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ABSTRACT 

LEGENDRE WAVELET OPERATIONAL MATRIX METHOD FOR 

SOLVING SYSTEMS OF FRACTIONAL DIFFERENTIAL 

EQUATIONS 

 

Selvi ALTUN 

 

Department of Mathematical Engineering 

Ph.D. Thesis 

 

Adviser: Assoc. Prof. Dr. Aydın SEÇER 

 

This thesis introduces a new numerical approach to solve high order and fractional order 

differential equations of the linear and non-linear forms and systems of such equations 

utilizing the Legendre wavelet operational matrix method. We first formulated the 

operational matrix and its fractional derivatives in some special conditions by using some 

significant features of Legendre wavelets and shifted Legendre polynomials. Then, the 

high order and fractional order differential equations and systems of such equations were 

transformed to a system of algebraic equations by using these operational matrices. At 

the end of each chapter of the thesis, the introduced tecnique is tested on several 

illustrative examples. Comparing the methodology with several recognized methods 

demonstrates that the most important advantages of the introduced method are the 

understandibility of the calculations and its accuracy. 

Key words: Legendre wavelet, operational matrix, fractional order differential equations, 

the system of fractional order differential equations, Caputo fractional derivative 
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ÖZET 

 

KESİRLİ MERTEBEDEN DİFERANSİYEL DENKLEM 

SİSTEMLERİNİN ÇÖZÜMÜ İÇİN LEGENDRE DALGACIĞI 

OPERASYONEL MATRİS METODU 

 

Selvi ALTUN 

 

Matematik Mühendisliği Anabilim Dalı 

Doktora Tezi 

 

Tez Danışmanı: Doç. Dr. Aydın SEÇER 

 

Bu tezde, Legendre dalgacığı operasyonel türev matris metodu kullanılarak, yüksek 

mertebeden ve kesirli mertebeden diferansiyel denklemlerin ve denklem sistemlerinin 

doğrusal ve doğrusal olmayan formlarının nümerik çözümleri için yeni bir yaklaşım 

geliştirilmiştir. Öncelikle, operasyonel matris ve kesirli türevi bazı özel koşullar altında, 

Legendre dalgacığı ve Legendre polinomlarının bazı önemli özellikleri kullanılarak 

formüle edilmiştir. Sonrasında, yüksek mertebeden ve kesirli mertebeden diferansiyel 

denklem ve denklem sistemleri bu operasyonel matrisler yardımıyla cebirsel denklem 

sistemlerine dönüştürülmüştür. Tezde önerilen metot her bölümün sonunda yeterli sayıda 

aydınlatıcı örnekle test edilmiştir. Sonuç olarak, bazı bilinen metotlarla karşılaştırması 

gösteriyor ki, Legendre dalgacığı operasyonel türev matrisi metodunun en büyük avantajı 

sadeliği ve hesaplamalardaki anlaşılabilirliğidir.  

Anahtar Kelimeler: Legendre dalgacığı, operasyonel matris, kesir mertebeli diferansiyel 

denklemler, kesir mertebeli diferansiyel denklem sistemleri, Caputo kesir türevi 
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CHAPTER 1 

INTRODUCTION 

 Literature Review 

Differential and integral operators are the basis of mathematical models and they are also 

used as a means of understanding the working principles of natural and artificial systems. 

Therefore, differential and integral equations are of great importance both theoretically 

and practically. Such equations have a wide range of applications, including in the 

physical sciences, such as physics and engineering, as well as in social science. The 

system of differential equations, as differential equations, are often used in issues such as 

theory of elasticity, dynamics, fluid mechanics, oscillation, and quantum dynamics [21], 

[22], [57]. 

Interest in differential and integral operators has led to the exploration of fractional 

differential and integral operators by examining these issues further in depth. Owing to a 

question, the origin of fractional calculus arose in a message from Leibniz to L’Hospital 

in 1695. Over the years, a variety of definitions that satisfy the idea of fractional derivative 

have been found by several great mathematicians, but Riemann-Liouville and Caputo 

fractional derivatives are most commonly utilized definements in the world of fractional 

calculus. Altough the theory about Riemann-Liouville definition was constituted very 

well, this consept has some troubles with using to real-world problems. To make a success 

of these troubles, Caputo derivative was established.  

For three centuries, analysis of the fractional calculus has been restraint to the discipline 

of pure theoretical mathematics, but this topic has received attention in recent years 

because of its ability to simplify numerous physical, engineering and economics 

phenomena, such as the fluid-dynamic traffic model, damping laws, continuum and 
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statistical mechanics, diffusion process, solid mechanics, control theory, colored noise, 

viscoelasticitiy, electrochemistry and electromagnetic, among others. 

Because variety of solution of fractional differential equations can not be found 

analytically, numerical and approximate methods are needed. There are a lot of tecniques 

that have been studied by many researchers to solve FDEs and the system of such 

equations numerically. Several of these tecniques are the Adomian decomposition 

method presented in [35] by Song et al., collocation method, operational matrix method 

improved in [18], [19], [24] and [26], perturbation-iteration method introduced in [28] by 

Şenol et al., computational matrix method illustrated in [27] by Khader et al., differential 

transform method demonstrated in [43] by Ertürk et al., variational iteration method, 

Laplace transform method given in [41] by Gupta et al., fractional complex transform 

method studied in [44] by Ghazanfari et al. etc. Also numerical solutions of these 

equations and the system of such equations were presented by using the Bernstein 

operational matrix method [29], Genocchi operational matrix method [49], Jacobi 

operational matrix method [34], Chebyshev wavelet operational matrix method [30], 

polynomial least squares method [47], Legendre wavelet-like operational matrix method 

[48] and Genocchi wavelet-like operational matrix method [50]. 

The orthogonal functions and polynomial series are very important field in science and 

engineering. Block-pulse fuctions, sine-cosine functions, Jacobi, Legendre, Hermite, 

Genocchi, Laguerre and Chebyshev polynomials are the most commonly utilized among 

these functions. What makes these functions important is that they permit the undertaking 

problem to be reduced to a system of algebraic equations and the approximation of 

analytic functions. The problem is solved by truncating series of orthogonal basis 

functions and utilising operational matrix and its derivatives. 

The operational matrix of derivatives D   is defined as: 

( )
( )

d t
D t

dt


                                                                                                            (1.1) 

in which  ( )  1 2, ,..., Nt   =  and ( ) 1,2,...,i i N =  are orthogonal basis functions, 

orthogonal on a certain interval  ,a b . The matrix D  can be uniquely identified on the 

basis of the specific orthogonal functions [9-11]. Many papers which are related to the 

application of operational matrix of derivative can be found in the literature [12], [15], 

[18], [19], [30], [33], [34], [48], [49], [50], [56]. 
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Wavelet theory is very significant in science, engineering and technology and in recent 

years, wavelets have achieved to attract an enormous attention in many fields of 

investigation, such as spectroscopy, signal analysis, feature detection in earth science, 

time-frequency analysis, and image manipulation, among others. Many scholars have 

contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and 

Mallat are some of them. Thanks to their contribition, there has been a substantial 

increment in the number of studies on wavelets. There are a wide variety of wavelet 

functions such as Daubechies, Haar, Laguerre, Legendre, Shannon, Lagrange, Hermitian 

and Chebyshev wavelets available. Among them, we choose Legendre wavelet in this 

thesis because of their orthonormality and explicitity. Many applications of Legendre 

wavelets can be viewed from [12-20]. 

This thesis focuses on the applications of high order and fractional order differential 

equations and systems of such equations by utilizing the LWOMM. The most important 

advantage of the proposed method is that it presents a comprehensible algorithm in 

reducing high order and fractional differential equations and the system of such equations 

to a system of algebraic equations. This thesis consists of seven chapters and the third, 

fourth, fifth and sixth chapters of this thesis have originality. First, we begin with 

presenting some basic definitions and fundamental relations relevant to the fractional 

calculus theory, orthogonal polynomials (especially shifted Legendre polynomials), 

wavelets (especially Legendre wavelets), approximations of these functions and 

operational matrix of derivative. The operational matrix of fractional derivative is then 

natively derivated in some special conditions in Chapter 2. Chapter 3 and Chapter 4 

generalizes these operational matrices to high order differential equations and the system 

of such equations of the linear and non-linear forms. Similarly, Chapter 5 and Chapter 6 

generalizes these operational matrices to fractional order differential equations and the 

system of such equations of the linear and non-linear forms. At the end of each chapter, 

several illustrative examples are tested on the introduced method. Finally, last chapter 

includes the conclusion and suggestions. 

 Objective of the Thesis 

This thesis aims to improve an effective and comprehensive technique to solve high order 

differential equations and the system of such equations together with fractional order 

differential equations and the system of such equations. The most advantageous 
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characteristic of this method is that it gives an understandable procedure in reducing these 

equations and the system of such equations to a system of algebraic equations by utilizing 

operational matrix of derivative and fractional derivative. So, we can easily obtain the 

desired solution. 

 Hypothesis 

In this thesis, the operational matrix of fractional derivative is natively derivated in some 

special conditions by taking advantage of some notable features of Legendre wavelets 

and shifted Legendre polynomials and these operational matrices are generalized to 

equations mentioned above and the system of such equations of the linear and non-linear 

forms for the first time. Numerical solutions of these equations and the system of such 

equations obtained by using introduced method have originality. 
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CHAPTER 2 

BASIC CONCEPTS 

 Fractional Calculus 

Fractional calculus is the study of any real-order or complex-order derivative and integral 

composed of combining and extending the consepts of multiple integral and integer order 

derivative. The origin of fractional calculus arose in a message from Leibniz to L’Hospital 

in 1695. For three centuries, analysis of fractional calculus has been restraint to the 

discipline of pure theoretical mathematics. But, this topic has received attention in recent 

years, because of its suitability for the explanation of numerous physical, engineering and 

economics phenomena, such as the fluid-dynamic traffic model, damping laws, 

continuum and statistical mechanics, diffusion process, solid mechanics, control theory, 

colored noise, viscoelasticitiy, electrochemistry and electromagnetic, among others. 

Let 
d

D
dt

=  be a differential operator and n  be a positive integer. It is well known that, 

the meaning of the ( )nD u t  is the thn  derivative of the function ( )u t . But if n  is not a 

positive integer, it is difficult to comment the meaning of the D −  or D  for ( )Re 0 

. The meaning of these symbols will be explained in this section. 

A variety of definitions that satisfy the idea of fractional derivative have been found by 

several great mathematician. But Riemann-Liouville and Caputo fractional derivatives 

are most commonly utilised definements in the world of fractional calculus. The 

differential and integral operators with fractional analysis operators are denoted as 

( )( )aD u t  and ( )( )aI u t respectively for ( )Re 0  , where a is the boundary value of the 

fractional differentiation and integration operations [21, [22], [57]. 
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It is necessary to know some mathematical definitions to understand the definitions and 

applications of the fractional analysis required for this thesis. Some of these definitions 

and theorems are presented below. 

2.1.1 The Gamma Function 

It is said that the Gamma function is obviously the generalization of the factorial for all 

real numbers. This function is defined by [57-58] 

( ) 1

0

,    t nn e t dt n



− − + =                                                                                               (2.1) 

Using the following equation related to exponential function of the factorial function 

( ) ( )1 1

0 0

! 1
nt n tn e t dt e t dt n

 
+ −− −= = =  +                                                                            (2.2) 

The relation between Gamma function and factorial function is appropriated. Using 

integration by parts we can obtain for 0n   

( ) ( )

( )

1

00 0

1

0

1

            

t n t n t n

t n

n e t dt e t e nt dt

n e t dt n n

 
− − − −



− −

 + = = − − −

= = 

 



                                                            (2.3) 

The Gamma function is directly related to the fractional derivative and integral. These 

relations can be found by using following properties of Gamma function [57-58]. 

i) For all 0n  , the integral 1

0

t ne t dt



− −

   is convergent. 

ii) The Gamma function   is positive for all 0n  , 

iii) 
0

(1) 1te dt



− = = . 

iv) For 0 1n  ,  ( ) ( )1
sin

n n
n




  − =  and for 

1

2
n = ,  

1

2


 
 = 
 

. 

v) The Gamma function   is continous for all 0n  . 

vi) The Gamma function   is differentiable for all 0n   and we get 
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( ) 1

0

ln( )t nn e t t dt



− − =                                                                                             (2.4) 

Table 2.1 Some numerical values of the Gamma function 

3

2

 
 − 
 

 
4

3


 ( )1.0  1.0000 

( )2  

 

1 ( )1.1  0.9514 

1

2

 
 − 
 

 2 −  ( )1.2  0.9182 

5

2

 
  
 

 
3

4


 

( )1.3  0.8975 

( )0  undefined 

 

( )1.4  0.8873 

( )3  2 

 

( )1.5  0.8862 

1

2

 
  
 

   ( )1.6  0.8935 

7

2

 
  
 

 
15

8


 

( )1.7  0.9086 

( )1  1 

 

( )1.8  0.9314 

( )4  6 

 

( )1.9  0.9618 

( )     

 

( )2.0  1.0000 

2.1.2 The Beta Function 

The Beta function is defined by a definite integral. Its definition is presented by [58] 

( ) ( )
1

11

0

, 1 ,    ,
nmm n t t dt m n
−− += −                                                                         (2.5) 
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We can also express the Beta function in terms of the Gamma function: 

( )
( ) ( )

( )
, ,    ,

m n
m n m n

m n
 +

 
= 

 +
                                                                              (2.6) 

2.1.3 pL  Spaces 

We consider pL -spaces of functions whose pth  powers are integrable. 

Definition 2.1 Let ( ), ,X A   be a measure space and 1 p   . The space ( )pL X  be 

composed of equivalence classes of measurable functions :f X →  such that 

p
f d                                                                                                                   (2.7) 

where two measurable functions are equivalent if they are equal . .a e −  The pL -norm 

of ( )pf L X  is defined by 

( )
1/

p

p
p

L
f f d=                                                                                                      (2.8) 

The notation ( )pL X  presumes that the measure   on X is understood. We say that

nf f→  in pL  if  0pn L
f f− → . The reason to regard functions that are equal .a e  as 

equivalent is so that 0pL
f =  implies that 0f =  [57]. 

2.1.4 The Riemann-Liouville Fractional Integral 

Let   be a real nonnegative number. For  ,t a b  in  1 ,L a b  , the definition of the 

Riemann-Liouville fractional integral is given as [57-58] 

( )( )
( )

( ) ( )
11

,   ,  0

t

a

a

I u t t u d t a
    



−
= −  
                                                       (2.9) 

where ( ) is the Gamma function. 

An important feature of Riemann-Liouville fractional integral is that 0

aI I=  is an identity 

operator for 0a = . 

Some properties of the Riemann-Liouville fractional integral are as follows. 
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Suppose that ( ) ( )u t t a


= −  where 1  − , then the Riemann-Liouville fractional 

integral of ( )u t of order   is 

( )( )
( )

( )
( )

1

1
aI u t t a

  

 

+ +
= −
 + +

                                                                             (2.10) 

2.1.5 The Riemann-Liouville Fractional Derivative 

Using the definition of the Riemann-Liouville fractional integral, then we can define the 

fractional derivative. Assume that v n = − , where 0 1v   and n  is the smallest integer 

greater than  . Then, the definition of the Riemann-Liouville fractional derivative can 

be expressed as [57-58] 

( )( ) ( )( )

( )
( ) ( )

11
               

n

v

a a

n t
v

a

d
D u t I u t

dt

d
t f d

n dt



  


−

 
=  
 

 
= − 
 −  



                                                        (2.11) 

where 0

aD I=  is an identity operator for 0a = . 

