
REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

SOLVING DIFFERENTIAL EQUATIONS USING

NUMERICAL METHODS: DIFFERENTIAL QUADRATURE

Gülsemay YİĞİT
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ABSTRACT

SOLVING DIFFERENTIAL EQUATIONS USING
NUMERICAL METHODS: DIFFERENTIAL QUADRATURE

Gülsemay ẎIĞİT

Department of Mathematical Engineering

Doctor of Philosophy Thesis

Advisor: Prof. Dr. Mustafa BAYRAM

This thesis presents numerical schemes to solve differential equations using the

method of polynomial differential quadrature. Differential quadrature (DQ) is a

discrete derivative approximation method which provides highly accurate numerical

solutions for differential equations. Determination of the weighting coefficients is

investigated in detail, which is essential for the implementation of the present method.

Simplified formulations of these coefficients are also stated by using zeros of the

Chebyshev polynomials. The implementation of DQ to linear or nonlinear ordinary

differential equations is established by producing the set of algebraic equations.

The application of DQ to partial differential equations results in systems of

time-dependent differential equations. These time dependent differential equations

systems are integrated by the Runge-Kutta method. The DQ method is then applied

to solve five different time-dependent partial differential equations. Each of the five

equation is solved numerically by giving illustrative test problems with the stability

analysis. Linear and nonlinear diffusion equations, reaction-diffusion equation in

non-homogeneous media, the Kuramoto-Sivashinsky equation, the inviscid Burgers’

equation and the Ginzburg-Landau equation are studied by using the proposed

method. Solutions accomplished by the present scheme are compared to the analytical

or well-known numerical methods.
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ÖZET

DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ:
DİFERENSİYEL QUADRATURE

Gülsemay ẎIĞİT

Matematik Mühendisliği Bölümü

Doktora Tezi

Danı̧sman: Prof. Dr. Mustafa BAYRAM

Bu tez çalı̧smasında, polinom tabanlı diferensiyel quadrature metodu kullanılarak

diferensiyel denklemlerin nümerik şemaları sunulmuştur. Diferensiyel quadrature

(DQ), diferensiyel denklemlerin çözümüne yüksek doğruluklu nümerik

çözümler veren, bir ayrık türev yaklaşımı metodudur. Ele alınan bu metodun

uygulanabilmesinde gereken ağırlıklı katsayıların nümerik hesabı ayrıntılı bir şekilde

incelenmi̧stir. Bu katsayıların, Chebyshev polinomlarının köklerinden elde edilen

sadeleştirilmi̧s formülasyonları, ayrıca verilmi̧stir. DQ metodunun lineer veya lineer

olmayan adi diferensiyel denklemlere uygulanması cebirsel denklem sistemlerinin

oluşturulması ile yapılmı̧stır.

DQ metodunun kısmi diferensiyel denklemlere uygulanması ile zamana bağlı adi

diferensiyel denklem sistemleri elde edilir. Bu diferensiyel denklem sistemlerinin

zaman integrasyonu Runge-Kutta metodu ile yapılmı̧stır. Daha sonra, DQ metodu,

beş farklı zamana bağlı kısmi diferensiyel denkleme uygulanmı̧stır. Ele alınan tüm

kısmi türevli diferensiyel denklemler, açıklayıcı test problemler ve stabilite analizleri

verilerek nümerik olarak çözülmüştür. Lineer ve lineer olmayan difüzyon denklemleri,

homojen olmayan malzemelerde reaksiyon-difüzyon denklemi, Kuramoto-Sivashinky

denklemi, viskozitesiz Burgers’ denklemi ve lineer olmayan Ginzburg-Landau

denklemi önerilen metotla çalı̧sılmı̧stır. Sunulan metot ile edilen nümerik sonuçlar,

analitik veya iyi bilinen nümerik metotlarla karşılaştırılmı̧stır.
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1
INTRODUCTION

Scientists and engineers try to formalize schemes of events in nature using

mathematical models. These mathematical models can be in the forms of algebraic,

differential or other types of equations. Most mathematical models that give rise

to differential equations may not have analytical solutions. Alternatively, numerical

simulations of such models are suggested for the solution of governing equations by

employing numerical methods [1]. It is also well-known that numerical discretization

techniques play a fundamental role for the solutions of most engineering problems

due to their fast and effective outcomes especially when analytical solutions fail to

provide practical way forward [2].

Differential quadrature (DQ) is a discrete derivative process which gives highly

accurate solutions to a single or system of differential equations. The current method

approximates the derivative of the function by a weighted sum of function values on

the whole domain. It provides efficient numerical solutions with relative ease to code

the implementation of the required algorithms [3].

1.1 Literature Review

The differential quadrature method (DQM) was introduced by Bellman [4] and his

associates to propose an alternative form for the existing numerical methods such as

finite difference and finite element methods. The scheme has been widely applied to

numerous equations in engineering and physical disciplines [2].

The essential part of the present discretization scheme is to determine the weighting

coefficients. Bellman et al [4, 5] introduced two approaches to build up the weighting

coefficients for the derivative of order one. First approach solves an algebraic system.

The second method uses shifted Legendre polynomials as test function and grid points

are preferred as zeros of shifted Legendre polynomials. First approach of Bellman does

not provide practical solutions when the grid points are getting larger. This difficulty

1



was resolved by Quan and Chang [6, 7] who proposed the application of Lagrange

polynomials to compute the weighting coefficients of order one and two. Shu [8]
generalized the idea of previous forms of weighting coefficients using polynomial

approximation theory in association with the properties of linear vector space and

concluded that weighting coefficients can be determined by appropriate choice of

the basis functions. Useful formulas are proposed in [8] to compute derivatives of

any order. Stability analysis based on eigenvalue distribution is also explored in [8]
together with different time integration schemes. Shu also presented the relationships

between finite difference and collocation methods with the differential quadrature

method [8].

Several independent formulations are presented in literature to determine weighting

coefficients which is necessary to yield numerical solutions. To name a few, Korkmaz

and Dag [9] used sinc functions, Cheng et al [10] employed Hermite polynomials, Shu

and Wu [11] used radial basis functions, Mittal [12] proposed Bernstein polynomials

based differential quadrature, O’Mahoney [13] applied Laguaree polynomials, Dag

et al [14] employed cosine expansion situated differential quadrature. Korkmaz

and Dag [15] applied cosine expansion for solutions of Schrödinger equation and

Korkmaz and Dag [16, 17] also solved same model using polynomial based differential

quadrature. Korkmaz [18] solved Korteweg–de Vries (KdVE) equation with Lagrange

and Fourier basis. Korkmaz and Dag [19] also solved Burgers’ equation using

polynomial differential quadrature.

One of the popular approach to choose basis functions, is B-splines to acquire

numerical solutions. A wide range of applications in literature are based on B-spline

differential quadrature. For example, Zhong [20] studied quintic B-spline basis

differential quadrature for solutions of fourth order differential equations. Arora and

Singh [21] used modified B-splines to generate weighting coefficients. Korkmaz [22]
employed different types of B-spline functions as base and applied the present method

to one-dimensional physical models. Korkmaz et al [23–27] implemented B-spline

generated differential quadrature to various equations. They used Runge-Kutta

scheme for time discretization with stability analysis of the presented equations.

Başhan et al [28–33] also used B-splines for solutions of many different equations.

Mittal and Dahiya [34–37] studied on various equations using quadrature methods

generated by B-splines.

DQ method has been extensively used in areas such as material science, thermal and

structural mechanical analysis as well as physics and biology. Some applications

on mechanics can be found in [2, 3, 8, 38–42]. Mittal and Jiwari [43] studied

some nonlinear differential equations which models various processes in biology.
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Akman [44] solved diffusion equations in two-dimensions with different types of

boundary conditions with Runge-Kutta time integration. Meral and Tezer-Sezgin

[45] solved nonlinear reaction-diffusion equation in one and two dimensional space

using polynomials as base functions. In a subsequent paper, Meral and Tezer-Sezgin

[46] employed differential quadrature to nonlinear reaction-diffusion and nonlinear

wave equations using three different time integration schemes. Tomasiello [47–49]
proposed iterative differential quadrature method with stability analysis. Tomasiello

[50] introduced differential quadrature least square method and employed to buckling

problem with elastic supports.

The DQM is generally used to discretize space derivatives. A number of studies

show that DQM gives effective results in temporal discretization as well. Chen [38]
proposed DQ based time integration scheme. Fung [51, 52] presented DQ based

time discretization algorithms which are unconditionally stable with the analysis of

grid point distributions. Shu et al [53] explored block marching technique with

differential quadrature and concluded that scheme obtained by block-marching gives

better solutions when compared to classical Runge-Kutta. Wang [54] studied DQ based

time integration and applied it to nonlinear dynamic equations.

1.2 Objective of the Thesis

The work of the current thesis aims to achieve numerical solutions for some

important differential equations using polynomial differential quadrature method.

Differential quadrature algorithm is applied to one-dimensional time dependent

problems together with sample cases to show the accuracy of the method. We also

aim to present an approach for computing the weighting coefficients using Chebyshev

polynomials. The present scheme is demonstrated to provide effective numerical

results for model equations in all cases.

1.3 Hypothesis

Polynomial approximation is used to generate weighting coefficients to discretize

spatial derivatives. First order weighting coefficients are determined and used to

evaluate higher coefficients which are used in procedures of solving the model

problems. Time integration of the partial differential equation is performed by

Runge-Kutta method of fourth order which has strong stability properties. Matrix

stability analysis is implemented related to the eigenvalues of space discretization

matrix. Efficiency is shown on sample equations by computing error norms.
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1.4 Thesis Plan

This thesis contains five chapters. First chapter consists of detailed literature

survey and motivation for the study. Second chapter introduces the procedure of

implementation for the differential quadrature method together with the computation

of weighting coefficients matrix based on Chebyshev polynomials. Runge-Kutta

method of order four and its stability criteria are also presented. In the third chapter,

application of the current method regarding for some ordinary differential equations

is studied. A number of models with higher order singularly perturbed problems are

investigated by the proposed technique.

Chapter four constitutes the main results of this thesis. In this chapter, five different

time-dependent model problems are numerically solved. These consists of linear

and nonlinear diffusion equations, reaction-diffusion equations in non-homogenous

media, the Kuramoto-Sivashinsky equation, the inviscid Burgers’ equation and the

Ginzburg-Landau equation. In the fourth chapter, all problems are analyzed with

stability results.

In the final chapter, all results are discussed with the advantages and disadvantages

of the proposed schemes with possible future extensions of the work.
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2
METHODOLOGY

Differential quadrature method (DQM) incorporates higher order polynomial

approximation to provide numerical solutions. This approximation is used to compute

the weighting coefficients matrix which is essential to assemble numerical schemes for

solving ordinary or partial differential equations.

This chapter provides definitions related with DQM and computing of weighting

coefficients with the relevant description of polynomial differential quadrature

strategies. Throughout the thesis time-dependent problems are discretized using

Runge-Kutta time integration scheme where the application of DQ is used to

approximate spatial derivatives. We combine the differential quadrature and

Runge-Kutta method of order four towards the final part of this chapter.

2.1 The Differential Quadrature Method

Let f (x) be a continuous and differentiable function of x defined in [a, b] ⊂ ℜ.

Numerical derivative of f at each nodal point x i is indicated as the weighted sum

of function values on the entire domain. Quadrature description of first derivative at

each nodes is formulated as [8],

fx(x i) =
d f
d x

�

�

�

�

x i

=
N
∑

j=1

wi j f (x j) i = 1, 2, · · · , N . (2.1)

Here, wi j is called as weighting coefficients and N is the number of spatial grid on the

problem domain. The n-th order derivative formulation is defined using same idea,

f (n)x (x i) =
d f
d x

�

�

�

�

x i

=
N
∑

j=1

w(n)i j f (x j) i = 1, 2, · · · , N , (2.2)

where w(n)i j is n-th order coefficients. The primary aspect of the procedure is to

determine weighting coefficients w(n)i j . The differential quadrature method (DQM)
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mainly depends on high order polynomial approximation of a smooth function. The

coefficients for first order derivative are calculated, then higher order derivatives are

obtained by recurrent formulas [8].

Weierstrass’ first theorem [8]: If f (x) is a real valued continuous function on [a, b]
with any ε > 0. Then, there exists a polynomial p with the degree n such that,

| f (x)− pn(x)| ≤ ε, (2.3)

maintains throughout the domain [a, b].

Assume that u is the unknown function of a differential equation, then u is represented

as,

u(x)≈ pN (x) =
N−1
∑

k=0

ck x k, (2.4)

where ck are constants corresponding to the index k. Here, p denotes a linear vector

space VN where N represents its dimension. Thus, set of polynomials 1, x , x2, x3, in

such vector space are linearly independent. It is therefore that, ek = x k−1 is a basis of

VN .

The function values at specific nodal points should be determined to achieve numerical

solution of a differential equation. Assume that, there are N nodes on [a, b] in the

form of a = x1, x2, · · · , xN = b and the function value at a discrete point x i is given as

u(x i). Then the constants ck are obtained from the solution of the following system of

equations,

u(x1) = c0 + c1 x1 + c2 x2
1 + · · ·+ cN−1 xN−1

1 ,

u(x2) = c0 + c1 x2 + c2 x2
2 + · · ·+ cN−1 xN−1

2 ,
...

u(xN ) = c0 + c1 xN + c2 x2
N + · · ·+ cN−1 xN−1

N . (2.5)

The matrix in (2.5) is in the form of a Vandermonde matrix which is non-singular.

Hence, the matrix is invertible and provides a unique solution for each constants ck.

When constants are determined, the approximated polynomial is achieved. However,

it is more difficult to determine these coefficients c0, c1, c2, · · · , cN since the system

becomes ill-conditioned with large number of grid points N .

Linear vector space can be spanned by many different sets of base function. Therefore,

the difficulty caused by high grid spacing is tackled using Lagrange interpolation

polynomial as the base polynomial in this case.
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The k-th order Lagrange interpolating polynomial is of the form,

PN (x) =
N
∑

k=1

f (xk)lk(x), (2.6)

where

lk(x) =
M(x)

M (1)(xk).(x − xk)
, (2.7)

with

M(x) = (x − x1)(x − x2) · · · (x − xN ),

M (1)(xk) = (xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN ) =
N
∏

i=1,i 6=k

(xk − x i). (2.8)

The k-th Lagrange polynomial lk(x) in (2.7) satisfies the property of Kronecker delta,

equivalently written as,

lk(x i) =







1, when k = i

0, otherwise.
(2.9)

2.2 Chebyshev Polynomials

The Chebyshev polynomials are obtained by the eigenfunctions of the following

singular Sturm-Liouville problem [55],

�p

1− x2T ′k(x)
�′
+

k2

p
1− x2

Tk(x) = 0, (2.10)

where T ′k(x) represents the first order derivative of Tk(x). The Chebyshev polynomial

of the first kind Tk(x) is the polynomial of degree k for x ∈ [−1, 1], defined as,

Tk(x) = cos(k arccos x), k = 0, 1,2, · · · . (2.11)

Substituting for x = cosθ allows to write (2.11) as

Tk(x) = cos(kθ ). (2.12)
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Thus, the first Chebyshev polynomials are obtained as,

T0 = 1,

T1 = cosθ = x ,

T2 = cos2θ = 2cos2 θ − 1= 2x2 − 1,
.... (2.13)

Using the trigonometric identity,

cos(k+ 1)θ + cos(k− 1)θ = 2cosθ cos kθ , (2.14)

gives rise to the recurrence relationship,

Tk+2(x)− 2x Tk+1(x) + Tk(x) = 0, k ∈ N . (2.15)

It means that Tk+2 can be computed in terms of Tk and Tk+1 for all k ∈ N . The graphs

of the first Chebyshev polynomials can be found in [55]. The values of Tk(x) and T ′k
which represent first order derivative of Tk(x) have the properties given by,

Tk(±1) = (±1)k, and T ′k(±1) = (±1)k+1k2, (2.16)

Tk(−x) = (−1)kTk(x) = 0. (2.17)

Chebyshev polynomials are orthogonal [55] with the respect to the Chebyshev weight

w(x) =
1

p
1− x2

on the interval [−1, 1]. Thus,

∫ 1

−1

Tk(x)Tl(x)w(x)d x =
π

2
ckδk,l (2.18)

where, δk,l is Kronecker delta, and

ck =







2, when k = 0

1, when k ≥ 1.
(2.19)

Using the definition,

δk,l =







0, when k 6= l

1, when k = l.
(2.20)
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Equation (2.18) becomes,

∫ 1

−1

Tk(x)
2 d x
p

1− x2
= ck

π

2
. (2.21)

With DQ discretization, generally nonuniform grid point distribution is preferred since

it gives more stable solutions [8]. In this thesis, we use the Chebyshev-Gauss-Lobatto

(CGL) grid point distribution which is refined near boundaries on space domain. This

approach provides the opportunity to choose less number of grid points compared to

uniform distribution. In many physical model problems, choosing grid points as CGL

provides to control the behavior of the approach, near the endpoints of the domain.

