad’x +ax?+a®x®+a®x® + ax® + x7 + ax® + x'°.

p(x) =

Using the above formula
i—1
ayg = p0h07 a = ZPN—n—jhn—Hjn

j=0

we get
a=(a,0,0,1,a)

So the parity check matrix H can be obtained as follows

a a 0
_— ) . _1 tr ) _—
H= a (Tf(x)) =10 0
. =1 \try2
a-((Ty)™) 3x5 10 a 3x5
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4

Polycyclic Codes over Rings

In this chapter, we will explore polycyclic code constructions over some ring theoretic
algebraic structures. We start with quaternary polycyclic codes and then give an
example to polycyclic codes over a finite chain ring. We examine polycyclic codes
over skew polynomial rings and introduce duality theorems for both constacyclic and

polycyclic codes over skew polynomial rings.

4.1 Quaternary Polycyclic Codes

4.1.1 Codes over Z,

The reader may refer to [25] for the preliminary facts given below and more on

quaternary codes.

A linear code C of length n over Z, is a submodule of Z}, and its generator matrix in

I, A B
G=| N (4.1)
0 2I, 2D

standard form is given as

where A and D are matrices with entries from {0,1} C Z,, B is a matrix with entries
from Z, and I denotes the identity matrix. In this form, C is called a type 4%12%

quaternary code with size 412k, If k, = 0, then C is called a free Z,-code.

The Lee weights of 0,1, 2,3 € Z,, denoted by w,(0),w,(1),w,(2),w,(3) respectively,
are defined as w;(0) = 0,w,;(1) = 1,w,;(2) = 2 and w,(3) = 1. The Lee weight of a

codeword in a Z,-code is the sum of Lee weights of its coordinates.

The Gray map ¢, defined below, is used to obtain Z,-codes from Z,-codes. Since itis a
weight preserving map, the minimum Lee weight of a linear Z,-code is the minimum

Hamming weight of its Gray image, which is a length 2n, usually nonlinear, Z,-code.
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ZZn

b 7 — B
0 — 00
1 — 01
2 — 11
3 — 10

Cyclic codes over Z, correspond to ideals in Z,[x]/(x™—1). In order to have principal
ideals, we should have odd n, so that we can factorize x" — 1 into distinct, pairwise

coprime, basic irreducible factors uniquely.

Lemma 4.1. If g(x) is a basic irreducible factor of x" — 1, the linear code C over Z,
generated by g(x) is a free Z,-code of type 4"9°88(x),

Theorem 4.2. Let n be an odd integer and C be a linear cyclic code over Z, of length

n. Then C = (g;(x)g2(x),2g:(x)gs5(x)), where g;(x), g5(x), g3(x) are unique monic
polynomials such that g,(x)g,(x)gs(x) = x" — 1. In this case, |C| = 49883(x)2deg2(x),

Since we have odd n, Z,[x]/(x" — 1) is a principal ideal ring so C can be generated
principally. Having g,(x) and g5(x) coprime, we can write C = (g;(x)g,(x),2g;(x))
so that C corresponds to the principal ideal generated by g;(x)g,(x) + 2g,(x) [25].

Theorem 4.3. The dual code of C is also a linear cyclic Z,-code, and C' =
(g%(x)gB(x), 2gR(x)gR(x)) with |C*| = 498&10)2de88() yhere C is as defined above

and g (x) are reciprocal polynomials of g;(x), for i = 1,2, 3 respectively.

Similar to C, C* can also be generated principally by g%(x)g%(x) + 2g%(x).

Let C = (g(x) = g;(x)g,(x) + 2g,(x)) be a cyclic quaternary code. Keeping the

generator matrix as in the form of (2.2), we can obtain G by evaluating g(T,._;) and

1 tr

similarly H can be obtained from evaluating g5(x)g5(x) + 2¢5(x) with (T,

4.1.2 Polycyclic Codes over Z,

In order to obtain polycyclic codes over Z,, we assume that the polynomial f(x) =
x™ —v(x) is a square free, monic, regular polynomial with degv(x) < n.

So let f (x) = x"—v(x) = f;.f5.....f, be the factorization of f (x) over Z, into pairwise

coprime, monic, basic irreducible factors. The polycyclic code generated by g(x) =
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fi fiyefi =80+ &1 X+ + g, X" 1< i; < t has a generator matrix
8o -+ &n
— 8T

2
G = - ng(X) - . (4.2)

J— ng_l J—

L £ - nxn

Let C = (g1(x)ga(x),28:(x)g3(x)) where g;(x),g,(x),gs(x) are unique monic
polynomials such that g;(x)g,(x)gs(x) = x™ —v(x). In this case, since g,(x) and
g5(x) are coprime, we can write C = (g,(x)g,(x),2g;(x)) so that C corresponds to the
principal ideal generated by g;(x)g,(x) + 2g,(x). Therefore we obtain the generator
matrix for C by evaluating (g;(x)gx(x) +2g1(x))(Tf(x))-

For the dual code on the other hand, a generator matrix can be obtained by substituting
(Tf_&))” in g&(x)gi(x) +2g5(x). The following example illustrates the construction

of a polycyclic quaternary code.

Example 4.1. Consider the quotient polynomial ring Z,[x1/(f (x)), where f (x) = x*+

M xS+ X+ 2+ 1.

f (x) has a unique factorization over Z,[ x ] into basic irreducible polynomials as follows:

f(x) = xP+xT+x0+x+x+x+x2+1
= g1(x)ga(x)gs(x),
g(x) = x*+x+3,
2() = xP+2x04+3x% +x¥ +x7 +3x 2+ xt + xP + xP 4+ 2x + 1,

gs(x) = x+3.

Consider the linear Z,-code C = (g,(x)g5(x),2g,(x)gs(x)). The generator matrix of C

when turned into standard form is

G = [g:1(x)gx(x)+28,()](T(x)
11021220
= ]l0202220

3 3 01
22220
002022220222 2

S O W
SO N W
N © =

C is a length 15, type 4*22 polycyclic linear code over Z, which has minimum Lee weight
15, while the largest minimum Lee weight of the existing constructed linear Z,-codes of
length 15 and size > 16 is 14.
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This code has a linear Gray image which corresponds to the near-optimal binary code
[30,4,15].

There are many examples of good linear polycyclic quaternary codes which do not
have a construction introduced in the database [26]. Table 4.1 gives a few examples
of polycyclic quaternary codes which are constructed using the software Magma [27]
and have at least twice the size of the existing linear codes with the same length
and same Lee weight in the database. g stands for the generating polynomial of the
corresponding v-polycyclic linear quaternary code. A polynomial of the form 1+ x +
x® + 2x* is represented with 12012 for simplicity.

Table 4.1 Some good polycyclic quaternary codes

v g Polycyclic Code Size Best Around | Size
3303%030° 32210%3012%0° [15,4°21,8] 8192 [15,4°2°,8] | 4096

3030°30230° 3131°0321201202 [16,4°21,12] 128 [16,4°2°,12] | 64
3203202320230° 1031010%22310° [17,4°21,10] 8192 | [17,4°2°,10]| 4096
3023°0302320* 12023030%123210* [18,4°21,12] 2048 | [18,4°2°,12] | 1024

320°30%32030%30* 30320%10101°01%0 [19,4%21,18] 32 [19,472°,18] | 16

320°30!! 10%23%1032122010° [20,4%2,14] 512 [20,4%2°,14] | 256

3%0930%30° 301°03021230232210° [20,4°2% 14] 1024 | [20,4%2°,14]1| 256
30320°3°0°30320° 1202210%2232010° [20,4°21,12] 8192 |[[20,4°2°,12] | 4096
30230*3%01° 31212%02323012210* [21,4°21,14] 2048 | [21,4°2°,14] | 1024
303030232030%30° 120%210°223%010° [21,4%21,12] 131072 | [21,4°2°,12] | 65536
30%3402303°07 302313%030%2210210° [22,4°21,14] 8192 |[[22,4°2°,14] | 1024
3202303°0230"2 3030132320213213010° [24,4721,14] 32768 | [24,4°2°,14] | 1024
33030%3032%0"° 32120°1%231230%310° [25,4%23 14] 32768 | [25,4°2°,14] | 1024
30°30°30"2 1320202210101%02107 [25,4%21,14] 131072 | [25,4°2°,14] | 1024
340732010 107203%01°0%2121212010% [26,4°22,16] 4096 | [26,4°2°,16] | 1024
3%0320°320" 3031%3223310%1312120° [26,4°2!,16] 8192 | [26,4°2°,16] | 1024
30%320%3202303030° | 12232201221203231023%10% | [26,4°2% 16] 16384 | [26,4°2°,16] | 1024
320320°30°303°%0° 1313230131%31%0%10° [26,4721,16] 32768 | [26,4°2°,16] | 1024
3303302 3122012%131213%2301010° [27,472° 11] 524288 | [27,4°2°,11] | 65536
3023°0" 3122302120%32121221207 [27,4%2%,11] | 1048576 | [27,4°2°,11] | 65536
3°032030"7 323202%0303212%0%10° [27,47°22,11] | 4194304 | [27,4%2°,11] | 65536
330% 1321203%10313%2°3210° [28,4°21,14] | 524288 |[28,472°13] | 16384
3%0330%! 130232012202122102203%10° | [28,4°23,16] 32768 | [28,4°2°,15] | 4096
32023032023%0%° 30101310%1%0120122108 [28,4°22,16] | 1048576 | [28,472°,13] | 16384
30%230% 3121223%021301313022108 [29,4°23,13] | 2097152 | [29,4%2° 13] | 65536
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4.2 Polycyclic Codes over Finite Chain Rings

