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ABSTRACT

Vectorial Cyclic Codes and Their Algebraic Structures

Sümeyra BEDİR

Department of Mathematics

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Bayram Ali ERSOY

In Algebraic Coding Theory, constructing codes with optimal parameters, discovering

new code families and subfamilies, proposing new algebraic coding methods,

generalizing and applying these methods to various algebraic structures or

constructing best known codes in different and preferably more efficient ways have

all been important research subjects.

In this study, polycyclic codes, which are based on polycyclic shift that creates

vector-circulant matrices, are examined over different algebraic structures. The term

"multi polycyclic codes" is contributed to the literature, with introducing generator and

parity check conditions and duality theorems especially over skew polynomial rings.

Moreover, a polycyclic code construction method is proposed over matrix spaces.

Keywords: Linear codes, Polycyclic codes, Vector-circulant matrices, Pseudo-cyclic

codes
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ÖZET

Vektörel Devirli Kodlar ve Cebirsel Yapıları

Sümeyra BEDİR

Matematik Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Bayram Ali ERSOY

Cebirsel Kodlama Teorisi’nde optimal parametrelere sahip kodlar üretilmesi, yeni kod

aileleri ve alt ailelerinin keşfedilmesi, yeni cebirsel kodlama metodlarının önerilmesi,

bu metodların ceşitli cebirsel yapılar üzerinde genelleştirilmesi ve uygulanması veya

bilinen en iyi kodların farklı ve tercihen daha etkili yollarla oluşturulması önemli

araştırma alanları olagelmi̧stir.

Bu çalı̧smada, vektör-devirli matrisler oluşturmayı sağlayan çoklu devir lineer

dönüşümü temelli çoklu devirli kodlar, deği̧sik cebirsel yapılar üzerinde ele alınmı̧stır.

"Multi polycyclic" kod tanımı literatüre kazandırılmı̧s, bununla birlikte üreteç ve

parite-kontrol durumları ve duallik teoremleri özellikle skew polinom halkaları

üzerinde sunulmuştur. Ayrıca, matris uzayları üzerinde çoklu devirli kod üretme

metodu önerilmi̧stir.

Anahtar Kelimeler: Lineer kodlar, Çoklu devirli kodlar, Vektör-devirli matrisler,

Pseudo-devirli kodlar

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
Introduction

1.1 Literature Review

Algebraic Coding Theory, specifically the "Error Correcting Codes" has been attracting

many researchers for years in terms of relating the more practical and industrial

research areas of Information Transmission and Information Security to theoretical

backgrounds with underlying algebraic structures. There are many books covering

Coding Theory and its applications. But the core ones which this thesis will mainly be

referring to for the main concepts of Coding Theory are books of Xing and Ling [1],
Huffman and Pless [2] and Peterson and Weldon [3].

First studies of error correcting codes started over Finite Fields [4]. There are still

remarkable research on codes over finite fields mostly dealing with optimal code

search [5]. Studies are extended to codes over finite chain rings in recent years [6–8].

In algebraic coding theory, not only building new construction methods, exploring

optimal parameters, finding new codes and new algebraic structures, but building new

criss-cross relationships between known construction methods and existing algebraic

structures also bring out promising results. One example of this might be construction

of codes over matrix spaces. "Gabudilin codes", "array codes", "codes correcting lattice

errors" are all of this kind [9–11].

Another algebraic structure that highly attracted the coding theorists has been Skew

Polynomial Rings [12]. Thanks to its noncommutative structure, applying the

well known code construction methods over skew polynomial rings has resulted in

obtaining codes with optimal parameters directly.

Polycyclic codes were first introduced in [3], as "pseudo-cyclic codes" corresponding

to shortened codes. After more than thirty years, a direct construction method

has been introduced for this family of codes [13]. Similar to cyclic or constacyclic

codes, polycyclic codes were examined as an efficient direct construction method for

obtaining codes with good parameters [14–16].
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1.2 Objective of the Thesis

This thesis concentrates on the construction method of polycyclic codes, which

depends actually on a vector-circulant linear transformation. This invertible

transformation is represented with companion matrices of polynomials which creates

the base quotient ring. The way that this transformation and its inverse affects the

codewords, builds an interesting code structure.

The main results of this study involve examining structural properties of polycyclic

codes and their duals, generators and dual generators over finite fields, finite chain

rings and skew polynomial rings; introducing a vectorial cyclic construction of

codes over matrix spaces and introducing multi-polycyclic codes and their algebraic

structures over both finite fields and skew polynomial rings.

1.3 Original Contribution

Even though the construction method had been previously defined, this study includes

many original applications. One of them is applying the construction method to

codes over matrix spaces. Another original part is characterization of dual generator

polynomials of polycyclic codes. Finally, multi polycyclic codes over skew polynomial

rings with clarifications on generator and parity check conditions are also of original

work.
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2
Preliminaries

Coding theory can be considered as an inter-disciplinary research field, tying up

communications, electronics, computer sciences and mathematics over decades. The

practice lies basically over attaining reliable information transmission and storage

via noisy communication channels. The simplest diagram for the information

transmission is given in Figure 2.1.

Message Source Encoder

DecoderReceiver

Channel noise

Figure 2.1 Information transmission

Consider ASCII encoding where every single character (letters, numbers, etc.) is

represented with an 8-bits {0,1}-string. It encodes the message words in human

language to words that computers can understand.

This way of coding is called "source coding", which may fail to detect errors that

happen during transmission, since every single bit change (error) results a reasonably

misinterpreted new message. With spending a little cost on speed and storage,

adding some more bits, "channel decoding", increases redundancy and enhances error

detection.

Involving channel decoding, the above diagram becomes as in Figure 2.2.
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Message Source Source Encoder Channel Encoder

Channel

Channel DecoderSource DecoderReceiver

noise

Figure 2.2 Channel encoding

Error correcting is a different story, which sometimes require a retransmission, mostly

applicable in two-way channels. However, there are information storage systems, like

when the equipment is not rewritable, that employ one-way channels, where asking

for retransmission is not possible. In any case, error-correcting capability is affected

by the very same algebraic structural dependencies as the code’s error-detecting

capability.

There are also differences in communication systems in terms of operating the

information sequence that is transmitted. One type of coding which is called "block

codes" divides the information sequence into equally long sections or blocks before

processing them. Whereas another type called "tree codes" operates on the sequence

without breaking it.

Consequently, being affected by somewhat conflicting dependencies, coding theory

has its basic natural goals and/or problems, which can be summarized as follows

• Find codes with higher error-detection and correction capabilities (requires

additional length),

• Obtain fast and effective encoding and decoding methods,

• Enhance easy transmission,

• Transfer maximum amount of information per time.

2.1 Basic Definitions

Definition 2.1. A set A = {a1, a2, ..., aq} with cardinality q is referred to as a code

alphabet whose elements are called code symbols. A q-ary word of length n over the

alphabet A is a sequence c = c1c2...cn where ci ∈ A, ∀i.

Definition 2.2. A q-ary block code C over the alphabet A is a non-empty set of q-ary

words having the same length n. Elements of C are called codewords.

4



Definition 2.3. The Size of a code C is the number of codewords in C , and denoted

by |C |.

Definition 2.4. The Information Rate of a code C with length n over A is defined to

be logq |C |/n.

Definition 2.5. The Minimum (Hamming) Distance of a code C is

d(C) =min{d(x , y) : x , y ∈ C , x 6= y}

where d(x , y) stands for the distance with respect to the Hamming metric between

codewords x , y; namely, the number of places where x and y differ.

A code in general, with length n, size M and minimum distance d is denoted with its

parameters as an (n, M , d)-code.

The decoding procedure, which is actually the rule for finding the most possible

codeword to be sent when a message is received with error, is tied with the capabilities

of the channel in terms of detecting or correcting errors. This capability is shown to

be highly dependent to the minimum distance of the code. A code C with minimum

distance d, can detect up to d − 1 errors and correct up to b(d − 1)/2c errors [1].

Upon the fundamental definitions above, there comes the main problem of coding

theory; given a q-ary alphabet, a length n and a minimum distance d, find a code

with these parameters and the maximal possible number M of codewords. Therefore,

"good" codes are those with small n for fast transmission, large M to permit a wide

variety of messages and large d for detecting and correcting large number of errors.

For a fixed n and d, an (n, M , d)-code with the largest possible size M is called an

optimal code. There are upper and lower bounds for these optimal numbers for both

linear and nonlinear codes. The reader may refer to [1] for the descriptions of well

known bounds. This study will consider the up-to-date conditions of constructions

given in [17] for codes with good parameters as well as for optimal codes.

2.2 Linear Codes

Definition 2.6. Let Fq be a finite field with q elements. A linear code C of length n

over Fq is a subspace of the vector space Fq
n.

Due to their algebraic, structural and computational advantages, such as being

mathematically descriptive, providing easy encoding and decoding, etc. linear codes

have taken more attention among algebraic coding theoretical research.

5



Linear codes are considered as subspaces of vector spaces. In this point of view, each

codeword is regarded as a vector rather than being a sequence of symbols and the

algebraic structure over which the code is defined is exactly the alphabet for linear

codes1. The size of a linear code is identified with its dimension(k) as a subspace, i.e.

M = qk. A linear code C over Fq with length n, dimension k and minimum distance

d is therefore expressed as an [n, k, d]q-code. The orthogonal complement of a linear

code is defined to be the dual code of C and denoted by C⊥.

One of the most mathematically advantageous aspects of studying linear codes is the

ability to use the correspondence between vectors and polynomials. Thereby one can

regard a codeword as either a vector or as its corresponding polynomial and all the

computational flexibility of polynomial rings helps a lot in the big picture.

Being a subspace also provides linear codes to be expressible with its basis vectors.

Having the basis means having the general information about the whole code. The

basis vectors form the rows of so-called generator matrix G of a linear code C . On

the other hand, rows of a parity-check matrix H for C is formed by the basis vectors

of C⊥. Generator and parity check matrices are used in encoding and decoding

linear codes respectively and they enhance faster procedures compared to arbitrary

nonlinear codes. The subspace definition of linear codes may be given in two ways;

giving G as a basis for C , or defining C as the null space of H. Combining both gives

us the equation GH t r = 0.

Another advantage of a linear code arise while computing its minimum distance. Its

linear structure allows the minimum distance to be directly the smallest Hamming

weight of its nonzero codewords.

Before giving details about common classes of linear codes, the following image will

help us figure out the structural generalizations among them. We will soon have more

information about their specifications and relations.

1In order to keep the definition simple, the alphabet for linear codes are kept as finite fields. How-
ever, linear codes can also be defined over rings.
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Figure 2.3 Generalization of some classes of linear codes

2.2.1 Cyclic Codes

Algebraically, besides linearity, more structures such as cyclicity has allowed easier

implementation of codes. Cyclic codes were first introduced in 1957 [4].

Definition 2.7. A linear code C is called cyclic if whenever (c0, c1, . . . , cn−1) is in C so

is its cyclic shift (cn−1, c0, c1, . . . , cn−2).

Cyclic codes are invariant subspaces of Fq
n under the transformation which applies

cyclic shift to a vector. Cyclic codes involve the practical use of the following

correspondence

π : Fq
n −→ Fq[x]/(xn − 1)

(c0, c1, . . . , cn−1) 7−→ c0 + c1 x + . . .+ cn−1 xn−1.
(2.1)

Each codeword (c0, c1, . . . , cn−1) is associated to a polynomial c0 + c1 x + . . .+ cn−1 xn−1

in Fq[x] and every cyclic code corresponds to an ideal of F[x]/(xn − 1). The

representation matrix for the cyclic shift transformation, which we will denote by

T (getting the corresponding polynomial as a subscript), is precisely the companion

matrix of the polynomial xn− 1 and any monic divisor of this polynomial generates a

cyclic code. At the first hand, we have got the advantage of identifying a code with only

one polynomial, which is called a generator polynomial for C , rather than a matrix

of basis vectors. Moreover, the dimension of C is determined directly to be k if the

degree of the generator polynomial is n− k.

Let C be a cyclic [n, k, d]q-code over a finite field Fq, generated by g(x) = g0 + g1 x +
· · · + gn−k xn−k, i.e. C = (g(x)) ≤ F[x]/(xn − 1) with π−1(g(x)) = g. Then the

generator matrix G of C can be obtained as follows
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G =

















g

gTxn−1

gT 2
xn−1
...

gT n−1
xn−1

















nxn

where Txn−1 =



















0 1 0 · · · 0

0 0 1
...