Chebyshev-Gauss-Lobatto (CGL) grid points are defined [55] as,

x i =
cos(πi)

N
, i = 0,1, · · · , N . (2.22)

These points are the roots of polynomial (1 − x2)T ′N (x) and the polynomial TN gets

its extreme values at ±1 at the points x i. Also these points are defined on the interval

[−1,1] [55]. If the problem is given on interval [a, b], the following transformation

is used to obtain x i on [a, b],

x i =
b− a

2
(1− ξi) + a. (2.23)

2.3 Polynomial based Differential Quadrature (PDQ)

In this section, we examine the details of how to determine the weighting coefficients

by choosing test functions as polynomials. Polynomial based differential quadrature

gives highly accurate numerical solutions for most differential equations. We combine

the idea of Bellman’s approach, Quan and Chang’s treatment, with Shu’s general

approach and analysis of the modification of the weighting coefficients using roots

of Chebyshev polynomials.

2.3.1 Computation of Weighting Coefficients for First Order Derivative

Consider a one-dimensional problem on a closed interval [a, b] and coordinates with

a = x1, x2, · · · , xN = b of N grid points. f (x) is a smooth function on the interval

[a, b] and its first order derivative fx(x i) is defined as,

fx(x i) =
N
∑

j=1

ai j f (x j) i = 1,2, · · · , N . (2.24)
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Recall the conventional form of polynomial approximation,

f (x i) =
N
∑

k=1

dkek(x i), i = 1, 2, · · · , N (2.25)

where dk are constant corresponding to index k and ek(x i) is the base polynomial.

Taking first derivative of both sides of (2.25),

fx(x i) =
N
∑

k=1

dke′k(x i), i = 1, 2, · · · , N . (2.26)

Substituting (2.25) and (2.26) in (2.24) yields,

N
∑

k=1

dke′k(x i) =
N
∑

j=1

ai j f (x j), i = 1,2, · · · , N (2.27)

or equivalently written as,

N
∑

k=1

dke′k(x i) =
N
∑

j=1

ai j

�

N
∑

k=1

dkek(x i)

�

, i = 1, 2, · · · , N . (2.28)

The right side of (2.28) can be written as,

N
∑

k=1

dke′k(x i) =
N
∑

j=1

N
∑

k=1

ai jdkek(x j), i = 1,2, · · · , N . (2.29)

From (2.29), we obtain the formula for calculating the weighting coefficients as,

e′k(x i) =
N
∑

j=1

ai jek(x j), i = 1,2, · · · , N . (2.30)

Obtaining the coefficients ai j results in weighted sum of the function value

approximation for spatial derivatives at all grid points.

2.3.1.1 Bellman’s Approaches

For the calculation of weighting coefficients, we begin with the Bellman’s two

approaches. In the first approach, Bellman suggested test functions as,

ek(x) = x k, k = 0, 1, · · · , N − 1, (2.31)

which gives N trial functions. In (2.24), the indexes i and j are chosen such that

1 ≤ i, j ≤ N , where the number of coefficients are N × N . On the other hand, N test
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functions are used at N nodal points. Thus, N × N algebraic equations are obtained

in the form of,

N
∑

j=1

ai j = 0, k = 0,

N
∑

j=1

ai j x
k
j = kx k−1

i , k = 1,2, · · · , N − 1, i = 1, 2, · · · , N . (2.32)

System (2.32) is in the form of Vandermonde matrix and provides unique solutions.

However, the drawback of this approach is that, grid points are restricted to 13. For

larger N , condition number of the matrix get higher and instabilities may occur in

applications [8].

In the second approach, test function is used as,

ek(x) =
LN (x)

L(1)N (xk).(x − xk)
, k = 1,2, · · · , N (2.33)

where LN (x) and L(1)N (xk) represents Legendre polynomial of degree N and its

derivative. Here, xk is chosen as roots of Legendre polynomial and applied at N

grid points x1, x2, · · · , xN . Thus, following formulations are obtained to calculate the

weighting coefficients,

ai j =
L(1)N (x i)

(x i − x j)L
(1)
N (x j)

j 6= i,

aii =
1− 2x i

2x i(x i − 1)
. (2.34)

Thus, the weighting coefficients are determined by a simple formulation unlike the first

approach. The coordinates of grid points are chosen as roots of Legendre polynomials.

However, this approach places some restriction on choosing grid points [8].

2.3.1.2 Quan and Chang’s Approach

Quan and Chang suggested new formulations to improve Bellman’s approaches based

on Lagrange interpolation polynomials as test functions,

ek(x) =
M(x)

M (1)(xk).(x − xk)
, k = 1, 2, · · · , N (2.35)

where

M(x) = (x − x1)(x − x2) · · · (x − xN ), (2.36)
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and

M (1)(x i) =
N
∏

k=1,k 6=i

(x i − xk). (2.37)

Using (2.36) and (2.37), explicit formulations are obtained in agreement with those

in [8],

ai j =
1

x j − x i

N
∏

k=1,k 6=i

x i − xk

x j − xk
j 6= i,

aii =
N
∑

k=1,k 6=i

1
x i − xk

. (2.38)

2.3.1.3 Shu’s General Approach

Shu has suggested a generalized algorithm by combining previously mentioned

approaches based on the properties of vector space and high order polynomial

approximation. From the analysis of vector space, it is known that, if one set of

base polynomials satisfy a linear operator, so does any arbitrary base polynomials.

This explains that, each bases gives the same weighting coefficients. Thus, the

weighting coefficients are independent from the choice of test functions. Since there

are various sets of base polynomials, new computations can be generated to compute

the weighting coefficients.

The solution of a differential equation is approximated by a high degree of polynomial.

Let VN denotes the N dimensional vector space spanned by N−1 degree of polynomial.

Therefore VN provides to reconstruct all polynomials of degree N−1 in terms of linear

combination of weighted sum of all basis of VN . The properties of linear vector space

enables us to apply weighting coefficients to discretize a partial differential equation.

In general approach presented in [8], there are two choices of the base functions. First

base function is chosen as Lagrange polynomial given in (2.35). To obtain an efficient

formulation, the polynomial is indicated as,

M(x) = N(x , xk)(x − xk), k = 1,2, · · · , N , (2.39)

along with N(x i, x j) = M (1)(x i)δi j, where δi j is Kronecker operator. Substituting

(2.39) into (2.35), base polynomial can be rewritten as,

ek(x) =
M(x)

M (1)(xk).(x − xk)
=

N(x , xk)
M (1)(xk)

, k = 1,2, · · · , N . (2.40)
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Differentiation both sides of (2.40) with respect to x , we have,

e(1)k (x) =
N (1)(x , xk)
M (1)(xk)

, k = 1, 2, · · · , N . (2.41)

Substituting (2.40) and (2.41) into (2.30) results in,

N (1)(x i, xk)
M (1)(xk)

=
N
∑

j=1

ai j
N(x , xk)
M (1)(xk)

, k = 1,2, · · · , N , (2.42)

or equivalently written as,

N (1)(x i, xk) =
N
∑

j=1

ai jN(x j, xk), k = 1,2, · · · , N . (2.43)

Simplifying (2.43) by adapting the definition of Kronecker operator leads to formulas

for coefficients in the form,

ai j =
N (1)(x i, x j)

N(x j, x j)
,

ai j =
N (1)(x i, x j)

M (1)(x j)
, (2.44)

for k = j 6= i. To evaluate M (1)(x j), (2.37) is used and N (1)(x i, x j) is evaluated

by taking the derivative of both sides (2.39). Therefore, following expressions for

approximating first and higher order derivatives are obtained,

M (1)(x) = N (1)(x , xk).(x − xk) + N(x , xk),

M (2)(x) = N (2)(x , xk).(x − xk) + 2N (1)(x , xk),
...

M (m)(x) = N (m)(x , xk).(x − xk) +mN (m−1)(x , xk), (2.45)

for m= 1, 2, · · · , N −1, and k = 1,2, · · · , N . Here, M (m)(x) and N (m)(x , xk) represents

m-th order derivatives of M(x) and N(x , xk). Relation (2.45) indicates,

N (1)(x i, x j) =
M (1)(x i)− N(x i, x j)

x i − x j
. (2.46)

We substitute the expression N(x i, x j) = M (1)(x i)δi j for i 6= j into (2.46) to obtain,

N (1)(x i, x j) =
M (1)(x i)
x i − x j

, i 6= j. (2.47)
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Similarly, M (2) in (2.45) is used for the case i = j as,

N (1)(x i, x j) =
M (2)(x i)

2
. (2.48)

Substituting (2.47) and (2.48), weighting coefficients are determined as,

ai j =
N (1)(x i, x j)

M (1)(x j)
=

M (1)(x i)
(x i − x j)M (1)(x j)

, i 6= j,

aii =
N (1)(x i, x i)

M (1)(x i)
=

M (2)(x i)
2M (1)(x i)

. (2.49)

According to the simplified formulations of weighting coefficients, for i 6= j can be

computed using M (1)(x i) when x i is given. In the same manner, if i = j second

derivative M (2)(x i) needs to be computed. However, calculating M (2)(x i) is not trivial

the same way as calculation of M (1)(x i). Thus, using the properties of linear vector

space, ai j obtained from Lagrange interpolating polynomial is the same with set of

base polynomials x k−1, k = 1,2, · · · , N . Hence, ai j can also be computed for k = 1 as,

N
∑

j=1

ai j = 0, or, aii = −
N
∑

j=1, j 6=i

ai j. (2.50)

Formulations given by (2.49) and (2.50) are the two common ways to determine the

weighting coefficients of order one.

2.3.2 Weighting Coefficients for Second and Higher Order Derivatives

DQ discretization of order two is given by,

f (2)x (x i) =
N
∑

j=1

a(2)i j f (x j) i = 1, 2, · · · , N , (2.51)

where a(2)i j is the second order weighting coefficient. Here, we consider the general

approach from [8], to compute the weighting coefficients of order two and more.

This approach is based on polynomial approximation and linear vector spaces like the

approach of the first order derivative. This approach deals with the following two base

polynomials,

ek(x) = x k−1, k = 1,2, · · · , N ,

ek(x) =
M(x)

M (1)(xk).(x − xk)
, k = 1, 2, · · · , N . (2.52)
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Recall the expression,

ek(x) =
N(x , xk)
M (1)(xk)

. (2.53)

Combining (2.53) with (2.51) provides,

a(2)i j =
N (2)(x i, x j)

M (1)(x j)
. (2.54)

Equation (2.45) can be expanded as,

M (2)(x) = N (2)(x , xk).(x − xk) + 2N (1)(x , xk),

M (3)(x) = N (3)(x , xk).(x − xk) + 3N (2)(x , xk). (2.55)

Then, using (2.54), the values N (2) are evaluated as,

N (2)(x i, x j) =
M (2)(x i)− 2N (1)(x i ,x j)

x i − x j
, i 6= j,

N (2)(x i, x i) =
M (3)(x i)

3
. (2.56)

Substituting (2.56) into (2.54) leads to the expression for ai j in the form,

a(2)i j =
M (2)(x i)− 2N (1)(x i ,x j)

M (1)(x j)
, (2.57)

and

a(2)ii =
M (3)(x i)

3M (1)(x i)
. (2.58)

Then, using (2.49) into (2.57), weighting coefficients are determined as,

a(2)i j = 2ai j

�

aii −
1

x i − x j

�

, i 6= j. (2.59)

For the case i 6= j, and provided that a(2)i j is computable, then for i = j, the third order

derivative M (3)(x i) should be calculated. Instead, an approach similar to the first

order derivative can be used to determine weighting coefficients. Thus, the following

recurrence formula can be used, when k = 1,

N
∑

j=1

a(2)i j = 0, or, a(2)ii = −
N
∑

j=1, j 6=i

a(2)i j . (2.60)

15



Shu’s general approach can be expanded to find the formulation for general derivatives

of any order,

w(n)i j = n

 

w(1)i j w(n−1)
ii −

w(n−1)
i j

x i − x j

!

i, j = 1,2, · · · , N ,

w(n)ii = −
N
∑

j=1, j 6=i

w(n)i j , (2.61)

where w(n)i j represents n-th order derivative.

2.3.3 Modification of Weighting Coefficients

As mentioned in previous sections, calculation of weighting coefficients does not

depend on choice of test functions. In other words, every sets of base polynomials

give the same weighting coefficients. Here, we consider modification of weighting

coefficients obtained by Lagrange interpolating polynomial,

ek(x) =
C(x)

C (1)(xk).(x − xk)
, k = 1,2, · · · , N . (2.62)

We replaced C(x) by M(x) in (2.35). Assuming that grid points are chosen as

Chebyshev collocation points,

x i = cos(θi), θi =
iπ
N

, i = 0, 1, · · · , N . (2.63)

Recall the Chebyshev collocation points x i are the zeros of polynomial (1− x2)T (1)N (x).
So the function C(x) in (2.62) is rewritten as,

C(x) = (1− x2)T (1)N (x), (2.64)

where T (1)N (x) is the first derivative of TN (x). Using the equations,

x = cos(θ ), TN (x) = cos(Nθ ), (2.65)

T (1)N (x) = (cos(Nθ ))′ = −N sin(Nθ )dθ , (2.66)

where

dθ = −
1

p
1− x2

= −
1

sin(θ )
, (2.67)

Then, (2.64) becomes,

C(x) = C(θ ) = N sin(θ ) sin(Nθ ). (2.68)
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By taking the derivative of Equation (2.68)

C (1)(x) = (N sin(θ ) sin(Nθ ))′, (2.69)

or

C (1)(x) = −
N cos(θ ) sin(Nθ ) + N 2 sin(θ ) cos(Nθ )

sin(θ )
. (2.70)

Since Nθi = iπ when sin(θi) 6= 0, for i 6= 0, N , (2.70) becomes

C (1)(x i) = (−1)i+1N 2. (2.71)

If sin(θi) = 0, L’Hospital’s rule is used, then,

C (1)(x0) = −2N 2,

C (1)(xN ) = (−1)N+12N 2. (2.72)

Using Equations (2.71) and (2.72) explicit matrix formula for the first derivative is

established as, [8, 55],

wi j =
ci(−1)i+ j

c j(x i − x j)
, 0≤ i, j ≤ N , i 6= j,

wii = −
x i

2(1− x2
i )

, 1≤ i ≤ N − 1,

w00 = −wNN =
2N 2 + 1

6
, (2.73)

where c0 = cN = 2 and c j = 1, 1≤ j ≤ N − 1.

DQ discretization enables to define the higher order derivatives by a recurrence

relation using first order weighting coefficients. Matrix multiplication idea is now

used to compute the related higher order derivatives which will be used in following

chapters.

2.3.4 Matrix Multiplication Approach

Let
∂ 2U
∂ x2

=
∂

∂ x

�

∂ U
∂ x

�

(2.74)

, be the second order derivative operator. Application of the DQ algorithm for the left

side of (2.74) gives the following,

U (2)x (x i) =
N
∑

j=1

w(2)i j U(x j) i = 1,2, · · · , N . (2.75)
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Using similar idea for the right side of (2.74) gives,

U (2)x (x i) =
N
∑

k=1

w(1)ik U (1)x (xk) =
N
∑

k=1

w(1)ik

N
∑

j=1

w(1)k j U(x j),

N
∑

j=1

w(2)i j U(x j) =
N
∑

j=1

�

N
∑

k=1

w(1)ik w(1)k j

�

U(x j), i = 1,2, · · · , N . (2.76)

Combining (2.75) and (2.76) gives the following,

w(2)i j =
N
∑

k=1

w(1)ik w(1)k j , (2.77)

which corresponds to definition of matrix multiplication [8]. Matrices given in

Equation (2.77) is defined as,

[A(1)] =











a11 a12 · · · a1N

a21 a22 · · · a2N
...

. . .
...

aN1 aN2 · · · aNN











, [A(2)] =











b11 b12 · · · b1N

b21 b22 · · · b2N
...

. . .
...

bN1 bN2 · · · bNN











. (2.78)

So, the equation (2.77) is written in matrix form,

A(2) = A(1)A(1), (2.79)

where A(2) = w(2)i j and A(1) = w(1)i j . The last expression shows that second order

derivative is evaluated by matrix multiplication of first order derivatives. If the idea is

generalized, the m-th order derivative is determined as [8],

A(m) = A(1)A(m−1), m= 2, 3, · · · , N − 1. (2.80)

In this thesis, matrix multiplication approach is used to obtain related higher order

derivatives depends on the feature of the differential equation.