While linear codes were initially studied over finite fields, starting with quaternary
codes, more general structures have been taken into consideration. For the detailed

progress in research we refer the reader to [6].

In order to examine polycyclic codes over finite chain rings, we first give some basic

preliminaries about these rings from [28].

An associative finite ring with unity is called a chain ring if its ideals are linearly
ordered under inclusion. Finite chain rings are principal ideal rings; every ideal of
these rings is generated by a single element. They are also local rings; they have
unique maximal ideals. For a finite chain ring R, let M be the unique maximal ideal
with generator y. Then the ideals of R satisfy a chain of the following form where a

is called the nilpotency index of y.

R=(D2M=0"N2020)2-2¢)=(0)

While constructing linear codes over finite chain rings, we are going to be dealing with
factorization of polynomials and we also need a Euclidean type algorithm, therefore

we make use of the following definitions and theorems.

Definition 4.1. Let K = R/M be the residue field of R. A polynomial f in R[x] is
called basic irreducible if its image uf under the natural projection u : R[x] — K[x],

is irreducible over K[ x].

Definition 4.2. A primary polynomial is a polynomial which generates a primary

ideal; an ideal I # R, for which xy €I implies x € I or y" €I for some n € Z*.

Definition 4.3. A polynomial f in R[x] is called regular, if it is not a zero divisor.

We have the following equivalent conditions for regular polynomials.

Theorem 4.4 ([28]). Let f = ay+ a;x + -+ +a,x" be a polynomial in R[x]. Then the

following are equivalent:

() f is regular

(i) The ideal (ay,a,,: - ,a,) =R,
(iii) a; is a unit in R for some i, 0 <i<n,
(v) pf #0.
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Theorem 4.5 (Hensel’s Lemma, [28]). Let f be a polynomialinR[x]and uf =g;---g,
be the factorization of uf over K into pairwise coprime polynomials g4, ..., g,. Then there

exist polynomials g4, ..., g, in R[x] such that

() g,...,8, are pairwise coprime,
(i) ug; =g, foralli,0<i<n,

(i) f =81 " 8&n-

It is also shown in terms of irreducibilty that for a regular polynomial f, if uf is
irreducible in K[ x] then f is irreducible in R[x]. Moreover, if uf has distinct zeros in
the algebraic closure of K, then f is irreducible if and only if uf is irreducible. So, we

have the following factorization theorem for regular polynomials over R.

Theorem 4.6 ([28]). Let f be a regular polynomial in R[x]. Then, f =g, -+ g, where
0 is a unit and g,,...,g, are pairwise coprime regular primary polynomials. If f =
Phy---h,, is another factorization of f where f is a unit and h,,...,h,, are pairwise

coprime regular primary polynomials, then m = n and g; = h; up to reordering.

It is also a consequence of the given facts for a square-free monic regular polynomial f
that, this factorization into pairwise coprime monic basic irreducible factors is unique

up to associates and reordering.

A Euclidean type algorithm also holds as follows:

Theorem 4.7. Let f and g be polynomials in R[x] such that g is regular. Then, there
exist polynomials q,r € R[x] with f =qg + r and deg(r) < deg(g).

4.2.1 Polycyclic Codes as Invariant Submodules over Finite Chain Rings

In this part, we are going to examine polycyclic codes as invariant submodules of
a finite chain ring R. The idea was sparkled by the work [23], where new codes
were found by constructing arbitrary vector circulant matrices. This kind of matrices
generate some invariant submodules which we classify below. The notion of invariant
subspaces were introduced in [18] for cyclic and constacyclic cases, and generalized

for the cyclic codes over finite chain rings in [19].

Let f be a square-free, monic regular polynomial in R[ x ], where R is a finite chain ring.
As a consequence of the above facts, we have a unique factorization of f into pairwise

coprime, monic, basic irreducible polynomial factors over R. Let f(x) = x" —v(x) =
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f1-fo.....f: be the factorization. Each factor creates an invariant submodule over R. We
may apply the same method as in [18, 19] in order to construct polycyclic codes over

finite chain rings.

The following example illustrates the construction of a polycyclic code over a finite
chain ring. We note that, a generator matrix for a linear code over Galois rings of type
GR(p', m) can be written in the following standard form where the blocks A,, B 50 D

have entries from GR(p', m), and I .5 are identity matrices of size k;.

_Ikl A e e e A ]
0 ph, pBy -~ -+ DpB,4
G= 0 0 : (4.3)
0 0 - 0 p'L, pt'D |

Example 4.2. Let R = GR(22%,3) be the Galois ring obtained from the quotient ring
Z4[x]/(p(x)) where p(x) is a basic irreducible polynomial of degree 3 with & as a
primitive root. And let f(x) = x” +3x%+ x* +3x®> + x + 3. So we have v(x) =
x®+3x*+x%+3x+ 1 and hence v =(1,3,0,1,3,0,1) and further f(x) has a unique

factorization into basic irreducible polynomials g, g,, &3, 84 over R as

flx) = gi(x)ga(x)gs(x)g4(x)
gi1(x) = (x+3),

g(x) = (x*+3&x+1),

g(x) = (P+(B&+2)x+1),
g4(x) = (P+(E+E+1x+1)

and we have

0100000
0010000
0001000

Tiy=|0 000 10 0
0000O0T1O0
0000O0O0 1

| 1301301,

Let C be the polycyclic code generated by gs(x)g4(x),2g5(x). We obtain a generator
matrix by evaluating [g384 + 2831(Tf(y)). In standard form we get
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(1001 o 0 1
0101 &+1 g2 +1 2824+ &
G=|001 & &+1 28+¢& 3
0002 0 28242842 282
0000 2 22 2

and C is a (7,4°2°) linear code over R.
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4.3 Polycyclic Codes over Skew Polynomial Rings

Skew polynomial rings were introduced by Ore in [29] and studied further by Jacobson
[30] and McDonald [28]. For the last two decades, research on linear codes has
been shifted to cyclic codes over noncommutative rings, known as skew cyclic codes
intensively [12]. These are larger than the commutative ones and surely contain
them as subfamilies. The pace for exploring these families has not been as in the
commutative case. The problems due to the skewness property are more challenging.

Definition 4.4. Let F, be a finite field of order g and 6 be an automorphism of F,.

The set of polynomials
F[x;0]={ay+a;x+---+a,x"|a; € F;, n €N}

is called skew polynomial ring over F,, where addition is ordinary but multiplication
is defined for all a, b € F, as

(axi) * (bxj) =abi(b)xt.

Skew polynomial rings are noncommutative unless 6 is the identity automorphism.
F,[x; 0] is left and right Euclidean, i.e. both right and left division algorithms hold
and any left or right ideal is principal. Factorization is not unique in F,[x;60]. Let
f(x) be a polynomial in F,[x;0]. If f(x)p(x) = p(x)f(x) for all p(x) € F,[x;0],
then f(x) is called a central polynomial. The set of central polynomials of F,[x; 0] is
called the center of F,[x; 6] and denoted by Z(F,[x; 6]). Further, f(x) is a central
polynomial if and only if it is of the form

f(x):a0+a1xm+a2x2m+...+anxnm 4.4
where q; € Fq@ (the fixed field of 6 in F,) and m = [(0)| is the order of 6 [28].

We write g(x)|,f (x), if g(x) is a right divisor of f(x). The following lemma shows

that two factors of a central polynomial commute [31].