...

0 0
.. . . . . 0

... 0 · · · 0 1

1 0 · · · · · · 0



















nxn

. (2.2)

We get

G =











g0 g1 · · · gn−1

gn−1 g0 · · · gn−2
. . . . . . . . . . . .

g1 · · · gn−1 g0











nxn

(2.3)

and G becomes the following matrix with rank k

G =











g0 g1 · · · gn−k 0 · · · 0

0 g0 g1 · · · gn−k · · · 0
... . . . . . .

0 · · · 0 g0 g1 · · · gn−k











kxn

. (2.4)

Expression 2.2 points out that the cyclic code C as a subspace, is invariant under the

cyclic shift transformation and G can also be obtained by evaluating g(x) with Txn−1,

i.e G = g(Txn−1) [18].

The dual code of a cyclic code C is also cyclic. Reciprocal of the polynomial h(x) =
xn−1/g(x), denoted with hR(x), generates the dual code of C . Parity check matrix H

for C can be obtained from evaluating h(T t r
xn−1) [18–20].

2.2.2 Constacyclic Codes

Constacyclic codes are a one step more generalized type of linear codes. The definition

was first introduced by [21] in 1968.

Definition 2.8. Let α ∈ F ∗q . A linear code C is called α−constacyclic if whenever

(c0, c1, . . . , cn−1) is in C so is its α−constacyclic shift (αcn−1, c0, c1, . . . , cn−2).

An α−constacyclic code corresponds to an ideal of F[x]/(xn−α). The representation

matrix for α−constacyclic shift, which we will denote by Txn−α is the companion

matrix of the polynomial xn − α and any monic divisor of this polynomial generates

an α−constacyclic code.
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Let C be an α−constacyclic [n, k, d]q-code over a finite field Fq, generated by g(x) =
g0+ g1 x + · · ·+ gn−k xn−k, i.e. C = (g(x))≤ F[x]/(xn−α). Then the generator matrix

G of C can be obtained as follows

G =

















g

gTxn−α

gT 2
xn−α
...

gT n−1
xn−α

















nxn

where Txn−α =



















0 1 0 · · · 0

0 0 1
...

...

0 0
.. . . . . 0

... 0 · · · 0 1

α 0 · · · · · · 0



















nxn

. (2.5)

We obtain a generator matrix as an α−twistulant matrix

G =











g0 g1 · · · gn−1

αgn−1 g0 · · · gn−2
. . . . . . . . . . . .

αg1 · · · αgn−1 g0











nxn

. (2.6)

Similar to the cyclic case, G can also be obtained by evaluating g(x) with Txn−α, i.e

G = g(Txn−α) [18].

The dual code of an α−constacyclic code C is shown to be an α−1−constacyclic code

[22]. A parity check matrix for C can be obtained by evaluating h(T t r
xn−α). For a

concrete generating polynomial of the dual code we will give a general theorem in

Chapter 5.

2.2.3 Polycyclic Codes

Polycyclic codes over finite fields were first introduced in [3]. Although every

polycyclic code corresponds to a shortened cyclic code over finite fields, polycyclic

codes have attracted many researchers with their rich algebraic structure especially in

terms of introducing a direct construction [13–16].

Let c = (c0, c1, . . . , cn−1) be any vector in F n
q . We fix a shift vector v = (v0, v1, . . . , vn−1)

and define the following linear transformation on F n
q

τv : (c0, c1, . . . , cn−1) 7→ (v0cn−1, c0 + v1cn−1, . . . , cn−2 + vn−1cn−1) (2.7)

It has the following representation matrix which is exactly the companion matrix for

9



f (x) = xn − v(x) and we have τv(c) = c.Txn−v(x).

Txn−v(x) =



















0 1 0 · · · 0

0 0 1
...

...

0 0
.. . . . . 0

... 0 · · · 0 1

v0 v1 · · · vn−2 vn−1



















nxn

(2.8)

The following small example illustrates the case.

Example 2.1. Let c = (c0, c1, c2) be a vector in some vector space F3
q . Let v = (v0, v1, v2)

be the shift vector.

Thus we have

T =







0 1 0

0 0 1

v0 v1 v2







And the transformation τv maps c = (c0, c1, c2) to the vector τv(c) = (v0c2, c0+ v1c2, c1+
v2c2) as follows;

τv(c) = c · T =
�

c0 c1 c2

�

·







0 1 0

0 0 1

v0 v1 v2






=
�

v0c2 c0 + v1c2 c1 + v2c2

�

Here, T is exactly the companion matrix for f (x) = x3 − (v0 + v1 x + v2 x2).

Definition 2.9 (Polycyclic Code). A linear code C with length n over a finite field Fq

is called polycyclic with respect to the vector v = (v0, v1, . . . , vn−1) ∈ F n
q , if whenever

c = (c0, c1, . . . , cn−1) is in C , so is its v−polycyclic shift (v0cn−1, c0 + v1cn−1, . . . , cn−2 +
vn−1cn−1).

A polycyclic code with respect to v is invariant under τv and corresponds to an ideal

of F[x]/(xn − v(x)). Any monic divisor of the polynomial xn − v(x) generates a

v−polycyclic code.

Let C be a v−polycyclic [n, k, d]q-code over a finite field Fq, generated by g(x) =
g0 + g1 x + · · · + gn−k xn−k, i.e. C = (g(x)) ≤ F[x]/(xn − v(x)). Then the generator

matrix G of C can be obtained as follows

10



G =

















g

gTxn−v(x)

gT 2
xn−v(x)
...

gT n−1
xn−v(x)

















nxn

(2.9)

So we get G as a v− vector circulant matrix [23]

G =

















g

τv(g)
τ2

v(g)
...

τn−1
v (g)

















nxn

(2.10)

G can also be obtained by evaluating g(x) with Txn−v(x), i.e., G = g(Txn−v(x)) [20].

Notice that any cyclic code is polycyclic with respect to v = (1, 0, . . . , 0) with

v(x) = 1 and any constacyclic code with respect to α, is polycyclic with respect to

v = (α, 0, . . . , 0) with v(x) = α.

11



3
The Dual Code and Sequential Codes

3.1 Dual Code of a Polycyclic Code

The dual code of a polycyclic code is a type of "sequential code" [14].

Definition 3.1 (Sequential Codes). A linear code C with length n over a finite field

F is called sequential with respect to the the vector ω = (ω0,ω1, . . . ,ωn−1), if there

is a function ϕω : F n −→ F such that whenever c = (c0, c1, . . . , cn−1) is in C , so is

(ϕω(c0, c1, . . . , cn−1), c0, c1, . . . , cn−2).

Let C be a polycyclic code with respect to v = (v0, v1, . . . , vn−1), with generating

polynomial g(x) = g0 + g1 x + · · · + gn−1 xn−1, and let h(x) = (xn − v(x))/g(x). Set

ω= (v−1
0 ,−vn−1/v0,−vn−2/v0, . . . ,−v1/v0). And consider the following transformation

on F n

ρω : (c0, c1, . . . , cn−1) 7→ (ωn−1c0 +ωn−2c1 + · · ·+ω0cn−1, c0, c1, . . . , cn−2) (3.1)

The matrix representation for ρω is exactly (T−1
xn−v(x))

t r , and note that v0 should be

invertible in any case.

The dual code of a polycyclic code with respect to v = (v0, v1, . . . , vn−1) is

therefore a sequential code with respect to ω = (v−1
0 ,−vn−1/v0, . . . ,−v1/v0), where

ϕω(c0, c1, . . . , cn−1) = ωn−1c0 + ωn−2c1 + · · · + ω0cn−1. A parity check matrix H can

either be obtained by evaluating h(T t r
xn−v(x)) or hR((T−1

xn−v(x))
t r).

Having sequential codes defined, the generalizations in Figure (2.3) becomes as in the

below figure 1.

1Actually, the familiy of sequential codes are wide. Here we only refer them as the dual codes of
polycyclic codes.

12



Figure 3.1 Sequential codes in the generalization of linear codes

Polycyclic codes and their duals are fully characterized over finite fields and finite

chain rings [13, 16, 20]. They have been constructed as module-θ codes using skew

polynomial rings [24].

Polycyclic codes have an ideal structure, and over the corresponding polynomial ring,

we are able to find a generating polynomial/ a generating vector and this provides

constructing a vector-circulant generating matrix. However, sequential codes do not

have an ideal structure. The transformation does not correspond to multiplication

by x in the polynomial correspondence. So, the question is: How can we obtain a

generating polynomial/ generating vector a for the dual code of a polycyclic code so

that we obtain a direct construction as follows

H =

















· · · a · · ·
· · · ρω(a) · · ·
· · · ρ2

ω
(a) · · ·
...

· · · ρn−1
ω
(a) · · ·

















nxn

=⇒ a =???

The problem of finding a concrete generator for the dual code of polycyclic codes over

rings will be solved in Chapter 4 and a more concrete generalization of the duality

theorems for multi-twisted and multi polycyclic codes will be covered in Chapter 5.

Here we will give our method for polycyclic codes over finite fields which will provide

a slight introduction to those more complex applications.
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3.2 Shortening and Puncturing on Linear Codes

Shortening procedure is exactly as follows: Let C ′ be an [n, k′, d ′]-linear code over Fq.

For a fixed 1≤ i ≤ n, form the subset A of C ′ consisting of the codewords with the i th

position equal to 0. Delete the i th position from all the words in A to form a code C .

Then C is an [n− 1, k, d]-linear code over Fq with k′ − 1≤ k ≤ k′, d ≥ d ′ [1].

A polycyclic code with generating polynomial g(x) = g0+ g1 x + · · ·+ gn−1 xn−1 can be

obtained by shortening a cyclic code C ′ generated by g(x).

On the other hand, puncturing procedure is as follows: Let C ′ be an [n + r, k, d +
r]-linear code over Fq. Choose a codeword in C ′ with weight d + r. Choose its r

non-zero coordinates, and delete these coordinates from all the codewords of C ′. Then

the new code C , is an [n, k, d]-linear code over Fq [1].

The dual code of a polycyclic code with generating polynomial g(x) = g0+ g1 x+ · · ·+
gn−1 xn−1 can be obtained by puncturing the dual code of a cyclic code C ′ generated

by g(x).

3.3 From Shortening and Puncturing to Polycyclic Codes and Their

Duals

Following the intuitions we get from the above correspondences, we derived a formula

to obtain a generating vector for the dual codes of polycyclic codes. We used the cyclic

code generated by g(x) as a divisor of xN −1 where N is the smallest length for which

f (x) divides xN − 1. The proof will be given in the noncommutative case.

Theorem 3.1. Let h(x)g(x) = f (x), deg( f x) = n, deg(g(x)) = n − k and let N be

smallest number for which f (x) divides xN − 1. Let p(x) = xN−1
f (x) =

∑N−n
i=0 pi x

i and let C

be the polycyclic code generated by g(x) of length n. Then the dual code C⊥ is generated

by the vector a = (a0, a1, . . . , an−1) and its n− k− 1 sequential shifts, where

a0 = p0h0, ai =
i−1
∑

j=0

pN−n− jhn−i+ j, 1≤ i ≤ n− 1.

We will give the proof in Chapter 4 for polycyclic codes over skew polynomial rings,

which will trivially hold for commutative case. The following small example illustrates

the theorem.

Example 3.1. Let F be the finite field with 4 elements; F4 = {0,1,α,α2 = α+ 1}. Let

g(x) = α2+αx2+x3, h(x) = 1+αx+x2 and f (x) = g(x)h(x) = x5+αx3+x2+x+α2.

14



Let Tf (x) be the companion matrix of f (x).

Consider the polycyclic code C generated by g(x) over F4.

We obtain the generating matrix of C as follows;

G =

�

· · · g · · ·
· · · g · Tf (x) · · ·

�

2x5

=

�

α2 0 α 1 0

0 α2 0 α 1

�

2x5

We have f (x)|x15 − 1 and we set N = 15.

In this case we have

p(x) =
xN − 1
f (x)

= α+α2 x +αx2 +α2 x3 +α2 x5 +αx6 + x7 +αx8 + x10.