2.4 Fourth Order Runge-Kutta Algorithm

There are several numerical methods to solve time dependent partial differential

equations. One of the common way is discretization of spatial derivatives using a

numerical method such as finite difference, finite element, etc. Then time dependent

linear equations get reduced to system of ordinary differential equations [22]. This

system can be integrated by using explicitly or implicitly. In this thesis, present method
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is combined with the Runge-Kutta method which preserves strong stability and gives

high accuracy. After DQ discretization, model equations are transformed into a time

dependent ordinary differential equation as,

dU
d t
= f (U), U(t0) = 0, t ∈ [t0, T], (2.81)

Time integration of the system is established using Runge-Kutta algorithm given by,

Un+1 = Un +
1
6
[K1 + 2K2 + 2K3 + K4], n= 0,1, 2, · · · , N − 1, (2.82)

where

K1 =∆t f (Un),

K2 =∆t f (Un +
1
2

K1),

K3 =∆t f (Un +
1
2

K2),

K4 =∆t f (Un + K3). (2.83)

Here, ∆t represents time step.

A time dependent problem with proper initial and boundary conditions is expressed

as
∂ U
∂ t
= l(U), U(t0) = 0, t ∈ [t0, T], (2.84)

where l represents spatial differential operator and it is generally nonlinear.

After DQ discretization and proper linearizations, Equation (2.84) transforms into

ordinary differential equation. Then, application of boundary conditions, following

matrix-vector form is obtained,

d
d t
{U}= [A]{U}+ {B}, (2.85)

where {U} is the unknown vector at interior points and {B} represents the vector

consists of boundary conditions and inhomogeneous part of the equation. [A] is the

weighting coefficient matrix.

Stability of the constructed scheme for the numerical integration of Equation (2.84)

depends on the stability of the differential equation. If (2.84) is unstable then the

stable numerical scheme may not produce the converged solution for the temporal

discretization [8]. Let λi be the eigenvalues of the matrix A. Stability conditions

of (2.84) are determined based on real and imaginary parts of the eigenvalue

distribution. Let ℜ(λi) be the real part and Im(λi) be the complex part of the

19



eigenvalues of A. Then,

• If all eigenvalues are real, −2.78<∆tλi < 0

• If eigenvalues consist of complex part only, −2
p

2<∆tλi < −2
p

2

• If all eigenvalues are both real and complex, ∆tλi should be inside the region

given by Figure 2.1.

Figure 2.1 Stability region

2.5 Error Norms

To see the validity of the numerical method, there are several error norms. If the

analytical solution exists, L2, L∞ and global relative errors are measured since we

deal with smooth problems. Let u(x i, t) represents analytical solution and U(x i, t) is

the approximate solution at a grid point x i and at time t.

L2 =

√

√

√

N
∑

i=1

|(u(x i, t))− (U(x i, t))|2, (2.86)
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L∞ = max
1≤i≤N

|(u(x i, t))− (U(x i, t))|, (2.87)

GRE =

N
∑

i=1
|(u(x i, t))− (U(x i, t))|

N
∑

i=1
|(u(x i, t))|

. (2.88)
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3
APPLICATIONS ON QUADRATURE DISCRETIZATION

FOR SOME ORDINARY DIFFERENTIAL EQUATIONS

This section explores numerical solutions of some differential equations by differential

quadrature method (DQM). Polynomials are considered as basis functions to establish

the weighting coefficients mentioned in Chapter 2. In the beginning, boundary and

initial value problems of order one and two were studied. After, higher order linear

and nonlinear problems are solved numerically. In the last part of this chapter, third

and fourth order singular perturbation problems are solved. To show the effectiveness

of the presented scheme, linear and nonlinear perturbation problems are solved. All

results are tabulated and results are compared with existing numerical or perturbation

methods.

Singular perturbation problems which arise in fluid mechanics, various psychical and

chemical processes, have been extensively studied [56]. The perturbation equations

are given by ordinary differential equations with a small perturbation coefficient

denoted by ε. Solutions exhibits non-uniform behavior as the small parameter ε→ 0

[57, 58].

The classes of perturbation problems are determined by assuming ε = 0. If the order

of the problem is reduced by one, the problem becomes convection-diffusion type, on

the other hand if the order is reduced by two, it gets reaction-diffusion equation [59].
The accuracy of the method is tested using five examples and quadrature solutions are

compared with analytical or existing solutions for various ε parameter.

Theoretical and numerical approaches on perturbation problems are extensively

studied. Howes [60] studied existence of third order singularly perturbation problem

using asymptotic techniques. Yao and Feng [61] also considered lower and upper

solutions method for existence of third order two point boundary value problems.

Numerical methods such as boundary or initial value techniques are studied for

perturbation problems. Results of perturbation equation is obtained by transforming
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the model into a system of a first and a second order singularly perturbed equation

[62]. Phaneendra et al [63] solved such kind of problems by using Fitted Numerov

Method reducing the model to the second order equation. Finite element method [64]
is also used to solve such problems numerically including the case of discontinuous

source. Cui and Geng [65] investigated third order singular perturbation equation

using an analytical method with asymptotic expansion. Kumar and Tiwari [59] studied

initial value technique on third order problems. Shanthi and Valarmathi [66] have

investigated singular perturbation problems of order four adapting boundary value

technique. The DQ is applied to first and second equations in Section 3.1 and Section

3.2 respectively. Higher order BVPs are studied numerically in Section 3.3. Section

3.4 deals with the numerical study of third and fourth order singular perturbation

problems.

3.1 Quadrature Solution of the First Order Equations

Let us consider the approximated solution for first order differential equation given

by,

a(x)y ′(x) + b(x)y(x) = f (x), y(0) = α, x ∈ [0, l]. (3.1)

Equation (3.1) can be rewritten by applying grid points x i, i = 1,2, ..., N ,

a(x i)y
′(x i) + b(x i)y(x i) = f (x i), y(x1) = y1 = α (3.2)

First derivative is replaced by DQ equality,

a(x i)
N
∑

j=1

w(1)i j y(x j) + b(x i)y(x i) = f (x i). (3.3)

Grid point distribution is employed using roots of Chebyshev polynomials as explained

in Chapter 2. Equation (3.3) can be expanded as,

a(x1){w
(1)
11 y1 +w(1)12 y2 + ...+w(1)1N yN}+ b(x1)y1 = f1,

a(x2){w
(1)
21 y1 +w(1)22 y2 + ...+w(1)2N yN}+ b(x2)y2 = f2,

...

a(xN ){w
(1)
11 y1 +w(1)12 y2 + ...+w(1)1N yN}+ b(xN )yN = fN , (3.4)
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where yi means y(x i) and fi means f (x i). Numerical solutions are obtained after

applying initial condition to the system. Thus, following matrix form is obtained,











1 0 · · · 0

a(x2)w
(1)
21 a(x2)w

(1)
22 + b(x2) · · · a(x2)w

(1)
2N

...
...

...
. . .

a(xN )w
(1)
N1 a(xN )w

(1)
N2 · · · a(xN )w

(1)
NN + b(xN )





















y1

y2
...

yN











=











α

f2
...

fN











.

Example 3.1 Consider the first order ordinary differential equation on 0≤ x ≤ 1,

y ′(x) + y(x) = 4xe2x , y(0) = 0, (3.5)

Analytical solution of the problem is given as,

y(x) =
�

4
9
(−1+ 3x)e3x +

13
9

�

e−x . (3.6)

First derivative definition is applied to the equation (3.5),

N
∑

j=1

w(1)i j y(x j) + y(x i) = 4x ie
2x i . (3.7)

Equation (3.7) can be rewritten in the form of system of equations as,

[Ai j][y(x j)] = [ f (x i)] (3.8)

where [Ai j] is first order weighting coefficient matrix. Absolute error is measured for

various grid points such as 5, 9 and 13. Numerical results are given by Table 3.1, Table

3.2 and Table 3.3. As the number of grid points increase, accurateness increases as

expected.

Table 3.1 Numerical solutions and absolute errors for N = 5 of Example 3.1

x i ye yi Absolute Error

0.00000 1.00000 1.00000 0.00000

0.14645 0.91369 0.87220 4.149E-02

0.50000 1.48016 0.42254 3.214E-03

0.85355 4.43914 4.42254 1.660E-02

1.00000 7.09943 7.08869 1.073E-02

24



Table 3.2 Numerical solutions and absolute errors for N = 9 of Example 3.1

x i ye yi Absolute Error

0.00000 1.00000 1.00000 0.00000

0.03806 0.965665 0.965664 5.320E-06

0.14644 0.913691 0.913691 3.002E-08

0.30865 0.999850 0.999849 1.194E-06

0.50000 1.480162 1.480162 7.797E-10

0.69124 2.626023 2.626024 7.133E-07

0.85355 4.439143 4.439143 1.785E-07

0.96193 6.291148 6.291148 3.375E-07

1.00000 7.099431 7.099430 2.996E-07

Table 3.3 Numerical solutions and absolute errors for N = 13 of Example 3.1

x i ye yi Absolute Error

0.00000 1.00000 1.00000 0.00000

0.01704 0.98369777 0.98369777 3.854E-10

0.06699 0.94481413 0.94481413 3.750E-10

0.14645 0.91369150 0.91369150 3.434E-10

0.25000 0.94174321 0.94174321 3.278E-10

0.37059 1.10137953 1.10137953 3.117E-10

0.50000 1.48016225 1.48016225 3.298E-10

0.62941 2.15983554 2.15983554 3.719E-10

0.75000 3.17221345 3.17221345 4.582E-10

0.85355 4.43914321 4.43914321 5.692E-10

0.93301 5.73548110 5.73548110 6.903E-10

0.98296 6.72630350 6.72630350 7.833E-10

1.00000 7.09943128 7.09943128 8.188E-10

3.2 Quadrature Solution of the Second Order Equations

We consider the numerical solution for second order boundary value problem on a ≤
x ≤ b given by,

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = f (x), y(a) = α, y(b) = β . (3.9)
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By applying grid points x i, i = 1,2, ..., N , (3.9) can be rewritten as,

a2(x i)y
′′(x i) + a1(x i)y

′(x i) + a0(x i)y(x i) = f (x i). (3.10)

Derivative expressions are replaced by the DQ form as,

a2(x i)
N
∑

j=1

w(2)i j y(x j) + a1(x i)
N
∑

j=1

w(1)i j y(x j) + a0(x i)y(x i) = f (x i). (3.11)

By assuming, y(x i) = yi and f (x i) = fi, equation (3.11) can be expanded as,

a2(x1){w
(2)
11 y1 + ...+w(2)1N yN}+ a1(x1){w

(1)
11 y1 + ...+w(1)1N yN}+ a0(x1)y1 = f1,

a2(x2){w
(2)
21 y1 + ...+w(2)2N yN}+ a1(x2){w

(1)
21 y1 + ...+w(1)2N yN}+ a0(x2)y2 = f2,

...

a2(xN ){w
(2)
N1 y1 + ...+w(2)NN yN}+ a1(xN ){w

(1)
N1 y1 + ...+w(1)NN yN}+ a0(xN )yN = fN .

(3.12)

To obtain accurate numerical solutions, boundary conditions are implemented to the

system directly as,

y(x1) = α, y(xN ) = β .

Example 3.2 Consider the second order boundary value problem on 0≤ x ≤ 1,

y ′′(x)− y(x) = x , y(0) = 0, y(1) = 0. (3.13)

Analytical solution of the problem is given by,

y(x) =
e(ex − e−x)

e2 − 1
, (3.14)

Derivative definition is applied to the equation (3.13),

N
∑

j=1

w(2)i j y(x j)− y(x i) = x i. (3.15)

Equation (3.15) can be rewritten as,

[Ai j][y(x j)] = [ f (x i)] (3.16)

where [Ai j] consists of second order weighting coefficient matrix. After adding two

constraints to the system numerical solutions yi are obtained. Absolute error is
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measured for different number of grid points such as 5, 9 and 13. Numerical results

are given by Table 3.4, Table 3.5 and Table 3.6. Based on the solutions, it can be

concluded that as the number of grid points increase, accurateness increases.

Table 3.4 Numerical solutions and absolute errors for N = 5 of Example 3.2

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.14645 -0.02137 -0.02138 1.3909E-05

0.50000 -0.05659 -0.05659 2.2074E-06

0.85355 -0.03580 -0.03578 1.4936E-05

1.00000 0.00000 0.00000 0.00000

Table 3.5 Numerical solutions and absolute errors for N = 9 of Example 3.2

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.03806 -0.005666 -0.005666 1.0416E-11

0.14644 -0.021386 -0.021386 2.8140E-13

0.30865 -0.041825 -0.041825 4.4289E-12

0.50000 -0.056590 -0.056590 5.1530E-13

0.69124 -0.055072 -0.055072 4.2204E-12

0.85355 -0.035788 -0.035788 2.3990E-13

0.96193 -0.011201 -0.011201 1.0991E-11

1.00000 0.00000 0.00000 0.00000
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Table 3.6 Numerical solutions and absolute errors for N = 13 of Example 3.2

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.01704 -0.002539 -0.002539 2.080E-15

0.06699 -0.009943 -0.009943 1.310E-15

0.14645 -0.0213866 -0.021386 1.000E-15

0.25000 -0.035047 -0.035047 00000

0.37059 -0.047980 -0.047980 2.000E-16

0.50000 -0.056590 -0.056590 3.300E-15

0.62941 -0.057764 -0.057764 7.000E-16

0.75000 -0.050275 -0.050275 2.000E-15

0.85355 -0.035788 -0.035788 4.400E-15

0.93301 -0.018790 -0.018790 4.000E-15

0.98296 -0.005189 -0.005189 1.840E-15

1.00000 0.00000 0.00000 0.00000

Example 3.3 Now, we consider the second order initial value problem on 0≤ x ≤ 1,

2y ′′(x)− 3y ′ + y(x) = x , y(0) = 2, y ′(0) =
1
2

. (3.17)

Analytical solution of the problem is given as,

y(x) = 3e
1
2 x − ex .

Quadrature definition is applied to the equation (3.17),

2
N
∑

j=1

w(2)i j y(x j)− 3
N
∑

j=1

w(1)i j y(x j) + y(x i) = x i, (3.18)

or (3.18) is rewritten equivalently as a system of equations,

[2w(2)i j − 3w(1)i j + I][y(x j)] = [x i], (3.19)

or

[Ai j][y(x j)] = [ f (x i)] (3.20)
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DQ method is applied for the given conditions as,

y(0) = y(x1) = 2,

y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) =
1
2

. (3.21)

Here the matrix [Ai j] consists of second and first order derivatives. Solution of the

following matrix equation gives the numerical solutions yi.

















1 0 0 · · · 0

A21 A22 A23 · · · A2N
...

. . .

A(N−1)1 A(N−1)2 A(N−1)3 · · · A(N−1)N

w(1)11 w(1)12 w(1)13 · · · w(1)1N

































y1

y2
...

yN−1

yN

















=



















2

f2
...

fN−1
1
2



















.

Absolute error is measured for different number of grid points such as 5, 9 and 13.

Numerical results are given by Table 3.7, Table 3.8 and Table 3.9. We can conclude

that as the number of grid points increase, errors get decrease and present approach

and exact solutions are in good agreement.

Table 3.7 Numerical solutions and absolute errors for N = 5 of Example 3.3

x i ye yi Absolute Error
0.00000 2.000000 2.000000 0.00000
0.14645 2.070079 2.070199 1.1959E-04
0.50000 2.202895 2.203354 4.5992E-04
0.85355 2.248013 2.248956 9.4247E-04
1.00000 2.226618 2.227881 1.2630E-03

Table 3.8 Numerical solutions and absolute errors for N = 9 of Example 3.3

x i ye yi Absolute Error
0.00000 2.00000 2.00000 0.00000
0.03806 2.018843 2.018843 7.05420E-11
0.14644 2.070199 2.070199 2.22108E-10
0.30865 2.139027 2.139027 5.17417E-10
0.50000 2.203354 2.203354 9.74500E-10
0.69124 2.242420 2.242420 1.52802E-09
0.85355 2.248956 2.248956 2.15697E-09
0.96193 2.236160 2.236160 2.61652E-09
1.00000 2.227881 2.227881 2.81982E-09
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Table 3.9 Numerical solutions and absolute errors for N = 13 of Example 3.3

x i ye yi Absolute Error
0.00000 2.00000 2.00000 000000
0.01704 2.008481 2.008481 2.000E-14
0.06699 2.032900 2.032900 1.800E-14
0.14645 2.070199 2.070199 1.400E-14
0.25000 2.115419 2.115419 1.200E-14
0.37059 2.162131 2.162131 1.000E-15
0.50000 2.203354 2.203354 1.600E-14
0.62941 2.233062 2.233062 4.200E-14
0.75000 2.247974 2.247974 6.600E-14
0.85355 2.248956 2.248956 9.500E-13
0.93301 2.241085 2.241085 1.180E-13
0.98296 2.231846 2.231846 1.380E-13
1.00000 2.227881 2.227881 000000

3.3 Quadrature Solution of the Higher Order Boundary Value

Problems

We consider the numerical solutions for higher order boundary value problem on a ≤
x ≤ l given by,

pn(x)y
(n)(x) + pn−1(x)y

(n−1)(x) + ...+ p1(x)y
′(x) + p0 y(x) = f (x), (3.22)

Adapting the nodes x i, i = 1, 2, ..., N , (3.22) can be written as,

pn(x i)y
(n)(x i) + pn−1(x i)y

(n−1)(x i) + ...+ p1(x)y
′(x i) + p0 y(x i) = f (x i), (3.23)

Equation (3.22) is discretized as,

pn(x i)
N
∑

j=1

w(n)i j y(x j) + pn−1(x i)
N
∑

j=1

w(n−1)
i j y(x j) + ..