Lemma 4.8. Let f(x) = h(x)g(x)in F,[x; 0] If f (x) € Z(F,[x; 0]), then h(x)g(x) =
g(x)h(x).

4.3.1 Skew Cyclic and Skew Constacyclic Codes

In [12], Boucher et al. generalized cyclic codes by using skew polynomial rings.

Definition 4.5. A linear code C of length n over F|, is called skew cyclic, if it is invariant
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under the skew cyclic shift, i.e.

(cosC1re--rCh1) €C = (0(c,1),0(cy),-..,0(c,—5)) €C.

Boucher et al. show that skew cyclic codes are ideals of the ring F,[x;0]/(x" — 1),
whenever x" —1 € Z(F,[x;0]) [12]. Later, the restriction on x" —1 to be a central
polynomial is removed by considering skew cyclic codes as left F [x; 6 ]-submodules
of F,[x;0]/(x"—1) in [32]. Skew cyclic codes, being a generalization of cyclic codes
and covering a large and rich subclass of linear codes, present many advantages while
searching for linear codes with structures and in some cases good parameters. In many
recent studies such as [12, 33], new record breaking codes were obtained via using

skew polynomials.

The following preliminary result can be derived directly from Theorem 6, 7 and Lemma
2 of [32] by using similar methods, hence the proof is omitted.

Lemma 4.9. Let C be a left F [ x; 6 ]-submodule of F,[x; 6]/(f (x)) where f (x) # 0 and
deg(f(x)) > 0. Let g(x) be a monic polynomial of minimum degree in C. Then g(x) is

unique and C is principally generated by g(x), i.e, C = (g(x)). Moreover;, g(x) is a right
divisor of f(x) in F,[x;0] and |C| = gdesUx))~des(z()),

Now we give the definition for a skew a-constacyclic code.

Definition 4.6. Let a € F;. A linear code C is called skew a—constacyclic if it is

invariant under skew a-constacyclic shift, i.e,

(co>C15--+5Cp1) € C = (aB(c 1), 0(cy), ..., 0(c,—5)) € C.

Skew constacyclic codes were introduced in [7] and some properties of this family
are given in [34] and [8]. In polynomial representation, skew a-constacyclic codes
correspond to left F,[x;0]-submodules of F [x;0]/(x" — a). ioln fact, a skew
a-constacyclic code C of length n is principally generated by a right divisor g(x) of
x"—ain F[x;0],ie C=/(g(x)).

4.3.2 Duality Theorem for Skew Constacyclic Codes

In this section, given the generator of a skew constacyclic code, we introduce a direct
method of finding the generator of the dual code explicitly. Throughout this section

we set m|n, where m = |(6)]|.
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Lemma 4.10. Let x" —a € Fy[x; 0], o(a) be the multiplicative order of a in Fy and

N = o(a)n. Then, x"— a is a right divisor of the central polynomial xN —1 in Fy[x; 0]

Proof. Let N = o(a)n. Then,

XN—1=(a+a2x"+a3x¥ + - 4 @ 0@ x@ DM (e g),

Since m|n, we have x" —1 € Z(F [x; 6]) and from Lemma 4.8, x"—1 = (x"—a)(a™'+
X1 for the right

xX—a

a 2x +a x4 4 a0 @y C@-Dn) ‘We simply use the expression

division of x¥ —1 by x" — a.

Lemma 4.11. Let a; € F; and n; be a positive integer such that min;, for 1 <i <L
Then,

; N
xt—a|xt =1

where N = Ilcm(ny,n,,...,n)lcm(o(a;),...,0(a;)).

Proof. By Lemma 4.10, we have

-1 -2 —3,.2n 4 ... —o(a:) . (o(a)—1n; (-1 __ — yenmio(ay)
(. +a “x"+a "x"+-+a X )(x a;)=Xx 1

and we also have
o(a;)n;|lcm(ny,n,,...,n)lcm(o(a;),...,o(a;)).

Hence,
o(a; N
xmioled — 7| xN —1.

Therefore x™ — a;| xN —1. n
In [8], Lemma 3.1 shows that the dual of a skew a-constacyclic code is a skew

a~'-constacyclic code, with a restriction on a being fixed by 6. This lemma holds

for any a € F;‘, and can be proved by using the same method.

Lemma 4.12 ([8], Lemma 3.1). Let C be a skew a-constacyclic code of length n over F,,
where a € F;. Then the dual code C* is a skew a*-constacyclic code of length n over F, e
In order to determine the generator polynomials of dual codes, the following definition

will be crucial.
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Definition 4.7. Let n be a positive integer and a(x) = ay+a;x+a,x*+---+a,_;x" ' €
F,[x; 0] with deg(a(x)) < n—1. We define

al®(x) = alay, + 0(a,_)x + 0%(a,_,)x*+ -+ 6" (a)x"L.

Let x" —a = a(x)g(x) with deg(a(x)) = k and C = (g(x)). If we were dealing with
the case a = 1, i.e, skew cyclic case, skew reciprocal polynomial of a(x), which is
defined as a®(x) = a; + 0(a;_;)x + - -+ + 0%(a,)x*, would be a right divisor of x" — 1
and thus a generator polynomial for C* [31]. However, for the skew constacyclic case,
x"—a = a(x)g(x) does not imply a®(x)|,.x" —a! nor does it imply C*+ = (af(x)). In
[24] the authors determined that C* = (h®(x)) where h(x) is a polynomial satisfying

xn

—07%(a) = g(x)h(x), this guarantees the existence but is implicit and the process
involves a query to find such a polynomial h(x). Later in [34] in Theorem 6.1, authors
obtained the generator of the dual code in terms of h(x), while x" —a = h(x)g(x), by

using the properties of skew generalized circulant matrices.

In the following theorem, we give an alternative algorithm to find the generator

polynomial of C* directly by using a‘™»*(x).

Theorem 4.13. Let x" —a = a(x)g(x) in F,[x;0] and C be a skew a-constacyclic
code generated by g(x). Then, a™® € C*. Moreover, C* = (x*a™*(x)), where k =
deg(a(x)).

Proof. Let g(x)=go+gx+--+g,1x" 'and a(x)=a,+a;x +---+a,_x" ' Let

us multiply both sides of x" —a = a(x)g(x) from left by ’;IZ__I, where N = o(a)n. We

a

obtain
N

X
xN—1=

xn_

La)g(o).
a

. . . _ N_1
Since xV —1 € Z(F,[x;0]), from Lemma 4.8 we can write x" —1 = g(x)5=a(x),

which means
g (@t +a2x "+ a3xP 44 @ 0@ @D DM q(x) =0 (mod xN —1).
This is equivalent to
g(x)ata(x) + g(x)a2a(x)x + - - + g(x)a(x)xC@ D =0 (mod xN —1) (4.5)
since a @ =1 and x" € Z(F[x;0]).

The coefficient of x° in Equation (4.5) is goa ‘a, + g,0(a,_;) + £,0%(a,_,) + -+ +
g,.10" " (a;) = 0 which implies g - a!»* = 0. To prove a™* € C*, we need to show
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that a™® is orthogonal to all skew a-constacyclic shifts of g. Let us denote the skew
a-constacyclic shift by T,. If we multiply Equation (4.5) with x from left, then the
coefficient of x° becomes

0(gn-1)ao+ 0(g0)0(a,—1) + 9(81)92(an—2) +eet Q(gn—z)en_l(aﬂ =0.

This implies that T,(g) - a!»* = 0. Similarly, if we multiply Equation (4.5) with x
from left, we obtain Té(g) -a™® = 0. Thus, we have a/»® e C*.

Now let us show that C* = (x*a™®(x)). Since C* is a skew a~'-constacyclic code, it
is a left F [ x; 0 ]-submodule of F [x; 0]/(x" —a™1). Thus x'a™®(x) € F[x;0]/(x"—

a™!) also belongs to C+. We have
deg(a(x)) =k = deg(x*a™*(x)) =k in F [x;0]/(x"— a™b.

Since the quotient ring is principal and the dimension of C* is n — k, there is no
polynomial in C* with degree less than k. Therefore C* is indeed generated by

xkam® (x). [

4.3.3 Skew Polycyclic Codes and Their Duals

Polycyclic codes have been extended to noncommutative case in [15]. It is shown
that a skew polycyclic code generated by a right divisor g(x) of f(x) = x" —v(x) is
invariant under Ty, o ©, where ©(c) := (0(cy),0(c;),...,0(c,—1)). For this case, a
v-skew polycyclic shift of a codeword c is obtained by

(T 0 ©)(c) = (0(co), 0(c1), - -, 0(ch1)) - Ty

The following lemma can be directly proved by applying the results in [14, 24] and
[15].