Some properties of the Riemann-Liouville fractional derivative are as follows. 

Suppose that ( ) ( )u t t a


= −  where 1  − , then the Riemann-Liouville fractional 

derivative of ( )u t of order   is 

( )( )
( )

( )
( )

1

1
aD u t t a

  

 

− +
= −
 − +

                                                                            (2.12) 

2.1.6 The Caputo Fractional Derivative 

Over the years, a variety of definitions that satisfy the idea of fractional derivative have 

been found by several great mathematician. But Riemann-Liouville and Caputo fractional 

derivatives are most commonly utilised definements in the world of fractional calculus. 

Altough the theory about Riemann-Liouville definition was constituted very well, this 

consept has some troubles with using to real-world problems. To make a success of these 

troubles, Caputo derivative was established. 
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Definition 2.2 The fractional-order derivative in the Caputo sense is defined as [18-19] 

( )
( )

( ) ( )

( )
1

0

1
,    1 ,  

nt

C

n

u
D u t d n n n

n t






 

 
+ −

= −   
 − −

                                      (2.13) 

Some properties of the Caputo derivative are as follows. 

0CD C =                                                                                                                    (2.14) 

where C  is a constant. 

( )

( )

0

0

0,     

1
,             

1

C

and

D t
t and or and

 

 

  


     

 

−

     


=  +
          + −

     

(2.15)        

 

Here,    is the largest integer less than or equal to   and    indicates the smallest 

integer greater than or equal to  . 

The Caputo fractional order derivative is a linear operation as the integer-order derivative: 

( ) ( )( ) ( ) ( )  C C CD u t v t D u t D v t     + = +                                                        (2.16) 

where   and   are constant. 

 Orthogonal Polynomials 

The orthogonal functions and polynomial series are very important field in science and 

engineering. They are basis of several numerical methods developed for the solution of 

differential equations and integro-differential equations. The reason is that the use of 

orthogonal polynomials is easy. Because they have good convergence properties and they 

properly represent the weight distribution of a function on a definite network. Mentioned 

equations are solved by truncating series of orthogonal basis functions. Block-pulse 

fuctions, sine-cosine functions, Legendre, Hermite, Jacobi, Laguerre and Chebyshev 

polynomials are the most commonly utilized among these functions. What makes these 

functions important is that they permit the undertaking problem to be reduced to system 

of algebraic equations and the approximation of analytic functions.  
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2.2.1 Legendre Polynomials 

One of the kind of particular orthogonal polynomials used in the solution of real-world 

problems is the class of functions called Legendre polynomials. They are the everywhere 

regular solutions of a very significant differential equation, the Legendre Equation. 

2
2

2
(1 ) 2 ( 1) 0

d u du
x x m m u

dx dx
− − + + =                                                                             (2.17) 

Since the Legendre differential equation is a second-order ordinary differential equation, 

it has two linearly independent solutions. A solution ( )mL x  which is regular at finite 

points is called a Legendre function of the first kind, while a solution ( )mQ x  which is 

singular at 1  is called a Legendre function of the second kind. If m  is an integer, the 

function of the first kind reduces to a polynomial known as the Legendre polynomial. We 

write the solution for a particular value of m  as ( )mL x . It is a polynomial of degree m . 

If m  is even/odd then the polynomial is even/odd. They are normalised such that 

( )1 1mL = . 

The equation takes its name from Adrien Marie Legendre (1752-1833), a French 

mathematician who became a professor in Paris in 1775. He made important contributions 

to special functions, elliptic integrals, number theory, and the calculus of variations [59]. 

The well-known Legendre polynomials are defined on the interval [ 1,1]−  and can be 

designated by the help of the following formulae. 

1 1( 1) ( ) (2 1) ( ) ( ),    1,2,3,...m m mm L x m xL x mL x m+ −+ = + − =                                         (2.18)      

where ( )0 1L x =  and 1( )L x x= . Defining the so-called shifted Legendre polynomials by 

presenting the change of variable 2 1x t= − , we can use Legendre polynomials on the 

interval [0,1].  Let the shifted Legendre polynomials (2 1)mL t − be symbolized by ( ).mP t  

Then we can express ( )mP t  as follows: 

1 1( 1) ( ) (2 1)(2 1) ( ) ( ),    1,2,3,...m m mm P t m t P t mP t m+ −+ = + − − =                                   (2.19) 

The shifted Legendre polynomial ( )mP t has the following analytic form [12] 

( ) ( )
( )

( ) ( )
2

0

!
1

! !

km
m k

m

k

m k t
P t

m k k

+

=

+
= −

−
                                                                               (2.20) 
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and the orthogonality condition is  

( ) ( )
1

0

1
,  

2 1

0,  
m n

for m n
P t P t dt m

for m n


=

= +
 

                                                                       (2.21) 

The Legendre polynomials are a special case of the Gegenbauer polynomials with 
1

2
 =

, a special case of the Jacobi polynomials 
( ),

mP
 

 with 0 = =  [59]. 

 Wavelets 

Wavelet theory is very significant in science, engineering and technology and in recent 

years, wavelets have achieved to attract an enormous attention in many fields of 

investigation, such as spectroscopy, signal analysis, feature detection in earth science, 

time-frequency analysis, and image manipulation, among others. Many scholars have 

contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and 

Mallat are some of them. Thanks to their contribition, there has been a substantial 

increment in the number of studies on wavelets. Many applications of wavelets can be 

viewed from [12-17], [23-26], [33-34], [48-50], [56]. 

Wavelets establish a family of functions formulated from dilation parameter a  and the 

translation parameter b  change continuously, we have the following family of continuous 

wavelets [12]: 

( )
1/2

,     , ,    0ab

t b
t a a b R a

a
 

− − 
=   

 
                                                              (2.22) 

If these parameters a  and b  are restraint to discrete values as 2 ka −=  , 2 kb n −=  , then 

( ) ( )/22 2k k

kn t t n = −                                                                                              (2.23) 

forms an orthogonal basis. We use multiresolution of analysis (MRA) for structure 

wavelets. 

Definition 2.3 Let  j j Z
V


 of subset of ( )2L R  be the increasing sequence and   be the 

scaling function. If it satisfies the following conditions, we call  j j Z
V


 with scaling 

function   MRA [14]. 
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i) j jV  is dense in ( )2L R  

ii)  0j jV =  

iii) ( ) ( ) 02 j

jf t V f t V−    

iv) ( ) 
n Z

t n


−   is an orthogonal basis for 0V . 

2.3.1 Legendre Wavelets 

There are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre, 

Legendre, Shannon, Lagrange, Hermitian and Chebyshev wavelets available. Among 

them, we choose Legendre wavelet in this thesis because of their orthonormality and 

explicitity.  

Legendre wavelet basis is constructed using a linear combination of Legendre polynomial 

functions. Legendre wavelets ( ) ( ), , ,nm t k n m t =   have four parameters: where n  

parameter, k  can be presumed any positive integer, m  is the order of Shifted Legendre 

polynomials and t  is the normalized time. They are defined on the interval  0,1  by 

( ) ( )
1

2
1 1

2 2 ,
2 2 2

0,

k

k

m k k
nm

n n
m P t n t

t

otherwise



+ +
+ −  

= 



                                                   (2.24) 

where 0,1,..., ;   0,1,..., (2 1)km M n= = − . The coefficient 
1

2

m+
  is for orthonormality 

[12]. 

 Function Approximations 

Suppose that a function ( )u t
 
is defined over  0,1  . Then ( )u t may be expanded in the 

terms of Legendre wavelet as  

( ) ( )
0 0

nm nm

n m

u t c t
 

= =

                                                                                               (2.25) 

where ( ) ( )( ),nm nmc u t t=  in which ( ).,.  denotes the inner product. Let the infinite series 

in (2.25) be truncated, then it can be written as 
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( ) ( ) ( )
2 1

0 0

k M
T

nm nm

n m

u t c t C t 
−

= =

 =                                                                               (2.26) 

where C  and ( )t  are matrices given by [12] 

0,0 0,1 0, 2, 2 1,0 2 1,1 2 1,

0,0 0,1 0, 2, 2 1,0 2 1,1 2 1,

, ,..., ,..., ,..., , ,...,

, ,..., ,..., ,..., , ,...,

k k k

k k k

T

M M M

T

M M M

C c c c c c c c

       

− − −

− − −

 =
 

 =
 

                                    (2.27) 

 The Operational Matrix of Derivative 

The operational matrix of derivative D   is given by 

( )
( )

d t
D t

dt


  

where  ( )  1 2, ,..., Nt   =  and ( ) 1,2,...,i i N =  are orthogonal basis functions, 

orthogonal on a certain interval  ,a b . The matrix D  can be uniquely identified on the 

basis of the specific orthogonal functions. Many papers which are related to the 

application of operational matrix of derivative can be found in the literature. 

F. Mohammadi derived Legendre wavelet operational matrix of derivative in his paper 

[12]. In this section, the theorem and corollary are just mentioned as follows. 

Theorem 2.1 Let ( )t  be the Legendre wavelets vector given in (2.24), then we get  

( )
( )

d t
D t

dt


                                                                                                          (2.28) 

where D is the ( )2 1k M +  operational matrix of derivative defined as follows: 

U O O

O U O
D

O O U

 
 
 =
 
 
 

                                                                                                 (2.29) 

in which U  is an ( )( )1 1M M+ +  matrix and its ( ),r s th  element is defined as follows: 

( )( ) ( )1

,

2 2 1 2 1 , 2,..., 1 ,  1,..., 1  ( ) 

0,

k

r s

r s r M s r and r s odd
U

otherwise

+ − − = + = − +
= 


       (2.30) 
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Corollary 2.1 If we use (2.28) then we have operational matrix for nth  derivative as   

( )
( )

n

n

n

d t
D t

dt


                                                                                                       (2.31) 

where nD  is the nth  power of matrix D . 

By using the property of the product of two Legendre wavelets vector functions, we have  

T T Te E =                                                                                                             (2.32) 

where e  is a given vector and E  is a ( ) ( )2 1 2 1k kM x M+ +  matrix dependent on vector 

e [12]. 

 The Operational Matrix of Fractional Derivative 

A. Saadatmandi and M. Dehghan derived the operational matrix of fractional derivative 

by using shifted Legendre polynomials in [18]. In this section, the Legendre wavelet 

operational matrix of fractional derivative is derived in some special conditions by taking 

advantage of theorem given in [18]. 

Lemma 2.1. Let ( )t  be the Legendre wavelets vector presented in Equation (2.24) and 

assume that 0k =  then  

( ) 0,   0,1,..., 1,   0rD t r  = = −                                                                       (2.33) 

Proof. The Lemma can be proved by using Equations (2.14) and (2.16) in Equation 

(2.24). 

Theorem 2.2. Let ( )t  be the Legendre wavelets vector presented in Equation (2.24). 

Assume that 0k =  and 0  , then  

( ) ( ) ( )D t D t
                                                                                                     (2.34) 

where 
( )

D


 is the (M 1) (M 1)x+ + operational matrix of the fractional derivative of the 

order 0,   1N N  −    in the Caputo sense and is expressed as follows 
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( )

,0, ,1, , ,

r,0, r,1, r,m,

m,0, m,1, m,m,

0 0 0

0 0 0

h h m h
h h h

r r r

h h h

h h h

m m m

h h h

h h h

D

  

  
  



  

  

  

  

  

          

          
= = =          

= = =          

= = =          









=








  

  

  
















 
 
 



                                                   (2.35) 

where , ,r s h  is presented by 

, , 2
0

( 1) ( )!( )!
2 1 2 1

( )! ! ( 1)( )!( !) ( 1)

r s h ls

r s h

l

r h s l
r s

r h h h s l l h l


 

+ + +

=

− + +
= + +

−  − + − + − +
                        (2.36) 

Take in consideration in ( )
D


, the first     rows are all zero. 

Proof. Assume that (t)r be the thr element of the vector ( )t  presented in Equation 

(2.24), where ( 1),   0,1,..., ,   0,1,..., (2 1)kr nM m m M n= + + = = − . Then ( )r t  can be 

expressed as 

1

2
1

,
2 2

1
(t) 2 (2 )

2 k k

k

k

r r n n
r P t n 

+

+ 
 
 

= + −                                                                         (2.37) 

Suppose that 0k = and by utilising the shifted Legendre polynomial, we get 

( )
 0,12

0

1 ( )!1
( ) 2

2 ( )!( !)

r h
r

h

r

h

r h
t r t

r h h
 

+

=

− +
= +

−
                                                                 (2.38) 

If we utilise Equations (2.15), (2.16) and (2.38), then we get 

( ) ( )
( )

 

( )

( )  

0,12
0

0,1

1 ( )!1
2 ( )

2 ( )!( !)

1 ( )!
               2 1 ,    ,...,

( )!( !) 1

r h
r

h

r

h

r h
r

h

h

r h
D t r D t

r h h

r h
r t r m

r h h h

 





 

 


+

=

+

−

=  

− +
= +

−

− +
= + =   

−  − +



                 (2.39) 

Approximating ht −  by ( 1)m +  terms of Legendre wavelets, then we get 
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( ),

0

m
h

h s s

s

t b t −

=

                                                                                                       (2.40)       

here 

( )
( )

( )

1 1

, 2
00 0

2
0

1 ( 1) ( )!
2

2 !( !)

( 1) ( )!
                             2 1

!( !) ( 1)

s ls
h h l

h s s

l

s ls

l

s l
b t t dt s t dt

s l l

s l
s

s l l h l

 



+
− + −

=

+

=

− +
= = +

−

− +
= +

− + − +

 



                                        (2.41) 

If we utilise Equations (2.39) and (2.41), then we have 

( )
( )

( )
( )  

 

, 0,1
0

, , 0,1
0

1 ( )!
2 1

( )!( !) 1

             ( ) ,    ,...,

r h
r m

r h s s

h s

m r

r s h s

s h

r h
D t r b t

r h h h

t r m







  


   

+

= =  

= =  

− +
 +

−  − +

 
= =      

 

 

 

                                (2.42) 

in which , ,r s h  is presented in Equations (2.36). Also if we use Lemma 2.1, then we can 

write 

( ) 0,    0,1,..., 1,   >0rD t r  = = −                                                                        (2.43) 

Combining Equations (2.42) and (2.43), then we obtain the result. 

 Differential Equations 

2.6.1 Ordinary Differential Equations 

The general nth  order linear differential equation for the function ( )u u t= is written as 

[57] 

( ) ( ) ( ) ( )
1

0 1 1 0 11
... ( ),       t

n n

n nn n

d u d u du
h t h t h t h t u g t t t

dt dt dt

−

−−
+ + + + =    

For example, 

4 3 2

4 3 2
4 ( ) cos 2sin 2cos 16 4 sin 2 ,     0 1td u d u d u du

t t t t u e t t
dt dt dt dt

− + + + =  
 

The above differential equation is fourth order linear differential equation. 