+ p1(x i)
N
∑

j=1

w(1)i j y(x j) + p0(x i)y(x i) = f (x i), (3.24)

or,

N
∑

j=1

{pn(x i)w
(n)
i j + pn−1(x i)w

(n−1)
i j + ...+ p1(x i)w

(1)
i j + p0(x i)}y(x j) = f (x i) (3.25)
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where w(n)i j represents n-th order weighting coefficient which is obtained by Chebyshev

polynomials. Then, the equation is represented by system of equations as,

[pn(x i)w
(n)
i j + pn−1(x i)w

(n−1)
i j + ...+ p1(x i)w

(1)
i j + p0(x i)][y(x j)] = [ f (x i)]. (3.26)

Numerical solutions are obtained after adding boundary conditions to the system.

Here, we consider one linear and one nonlinear fourth order and one fifth order

boundary value problems to show the efficiency of the present method.

Example 3.4 Consider the fourth order boundary value problem,

y (4)(x)− y(x) = −4(2x cos x + 3sin x), 0≤ x ≤ 1 (3.27)

with boundary conditions

y(0) = y(1) = 0, y ′′(0) = 0, y ′′(1) = 2 sin1+ cos 1. (3.28)

Analytical solution of the problem is given in [67] as,

y(x) = (x2 − 1) sin x .

Derivative approximation is applied to (3.28),

N
∑

j=1

w(4)i j y(x j)− y(x i) = −4(2x i cos x + 3sin x i). (3.29)

Then, (3.29) can be given in matrix form,

[−w(4)i j − I][y(x j)] = [−4(2x i cos x + 3sin x i)] (3.30)

or in simplified form as,

[Ai j][y(x j)] = [ f (x i)]. (3.31)

Boundary conditions are discretized as,

y(0) = y(x1) = 0, y(1) = y(xN ) = 0,

y ′′(0) = y ′′(x1) =
N
∑

j=1

w(2)1 j y(x j) = 0,

y ′′(1) = y ′′(xN ) =
N
∑

j=1

w(2)1 j y(x j) = 2 sin1+ 4 cos1. (3.32)

The matrix, [Ai j] in (3.31) is the fourth-order weighting coefficient matrix. Adding
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four constraints to the system gives the following resultant matrix equation,





















1 0 0 · · · 0

w(2)11 w(2)12 w(2)13 · · · w(2)1N

A31 A32 A33 · · · A3N
...

. . .

w(2)N1 w(2)N2 w(2)N3 · · · w(2)NN

0 0 0 · · · 1









































y1

y2

y3
...

yN−1

yN





















=





















0

0

f3
...

2 sin1+ 4 cos1

0





















.

Solution of the last expression gives the desired solutions yi. Absolute error is

measured for different number of grid points such as 5, 9 and 13. Numerical results

are given by Table 3.10, Table 3.11 and Table 3.12. As the number of grid points

increase, accurateness increases. Choosing grid points more than 10 gives effective

results. Numerical results are also compared with a previous numerical work and

presented in Table 3.13. It is concluded that current study gives more accurate results

for linear problems.

Table 3.10 Numerical solutions and absolute errors for N = 5 of Example 3.4

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.14645 -0.172445 -0.142794 2.9651E-02

0.50000 -0.419438 -0.359569 5.9868E-02

0.85355 -0.229074 -0.204567 2.4507E-02

1.00000 0.00000 0.00000 000000

Table 3.11 Numerical solutions and absolute errors for N = 9 of Example 3.4

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.03806 -0.037995 -0.037995 2.6302E-06

0.14644 -0.142794 -0.142794 9.0962E-06

0.30865 -0.274839 -0.274839 1.4597E-05

0.50000 -0.359569 -0.359569 1.5319E-05

0.69124 -0.332842 -0.332842 1.1460E-05

0.85355 -0.204567 -0.204567 5.8914E-06

0.96193 -0.061253 -0.061253 1.5632E-06

1.00000 0.00000 0.00000 000000
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Table 3.12 Numerical solutions and absolute errors for N = 13 of Example 3.4

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.01704 -0.017031 -0.017031 5.4398E-12

0.06699 -0.066636 -0.066636 2.0429E-11

0.14645 -0.142794 -0.142794 3.9727E-11

0.25000 -0.231941 -0.231941 5.6552E-11

0.37059 -0.312427 -0.312427 6.5702E-11

0.50000 -0.359569 -0.359569 6.4950E-11

0.62941 -0.355463 -0.355463 5.5444E-11

0.75000 -0.298216 -0.298216 4.0679E-11

0.85355 -0.204567 -0.204567 2.4883E-11

0.93301 -0.104032 -0.104032 1.1581E-11

0.98296 -0.028113 -0.028113 2.9581E-12

1.00000 0.00000 0.00000 000000

Table 3.13 Comparison of maximum absolute errors for Example 3.4

N DQ Galerkin Method [67]

10 7.558E-07 5.275E-06

Example 3.5 Consider the fourth order nonlinear boundary value problem on 0 ≤
x ≤ 1,

y (4)(x) + (y ′′(x))2 = sin x + sin2 x , (3.33)

with boundary conditions

y(0) = 0, y(1) = sin1, y ′(0) = 1, y ′(1) = cos 1. (3.34)

Analytical solution of the problem is given in [67] as,

y(x) = sin x . (3.35)

Application of derivative approach of DQ to (3.28) gives,

N
∑

j=1

w(4)i j y(x j) +

�

N
∑

j=1

w(2)i j y(x j)

�2

= sin x i + sin2 x i. (3.36)
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Then, (3.36) is represented as,

�

w(4)i j +w(2)i j w(2)i j

�

N×N

�

y(x j)
�

N×1
=
�

sin x i + sin2 x i

�

N×1
(3.37)

Equation (3.37) is rewritten as,

�

Ai j

� �

y(x j)
�

= [ f (x i)] (3.38)

Boundary conditions are discretized as,

y(0) = y(x1) = 0, y(1) = y(xN ) = sin1,

y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = 1,

y ′(1) = y ′(xN ) =
N
∑

j=1

w(1)1 j y(x j) = cos1. (3.39)

The matrix, [Ai j] in (3.38) consists of including fourth and second order derivatives.

After implementing four constraints to the system numerical solutions are obtained.

The resultant matrix form is given by,





















1 0 0 · · · 0

w(1)11 w(1)12 w(1)13 · · · w(1)1N

A31 A32 A33 · · · A3N
...

. . .

w(1)N1 w(1)N2 w(1)N3 · · · w(1)NN

0 0 0 · · · 1









































y1

y2

y3
...

yN−1

yN





















=





















0

1

f3
...

cos 1

sin 1





















.

To see the accuracy absolute error is measured for different number of grid points such

as 5, 9 and 13. Numerical results are given by Table 3.14, Table 3.15 and Table 3.16.

Results are also compared with a previous work related with Galerkin method with

quintic B-splines. Both methods are seen to be effective and given by Table 3.17.

Table 3.14 Numerical solutions and absolute errors for N = 5 of Example 3.5

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.14645 0.146088 0.145923 1.6432E-04

0.50000 0.479918 0.479425 4.9295E-04

0.85355 0.753705 0.753620 8.4722E-05

1.00000 0.841470 0.841470 0.00000
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Table 3.15 Numerical solutions and absolute errors for N = 9 of Example 3.5

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.03806 0.038045 0.038051 5.7461E-06

0.14644 0.145854 0.145923 6.9126E-05

0.30865 0.303572 0.303780 2.0819E-04

0.50000 0.479133 0.479425 2.9160E-04

0.69124 0.637358 0.637571 2.1316E-04

0.85355 0.753548 0.753620 7.2534E-05

0.96193 0.820296 0.820302 6.1565E-06

1.00000 0.841470 0.841470 0.00000

Table 3.16 Numerical solutions and absolute errors for N = 13 of Example 3.5

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.01704 0.017035 0.017036 1.1972E-06

0.06699 0.066920 0.066937 1.6941E-05

0.14645 0.145854 0.145923 6.9247E-05

0.25000 0.247244 0.247403 1.5932E-04

0.37059 0.361914 0.362165 2.5112E-04

0.50000 0.479133 0.479425 2.9180E-04

0.62941 0.588412 0.588667 2.5499E-04

0.75000 0.681474 0.681638 1.6434E-04

0.85355 0.753548 0.753620 7.2564E-05

0.93301 0.803399 0.803417 1.8006E-05

0.98296 0.832142 0.832144 1.2854E-06

1.00000 0.84147 0.841470 0.00000

Table 3.17 Comparison of maximum absolute errors of Example 3.5

N DQ Galerkin Method [67]

10 2.753E-04 1.358E-05

35



Example 3.6 Consider the fifth order linear boundary value problem on 0≤ x ≤ 1,

y (v)(x)− y(x) = −15ex − 10xex (3.40)

with boundary conditions

y(0) = 0, y(1) = 0, y ′(0) = 1, y ′′(0) = 0, y ′(1) = −e. (3.41)

Analytical solution of the problem is given in [68] as,

y(x) = x(1− x)ex . (3.42)

Derivative approximation is applied to (3.40),

N
∑

j=1

w(5)i j y(x j)− y(x j) = −15ex i − 10xex i . (3.43)

Then, Equation (3.43) is represented by system of equations as,

�

Ai j

� �

y(x j)
�

= [ f (x i)] (3.44)

Boundary conditions are discretized as,

y(0) = y(x1) = 0, y(1) = y(xN ) = 0,

y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = 1,

y ′′(0) = y ′′(x1) =
N
∑

j=1

w(1)1 j y(x j) = 0,

y ′(1) = y ′(xN ) =
N
∑

j=1

w(1)1 j y(x j) = −e. (3.45)

The matrix, [Ai j] in (3.44) is the weighting coefficient matrix, including fifth order

derivative. To obtain numerical solution, boundary conditions are implemented to
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the system. Hence, the resultant matrix equation becomes,



























1 0 0 · · · 0

w(1)11 w(1)12 w(1)13 · · · w(1)1N

w(2)11 w(2)12 w(2)13 · · · w(2)1N

A41 A42 A43 · · · A4N
...

. . .

w(1)N1 w(1)N2 w(1)N3 · · · w(1)NN

0 0 0 · · · 1





















































y1

y2

y3

y4
...

yN−1

yN



























=



























0

1

0

f4
...

−e

0



























.

Absolute error is measured for different number of grid points and presented in Table

3.18, Table 3.19 and Table 3.20. As seen in previous examples, method gives better

solutions if the grid spacing is chosen as 13 so we did not consider grid points more

than 13.

Table 3.18 Numerical solutions and absolute errors for N = 5 of Example 3.6

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.14645 0.145231 0.144714 5.1727E-04

0.50000 0.419892 0.412180 7.7122E-03

0.85355 0.297107 0.293496 3.6105E-03

1.00000 0.00000 0.00000 0.00000

Table 3.19 Numerical solutions and absolute errors for N = 9 of Example 3.6

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.03806 0.038032 0.038031 1.1556E-07

0.14644 0.144718 0.144714 4.3846E-06

0.30865 0.290570 0.290548 2.1245E-05

0.50000 0.412217 0.412180 3.6725E-05

0.69124 0.426036 0.426006 2.9796E-05

0.85355 0.293507 0.293496 1.0787E-05

0.96193 0.095805 0.095804 9.4951E-07

1.00000 0.00000 0.00000 0.00000
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Table 3.20 Numerical solutions and absolute errors for N = 13 of Example 3.6

x i ye yi Absolute Error

0.00000 0.00000 0.00000 0.00000

0.01704 0.017034 0.017034 1.9586E-13

0.06699 0.066830 0.066830 8.7157E-12

0.14645 0.144714 0.144714 5.6828E-11

0.25000 0.240754 0.240754 1.5911E-10

0.37059 0.337888 0.337888 2.7336E-10

0.50000 0.412180 0.412180 3.3220E-10

0.62941 0.437700 0.437700 2.9891E-10

0.75000 0.396937 0.396937 1.9715E-10

0.85355 0.293496 0.293496 8.8771E-11

0.93301 0.158884 0.158884 2.2371E-11

0.98296 0.044753 0.044753 1.6132E-12

1.00000 0.00000 0.00000 0.00000

3.4 Quadrature Solutions of the Third and Fourth Order Singu-

larly Perturbed Problems

In this section, a number of classes of higher order perturbation problems are studied.

Third and fourth order problems are discretized by present method. These models are

solved in [69] using current scheme. To see the validity, five examples are solved. All

results are tabulated and figures for different perturbation parameters are presented.

3.4.1 Quadrature Discretization of Third Order Perturbation Problems

Third order perturbation problem is given by the following ordinary differential

equation, which is classified as reaction diffusion type [59],

εy ′′′(x) + p(x)y ′(x) + q(x)y(x) = f (x), x ∈ [a, b], (3.46)

with boundary conditions,

y(a) = a0, y(b) = b0 y ′(a) = c0, (3.47)
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where ε > 0 is the small perturbation parameter. Coefficients a0, b0, c0 are constants

and p(x), q(x) and f (x) are smooth functions. Domain of the problem is given on

a ≤ x ≤ b. To discretize the model problem, (3.47) is rewritten as,

εy ′′′(x i) + p(x i)y
′(x i) + q(x i)y(x i) = f (x i). (3.48)

The DQ method is applied to (3.48)

ε

N
∑

j=1

w(3)i j y(x j) + p(x i)
N
∑

j=1

w(1)i j y(x j) + q(x i)y(x i) = f (x i). (3.49)

Equation (3.49) can be rewritten in a simplified form, where w(k)i j represents k-th order

weighting coefficient, (3.49) is rewritten in vector-matrix form,

�

εw(3)i j + p(x i)w
(1)
i j + q(x i)I

�

[y(x j)] = [ f (x i)], (3.50)

or
�

Ai j

� �

y(x j)
�

= [ f (x i)] . (3.51)

The DQ method is implemented to the boundary conditions,

y(a) = y(x1) = a0, y(b) = y(xN ) = b0,

y ′(a) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = c0. (3.52)

After using the given constraints given in (3.52), we obtain the following system,





















1 0 0 · · · 0

w(1)11 w(1)12 w(1)13 · · · w(1)1N

A31 A32 A33 · · · A3N
...

. . .

A(N−1)1 A(N−1)2 A(N−1)3 · · · A(N−1)N

0 0 0 · · · 1
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


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






















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y2

y3
...
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yN





















=





















a0

c0

f3
...

fN−1

b0





















.

The resultant matrix equation is solved to get approximated solutions. Here, LU

decomposition is used to solve the system.
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3.4.2 Quadrature Discretization of Fourth Order Perturbation Problems

In this section, fourth order singularly perturbed BVP is investigated. This model is

given by,

−εy ′′′′(x)− p(x)y ′′′ + q(x)y ′′(x)− r(x)y(x) = − f (x), x ∈ (0,1), (3.53)

with boundary conditions,

y(0) = a0, y(1) = b0, y ′′(0) = −c0, y ′′(1) = −d0,

where ε > 0 is perturbation parameter and p(x), q(x), r(x) and f (x) are functions

which are differentiable on (0,1). DQ method is applied to Equation (3.53) as,

−ε
N
∑

j=1

w(4)i j y(x j)− p(x i)
N
∑

j=1

w(3)i j y(x j) + q(x i)
N
∑

j=1

w(2)i j y(x j)− r(x i)y(x i) = − f (x i).