Using the above formula

a0 = p0h0, ai =
i−1
∑

j=0

pN−n− jhn−i+ j,

we get

a = (α, 0, 0, 1,α)

So the parity check matrix H can be obtained as follows

H =







· · · a · · ·
· · · a · (T−1

f (x))
t r · · ·

· · · a · ((T−1
f (x))

t r)2 · · ·







3x5

=







α 0 0 1 α

0 α 0 0 1

1 0 α 0 0







3x5

.
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4
Polycyclic Codes over Rings

In this chapter, we will explore polycyclic code constructions over some ring theoretic

algebraic structures. We start with quaternary polycyclic codes and then give an

example to polycyclic codes over a finite chain ring. We examine polycyclic codes

over skew polynomial rings and introduce duality theorems for both constacyclic and

polycyclic codes over skew polynomial rings.

4.1 Quaternary Polycyclic Codes

4.1.1 Codes over Z4

The reader may refer to [25] for the preliminary facts given below and more on

quaternary codes.

A linear code C of length n over Z4 is a submodule of Zn
4, and its generator matrix in

standard form is given as

G =

�

Ik1
A B

0 2Ik2
2D

�

(4.1)

where A and D are matrices with entries from {0,1} ⊂ Z4, B is a matrix with entries

from Z4 and I denotes the identity matrix. In this form, C is called a type 4k12k2

quaternary code with size 4k12k2 . If k2 = 0, then C is called a free Z4-code.

The Lee weights of 0,1, 2,3 ∈ Z4, denoted by wL(0), wL(1), wL(2), wL(3) respectively,

are defined as wL(0) = 0, wL(1) = 1, wL(2) = 2 and wL(3) = 1. The Lee weight of a

codeword in a Z4-code is the sum of Lee weights of its coordinates.

The Gray map φ, defined below, is used to obtain Z2-codes from Z4-codes. Since it is a

weight preserving map, the minimum Lee weight of a linear Z4-code is the minimum

Hamming weight of its Gray image, which is a length 2n, usually nonlinear, Z2-code.
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φ : Zn
4 −→ Z

2n
2

0 7−→ 00

1 7−→ 01

2 7−→ 11

3 7−→ 10

Cyclic codes over Z4 correspond to ideals in Z4[x]/(xn−1). In order to have principal

ideals, we should have odd n, so that we can factorize xn − 1 into distinct, pairwise

coprime, basic irreducible factors uniquely.

Lemma 4.1. If g(x) is a basic irreducible factor of xn − 1, the linear code C over Z4

generated by g(x) is a free Z4-code of type 4n−deg g(x).

Theorem 4.2. Let n be an odd integer and C be a linear cyclic code over Z4 of length

n. Then C = (g1(x)g2(x), 2g1(x)g3(x)), where g1(x), g2(x), g3(x) are unique monic

polynomials such that g1(x)g2(x)g3(x) = xn − 1. In this case, |C |= 4deg g3(x)2deg g2(x).

Since we have odd n, Z4[x]/(xn − 1) is a principal ideal ring so C can be generated

principally. Having g2(x) and g3(x) coprime, we can write C = (g1(x)g2(x), 2g1(x))
so that C corresponds to the principal ideal generated by g1(x)g2(x) + 2g1(x) [25].

Theorem 4.3. The dual code of C is also a linear cyclic Z4-code, and C⊥ =
(gR

3 (x)g
R
2 (x), 2gR

3 (x)g
R
1 (x)) with |C⊥| = 4deg g1(x)2deg g3(x), where C is as defined above

and gR
i (x) are reciprocal polynomials of gi(x), for i = 1,2, 3 respectively.

Similar to C , C⊥ can also be generated principally by gR
3 (x)g

R
2 (x) + 2gR

3 (x).

Let C = (g(x) = g1(x)g2(x) + 2g1(x)) be a cyclic quaternary code. Keeping the

generator matrix as in the form of (2.2), we can obtain G by evaluating g(Txn−1) and

similarly H can be obtained from evaluating gR
3 (x)g

R
2 (x) + 2gR

3 (x) with (T−1
xn−1)

t r .

4.1.2 Polycyclic Codes over Z4

In order to obtain polycyclic codes over Z4, we assume that the polynomial f (x) =
xn − v(x) is a square free, monic, regular polynomial with deg v(x)< n.

So let f (x) = xn− v(x) = f1. f2..... ft be the factorization of f (x) over Z4 into pairwise

coprime, monic, basic irreducible factors. The polycyclic code generated by g(x) =
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fi1 . fi2 ..... fir = g0 + g1 x + · · ·+ gn−1 xn−1, 1≤ i j ≤ t has a generator matrix

G =

















g0 . . . gn−1

− gTf (x) −
− gT 2

f (x) −
...

− gT n−1
f (x) −

















nxn

. (4.2)

Let C = (g1(x)g2(x), 2g1(x)g3(x)) where g1(x), g2(x), g3(x) are unique monic

polynomials such that g1(x)g2(x)g3(x) = xn − v(x). In this case, since g2(x) and

g3(x) are coprime, we can write C = (g1(x)g2(x), 2g1(x)) so that C corresponds to the

principal ideal generated by g1(x)g2(x) + 2g1(x). Therefore we obtain the generator

matrix for C by evaluating (g1(x)g2(x) + 2g1(x))(Tf (x)).

For the dual code on the other hand, a generator matrix can be obtained by substituting

(T−1
f (x))

t r in gR
3 (x)g

R
2 (x) + 2gR

3 (x). The following example illustrates the construction

of a polycyclic quaternary code.

Example 4.1. Consider the quotient polynomial ring Z4[x]/( f (x)), where f (x) = x15+
x11 + x10 + x8 + x5 + x4 + x2 + 1.

f (x) has a unique factorization over Z4[x] into basic irreducible polynomials as follows:

f (x) = x15 + x11 + x10 + x8 + x5 + x4 + x2 + 1

= g1(x)g2(x)g3(x),

g1(x) = x2 + x + 3,

g2(x) = x12 + 2x10 + 3x9 + x8 + x7 + 3x6 + 2x5 + x4 + x3 + x2 + 2x + 1,

g3(x) = x + 3.

Consider the linear Z4-code C = (g1(x)g2(x), 2g1(x)g3(x)). The generator matrix of C

when turned into standard form is

G = [g1(x)g2(x) + 2g1(x)](Tf (x))

=







1 1 0 2 1 2 2 0 3 3 0 1 3 3 1

0 2 0 2 2 2 0 2 2 2 2 0 0 2 0

0 0 2 0 2 2 2 0 2 2 2 2 0 0 2






.

C is a length 15, type 4122 polycyclic linear code over Z4 which has minimum Lee weight

15, while the largest minimum Lee weight of the existing constructed linear Z4-codes of

length 15 and size ≥ 16 is 14.
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This code has a linear Gray image which corresponds to the near-optimal binary code

[30,4, 15].

There are many examples of good linear polycyclic quaternary codes which do not

have a construction introduced in the database [26]. Table 4.1 gives a few examples

of polycyclic quaternary codes which are constructed using the software Magma [27]
and have at least twice the size of the existing linear codes with the same length

and same Lee weight in the database. g stands for the generating polynomial of the

corresponding v-polycyclic linear quaternary code. A polynomial of the form 1+ x +
x3 + 2x4 is represented with 12012 for simplicity.

Table 4.1 Some good polycyclic quaternary codes

v g Polycyclic Code Size Best Around Size
330330306 322102301205 [15, 4621, 8] 8192 [15,4620, 8] 4096

30303302306 313130321201202 [16,4321, 12] 128 [16,4320, 12] 64
32032023202305 10310102223105 [17,4621, 10] 8192 [17,4620, 10] 4096
3023503023204 1202303021232104 [18,4521, 12] 2048 [18,4520, 12] 1024

3203302320302304 3032041010130120 [19,4221, 18] 32 [19,4220, 18] 16
32063011 10223410321220103 [20,4421, 14] 512 [20,4420, 14] 256

3409302303 3013030212302322102 [20,4324, 14] 1024 [20,4420, 14] 256
3032033303303203 1202210322320105 [20,4621, 12] 8192 [20,4620, 12] 4096

30230433010 312123023230122104 [21,4521, 14] 2048 [21,4520, 14] 1024
3030302320304305 1202210322320105 [21,4821, 12] 131072 [21,4820, 12] 65536

3033402303307 3023132030222102105 [22,4621, 14] 8192 [22,4520, 14] 1024
32023033023012 30301323202132130106 [24,4721, 14] 32768 [24,4520, 14] 1024
3303033032013 3212031423123023105 [25,4623, 14] 32768 [25,4520, 14] 1024

3053053012 1320202210101302107 [25,4821, 14] 131072 [25,4520, 14] 1024
340432016 10220320130221212120104 [26,4522, 16] 4096 [26,4520, 16] 1024

330320332015 303133223310213121205 [26,4621, 16] 8192 [26,4520, 16] 1024
304320232023030308 122322012212032310232104 [26,4524, 16] 16384 [26,4520, 16] 1024
3203203303303309 1313230131331402106 [26,4721, 16] 32768 [26,4520, 16] 1024

33033020 31220122131213223010106 [27,4725, 11] 524288 [27,4820, 11] 65536
30235019 3122302120232121221207 [27,4824, 11] 1048576 [27,4820, 11] 65536

3503203017 32320220303212202109 [27,41022, 11] 4194304 [27,4820, 11] 65536
33025 132120321031322332108 [28,4921, 14] 524288 [28,4720, 13] 16384

33033021 1302320122021221022032105 [28,4623, 16] 32768 [28,4620, 15] 4096
320230320233015 301013102130120122108 [28,4922, 16] 1048576 [28,4720, 13] 16384

3023025 31212232021301313022108 [29,4923, 13] 2097152 [29,4820, 13] 65536
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4.2 Polycyclic Codes over Finite Chain Rings

While linear codes were initially studied over finite fields, starting with quaternary

codes, more general structures have been taken into consideration. For the detailed

progress in research we refer the reader to [6].

In order to examine polycyclic codes over finite chain rings, we first give some basic

preliminaries about these rings from [28].

An associative finite ring with unity is called a chain ring if its ideals are linearly

ordered under inclusion. Finite chain rings are principal ideal rings; every ideal of

these rings is generated by a single element. They are also local rings; they have

unique maximal ideals. For a finite chain ring R, let M be the unique maximal ideal

with generator γ. Then the ideals of R satisfy a chain of the following form where a

is called the nilpotency index of γ.

R= (γ0) ! M = (γ1) ! (γ2) ! (γ3) ! · · · ! (γa) = (0)

While constructing linear codes over finite chain rings, we are going to be dealing with

factorization of polynomials and we also need a Euclidean type algorithm, therefore

we make use of the following definitions and theorems.

Definition 4.1. Let K = R/M be the residue field of R. A polynomial f in R[x] is

called basic irreducible if its image µ f under the natural projection µ : R[x] −→ K[x],
is irreducible over K[x].

Definition 4.2. A primary polynomial is a polynomial which generates a primary

ideal; an ideal I 6= R, for which x y ∈ I implies x ∈ I or yn ∈ I for some n ∈ Z+.

Definition 4.3. A polynomial f in R[x] is called regular, if it is not a zero divisor.

We have the following equivalent conditions for regular polynomials.

Theorem 4.4 ([28]). Let f = a0 + a1 x + · · ·+ an xn be a polynomial in R[x]. Then the

following are equivalent:

(i) f is regular,

(ii) The ideal (a0, a1, · · · , an) = R,

(iii) ai is a unit in R for some i, 0≤ i ≤ n,

(iv) µ f 6= 0.
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Theorem 4.5 (Hensel’s Lemma, [28]). Let f be a polynomial in R[x] and µ f = g1 · · · gn

be the factorization of µ f over K into pairwise coprime polynomials g1, . . . , gn. Then there

exist polynomials g1, . . . , gn in R[x] such that

(i) g1, . . . , gn are pairwise coprime,

(ii) µgi = gi, for all i, 0≤ i ≤ n,

(iii) f = g1 · · · gn .

It is also shown in terms of irreducibilty that for a regular polynomial f , if µ f is

irreducible in K[x] then f is irreducible in R[x]. Moreover, if µ f has distinct zeros in

the algebraic closure of K , then f is irreducible if and only if µ f is irreducible. So, we

have the following factorization theorem for regular polynomials over R.