The general nthorder non-linear differential equation for the function ( )u u t= is written 

as 
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( ) ( ) ( ) ( )
1

0 11
, , ,..., ,       t

n n

n n

d u du d u
t H t u t t t t t

dt dt dt

−

−

 
=   

 
 

For instance, 

( )

5
5

55

48
24 ,     0 1

1

ud u
e t

dt t

−+ =  
+

 

The previous differential equation is fifth order non-linear differential equation. 

2.6.2 Fractional Order Differential Equations 

The general linear FDE for the function ( )u u t=  is written as [57] 

( ) ( ) ( )0 1

0 1( ) ... ( ) ( ) ( ) ( )k

k kD u t h t D u t h t D u t h t u t g t
  −

−= + + + +  

Linearity of the this equation arises from linearity of the fractional differential operator. 

For instance, 

5 3

2 2
1

4(t 1) D ( ) 4D ( ) ( )
1

u t u t u t t
t

+ + + = +
+

 

and 

3

2 2( ) ( ) ( ) 1D u t D u t u t t+ + = +  

are linear FDEs. 

The general non- linear fractional order differential equation for the function ( )u u t=  is 

written as 

( ) ( ) ( ) ( )( )1, , ,..., kD u t H t u t D u t D u t
 =  

For instance, 

5

3 2 42( ) ( ) ( )D u t D u t u t t+ + =  

and 

0.7
1.3 2 420

( ) ( )
7 (0.7)

t
D u t u t t+ = +


 

are non-linear FDEs. 
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 Systems of Differential Equations 

2.7.1 Systems of Ordinary Differential Equations 

The general system of linear differential equations for functions ( ) j ju u t=

( )1,2,...,j m=  is written as [57] 

1
11 1 1 1

2
21 1 2 2

1 1

( ) ... ( ) ( )

( ) ... ( ) ( )

                                

( ) ... ( ) ( )

m

n

nn

n

n mn

n

m
m mn m mn

d u
h t u h t u k t

dt

d u
h t u h t u k t

dt

d u
h t u h t u k t

dt

= + + +

= + + +

= + + +

 

where ( )ijh t and ( )ik t  1,2,...,    1, 2,...,i m j n= =  are known functions on some interval 

a t b  . The unknowns are the functions 1( ),..., ( )mu t u t . 

If all 0ik =  then the system is called homogeneous, otherwise it is called non-

homogeneous. Linearity of the system arises from linearity of the diferential equations. 

That is to say, if all diferential equations is linear then the system is a linear system. 

For instance, 

( )

( )
( ) cos

( )
( )

( )
( )

t

du t
w t t

dt

dv t
w t e

dt

dw t
u t v t

dt

= −

= −

= −

 

The above system is first order, non-homogeneous and linear system of differential 

equations. 

The general system of non-linear differential equations for functions ( ) j ju u t=

( )1,2,...,j m=  is written as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

11 1

1 1 2
1 1 21 1 1

11 1

2 1 2
2 1 21 1 1

1

, ,..., , ,..., ,..., ,...,

, ,..., , ,..., ,..., ,...,

              

,

nn n n

m
mn n n n

nn n n

m
mn n n n

n

m
mn

d ud u d u d u
t H t u t t u t t u t t

dt dt dt dt

d ud u d u d u
t H t u t t u t t u t t

dt dt dt dt

d u
t H t u

dt

−− −

− − −

−− −

− − −

 
=  

 

 
=  

 

= ( ) ( ) ( ) ( ) ( ) ( )
11 1

1 2
21 1 1

,..., , ,..., ,..., ,...,
nn n

m
mn n n

d ud u d u
t t u t t u t t

dt dt dt

−− −

− − −

 
 
 

 

For example, 

( )

( )

2

2

2 ( ) ( ) v(t)

( ) ( ) v(t)

du t
u t u t

dt

dv t
u t u t

dt

= − +

= −

 

The above Brusselator system is first order non-linear system of differential equations. 

2.7.2 Systems of Fractional Order Differential Equations  

The general system of FDEs for functions ( ) j ju u t= ( )1,2,...,j m=  is written as [57] 

1

2

1 1 1 2

2 2 1 2

1 2

( ) ( , , ,..., ),

( ) ( , , ,..., ),

                   

( ) ( , , ,..., ),n

m

m

m m m

D u t U t u u u

D u t U t u u u

D u t U t u u u







=

=

=

 

If iU ’s are linear functions of 1 2, , ,..., ,mt u u u then the system is a linear system of FDEs. 

For example, 

( ) ( ) ( )

( ) ( ) ( )

D u t u t v t

D v t u t v t





= +

= − +
 

The above system is a system of linear FDEs.  

If iU ’s are non-linear functions of 1 2, , ,..., ,mt u u u  then the system is a non-linear system 

of FDEs. 

For instance, 
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( ) ( )

( ) ( )

3
3 2

2 6 32

5
1 2

2 4 32

8
8 ( ) 4 4 1

32
( ) 3 2 1

5

t
D u t u t v t t t

t
D v t t Du t v t t t





= − + − + + −

= + − − + −  

The previous system is a system of non-linear FDEs. 
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CHAPTER 3 

THE APPLICATION OF THE OPERATIONAL MATRIX OF 

DERIVATIVE TO HIGH ORDER DIFFERENTIAL EQUATIONS 

High-order differential equations have substantial attention, because of their fascinating 

mathematical structures and properties and they play an important role in the thermal 

science and mechanical engineering. Fluid-flow, heat transfer and other related physical 

phenomena of interest are gained by principles of conservation and are symbolized in 

terms of differential equations denoting these principles.  

For example, fourth-order DEs are used in the numerical analysis of viscoelastic and 

inelastic flows, the free vibration analysis of beam structures, deformation of beams and 

plate deflection theory [1]. A fourth order analogue of it is the Orr-Sommerfield equation 

explain to great correctness the cross-stream behavior of channel fluid-flow. Moreover, 

sixth-order differential equations arise in the free vibration analysis of ring structures and 

astrophysics [2]. Some related applications of high-order DEs can be found in [1-8]. In 

[1], Noor and Mohyud-Din presented the variation iteration method for solving fourth-

order BVPs and in [4], [7] they illustrated the homotopy perturbation method for solving 

fifth-order and sixth-order BVPs, respectively. Also, in [8], a Legendre Petrov-Galerkin 

method was demonstrated for the solution of the fourth-order BVPs. In [5-6], the 

numerical solution of fifth-order BVPs was presented by using a new cubic B-spline 

method and a sixth-degree B-spline approximation, respectively. In [2], El-Gamel et al. 

applied sinc-Galerkin method for solving sixth-order BVPs. Secer and writer of this thesis 

submitted a paper which deals with the numerical solution of high order differential 

equations by using Legendre wavelet operational matrix method in [56].  

In this chapter, the operational matrix of Legendre wavelet is generalized in order to solve 

high-order linear and non-linear multi-point: initial and boundary value problems. 
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 Solving High Order Linear Differential Equations 

This section introduces an alternative solution technique called LWOMM to obtain the 

numerical solution of high order linear DEs. Consider the following equation 

( ) ( ) ( ) ( )
1

0 1 1 0 11
... ( ),       t

n n

n nn n

d u d u du
h t h t h t h t u g t t t

dt dt dt

−

−−
+ + + + =                           (3.1) 

with these initial conditions 

( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 12 1
,  ,  ,...,

n

nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =                                           (3.2) 

or with these boundary conditions                   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

0 0 0 1 0 2 02

2

1 0 1 1 1 2 12

2

0 0 0 1 0 2 02

1 0 1 1

,  ,  ,...,      

,  ,  ,...,         0,1,..., / 2    

,  ,  ,...,

,  ,  

i

ii

i

ii

i

ii

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u i n if n even

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

du
u t u t u

dt

= = = =

   = = = = =

= = = =

 = = ( ) ( )
2 1

1 2 1 12 1
,...,          0,1,..., ( 1) / 2    odd

i

ii

d u d u
t u t u i n if n

dt dt

−

−−
 = = = +

(3.3) 

First of all, approximating ( )u t  by the Legendre wavelets, then we obtain 

( ) ( )Tu t C t                                                                                                               (3.4) 

where C  is an unknown vector and ( )t  is the vector defined in Equation (2.27). If we 

utilise Equation (2.31) then we have 

( ) ( ) ( ) ( ) ( ) ( )
2

2

2
,   ,...,

n
T T T n

n

du d u d u
t C D t t C D t t C D t

dt dt dt
                                 (3.5) 

Also approximating ( ) ( ) ( ) ( )0 1, ,...,   nh t h t h t and g t , then we get

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1,   ,..., ,   and  T T T T

n nh t H t h t H t h t H t g t G t                (3.6) 

where vectors 0 1, ,...,   nH H H and G  are given by Equation (2.26). Substituting 

Equations (3.5)-(3.6) in Equation (3.1) we obtain 
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( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )

1

0 1

1

...

                      + 0

T T n T T n

T T T T T

n n

R t H t C D t H t C D t

H t C D t H t C t G t

   

    

−

−

= + +

+ − =
             (3.7) 

If we use the product operation matrix of Legendre wavelets, then we obtain  

( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

0 1

1

1

0 1 1

...

                     +

        ...

T T
T T n T T n

TT T T T T

n n

T T TT n T n T T T

n n

R t H t t D C H t t D C

H t t D C H t t C t G

t H D C t H D C t H D C t H C t G

   

    

    

−

−

−

−

= + +

+ −

= + + + + −

                    

(3.8) 

where 0 1, ,..., nH H H   are the product operation matrices and can be calculated by using 

Equation (2.32). 

We obtain  ( )2 1k M n+ −  linear equations by computing 

( ) ( ) ( )
1

0

0,   1,..., 2 1k

j t R t dt j M n = = + −                                                                   (3.9) 

Also, if we substitute these initial conditions (3.2) in Equations (3.4)-(3.5) we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0 0 1

2 1
2 1

0 0 2 0 0 12 1

,   

,...,

T T

n
T T n

nn

du
u t C t u t C D t u

dt

d u d u
t C D t u t C D t u

dt dt

 

 
−

−

−−

 =  =

 =  =

                                (3.10) 

We obtain ( )2 1k M +  set of linear equations by using Equations (3.9) and (3.10). These 

linear equations can be solved for unknown coefficients of the vector C . Accordingly, 

( )u t  which is given in Equation (3.1) can be computed. 

 Solving High Order Non-Linear Differential Equations 

In this section, the LWOMM is implemented for solving n th−  order non-linear DEs. 

Consider the following equation 

( ) ( ) ( ) ( )
1

0 11
, , ,..., ,       t

n n

n n

d u du d u
t H t u t t t t t

dt dt dt

−

−

 
=   

 
                                             (3.11) 

with the initial conditions 
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( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 12 1
,  ,  ,...,

n

nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =                                         (3.12) 

or boundary conditions  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

0 0 0 1 0 2 02

2

1 0 1 1 1 2 12

2

0 0 0 1 0 2 02

2

1 0 1 1 1 22

,  ,  ,...,

0,1,..., / 2    

,  ,  ,...,

,  ,  ,...,

,  ,  ,

i

ii

i

ii

i

ii

du d u d u
u t u t u t u t u

dt dt dt
i n if n even

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

du d u
u t u t u t u

dt dt

= = = =

=

   = = = =

= = = =

  = = = ( )
1

1 11

0,1,..., ( 1) / 2    odd

...,
i

ii

i n if n
d u

t u
dt

−

−−

= +

=

 

(3.13) 

First we presume that the unknown function ( )u t  is approximated and given by  

( ) ( )Tu t C t                                                                                                             (3.14) 

where C  is an unknown vector and ( )t  is the vector which given in Equation (2.27). 

By utilising Equation (3.11) then we obtain 

( ) ( ) ( ) ( )( )1, , ,...,T n T T T nC D t H t C t C D t C D t   −                                              (3.15) 

Also by substituting initial conditions (3.12) in Equations (3.4) and (3.5) we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0 0 1

2 1
2 1

0 0 2 0 0 12 1

,   

,...,

T T

n
T T n

nn

du
u t C t u t C D t u

dt

d u d u
t C D t u t C D t u

dt dt

 

 
−

−

−−

 =  =

 =  =

                                   

(3.16) 

To obtain the solution ( )u t  , we first compute Equation (3.15) at 2 ( 1)k M n+ −   points. 

For a better result, we utilise the first 2 ( 1)k M n+ −  roots of shifted Legendre polynomials

( )
2 ( 1)k M

P t
+

. If we use these equations collectively with Equation (3.16), then we obtain 

( )2 1k M +  non-linear equations.  These non-linear equations can be solved for unknown 

coefficients of the vector C . Accordingly ( )u t  given in Equation (3.11) can be 

computed. 



26 

 

 Applications 

In this section, we present some examples to demonstrate the performance of the 

introduced tecnique for solving high order linear and non-linear DEs. It is shown that the 

LWOMM yield better results.  

Example 3.1 Consider the following second-order non-linear BVP 

22

2 8 ( ) 0,   0 1
d u du

u t t
dt dt

 
+ + =   

 
                                                                          (3.17) 

with these boundary conditions 

( )0 0,    (1) 0u u= =                                                                                                     (3.18) 

The exact solution of the previous system is  2( )u t t t= −  

To solve the above problem, we implemented the method presented in Section 3.2 with 

2,   0M k= = . Approximating solution following as 

( ) ( ) ( )
2

2

2
( ) ,   ,   T T Tdu d u

u t C t C D t C D t
dt dt

      

We get 

2

0 0 0 0 0 0

2 3 0 0 ,    0 0 0

0 2 15 0 12 5 0 0

D D

   
   

= =   
   

  

 

If we consider (3.17) with (3.18), we have  

( ) ( )( ) ( )( )
2

2 2 8 0T T TC D t C D t C D t  + + =                                                          (3.19) 

Calculating Equation (3.19) at the first root of ( )3P t , i.e.  0

1 15

2 10
t = −  

We get 

( )( )
( ) ( )

2

0,2 0,1 0,2

2

0,0 0,1 0,2

4 15 3 2 2 3 2 15 3 1 2

    8 8 3 1 2 8 5 6 6 1 0

c c c t

c c t c t t

+ + − +

+ + − + + − + =

 

and by utilising boundary conditions we have 
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0,0 0,1 0,2

0,0 0,1 0,2

3 5 0

3 5 0

c c c

c c c

− + =

+ + =
 

If we solve this system of nonlinear algebraic equations, we get 

22

0,0 0,1 0,2, , 0.1666666666,-0.4309487636 10 ,-0.07453559926TC c c c −  = =     

Consequently,

( ) ( ) ( )

( )

22

2

1

0.1666666666,-0.4309487636 10 , -0.07453559926 3 1 2

5 6 6 1

Tu t C t t

t t

 −

 
 

 = = − +  
 

− +  

 

The approximate solution with the exact solution are displayed in Table. 3.1. 