(3.54)

Equation (3.54) can be represented as,

[Ai j][y(x j)] = [ f (x i)], (3.55)

where [Ai j] is the weighting coefficient matrix. The method is employed for the

boundary conditions,

y(0) = y(x1) = a0, y(1) = y(xN ) = b0,

y ′′(0) = y ′′(x1) =
N
∑

j=1

w(2)2 j y(x j) = −c0,

y ′′(1) = y ′′(xN) =
N
∑

j=1

w(2)N j y(x j) = −d0. (3.56)
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
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











1 0 0 · · · 0

w(2)11 w(2)12 w(2)13 · · · w(2)1N

A31 A32 A33 · · · A3N
...

. . .

w(2)N1 w(2)N2 w(2)N3 · · · w(2)NN

0 0 0 · · · 1
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
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












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...
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yN





















=





















a0

−c0

f3
...

−d0

b0





















.

The resultant matrix equation is solved to get approximated solutions. LU

decomposition is used to solve the system. Now, five illustrative examples are

presented to test the validity of the DQ method.
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Example 3.4.1

εy ′′′ + 4y ′ − 4y = x2,

y(0) = 0.5, y(1) = 1.47 y ′(0) = 0.5. (3.57)

Example 3.4.1 is solved by Initial Value Technique (IVT) [59]. The problem is

discretized using differential quadrature algorithm as,

ε

N
∑

j=1

w(3)i j y(x j) + 4
N
∑

j=1

w(1)i j y(x j)− 4y(x j) = x i
2 (3.58)

or in matrix form
�

εw(3)i j + 4w(1)i j − 4I
�

[y(x j)] = [x i
2]. (3.59)

Boundary conditions are implemented as,

y(0) = y(x1) = 0.5, y(1) = y(xN ) = 1.47,

y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = 0.5. (3.60)

Errors between analytical and numerical methods are computed using different

perturbation parameters. Quadrature and analytical solutions are depicted by Figure

3.1. As small perturbation parameter increase, more accurate results are obtained.

The results are compared with IVT and observed that presented method gives more

accurate results, Tables 3.21-3.23. In addition, solutions are more accurate as x → 0

where boundary layer occurs.
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Table 3.21 Comparison of absolute errors of Example 3.4.1 for ε= 2−3

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 4.0803E-12 5.9049E-09

0.0010 2.9995E-12 5.9033E-07

0.0100 1.3356E-12 5.8867E-05

0.0300 2.5316E-12 5.2566E-04

0.1000 3.1185E-12 5.5841E-03

0.3000 4.2729E-11 0.0379E-02

0.5000 7.2330E-12 6.2041E-02

0.7000 3.1879E-12 5.0860E-02

0.9000 2.0270E-12 1.7090E-02

1.0000 0.0000 0.0000

Table 3.22 Comparison of absolute errors of Example 3.4.1 for ε= 2−6

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 5.5546E-13 4.7400E-09

0.0010 3.8232E-12 4.7384E-07

0.0100 2.5430E-11 4.7134E-05

0.0300 5.6183E-11 4.1405E-04

0.1000 1.0460E-11 3.6784E-03

0.3000 8.1553E-11 3.2214E-03

0.5000 9.0121E-11 3.2902E-03

0.7000 6.3508E-11 1.5055E-03

0.9000 7.9107E-11 1.1480E-03

1.0000 0.0000 0.0000
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Table 3.23 Comparison of absolute errors of Example 3.4.1 for ε= 2−9

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 1.4086E-09 1.2330E-09

0.0010 1.0533E-08 1.2326E-07

0.0100 2.2326E-08 1.2103E-05

0.0300 3.2396E-08 9.4622E-05

0.1000 5.2096E-08 1.5146E-03

0.3000 6.9652E-09 8.5658E-04

0.5000 5.9590E-09 2.3461E-05

0.7000 7.5398E-09 9.1170E-04

0.9000 4.9060E-08 2.6400E-04

1.0000 0.0000 0.0000

Figure 3.1 Comparison of solutions for Example 3.4.1, numerical solution (dotted
line), exact solution (solid line).

Example 3.4.2

εy ′′′ +
�

1+
x
2

�

y ′ −
1
2

y = 0,

y(0) = 0.6, y(1) = 0.9 y ′(0) = 0.23. (3.61)

The example given in (3.61) is examined by IVT in [59]. The problem is discretized
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using differential quadrature algorithm as,

ε

N
∑

j=1

w(3)i j y(x j) +
�

1+
x i

2

�
N
∑

j=1

w(1)i j y(x j)−
1
2

y(x j) = 0. (3.62)

Equation (3.52) is written in matrix form

�

εw(3)i j +
�

1+
x i

2

�

w(1)i j −
1
2

I
�

[y(x j)] = 0. (3.63)

Boundary conditions are implemented as follows:

y(0) = y(x1) = 0.6, y(1) = y(xN ) = 0.9,

y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = 0.23. (3.64)

Errors between analytical and numerical methods are computed using different

perturbation parameters and presented in Figure 3.2. The results are compared with

initial value technique, Tables 3.24-3.26. As small perturbation parameter increase,

more accurate results obtained. It is observed that the presented method gives more

accurate results. Also, solutions are more accurate as x → 0 where boundary layer

occurs.

Table 3.24 Comparison of absolute errors of Example 3.4.2 for ε= 2−3

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 1.7570E-12 2.9556E-08

0.0010 1.9643E-12 4.1225E-06

0.0100 2.5038E-12 5.1848E-05

0.0300 3.2534E-12 1.7770E-03

0.1000 4.5989E-12 1.9112E-03

0.3000 4.8178E-12 3.1617E-03

0.5000 3.1264E-12 1.1798E-02

0.7000 1.5297E-12 5.0860E-02

0.9000 2.3540E-13 1.7090E-02

1.0000 0.0000 0.0000
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Table 3.25 Comparison of absolute errors of Example 3.4.2 for ε= 2−6

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 1.2089E-12 2.5234E-08

0.0010 1.1556E-12 4.1225E-06

0.0100 9.3170E-12 3.2961E-05

0.0300 5.4370E-13 1.3783E-04

0.1000 6.7030E-13 9.6782E-03

0.3000 6.7770E-14 3.0945E-03

0.5000 3.2022E-12 7.7235E-03

0.7000 2.2141E-12 9.7253E-03

0.9000 3.3340E-13 1.5692E-02

1.0000 0.0000 0.0000

Table 3.26 Comparison of absolute errors of Example 3.4.2 for ε= 2−9

x DQ IVT [59]

0.0000 0.0000 0.0000

0.0001 6.3730E-12 1.2330E-08

0.0010 1.8984E-08 4.0725E-06

0.0100 1.4160E-07 2.9034E-05

0.0300 2.9550E-07 9.5372E-04

0.1000 2.5050E-07 7.9146E-03

0.3000 2.7559E-07 2.8450E-03

0.5000 2.7559E-07 5.6283E-03

0.7000 3.1095E-07 6.8244E-03

0.9000 1.5620E-07 2.6436E-03

1.0000 0.0000 0.0000
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Figure 3.2 Comparison of solutions for Example 3.4.2, numerical solution (dotted
line), exact solution (solid line).

Example 3.4.3

− εy ′′′′ − 4y ′′′ = 1, 0< x < 1,

y(0) = 1, y(1) = 1 y ′′(0) = −1, y ′′(1) = −1. (3.65)

Equation (3.65) is studied by Boundary Value Technique (BVT) in [66]. After DQ

application, present result is compared with BVT.

Now, DQ algorithm is applied as,

−ε
N
∑

j=1

w(4)i j y(x j)− 4
N
∑

j=1

w(3)i j y(x j) = 1 (3.66)

or in matrix form
�

−εw(4)i j − 4w(3)i j

�

[y(x j)] = 1. (3.67)

Boundary conditions are discretized as,

y(0) = y(x1) = 1, y(1) = y(xN ) = 1,

y ′′(0) = y ′′(x1) =
N
∑

j=1

w(1)1 j y(x j) = −1,

y ′′(1) = y ′′(xN ) =
N
∑

j=1

w(1)N j y(x j) = −1. (3.68)
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Errors between analytical and numerical results are computed using different

perturbation parameters with different number of space grids Table 3.27, Figure 3.3.

The results are also compared with boundary value technique and given by Table 3.28.

Both methods give highly effective results.

Table 3.27 Error Norms for Example 3.4.3

Norms N ε= 10−2 ε= 10−3 ε= 10−4

20 8.03036E-05 7.89303E-05 7.86227E-05

L2 50 1.36130E-06 3.11759E-06 3.05975E-06

100 9.66820E-13 2.51022E-07 2.68298E-07

20 3.15926E-05 3.10204E-05 3.08603E-05

L∞ 50 3.29883E-07 7.44577E-07 7.23180E-07

100 1.64111E-13 4.20483E-08 4.41987E-08

Table 3.28 Comparison of absolute errors between different methods for Example
3.4.3 when ε= 10−3

x DQ BVT [66]

0.0000 0.0000 0.0000

0.0003 4.703905E-08 4.127016E-09

0.2000 8.719068E-08 2.370865E-08

0.3000 7.553848E-08 1.621495E-09

0.4000 5.836873E-08 7.137186E-09

0.5000 5.396490E-08 2.543137E-08

0.6000 4.306175E-08 8.116636E-09

0.7000 3.265890E-08 2.852202E-08

0.8000 2.139622E-08 4.563018E-10

0.9000 1.072529E-08 3.535062E-09

1.0000 0.0000 0.0000
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Figure 3.3 Comparison of solutions for Example 3.4.3, numerical solution (dotted
line), exact solution (solid line).

Example 3.4.4 Nonlinear BVP

εy ′′′ + y ′′ + ε
�

(y ′)2 + 2y ′
�

+ y = 1. 0≤ x ≤
π

2
,

y(0;ε) = 0, y(
π

2
;ε) = 1−

ε

3
y ′(
π

2
;ε) = −1+

επ

4
. (3.69)

The example given by Equation (3.69) is solved asymptotically in [56].The nonlinear

term (y ′)2 is discretized as follows:

yx(x i) =
N
∑

j=1

wi j y(x j) (3.70)

where wi j represents the first order weighting coefficients. Then,

yx(x i)yx(x i) =
N
∑

j=1

wi j y(x j)
N
∑

j=1

wi j y(x j) (3.71)

or

{yx(x i)}2 =
N
∑

j=1

{wi j}2H(x j). (3.72)

So the equation (3.69) can be represented as,

�

εw(3)i j +w(2)i j + 2εw(2)i j

�

[y(x j)] +
�

{w(2)i j }
2H(x j)

�

= 1. (3.73)

where H(x j) vector is obtained by square of function values at grid points. So, the
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nonlinear term (y ′)2 is discretized by using DQ weighted sum of square of functional

values at all discrete points [38]. Boundary conditions are implemented as,

y(0) = y(x1) = 0, y(
π

2
) = y(xN ) = 1−

ε

3
,

y ′(
π

2
) = y ′(xN ) =

N
∑

j=1

w(1)N j y(x j) = −1+
επ

4
. (3.74)

Numerical results are presented using different number of grid points and different

perturbation parameter, Table 3.29, Table 3.30. We observe that results are better

as ε → 0. Graphs of numerical solutions are given by Figure 3.4. Numerical and

asymptotic results are well-matched.

Table 3.29 Absolute errors for N = 10

x i ε= 2−3 ε= 2−6 ε= 2−9

0.00000 0.0000000 0.0000000 0.0000000

0.04736 3.7335619E-02 1.2119630E-02 1.8878739E-03

0.18374 7.9491326E-02 1.5372186E-02 2.2135893E-03

0.39269 7.4803051E-02 1.0948929E-02 1.6247999E-03

0.64901 4.9647666E-02 7.2890856E-03 1.1314067E-03

0.92178 2.5020504E-02 3.5269846E-03 6.0448946E-04

1.17809 9.0508809E-03 1.3820846E-03 2.7431769E-04

1.38704 1.8843521E-03 2.4844445E-04 8.0858917E-05

1.52343 1.2271346E-04 7.2277373E-05 2.2166443E-05

1.57079 0.0000000 0.0000000 0.0000000

Table 3.30 Error Norms for Example 3.4.4

Norms N ε= 10−2 ε= 10−3 ε= 10−4

20 2.41305E-02 2.807329E-03 3.03592E-04

L2 50 3.95775E-02 4.21815E-03 4.85272E-04

100 5.62559E-02 6.12589E-03 6.35555E-04

20 1.09241E-02 1.25137E-03 1.15486E-04

L∞ 50 1.08975E-02 1.16737E-03 1.31765E-04

100 1.09219E-02 1.12775E-03 1.18752E-04
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Figure 3.4 Comparison of solutions for Example 3.4.4, numerical solution (dotted
line), exact solution (solid line).

Example 3.4.5 Nonlinear IVP [56]:

y ′′′ + y ′′ + ε
�

(y ′)2 + y
�

= εe−2x , x ≥ 0,

y(0;ε) = 2, y ′(0;ε) = −1 y ′′(0;ε) = 1. (3.75)

The non-linearity of the problem is analyzed using similar procedure given in Problem

3.4.4. So (3.75) is discretized as,

N
∑

j=1

w(3)i j y(x j) +
N
∑

j=1

w(2)i j y(x j) + ε

�

N
∑

j=1

{w(2)i j }
2H(x j) + y(x i)

�

= εe−2x . (3.76)

Boundary conditions are discretized as,

y(0) = y(x1) = 2, y ′(0) = y ′(x1) =
N
∑

j=1

w(1)1 j y(x j) = −1,

y ′′(0) = y ′′(x1) =
N
∑

j=1

w(2)1 j y(x j) = 1. (3.77)

Numerical results are presented using different number of grid points and different

perturbation parameter, Table 3.31, Table 3.32. It is observed that results are better

as ε→ 0, as well as x → 0. Graphs of numerical solutions are given by Figure 3.5. In

addition, results are approximately same for grid points N = 20 and N = 50 but more

effective when compared to N = 100.

50



Table 3.31 Absolute errors for N = 10

x i ε= 2−3 ε= 2−6 ε= 2−9

0.00000 0.0000000 0.0000000 0.0000000

0.03015 1.1284872E-06 1.4117507E-07 1.7646933E-08

0.11697 6.3586312E-05 7.9735834E-06 9.9702782E-07

0.25000 5.8757288E-04 7.3946828E-05 9.2508359E-06

0.41317 2.4785985E-03 3.1331781E-04 3.9218769E-05

0.58682 6.6040254E-03 8.3877317E-04 1.0505471E-04

0.75000 1.2875218E-02 1.6426687E-03 2.0585904E-04

0.88302 1.9871632E-02 2.5448133E-03 3.1906734E-04

0.96984 2.5386175E-02 3.2591185E-03 4.0875552E-04

1.00000 2.7478437E-02 3.5308080E-03 4.4287960E-04

Table 3.32 Error Norms for Example 3.4.5

Norms N ε= 10−2 ε= 10−3 ε= 10−4

20 5.08206E-03 5.09283E-04 5.09391E-05

L2 50 7.90977E-03 7.92645E-04 7.92813E-05

100 1.11126E-02 1.11496E-03 1.11520E-04

20 2.26293E-03 2.26881E-04 2.26863E-05

L∞ 50 2.26629E-03 2.26811E-04 2.26863E-05

100 2.26293E-03 2.26811E-04 2.26863E-05
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Figure 3.5 Comparison of solutions for Example 3.4.5, numerical solution (dotted
line), exact solution (solid line).
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4
APPLICATIONS ON QUADRATURE DISCRETIZATION

FOR SOME PARTIAL DIFFERENTIAL EQUATIONS

This chapter deals with numerical schemes of linear and nonlinear partial differential

equations. Spatial discretization of the such equations are performed by DQ method.

Weighting coefficients matrix which is essential to obtain quadrature solutions is

calculated mentioned in Sections 2.3.3 and 2.3.4. For time integration, fourth

order Runge-Kutta method is used. Matrix stability analysis is performed for all

equations based on the DQ discretized matrix. The DQ is applied to linear and

nonlinear diffusion equations in Section 4.1. Section 4.2 presents DQ application

of reaction-diffusion equations on nonuniform media. Numerical simulation of

Kuramoto-Sivashinsky equation is given in Section 4.3. Section 4.4 deals with the

study of nonlinear advection problems and inviscid Burger’s equation. In Section 4.5,

numerical solutions of Ginzburg-Landau equation is solved numerically.

4.1 Quadrature Solution of Linear and Nonlinear Diffusion Equa-

tions

Diffusion equations have been presented as models of many physical and chemical

processes, groundwater flow, heat conduction, etc. [70–74]. The model has been

extensively studied numerical or analytical [71–73, 75, 76]. Akman [44] investigated

diffusion equations in two dimensions numerically by the present technique with

different boundary conditions. Chen [77] studied steady-state heat conduction

problems by differential quadrature element method. Guraslan and Sari [72] solved

one-dimensional diffusion equations using polynomial based differential quadrature.