Theorem 4.6 ([28]). Let f be a regular polynomial in R[x]. Then, f = δg1 · · · gn where

δ is a unit and g1, . . . , gn are pairwise coprime regular primary polynomials. If f =
βh1 · · ·hm is another factorization of f where β is a unit and h1, . . . , hm are pairwise

coprime regular primary polynomials, then m= n and gi = hi up to reordering.

It is also a consequence of the given facts for a square-free monic regular polynomial f

that, this factorization into pairwise coprime monic basic irreducible factors is unique

up to associates and reordering.

A Euclidean type algorithm also holds as follows:

Theorem 4.7. Let f and g be polynomials in R[x] such that g is regular. Then, there

exist polynomials q, r ∈ R[x] with f = qg + r and deg(r)< deg(g).

4.2.1 Polycyclic Codes as Invariant Submodules over Finite Chain Rings

In this part, we are going to examine polycyclic codes as invariant submodules of

a finite chain ring R. The idea was sparkled by the work [23], where new codes

were found by constructing arbitrary vector circulant matrices. This kind of matrices

generate some invariant submodules which we classify below. The notion of invariant

subspaces were introduced in [18] for cyclic and constacyclic cases, and generalized

for the cyclic codes over finite chain rings in [19].

Let f be a square-free, monic regular polynomial in R[x], where R is a finite chain ring.

As a consequence of the above facts, we have a unique factorization of f into pairwise

coprime, monic, basic irreducible polynomial factors over R. Let f (x) = xn − v(x) =
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f1. f2..... ft be the factorization. Each factor creates an invariant submodule over R. We

may apply the same method as in [18, 19] in order to construct polycyclic codes over

finite chain rings.

The following example illustrates the construction of a polycyclic code over a finite

chain ring. We note that, a generator matrix for a linear code over Galois rings of type

GR(pl , m) can be written in the following standard form where the blocks Ai, B j, ..., D

have entries from GR(pl , m), and I ′ki
s are identity matrices of size ki.

G =

















Ik1
A1 · · · · · · · · · Al

0 pIk2
pB1 · · · · · · pBl−1

0 0
... . . . . . .

...
...

...
. . . . . . . . .

...

0 0 · · · 0 pl−1Ikl
pl−1D

















(4.3)

Example 4.2. Let R = GR(22, 3) be the Galois ring obtained from the quotient ring

Z4[x]/(p(x)) where p(x) is a basic irreducible polynomial of degree 3 with ξ as a

primitive root. And let f (x) = x7 + 3x6 + x4 + 3x3 + x + 3. So we have v(x) =
x6 + 3x4 + x3 + 3x + 1 and hence v = (1,3, 0,1, 3,0, 1) and further f (x) has a unique

factorization into basic irreducible polynomials g1, g2, g3, g4 over R as

f (x) = g1(x)g2(x)g3(x)g4(x)

g1(x) = (x + 3),

g2(x) = (x2 + 3ξx + 1),

g3(x) = (x2 + (3ξ2 + 2)x + 1),

g4(x) = (x2 + (ξ2 + ξ+ 1)x + 1)

and we have

Tf (x) =

























0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 3 0 1 3 0 1

























.

Let C be the polycyclic code generated by g3(x)g4(x), 2g3(x). We obtain a generator

matrix by evaluating [g3 g4 + 2g3](Tf (x)). In standard form we get
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G =

















1 0 0 1 0 0 1

0 1 0 1 ξ+ 1 ξ2 + 1 2ξ2 + ξ
0 0 1 ξ ξ2 + 1 2ξ2 + ξ 3

0 0 0 2 0 2ξ2 + 2ξ+ 2 2ξ2

0 0 0 0 2 2ξ2 2

















and C is a (7,4926) linear code over R.
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4.3 Polycyclic Codes over Skew Polynomial Rings

Skew polynomial rings were introduced by Ore in [29] and studied further by Jacobson

[30] and McDonald [28]. For the last two decades, research on linear codes has

been shifted to cyclic codes over noncommutative rings, known as skew cyclic codes

intensively [12]. These are larger than the commutative ones and surely contain

them as subfamilies. The pace for exploring these families has not been as in the

commutative case. The problems due to the skewness property are more challenging.

Definition 4.4. Let Fq be a finite field of order q and θ be an automorphism of Fq.

The set of polynomials

Fq[x;θ] = {a0 + a1 x + · · ·+ an xn|ai ∈ Fq, n ∈ N}

is called skew polynomial ring over Fq, where addition is ordinary but multiplication

is defined for all a, b ∈ Fq as

�

ax i
�

∗
�

bx j
�

= aθ i(b)x i+ j.

Skew polynomial rings are noncommutative unless θ is the identity automorphism.

Fq[x;θ] is left and right Euclidean, i.e. both right and left division algorithms hold

and any left or right ideal is principal. Factorization is not unique in Fq[x;θ]. Let

f (x) be a polynomial in Fq[x;θ]. If f (x)p(x) = p(x) f (x) for all p(x) ∈ Fq[x;θ],
then f (x) is called a central polynomial. The set of central polynomials of Fq[x;θ] is

called the center of Fq[x;θ] and denoted by Z (Fq[x;θ]). Further, f (x) is a central

polynomial if and only if it is of the form

f (x) = a0 + a1 xm + a2 x2m + · · ·+ an xnm (4.4)

where ai ∈ Fθq (the fixed field of θ in Fq) and m= |〈θ 〉| is the order of θ [28].

We write g(x)|r f (x), if g(x) is a right divisor of f (x). The following lemma shows

that two factors of a central polynomial commute [31].

Lemma 4.8. Let f (x) = h(x)g(x) in Fq[x;θ]. If f (x) ∈ Z (Fq[x;θ]), then h(x)g(x) =
g(x)h(x).

4.3.1 Skew Cyclic and Skew Constacyclic Codes

In [12], Boucher et al. generalized cyclic codes by using skew polynomial rings.

Definition 4.5. A linear code C of length n over Fq is called skew cyclic, if it is invariant
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under the skew cyclic shift, i.e.

(c0, c1, . . . , cn−1) ∈ C ⇒ (θ (cn−1),θ (c0), . . . ,θ (cn−2)) ∈ C .

Boucher et al. show that skew cyclic codes are ideals of the ring Fq[x;θ]/(xn − 1),
whenever xn − 1 ∈ Z (Fq[x;θ]) [12]. Later, the restriction on xn − 1 to be a central

polynomial is removed by considering skew cyclic codes as left Fq[x;θ]-submodules

of Fq[x;θ]/(xn−1) in [32]. Skew cyclic codes, being a generalization of cyclic codes

and covering a large and rich subclass of linear codes, present many advantages while

searching for linear codes with structures and in some cases good parameters. In many

recent studies such as [12, 33], new record breaking codes were obtained via using

skew polynomials.

The following preliminary result can be derived directly from Theorem 6, 7 and Lemma

2 of [32] by using similar methods, hence the proof is omitted.

Lemma 4.9. Let C be a left Fq[x;θ]-submodule of Fq[x;θ]/( f (x)) where f (x) 6= 0 and

deg( f (x))> 0. Let g(x) be a monic polynomial of minimum degree in C. Then g(x) is

unique and C is principally generated by g(x), i.e, C = (g(x)). Moreover, g(x) is a right

divisor of f (x) in Fq[x;θ] and |C |= qdeg( f (x))−deg(g(x)).

Now we give the definition for a skew α-constacyclic code.

Definition 4.6. Let α ∈ F ∗q . A linear code C is called skew α−constacyclic if it is

invariant under skew α-constacyclic shift, i.e,

(c0, c1, . . . , cn−1) ∈ C ⇒ (αθ (cn−1),θ (c0), . . . ,θ (cn−2)) ∈ C .

Skew constacyclic codes were introduced in [7] and some properties of this family

are given in [34] and [8]. In polynomial representation, skew α-constacyclic codes

correspond to left Fq[x;θ]-submodules of Fq[x;θ]/(xn − α). ioIn fact, a skew

α-constacyclic code C of length n is principally generated by a right divisor g(x) of

xn −α in Fq[x;θ], i.e. C = (g(x)).

4.3.2 Duality Theorem for Skew Constacyclic Codes

In this section, given the generator of a skew constacyclic code, we introduce a direct

method of finding the generator of the dual code explicitly. Throughout this section

we set m|n, where m= |〈θ 〉|.
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Lemma 4.10. Let xn − α ∈ Fq[x;θ], o(α) be the multiplicative order of α in F ∗q and

N = o(α)n. Then, xn−α is a right divisor of the central polynomial xN − 1 in Fq[x;θ].

Proof. Let N = o(α)n. Then,

xN − 1= (α−1 +α−2 xn +α−3 x2n + · · ·+α−o(α)x (o(α)−1)n)(xn −α).

�

Since m|n, we have xN−1 ∈ Z (Fq[x;θ]) and from Lemma 4.8, xN−1= (xn−α)(α−1+
α−2 xn+α−3 x2n+ · · ·+α−o(α)x (o(α)−1)n). We simply use the expression xN−1

xn−α for the right

division of xN − 1 by xn −α.

Lemma 4.11. Let αi ∈ F ∗q and ni be a positive integer such that m|ni, for 1 ≤ i ≤ l.

Then,

xni −αi|r xN − 1

where N = lcm(n1, n2, . . . , nl)lcm(o(α1), . . . , o(αl)).

Proof. By Lemma 4.10, we have

(α−1
i +α

−2
i xni +α−3

i x2ni + · · ·+α−o(αi)
i x (o(αi)−1)ni)(xni −αi) = xni o(αi) − 1

and we also have

o(αi)ni|lcm(n1, n2, . . . , nl)lcm(o(α1), . . . , o(αl)).

Hence,

xni o(αi) − 1|r xN − 1.

Therefore xni −αi|r xN − 1. �

In [8], Lemma 3.1 shows that the dual of a skew α-constacyclic code is a skew

α−1-constacyclic code, with a restriction on α being fixed by θ . This lemma holds

for any α ∈ F ∗q , and can be proved by using the same method.

Lemma 4.12 ([8], Lemma 3.1). Let C be a skew α-constacyclic code of length n over Fq,

where α ∈ F ∗q . Then the dual code C⊥ is a skew α−1-constacyclic code of length n over Fq.

In order to determine the generator polynomials of dual codes, the following definition

will be crucial.
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Definition 4.7. Let n be a positive integer and a(x) = a0+a1 x+a2 x2+· · ·+an−1 xn−1 ∈
Fq[x;θ] with deg(a(x))≤ n− 1. We define

a〈n,α〉(x) = α−1a0 + θ (an−1)x + θ
2(an−2)x

2 + · · ·+ θ n−1(a1)x
n−1.

Let xn − α = a(x)g(x) with deg(a(x)) = k and C = (g(x)). If we were dealing with

the case α = 1, i.e, skew cyclic case, skew reciprocal polynomial of a(x), which is

defined as aR(x) = ak + θ (ak−1)x + · · ·+ θ k(a0)x k, would be a right divisor of xn − 1

and thus a generator polynomial for C⊥ [31]. However, for the skew constacyclic case,

xn−α= a(x)g(x) does not imply aR(x)|r xn−α−1 nor does it imply C⊥ = (aR(x)). In

[24] the authors determined that C⊥ = (hR(x)) where h(x) is a polynomial satisfying

xn − θ−k(α) = g(x)h(x), this guarantees the existence but is implicit and the process

involves a query to find such a polynomial h(x). Later in [34] in Theorem 6.1, authors

obtained the generator of the dual code in terms of h(x), while xn−α= h(x)g(x), by

using the properties of skew generalized circulant matrices.

In the following theorem, we give an alternative algorithm to find the generator

polynomial of C⊥ directly by using a〈n,α〉(x).

Theorem 4.13. Let xn − α = a(x)g(x) in Fq[x;θ] and C be a skew α-constacyclic

code generated by g(x). Then, a〈n,α〉 ∈ C⊥. Moreover, C⊥ = (x ka〈n,α〉(x)), where k =
deg(a(x)).

Proof. Let g(x) = g0 + g1 x + · · ·+ gn−1 xn−1 and a(x) = a0 + a1 x + · · ·+ an−1 xn−1. Let

us multiply both sides of xn −α = a(x)g(x) from left by xN−1
xn−α , where N = o(α)n. We

obtain

xN − 1=
xN − 1
xn −α

a(x)g(x).