Table 3.1 Comparison between the exact solution and our numerical solution for 

Example 3.1 

 

t  

 

Exact Solution ( )u t  

 2,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.00 -0.1 910−  0.1 910−  

0.1 0.09 0.08999999994 0.6 1010−  

0.2 0.16 0.15999999999 0.1 910−  

0.3 0.21 0.20999999999 0.1 910−  

0.4 0.24 0.23999999999 0.1 910−  

0.5 0.25 0.24999999999 0.1 910−  

0.6 0.24 0.23999999999 0.1 910−  

0.7 0.21 0.20999999999 0.1 910−  

0.8 0.16 0.15999999999 0.1 910−  

0.9 0.09 0.08999999999 0.6 1010−  

1.0 0.00 -0.1 910−  0.1 910−  

Example 3.2. We consider the following fourth-order linear IVP 

4 3 2

4 3 2
4 ( ) cos 2sin 2cos 16 4 sin 2 ,     0 1td u d u d u du

t t t t u e t t
dt dt dt dt

− + + + =                   (3.20) 
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with these initial conditions 

( ) ( ) ( ) ( )
2 3

2 3
0 0,   0 1,   0 2,   0 2

du d u d u
u

dt dt dt
= = = =                                                   (3.21) 

The exact solution of the previous system is known as  ( ) sintu t e t=  

To solve Equation (3.20), we applied the method presented in Section 3.1 with 

5,   0M k= = . Approximating solution following as 

( ) ( )
( )

( ) ,    T Tdu t
u t C t C D t

dt
    

( )
( )

( )
( )

( )
( )

2 3 4

2 3 4

2 3 4
,    ,    T T T

d u t d u t d u t
C D t C D t C D t

dt dt dt
      

Also approximating 
0 1( ) sin ,   ( ) cos ,   ( ) sin 2th t t h t t g t e t= = =   following as 

( )0 0 1 1( ) ,   ( ) ( )T Th t H t h t H t    and  ( ) ( )Tg t G t  

where ( ) ( )
1 1

0 1

0 0

( ) sin ,   ( ) cosH t t t dt H t t t dt = =    and ( )
1

0

( ) sin 2tG t e t t dt=   

We get 

0 0 0 0 0 0

2 3 0 0 0 0 0

0 2 15 0 0 0 0
,   

0 0 2 35 0 0 0

0 0 0 2 63 0 0

0 0 0 0 2 99 0

D

 
 
 
 
 =
 
 
 
 
 
 

2

0 0 0 0 0 0

0 0 0 0 0 0

4 15 3 0 0 0 0 0

0 4 35 15 0 0 0 0

0 0 4 63 35 0 0 0

0 0 0 4 99 63 0 0

D

 
 
 
 
 =
 
 
 
 
 
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3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

8 35 15 3 0 0 0 0 0

0 8 63 35 15 0 0 0 0

0 0 8 99 63 35 0 0 0

D

 
 
 
 
 =
 
 
 
 
 

 

 

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

16 63 35 15 3 0 0 0 0 0

0 16 99 63 35 15 0 0 0 0

D

 
 
 
 
 =
 
 
 
 
 

 

If we consider (3.20) with (3.21), we have  

( ) ( ) ( ) ( ) ( )4 3 2

1 0 1( ) 4 2 2 16 4 ( )T T T T T TR t C D t H D t H D t H D t C t G t     = − + + + −  

(3.22) 

By computing 

( ) ( )
1

0

0,   1,2j t R t dt j = =  

We obtain two linear equations following as 

0,0 0,1 0,2

0,3 0,4 0,5

0,1 0,2

0,3 0,4

5.387308351 16 5.829881996 22.57903587

      222.6322963 20349.82385 118.3624723 0

3.173505657 15.06490716 25.84945221

         121.4121245 1101.248082 116247.

c c c

c c c

c c

c c

− + + +

− + + =

− + +

+ − + 0,50813 0c =

 

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4 0,5

0,1 0,2 0,3 0,4 0,5

0,2 0,3 0,4 0,5

0,3 0,4 0,5

3 5 7 3 11 0

2 3 6 5 10 7 42 18 11 1

12 5 60 7 420 252 11 2

120 7 2520 1260 11 2

c c c c c c

c c c c c

c c c c

c c c

− + − + − =

− + − + =

− + − =

− − =

 

If we solve this system of linear algebraic equations, we get 
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 

0,0 0,1 0,2 0,3 0,4 0,5, , , , ,

0.9077018418,0.6482676542,0.1005609239,0.00298064330,-.00071311177,-.0000889418471

TC c c c c c c =  

=
 

Consequently, 

 

( ) ( )

( )

( )

( )

( )

( )

2

3 2

4 3 2

5 4 3 2

1
0.9077018418

3 1 2
0.6482676542

5 6 6 1
0.1005609239

7 20 30 12 10.00298064330

-.00071311177 3 70 140 90 20 1

-.0000889418471
11 252 630 560 210 30 1

T

T

t

t t

u t C t
t t t

t t t t

t t t t t




 

− + 
  − +
 

= =  
− + − 

 
− + − + 

 
− + − + −














 

 

The exact solution and our approximate solution are displayed in Table. 3.2. 

Table 3.2 Comparison between the exact solution and the approximate solution for 

Example 3.2 

 

t  

 

Exact Solution ( )u t  

 5,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.0000000000 0.060 1110−  0.060 1110−  

0.1 0.1103329887 0.1126216474 0.0022886587 

0.2 0.2426552686 0.2466635725 0.0040083039 

0.3 0.3989105540 0.4038963982 0.0049858442 

0.4 0.5809439009 0.5859989519 0.0050550509 

0.5 0.7904390834 0.7944690603 0.0040299768 

0.6 1.0288456660 1.0305343470 0.0016886798 

0.7 1.2972951110 1.2950630240 0.0022320878 

0.8 1.5965053400 1.5884746930 0.0080306463 

0.9 1.9266733040 1.9106511420 0.0160221600 

1.0 2.2873552870 2.2608471370 0.0265081500 
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Example 3.3 Consider the following fifth order linear IVP [5] 

( ) ( ) ( )
5 4 3 2

2 2

5 4 3 2

2 4 3 2

2 2 2 1 2 4

2 4 cos 2 4 6 4 2,    0 1t

d u d u d u d u du
t t t t t

dt dt dt dt dt

t u e t t t t t t

+ − + − + − + +

− = − + + − +  

                                        (3.23) 

subject to these initial conditions 

( ) ( ) ( ) ( ) ( )
2 3 4

2 3 4
0 0,  0 2,  0 6,  0 4,  0 0

du d u d u d u
u

dt dt dt dt
= = = = =                                  (3.24) 

The exact solution of the above system is  ( ) 22 sintu t e t t= +  

To solve the above problem, we applied the method presented in Section 3.1 with 

7,   0M k= = . Approximating solution following as 

( )( ) Tu t C t ,   ( )
( ) Tdu t

C D t
dt

 ,  ( )
2

2

2

( ) Td u t
C D t

dt
 ,    

( )
3

3

3

( ) Td u t
C D t

dt
 ,  ( )

4
4

4

( ) Td u t
C D t

dt
 ,   ( )

5
5

5

( ) Td u t
C D t

dt
  

Also, approximating 2

0 1( ) 2,   ( ) 2 1,  h t t h t t t= − = + − 2 2

2 3( ) 2 4 ,   ( ) 2 ,  h t t t h t t= + = and 

4 3 2( ) 4 cos 2 4 6 4 2tg t e t t t t t= − + + − +  following as 

( )0 0 1 1 2 2 3 3( ) ,   ( ) ( ),  ( ) ( ),   ( ) ( )T T T Th t H t h t H t h t H t h t H t        and  ( ) ( )Tg t G t  

where 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1

2 2

0 1 2

0 0 0

( ) 2 ,   ( ) 2 1 ,   ( ) 2 4 ,   H t t t dt H t t t t dt H t t t t dt  = − = + − = +    

( ) ( )
1

2

3

0

( ) 2H t t t dt=    and  ( ) ( )
1

4 3 2

0

( ) 4 cos 2 4 6 4 2tG t e t t t t t t dt= − + + − +  

We get 
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0 0 0 0 0 0 0 0

2 3 0 0 0 0 0 0 0

0 2 15 0 0 0 0 0 0

0 0 2 35 0 0 0 0 0
,   

0 0 0 2 63 0 0 0 0

0 0 0 0 2 99 0 0 0

0 0 0 0 0 2 143 0 0

0 0 0 0 0 0 2 195 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 15 3 0 0 0 0 0 0 0

0 4 35 15 0 0 0 0 0 0

0 0 4 63 35 0 0 0 0 0

0 0 0 4 99 63 0 0 0 0

0 0 0 0 4 143 99 0 0 0

0 0 0 0 0 4 195 143 0 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 35 15 3 0 0 0 0 0 0 0

0 8 63 35 15 0 0 0 0 0 0

0 0 8 99 63 35 0 0 0 0 0

0 0 0 8 143 99 63 0 0 0 0

0 0 0 0 8 195 143 99 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
 
 
 
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4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

16 63 35 15 3 0 0 0 0 0 0 0

0 16 99 63 35 15 0 0 0 0 0 0

0 0 16 143 99 63 35 0 0 0 0 0

0 0 0 16 195 143 99 63 0 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
  
 

 

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

32 99 63 35 15 3 0 0 0 0 0 0 0

0 32 143 99 63 35 15 0 0 0 0 0 0

0 0 32 195 143 99 63 35 0 0 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
 
 

 

If we consider (3.23) with (3.24), we have  

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

5 4 3 2

0 1

2 3

( ) 2

              ( )

T T T T T T

T T T T T

R t C D t H t C D t C D t H t C D t

H t C D t H t C t G t

     

    

= + + −

+ − −
                        

(3.25) 

By computing 

( ) ( )
1

0

0,   1,2,3j t R t dt j = =  

We obtain three linear equations following as 

0,0 0,1 0,2 0,3

7 4

0,4 0,5 0,6 0,7

-0.6666666667 8.660254039 4.323064761 557.3716095

    - 7574.000000 108652.6281 - 0.3 10 - 0.15 10 -8.112098454 0

c c c c

c c c c− −

+ + +

+ =
 

0,0 0,1 0,2 0,3

4

0,4 0,5 0,6 0,7

-1.782876059 - 0.5773502693 5.200000001 - 2.065591121 -18.46123351

    4221.354229 - 43449.57403 715526.8907 - 0.1 10 0

c c c c

c c c c−

+

+ + =
 

10

0,0 0,1 0,2 0,3 0,4

0,5 0,6 0,7

-0.1490711985c -0.986 10 c +9.238095242c -38.82075211c -47.53241642c

   +14713.31402c -134121.8771c +2550146.901c -0.3879252900=0

−
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and by utilising the initial conditions we have 

( ) ( ) ( )

( ) ( )

2
2

2

3 4
3 4

3 4

(0) (0)
(0) 0 0,   0 2,   0 6

(0) (0)
0 4,    0 0

T T T

T T

du d u
u C C D C D

dt dt

d u d u
C D C D

dt dt

  

 

 =  =  =

 =  =

 

If we solve this system of linear algebraic equations, we get 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

5

7

2.142158342

1.578792178

0.2730371723

0.0054607618
, , , , , , ,

-0.001414419958

-0.000175507821

-0.86373431 10

-0.96647696 10

T

TC c c c c c c c c

−

−

 
 
 
 
 
  = =   
 
 
 
 
  

 

Consequently, 

 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

5

7

1

2.142158342 3 1 2

1.578792178
5 6 6 1

0.2730371723
7 20 30 12 1

0.0054607618

3 70 140 90 20 1-0.001414419958

-0.000175507821 11 2

-0.86373431 10

-0.96647696 10

T

T

t

t t

t t t

u t C t
t t t t



−

−

  − +
 

− + 
 
  − + −
 = =
  − + − +
 
 
 
 
  

( )

( )

( )

5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

52 630 560 210 30 1

13 924 2772 3150 1680 420 42 1

15 3432 12012 16632 11550 4200 756 56 1

t t t t t

t t t t t t

t t t t t t t

 
 
 
 
 
 
 
 
 
 

− + − + − 
 

− + − + − + 
 

− + − + − + −  

 

The approximate solution with the exact solution are displayed in Table. 3.3. 
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Table 3.3 Comparison between the exact solution and the approximate solution for 

Example 3.3 

 

t  

 

Exact Solution ( )u t  

  

7,   0M k= =

Approximate Solution 

 

Absolute Error 

0.0 0.0000000000 -0.5425130 910−  0.5425130 910−  

0.1 0.2306659774 0.2349757869 0.0043098115 

0.2 0.5253105372 0.5326889428 0.0073784060 

0.3 0.8878211080 0.8965862650 0.0087651579 

0.4 1.3218878020 1.3298579860 0.0079701859 

0.5 1.8308781670 1.8353120110 0.0044338456 

0.6 2.4176913320 2.4152287240 0.0024626060 

0.7 3.0845902220 3.0711957340 0.0133944863 

0.8 3.8330106800 3.8039211894 0.0290887837 

0.9 4.6633466080 4.6130299590 0.0503166471 

1.0 5.5747105740 5.4968272320 0.0778833389 

Example 3.4 Consider the following sixth order linear BVP [2] 

( )
6 3 2

2

6 3 2
15 78 114 ,    0 1td u d u d u

u e t t t
dt dt dt

−+ + − = − + −                                           (3.26) 

subject to these boundary conditions 

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
0 0,   0 0,   0 =0, 1 1/ ,   1 2 / ,   1 =1/e 

du d u du d u
u u e e

dt dt dt dt
= = = =          (3.27) 

The exact solution of the above system is  ( ) 3 tu t t e−=  

To solve the above problem, we applied the method presented in Section 3.1 with 

7,   0M k= = . Approximating solution following as 

( )( ) Tu t C t ,     ( )
( ) Tdu t

C D t
dt

  
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( )
2

2

2

( ) Td u t
C D t

dt
 ,    ( )

3
3

3

( ) Td u t
C D t

dt
 ,   ( )

6
6

6

( ) Td u t
C D t

dt
  

Also approximating ( )2( ) 15 78 114tg t e t t−= − + −  following as   ( )( ) Tg t G t  

We get 

0 0 0 0 0 0 0 0

2 3 0 0 0 0 0 0 0

0 2 15 0 0 0 0 0 0

0 0 2 35 0 0 0 0 0
,   

0 0 0 2 63 0 0 0 0

0 0 0 0 2 99 0 0 0

0 0 0 0 0 2 143 0 0

0 0 0 0 0 0 2 195 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 15 3 0 0 0 0 0 0 0

0 4 35 15 0 0 0 0 0 0

0 0 4 63 35 0 0 0 0 0

0 0 0 4 99 63 0 0 0 0

0 0 0 0 4 143 99 0 0 0

0 0 0 0 0 4 195 143 0 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 35 15 3 0 0 0 0 0 0 0

0 8 63 35 15 0 0 0 0 0 0

0 0 8 99 63 35 0 0 0 0 0

0 0 0 8 143 99 63 0 0 0 0

0 0 0 0 8 195 143 99 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
 
 
 
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6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

64 143 99 63 35 15 3 0 0 0 0 0 0 0

0 64 195 143 99 63 35 15 0 0 0 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
 
 

 

If we consider (3.26) with (3.27), we have  

( ) ( ) ( ) ( )6 3 2( ) ( )T T T T TR t C D t C D t C D t C t G t    = + + − −  

By computing 

( ) ( )
1

0

0,   1,2j t R t dt j = =  

We obtain two linear equations following as 

0,2 0,0 0,3 0,653.85997844 26.83281573 - 317.4901573 2398701.153  0c c c c+ + + =  

8 7

0,1 0,3 0,4 0,5 0,6 0,7-26.41233933- 91.65151390 1454.922678 -0.5 10 -0.49 10 19338946.95   0c c c c c c− −+ + + =  

and by utilising the boundary conditions we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2

2 2

1
0 0 0,    1 1

2
0 0 0,   1 1

1
0 0 0,    1 1  

T T

T T

T T

u C u C
e

du du
C D C D

dt dt e

d u d u
C D C D

dt dt e

 

 

 

 =  =

 =  =

 =  =

 

If we solve this system of linear algebraic equations, we get 
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( ) ( )

( )

( )

( )

2

3 2

4 3 2

5

1

0.1161815354 3 1 2

0.1069989365
5 6 6 1

0.03242759289
7 20 30 12 1

-0.001046948131

3 70 140 90 2-0.001556841602

0.0004149720161

-0.0000226295487

0.1493379251 10

T

T

t

t t

t t t

u t C t
t t t



−

  − +
 

− + 
 
  − + −
 = =
  − + −
 
 
 
 
  

( )

( )

( )

( )

5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

0 1

11 252 630 560 210 30 1

13 924 2772 3150 1680 420 42 1

15 3432 12012 16632 11550 4200 756 56 1

t

t t t t t

t t t t t t

t t t t t t t

 
 
 
 
 
 
 
 

+ 
 

− + − + − 
 

− + − + − + 
 

− + − + − + −  

 

The exact solution and our approximate solution that has been obtained by using proposed 

method with 7,  0M k= =  are displayed in Table. 3.4. 