They used Lagrange polynomials based DQ to discretize spatial derivatives and

Runge-Kutta method for time integration. Guraslan [71] studied same problems

numerically using compact finite difference method.

In this section, we consider linear and nonlinear diffusion equations given by the
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following equations,

Ut = Ux x + g(x , t), 0< x < l, t > 0, (4.1)

Ut = (D(U)Ux)x , 0< x < l, t > 0, (4.2)

subject to following initial and Dirichlet boundary conditions,

U(x , 0) = f (x), U(0, t) = F1, U(l, t) = F2. (4.3)

The function g(x , t) represents source term and given as linear. The function D(U)
denotes the diffusion coefficient of density. D(U) is represented in various forms such

as exponential and power functions. Here, we studied the case for D(U) = Un when

n= 2 which exhibits slow diffusion process [76].

4.1.1 Discretization of Linear Diffusion Equation

Equation (4.1) by using nodal points x i,

Ut(x i, t) = kUx x(x i, t) + g(x i, t). (4.4)

Then, for spatial discretization DQ formulations are applied as,

∂ U(x i, t)
∂ t

= k
N
∑

j=1

w(2)i j U(x j, t) + g(x i, t), (4.5)

or
∂ U(x i, t)
∂ t

= [kw(2)i j ]U(x j, t) + g(x i, t). (4.6)

Also, we implemented the method for boundary and initial conditions,

U(0, t) = U(x1, t) = F1, U(l, t) = U(xN , t) = F2, U(x i, 0) = f (x i). (4.7)

The system can be expressed as,

{T}= [A]{U}+ {B} (4.8)

where the vectors T and B represent time derivative and boundary conditions vector

respectively and coefficient matrix A consists of second order derivative. Time

integration of the system is adapted by Runge-Kutta fourth order method. Stability

analysis has been established depends on the eigenvalue distribution of the numerical

54



discretized matrix [A]. We consider eigenvalues of the following matrix [A] by

considering different number of grid points. So, the resultant matrix form becomes as

follows:


















dU(x2, t)
d t

dU(x3, t)
d t
...

dU(xN−1, t)
d t



















= A











U(x2, t)
U(x3, t)

...

U(xN−1, t)











+ B (4.9)

We will investigate problem (4.1) to validate our approach in terms of stability

and comparisons with exact and previous studies. We analyzed homogeneous and

inhomogeneous test problems and reported numerical solutions via tables and figures.

4.1.2 Discretization of Nonlinear Diffusion Equation

Equation (4.2) is represented as,

Ut = 2U(Ux)
2 + U2Ux x (4.10)

Spatial discretization is performed using DQ formulations as,

∂ U(x i, t)
∂ t

= 2U(x i, t)
N
∑

j=1

(w(1)i j U(x j, t))2 + U2(x i, t)
N
∑

j=1

(w(2)i j )U(x j, t) (4.11)

Also, boundary and initial conditions are adapted as in (4.7). Then the system (4.11)

is solved to obtain numerical solutions. Time integration of the system is adapted by

Runge-Kutta fourth order method. To establish the stability analysis, the nonlinear

term U(x i) = αi is assumed to be constant. So, the resultant matrix form becomes,



















dU(x2, t)
d t

dU(x3, t)
d t
...

dU(xN−1, t)
d t



















= A











U(x2, t)
U(x3, t)

...

U(xN−1, t)











+ B (4.12)
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where coefficient matrix A is given as,

A=







2α2(w
(1)
21 )

2 +α2
2(w

(2)
21 ) · · · 2α2(w

(1)
2,N−1)

2 +α2
2(w(2)2,N−1)

...
. . .

...

2αN−1(w
(1)
N−1,N−1)

2 +α2
N−1(w

(2)
N−1,N−1) · · · 2α2(w

(1)
N−1,N−1)

2 +α2
N−1(w

(2)
N−1,N−1)







(4.13)

Now, we will investigate numerical solutions of problem (4.2) to validate our approach

in terms of stability and comparisons with exact and previous studies.

Example 4.1.1: Homogeneous diffusion equation

Let us consider the problem (4.1) on x ∈ [0,π] when g(x , t) = 0. Analytical solution

of the problem is given in [78] as,

U(x , t) = e−t sin(x) (4.14)

with the following conditions,

F1 = F2 = 0, U(x , 0) = sin(x). (4.15)

Table 4.1 presents errors at different time levels for Example 4.1.1. Eigenvalues of

the DQ discretized matrix are calculated for different number of grid points to see

the stability of the problem. Figures 4.1-4.2 show the eigenvalue distribution for the

Example 4.1.1 for various grid points. According to the graphs, eigenvalues of the

problem consist of only real parts. It can be obtained that as the number of grid points

increase, absolute value of the eigenvalues increase, so this requires using less number

of time grids to keep the eigenvalues inside the region of stability. Maximum values

of eigenvalues are given by Table 4.2.

Heat concentration graph is given by Figure 4.3 with projection onto x t- plane under

the parameters∆t = 0.001 and N = 120. 2D graph of comparison between exact and

numerical solutions is given by Figure 4.6. We can conclude that exact and present

method graphs are well-matched.

Example 4.1.2: Inhomogeneous diffusion equation

Case (a): We studied the problem (4.1) when g(x , t) = cos x on x ∈ [0,1] under the

following conditions,

U(0, t) = 1− e−t , U(1, t) = cos(1)(1− e−t), U(x , 0) = 0. (4.16)
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Analytical solution of the problem is given in [72] as,

U(x , t) = cos(x)(1− e−t). (4.17)

Table 4.3 presents errors on 0≤ t ≤ 10 for Example 4.1.2(a) using∆t = 0.01 and N =
80. Table 4.4 shows errors for present method and polynomial differential quadrature

[72] for Example 4.1.2(a). Both methods give effective results. Heat concentration

graph is given by Figure 4.4 with projection onto x t- plane under the parameters∆t =
0.001 and N = 120. 2D comparison graphs between exact and numerical solutions

are given by Figure 4.7. We can conclude that exact and present method graphs are

well-matched.

Case (b): We studied the problem (4.2) when g(x , t) = sin x on x ∈ [0,π] under the

following conditions,

U(0, t) = e−t , U(π, t) = −e−t , U(x , 0) = cos(x). (4.18)

Analytical solution of the problem is given in [78] as,

U(x , t) = (1− e−t) sin(x) + e−t cos(x). (4.19)

Table 4.5 presents errors on 0 ≤ t ≤ 10 for Example 4.1.2(b) using ∆t = 0.01 and

N = 80. Both methods give effective results. Heat concentration graphs are given

by Figure 4.5 with projection onto x t- plane under the parameters ∆t = 0.001 and

N = 120. 2D comparison graphs between exact and numerical solutions are given by

Figure 4.8. We can conclude that exact and present method graphs are well-matched.

Example 4.1.3: Slow diffusion process

As a last example, we studied the nonlinear diffusion equation given in (4.2) on x ∈
[0,1] under the following conditions,

U(0, t) =
a

2
p

c2 − t
, U(1, t) =

1+ a

2
p

c2 − t
, U(x , 0) =

x + a
2c

. (4.20)

Analytical solution of the problem is [72],

U(x , t) =
x + a

2
p

c2 − t
t < c2. (4.21)

Table 4.6 shows errors for present method and polynomial differential quadrature [72]
when t = 0.1 of Example 4.1.3. U(x , t) solution graph for constant time steps is given
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by Figure 4.9 using the parameters ∆t = 0.001 and N = 30.

Table 4.1 Errors for different time levels of Example 4.1.1 for N = 40

t L2 L∞
0.5 1.915119E-10 3.603346E-11

1 2.323157E-10 3.091319E-11

2 1.709284E-10 2.274465E-11

5 2.127506E-11 2.830974E-12

10 2.468127E-08 3.955037E-09

Table 4.2 Maximum eigenvalues for different number of grid points

N 20 40 80 120

∆t |ℜ(λmax)| 0.456601 1.661454 128.381152 659.694

Table 4.3 Errors for different time levels of Example 4.1.2 (a) for N = 80

t L2 L∞
0.5 1.915119E-10 3.603346E-11

1 2.323157E-10 3.091319E-11

2 1.709284E-10 2.274465E-11

5 2.127506E-11 2.830974E-12

10 2.468127E-08 3.955037E-09

Table 4.4 Comparison of absolute errors of Example 4.1.2 (a) when t = 0.1

x Present Method PDQ [72]

x2 1.98E-08 2.34E-13

x5 9.82E-10 1.10E-13

x8 1.91E-09 8.43E-14
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Table 4.5 Errors for different time levels of Example 4.1.2 (b) for N = 80

t L2 L∞
0.5 2.279323E-10 3.603346E-11

1 2.764959E-10 4.371079E-11

2 2.034343E-10 3.216060E-11

5 2.532100E-11 4.002956E-12

10 3.118000E-07 8.105380E-08

Table 4.6 Comparison of absolute errors of Example 4.1.3 when t = 0.1

x Present Method PDQ [72]

x2 3.81E-05 9.10E-15

x5 4.25E-04 4.46E-14

x8 9.89E-04 9.10E-15
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(a) (b)

Figure 4.1 Eigenvalue distribution when (a) N = 20, (b) N = 40

(c) (d)

Figure 4.2 Eigenvalue distribution when (c) N = 80 and (d) N = 120
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Figure 4.3 Numerical solutions and projection on x t- plane of Example 4.1.1

Figure 4.4 Numerical solutions and projection on x t- plane of Example 4.1.2 (a)

Figure 4.5 Numerical solutions and projection on x t- plane of Example 4.1.2 (b)
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Figure 4.6 Comparison of numerical and exact solutions for constant time levels of
Example 4.1.1

Figure 4.7 Comparison of numerical and exact solutions for constant time levels of
Example 4.1.2 (a)
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Figure 4.8 Comparison of numerical and exact solutions for constant time levels of
Example 4.1.2 (b)

Figure 4.9 Numerical solutions for constant time levels of Example 4.1.3
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4.2 Quadrature Solution of Reaction-Diffusion Equation in Non-

Uniform Media

In this section, we have presented one-dimensional reaction-diffusion equation on

composite media which is named by functionally graded material. The model

describes the conductivity non-uniformly as a function of space. A functionally graded

material is a non-uniform composite in which the volume fraction varies from one

point to another. Composition profile of such materials enables to reduce singularities

from transitions between two surfaces. When compared to traditional materials, FGMs

improve the thermal properties of structure of the material since it presents gradual

changing. FGM exists in many applications such as aerodynamics, thermal barrier

cooling, high temperature problems due to its flexibility in material design [79, 80].
The solution process converts the model equation to an advection-reaction-diffusion

equation.

Numerical methods for heat conduction equations in FGMs have been extensively

studied. Sutradhar et al [81] have employed numerical approach using Laplace

transform boundary element method for transient heat conduction problem in FGMs.

Zhao et al [82] considered transient heat conduction in FGMs using method of

fundamental solutions. Yu et al [83] have investigated heat conduction in FGMs by

implementing boundary element and differential transform methods. Tian and Jiang

[84] studied heat conduction in FGMs considering exponential heat source with hybrid

numerical method based on weighted residuals.

Karagoz [85] investigated several reaction-diffusion equations in FGMs using an

analytical method. Yigit et al [86] studied the vibration of functionally graded beams.

Various studies on functionally graded beams based on DQM have been studied.

Rajasekaran [87, 88] have presented vibration analysis of functionally graded beams

using differential transform and differential quadrature methods. Vosoughi [89]
studied thermal buckling analysis in FGMs numerically using DQM. Jiao et al [90]
considered bending of functionally graded beams using differential quadrature.

The governed reaction-diffusion equation in FGMs is given in [85],

ρ(x)µ(x)
∂ U(x , t)
∂ t

=
∂

∂ x

�

k(x)
∂ U(x , t)
∂ x

�

+ p(x , t)U(x , t) (4.22)

where U is the concentration, p is the reaction parameter and ρ(x)µ(x) is the heat

capacity and k(x) represents conductivity with subject to proper initial and boundary

conditions,

U(x , 0) = F(x)
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U(0, t) = f0(t), Ux(0, t) = f1(t) (4.23)

Now, due to the structure of the FGMs, heat capacity and conductivity parameters are

assumed to be exponential functions given as,

ρ(x)µ(x) = ρ0µ0eαx (4.24)

k(x) = k0eαx , ρ0,µ0, k0 6= 0, 0≤ α≤ 3.

Using (4.24) into (4.22),

ρ0µ0eαx ∂ U(x , t)
∂ t

= k0αeαx ∂ U(x , t)
∂ x

+ k0eαx ∂
2U(x , t)
∂ x2

+ p(x , t)U(x , t) (4.25)

or equivalently rewritten as,

∂ U(x , t)
∂ t

= D
§

∂ 2U(x , t)
∂ x2

+α
∂ U(x , t)
∂ x

+ q(x , t)U(x , t)
ª

(4.26)

where

D =
k0

ρ0µ0
, q(x , t) =

e−αx

k0
p(x , t). (4.27)

Equation (4.26) can be expressed as

Ut(x , t) = D {Ux x(x , t) +αUx(x i, t) + q(x , t)U(x , t)} (4.28)

Exact solution of the problem is given in [85]. Quadrature discretization of (4.28)

gives,

Ut(x i, t) = D {Ux x(x i, t) +αUx(x i, t) + q(x i, t)U(x i, t)} (4.29)

Then, spatial derivatives are replaced by DQ formulations as,

∂ U(x i, t)
∂ t

= D

¨

N
∑

j=1

w(2)i j U(x j, t) +α
N
∑

j=1

w(1)i j U(x j, t) + q(x i, t)U(x i, t)

«

(4.30)

DQM is applied to the boundary conditions as,

U(0, t) = U(x1, t) = f0, Ux(0, t) =
N
∑

j=1

w(1)1 j U(x1, t) = f1 (4.31)

Equation (4.30) can be rewritten as,

w(1)11 U(x1, t) = f1 −
N
∑

j=2

w(1)1 j U(x j, t) (4.32)
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or

U(x1, t) =
f1 −

∑N
j=2 w(1)1 j U(x j, t)

w(1)11

(4.33)

So, discretized system given by (4.30) becomes,

∂ U(x i, t)
∂ t

= D

¨

N
∑

j=2

w(2)i j U(x j, t) +α
N
∑

j=2

w(1)i j U(x j, t) + q(x i, t)U(x i, t) + B

«

(4.34)

where

B = U(x1, t) = w(1)11 f0 − f1 +
N
∑

j=2

w(1)1 j U(x j, t) (4.35)

The system can be expressed as,

{T}= [A]{U}+ {B} (4.36)

where the vectors T and B represent time derivative and vector containing boundary

conditions respectively. For time integration of the system, we use Runge-Kutta

fourth order method. Stability analysis depends on the eigenvalue distribution of the

numerical discretized matrix [A]. Boundary conditions and non-homogeneous part of

the problem have no effect on stability. We will consider eigenvalues of the following

matrix [A] by considering different number of grid points. So, the resultant matrix

form becomes as,



















dU(x2, t)
d t

dU(x3, t)
d t
...

dU(xN , t)
d t



















= A











U(x2, t)
U(x3, t)

...

U(xN , t)











+ B (4.37)

Now, we will investigate numerical solutions some test problems to validate our

approach.

Example 4.2.1 Advection-reaction-diffusion equation is considered when D = 1 and

q(x , t) = −1 with following initial and boundary conditions

U(x , 0) = e−x + x , (4.38)

U(0, t) = αte−t + e−αt , Ux(0, t) = e−t − eαt

Exact solution of the problem is given in [85] using Adomian decomposition
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method. We investigate numerical solutions of the problem for different levels of

non-homogeneity parameter together with different time levels. In Table 4.7 we

compare results with homogeneous problem as the non-homogeneity parameter is

sufficiently small like α→ 0. Errors on 0 ≤ t ≤ 3 are presented by Table 4.8. Graphs

of numerical solution are given by Figures 4.12-4.14 using parameters ∆t = 0.001,

N = 80, 0 ≤ t ≤ 1, for different non-homogeneity levels such as α = 0.001, α = 1

and α= 3. In Figure 4.15, graphs of solutions are depicted for fixed time levels. In all

cases, results are well matched with exact solutions of the problem. We can conclude

that, as non-homogeneity parameter is away from zero, solutions are less stable.

The approximations express accurate solutions when using N = 120, increasing grid

points also causes costs in terms of process time, so we did not consider large grid

numbers since Runge-Kutta method requires matrix vector multiplication for each time

step.