Since xN − 1 ∈ Z (Fq[x;θ]), from Lemma 4.8 we can write xN − 1 = g(x) xN−1
xn−αa(x),

which means

g(x)(α−1 +α−2 xn +α−3 x2n + · · ·+α−o(α)x (o(α)−1)n)a(x) = 0 (mod xN − 1).

This is equivalent to

g(x)α−1a(x) + g(x)α−2a(x)xn + · · ·+ g(x)a(x)x (o(α)−1)n = 0 (mod xN − 1) (4.5)

since α−o(α) = 1 and xn ∈ Z (Fq[x;θ]).

The coefficient of x0 in Equation (4.5) is g0α
−1a0 + g1θ (an−1) + g2θ

2(an−2) + · · · +
gn−1θ

n−1(a1) = 0 which implies g · a〈n,α〉 = 0. To prove a〈n,α〉 ∈ C⊥, we need to show
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that a〈n,α〉 is orthogonal to all skew α-constacyclic shifts of g. Let us denote the skew

α-constacyclic shift by Tα. If we multiply Equation (4.5) with x from left, then the

coefficient of x0 becomes

θ (gn−1)a0 + θ (g0)θ (an−1) + θ (g1)θ
2(an−2) + · · ·+ θ (gn−2)θ

n−1(a1) = 0.

This implies that Tα(g) · a〈n,α〉 = 0. Similarly, if we multiply Equation (4.5) with x i

from left, we obtain T i
α
(g) · a〈n,α〉 = 0. Thus, we have a〈n,α〉 ∈ C⊥.

Now let us show that C⊥ = (x ka〈n,α〉(x)). Since C⊥ is a skew α−1-constacyclic code, it

is a left Fq[x;θ]-submodule of Fq[x;θ]/(xn−α−1). Thus x ia〈n,α〉(x) ∈ Fq[x;θ]/(xn−
α−1) also belongs to C⊥. We have

deg(a(x)) = k =⇒ deg(x ka〈n,α〉(x)) = k in Fq[x;θ]/(xn −α−1).

Since the quotient ring is principal and the dimension of C⊥ is n − k, there is no

polynomial in C⊥ with degree less than k. Therefore C⊥ is indeed generated by

x ka〈n,α〉(x). �

4.3.3 Skew Polycyclic Codes and Their Duals

Polycyclic codes have been extended to noncommutative case in [15]. It is shown

that a skew polycyclic code generated by a right divisor g(x) of f (x) = xn − v(x) is

invariant under Tf (x) ◦ Θ, where Θ(c) := (θ (c0),θ (c1), . . . ,θ (cn−1)). For this case, a

v-skew polycyclic shift of a codeword c is obtained by

(Tf (x) ◦Θ)(c) = (θ (c0),θ (c1), . . . ,θ (cn−1)) · Tf (x)

The following lemma can be directly proved by applying the results in [14, 24] and

[15].

Lemma 4.14. Let C be a skew polycyclic code generated by a right divisor g(x) of f (x) =
xn − v(x) ∈ Fq[x ,θ]. Then, C⊥ is a sequential code and invariant under (T−1

f (x))
t r ◦Θ.

In order to obtain the generating vector for the dual code of a skew polycyclic code,

we need to start with the following lemma.

Lemma 4.15. Let f (x) ∈ Fq[x;θ] be a polynomial with a nonzero constant term. Then,

there exist a central polynomial xN − 1 such that f (x)|r xN − 1 in Fq[x;θ].

Proof. By Lemma 10 in [31], there exists a polynomial b(x) = (b0 + b1 xm + · · · +
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bs x
sm)x t where m = |〈θ 〉|, bi ∈ Fθq and s, t ∈ N such that f (x)|r b(x). Since f (x) has

a nonzero constant term, we get x t = 1 and b(x) ∈ Z (Fq[x;θ]).

We know that Z (Fq[x;θ]) = Fθq [x
m]. Also, there exists a finite field extension of Fθq

where b(x) splits. These imply that there exists a central polynomial xN −1 such that

b(x)|xN − 1 which completes the proof.

�

Let C be a skew polycyclic code generated by g(x)|r f (x)where deg(g(x)) = n−k. Let

xN−1 be a central polynomial such that f (x)|r xN−1. In this case, C corresponds to the

shortened code applied to the last N−n coordinates of the skew cyclic code C ′ = (g(x))
of length N . Further, the dual code of C corresponds to the punctured code applied to

the last N − (n− k) coordinates of the dual code C ′⊥, which is generated by a′〈N ,1〉(x)
where a′(x)g(x) = xN − 1. The punctured code, being in the form of a sequential

code, does not have an ideal or module structure and multiplication by x does not

correspond to the sequential shift under which the code is invariant. However, in the

sequel, we find a representative generating vector from which a generator matrix for

the dual code can be obtained directly.

Theorem 4.16. Let a(x)g(x) = f (x) = xn − v(x) with a nonzero constant term and

deg(g(x)) = n−k. Let N be smallest number for which f (x) divides xN −1 and p(x) =
xN−1
f (x) =

∑N−n
i=0 pi x

i. Suppose C is a skew polycyclic code of length n generated by g(x).
Then, the dual code C⊥ is generated by the vector h= (h0, h1, . . . , hn−1) and its n− k− 1

sequential shifts i.e., {h, ((T−1
f (x))

t r ◦Θ)(h), · · · , ((T−1
f (x))

t r ◦Θ)n−k−1(h)}, where

h0 = p0a0, and hi =
i−1
∑

j=0

θ i(pN−n− j)θ
N−n+i− j(an−i+ j), 1≤ i ≤ n− 1.

Proof. Since xN − 1 is a central polynomial such that f (x)|r xN − 1, we have

xN − 1= g(x)
xN − 1
f (x)

a(x).

This implies that

g(x)(p0 + p1 x + · · ·+ pN−n xN−n)a(x) = 0 (mod xN − 1). (4.6)
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Thus, the coefficient of x0 in Equation (4.6) is

g0p0a0 + g1θ (pN−n)θ
N−n+1(an−1)+

g2(θ
2(pN−n)θ

N−n+2(an−2) + θ
2(pN−n−1)θ

N−n+1(an−1)) + · · ·+

gn−1(θ
n−1(pN−n)θ

N−1(a1) + · · ·+ θ n−1(pN−2n+2)θ
N−n+1(an−1)) = 0

which implies g · h = 0. Multiplying Equation (4.6) by x i from the left, we obtain

T i
f (x)(g) · h= 0.

Now, we consider a skew cyclic code C ′ of length N generated by g(x). From Theorem

4.13, the dual code of C ′ of dimension n − k is also generated by a′〈N ,1〉(x), where

a′(x) = xN−1
g(x) = p(x)a(x). Let H ′ be the generator matrix for C ′⊥ obtained from a′〈N ,1〉.

Now, we show that the first n coordinates of a′〈N ,1〉 form exactly the coordinates of h

in the same order. We have

a′(x) =(p0 + p1 x + · · ·+ pN−n xN−n)(a0 + a1 x + · · ·+ an−1 xn−1)

=p0a0 + (p0a1 + p1θ (a0))x + · · ·+

(pN−nθ
N−n(an−2) + pN−n−1θ

N−n−1(an−1))x
N−2 + (pN−nθ

N−n(an−1))x
N−1.

This implies that

a′〈N ,1〉(x) =p0a0 + θ (pN−nθ
N−n(an−1))x + θ

2(pN−nθ
N−n(an−2) + pN−n−1θ

N−n−1(an−1))x
2

+ · · ·+ θ n−1(p0a1 + p1θ (a0))x
N−1.

Similarly one can show that the first n coordinates of x ia′〈N ,1〉(x) (mod xN − 1) i.e.

the first n coordinates of the ith row of H ′, give the coordinates of ((T−1
f (x))

t r ◦ θ )i(h)
in the same order. This completes the proof since puncturing C ′⊥ at the last N − n

coordinates results in exactly n− k linearly independent rows. �

Example 4.3. Let g(x) = x3 + αx2 + α2|r f (x) = x5 + x2 + α2 x + α2 in F4[x;θ] with

|〈θ 〉| = 2. In this case, a(x) = x2 +αx + 1 and f (x) = a(x)g(x). C = (g(x)) becomes

a skew v-polycyclic code of length 5, where v = (α2,α2, 1, 0, 0). We have N = 24, i.e.

f (x)|r x24 − 1 and p(x) = x24−1
f (x) . By Theorem 4.16, we get h = (α, 0, 0, 1,α2) which is

exactly the first 5 coordinates of a′〈24,1〉. The parity check matrix for C can be obtained

from {h, ((T−1
f (x))

t r ◦ θ )(h), ((T−1
f (x))

t r ◦ θ )2(h)} as

H =







α 0 0 1 α2

0 α2 0 0 1

1 0 α 0 0






.
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5
Polycyclicity of Codes over Matrix Spaces

Codes over matrix spaces have been studied in terms of array codes or Gabudilin

codes first in [9] with respect to rank metric and term rank metric instead of the

usual Hamming metric defined on usual vector spaces. In matrix spaces, matrices

correspond to vectors in usual vector spaces. Note that, matrices over the base field

Fq are isomorphic to the vector space over the extension field Fqn;

F m×n
q
∼= F m

qn (5.1)

5.1 Rank Metric and Term Rank Metric Spaces

The vector space of m× n matrices over a fixed finite field Fq of q elements become

a rank metric and term rank metric space under the rank norm and term rank norm

respectively, denoted by MR, MTR. Given A as an m× n matrix with I (A) being the set

of rows/columns of A which contains all the nonzero entries of A, the term rank norm

is defined as

‖A‖TR =min |I (A)| . (5.2)

If A and B are two m× n matrices, the term rank distance is defined as

dTR = ‖A− B‖TR . (5.3)

Codes over matrix spaces are considered as k-dimensional subspaces of F m×n
q . The

minimum distance of a code over a term rank metric space, denoted by DTR, should

clearly be less than or equal to the minimum of {m, n} and assuming without the loss

of generality that m≤ n, we have

DTR = min
A∈C−{0}

‖A‖TR ≤ m. (5.4)
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The only known bound for optimality of codes over MTR is the Singleton bound, which

is expressed in the following version.

k ≤ n(m− DTR + 1). (5.5)

If we have the equality, the code is considered to be optimal.

Gritsenko and Maevskiy [10] have introduced a construction method for optimal codes

over MTR, using the correspondence between polynomials and p(x)-circulants. With

this method, they construct [n×n, n]− codes, and for construction of [m×n, n]−codes,

they address the shortening method. In this study, we introduce a direct polycyclic

construction, which will guide as an analogue to the usual construction of codes over

ordinary vector spaces in general, and with this method, the cyclic and constacyclic

cases for codes over matrix spaces will be classified. We also propose a method for

finding the minimum term rank distance of a given code using Pyhton software.

5.1.1 Code Construction and Examples

Let p(x) = a0+ a1 x + · · ·+ xm be a monic divisor of degree m of a polynomial f (x) =
xn−1 of degree n and consider the following matrix Pp obtained from the companion

matrix of p(x) horizontally joined with an m× (n−m) block zero-matrix

Pp =











0 1 0 · · · 0 · · · 0
...

. . . . . . . . . . . .
...

...

0 · · · 0 1 0 · · · 0

−a0 −a1 · · · −am−1 0 · · · 0











m×n

. (5.6)

We define a cyclic shift by vertically shifting the columns of Pp to the right hand side.

We can obtain this shift by multiplying Pp with Tf which is the companion matrix of

f (x) = xn − 1;

Tf =

















0 1 0 · · · 0

0 0 1
...

...

0
...

. . . . . . 0

0 0 · · · 0 1

1 0 · · · · · · 0

















n×n

. (5.7)

The Fq sub matrix space spanned by n matrices of cyclic shifts of Pp, constructs a form

of a cyclic code over MTR, which we call a cyclic code associated with p(x).
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For the case where f = xn−α, (α ∈ F ∗q ), Tf constructs an α-constacyclic shift, therefore

we obtain an α-constacyclic code. Finally, for the most general case where f is an

arbitrary monic polynomial of degree n, we obtain polycyclic shift and polycyclic

codes.