Table 3.4 Comparison between the exact solution and the approximate solution for 

Example 3.4 

 

t  

 

Exact Solution ( )u t  

 7,   0M k= = Approximate 

Solution 

 

Absolute Error 

0.0 0.0000000000 0.306542 910−  0.306542 910−  

0.1 0.0009048374 0.0031672437 0.0022624063 

0.2 0.0065498460 0.0089879497 0.0024381036 

0.3 0.0200020919 0.0221105281 0.0021084361 

0.4 0.0429004829 0.0449373620 0.0020368791 

0.5 0.0758163324 0.0782004350 0.0023841026 

0.6 0.1185433134 0.1214626682 0.0029193547 

0.7 0.1703287592 0.1735549706 0.0032262115 

0.8 0.2300564296 0.2329590100 0.0029025806 

0.9 0.2963892819 0.2981457037 0.0017564224 

1.0 0.3678794412 0.3678794407 0.255522 910−  
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Example 3.5 Consider the following fifth order non-linear BVP [6] 

( )

5
5

55

48
24 ,     0 1

1

ud u
e t

dt t

−+ =  
+

                                                                            (3.28) 

with these boundary conditions 

( ) ( ) ( ) ( ) ( )
2

2
0 0,   u 1 ln 2,   0 1,   1 0.5,   0 1

du du d u
u

dt dt dt
= = = = = −                                (3.29) 

The exact solution of the above system is  ( ) ( )ln 1u t t= +  

To solve the above problem, we applied the LWOMM introduced in Section 3.2 with 

8,   0M k= = . Approximating solution following as 

( )( ) Tu t C t ,     ( )
( ) Tdu t

C D t
dt

  

( )
2

2

2

( ) Td u t
C D t

dt
 ,    ( )

5
5

5

( ) Td u t
C D t

dt
  

Also approximating 
( )

5

48
( )

1
g t

t
=

+
 following as  ( )( ) Tg t G t  

where  
( )

( )
1

5

0

48
( )

1
G t t dt

t


 
=  

 + 
  

We get 

0 0 0 0 0 0 0 0 0

2 3 0 0 0 0 0 0 0 0

0 2 15 0 0 0 0 0 0 0

0 0 2 35 0 0 0 0 0 0

,   0 0 0 2 63 0 0 0 0 0

0 0 0 0 2 99 0 0 0 0

0 0 0 0 0 2 143 0 0 0

0 0 0 0 0 0 2 195 0 0

0 0 0 0 0 0 0 2 255 0

D

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
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2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 15 3 0 0 0 0 0 0 0 0

0 4 35 15 0 0 0 0 0 0 0

0 0 4 63 35 0 0 0 0 0 0 ,  

0 0 0 4 99 63 0 0 0 0 0

0 0 0 0 4 143 99 0 0 0 0

0 0 0 0 0 4 195 143 0 0 0

0 0 0 0 0 0 4 255 195 0 0

D

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

 

5

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

32 99 63 35 15 3 0 0 0 0 0 0 0 0

0 32 143 99 63 35 15 0 0 0 0 0 0 0

0 0 32 195 143 99 63 35 0 0 0 0 0 0

0 0 0 32 255 195 143 99 63 0 0 0 0 0

D

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 

 

If we consider (3.28) with (3.29), we have  

( )( )
( )

55( ) ( ) 24 0
TC tT TR t C D t e G t


 
−

= + − =                                                     (3.30)                   

Calculating Equation (3.30) at the first four roots of ( )9P t , i.e.  

0

1

2
t =  

4 3 2

1

1 1
1 4 (24310 _Z 11440 _Z 1716 _Z 88 _Z 1,index 1)

2 2
t RootOf= + + + + + + =  

4 3 2

2

1 1
1 4 (24310 _Z 11440 _Z 1716 _Z 88 _Z 1,index 1)

2 2
t RootOf= − + + + + + =  

4 3 2

3

1 1
1 4 (24310 _Z 11440 _Z 1716 _Z 88 _Z 1,index 2)

2 2
t RootOf= + + + + + + =  

We obtain four non-linear equations and by utilising boundary conditions we have a 

system of non-linear algebraic equations 

If we solve this system of non-linear algebraic equations, we get 



41 

 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

4

5

5

6

0.3877430836

0.1961116976

-0.01825787356

0.002530037833

, , , , , , , , -0.0001049565766

0.6036072799 10

-0.7854936709 10

0.1064101460 10

-0.1105550721 10

TC c c c c c c c c c
−

−

−

−







 = =  




T











 
 
 
 



 

Consequently, 

( )

( )

( )2

3 2

4

5

5

6

1

0.3877430836 3 1 2

0.1961116976 5 6 6 1

-0.01825787356
7 20 30 12

0.002530037833

-0.0001049565766

0.6036072799 10

-0.7854936709 10

0.1064101460 10

-0.1105550721 10

T
t

t t

t t t

u t
−

−

−

−

− + 
 

− + 
 

− + 
 
 =
 
 
 
 
 
 
 

( )

( )

( )

( )

( )

4 3 2

5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

8 7 6 5 4 3

1

3 70 140 90 20 1

11 252 630 560 210 30 1

13 924 2772 3150 1680 420 42 1

15 3432 12012 16632 11550 4200 756 56 1

17 12870 51480 84084 72072 34650 9240 1260

t t t t

t t t t t

t t t t t t

t t t t t t t

t t t t t t t

−

− + − +

− + − + −

− + − + − +

− + − + − + −

− + − + − +( )2 72 1t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− +  

The approximate solution with the exact solution are given in Table 3.5. 
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Table 3.5 Comparison between the exact solution and the approximate solution for 

Example 3.5 

 
t  

 

Exact Solution ( )u t  

8,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.0000000000 -0.851428 1010−  0.851428 1010−  

0.1 0.0953101798 0.09685278434 0.00154260454 

0.2 0.1823215568 0.1848673057 0.0025457489 

0.3 0.2623642645 0.2654062222 0.0030419577 

0.4 0.3364722366 0.3395145459 0.0030423093 

0.5 0.4054651081 0.4080466567 0.0025815486 

0.6 0.4700036292 0.4717568670 0.0017532378 

0.7 0.5306282511 0.5313642136 0.0007359625 

0.8 0.5877866649 0.5875997863 0.0001868786 

0.9 0.6418538862 0.6412425416 0.0006113446 

1.0 0.6931471806 0.6931471809 0.3 910−  

Example 3.6 Consider the following sixth order non-linear BVP [7] 

( ) ( )
6

2

6
,     0 1td u

t e u t t
dt

=                                                                                         (3.31) 

subject to these boundary conditions 

( ) ( ) ( )

( ) ( ) ( )

2

2

2

2

0 1,    0 1,    0 =1,

1 1/ ,    1 1/ ,    1 =1/e 

du d u
u

dt dt

du d u
u e e

dt dt

= = −

= = −

                                                              (3.32)

 

The exact solution of the above system is  ( ) tu t e−=  

To solve the above problem, we applied the method presented in Section 3.2 with 

7,   0M k= = . Approximating solution following as 

( )( ) Tu t C t ,     ( )
( ) Tdu t

C D t
dt

 ,   ( )
2

2

2

( ) Td u t
C D t

dt
 ,  ( )

6
6

6

( ) Td u t
C D t

dt
  
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Also approximating ( ) tg t e=  following as ( )( ) Tg t G t  

where ( )
1

0

( ) tG t e t dt=   

We get 

0 0 0 0 0 0 0 0

2 3 0 0 0 0 0 0 0

0 2 15 0 0 0 0 0 0

0 0 2 35 0 0 0 0 0
,   

0 0 0 2 63 0 0 0 0

0 0 0 0 2 99 0 0 0

0 0 0 0 0 2 143 0 0

0 0 0 0 0 0 2 195 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 15 3 0 0 0 0 0 0 0

0 4 35 15 0 0 0 0 0 0

0 0 4 63 35 0 0 0 0 0

0 0 0 4 99 63 0 0 0 0

0 0 0 0 4 143 99 0 0 0

0 0 0 0 0 4 195 143 0 0

D

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

 

6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

64 143 99 63 35 15 3 0 0 0 0 0 0 0

0 64 195 143 99 63 35 15 0 0 0 0 0 0

D

 
 
 
 
 
 

=  
 
 
 
 
 
 

 

If we consider (3.31) with (3.32), we have  
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( ) ( )( ) ( )( )
2

6( ) T T TR t C D t G t C t  = −                                                          (3.33) 

Calculating Equation (3.30) at the first two roots of ( )8P t , i.e.  

4 3 2

1

1 1
1 4 (12870 _Z 6864 _Z 1188 _Z 72 _Z 1,index 1)

2 2
t RootOf= + + + + + + =  

4 3 2

2

1 1
1 4 (12870 _Z 6864 _Z 1188 _Z 72 _Z 1,index 1)

2 2
t RootOf= − + + + + + =  

We obtain two non-linear equations and by utilising boundary conditions we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2

2 2

1
0 0 1,     1 1

1
0 0 1,       1 1

1
0 0 =1,     1 1 =

T T

T T

T T

u C u C
e

du du
C D C D

dt dt e

d u d u
C D C D

dt dt e

 

 

 

 =  =

 = −  = −

 

 

If we solve this system of non-linear algebraic equations, we get 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

6

8

0.6318783499

-0.1784202709

0.2307661619

-0.002863931751
, , , , , , ,

0.0001531565124

0.0001658259796

0.2825296276 10

-0.9394504404 10

T

TC c c c c c c c c

−

−

 
 
 
 
 
  = =   
 
 
 
 
  

 

Consequently, 

( ) ( )

( )

( )

( )

2

3 2

4 3 2

6

8

1

0.6318783499 3 1 2

-0.1784202709
5 6 6 1

0.2307661619
7 20 30 12 1

-0.002863931751

3 70 140 900.0001531565124

0.0001658259796

0.2825296276 10

-0.9394504404 10

T

T

t

t t

t t t

u t C t
t t t



−

−

  − +
 

− + 
 
  − + −
 = =
  − +
 
 
 
 
  

( )

( )

( )

( )

5 4 3 2

6 5 4 3 2

7 6 5 4 3 2

20 1

11 252 630 560 210 30 1

13 924 2772 3150 1680 420 42 1

15 3432 12012 16632 11550 4200 756 56 1

t

t t t t t

t t t t t t

t t t t t t t

 
 
 
 
 
 
 
 

− + 
 

− + − + − 
 

− + − + − + 
 

− + − + − + −  
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The approximate solution with the exact solution are displayed in Table. 3.6. 

Table 3.6 Comparison between the exact solution and the approximate solution for 

Example 3.6 

 

t  

 

Exact Solution ( )u t  

 7,   0M k= =

Approximate Solution 

 

Absolute Error 

0.0 1.0000000000 1.0000000000 0.0000000000 

0.1 0.9048374180 0.9035595802 0.0012778377 

0.2 0.8187307531 0.8165310322 0.0021997209 

0.3 0.7408182207 0.7385408499 0.0022773707 

0.4 0.6703200460 0.6687962996 0.0015237462 

0.5 0.6065306597 0.6062498912 0.0002807683 

0.6 0.5488116361 0.5497646530 0.0009530170 

0.7 0.4965853038 0.4982801468 0.0016948430 

0.8 0.4493289641 0.4509791614 0.0016501970 

0.9 0.4065696597 0.4074550200 0.0008853600 

1.0 0.3678794412 0.3678794407     0.2270010 1010−

  

 

 

 

 



46 

 

 

CHAPTER 4 

THE APPLICATION OF THE OPERATIONAL MATRIX OF 

DERIVATIVE TO SYSTEMS OF ORDINARY DIFFERENTIAL 

EQUATIONS 

There are a lot of tecniques that have been studied by many researchers to solve systems 

of ordinary differential equations numerically. Some related applications of such systems 

can be found in [51-54]. In [51], Patil and Khambayat presented the differential transform 

method for solving systems of linear differential equations and in [52], Adio illustrated 

the same method for solving the system of second order differential equations. Also, in 

[53], the differential transform method and Laplace transform method were demonstrated 

for the solution of the such systems. In [54], the numerical solution of the system of 

differential equations was presented by using the Adomian decomposition method. 

In this chapter, the Legendre wavelet operational matrix of derivative is generalized in 

order to solve systems of linear and non-linear differential equations. 