To check the stability of the presented method we used eigenvalues of grid points when

N = 20, N = 40, N = 80, N = 120 for ∆t = 0.001. Graphs of real and imaginary

parts of the eigenvalues are given by Figures 4.10-4.11. We can conclude that, as grid

points increase, eigenvalues also increase, so time steps should be decreased while

grid points increase. Detailed values of eigenvalues are given in Table 4.9.

Table 4.7 Maximum absolute errors for non-homogeneity parameters when t = 1
and N = 30

α= 0.001 α= 1 α= 3

1.036825E-10 2.907920E-09 1.572733E-06

Table 4.8 Error Norms for different time levels when ∆t = 0.01, α= 1 and N = 30

t L2 L∞
0.1 1.567752E-10 2.971670E-11

0.5 1.496585E-10 8.940508E-11

1 5.165439E-10 9.892987E-11

2 1.433503E-06 4.949908E-07

3 5.531280E-04 1.794557E-04
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Table 4.9 Maximum eigenvalues of the discretized system for different number of
grid points

N 20 30 40 80 120

∆t |Re(λmax)| 0.036855 0.371330 1.661454 21.769829 227.817311

∆t |Im(λmax)| 0.039955 0.319993 1.308291 17.085405 157.275180

(a) (b)

Figure 4.10 Eigenvalue distribution when (a) N = 20, (b) N = 40

(c) (d)

Figure 4.11 Eigenvalue distribution when (c) N = 80, (d) N = 120
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Figure 4.12 Numerical solution of Example 4.2.1 for α= 0.001

Figure 4.13 Numerical solution of Example 4.2.1 for α= 1
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Figure 4.14 Numerical solution of Example 4.2.1 for α= 3

Figure 4.15 Comparison between numerical and exact solutions for different time
levels of Example 4.2.1 for ∆t = 0.01 and N = 30
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Example 4.2.2 We consider following advection-reaction-diffusion equation,

Ut(x , t) = D {Ux x(x , t)−αUx(x , t) + q(x , t)U(x , t)} (4.39)

when D = 1 and reaction parameter q(x , t) = 2t for following two cases:

Case (a) α= 1 with subject to following initial and boundary conditions:

U(x , 0) = e−x , (4.40)

U(0, t) = et2
Ux(0, t) = −et2

.

Exact solution of the problem (4.39) is given as U(x , t) = e−x+t2
in [85].

Case (b) α= 0.001 with subject to following initial and boundary conditions:

U(x , 0) = ex , (4.41)

U(0, t) = et+t2
Ux(0, t) = et+t2

.

Exact solution of the problem (4.39) is given as U(x , t) = ex+t+t2
when α = 0 in [91]

and an approximate exact solution is given in [85] when non-homogeneity parameter

is sufficiently small such as α= 0.001.

We investigate numerical solutions of the problems for different levels of

non-homogeneity parameter together with different time levels. On 0 ≤ t ≤ 1 errors

are presented by Table 4.10 and 4.11. In Figures 4.18-4.19, graphs of solutions

are depicted for fixed time levels. In all cases, results are well matched with

exact solutions. Graphs of numerical solutions are given by Figures 4.20-4.21 using

parameters ∆t = 0.001, N = 80, 0≤ t ≤ 1.

Stability of the problem is analyzed using eigenvalues when grid points are N = 20,

N = 40, N = 80, N = 120 for ∆t = 0.001. Regions of eigenvalues are presented

in Figures 4.16-4.17. We conclude that, as grid points increase, absolute value of

eigenvalues also increase, so time steps should be decreased.
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Table 4.10 Error Norms for constant time levels when ∆t = 0.001, and N = 40 for
Example 4.2.2 (a)

t L2 L∞
0.1 2.174044E-04 5.451645E-05

0.25 5.612583E-04 1.523352E-04

0.5 2.397659E-03 6.893236E-04

0.75 5.804446E-03 1.487297E-03

1 9.594511E-03 2.349227E-03

Table 4.11 Error Norms for constant time levels when ∆t = 0.001, and N = 40 for
Example 4.2.2 (b)

t L2 L∞
0.1 1.809551E-14 4.180954E-15

0.25 1.159057E-13 2.677794E-14

0.5 1.088085E-12 2.514013E-13

0.75 7.367476E-12 1.702249E-12

1 4.385473E-11 1.013260E-11

(a) (b)

Figure 4.16 Eigenvalue distribution when (a) N = 20, (b) N = 40
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(c) (d)

Figure 4.17 Eigenvalue distribution when (c) N = 80, (d) N = 120

Figure 4.18 Numerical solutions for different time levels of Example 4.2.2 (a) for
∆t = 0.001 and N = 40
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Figure 4.19 Numerical solutions for different time levels of Example 4.2.2 (b) for
∆t = 0.001 and N = 40

Figure 4.20 Graph of numerical solutions for Example 4.2.2 (a)
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Figure 4.21 Graph of numerical solutions for Example 4.2.2 (b)

4.3 Quadrature Solution of Kuramoto-Sivashinsky Equation

The Kuramato-Sivashinky (KS) equation is presented as a model of phase turbulence in

reaction-diffusion systems [92, 93], plasma instabilities and flame front propagation

[94]. The model equation is a widely studied topic both analytically and numerically.

A few of the methods considered here consist of Chebyshev spectral scheme [95],
quintic B-splines [96], exponential cubic B-splines [97]. Solutions of the KS

equation are analyzed by many methods such as the finite difference methods

[98], discontinuous Galerkin method [99], numeric meshless method for space

derivatives using radial basis function [100], He’s variational iteration method [101].
Rademacher and Wattenberg studied on viscous shocks for the model equation [102].
Cerpa et al presented control results of the equation [103, 104]. Lai and Ma

[105] solved the model numerically using Lattice Boltzmann technique. Mittal and

Dahiya [106] studied the same problem using B-spline based differential quadrature.

Lately, Hepson [107], studied model equation by a numerical algorithm based on

trigonometric cubic B-splines. Yigit and Bayram [108] studied the equation using

DQM with Euler time discretization.

The Kuramoto-Sivashinsky (KS) equation is a nonlinear partial differential equation

given by,

∂ U
∂ t
+ U

∂ U
∂ x
+α

∂ 2U
∂ x2

+ ν
∂ 4U
∂ x4

= 0, x ∈ [x0, xN], t ∈ (0, T ), (4.42)
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along with the initial and boundary conditions

U(x , 0) = U0,

U(x0, t) = g0, U(xN , t) = g1,

Ux(x0, t) = 0, Ux(xN , t) = 0,

Ux x(x0, t) = 0, Ux x(xN , t) = 0, (4.43)

where α represents growth of the linear stability and ν denotes surface tension. Note

that for ν= 0, the term surface tension is removed, then the model equation becomes

Burgers’ equation [96].

The KS equation is rewritten as

Ut = − (UUx +αUx x + νUx x x x) , (4.44)

Ut(x i, t) = − (U(x i, t)Ux(x i, t) +αUx x(x i, t) + νUx x x x(x i, t)) . (4.45)

Then, spatial derivatives are replaced by the Differential Quadrature equality,

∂ U(x i, t)
∂ t

= −

�

U(x i, t)
N
∑

j=1

w(1)i j U(x j, t) +α
N
∑

j=1

w(2)i j U(x j, t) + ν
N
∑

j=1

w(4)i j U(x j, t)

�

,

(4.46)

Applying boundary conditions to (4.46) gives,

∂ U(x i, t)
∂ t

= −{U(x i, t)
N−1
∑

j=2

w(1)i j U(x j, t) +α
N−1
∑

j=2

w(2)i j U(x j, t)+

ν

N−1
∑

j=2

w(4)i j U(x j, t)}+ B(U), (4.47)

where

B(U) = −{U(x i, t)[w(1)i1 g0(t) +w(1)iN g1(t)] +α[w
(2)
i1 g0(t) +w(2)iN g1(t)] (4.48)

+ ν[w(4)i1 g0(t) +w(4)iN g1(t)]}.

The system can be expressed in the form of a matrix equation as,

{T}= [A]{U}+ {B} (4.49)

where the vectors T and B represents time derivative and boundary conditions
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vector respectively and coefficient matrix A consists of first, second and fourth order

derivatives. Time integration of the system is adapted by Runge-Kutta fourth order

method. Stability analysis has been established depends on the eigenvalue distribution

of the numerical discretized matrix [A] with the assumption of U(x i) = κi, (κi

constant). We consider eigenvalues of the following matrix [A] by considering

different number of grid points. So, the resultant matrix form becomes,



















dU(x2, t)
d t

dU(x3, t)
d t
...

dU(xN−1, t)
d t



















= A











U(x2, t)
U(x3, t)

...

U(xN−1, t)











+ B (4.50)

We studied four test examples and reported numerical solutions via tables and figures.

Example 4.3.1

Case (a) KS equation (4.13) is studied when α= 1 and ν= 1 and analytical solution

is given by [96],

u(x , t) = b+
15
19

√

√11
19

�

−9 tanh(k(x − bt − x0)) + 11 tanh3(k(x − bt − x0))
�

. (4.51)

The initial condition is evaluated using analytical solution. Domain of the problem is

considered as [-30,30]. Comparisons between the exact and numerical solutions are

given by Table 4.12 for constant time levels. We use the parameters b = 5, k =
1
2

√

√11
19

,

x0 = −12. To check the stability of the presented method we used eigenvalues of grid

points when N = 20, N = 40, N = 80, N = 120 for ∆t = 0.001. Graphs of real and

imaginary parts of the eigenvalues are given by Figures 4.22-4.23. We conclude that,

as grid points increase, eigenvalues also increase, so time steps should be decreased

as grid points increase.

Case (b) The problem is solved for α = −1 and ν = 1. Exact solution of the problem

is given by [96],

u(x , t) = b+
15
19

√

√ 1
19

�

−3 tanh(k(x − bt − x0)) + 11 tanh3(k(x − bt − x0))
�

. (4.52)

The initial and boundary conditions are evaluated using analytical solution. Domain of

the problem is considered as [-50,50]. We use the parameters b = 5, k =
1

2
p

19
, x0 =
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−25. Errors for different time levels are presented by Table 4.13 using ∆t = 0.001.

The solution models the shock wave propagation with speed b and initial position x0.

Numerical and exact solutions graphs are given by Figure 4.24.

Example 4.3.2

The KS equation is considered when α = 1 and different values of parameter ν with

following initial and boundary conditions [96],

U(x , 0) = − sin(πx),−1≤ x ≤ 1 (4.53)

U(x0, t) = U(xN , t) = 0 (4.54)

Number of space grid is taken as N = 80 and ∆t = 0.001. Graph of the numerical

solutions are given by Figures 4.25-4.26 at constant time levels choosing ν = 0.4/π2

and ν= 0.8/π2.

Example 4.3.3

Case (a): The KS equation is solved under the parameters α = 1 and ν = 1 which

shows turbulent flow character over a finite space domain [96], with initial condition

in the form of a Gaussian curve as,

U(x , 0) = e−x2
, (4.55)

and boundary conditions

U(x0, t) = U(xN , t) = 0. (4.56)

Domain is considered as [x0, xN] = [−30,30] and ∆t = 0.005 with N = 100 nodal

points. The solutions of KS equation is given by Figures 4.27-4.28 when t = 5 and

t = 10 respectively. The chaotic nature of the KS equation is simulated by Figure 4.29.

Case (b): The KS equation is considered when α = 1 and different ν parameters on

the interval [0, 4π] with following initial condition [97],

U(x , 0) = cos
� x

2

�

sin
� x

2

�

(4.57)

and boundary conditions

Ux x(0, t) = Ux x(4π, t) = 0. (4.58)

Number of space grid is taken as N = 120 and ∆t = 0.0025. Chaotic behavior is

presented by Figure 4.30. In both cases simulations provide the expected behaviors.
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Table 4.12 Comparison of Global Relative Errors of Example 4.3.1 (a) for Different
Methods

t Present Method [97] [96] [105]

1 1.292422E-03 8.74634E-04 3.81725E-04 6.7923E-04

2 5.454200E-02 1.30146E-03 5.51142E-03 1.1503E-03

Table 4.13 Errors for different time levels of Example 4.3.1 (b) for N = 30

t L2 L∞
0.1 1.049152E-09 2.992243E-10

0.25 6.885439E-09 1.963763E-09

0.5 7.195535E-07 2.051961E-08

0.75 5.936704E-07 1.693200E-07

1 4.551143E-06 1.297370E-06

(a) (b)

Figure 4.22 Eigenvalue distribution when (a) N = 20, (b) N = 40
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(c) (d)

Figure 4.23 Eigenvalue distribution when (c) N = 80, (d) N = 120

Figure 4.24 Solutions of Example 4.3.1 (b) for different values of constant time

80



Figure 4.25 Numerical solutions for different time levels of Example 4.3.2 when
ν= 0.4/π2

Figure 4.26 Numerical solutions for different time levels of Example 4.3.2 when
ν= 0.8/π2
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Figure 4.27 The chaotic simulation of the KS equation with Gaussian initial
condition at t = 5

Figure 4.28 The chaotic simulation of the KS equation with Gaussian initial
condition at t = 10
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Figure 4.29 The chaotic solution of the KS equation for Example 4.3.3 (a)

Figure 4.30 The chaotic solution of the KS equation for Example 4.3.3 (b)
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4.4 Quadrature Solution of Nonlinear Advection Equation

In this section, we have presented first-order, quasilinear, partial differential equations

which describe conservation laws. First we deal with the one dimensional conservative

form given in [109],

Ut +
1
2
(U2)x = f (x , t), U(x , 0) = g(x). (4.59)

The source term f generally describes growth term in biological problems or reaction

term in chemical processes. Equation (4.59) can also be represented as,

Ut +
1
2

2UUx = f (x , t), (4.60)

Ut + q(U)Ux = f (x , t), (4.61)

where q(U) = U resembles the wave speed. If f (x , t) = 0, then (4.61) represents the

kinematic wave equation and (4.61) is also called as inviscid Burgers’ equation which

is defined under the absence of diffusion and viscosity. The inviscid Burger’s equation

expresses wave propagation which arises in traffic flow on highways as well as various

chemical and physical processes [109].

We consider DQ discretization of following equation,

Ut = −UUx + f (x , t) (4.62)

Using all grid points, (4.62) is rewritten as,

Ut(x i, t) = −U(x i, t)Ux(x i, t) + f (x i, t). (4.63)

The spatial derivatives are replaced by the Differential Quadrature equality,

∂ U(x i, t)
∂ t

= −U(x i, t)
N
∑

j=1

w(1)i j U(x j, t) + f (x i, t). (4.64)

The system can be expressed as,

{T}= [A]{U}+ {B} (4.65)

where the vector T represents time derivative and vector B consists of inhomogeneous

part of the problem. Coefficient matrix A includes first order derivative. (4.64) should

be applied at all grid points including boundaries. Time integration of the system is
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adapted by Runge-Kutta fourth order method. Stability analysis has been established

depends on the eigenvalue distribution of the discretized matrix [A]. We consider

eigenvalues of the matrix [A] by noting different number of grid points. So, the

resultant matrix takes the form,



















dU(x1, t)
d t

dU(x2, t)
d t
...

dU(xN , t)
d t



















= A











U(x1, t)
U(x2, t)

...

U(xN , t)











+ B (4.66)

We will investigate problem to validate our approach in terms of stability, convergence

and comparison with exact solutions studied in previous studies. We analyzed

homogeneous and inhomogeneous test problems and reported numerical solutions

via tables and figures.

Example 4.4.1 Consider the numerical solution for the inhomogeneous nonlinear

advection equation [78], namely,

Ut +
1
2
(U2)x = ex + t2e2x , 0< x < 1, t > 0, (4.67)

with the initial condition U(x , 0) = 0. Exact solution of the problem is,

U(x , t) = tex . (4.68)

Domain of the problem is considered ad [0,1]. Errors for different number of partitions

are given by Table 4.14 using ∆t = 0.01 at fixed time t = 0.5. Comparisons between

the exact and numerical solutions are given by Table 4.16 for various time levels.

Eigenvalues of the discretized system are depicted in Figures 4.31-4.32 choosing grid

points as N = 20, N = 40, N = 80, N = 120 with ∆t = 0.001. The given system

is consistent in terms of stability. 2D comparison graphs between the exact and the

numerical solutions are given by Figure 4.33. We can observe that the numerical

solutions of the method are in good agreement with the exact solutions for case where

the exact solution is known. Also, a 3D numerical solutions graph is given by Figures

4.35 using parameters ∆t = 0.001, N = 80, 0≤ t ≤ 1.