We generalize the structure to the polycyclic case as follows

Definition 5.1. Let Fq be a finite field with q elements and let f (x) be a monic

polynomial with p(x) a monic divisor of f (x) over Fq[x], with deg f (x) = n and

deg p(x) = m. Let Pp be the matrix obtained from the companion matrix of p(x)
horizontally joined with an m× (n−m) zero-matrix, and Tf be the companion matrix

of f . The Fq− sub matrix space spanned by the following set of m× n matrices

{PpT i
f : i ∈ [0, n− 1]} (5.8)

is a polycyclic code in the rank/term rank metric space over F m×n
q .

Considering the correspondence ϕ : Fq[x] −→ F mxn
q which maps x i to Pp(Tf )i,

multiplying a polynomial by x over the polynomial ring Fq[x], corresponds to the

polycyclic shift in F m×n
q , as defined above.

Example 5.1. Let Fq be the finite field with 4 elements; F4 = {0,1,α,α2}. Consider

f (x) = x9 − 1 and take p(x) = x3 + α2 as a divisor of f . Therefore we have m = 3,

n= 9, and

Pp =







0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

α2 0 0 0 0 0 0 0 0






, Tf =

















0 1 0 · · · 0

0 0 1
. . . ...

0
... . . . . . . 0

0 0 · · · 0 1

1 0 · · · · · · 0

















9×9

.
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Applying Tf to Pp, constructs the desired cyclic shift;

PpTf =







0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 α2 0 0 0 0 0 0 0






,

PpT 2
f =







0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 α2 0 0 0 0 0 0






,

...

PpT 8
f =







1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 α2






.

And the subspace generated by the spanning set {PpT i
f : i ∈ [0,8]} becomes a cyclic

[3× 9, 9]−code over the F4−matrix space of 3× 9 matrices.

Example 5.2. Let Fq be the finite field with 4 elements; F4 = {0,1,α,α2}. Consider

f (x) = x6 + α2 x2 + α and take p(x) = x4 + x2 + α as a divisor of f . We have m = 4,

n= 6, and

Pp =











0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

a 0 1 0 0 0











, Tf =





















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a 0 a2 0 0 0





















.
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Applying Tf to Pp, constructs a polycyclic shift as follows;

PpTf =











0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 α 0 1 0 0











, PpT 2
f =











0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 α 0 1 0











,

PpT 3
f =











0 0 0 0 1 0

0 0 0 0 0 1

α 0 α2 0 0 0

0 0 0 α 0 1











, PpT 4
f =











0 0 0 0 0 1

α 0 α2 0 0 0

0 α 0 α2 0 0

α 0 α2 0 α 0











,

PpT 5
f =











α 0 α2 0 0 0

0 α 0 α2 0 0

0 0 α 0 α2 0

0 α 0 α2 0 α











.

And the subspace generated by the spanning set {PpT i
f : i ∈ [0, 5]} becomes a polycyclic

[4× 6,6]−code over the F4−matrix space of 4× 6 matrices.

5.1.2 Computing Minimum Term Rank Distance

As in the case in general coding theory, computing minimum distance and obtaining

optimal codes is an important issue also for codes over term rank metric spaces. In

order to compute minimum term rank distance of a code over a matrix space, graph

theoretical methods are addressed [10]. It is shown that, the term rank weight of a

matrix A is equal to the maximum size of a matching of the bipartite graph for which

A is the bi-adjacency matrix [11]. Currently, there was not any in-built function for

computing the term rank of a matrix in commonly used computer algebra systems. As

an example for codes over F4−matrix spaces, we used Magma for obtaing a code over

a matrix space and created some Python implementations for computing the minimum

term rank distance of this code. In this method, we initially retrieve the list L of all

entries (we shall denote any non-integer field-specific element by an integer here)

of matrices in the code to a text file and call this file from Python to compute the

minimum term rank distance.

We create a code over a matrix space with the Magma code given in Appendix A.1.

Having the code constructed, we compute its minimum term rank distance with

applying the Python script given in Appendix A.2.
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5.1.3 Constructing Optimal Codes

The following theorem is pointing out the conditions for p(x) and f (x) at which the

code becomes optimal. For cyclic [m×n, n] codes the following result is obtained. For

the most general cases the optimality question remains open.

Theorem 5.1. Let Fq be a finite field with q elements and p(x) a divisor polynomial of

f (x) = xn − 1 over Fq[x], with deg p(x) = m. Let Pp and T f be as defined above. The

cyclic [m × n, n] code C associated with p(x) is optimal when p(x) = xm − a0, where

a0 ∈ F ∗q .

Proof. For any polynomial p(x) =
∑m

i=0 ai x
i, a matrix A ∈ C , namely a ci ∈ Fq(i ∈

[0, n− 1])-linear combination of basis matrices PpT i
f : i ∈ [0, n− 1], will look like

A=

















cn−1 c0 c1 · · · cn−m−1 cn−m · · · · · · cn−2

cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m · · · cn−3
...

. . . . . . . . . . . . . . . . . . . . .
...

cn−m+1 · · · cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m

−γ0 −γ1 · · · · · · · · · · · · · · · · · · γn−1

















m×n

where for i ∈ [0, n− 1] we have

γi = c0ai+c1ai−1+· · ·+cia0+0+ · · ·+ 0
︸ ︷︷ ︸

(n−m)

+cn−m+1+iam−1+· · ·+cn−2ai+2+cn−1ai+1. (5.9)

It is shown in [11] that

‖A‖TR =max
τ
|∆τ(A)| (5.10)

where the diagonal

∆τ = {(0,τ(0)), (1,τ(1)), · · · , (m− 1,τ(m− 1))} (5.11)

is a set of positions in a matrix A ∈ F m×n
q , and τ is an injection from [0, m − 1] to

[0, n− 1]. |∆τ(A)| denotes the number of nonzero entries in ∆τ.

For the case where p(x) is of the form xm − a0, (a0 ∈ F ∗q ), we have

36



A=

















cn−1 c0 c1 · · · cn−m−1 cn−m · · · · · · cn−2

cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m · · · cn−3
...

. . . . . . . . . . . . . . . . . . . . .
...

cn−m+1 · · · cn−2 cn−1 c0 c1 · · · cn−m−1 cn−m

−c0a0 −c1a0 · · · · · · · · · · · · · · · · · · −cn−1a0

















m×n

We know that there exists at least one nonzero coefficient in the linear combination

for all A∈ C , say ct ∈ Fq(t ∈ [0, n− 1]). The diagonal

∆τ = {ct = (0,1), ct = (1, 2), · · · , ct = (m− 1, n− 1),−ct a0 = (m, 0)}

corresponding to the nonzero coefficient ct , gives the desired maxτ |∆τ(A)| = m.

Therefore, we have ‖A‖TR = m,∀A∈ C , which makes C optimal. �
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6
Multi Polycyclic Codes

6.1 Generalized Quasi-cyclic Codes

Definition 6.1. An (n, k) linear block code of dimensions n= lno and k = lko, is called

quasi-cyclic if every cyclic shift of a codeword by no symbols is also a codeword.

Quasi-cyclic (QC) codes are another view of a generalization of cyclic codes. In the

above definition, a quasi-cyclic code actually has l cyclic components of the same

length. Quasi-cyclic codes are shown to be asymptotically good [35]. Many studies

have been conducted in terms of either exploring their algebraic structures [36–38]
or obtaining codes with good parameters [5, 39–41]. Recently, skew quasi-cyclic

codes are introduced and some skew QC codes having minimum Hamming distances

larger than previously best known linear codes of the same length and dimension are

obtained [33].

Definition 6.2. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
)

be a codeword of C. If a generalized quasi-cyclic shift of c;

(c1,n1
, c1,1, . . . , c1,n1−1, c2,n2

, c2,1, . . . , c2,n2−1, . . . , cl,nl
, cl,1, . . . , cl,nl−1)

is also a codeword in C , then C is a generalized quasi-cyclic code of length

(n1, n2, . . . , nl).

Generalized quasi-cyclic (GQC) codes are QC codes with cyclic components of different

lengths [42]. In [43], structures of the dual codes of GQC codes were studied by giving

a complete theory of generator polynomial matrices of GQC codes, including a relation

formula between generator polynomial matrices and parity-check polynomial matrices

through their equations. We give a brief summary of this theory here in order to clarify

the steps in applications to constacyclic and polycyclic cases.
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Definition 6.3. Let C be a GQC code, and let G = (gi, j) be an l x l matrix whose entries

are in Fq[x] and whose rows are codewords of C . If gi, j = 0 for all 1 ≤ i, j ≤ l with

i > j, namely, G is of the form

G =











g1,1 g1,2 · · · g1,l

0 g2,2 · · · g2,l
...

. . . . . .
...

0 · · · 0 gl,l











l x l

and moreover, for all 1 ≤ i ≤ l, gi,i has the minimum degree among all codewords of

the form (0, . . . , 0, ci, . . . , cl) ∈ C with ci 6= 0, then G is called a generator polynomial

matrix of C . If gi,i is monic for all 1 ≤ i ≤ l and G satisfies deg gi, j < deg g j, j for all

1≤ i 6= j ≤ l, then G is called reduced.

Definition 6.4. Let C be a GQC code, and let H = (hi, j) be an l x l matrix whose entries

are in Fq[x] and whose rows are codewords of C⊥. If hi, j = 0 for all 1 ≤ i, j ≤ l with

i < j, namely, H is of the form

H =













h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . . . . . 0

hl,1 hl,2 · · · hl,l













l x l

and moreover, for all 1 ≤ i ≤ l, hi,i has the minimum degree among all codewords

of the form (c1, . . . , ci, 0, . . . , 0) ∈ C⊥ with ci 6= 0, then H is called a parity-check

polynomial matrix of C . If hi,i is monic for all 1 ≤ i ≤ l and H satisfies deg hi, j <

deg h j, j for all 1≤ i 6= j ≤ l, then H is called reduced.

For each GQC code, the reduced generator polynomial matrix and the reduced

parity-check polynomial matrix are uniquely determined. From any generator

polynomial matrix and parity-check polynomial matrix, we can obtain the reduced

ones by elementary row operations of polynomial matrices. The exact algorithm for

obtaining the reduced generator polynomial matrix from a generator matrix G of a

GQC code, which is called Buchberger’s Algorithm, is described briefly as follows [43].

We start with the polynomial representation

G′ =











c1,1 c1,2 · · · c1,l

c2,1 c2,2 · · · c2,l
...

. . . . . .
...

ck,1 · · · ck,l−1 ck,l











kx l
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where ci, j ∈ Fq[x] for 1 ≤ i ≤ k and 1 ≤ j ≤ l. Let ci denote the i th row of G′ for

1≤ i ≤ k. In this algorithm, the following manipulations of the polynomial matrix are

carried out inductively.

1. If c1,1 = · · · = ck,1 = 0, then set c1 = (xn1 − 1,0, . . . , 0) and stop. If c1,1 6= 0 and

c2,1 = · · ·= ck,1 = 0, then stop.

2. By exchanging c1 for another row of c2, . . . , ck if it is required, we can assume

that c1,1 has the minimum degree among nonzero c1,1, . . . , ck,1.

3. Compute pi, ri ∈ Fq[x] such that ci,1 = pic1,1 + ri with deg ri < deg c1,1 for all

2≤ i ≤ k and replace ci with ci − pic1 for all 2≤ i ≤ k, and go to step 1.

After the above manipulations, c1 = (c1,1, . . . , c1,l) is denoted by g1 = (g1,1, . . . , g1,l)
and then we have g1,1 = gcd(c1,1, . . . , ck,1) from the initial matrix G′.

Now, G′ is converted to;

G′′ =











g1,1 g1,2 · · · g1,l

0 c2,2 · · · c2,l
...

. . . . . .
...

0 ck,2 · · · ck,l











kx l

where ci, j in G′′ is generally unequal to ci, j in G′.

Next, we apply the above manipulation to the submatrix;







c2,2 · · · c2,l
. . . . . .

...

ck,2 · · · ck,l







and continuing recursively we obtain the reduced form G.

6.2 Multi-twisted and Skew Multi-twisted Codes

Multi-twisted codes have been proposed by Aydin and Halilović [44] and their duals

have been explored recently by Sharma et al. [45].

Definition 6.5. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
)
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be a codeword of C. Let α1,α2, . . . ,αl ∈ F ∗q and α= (α1, . . . ,αl).