Lemma 4.14. Let C be a skew polycyclic code generated by a right divisor g(x) of f (x) =

x"—v(x) € Fy[x, 0] Then, C* is a sequential code and invariant under (Tf_&))” 0®.

In order to obtain the generating vector for the dual code of a skew polycyclic code,

we need to start with the following lemma.

Lemma 4.15. Let f (x) € F,[x; 6] be a polynomial with a nonzero constant term. Then,

there exist a central polynomial xV — 1 such that f(x)|,xN —1in F [x;0].
Proof. By Lemma 10 in [31], there exists a polynomial b(x) = (by + b;x™ + -+ +
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b,x*™)x" where m = [(0)|, b; € F‘f and s, t € N such that f(x)|,b(x). Since f(x) has

a nonzero constant term, we get x' = 1 and b(x) € Z(F,[x;0]).

We know that Z(F,[x;0]) = qu[xm]_ Also, there exists a finite field extension of qu
where b(x) splits. These imply that there exists a central polynomial xV — 1 such that

b(x)|xN — 1 which completes the proof.

Let C be a skew polycyclic code generated by g(x)|,f (x) where deg(g(x)) = n—k. Let
xN—1 be a central polynomial such that f (x)|,x¥—1. In this case, C corresponds to the
shortened code applied to the last N—n coordinates of the skew cyclic code C’ = (g(x))
of length N. Further, the dual code of C corresponds to the punctured code applied to
the last N — (n — k) coordinates of the dual code C"*, which is generated by a’™?)(x)
where a’(x)g(x) = xV¥ — 1. The punctured code, being in the form of a sequential
code, does not have an ideal or module structure and multiplication by x does not
correspond to the sequential shift under which the code is invariant. However, in the
sequel, we find a representative generating vector from which a generator matrix for

the dual code can be obtained directly.

Theorem 4.16. Let a(x)g(x) = f(x) = x™ — v(x) with a nongero constant term and
deg(g(x)) = n—k. Let N be smallest number for which f (x) divides xN¥ —1 and p(x) =

-1
fx)
Then, the dual code C* is generated by the vector h = (hy,hy,...,h,_;) and its n—k—1

sequential shifts i.e., {h, ((Tf_&))” 0®)(h),---, ((Tf_&))” 0 ©®)"*"1(h)}, where

= Ziv:_on p;x'. Suppose C is a skew polycyclic code of length n generated by g(x).

i—1

ho = podo, and h; = Z 0 (Py—n)O" " (@yiy), 1S i<n—1.

j=0

Proof. Since x" —1 is a central polynomial such that f(x)|,x" — 1, we have

N
-1
xN—1= (x)x a(x).
7
This implies that
g(X)(po+pix+-+py_px¥ Ma(x)=0 (mod xV —1). (4.6)
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Thus, the coefficient of x° in Equation (4.6) is

8oPodo + &10(py_)0" " (a,_1)+
gz(ez(pN—n)eN_n+2(an—2) + 92(pN—n—1)9N_n+1(an—1)) +eet
gn—l(en_l(PN—n)eN_l(aﬂ +et 9n_l(PN—2n+2)9N_n+1(an—1)) =0

which implies g - h = 0. Multiplying Equation (4.6) by x' from the left, we obtain
Tfi(x)(g) -h=0.

Now, we consider a skew cyclic code C’ of length N generated by g(x). From Theorem

‘N1)(x), where

a(x)= ’;N(;)l = p(x)a(x). Let H’ be the generator matrix for C’* obtained from a’™-V).

Now, we show that the first n coordinates of a’™-" form exactly the coordinates of h

4.13, the dual code of C’ of dimension n — k is also generated by a

in the same order. We have

a'(x) =(po + prx + -+ + py_p X )@ +ax + - +a, X"
=podo + (Poa; + p10(ag))x +---+
(pN—neN_n(an—Z) + pN—n—leN_n_1 (an—l))xN_Z + (pN—neN_n(an—l))xN_l'

This implies that

a/<N’1>(x) =Po4p + 9(pN—n9N_n(an—1))X + Gz(pN—neN_n(an—Z) +pN—n—19N_n_1(an—1))x2

+ -+ 0" (poay + p16(ag))x™

Similarly one can show that the first n coordinates of x'a’™"(x) (mod xV —1) i.e.
T:L)" 0 0)(h)
in the same order. This completes the proof since puncturing C’* at the last N —n

the first n coordinates of the ith row of H’, give the coordinates of ((

coordinates results in exactly n — k linearly independent rows. [ |

Example 4.3. Let g(x) = x° + ax?+ a?|,.f(x) = x° + x* + a’x + a® in F,[x; 0] with
|(8)| = 2. In this case, a(x) = x?>+ ax + 1 and f(x) = a(x)g(x). C = (g(x)) becomes
a skew v-polycyclic code of length 5, where v = (a?,a?,1,0,0). We have N = 24, i.e.
FO)|,x*—1 and p(x) = szz;)l. By Theorem 4.16, we get h = (a,0,0, 1, a?) which is
exactly the first 5 coordinates of a’‘**V). The parity check matrix for C can be obtained

from {h, ((T; )" © 0)(h), ((T;})"" © 0)*(h)} as

)

a 0
H=| 0 &
1

R O O
S O
o =

0
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5)

Polycyclicity of Codes over Matrix Spaces

Codes over matrix spaces have been studied in terms of array codes or Gabudilin
codes first in [9] with respect to rank metric and term rank metric instead of the
usual Hamming metric defined on usual vector spaces. In matrix spaces, matrices
correspond to vectors in usual vector spaces. Note that, matrices over the base field

F, are isomorphic to the vector space over the extension field F.;

mxn o~ pm
F™" & F7 (5.1)

5.1 Rank Metric and Term Rank Metric Spaces

The vector space of m x n matrices over a fixed finite field F, of q elements become
a rank metric and term rank metric space under the rank norm and term rank norm
respectively, denoted by My, M. Given A as an m x n matrix with .#(A) being the set
of rows/columns of A which contains all the nonzero entries of A, the term rank norm

is defined as

1Al 7z = min|.#(A)]. (5.2)

If A and B are two m x n matrices, the term rank distance is defined as

dTR: ||A_B||TR' (5.3)

Codes over matrix spaces are considered as k-dimensional subspaces of Fé”xn. The
minimum distance of a code over a term rank metric space, denoted by D, should
clearly be less than or equal to the minimum of {m,n} and assuming without the loss

of generality that m < n, we have

D, = min ||A <m. 54
=, min_ Al (5.4)
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The only known bound for optimality of codes over My is the Singleton bound, which

is expressed in the following version.
k S Tl(m—DTR+ 1). (5.5)

If we have the equality, the code is considered to be optimal.

Gritsenko and Maevskiy [ 10] have introduced a construction method for optimal codes
over My, using the correspondence between polynomials and p(x)-circulants. With
this method, they construct [nxn, n]— codes, and for construction of [m xn, n]—codes,
they address the shortening method. In this study, we introduce a direct polycyclic
construction, which will guide as an analogue to the usual construction of codes over
ordinary vector spaces in general, and with this method, the cyclic and constacyclic
cases for codes over matrix spaces will be classified. We also propose a method for

finding the minimum term rank distance of a given code using Pyhton software.

5.1.1 Code Construction and Examples

Let p(x) = ay+a;x +-- -+ x™ be a monic divisor of degree m of a polynomial f (x) =
x"—1 of degree n and consider the following matrix P, obtained from the companion

matrix of p(x) horizontally joined with an m x (n —m) block zero-matrix

0 1 0 0 0

A : (5.6)
0 e 0 1 0O --- 0
_ao _al _am_l O 0

We define a cyclic shift by vertically shifting the columns of P, to the right hand side.
We can obtain this shift by multiplying P, with T; which is the companion matrix of

fl)=x"-1;

[0 1 0 0 ]
00 1
Tr=1o0 0 (5.7)
0 0 0 1
10 0

- = nxXn

The F, sub matrix space spanned by n matrices of cyclic shifts of P,, constructs a form

of a cyclic code over Mz, which we call a cyclic code associated with p(x).
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For the case where f = x"—a, (a € F;), T, constructs an a-constacyclic shift, therefore
we obtain an a-constacyclic code. Finally, for the most general case where f is an
arbitrary monic polynomial of degree n, we obtain polycyclic shift and polycyclic

codes.