Example 4.4.2 Consider the approximated solution for inhomogeneous nonlinear

advection equation [78]:

Ut +
1
2
(U2)x = x , 0< x < 1, t > 0, (4.69)
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with the initial condition U(x , 0) = 2 for which the exact solution has the form

U(x , t) = 2secht + x tanh t. (4.70)

Spatial domain of the problem is considered [0,1]. Errors for different number of

partitions are given by Table 4.15 using∆t = 0.01 at fixed time t = 0.5. Comparisons

between the exact and the numerical solutions are presented in Table 4.17 for various

time levels. 2D comparison graphs between the exact and the numerical solutions

are given by Figure 4.34. We can conclude that exact and present method graphs

are well-matched. Also, a 3D numerical solutions graph is given by Figure 4.36 using

parameters ∆t = 0.001, N = 80, 0 ≤ t ≤ 1. We can observe that the numerical

solutions of the method are in good agreement with the exact solutions for case where

the exact solution is known.

Example 4.4.3 Consider the quadrature solution for the inviscid Burgers’ equation

which represents undamped wave [110]:

Ut +
1
2
(U2)x = 0, 0< x < 1, t > 0. (4.71)

Case (a): With the spatially periodic initial condition of the form

U(x , 0) = sin(2πx) (4.72)

which is posed on a bounded spatial domain [0,1]. We run the algorithm using N =
80 and ∆t = 0.001. Numerical solutions graph is given by Figure 4.37 for various

time levels. Graph obtained by differential quadrature shows similar behavior with

literature [110] and provides the expected behaviors.

Case (b): With the initial condition in the form of a Gaussian curve as [111],

U(x , 0) = e(−2(x−1)2). (4.73)

Spatial domain of the problem is considered as [-1,3]. We run the algorithm using

N = 100 and ∆t = 0.001. 2D numerical solutions graphs are given by Figures 4.38.

In both cases higher values of t results in the oscillations on the boundaries.
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Table 4.14 Numerical solutions of Example 4.4.1 at t = 0.5

N L2 L∞
20 2.040395E-04 9.607361E-05

40 3.446770E-04 9.701222E-05

80 4.756709E-04 9.723473E-05

Table 4.15 Numerical solutions of Example 4.4.2 at t = 0.5

N L2 L∞
20 1.286815E-04 3.322958E-05

40 1.819590E-04 3.327868E-05

80 2.573072E-04 3.329026E-05

Table 4.16 Error Norms for different time levels when ∆t = 0.001 for Example 4.4.1

t L2 L∞
0.1 3.761004E-06 3.415257E-05

0.25 4.309549E-05 2.380287E-04

0.5 1.763390E-04 9.195425E-04

0.75 3.040028E-04 1.528923E-04

1 5.530058E-04 1.924994E-04

Table 4.17 Error Norms for different time levels when ∆t = 0.001, for Example 4.4.2

t L2 L∞
0.1 3.406445E-05 7.861966E-06

0.25 8.736547E-05 1.968006E-05

0.5 1.286861E-04 3.322958E-05

0.75 1.233299E-04 3.460554E-05

1 8.185081E-05 2.605578E-05
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(a) (b)

Figure 4.31 Eigenvalue distribution when (a) N = 20, (b) N = 40

(c) (d)

Figure 4.32 Eigenvalue distribution when (c) N = 80, (d) N = 120

88



Figure 4.33 Comparison between numerical and exact solutions of Example 4.4.1

Figure 4.34 Comparison between numerical and exact solutions of Example 4.4.2
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Figure 4.35 Numerical solutions of Example 4.4.1

Figure 4.36 Numerical solutions of Example 4.4.2
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Figure 4.37 Numerical simulation of Example 4.4.3 (a) at various time steps with
sinusoid initial condition

Figure 4.38 Numerical simulation of Example 4.4.3 (b) at various time steps with
Gaussian initial condition
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4.5 Quadrature Solution of Ginzburg Landau Equation

In this section, we present the numerical solutions of Ginzburg-Landau equation which

arises in a wide variety of physical systems [112]. The complex form Ginzburg-Landau

equation is given as,

At = A+ (1+ iα)Ax x − (1+ iβ)|A|2A (4.74)

where A(x , t) represents the complex amplitude and real parameters α and β

characterize linear and nonlinear dispersion [112]. Complex Ginzburg-Landau

equation presents unstable waves and models as superconductivity and phase

transitions [109]. As limit of α,β →∞, (4.74) is reduced to nonlinear Schrödinger

equation [113].

When the imaginary coefficients are given as α = β = 0, the real Ginzburg Landau

equation is obtained as,

At = A+ Ax x − |A|
2A. (4.75)

Various numerical and analytical approaches for the solutions of Ginzburg-Landau

equation have been presented such as Chebyshev wavelet collocation [114], finite

element method [115], decomposition method [116], homotopy perturbation method

[117].

Here, we will investigate quadrature solutions of real Ginzburg Landau equation.

Equation (4.75) can be rewritten using all grid points,

Ut(x i, t) = U(x i, t) + Ux x(x i, t)− |U(x i, t)|2U(x i, t) (4.76)

The spatial derivatives are replaced by the Differential Quadrature equality,

∂ U(x i, t)
∂ t

= U(x i, t) +
N
∑

j=1

w(2)i j U(x j, t)− |U(x i, t)|2U(x i, t) (4.77)

The system can be expressed as,

{T}= {U}+ [A]{U} − |{U}|2{U}+ {B} (4.78)

where the vector T represents time derivative and vector B consists of inhomogeneous

part of the problem. Coefficient matrix A consists of second order derivative. Equation

(4.77) should be applied to all grid points including boundaries. Time integration of

the system is adapted by Runge-Kutta fourth order method.
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Example 4.5 Consider the approximated solution for inhomogeneous real

Ginzburg-Landau equation, which has the form [116],

Ut − U + |U |2U − Ux x = x(1− t − x2 t3), (4.79)

with the following boundary and initial conditions,

U(0, t) = 0, U(1, t) = t, (4.80)

U(x , 0) = 0. (4.81)

Exact solution of the problem is

U(x , t) = x t. (4.82)

Spatial domain of the problem is considered as [0,1]. Comparisons between the

different methods are given by Table 4.18 for various time levels. Eigenvalues of the

discretized system are depicted in Figures 4.39-4.40 choosing grid points as N = 20,

N = 40, N = 80, N = 120 for ∆t = 0.001. As the space splits get close to time

steps absolute value of the eigenvalues increase. So, to keep the eigenvalues within

the region of stability, we should use less time steps as space nodes N increase.

2D numerical and exact solutions comparison graph is given by Figure 4.43. Exact

solution graph is given by Figure 4.41 Also, a 3D numerical solution graph is given by

Figure 4.42 using parameters ∆t = 0.001, N = 80, 0 ≤ t ≤ 1. We can conclude that

exact and present method graphs are well-matched.
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Table 4.18 Comparison of methods of Example 4.5 at various time levels

t x i DQM [114]

0.083 3.736412E-07 6.817922E-12

t = 0.083 0.250 9.840062E-07 9.038495E-12

0.417 1.778463E-06 4.323513E-12

0.583 2.548683E-06 1.892028E-12

0.750 3.270093E-06 9.219082E-12

0.917 3.903754E-06 9.219082E-13

0.083 1.226255E-06 3.161798E-11

t = 0.250 0.250 3.469128E-06 3.681351E-11

0.417 5.836739E-06 1.459357E-11

0.583 8.364498E-06 3.071293E-12

0.750 1.073205E-05 3.224615E-12

0.917 1.281159E-05 1.535493E-12

0.083 2.002439E-06 1.003995E-10

t = 0.417 0.250 6.467399E-06 1.138260E-10

0.417 9.336086E-06 4.364175E-11

0.583 1.449377E-05 8.796990E-12

0.750 1.940182E-05 9.392875E-12

0.917 2.327454E-05 4.502509E-12

0.083 3.062774E-06 1.840555E-10

t = 0.583 0.250 9.892020E-06 1.919165E-10

0.417 1.582664E-05 6.379077E-11

0.583 2.216845E-05 5.228983E-12

0.750 2.967528E-05 4.305118E-12

0.917 3.559884E-05 4.502509E-12

0.083 4.822075E-06 4.337897E-10

t = 0.750 0.250 1.364181E-05 4.650852E-10

0.417 2.295197E-05 1.650103E-10

0.583 3.289172E-05 2.804240E-11

0.750 4.226125E-05 2.957167E-11

0.917 4.970079E-05 1.410593E-11

0.083 5.811366E-06 1.078974E-09

t = 0.917 0.250 1.876927E-05 1.172872E-09

0.417 3.002965E-05 4.266622E-10

0.583 4.206250E-05 8.190992E-11

0.750 5.630564E-05 8.685707E-11

0.917 6.754455E-05 4.152266E-11
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(a) (b)

Figure 4.39 Eigenvalue distribution for (a) N = 20, (b) N = 40

(c) (d)

Figure 4.40 Eigenvalue distribution for (c) N = 80, (d) N = 120
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Figure 4.41 Exact solution of Ginzburg Landau Equation

Figure 4.42 Numerical solution of Ginzburg Landau Equation
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Figure 4.43 Numerical solutions of Ginzburg Landau equation for different values of
constant time
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5
Conclusion and Recommendations

This chapter serves to present the conclusive finding of the work accomplished in the

current thesis, namely the applications of differential quadrature. We also present

some directions for the extension of the current method.

Numerical approach is established for linear and nonlinear models. Most of the

solutions were compared with well-known existing studies. The methods works better

in linear problems compared to nonlinear models. Based on the results, we conclude

that differential quadrature method gives effective solutions to higher order singularly

perturbed problems especially when using refined grid point spacing.

In Chapter 4, we have given the main part of this thesis. One dimensional time

dependent problems were analyzed in terms of stability analysis which is established

by eigenvalues of the discretized matrix. Stability regions for such problems satisfy

the stability criteria mentioned in Chapter 2. All numerical results were presented in

tables and graphs. Solution scheme of time dependent partial differential equation

is constructed with differential quadrature and fourth order Runge Kutta method. In

the beginning of this chapter, we set up the scheme for linear and nonlinear diffusion

equations. Solutions of diffusion processes were investigated. Quadrature results

and literature are in good agreement. We studied reaction-diffusion equation in

graded materials. Such problems have not been solved with this technique before.

Present approach also offers to serve an alternative methodology to solve equations

given in composite media. We studied the problem with different non-homogeneity

parameters and we observed that for sufficiently small α values, numerical results

show similar behaviors with analytical approach. Chebyshev based differential

quadrature method is applied to Kuramoto-Sivashinky (KS) equation. Periodic and

chaotic behaviors of the nonlinear model were simulated. Comparison of analytical

and numerical solutions were tabulated in terms of global relative error. Solutions

were also compared with literature and observed similar accuracy. We solved the

nonlinear advection problems numerically. Sinusoid and Gaussian profile of the

inviscid Burgers’ equation were simulated. Graphs of such solutions proves the
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expected behaviors. But, for higher time levels, oscillations start to evolve towards

the boundaries. Ginzburg-Landau equation was solved which is a nonlinear complex

equation. We investigate numerical solution of the real part of the equation only.

Graphs of analytical solutions and quadrature solutions were depicted to see the

effectiveness of the numerical method. Differential quadrature results found in the

thesis are in good agreement for problems that could be verified from the literature.

The current method can be applied to fractional order differential equations. Extended

quadrature methods such as complex differential quadrature can be studied for

multi-dimensional models. Theoretical extensions can also be studied.

99



References

[1] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis: with applica-
tions to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014.

[2] X. Wang, Differential quadrature and differential quadrature based element
methods: theory and applications. Butterworth-Heinemann, 2015.

[3] C. W. Bert and M. Malik, “Differential quadrature method in computational
mechanics: A review,” Applied mechanics reviews, vol. 49, no. 1, pp. 1–28,
1996.

[4] R. Bellman, B. Kashef, and J Casti, “Differential quadrature: A technique for
the rapid solution of nonlinear partial differential equations,” Journal of com-
putational physics, vol. 10, no. 1, pp. 40–52, 1972.

[5] R Bellman, B. Kashef, E. Lee, and R Vasudevan, Computers and mathematics
with applications, 1976.

[6] J. Quan and C. Chang, “New insights in solving distributed system equations
by the quadrature method—i. analysis,” Computers & Chemical Engineering,
vol. 13, no. 7, pp. 779–788, 1989.

[7] J. Quan and C.-T. Chang, “New insights in solving distributed system equations
by the quadrature method—ii. numerical experiments,” Computers & Chemical
Engineering, vol. 13, no. 9, pp. 1017–1024, 1989.

[8] C. Shu, Differential quadrature and its application in engineering. Springer
Science & Business Media, 2012.

[9] A. Korkmaz and I. Dag, “Shock wave simulations using sinc differential
quadrature method,” Engineering Computations, vol. 28, no. 6, pp. 654–674,
2011.

[10] J. Cheng, B. Wang, and S.-Y. Du, “A theoretical analysis of
piezoelectric/composite laminate with larger-amplitude deflection effect, part
ii: Hermite differential quadrature method and application,” International
Journal of Solids and Structures, vol. 42, no. 24-25, pp. 6181–6201, 2005.

[11] Y. Wu and C Shu, “Development of rbf-dq method for derivative approximation
and its application to simulate natural convection in concentric annuli,” Com-
putational Mechanics, vol. 29, no. 6, pp. 477–485, 2002.

[12] R. Mittal and R. Rohila, “A study of one dimensional nonlinear diffusion
equations by bernstein polynomial based differential quadrature method,”
Journal of Mathematical Chemistry, vol. 55, no. 2, pp. 673–695, 2017.

[13] D. C. O’Mahoney, “A differential quadrature solution of the two-dimensional
inverse heat conduction problem,” International communications in heat and
mass transfer, vol. 30, no. 8, pp. 1061–1070, 2003.

100



[14] I. Dag, A. Korkmaz, and B. Saka, “Cosine expansion-based differential
quadrature algorithm for numerical solution of the rlw equation,” Numerical
Methods for Partial Differential Equations: An International Journal, vol. 26,
no. 3, pp. 544–560, 2010.

[15] A. Korkmaz and I. Dag, “A differential quadrature algorithm for simulations of
nonlinear schrödinger equation,” Computers & Mathematics with Applications,
vol. 56, no. 9, pp. 2222–2234, 2008.

[16] A. Korkmaz, I. Dag, “A differential quadrature algorithm for nonlinear
schrödinger equation,” Nonlinear Dynamics, vol. 56, no. 1-2, pp. 69–83, 2009.

[17] A. Korkmaz and I. Dag, “A differential quadrature algorithm for nonlinear
schrodinger equation,” Nonlinear Dynamics, vol. 56, no. 1-2, pp. 69–83, 2009.

[18] A. Korkmaz, “Numerical algorithms for solutions of korteweg–de vries
equation,” Numerical methods for partial differential equations, vol. 26, no. 6,
pp. 1504–1521, 2010.

[19] A. Korkmaz and I. Dag, “Polynomial based differential quadrature method for
numerical solution of nonlinear burgers’ equation,” Journal of the Franklin
Institute, vol. 348, no. 10, pp. 2863–2875, 2011.

[20] H. Zhong, “Spline-based differential quadrature for fourth order differential
equations and its application to kirchhoff plates,” Applied Mathematical Mod-
elling, vol. 28, no. 4, pp. 353–366, 2004.

[21] G. Arora and B. K. Singh, “Numerical solution of burgers’ equation with
modified cubic b-spline differential quadrature method,” Applied Mathemat-
ics and Computation, vol. 224, pp. 166–177, 2013.

[22] A. Korkmaz, “Numerical solutions of some one dimensional partial differential
equations using b-spline differential quadrature method,” Doctoral Disserta-
tion, Eskisehir Osmangazi University, Eskisehir, 2010.

[23] A. Korkmaz and I. Dag, “Cubic b-spline differential quadrature methods for
the advection-diffusion equation,” International Journal of Numerical Methods
for Heat & Fluid Flow, vol. 22, no. 8, pp. 1021–1036, 2012.

[24] A. Korkmaz, I. Dag, “Cubic b-spline differential quadrature methods and
stability for burgers’ equation,” Engineering Computations, vol. 30, no. 3,
pp. 320–344, 2013.

[25] A. Korkmaz and I. Dag, “Numerical simulations of boundary-forced rlw
equation with cubic b-spline-based differential quadrature methods,” Arabian
Journal for Science and Engineering, vol. 38, no. 5, pp. 1151–1160, 2013.

[26] A. Korkmaz, A. M. Aksoy, and I. Dag, “Quartic b-spline differential quadrature
method,” Int. J. Nonlinear Sci, vol. 11, no. 4, pp. 403–411, 2011.

[27] A. Korkmaz and I. Dag, “Quartic and quintic b-spline methods for
advection–diffusion equation,” Applied Mathematics and Computation,
vol. 274, pp. 208–219, 2016.
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