If α-multi-twisted shift of c;

(α1c1,n1
, c1,1, . . . , c1,n1−1,α2c2,n2

, c2,1, . . . , c2,n2−1, . . . ,αl cl,nl
, cl,1, . . . , cl,nl−1)

is also a codeword in C for all c ∈ C , then C is an α-multi-twisted code of length

(n1, n2, . . . , nl).

Definition 6.6. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
)

be a codeword of C. Let θ be an automorphism of Fq, α1,α2, . . . ,αl ∈ F ∗q and α =
(α1, . . . ,αl). If skew α-multi-twisted shift of c;

Mα(c) = (α1θ (c1,n1
),θ (c1,1), . . . ,θ (c1,n1−1),α2θ (c2,n2

),θ (c2,1), . . . ,θ (c2,n2−1),

. . . ,αlθ (cl,nl
),θ (cl,1), . . . ,θ (cl,nl−1))

is also a codeword in C , then C is a skew α-multi-twisted code of length (n1, n2, . . . , nl).

Briefly, a multi-twisted code is a GQC code with different constacyclic components.

The case where αi = 1 for all 1 ≤ i ≤ l corresponds to a skew GQC code [46], and

the case where l = 1 corresponds to a skew constacyclic code which is invariant under

skew α-constacyclic shift [7].

Let R = Fq[x;θ] and Ri = Fq[x;θ]/(xni − αi). In polynomial representation form, a

skew α-multi-twisted code C is a left R-submodule of M = R1×R2× . . .×Rl . Here, we

adopt and extend the method introduced in [43] to a family of skew α-multi-twisted

codes. Let

φ : Fq[x;θ]l → M

( f1, f2, . . . , fl)→ ( f1 mod (xn1 −α1), f2 mod (xn2 −α2), . . . , fl mod (xnl −αl))

For a skew α-multi-twisted code C , define D = φ−1(C). For the zero codeword

(0, 0, . . . , 0) ∈ C , its preimage φ−1((0, 0, . . . , 0)) consists of the vectors of the following

form:

(0, . . . , 0
︸ ︷︷ ︸

i−1

, xni −αi, 0, . . . , 0
︸ ︷︷ ︸

l−i

) (6.1)

for all 1≤ i ≤ l. Conversely, if a left R-submodule D ⊂ Fq[x;θ]l includes l polynomial
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vectors of the form (6.1), then φ(D) determines a skew α-multi-twisted code.

We view a skew α-multi-twisted code C in Fq[x;θ]l as a submodule and identify each

skew α-multi-twisted code with an l × l polynomial generator matrix.

The below results are immediate consequences of the corresponding ones in the

commutative case [43].

Lemma 6.1. Let G be an l×l reduced polynomial matrix. Then G is the reduced generator

polynomial matrix of a skew α-multi-twisted code C if and only if there exists an l × l

matrix A with entries in Fq[x;θ] such that

AG = diag[xn1 −α1, . . . , xnl −αl]. (6.2)

Lemma 6.2. Let G be an l × l reduced polynomial matrix and A = [ai, j] be a matrix

satisfying (6.2). Then A is an upper triangular matrix, satisfying deg
�

ai,i

�

> deg
�

ai, j

�

for all 1≤ i, j ≤ l.

6.2.1 Duality Theorem for Skew Multi-twisted codes

In this part, we state and prove a theorem that reveals the structure of dual codes of

skew (α1, . . . ,αl)-multi-twisted codes. This goal is achieved by generalizing Theorem

4.13 for l > 1 and obtaining the reduced parity-check polynomial matrices of skew

(α1, . . . ,αl)-multi-twisted codes from their reduced generator polynomial matrices.

Throughout this section we set m|ni, where m= |〈θ 〉|.

Theorem 6.3. Let C be a skew (α1, . . . ,αl)-multi-twisted code of length (n1, . . . , nl) over

Fq. Then, the dual code C⊥ is a skew (α−1
1 , . . . ,α−1

l )-multi-twisted code.

Proof. Let Mα−1(c) be the skew (α−1
1 , . . . ,α−1

l )-multi-twisted shift of c. Let

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
) ∈ C

and

d = (d1,1, . . . , d1,n1−1, d1,n1
, d2,1, . . . , d2,n2−1, d2,n2

, . . . , dl,1, . . . , dl,nl−1, dl,nl
) ∈ C⊥,

then c ·d =
∑l

j=1

∑n j

i=1 c j,id j,i = 0. We want to show that c ·Mα−1(d) = 0, i.e. Mα−1(d) ∈
C⊥.

Since C has a finite number of codewords, there exist a number s such that M s
α
(c) = c.
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Let

w= M s−1
α
(c) = (θ−1(c1,2), . . . ,θ−1(c1,n1

),θ−1(α−1
1 c1,1),

θ−1(c2,2), . . . ,θ−1(c2,n2
),θ−1(α−1

2 c2,1),

. . . ,θ−1(cl,2), . . . ,θ−1(cl,nl
),θ−1(α−1

l cl,1)).

Then,

0= w · d =(θ−1(c1,2)d1,1 + · · ·+ θ−1(c1,n1
)d1,n1−1 + θ

−1(α−1
1 c1,1)d1,n1

)+

(θ−1(c2,2)d2,1 + · · ·+ θ−1(c2,n2
)d2,n2−1 + θ

−1(α−1
2 c2,1)d2,n2

) + · · ·+

(θ−1(cl,2)dl,1 + · · ·+ θ−1(cl,nl
)dl,nl−1 + θ

−1(α−1
l cl,1)dl,nl

).

Since θ (0) = 0, we have,

0=[(c1,1, c1,2, . . . , c1,n1
) · (α−1

1 θ (d1,n1
),θ (d1,1), . . . ,θ (d1,n1−1))]+

[(c2,1, c2,2, . . . , c2,n1
) · (α−1

2 θ (d2,n2
),θ (d2,1), . . . ,θ (d2,n2−1))] + · · ·+

[(cl,1, cl,2, . . . , cl,nl
) · (α−1

l θ (dl,nl
),θ (dl,1), . . . ,θ (dl,nl−1))]

=c ·Mα−1(d).

Therefore C⊥ is a skew (α−1
1 , . . . ,α−1

l )-multi-twisted code. �

Lemma 6.4. Let G be the reduced generator polynomial matrix of a skew α-multi-twisted

code C, A be the l × l upper triangular polynomial matrix satisfying AG = diag[xn1 −
α1, . . . , xnl−αl], and N = lcm(n1, . . . , nl)lcm(o(α1), . . . , o(αl)). Then G′A= diag [xN−
1, . . . , xN − 1], where

G′ = G diag [
xN − 1

xn1 −α1
, . . . ,

xN − 1
xnl −αl

].

Proof. Let I be the l × l identity matrix.

AG = diag [xn1 −α1, . . . , xnl −αl]⇒ diag[
xN − 1

xn1 −α1
, . . . ,

xN − 1
xnl −αl

]AG = (xN − 1)I

⇒ Gdiag[
xN − 1

xn1 −α1
, . . . ,

xN − 1
xnl −αl

]AG = G(xN − 1)I

⇒ G′AG = (xN − 1)G, since xN − 1 ∈ Z (Fq[x;θ])

⇒ G′AG − (xN − 1)G = 0

⇒ (G′A− (xN − 1)I)G = 0.

Since G is an upper triangular polynomial matrix with nonzero diagonal entries and

Fq[x;θ] has no zero divisors, G′A− (xN − 1)I = 0 which implies G′A = (xN − 1)I =
diag [xN − 1, . . . , xN − 1]. �
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Theorem 6.5. Let G = [gi, j(x)] be the reduced generator polynomial matrix of a skew α-

multi-twisted code C of length (n1, . . . , nl) over Fq where α= (α1, . . . ,αl) ∈ (F ∗q )
l , and let

A= [ai, j(x)] be the polynomial matrix which satisfies AG = diag[xn1−α1, . . . , xnl −αl].
Then,

H =













xdeg a1,1 a〈n1,α1〉
1,1 (x) 0 · · · 0

xdeg a2,2 a〈n1,α1〉
1,2 (x) xdeg a2,2 a〈n2,α2〉

2,2 (x) . . . ...
... . . . . . . 0

xdeg al,l a〈n1,α1〉
1,l (x) xdeg al,l a〈n2,α2〉

2,l (x) · · · xdeg al,l a〈nl ,αl 〉
l,l (x)













l×l

where each i th column of H is considered modulo xni −α−1
i . If ai,i(x) = xni −αi, then we

set xdeg ai,i a〈ni ,αi〉
i,i (x) = xni −α−1

i . Then, H is a parity-check polynomial matrix of C.

Proof. Let N = lcm(n1, . . . , nk)lcm(o(α1), . . . , o(αl)) and G′ be defined as in Lemma

6.4. From Lemma 6.4 we have G′A= diag[xN − 1, . . . , xN − 1] where

l
∑

k=1

gi,k(x)
xN − 1

xnk −αk
ak, j(x) =







0, i 6= j

xN − 1, i = j

for 1≤ i, j ≤ l. Thus, for a fixed i and j we have

gi,1(x)
xN − 1

xn1 −α1
a1, j(x) + gi,2(x)

xN − 1
xn2 −α2

a2, j(x)+

· · ·+ gi,l(x)
xN − 1
xnl −αl

al, j(x) = 0 (mod xN − 1). (6.3)

From Theorem 4.13, the coefficient of x0 in Equation 6.3 is

gi,1 · a
〈n1,α1〉
1, j + gi,2 · a

〈n2,α2〉
2, j + · · ·+ gi,l · a

〈nl ,αl 〉
l, j = 0,

which implies (gi,1, gi,2, . . . , gi,l) · (a
〈n1,α1〉
1, j , a〈n2,α2〉

2, j , . . . , a〈nl ,αl 〉
l, j ) = 0.

Using the same approach as in the proof of Theorem 4.13, if we multiply Equation

(6.3) with x b from left, then the coefficient of x0 gives M b
α
((gi,1, gi,2, . . . , gi,l)) ·

(a〈n1,α1〉
1, j , a〈n2,α2〉

2, j , . . . , a〈nl ,αl 〉
l, j ) = 0. Hence, (a〈n1,α1〉

1, j , a〈n2,α2〉
2, j , . . . , a〈nl ,αl 〉

l, j ) is in C⊥ for all

i, j ∈ {1, . . . , l}.
Thus xdeg a j, j(a〈n1,α1〉

1, j (x), a〈n2,α2〉
2, j (x), . . . , a〈nl ,αl 〉

l, j (x)), which is exactly the jth row of H,

also belongs to C⊥. Lastly, we need to show that the diagonal entries of H satisfy the

minimum degree condition. This can be shown by using similar tools as in Theorem 1

of [43]. The same arguments hold for the skew polynomial case since we are working

on left modules. �
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Here, we give some concrete examples to illustrate our theoretical results.

Example 6.1. Let θ be an automorphism of F4 defined by θ (β) = β2 for any β ∈
F4, in this case |〈θ 〉| = 2. We consider the skew polynomial ring F4[x;θ] where F4 =
{0, 1,α,α2}. Let

A=







x4 +α2 x3 +α2 x + 1 x3 + x2 +α2 x +α x3 +α2 x2 + x

0 x + 1 α2

0 0 1







3×3

and

G =







x2 +α2 x + 1 x2 +α2 x +α x3 +α2 x2 + 1

0 x3 + x2 + x + 1 αx3 +α2 x2 +αx +α2

0 0 x4 + 1







3×3

.

The above matrices satisfy AG = diag[x6−1, x4−1, x4−1]. Therefore G is a generator

matrix for a skew GQC code C of length (6,4, 4) and C is a [14, 5,4] code. By Theorem

6.5, the parity-check polynomial matrix for C is

H =







x4 +αx3 +αx + 1 0 0

x5 + x4 +α2 x +α2 x + 1 0

x5 +α2 x4 + x3 α2 1







3×3

.