We generalize the structure to the polycyclic case as follows

Definition 5.1. Let F, be a finite field with g elements and let f(x) be a monic
polynomial with p(x) a monic divisor of f(x) over F,[x], with degf(x) = n and
degp(x) = m. Let P, be the matrix obtained from the companion matrix of p(x)
horizontally joined with an m x (n —m) zero-matrix, and T, be the companion matrix

of f. The F,— sub matrix space spanned by the following set of m x n matrices
{P,T; :i€[0,n—1]} (5.8)

is a polycyclic code in the rank/term rank metric space over F(;”X".

Considering the correspondence ¢ : F[x] — FC;"X” which maps x’ to Pp(Tf)i,
multiplying a polynomial by x over the polynomial ring F,[x], corresponds to the

polycyclic shift in F;"X”, as defined above.

Example 5.1. Let F, be the finite field with 4 elements; F, = {0,1,a, a?}. Consider
f(x) = x°—1 and take p(x) = x° + a? as a divisor of f. Therefore we have m = 3,

n=29, and

010 0
0 1000000O00O 00 1
P=]10 01000000/, Tf=|g 0
a> 00000 0O0O 0 0 0 1
1 0 --- --- 0
- = 9x9
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Applying Ty to P,, constructs the desired cyclic shift;

[0 0 100000 0]
PT,=|0 0 0100000],
_Oa20000000_
(00 0 10000 0]
P,T}={00 0 01000O0]|,
| 00a> 000000 |
(1 0000000 0]
P,T/={0 1000000 O
(00000000 o |

And the subspace generated by the spanning set {PPT; : 1 € [0,8]} becomes a cyclic

[3 % 9,9]—code over the F,—matrix space of 3 X 9 matrices.

Example 5.2. Let F, be the finite field with 4 elements; F, = {0,1,a, a?}. Consider
f(x) = x®+ a?x? + a and take p(x) = x*+ x? + a as a divisor of f. We have m = 4,

n =6, and

01 0 00O
01 0 O0O00O0 0O 0O1 00O
001 0O00O0 00 01 0O
P, = , Ty =
0 001O00O0 00 0 010
a 01 00O 0O 0 0 001
| a 0 a2 00 0 |
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Applying T; to P,, constructs a polycyclic shift as follows;

(001 000 000100
000100 , 000O0T10
Ppr: ,ppr: P
000010 000O0TO0 1
| 0a 0100 00 a 010
(00 0 010 00 0 0 01
b3 — OOOOOlPT4_aOa2000
P a0 000!’ |0 a 0 a2 00|
| 00 0 a 01 a 0 > 0 a O
a 0 a2 0 0 O
s 0O a 0 a2 0 O
Ppr: 2
0O 0 a 0 a O
| 00 a 0 a*> 0 «a

And the subspace generated by the spanning set {P, T} :1 €[0,5]} becomes a polycyclic

[4 x 6,6]—code over the F,—matrix space of 4 x 6 matrices.

5.1.2 Computing Minimum Term Rank Distance

As in the case in general coding theory, computing minimum distance and obtaining
optimal codes is an important issue also for codes over term rank metric spaces. In
order to compute minimum term rank distance of a code over a matrix space, graph
theoretical methods are addressed [10]. It is shown that, the term rank weight of a
matrix A is equal to the maximum size of a matching of the bipartite graph for which
A is the bi-adjacency matrix [11]. Currently, there was not any in-built function for
computing the term rank of a matrix in commonly used computer algebra systems. As
an example for codes over F,—matrix spaces, we used Magma for obtaing a code over
a matrix space and created some Python implementations for computing the minimum
term rank distance of this code. In this method, we initially retrieve the list L of all
entries (we shall denote any non-integer field-specific element by an integer here)
of matrices in the code to a text file and call this file from Python to compute the

minimum term rank distance.
We create a code over a matrix space with the Magma code given in Appendix A.1.

Having the code constructed, we compute its minimum term rank distance with
applying the Python script given in Appendix A.2.
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5.1.3 Constructing Optimal Codes

The following theorem is pointing out the conditions for p(x) and f (x) at which the
code becomes optimal. For cyclic [m x n,n] codes the following result is obtained. For

the most general cases the optimality question remains open.

Theorem 5.1. Let F, be a finite field with q elements and p(x) a divisor polynomial of
f(x)=x"—1over F,[x], with degp(x) = m. Let P, and T; be as defined above. The
cyclic [m x n,n] code C associated with p(x) is optimal when p(x) = x™ — a,, where
a, € F;

Proof. For any polynomial p(x) = Z?;O a;x', a matrix A € C, namely a ¢; € F (i€
[0,n—1])-linear combination of basis matrices P, Tfi :1€[0,n—1], will look like

Cn—1 Co €1 Cn—m—1 Cn—m Ch—2
Cn—2 Cn1 Co € Ch-m—1 Cn—m Cn—3
A=
Ch—m+1 " Cn—2 Cp Co 91 t Chom—1 Cpem
i —Yo -7 Y”_l_mxn

where for i € [0,n— 1] we have

Yi == Coai+C1ai_1+' * '+Cia0+0 + e + O+Cn_m+1+iam_1+‘ * '+Cn_2ai+2+cn_1ai+1. (5-9)

(n—m)
It is shown in [11] that
lAll = max|A.(A) (5.10)
where the diagonal
AT = {(O, T(O)): (13 T(].)), T (m - ]-: T(m - 1))} (511)

is a set of positions in a matrix A € F(;”X“, and 7 is an injection from [0,m — 1] to

[0,n—1].|A.(A)| denotes the number of nonzero entries in A _.

For the case where p(x) is of the form x™ —a,, (a, € F;), we have
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Cn—l CO Cl Cn—m—l Cn—m Cn—2
Ch Ch1 Co G Ch-m—1 Cn—m Ch—3
A=
Ch—m+1 e Ch—2 Cha Co ¢ o Cpomel Cr—m
| —COaO —Clcl0 PIY ) ) CECY ) Y —Cn_1a0 1

We know that there exists at least one nonzero coefficient in the linear combination

for all A€ C, say ¢, € F,(t € [0,n—1]). The diagonal
A’L‘ = {Ct = (O: 1)1 Cr = (1:2): e, 6 = (m_ 1,Tl— 1))_cta0 = (m) 0)}

corresponding to the nonzero coefficient c,, gives the desired max.|A_(A)| = m.
Therefore, we have ||A||;x = m, VA € C, which makes C optimal. [ |

37



6

Multi Polycyclic Codes

6.1 Generalized Quasi-cyclic Codes

Definition 6.1. An (n, k) linear block code of dimensions n = [n, and k = lk,, is called

quasi-cyclic if every cyclic shift of a codeword by n, symbols is also a codeword.

Quasi-cyclic (QC) codes are another view of a generalization of cyclic codes. In the
above definition, a quasi-cyclic code actually has [ cyclic components of the same
length. Quasi-cyclic codes are shown to be asymptotically good [35]. Many studies
have been conducted in terms of either exploring their algebraic structures [36-38]
or obtaining codes with good parameters [5, 39-41]. Recently, skew quasi-cyclic
codes are introduced and some skew QC codes having minimum Hamming distances
larger than previously best known linear codes of the same length and dimension are
obtained [33].

Definition 6.2. Let C be a linear code over F, and

c= (Cl,li ooy Cl,nl—l: Cl,n15 C2,17 ooy Cz,n2—1’ CZ,n27 ooy Cl,l’ ooy Cl,nl—l’ Cl,nl)

be a codeword of C. If a generalized quasi-cyclic shift of c;

(C1ny5 €55 Clny—15 Conys €215+ + 5 Cony—1s =+ =5 Clpy> €15 + + +5 CLpy—1)

is also a codeword in C, then C is a generalized quasi-cyclic code of length

(ny,ny,...,n).

Generalized quasi-cyclic (GQC) codes are QC codes with cyclic components of different
lengths [42]. In [43], structures of the dual codes of GQC codes were studied by giving
a complete theory of generator polynomial matrices of GQC codes, including a relation
formula between generator polynomial matrices and parity-check polynomial matrices
through their equations. We give a brief summary of this theory here in order to clarify

the steps in applications to constacyclic and polycyclic cases.
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Definition 6.3. Let C be a GQC code, and let G = (g; ;) be an [x! matrix whose entries
are in F,[x] and whose rows are codewords of C. If g; ; = 0 for all 1 < i,j < [ with

i > j, namely, G is of the form

811 812 " 81y
G— 0 8'2,2 : g'z,l
0 -+ 0 gy

Ixl

and moreover, for all 1 <i <1, g;; has the minimum degree among all codewords of
the form (0,...,0,c;,...,¢;) € C with ¢; # 0, then G is called a generator polynomial
matrix of C. If g;; is monic for all 1 <i <[ and G satisfies degg; ; < degg; ; for all
1<i#j<I, then G is called reduced.