 Solving Systems of Linear Differential Equations 

In this section, the LWOMM is implemented to solve systems of linear differential 

equations. Consider the following system 

1
11 1 1 1

2
21 1 2 2

1 1

( ) ... ( ) ( )

( ) ... ( ) ( )

                                

( ) ... ( ) ( )

m

n

nn

n

n mn

n

m
m mn m mn

d u
h t u h t u k t

dt

d u
h t u h t u k t

dt

d u
h t u h t u k t

dt

= + + +

= + + +

= + + +

                                                                          (4.1)           

with these initial conditions 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1

1 1 1
1 0 10 0 11 0 12 0 1( 1)2 1

2 1

2 2 2
2 0 20 0 21 0 22 0 2( 1)2 1

,  ,  ,...,

,  ,  ,...,

                                                                         

n

nn

n

nn

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

−

−−

−

−−

= = = =

= = = =

( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 m( 1)2 1

            

,  ,  ,...,
n

m m m
m m m m nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =

                          (4.2) 

or with these boundary conditions 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1
1 0 10 0 11 0 12 0 12

2

2 2 2
2 0 20 0 21 0 22 0 22

,  ,  ,...,    

,  ,  ,...,

                                                                                   

i

ii

i

ii

j

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

u

= = = =

= = = =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 0 0 1 0 2 02

2

1 1 1
1 1 10 1 11 1 12 1 12

2

2 2 2
2 1 20 1 21 1 22 1 22

,  ,  ,...,     

,  ,  ,...,    

,  ,  ,...,

                        

i

j j j

j j j jii

i

ii

i

ii

du d u d u
t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

= = = =

   = = = =

   = = = =

( ) ( ) ( ) ( )
2

1 0 1 1 1 2 12

                                                           

,  ,  ,...,     

0,1,..., / 2    ,   j 0,1,..., / 2    

i

j j j

j j j j jii

du d u d u
u t u t u t u t u

dt dt dt

i n if n even j if m even

   = = = =

= =

                              (4.3)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 1 1
1 0 10 0 11 0 12 0 12

2

2 2 2
2 0 20 0 21 0 22 0 22

,  ,  ,...,    

,  ,  ,...,

                                                                                   

i

ii

i

ii

j

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

u

= = = =

= = = =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

0 0 0 1 0 2 02

2 1

1 1 1
1 1 10 1 11 1 12 1 1( 1)2 1

2 1

2 2 2
2 1 20 1 21 1 22 1 2( 1)2 1

,  ,  ,...,     

,  ,  ,...,    

,  ,  ,...,

         

i

j j j

j j j jii

i

ii

i

ii

du d u d u
t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

−

−−

−

−−

= = = =

   = = = =

   = = = =

( ) ( ) ( ) ( )
2 1

1 1 1

1 1 ( 1)0 1 ( 1)1 1 ( 1)2 1 ( 1)( 1)2 1

                                                                          

,  ,  ,...,     

0,1,..., ( 1) / 2    ,

i

j j j

j j j j j ii

du d u d u
u t u t u t u t u

dt dt dt

i n if n odd

−

− − −

− − − − − −−
   = = = =

= +   j 0,1,..., ( 1) / 2    oddm if m= +
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First we presume that unknown functions ( ) ( ) ( )1 2, ,..., mu t u t u t  are approximated and 

given by                                           

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2,  ,...,T T T

m mu t C t u t C t u t C t                                                      (4.4)                                                          

where 1 2, ,..., mC C C  are unknown vectors and 

11 1 21 2 1( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )n n m mnh t h t h t h t h t h t  can be any function of the independent 

variable t  and dependent variable ( ) 1,2,...,   1,2,...,ijh i m j n= =  and ( )t  is the vector 

which given in Equation (2.27). By utilising Equation (2.31) we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2
1 2

22 2
2 2 21 2

1 22 2 2

1

,  ,...,

,  ,...,

                                                                                        

T T Tm
m

T T Tm
m

n

n

dudu du
t C D t t C D t t C D t

dt dt dt

d ud u d u
t C D t t C D t t C D t

dt dt dt

d u
t

dt

  

  

  

  

( ) ( ) ( ) ( ) ( )2
1 2,  ,...,

nn
T n T n T nm

mn n

d ud u
C D t t C D t t C D t

dt dt
    

                  (4.5) 

Approximating 11 1 21 2 1( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )n n m mnh t h t h t h t h t h t , we get 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

( ) ,   ( ) ,..., ( )

( ) ,   ( ) ,..., ( )

                                                              

( ) ,  ( ) ,..., ( )

T T T

n n

T T T

n n

T T

m m m m mn

h t H t h t H t h t H t

h t H t h t H t h t H t

h t H t h t H t h t H

  

  

 

  

  

   ( )T

mn t

                                      (4.6) 

We can also approximate ( ) ( ) ( )1 2, ,...,  mk t k t k t as 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2,   ,...,T T T

m mk t K t k t K t k t K t                                                (4.7) 

where vectors 1 2, ,...,  mK K K  are given by (2.26). Substituting Equations (4.5)-(4.6) and 

(4.7) in Equation (4.1) we obtain 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

1 1 11 1 1 1

2 2 21 1 2 2

1 1

... 0

... 0

                  

... 0

T n T T T T T

n m

T n T T T T T

n m

T n T T T T T

m m m mn m m

R t C D t H t C t H t C t K t

R t C D t H t C t H t C t K t

R t C D t H t C t H t C t K t

     

     

     

= − − − − =

= − − − − =

= − − − − =

 

                                                                                                                                      (4.8) 
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We obtain  ( )2 1k M mn+ −  linear equations by computing 

( ) ( ) ( )
1

0

0,   1,..., 2 1 ,   1,2,...,k

j it R t dt j M i m = = + =                                                   (4.9) 

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
11 1

1 0 1 0 10 0 1 0 11 0 1 0 1( 1)1

1
12 2

2 0 2 0 20 0 2 0 21 0 2 0 2( 1)1

,  ,...,

,  ,...,

                                                   

n
T T T n

nn

n
T T T n

nn

du d u
u t C t u t C D t u t C D t u

dt dt

du d u
u t C t u t C D t u t C D t u

dt dt

  

  

−
−

−−

−
−

−−

= = = = = =

= = = = = =

( ) ( ) ( ) ( ) ( ) ( )
1

1

0 0 0 0 0 1 0 0 m( 1)1

                                                                      

,  ,...,
n

T T T nm m
m m m m m m nn

du d u
u t C t u t C D t u t C D t u

dt dt
  

−
−

−−
= = = = = =

                                                                                                                                         

(4.10) 

We obtain ( )2 1k M +  set of linear equations by using Equations (4.9)-(4.10). These linear 

equations can be solved for unknown coefficients of the vector C . Accordingly ( )u t  

which is given in Equation (4.1) can be computed. 

 Solving Systems of Non-Linear Differential Equations 

In this section, the LWOMM is implemented for solving systems of non-linear 

differential equations. Consider the following system with the initial conditions presented 

in (4.2) or boundary conditions presented in (4.3). 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

11 1

1 1 2
1 1 21 1 1

11 1

2 1 2
2 1 21 1 1

1

, ,..., , ,..., ,..., ,...,

, ,..., , ,..., ,..., ,...,

              

,

nn n n

m
mn n n n

nn n n

m
mn n n n

n

m
mn

d ud u d u d u
t H t u t t u t t u t t

dt dt dt dt

d ud u d u d u
t H t u t t u t t u t t

dt dt dt dt

d u
t H t u

dt

−− −

− − −

−− −

− − −

 
=  

 

 
=  

 

= ( ) ( ) ( ) ( ) ( ) ( )
11 1

1 2
21 1 1

,..., , ,..., ,..., ,...,
nn n

m
mn n n

d ud u d u
t t u t t u t t

dt dt dt

−− −

− − −

 
 
 

    (4.11) 

First we presume that unknown functions ( ) ( ) ( )1 2, ,..., mu t u t u t  are approximated and 

given by 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2,   ,...,T T T

m mu t C t u t C t u t C t                                                    (4.12) 



50 

 

where 1 2, ,..., mC C C  are unknown vectors and ( )t  is the vector which is given in 

Equation (2.27). If we use Equation (2.31), we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2
1 2

22 2
2 2 21 2

1 22 2 2

1

,  ,...,

,  ,...,

                                                                                        

T T Tm
m

T T Tm
m

n

n

dudu du
t C D t t C D t t C D t

dt dt dt

d ud u d u
t C D t t C D t t C D t

dt dt dt

d u
t

dt

  

  

  

  

( ) ( ) ( ) ( ) ( )2
1 2,  ,...,

nn
T n T n T nm

mn n

d ud u
C D t t C D t t C D t

dt dt
    

                (4.13) 

By utilising Equation (4.11) we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 1 1

1 1 1 1 2 2

1 1 1

2 2 1 1 2 2

1

1 1 2

, ,..., , ,..., ,...., ,...,

, ,..., , ,..., ,...., ,...,

                   

, ,..., ,

T n T n T n T n

m m

T n T n T n T n

m m

T n T n T

m m

C D t H t C t C D t C t C D t C t C D t

C D t H t C t C D t C t C D t C t C D t

C D t H t C t C D t C

      

      

  

− − −

− − −

−





 ( ) ( ) ( ) ( )( )1 1

2,..., ,...., ,...,n T n

m mt C D t C t C D t   − −

                                                                                                                                                                                        

                                                                                                                                    (4.14) 

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain 

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
11 1

1 0 1 0 10 0 1 0 11 0 1 0 1( 1)1

1
12 2

2 0 2 0 20 0 2 0 21 0 2 0 2( 1)1

,  ,...,

,  ,...,

                                                   

n
T T T n

nn

n
T T T n

nn

du d u
u t C t u t C D t u t C D t u

dt dt

du d u
u t C t u t C D t u t C D t u

dt dt

  

  

−
−

−−

−
−

−−

 =  =  =

 =  =  =

( ) ( ) ( ) ( ) ( ) ( )
1

1

0 0 0 0 0 1 0 0 m( 1)1

                                                                      

,  ,...,
n

T T T nm m
m m m m m m nn

du d u
u t C t u t C D t u t C D t u

dt dt
  

−
−

−−
 =  =  =

                                                                                                                                        

                                                                                                                                    (4.15) 

To obtain the solution ( ) ( ) ( )1 2, ,..., mu t u t u t  , we first compute Equation (4.14) at 

2 ( 1)k M mn+ −   points. For a better result, we utilise the first 2 ( 1)k M mn+ −  roots of 

shifted Legendre polynomials ( )
2 ( 1)k M

P t
+

. If we use these equations collectively with 

Equation (4.15), then we obtain ( )2 1k M +  non-linear equations.  These non-linear 

equations can be solved for unknown coefficients of the vector C . Accordingly  

( ) ( ) ( )1 2, ,..., mu t u t u t given in Equation (4.11) can be computed. 
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 Applications 

In this section, we present some examples we have wanted to demonstrate the 

performance of the proposed tecnique solving systems of linear and non-linear 

differential equations. It is shown that the LWOMM yield better results.  

Example 4.1 We first consider the following system of non-homogeneous differential 

equations of the linear form [51] 

( )

( )
( ) cos

( )
( )

( )
( )

t

du t
w t t

dt

dv t
w t e

dt

dw t
u t v t

dt

= −

= −

= −

                                                                                                    (4.16) 

subject to these initial conditions 

( ) ( ) ( )0 1,   0 0,   0 2u v w= = =                                                                                  (4.17) 

The exact solution of the above system is 

( ) ,   ( ) sin ,   ( ) cost tu t e v t t w t e t= = = +  

To solve the above problem, we applied the method presented in Section 4.1 with 

2,   0M k= = . Approximating solution following as 

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( ) ,    ,    

,    ,    

T T T

T T T

u t C t v t S t w t W t

du t dv t dw t
C D t S D t W D t

dt dt dt

  

  

  

  
 

Also approximating   0 ( ) cosh t t=   and ( )1

th t e=  following as 

0 0( ) ( )  Th t H t and  1 1( ) ( ) Th t H t  

where 

( )
1

0

0

( ) cosH t t t dt=    and  ( )
1

1

0

( ) tH t e t dt=   

We get 
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0 0 0

2 3 0 0

0 2 15 0

D

 
 

=  
 
 

 

If we consider (4.15) with (4.16), we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0

2 1

3

T T T

T T T

T T T

R t C D t W t H t

R t S D t W t H t

R t W D t C t S t

  

  

  

= − +

= − +

= − +

                                                                     (4.18) 

By computing 

( ) ( )
1

0

0,   1,2  1,2,3  i jt R t dt i j = = =  

We obtain six linear equations following as 

0,1 0,0

0,1 0,0

0,1 0,0 0,0

0,1 0,2

0,1 0,2

0,2 0,1 0,1

3.464101615 0.8414709848 0

3.464101615 1.718281828 0

3.464101616 0

0.1349690260 7.745966692 0

0.4879501870 7.745966692 0

7.745966698 0

c w

s w

w c s

w c

w s

w c s

− + =

− + =

− + =

− − + =

− + =

− + =

 

and by utilising initial conditions we have 

0,0 0,1 0,2

0,0 0,1 0,2

0,0 0,1 0,2

3 5 1

3 5 0

3 5 2

c c c

s s s

w w w

− + =

− + =

− + =

 

If we solve this system of linear algebraic equations, we get 

 0,0 0,1 0,2, , 1.713532543,0.4950067009,0.06432908766TC c c c = =   

 0,0 0,1 0,2, ,s 0.4549484087,0.2418932127,-0.01608943696TS s s = =   

 0,0 0,1 0,2, , 2.556224497,0.3633219442,0.03267681083TW w w w = =   

Consequently, 
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( ) ( )   ( )

( )2

1

1.713532543,0.4950067009,0.06432908766 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

( ) ( )   ( )

( )2

1

0.4549484087,0.2418932127,-0.01608943696 3 1 2

5 6 6 1

Tv t S t t

t t



 
 

= = − + 
 

− +  

 

( ) ( )   ( )

( )2

1

2.556224497,0.3633219442,0.03267681083 3 1 2

5 6 6 1

Tw t W t t

t t



 
 

= = − + 
 

− +  

 

The approximate solution and the exact solution are displayed in Table. 4.1, Table 4.2 

and Table 4.3. 

Table 4.1 Comparison between the exact solution and the approximate solution ( )u t  for 

Example 4.1 

 

t 

 

Exact Solution ( )u t  

 2,  0M k= =  

Approximate Solution  

 

Absolute Error 

0.0 1.0000000000 0.9999999996 0.4 910−  

0.1 1.105170918 1.093799476 0.011371442 

0.2 1.221402758 1.204860258 0.016542500 

0.3 1.349858808 1.333182345 0.016676463 

0.4 1.491824698 1.478765738 0.013058960 

0.5 1.648721271 1.641610436 0.007110835 

0.6 1.822118800 1.821716441 0.000402359 

0.7 2.013752707 2.019083751 0.005331044 

0.8 2.225540928 2.233712366 0.008171438 

0.9 2.459603111 2.465602287 0.005999176 

1.0 2.718281828 2.714753512 0.003528316 
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Table 4.2 Comparison between the exact solution and the approximate solution ( )v t  for 

Example 4.1 

 

t 

 

Exact Solution ( )v t  

 2,  0M k= =  

Approximate Solution  

 

Absolute Error 

0.0 0.00000000000 -0.55 910−  0.55 910−  

0.1 0.09983341665 0.1032218867 0.00338847005 

0.2 0.1986693308 0.2021265251 0.0034571943 

0.3 0.2955202067 0.2967139144 0.0011937077 

0.4 0.3894183423 0.3869840548 0.0024342875 

0.5 0.4794255386 0.4729369463 0.0064885923 

0.6 0.5646424734 0.5545725887 0.0100698847 

0.7 0.6442176872 0.6318909822 0.0123267050 

0.8 0.7173560909 0.7048921268 0.0124639641 

0.9 0.7833269096 0.7735760223 0.0097508873 

1.0 0.8414709848 0.8379426685 0.0035283163 
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Table 4.3 Comparison between the exact solution and the approximate solution ( )w t  

for Example 4.1 

 

t 

 

Exact Solution ( )w t   

 2,  0M k= =  

Approximate Solution  

 

Absolute Error 

0.0 2.000000000 2.000000000 0.000000000 

0.1 2.100175083 2.086401925 0.013773158 

0.2 2.201469336 2.181571959 0.019897377 

0.3 2.305195297 2.285510102 0.019685195 

0.4 2.412885692 2.398216352 0.014669340 

0.5 2.526303833 2.519690711 0.006613122 

0.6 2.647454415 2.649933179 0.002478764 

0.7 2.778594894 2.788943756 0.010348862 

0.8 2.922247637 2.936722440 0.014474803 

0.9 3.081213079 3.093269233 0.012056154 

1.0 3.258584134 3.258584134 0.000000000 

Example 4.2 Consider the following system of differential equations [53] 

( ) ( )
( ) ( ) 1

( )
2 ( ) ( )

du t dv t
u t v t

dt dt

dv t
u t v t

dt

+ + + =

= +

                                                                                      (4.19) 

subject to these initial conditions 

( )0 0,  (0) 1u v= =                                                                                                        (4.20) 

The exact solution of the above system is known as 

( ) 1,   ( ) 2t tu t e v t e− −= − = −  

To solve the above system, we used the method presented in Section 4.2 with 

4,   0M k= = . Approximating solution following as 

( )( ) Tu t C t=   and  ( )( ) Tv t S t=  
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( )
( ) Tdu t

C D t
dt

=  and  
( )

( )T
dv t

S D t
dt

=  

We get 

0 0 0 0 0

2 3 0 0 0 0

0 2 15 0 0 0

0 0 2 35 0 0

0 0 0 2 63 0

D

 
 
 
 

=  
 
 
 
 

 

If we consider (4.18) with (4.19), we have  

( ) ( ) ( ) ( ) ( )1 1 0T T T TR t C D t S D t C t S t   = + + + − =                                              (4.21) 

( ) ( ) ( )2( ) 2 0T T TR t S D t C t S t  = − − =                                                                 (4.22) 

Calculating Equations (4.21) and (4.22) at the first four roots of ( )5P t , i.e.  