Further, we present their corresponding generator matrices of the code and its dual

G =

















1 α2 1 0 0 0 α α2 1 0 1 0 α2 1

0 1 α 1 0 0 0 α2 α 1 1 1 0 α

0 0 1 α2 1 0 1 0 α α2 α2 1 1 0

0 0 0 1 α 1 α 1 0 α2 0 α 1 1

0 0 0 0 0 0 1 1 1 1 α2 α α2 α

















5×14

and

H =



































1 α 0 α 1 0 0 0 0 0 0 0 0 0

0 1 α2 0 α2 1 0 0 0 0 0 0 0 0

α2 α2 0 0 1 1 1 1 0 0 0 0 0 0

1 α α 0 0 1 0 1 1 0 0 0 0 0

1 1 α2 α2 0 0 0 0 1 1 0 0 0 0

0 0 0 1 α2 1 α2 0 0 0 1 0 0 0

1 0 0 0 1 α 0 α 0 0 0 1 0 0

α2 1 0 0 0 1 0 0 α2 0 0 0 1 0

1 α 1 0 0 0 0 0 0 α 0 0 0 1



































9×14

.

Now, one can easily check that G ·H t r = 0 and the dual code C⊥ is a [14,9, 3] code.
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Example 6.2. Next we consider again the skew polynomial ring F4[x;θ] given in Exam-

ple 6.1, with the following moderate size matrices:

A=







x2 +α 1 0

0 x4 +α2 x2 +α
0 0 1







3×3

,

and

G =







x2 +α x2 +α x4 +α2

0 x4 +α2 x6 +αx4 +α2 x2 + 1

0 0 x8 +α







3×3

.

It can be easily shown that AG = diag[x4−α2, x8−α, x8−α]. Therefore G is a generator

matrix for a skew α-multi-twisted code C of length (4,8, 8), where α= (α2,α,α),

We have dim(C) =
∑

ni − deg(gi,i) = 2+ 4+ 0= 6. C is a [20, 6,4] code.

By Theorem 6.5, the parity-check polynomial matrix for C is

H =







x2 +α2 0 0

α x4 +α 0

0 x6 + 1 α2







3×3

.
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6.3 Multi Polycyclic Codes

We will call GQC codes with l polycyclic components of different lengths as multi

polycyclic codes.

6.3.1 Multi Polycyclic Codes over Skew Polynomial Rings

Definition 6.7. Let C be a linear code over Fq and

c = (c1,1, . . . , c1,n1−1, c1,n1
, c2,1, . . . , c2,n2−1, c2,n2

, . . . , cl,1, . . . , cl,nl−1, cl,nl
)

be a codeword of C. Let θ be an automorphism of Fq, f1 = xn1 − v1(x), . . . , fl = xnl −
vl(x) ∈ Fq[x;θ] polynomials with nonzero constant terms and v = (v1, . . . , vl). If a

skew v-multi polycyclic shift of c,

Mv(c) = (Tf1(θ (c1,1), . . . ,θ (c1,n1−1)), Tf2(θ (c2,1), . . . ,θ (c2,n2−1)), . . . ,

Tfl
(θ (cl,1), . . . ,θ (cl,nl−1)))

is also a codeword in C , then C is called a skew v-multi polycyclic code of length

(n1, n2, . . . , nl).

Reduced generator polynomial matrices of skew v-multi polycyclic codes can be

defined in a similar way as in the case of skew α-multi-twisted codes.

6.3.2 Duality Theorem for Skew Multi Polycyclic Codes

We have seen, for the case l = 1, that h is obtained from the first n coordinates of a′〈N ,1〉,

where a′(x) = xN−1
f (x) a(x). In order to easily interpret this situation in the sequel, let us

denote the first n coordinates of a′〈N ,1〉 by (a′〈N ,1〉)n.

Theorem 6.6. Let fi(x) = xni − vi(x) ∈ Fq[x;θ] be polynomials with nonzero constant

terms, v = (v1, . . . , vl), and xN − 1 be a central polynomial such that fi(x)|r xN − 1 for

all 1 ≤ i ≤ l. Let G = [gi, j(x)] be the reduced generator polynomial matrix of a skew v-

multi polycyclic code C of length (n1, . . . , nl) over Fq. Let A= [ai, j(x)] be the polynomial

matrix which satisfies AG = diag[ f1(x), . . . , fl(x)].

Then,
l
∑

k=1

gi,k(x)
xN − 1
fk(x)

ak, j(x) =







0, i 6= j

xN − 1, i = j
.
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Moreover, if hi, j = (a
′〈N ,1〉
j,i )n j

where a′j,i(x) =
xN−1
f j(x)

a j,i(x), then the block matrix

H =













[h1,1]deg(g1,1) 0 · · · 0
�

h2,1

�

deg(g2,2)

�

h2,2

�

deg(g2,2)
0

...
...

... . . . 0
�

hl,1

�

deg(gl,l )
[hl,2]deg(gl,l ) · · · [hl,l]deg(gl,l )













l×l

is a parity-check matrix of C, where

[hi, j]deg(gi,i) :=













hi, j

((T−1
f j
)t r ◦Θ)(hi, j)

...

((T−1
f j
)t r ◦Θ)deg(gi,i)−1(hi, j)













.

Proof. Applying Lemma 6.4, G′A= diag[xN − 1, . . . , xN − 1] implies

l
∑

k=1

gi,k(x)
xN − 1
fk(x)

ak, j(x) =







0, i 6= j

xN − 1, i = j,

for 1≤ i, j ≤ l, where G′ = Gdiag[ xN−1
f1

, . . . , xN−1
fl
]. For a fixed i and j we have

gi,1(x)
xN − 1
f1(x)

a1, j(x) + gi,2(x)
xN − 1
f2(x)

a2, j(x) +

· · ·+ gi,l(x)
xN − 1
fl(x)

al, j(x) = 0 (mod xN − 1). (6.4)

As in Theorem 4.16, the coefficient of x0 is;

gi,1 · (a
〈N ,1〉
1, j )n1

+ gi,2 · (a
〈N ,1〉
2, j )n2

+ · · ·+ gi,l · (a
〈N ,1〉
l, j )nl

= 0,

which implies (gi,1, gi,2, . . . , gi,l) · ((a
〈N ,1〉
1, j )n1

, (a〈N ,1〉
2, j )n2

, . . . , (a〈N ,1〉
l, j )nl

) = 0. Multiplying

Equation (6.4) with x b from the left, we obtain

M b
v ((gi,1, gi,2, . . . , gi,l)) · ((a

〈N ,1〉
1, j )n1

, (a〈N ,1〉
2, j )n2

, . . . , (a〈N ,1〉
l, j )nl

) = 0

from the coefficient of x0. Hence (h j,1, h j,2, . . . , h j,l) ∈ C⊥ for all j ∈ {1, . . . , l}. For

each diagonal block of H we have ai,i(x)gi,i(x) = fi(x). From Theorem 4.16, the set

{hi,i, ((T−1
fi
)t r ◦ Θ)(hi,i), . . . , ((T−1

fi
)t r ◦ Θ)deg(gi,i)−1(hi,i)} is linearly independent for all

1≤ i ≤ l. Therefore the rows of H are also linearly independent. Since the dimension

of C⊥ is exactly
∑l

i=0 deg(gi,i(x)), H is a parity-check polynomial matrix of C . �
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Example 6.3. Let us take the skew polynomial ring F4[x;θ] given in Example 6.1. Let

f1(x) = x6+α2 x2+α2, f2(x) = x8+α2 x6+ x4+αx2+a and f3(x) = x10+αx6+ x4+α.

In this case, we have N = 120, and f1(x), f2(x), f3(x)|r x120 − 1. Now let us form the

following matrices

A=







x2 +α2 0 1

0 x4 +αx2 + 1 0

0 0 x2 +α







3x3

,

G =







x4 +α2 x2 + 1 0 x6 + x4 +αx2 +α
0 x4 + x2 +α 0

0 0 x8 +αx6 + x4 +α2 x2 + 1







3x3

.

We have AG = diag[ f1(x), f2(x), f3(x)]. Then G = [gi, j(x)] is the reduced

generator polynomial matrix of a skew v = (v1, v2, v3)-multi polycyclic code C of

length (6,8, 10), where v1 = (α2, 0,α2, 0, 0, 0), v2 = (α, 0,α, 0, 1, 0,α2, 0) and v3 =
(α, 0, 0, 0, 1, 0, a, 0, 0, 0).

Now, by applying the algorithm presented in Theorem 6.6, we obtain a parity-check ma-

trix for C as

H =







[h1,1]deg(g1,1) 0 0
�

h2,1

�

deg(g2,2)

�

h2,2

�

deg(g2,2)
0

�

h3,1

�

deg(g3,3)
[h3,2]deg(g3,3) [h3,3]deg(g3,3)







3x3

where h1,1 = (1, 0,0, 0,1, 0), h2,1 = 0, h2,2 = (α2, 0, 0, 0, 1, 0, 1, 0), h3,1 =
(α, 0, 0, 0, 0, 0), h3,2 = 0 and h3,3 = (1,0, 0,0, 0,0, 0,0, 1,0).
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7
Results And Discussion

This thesis contributes to studies on error correcting codes in terms of clarifiying

structural properties of polycyclic codes which appears to be the most general

family of linear codes in terms of cyclicity. We have given generator and parity

check conditions for these codes over different algebraic structures. The most

important contributions involve introducing multi polycyclic codes which are GQC

codes with different polycylic components, giving duality theorems and promoting a

new polycyclic construction for codes over matrix spaces. An extensive approach was

provided on polycyclic codes over skew polynomial rings.

Even though being constructable with shortening method may seem as a weakness for

polycyclic codes, avoiding to start with a huge length cyclic code while using polycyclic

codes directly makes it an advantage in terms of storage and time in practice.

Future studies may be on examining decoding procedures for polycyclic codes. One

of them may involve neural network decoding. Artificial intelligence techniques have

found applications nearly in every technological area with the near-human capabilities

of artificial neural networks. There are remarkable number of studies recently in

applications of neural networks on decoding of linear codes. Recent studies in neural

network decoding for linear block codes show that codes with more structure seem to

provide better results in decoding with neural networks. Therefore polycyclic codes

are promising for analyzing their neural network decoding performance.
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A
Scripts for Computing Minimum Term Rank Distance

A.1 Construction of the Code - Magma Script
//Set associated polynomial p, base polynomial f and output file name
//Copy m, n and the output filepath for later use in python function

K<a>:=GF(2^2);
F<x>:= PolynomialRing(K);
p:= x^5 + a^2*x^4 + x^3 + x^2 + a*x + 1;
f:= x^11-1;
m:=Degree(p);
n:=Degree(f);
T:= CompanionMatrix(f);
V:= KMatrixSpace(K,m,n);
M:=MatrixRing(K,n);

Z1 := [0: x in [1..m*(n-m)]];
P := HorizontalJoin(CompanionMatrix(p),Matrix(K, m, n-m, Z1));
B := { V!P*T^i : i in [0..n-1]};
S:= sub< V | B >;

SetOutputFile("5x11.txt");
for s in S do
for i in [1..m] do
for j in [1..n] do
print s[i,j];
end for;
print "$";
end for;
print "@";
end for;
UnsetOutputFile();
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A.2 Computing Minimum Term Rank Distance - Python Script
import numpy as np
import networkx as nx
from networkx.algorithms import bipartite
import itertools
from networkx.convert import _prep_create_using
from networkx.convert_matrix import _generate_weighted_edges
import scipy
from scipy import linalg

# Given a file path of Magma file of the constructed code, computes
the minimum term rank distance of an m x n code over GF(4)^mn.

def Minimum_Term_Rank_Distance(m,n, filepath):
fname = filepath
fhand = open(fname)
L = list()
S = str()
# Denote field-specific elements by 1
for line in fhand:

line = line.strip()
if "a^2" in line:

line = line.replace("a^2","1")
elif "a" in line:

line = line.replace("a","1")
S = S + line

M = S.strip().split("@")

# Remove irrelevant characters inserted for environmental
implementations

for s in M:
s = s.split("$")
L.append(s)

for l in L:
if len(l) < m+1 :

L.remove(l)
else:

l.remove("")

K = list()
for item in L:
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M = list()
for i in range(m):

M.append([int(r) for r in item[i]])
A = scipy.sparse.csr_matrix(M)
G = nx.bipartite.from_biadjacency_matrix(A)
D = nx.bipartite.maximum_matching(G)
termrank = int(len(D.items())/2)
if termrank != 0:

K.append(termrank)
print("D_tr = ", min(K))

For the cyclic code in the first example, we call the function with parameters (5,11,

"5x11.txt") and we get that it has a minimum term rank distance of 3, and therefore

it is optimal.

This example is taken over the field F4. One may change the field and then slight

modifications should be applied to the scripts if there exist more field-specific non-zero

and non-integer elements.
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