Definition 6.4. Let C be a GQC code, and let H = (h; ;) be an [ x] matrix whose entries
are in F,[x] and whose rows are codewords of ct.If h;;=0forall1<1i,j <[ with

i < j, namely, H is of the form

hy;y O 0
hy; h
H = 2,1 2,2
4 0
LR RIS TV

and moreover, for all 1 < i < [, h;; has the minimum degree among all codewords
of the form (cq,...,c;,0,...,0) € Ct with ¢; # 0, then H is called a parity-check
polynomial matrix of C. If h;; is monic for all 1 < i <[ and H satisfies degh, ; <
degh; ; forall 1 <i# j <[, then H is called reduced.

For each GQC code, the reduced generator polynomial matrix and the reduced
parity-check polynomial matrix are uniquely determined. From any generator
polynomial matrix and parity-check polynomial matrix, we can obtain the reduced
ones by elementary row operations of polynomial matrices. The exact algorithm for
obtaining the reduced generator polynomial matrix from a generator matrix G of a
GQC code, which is called Buchberger’s Algorithm, is described briefly as follows [43].

We start with the polynomial representation

€11 G2 0 Cq
Co1 Coo 0 Gy
G/ — > > })
C ) C C
k1 ki-1 Sl Ay,
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where ¢;; € F[x]for 1 <i <kand1 < j <l Let ¢; denote the i"" row of G’ for
1 <i < k. In this algorithm, the following manipulations of the polynomial matrix are

carried out inductively.

1. Ifc;; =+ =c¢,; =0, thenset ¢; = (x™ —1,0,...,0) and stop. If ¢c;; # 0 and
Cop =+ =c1 =0, then stop.

2. By exchanging c, for another row of c,,...,c, if it is required, we can assume

that ¢, ; has the minimum degree among nonzero c; i,...,Cy ;.
3. Compute p;,r; € Fy[x] such that ¢;; = p;c;; + r; with degr; < degc, ; for all

2 <i < k and replace c; with ¢; —p;c; for all 2 <i < k, and go to step 1.

After the above manipulations, ¢, = (¢;y,...,¢1;) is denoted by g, = (g11,..-,81)

and then we have g, ; = ged(c; 3, ...,¢; 1) from the initial matrix G'.

Now, G’ is converted to;

811 812 " 8y
0 ¢y Ca1

G// — 5
0 o o iy

kxl

where c; ; in G” is generally unequal to c; ; in G’.

Next, we apply the above manipulation to the submatrix;

and continuing recursively we obtain the reduced form G.

6.2 Multi-twisted and Skew Multi-twisted Codes

Multi-twisted codes have been proposed by Aydin and Halilovi¢ [44] and their duals
have been explored recently by Sharma et al. [45].

Definition 6.5. Let C be a linear code over F, and
c= (Cl,li ooy Cl,n1—17 Cl,n15 C2,1, ooy C2,n2—1’ CZ,TI27 ooy Cl,l’ ooy Cl,m—l’ Cl,nl)
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be a codeword of C. Let a4, a,,...,q; € F; and a = (aq,...,0;).

If a-multi-twisted shift of c;

(Q1C1 0,5 C115 > Clin =15 B2C2 1> Co 15+ ++5 Copiy—1s = > ACLpy> Clts v+ +» Clyy—1)

is also a codeword in C for all ¢ € C, then C is an a-multi-twisted code of length
(ny,ny,...,n).

Definition 6.6. Let C be a linear code over F, and

C=(C115+++5>Cln—1>Clny> €215+ +>C2ny—15 Copys =+ =5 Cl1s =+ + > Clyy—15 Cimy )

be a codeword of C. Let 6 be an automorphism of F, a;,a,,...,a; € F; and a =

(aq,..., ;). If skew a-multi-twisted shift of c;

Mz(c) = (a;0(cy ,), 0(c11)5 -5 0(C1 1), @20(cy ), 0(ca 1), -, 0(Can,—1),
s 0(cp ), 0(cp 1), - - -5 0(cp 1))

is also a codeword in C, then C is a skew a-multi-twisted code of length (n,, n,, ..., n;).

Briefly, a multi-twisted code is a GQC code with different constacyclic components.
The case where a; = 1 for all 1 < i < [ corresponds to a skew GQC code [46], and
the case where [ = 1 corresponds to a skew constacyclic code which is invariant under
skew a-constacyclic shift [7].

Let R = Fy[x;0] and R; = F [x; 0]/(x" — ;). In polynomial representation form, a
skew a-multi-twisted code C is a left R-submodule of M =R; xR, x ... xR;. Here, we
adopt and extend the method introduced in [43] to a family of skew a-multi-twisted

codes. Let

¢ :Fq[x;G]l - M
(fi> fas-- - f) = (fi mod (x™ —a;),f, mod (x™—a,),...,f; mod (x™—a;))

For a skew a-multi-twisted code C, define D = ¢~!(C). For the zero codeword
(0,0,...,0) € C, its preimage ¢ '((0,0,...,0)) consists of the vectors of the following

form:

(0,...,0,x" —a,,0,...,0) 6.1)
S~—— ~——

i—1 I—i
forall 1 <i <. Conversely, if a left R-submodule D C F [x; 01" includes [ polynomial
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vectors of the form (6.1), then ¢ (D) determines a skew a-multi-twisted code.

We view a skew a-multi-twisted code C in F [x; 0 ]' as a submodule and identify each

skew a-multi-twisted code with an [ x [ polynomial generator matrix.

The below results are immediate consequences of the corresponding ones in the
commutative case [43].

Lemma 6.1. Let G be an [ x1 reduced polynomial matrix. Then G is the reduced generator
polynomial matrix of a skew a-multi-twisted code C if and only if there exists an | x [
matrix A with entries in F,[x; 0] such that

AG =diag[x™ —ay,...,x"—a;]. (6.2)

Lemma 6.2. Let G be an [ x [ reduced polynomial matrix and A = [aq; ;] be a matrix
satisfying (6.2). Then A is an upper triangular matrix, satisfying deg (ai’i) > deg (ai’j)
forall1<i,j<L

6.2.1 Duality Theorem for Skew Multi-twisted codes

In this part, we state and prove a theorem that reveals the structure of dual codes of
skew (a4,...,a;)-multi-twisted codes. This goal is achieved by generalizing Theorem
4.13 for [ > 1 and obtaining the reduced parity-check polynomial matrices of skew
(ay,...,a;)-multi-twisted codes from their reduced generator polynomial matrices.
Throughout this section we set m|n;, where m = |(60)].

Theorem 6.3. Let C be a skew (a, ..., a;)-multi-twisted code of length (n,,...,n;) over

F,. Then, the dual code C* is a skew (a]",...,a;')-multi-twisted code.

Proof. Let M1(c) be the skew (a7, ..., a;")-multi-twisted shift of c. Let

c= (Cl,l’ ceey Cl,n1—13 Cl,nl’ 62,1, ooy Cz,nz—l’ CZ,HZ’ ooy Cl,l’ ooy Cl,m—l’ Cl,nl) S C

and
_ 1
d — (dl,l’ ceey dl,nl—IJ dl,nlﬁ dZ,l’ ceey dz,nz_l, d2,n2, ceey dl,l’ ceey dl,nl—lf dl,nl) (S C 5

thenc-d = 2;21 > ¢;;d;; = 0. We want to show that c-Mg1(d) =0, i.e. Mz (d) €
c*.

Since C has a finite number of codewords, there exist a number s such that M2(c) =c.
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Let

w= M%_l(c) = (9_1(‘31,2); cees 9_1(C1,n1)7 9_1(0‘;%1,1),
67 (cy2),-- > 9_1(C2,n2)7 07" (a3 cy1),
07N n) o, 07 (), 07 (o e ).