0 1 2 3

1 1 245 14 70 1 245 14 70 1 245 14 70
,   ,   ,   

2 2 42 2 42 2 42
t t t t

− + −
= = − = − = +  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

3 5 7 3 0

3 5 7 3 1

c c c c c

s s s s s

− + − + =

− + − + =
 

If we solve this system of nonlinear algebraic equations, we get 

 -0.3719399342,-0.1812731838,0.02340226770,-0.00198837331,0.000125255710TC =  

 1.371939934,0.1812731837,-0.02340226756,0.001988373268,-0.0001252558TS =  

Consequently, 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
-0.3719399342

3 1 2
-0.1812731838

5 6 6 10.02340226770

-0.00198837331 7 20 30 12 1

0.00012525571
3 70 140 90 20 1

T

T

t

t tu t C t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  
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( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
1.371939934

3 1 2
0.1812731837

5 6 6 1-0.02340226756

0.001988373268 7 20 30 12 1

-0.0001252558
3 70 140 90 20 1

T

T

t

t tv t S t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

The approximate solution with the exact solution are displayed in Table 4.4 and Table 

4.5. 

Table 4.4 Comparison between the exact solution and the approximate solution ( )u t  for 

Example 4.2 

 

t 

 

Exact Solution  

( )u t  

2,  0M k= =  

Approximate 

Solution 

4,  0M k= =   

Approximate 

Solution 

 

Absolute Error 

0.0 0.0000000000 -0.14 910−  0.1120 910−  0.1120 910−  

0.1 -0.0951625820 -0.0941420851 -0.09635576876 0.00119318676 

0.2 -0.1812692469 -0.1807908742 -0.1835093329 0.00224008600 

0.3 -0.2591817793 -0.2599463674 -0.2623129320 0.0031311527 

0.4 -0.3296799540 -0.3316085648 -0.3335556777 0.0038757237 

0.5 -0.3934693403 -0.3957774661 -0.3979635520 0.0044942117 

0.6 -0.4511883639 -0.4524530716 -0.4561994083 0.0050110444 

0.7 -0.5034146962 -0.5016353813 -0.5088629711 0.0054482749 

0.8 -0.5506710359 -0.5433243950 -0.5564908362 0.0058198003 

0.9 -0.5934303403 -0.5775201129 -0.5995564702 0.0061261299 

1.0 -0.6321205588 -0.6042225348 -0.6384702111 0.0063496523 
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Figure 4.1 Comparison of our solutions ( ) ( ),u t v t  and the exact solution when 

2  4M and M= = for Example 4.2  

Table 4.5 Comparison between the exact solution and the approximate solution ( )v t  for 

Example 4.2 

 

t 

 

Exact Solution 

( )v t  

2,  0M k= =  

Approximate 

Solution 

 4,  0M k= =  

Approximate 

Solution 

 

Absolute Error 

0.0 1.000000000 1.000000001 1.000000001 0.1 810−  

0.1 1.095162582 1.094142086 1.096355770 0.001193188 

0.2 1.181269247 1.180790875 1.183509333 0.002240086 

0.3 1.259181779 1.259946368 1.262312933 0.003131154 

0.4 1.329679954 1.331608566 1.333555679 0.003875725 

0.5 1.393469340 1.395777467 1.397963553 0.004494213 

0.6 1.451188364 1.452453073 1.456199409 0.005011045 

0.7 1.503414696 1.501635383 1.508862972 0.005448276 

0.8 1.550671036 1.543324395 1.556490838 0.005819802 

0.9 1.593430340 1.577520114 1.599556471 0.006126131 

1.0 1.632120559 1.604222535 1.638470212 0.006349653 
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Example 4.3 Consider the following system of linear differential equations [53] 

2

2

2

2

( )
( ) 1

( )
( ) 0

d u t
v t

dt

d v t
u t

dt

+ =

+ =

                                                                                                       (4.23) 

subject to these initial conditions 

( ) ( ) ( ) ( )0 0,   0 0,  0 0,   0 0, 
du dv

u v
dt dt

= = = =                                                          (4.24) 

The exact solution of the above system is   

( ) ( ) ( ) ( )
1 1

2cos ,   4 2cos
4 4

t t t tu t e e t v t e e t− −= + − = − − −  

To solve the above linear system, we applied the method presented in Section 4.1 with 

4,   0M k= = . Approximating solution following as 

( ) ( ) ( )( ) ,   T Tu t C t v t S t = =  

( ) ( )
( ) ( )

,    T Tdu t dv t
C D t S D t

dt dt
 = =  

( ) ( )
2 2

2 2

2 2

( ) ( )
,    T Td u t d v t

C D t S D t
dt dt

 = =  

We get 

2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 02 3 0 0 0 0

4 3 15 0 0 0 0,   0 2 15 0 0 0

0 4 15 35 0 0 00 0 2 35 0 0

0 0 4 35 63 0 00 0 0 2 63 0

D D

   
   
   
   = =   
   
   

  
  

 

If we consider (4.23) with (4.24), we have  

( ) ( ) ( )

( ) ( ) ( )

2

1

2

2

1T T

T T

R t C D t S t

R t S D t C t

 

 

= + −

= +
                                                                          (4.25) 

By computing 
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( ) ( )
1

0

0,   1,2,3  1,2  i jt R t dt i j = = =  

We obtain six linear equations following as 

0,2 0,026.83281574 1 0c s+ − =  

0,2 0,026.83281574 0s c+ =  

7

0,3 0,3 0,10.1 10 91.65151397 1.000000001 0s c s−− + + =  

7

0,3 0,3 0,10.1 10 91.65151397 1.000000001 0c s c−− + + =  

7 8

0,4 0,3 0,4 0,20.1 10 0.1 10 187.8297100 0.9999999992 0s s c s− −− + + + =  

7 8

0,4 0,3 0,4 0,20.1 10 0.1 10 187.8297100 0.9999999992 0c c s c− −− + + + =  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

0,1 0,2 0,3 0,4

0,1 0,2 0,3 0,4

3 5 7 3 0

3 5 7 3 0

2 3 6 5 10 7 42 0

2 3 6 5 10 7 42 0

c c c c c

s s s s s

c c c c

s s s s

− + − + =

− + − + =

− + − =

− + − =

 

If we solve this system of linear algebraic equations, we get 

 0.1680546197,0.1456667117,0.03781985846,0.0001588513170,0.00003334417056TC =  

 -0.01481329344,-0.01455896371,-0.006263025891,-0.001589354125,-0.000201351845TS =  

Consequently, 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.1680546197

3 1 2
0.1456667117

5 6 6 10.03781985846

0.000158851317 7 20 30 12 1

0.000033344170
3 70 140 90 20 1

T

T

t

t tu t C t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  
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( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
-0.01481329344

3 1 2
-0.01455896371

5 6 6 1-0.006263025891

-0.001589354125 7 20 30 12 1

-0.000201351845
3 70 140 90 20 1

T

t

t tv t S t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

The approximate solution with the exact solution are displayed in Table. 4.6 and Table 

4.7. 

Table 4.6 Comparison between the exact solution and the approximate solution ( )u t  for 

Example 4.3 

 

t 

 

Exact Solution 

( )u t   

2,  0M k= =  

Approximate 

Solution 

 4,  0M k= =  

Approximate 

Solution 

 

Absolute Error 

0.0 0.0000000000 0.00000000000 -0.1685 910−  0.1685 910−  

0.1 0.0050000014 0.00514285717 0.00505714932 0.000057147920 

0.2 0.0200000889 0.02057142862 0.02016653121 0.00016644231 

0.3 0.0450010126 0.04628571436 0.04531976012 0.00031874752 

0.4 0.0800056890 0.08228571438 0.08052525613 0.00051956713 

0.5 0.1250217017 0.1285714286 0.1258082447 0.0007865430 

0.6 0.1800648016 0.1851428573 0.1812107570 0.0011459554 

0.7 0.2451634092 0.2520000001 0.2467916294 0.0016282202 

0.8 0.3203641184 0.3291428572 0.3226265038 0.0022623854 

0.9 0.4057382085 0.4165714287 0.4088078275 0.0030696190 

1.0 0.5013891643 0.5142857144 0.5054448535 0.0040556892 
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Table 4.7 Comparison between the exact solution and the approximate solution ( )v t  for 

Example 4.3 

 

t 

 

Exact Solution 

( )v t  

2,  0M k= =  

Approximate 

Solution 

 4,  0M k= =  

Approximate 

Solution 

 

Absolute Error 

0.0 0.0000000000 0.1 1010−  0.150 1010−  0.150 1010−  

0.1 -0.41666 510−  -0.000857142850 -0.000604747500 0.0006005809000 

0.2 -0.0000666667 -0.003428571425 -0.001510714801 0.001444048101 

0.3 -0.0003375018 -0.007714285713 -0.002867321525 0.002529819725 

0.4 -0.0010666830 -0.01371428572 -0.004925468639 0.003858785639 

0.5 -0.0026042637 -0.02142857143 -0.008037538438 0.005433274738 

0.6 -0.0054004164 -0.03085714285 -0.01265739455 0.00725697815 

0.7 -0.0100055964 -0.04200000000 -0.01934038193 0.00933478553 

0.8 -0.0170708276 -0.05485714286 -0.02874332686 0.01167249926 

0.9 -0.0273481769 -0.06942857143 -0.04162453697 0.01427636007 

1.0 -0.0416914703 -0.08571428571 -0.05884380119 0.01715233089 

Example 4.4 Consider the following system of non-linear differential equations [49] 

2

2

( )
1002 ( ) 1000 ( )

( )
( ) ( ) ( )

du t
u t v t

dt

dv t
u t v t v t

dt

= − +

= − −

                                                                                 (4.26) 

subject to these initial conditions 

( )0 1,   (0) 1u v= =                                                                                                        (4.27) 

The exact solution of the above system is  

( ) 2 ,   ( )t tu t e v t e− −= =  

To solve the above system, we implemented the method presented in Section 4.2 with 

4,   0M k= = . Approximating solution following as 
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( )( ) Tu t C t=   and  ( )( ) Tv t S t=  ( )
( ) Tdu t

C D t
dt

=   and  ( )
( ) Tdv t

S D t
dt

=  

We get 

0 0 0 0 0

2 3 0 0 0 0

0 2 15 0 0 0

0 0 2 35 0 0

0 0 0 2 63 0

D

 
 
 
 

=  
 
 
 
 

 

If we consider (4.26) with (4.27), we have  

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

2

1

2

2

( ) 1002 1000

( )

T T T

T T T T

R t C D t C t S t

R t S D t C t S t S t

  

   

= + −

= − + +

                                                (4.28) 

Calculating Equation (4.28) at the first four roots of ( )5P t , i.e.  

0 1 2 3

1 1 245 14 70 1 245 14 70 1 245 14 70
,   ,   ,   

2 2 42 2 42 2 42
t t t t

− + −
= = − = − = +  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

3 5 7 3 1

3 5 7 3 1

c c c c c

s s s s s

− + − + =

− + − + =
 

If we solve this system of nonlinear algebraic equations, we get 

 0.4286121774,-0.2341012934,0.06111143031,-0.008961478897,0.001851110478TC =  

 0.6280482694,-0.1812595585,0.02343895161,-0.001955630037,0.0001385886922TS =  

Consequently, 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.4286121774

3 1 2
-0.2341012934

5 6 6 10.06111143031

-0.008961478897 7 20 30 12 1

0.001851110478
3 70 140 90 20 1

T

T

t

t tu t C t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  
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( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.6280482694

3 1 2
-0.1812595585

5 6 6 10.02343895161

-0.001955630037 7 20 30 12 1

0.0001385886922
3 70 140 90 20 1

T

T

t

t tv t S t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

Comparison of our results and the exact solution supports that our results approaches the 

exact solution as the value of M  increases. Finally, we also present the numerical 

computations for u(t) and v(t) with the exact solution in Table 4.8 and Table 4.9. 