Then,

0O=w-d :(9_1(c1’2)d1,1 +-t e_l(cl,nl)dl,nl—l + 6_1(a;161,1)d1,n1)+
(9_1(C2,2)d2,1 t+-t 9_1(Cz,n2)d2,n2—1 + 9_1(a;162,1)d2,n2) +eee
(07 (ero)dpy 4+ + 9_1(Cl,nl)dl,n1—1 + 9_1(0‘1_101,1)611,111)-
Since 6(0) = 0, we have,
0 :[(Cl,l’ Cl’z, ey Cl,nl) * (a;le(dl’nl ), 0(d1,1)3 ceey Q(dl,nl—l))]+
[(C2,17 C2,27 R CZ,nl) : (agle(dz,nZL 9(d2,1): R 9(d2,n2—1))] +oeee
[(Cl,la c1,2’ ¥ 0 9 Cl,nl) : (al_le(dl,nl)) G(dl,l)’ RS e(dl,nl—l))]
=C- Ma—l(d).

Therefore C* is a skew (a7, ..., a;')-multi-twisted code. [

Lemma 6.4. Let G be the reduced generator polynomial matrix of a skew a-multi-twisted
code C, A be the | x | upper triangular polynomial matrix satisfying AG = diag[x™ —
ay,...,x"—a;],and N =lcm(ny,...,n)lcm(o(a,),...,0(a;)). Then GA=diag [x"N—
1,...,xN —1], where

xN—-1 xN—1

xn1—a1""’xnz—al .

G' =Gdiag[

Proof. Let I be the [ x [ identity matrix.

xN—1 xN—1
AG =diag[x" —ay,...,x"—a;] = diag] e JAG = (N —1)I
xXm —ay X —a
N_1 N_1
= Gdiag[> X T AG =GN — I

xm—a;” U xu—aq
= G'AG = (x" —1)G, since x" —1€ Z(F,[x;6])
= GAG—(xN-1)G=0

= (G'A—(x" —1)I)G = 0.

Since G is an upper triangular polynomial matrix with nonzero diagonal entries and
F,[x; 6] has no zero divisors, G'A— (x" —1)I = 0 which implies G'A = (x" —1)I =
diag[x" —1,...,xN —1]. [
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Theorem 6.5. Let G = [g; ;(x)] be the reduced generator polynomial matrix of a skew a-
multi-twisted code C of length (n;,...,n;) over F, where a = (a;,..., o) € (F;‘)l, and let
A= [aq; ;(x)] be the polynomial matrix which satisfies AG = diag[x™ —ay,...,x" —a].
Then,

[ .dega (ny,a1) ]
X g 1,1611’1 (x) 0 e 0
dega (ny,a1) dega (ng,az)
| x22ay 7 () x8922a, 77 (x)
H=
: 0
degay; (ny,aq) degay; (ng,as) . degap; {ng,aq)
| x a, (x) «x ay; (x) X a; (x) | L

where each i column of H is considered modulo x" — ai_l. Ifa;;(x) = x™ —a;, then we

set x4 “i’faf’rg"’aﬁ(x) = x" —a;'. Then, H is a parity-check polynomial matrix of C.

Proof. Let N = Icm(ny,...,n)lcm(o(a;),...,0(a;)) and G’ be defined as in Lemma

6.4. From Lemma 6.4 we have G’A= diag[x" —1,...,xY —1] where

N o,
Zglk(x) akl(x) - 7

xXN—1, i=j

for 1 <i,j <. Thus, for a fixed i and j we have

—1 xN—1
gia(x ) al](x)+gl2(x)—a2](x)+

N
“+g; l(x) —1 a;j(x)=0 (mod xN—1). (6.3)
a

From Theorem 4.13, the coefficient of x° in Equation 6.3 is

gl 1 a§n]1 ) + &i ,2 a<n2 “l +eeet gll af?l o) = 0:

which lmpheS (gi,la gi,Z’ L) gl l) (a nl al): aénjz’aZ)a L) l’;l o) ) -

Using the same approach as in the proof of Theorem 4.13, if we multiply Equation
(6.3) with x” from left, then the coefficient of x° gives M2((gi1,8&i2--->8:1)) -
(a<"1 o) 2”]2 @, f’;l “)) = 0. Hence, (a<”1 : ,aé’f}?’%),.. , f"l )y is in C* for all
Lje{l,..., 1}

Thus xdeg"u(a nl “)(y), a, nz “)(x),. . S ]l “)(x)), which is exactly the jth row of H,
also belongs to C L Lastly, we need to show that the diagonal entries of H satisfy the
minimum degree condition. This can be shown by using similar tools as in Theorem 1
of [43]. The same arguments hold for the skew polynomial case since we are working

on left modules. [ |
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Here, we give some concrete examples to illustrate our theoretical results.

Example 6.1. Let 6 be an automorphism of F, defined by 6() = B* for any 3 €
F,, in this case |(0)| = 2. We consider the skew polynomial ring F,[x; 0] where F, =
{0,1, a, a?}. Let

X+’ +a’x+1 P+ xP+atx+a xX+Haii+x

A= 0 x+1 a?
0 0 1
3x3
and
+a’x+1 x*+a*x+a +ax+1
G= 0 XHx?+x+1 ax®+a’x’+ax+a?
0 0 xt+1

3x3
The above matrices satisfy AG = diag[x®—1,x*—1,x*—1]. Therefore G is a generator
matrix for a skew GQC code C of length (6,4,4) and C is a [14,5,4] code. By Theorem
6.5, the parity-check polynomial matrix for C is

xt+axi+ax+1 0O O
H=| x>+x*+a’x+a®> x+1 0

x>+ a?xt+ x® a’ 1
3x3

Further;, we present their corresponding generator matrices of the code and its dual

2

1 a2 1 0 00|la a2 1 0|1 0 a® 1
01 a1 00(0 a2 a 1|1 1 0 «a
G=|0 0 1 > 1 0|1 0 a a@*|a*>* 1 1 0
0 001 alla 1 0|0 a 1 1
0 000 0O0Ol1 1 1 1]|a® a a a

L 4 5x14

and ) )

1 « 0 «a 1 0/{0 O O 0|0 O OO
0 1 a> 0 a> 10 0 0 0|0 0 0 O
a> > 0 0 1 11 1 0 0|0 0 0O
1 « a 0 0 1|0 1 1 0|0 00O
H=|1 1 o> > 0 0/0 0 1 1|0 0 0 O
0 0 0 1 a® 1|(a®> 0 0 0|1 0 0 O
1 0 0 01 al0 a 0 0|01 00
a2 1 0 0 0 10 0 a> 0|0 0 1 0

| 1 « 1 0 0 0[0 0 0 ajO 0O 1] .

Now, one can easily check that G - H" = 0 and the dual code C* is a [14,9, 3] code.
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Example 6.2. Next we consider again the skew polynomial ring F,[x; 6] given in Exam-

ple 6.1, with the following moderate size matrices:

X’+a 1 0
A= 0 xt+a? xX’+a ,
0 0 1
3x3
and
X+a xX’+a x*+ o?
G= 0 xt+a? x+axt+aix?+1
0 0 x+a

3x3

It can be easily shown that AG = diag[x*—a?, x8—a, x8—a]. Therefore G is a generator

matrix for a skew a-multi-twisted code C of length (4,8,8), where a = (a2, a, @),
We have dim(C) = > ,n; —deg(g;;) =2+4+0=6. C is a [20,6,4] code.
By Theorem 6.5, the parity-check polynomial matrix for C is

x2+a? 0 0

H = a x*+a 0

0 x®+1 a?
3x3
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6.3 Multi Polycyclic Codes

We will call GQC codes with [ polycyclic components of different lengths as multi
polycyclic codes.

6.3.1 Multi Polycyclic Codes over Skew Polynomial Rings

Definition 6.7. Let C be a linear code over F, and

c= (C1,15 ooy Cl,n1—17 Cl,n15 C2,1, ooy C2,n2_1, CZ,TI27 ooy Cl,l’ ooy Cl,nl—l’ Cl,nl)

be a codeword of C. Let 6 be an automorphism of F,, f; = x™ —v;(x),..., f; = x™ —
vi(x) € F,[x; 0] polynomials with nonzero constant terms and v = (vy,...,v,). If a

skew v-multi polycyclic shift of c,

My(c) = (T;,(0(cy1); -5 0(c1n,-1)), T5,(B(can), - - -5 0(Copny—1))s - - -
T (6(ci), .-, 0(cpn-1)))

is also a codeword in C, then C is called a skew v-multi polycyclic code of length

(ny,ny,...,n).

Reduced generator polynomial matrices of skew v-multi polycyclic codes can be

defined in a similar way as in the case of skew a-multi-twisted codes.

6.3.2 Duality Theorem for Skew Multi Polycyclic Codes

We have seen, for the case | = 1, that h is obtained from the first n coordinates of a’™-!),
where d’(x) = (x) X —1a(x). In order to easily interpret this situation in the sequel, let us

denote the first n coordinates of a’™") by (a’™-1),.

Theorem 6.6. Let f;(x) = x" —v,(x) € F,[x; 0] be polynomials with nonzero constant
terms, v = (vq,...,v), and xN — 1 be a central polynomial such that f;(x)|,x" —1 for
all 1 <i <. Let G =[g; ;(x)] be the reduced generator polynomial matrix of a skew V-
multi polycyclic code C of length (ny,...,n;) over F,. Let A= [a, ;(x)] be the polynomial
matrix which satisfies AG = diag[ f,(x),..., fi(x)].

Then,
0, i#£]

xN—1, i=j

Zglk( )f( )akj( x) =
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Moreover, if h; ; = (a;ff]’l))nj where a;. (x) = a; :(x), then the block matrix

f (X) aji
[hl,l]deg(gl,l) O T O
H= [hzal:ldeg(gz,z) [h2’2]d€g(82,2)
. . O
B [hl’l]deg(gu) [hl,2]deg(gl,l) [hl,l]deg(gl,l) 41

is a parity-check matrix of C, where

hi,]
(1) 0 ©)(hy )
[hi:j]deg(gi,i) = .

((Tf_,l)tr 0 @)deslea) 1 (p, i)
L j 2 .
Proof. Applying Lemma 6.4, G'A=diag[x" —1,...,x" —1] implies

0, L#]

XN_la l:],

}]&u)f()am()

for1<i,j <1, where G'= Gdiag[xlj[—l_l,..., ﬁ]. For a fixed i and j we have

fi
N
gll(x) e )alj(x)+g12(x) e )aZJ(x)+
+gll(x) e )1a17j(x)=O (mod xV —1). (6.4)

As in Theorem 4.16, the coefficient of x° is;

(Nl)

1 ,1
g (@), + 8o (@), + -+ gy (a1, =0,

which implies (g; 1, &;2,--->&i1) - ((aﬂ’l))nl,(ag’m)nz, . (alN D )n,) = 0. Multiplying
Equation (6.4) with x? from the left, we obtain

Vb((gi,lf gi,Z: RS} gl Z)) ((a(N g )n15 (ag’\;"n)nzj o (al] 1))nl) =

from the coefficient of x°. Hence (hj1, R0, hy0) € Ct forall j € {1,...,1}. For
each diagonal block of H we have a;;(x)g; ;(x) = f;(x). From Theorem 4.16, the set
{hi ((Tfjl)” 00)(h;;),..., ((Tfjl)" o @)deg(gii)_l(hi,i)} is linearly independent for all
1 <i <. Therefore the rows of H are also linearly independent. Since the dimension
of C* is exactly Zi’:o deg(g;;(x)), H is a parity-check polynomial matrix of C. [ |
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Example 6.3. Let us take the skew polynomial ring F,[x; 0] given in Example 6.1. Let
fi(x) = x®+a?x2+a?, fo(x) = xB+ a?x® +x*+ax?+a and fo(x) = xO+ax®+x*+a.
In this case, we have N = 120, and f;(x), f5(x), f3(x)|,x*2° — 1. Now let us form the

following matrices

x2+a? 0 1
A= 0 xt+ax?+1 0 ,
0 0 x*+a
3x3
xt+a?x?+1 0 xb+x*+ax?+a
G= 0 x*+x2+a 0
0 0 x8+ax®+xt+a?x?+1
3x3

We have AG = diag[fi(x), fo(x),f3(x)]. Then G = [g;;(x)] is the reduced
generator polynomial matrix of a skew v = (vq,V,,vs)-multi polycyclic code C of

length (6,8,10), where v; = (a?,0,a%0,0,0),v, = (a,0,a,0,1,0,a%0) and v; =
(a’ O’ 07 O’ 1, O’ a.’ 0’ O, 0)'

Now, by applying the algorithm presented in Theorem 6.6, we obtain a parity-check ma-

trix for C as
[hl,l]deg(gl’l) 0 0
H= [hz’l]deg(gz,z) [hz’z]df?g(gz,z) 0
I:h3’1:|deg(g3)3) [h3,2]deg(g3’3) [h3,3]deg(g3’3) 3x3
where h,; = (1,0,0,0,1,0),h,; = 0,hy, = (a%0,0,0,1,0,1,0),hy, =

(a,0,0,0,0,0), hy, = 0 and h;,=(1,0,0,0,0,0,0,0,1,0).
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7

Results And Discussion

This thesis contributes to studies on error correcting codes in terms of clarifiying
structural properties of polycyclic codes which appears to be the most general
family of linear codes in terms of cyclicity. We have given generator and parity
check conditions for these codes over different algebraic structures. The most
important contributions involve introducing multi polycyclic codes which are GQC
codes with different polycylic components, giving duality theorems and promoting a
new polycyclic construction for codes over matrix spaces. An extensive approach was

provided on polycyclic codes over skew polynomial rings.

Even though being constructable with shortening method may seem as a weakness for
polycyclic codes, avoiding to start with a huge length cyclic code while using polycyclic

codes directly makes it an advantage in terms of storage and time in practice.

Future studies may be on examining decoding procedures for polycyclic codes. One
of them may involve neural network decoding. Artificial intelligence techniques have
found applications nearly in every technological area with the near-human capabilities
of artificial neural networks. There are remarkable number of studies recently in
applications of neural networks on decoding of linear codes. Recent studies in neural
network decoding for linear block codes show that codes with more structure seem to
provide better results in decoding with neural networks. Therefore polycyclic codes

are promising for analyzing their neural network decoding performance.
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A

Scripts for Computing Minimum Term Rank Distance

A.1 Construction of the Code - Magma Script

//Set associated polynomial p, base polynomial f and output file name

//Copy m, n and the output filepath for later use in python function

K<a>:=GF(2°2);

F<x>:= PolynomialRing(K) ;

Xx"5 + a”2%x"4 + x°3 + Xx72 + a*x + 1;
x~11-1;

:=Degree(p) ;

:=Degree(f) ;
:= CompanionMatrix(f);

:= KMatrixSpace(K,m,n);

= < A B B DT

:=MatrixRing(K,n);

Z1 := [0: x in [1..mx(n-m)]1];
P :

HorizontalJoin(CompanionMatrix(p) ,Matrix(K, m, n-m, Z1));
{ VIP+T~i : i in [0..n-1]1};
S:= sub< V | B >;

SetOutputFile("5x11.txt");
for s in S do

for i in [1..m] do

for j in [1..n] do

print s[i,j]l;

end for;

print "$";

end for;

print "@";

end for;

UnsetOutputFile();
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A.2 Computing Minimum Term Rank Distance - Python Script

import numpy as np

import networkx as nx

from networkx.algorithms import bipartite

import itertools

from networkx.convert import _prep_create_using

from networkx.convert_matrix import _generate_weighted_edges
import scipy

from scipy import linalg

# Given a file path of Magma file of the constructed code, computes

the minimum term rank distance of an m x n code over GF(4) "mn.

def Minimum_Term_Rank_Distance(m,n, filepath):
fname = filepath
fhand = open(fname)
L = list()
S = str(Q
# Denote field-specific elements by 1

for line in fhand:
line = line.strip()
if "a"2" in line:
line = line.replace("a"2","1")
elif "a" in line:
line = line.replace("a","1")
S =S + line

M = S.strip().split("@")

# Remove irrelevant characters inserted for environmental
implementations
for s in M:
s = s.split("$")
L.append(s)
for 1 in L:
if len(l) < m+1
L.remove (1)
else:

1l.remove("")

K = 1ist()

for item in L:
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M= 1ist(Q)
for i in range(m):

M.append([int(r) for r in item[i]])

A = scipy.sparse.csr_matrix (M)
G = nx.bipartite.from_biadjacency_matrix(A)
D = nx.bipartite.maximum_matching(G)

termrank = int(len(D.items())/2)
if termrank != O:
K.append (termrank)
print("D_tr = ", min(K))

For the cyclic code in the first example, we call the function with parameters (5,11,
"5x11.txt") and we get that it has a minimum term rank distance of 3, and therefore

it is optimal.

This example is taken over the field F,. One may change the field and then slight
modifications should be applied to the scripts if there exist more field-specific non-zero

and non-integer elements.
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