Table 4.8 Comparison between the exact solution and the approximate solution ( )u t  for 

Example 4.4 

 

t 

 

Exact Solution 

( )u t   

3,  0M k= =  

Approximate 

Solution 

 4,  0M k= =  

Approximate 

Solution 

 

Absolute Error 

0.0 1.0000000000 1.000000000 1.000000000 0.0000000000 

0.1 0.8187307531 0.8165316851 0.8164539898 0.0022767633 

0.2 0.6703200460 0.6660452088 0.6665620472 0.0037579988 

0.3 
0.5488116361 

0.5437106133 0.5442136317 0.0045980044 

0.4 0.4493289641 
0.4446979406 

0.4442311630 0.0050978011 

0.5 0.3678794412 0.3641772334 0.3623700203 0.0055094209 

0.6 0.3011942119 0.2973185321 0.2953185417 0.0058756702 

0.7 0.2465969639 0.2392918810 0.2406980273 0.0058989366 

0.8 0.2018965180 0.1852673211 0.1970627334 0.0048337846 

0.9 0.1652988882 0.1304148956 0.1638998799 0.0013990083 

1.0 0.1353352832 0.0699046455               0.1416296414 -0.0062943582 
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Figure 4.2 Comparison of our solutions ( ) ( ),u t v t  and the exact solution when 

2,  3  4M M and M= = = for Example 4.4 

Table 4.9 Comparison between the exact solution and the approximate solution v(t) for 

Example 4.4 

 

t 

 

Exact Solution 

( )v t  

3,  0M k= =  

Approximate 

Solution 

 4,  0M k= =  

Approximate 

Solution 

 

Absolute Error 

0.0 1.0000000000 1.000000000 1.000000000 0.0000000000 

0.1 0.9048374180 0.9037386313 0.9036350375 0.0012023805 

0.2 0.8187307531 0.8165106052 0.8164828594 0.0022478937 

0.3 0.7408182207 0.7375975458 0.7376781019 0.0031401188 

0.4 0.6703200460 0.6662810770 0.6664252500 0.0038947960 

0.5 0.6065306597 0.6018428229 0.6019986373 0.0045320224 

0.6 0.5488116361 0.5435644074 0.5437424462 0.0050691899 

0.7 0.4965853038 0.4907274546 0.4910707077 0.0055145961 

0.8 0.4493289641 0.4426135883 0.4434673016 0.0058616625 

0.9 0.4065696597 0.3985044327 0.4004859565 0.0060837032 

1.0 0.3678794412 0.3576816116 0.3617502495 0.0061291917                         
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Example 4.5 Consider the following Brusselator system presented in [47] and [48] 

( )

( )

2

2

2 ( ) ( ) v(t)

( ) ( ) v(t)

du t
u t u t

dt

dv t
u t u t

dt

= − +

= −

                                                                                        (4.29) 

subject to these initial conditions 

(0) 1,   (0) 1u v= =                                                                                                        (4.30) 

The approximate solution of this system when 1 =  was presented by Chang and Isah 

using Legendre wavelet operational matrix of fractional derivative through wavelet-

polynomial transformation (LWPT) in [48] and by Bota and Caruntu using the 

polynomial least squares method (PLSM) in [47]. These numerical solutions of this 

system are given by  

( )

( )

2 3

2 3

1 1.0120 0.1211 0.1517 ,   

1 0.0096 0.4069 0.2461

LWPT

LWPT

u t t t t

v t t t t

= − + +

= + + −

( )

( )

2 3

2 3

1 1.02827 0.201028 0.0750974 ,   

1 0.0271107 0.334087 180088

PLSM

PLSM

u t t t t

v t t t t

= − + +

= + + −
 

To solve the above Brusselator system, we implemented the method presented in Section 

4.2 with 4,   0M k= = . Approximating solution following as 

( )( ) Tu t C t , ( )( ) Tv t S t  and  ( )
( ) Tdu t

C D t
dt

 ,  ( )
( ) Tdv t

S D t
dt

  

We get 

0 0 0 0 0

2 3 0 0 0 0

0 2 15 0 0 0

0 0 2 35 0 0

0 0 0 2 63 0

D

 
 
 
 

=  
 
 
 
 

 

If we consider (4.29) with (4.30), we have  

( ) ( ) ( )( ) ( )( )
2

2T T T TC D t C t C t S t   + −                                                                  (4.31) 

( ) ( ) ( )( ) ( )( )
2

T T T TS D t C t C t S t   − +                                                                 (4.32) 
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Calculating Equations (4.31) and (4.32) at the first four roots of ( )5P t , i.e.  

0 1 2 3

1 1 245 14 70 1 245 14 70 1 245 14 70
,   ,   ,   

2 2 42 2 42 2 42
t t t t

− + −
= = − = − = +  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

3 5 7 3 1

3 5 7 3 1

c c c c c

s s s s s

− + − + =

− + − + =
 

If we solve this system of nonlinear algebraic equations, we get 

 0.5745339305,-0.2192448444,0.02298952682,0.001262676590,-0.0007808523319TC =  

 1.069834705,0.05308541875,0.005100236422,-0.003352119819,0.0006128621024TS =  

Consequently, 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.5745339305

3 1 2
-0.2192448444

5 6 6 10.02298952682

0.001262676590 7 20 30 12 1

-0.0007808523319
3 70 140 90 20 1

T

T

t

t tu t C t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
1.069834705

3 1 2
0.05308541875

5 6 6 10.005100236422

-0.003352119819 7 20 30 12 1

0.0006128621024
3 70 140 90 20 1

T

T

t

t tv t S t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

Comparison of our results and these approximate solutions introduced in [47] and [48] 

are also displayed in Figure 4.3. The figures support that our results approaches the 

approximate solutions presented in [47] and [48]. Finally, we also present the numerical 

computations for ( )u t  and ( )v t  in Table 4.10 and Table 4.11. 
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Table 4.10 Comparison between our approximate solution LOWMMu , LWPTu and PLSMu   for 

Example 4.5. 

 

t 

 

LWOMMu  

 

LWPTu  

 

PLSMu  

0.0 1.000000000 1.0000000 1.0000000000 

0.1 0.9022538826 0.9001627 0.8992583774 

0.2 0.8065945278 0.8036576 0.8029878992 

0.3 0.7148002463 0.7113949 0.7116391498 

0.4 0.6282557996 0.6242848 0.6256627136 

0.5 0.5479523993 0.5432375 0.5455091750 

0.6 0.4744877078 0.4691632 0.4716291184 

0.7 0.4080658376 0.4029721 0.4044731282 

0.8 0.3484973516 0.3455744 0.3444917888 

0.9 0.2951992633 0.2978803 0.2921356846 

1.0 0.2471950367 0.2608000 0.2478554000 

 

Figure 4.3 Comparison of our solutions LOWMMu , LOWMMv  with the approximate solution 

LPSTu , LPSTv  and the approximate solution PLSMu , PLSMv  for Example 4.5. 
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Table 4.11 Comparison between our approximate solution LOWMMv , LWPTv and PLSMv   for 

Example 4.5. 

 

t 

 

LWOMMv  

 

LWPTv  

 

PLSMv  

0.0 0.9999999996 1.0000000 1.000000000 

0.1 1.001804569 1.0047829 1.005871852 

0.2 1.011179960 1.0162272 1.017344916 

0.3 1.025980819 1.0328563 1.033338664 

0.4 1.044370674 1.0531936 1.052772568 

0.5 1.064821937 1.0757625 1.074566100 

0.6 1.086115901 1.0990864 1.097638732 

0.7 1.107342743 1.1216887 1.120909936 

0.8 1.127901522 1.1420928 1.143299184 

0.9 1.147500177 1.1588221 1.163725948 

1.0 1.166155534                  1.1704000 1.181109700 
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CHAPTER 5 

THE APPLICATION OF THE OPERATIONAL MATRIX OF 

FRACTIONAL DERIVATIVE TO FRACTIONAL ORDER 

DIFFERENTIAL EQUATIONS 

There are a lot of tecniques that have been studied by many researchers to solve FDEs 

numerically. Some related applications of FDEs can be found in [18-37]. 

 Solving Linear Fractional Differential Equations  

In this section, we apply the Legendre wavelet operational matrix of fractional derivative 

for solving linear FDEs. Consider the following equation 

( ) ( ) ( )0 1

0 1( ) ... ( ) ( ) ( ) ( )k

k kD u t h t D u t h t D u t h t u t g t
  −

−= + + + +                                    (5.1)               

with these initial conditions    

( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 12 1
,  ,  ,...,

n

nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =                                           (5.2) 

where 0 1( ), ( ),..., ( )kh t h t h t  can be any function of the independent variable t  and 

dependent variable  ( 0,1,..., )ih i k=  and 1,   n n  + 0 1 10 ... k   −      and 

D  indicates the Caputo fractional derivative of order  . 

First approximating ( )u t , ( )g t  and 0 1( ), ( ),..., ( )kh t h t h t  by the Legendre wavelets, then 

we obtain 

( ) ( )
2 1

, ,

0 0

k M
T

n m n m

n m

u t c C t 
−

= =

 =                                                                                    (5.3) 

( )
2 1

, ,

0 0

( )

k M
T

n m n m

n m

g t s S t 
−

= =

 =                                                                                       (5.4) 
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( )

( )

2 1

0 0 , , 0

0 0

2 1

, ,

0 0

( )

( )

k

k

M
T

n m n m

n m

M
T

k k n m n m k

n m

h t h H t

h t h H t

 

 

−

= =

−

= =

 =

 =





                                                                                 (5.5) 

where S  and ( ) 0,1,...,iH i k=  are known vector but C  is an unknown vector and 

( )t  is the vector given in Equation (2.27). If we utilise Equations (2.34) and (5.3), then 

we obtain 

( ) ( ) ( ) ( )T TD u t C D t C D t
                                                                                (5.6)          

( ) ( ) ( )( )i i iT TD u t C D t C D t
     ,  0,..., ( 1)i k= −                                                  (5.7)         

Substituting Equations (5.3)-(5.4) and (5.5) in Equation (5.1) the residual ( )R t can be 

expressed: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )( )

0 1

0 1

1

...

           ( )

k

k

T T T T T

k

T T T T

k k

R t C D t H t C D t H t C D t

H t C D t H t S t

 



    

   

−

−

+

 − − −

− −
    (5.8) 

We get  ( )2 1k M n+ −  linear equations by employing 

( ) ( ) ( ) ( )
1

0

, ( ) 0,   r 0,..., 2 1k

r rR t t t R t dt M n = = = + −                                         (5.9) 

If we substitute Equation (5.3) in Equation (5.2) then we have 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

1

2
2

22

1
( 1)

11

0 0

0 0

0 0

0 0

T

T

T

n
T n

nn

u C u

du
C D u

dt

d u
C D u

dt

d u
C D u

dt








−

−

−−

 =

 =

 =

 =

                                                                                 (5.10)                                    

( )2 1k M +  set of linear equations are obtained Equations (5.9) and (5.10). We can solve 

these linear equations for unknown coefficients of the vector C . Consequently, ( )u t  

presented in Equation (5.1) can be computed. 
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 Solving Non-Linear Fractional Differential Equations  

In this section, we apply Legendre wavelet operational matrix of fractional derivative for 

solving non-linear FDEs. Consider the following equation 

( ) ( ) ( ) ( )( )1, , ,..., kD u t H t u t D u t D u t
 =                                                                 (5.11) 

with these initial conditions 

( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 12 1
,  ,  ,...,

n

nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =                                         (5.12) 

where 1 21,   0 ... kn n      +       and D  indicates the Caputo fractional 

derivative of order  . 

First approximating ( ) ( ),  u t D u t
 and for 1, 2,...,i k=  ( )iD u t


 by the Legendre 

wavelets as Equations (5.3), (5.6) and (5.7) respectively and substituting these equations 

in Equation (5.11), then we obtain 

( ) ( ) ( ) ( ) ( ) ( )( )1( )
, , ,..., kT T T TC D t H t C t C D t C D t

                                           (5.13) 

Also, if we substitute Equation (5.3) in Equation (5.122) then we have 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

1

2
2

22

1
( 1)

11

0 0

0 0

0 0

0 0

T

T

T

n
T n

nn

u C u

du
C D u

dt

d u
C D u

dt

d u
C D u

dt








−

−

−−

 =

 =

 =

 =

                                                                                 (5.14) 

First collocating Equation (5.13) at 2 ( 1)k M n+ −   points, then we can obtain the solution 

( )u t . We should use the first 2 ( 1)k M n+ −  roots of shifted Legendre polynomials 

( )
2 ( 1)k M

P t
+

 to get a better result. Utilising these equations together with Equation (5.14), 

then we have ( )2 1k M +  non-linear equations. These non-linear equations can be solved 

for unknown coefficients of the vector C . Consequently, ( )u t  presented in Equation 

(5.11) can be computed. 
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 Applications 

In this section, we solve five linear and non-linear fractional differential equations by 

using LWOMM. 

Example 5.1 We first consider the following FDE of the linear form [32] 

5 3

2 2
1

4(t 1) D ( ) 4D ( ) ( )
1

u t u t u t t
t

+ + + = +
+

                                                    (5.15) 

subject to  

( ) ( )0 ,   0 ,   (1) 2
2

du
u u

dt


 = = =                                                                 (5.16) 

The exact solution of above system is  ( ) ( )1u t t= +  

We implemented the method illustrated in Section 5.1 with 3M = , 0k = . 

Approximating solution following as 

( )( ) Tu t C t ,  ( ) ( )TDu t C D t , ( ) ( )
33

22 TD u t C D t
 
 
  , ( ) ( )

55

22 TD u t C D t
 
 
   

Also, approximating 0 1

1
( ) 1,    ( )

1
h t t h t

t
= + =

+
 and ( )g t t = +  following as 

( )0 0 1 1( ) ,    ( ) ( )T Th t H t h t H t     and  ( ) ( )Tg t G t  

where ( ) ( )
1 1

0 1

0 0

1
( ) ( 1) ,   ( )

1
H t t t dt H t t dt

t
 = + =

+
    and ( ) ( )

1

0

( )G t t t dt = +  

We have  

3

2

0 0 0 0

0 0 0 0 0 0 0 0

2 3 0 0 0 16 5 16 5 3 16 16 7 5
,   ,  

0 2 15 0 0 5 7 105

16 7 80 7 3 16 7 5 800 0 2 35 0

7 3 11

D D
   

   

 
 
 

 
  
  
  

= = −  
  
   −   − 
 
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5

2

0 0 0 0

0 0 0 0

0 0 0 0

160 7 32 7 3 32 7 5 32

7 3

D

   

 
 
 

 
 
 
 =
 
 

− 
 

 

If we consider (5.15) with (5.16), we have  

( )( ) ( ) ( ) ( )( ) ( )( )
5 3

2 2

0 1( ) 4 4 ( )T T T T T TR t H t C D t C D t H t C t G t     
   
   
   

 
= + + − 

 
 

                        

By computing 

( ) ( )
1

1

0

0t R t dt =  

We have 

0,0 0,1 0,2 0,3-2.439120518 0.8284271247 0.08206204062 80.75114673 1432.995536 0c c c c+ − + + =  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3

0,1 0,2 0,3

0,0 0,1 0,2 0,3

3 5 7

2 3 6 5 10 7
2

3 5 7 2

c c c c

c c c

c c c c







− + − =

− + =

+ + + =

 

If we solve this system of linear algebraic equations, we get 

 

0,0 0,1 0,2 0,3, , ,

    2.161308708,0.2103901234,-0.00973478719,0.00101325788

TC c c c c =  

=
 

Consequently, 

( ) ( )
( )

( )

( )

2

3 2

1
2.161308708

3 1 20.2103901234

5 6 6 1-0.00973478719

0.00101325788 7 20 30 12 1

T

T
t

u t C t
t t

t t t



 
   
  − + 
 = =  

− +   
     − + −  

 

The approximate solution with the exact solution are displayed in Table 5.1. 
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Table 5.1 Comparison between the exact solution and the approximate solution for 

Example 5.1 

 

t  

 

Exact Solution ( )u t  

 3,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 1.772455923 1.772453851 0.2072 510−  

0.1 1.858967455 1.859556019 0.000588564 

0.2 1.941628183 1.942759272 0.001131089 

0.3 2.020910686 2.022385308 0.001474622 

0.4 2.097198131 2.098755828 0.001557697 

0.5 2.170806302 2.172192531 0.001386229 

0.6 2.241999108 2.243017118 0.001018010 

0.7 2.310999784 2.311551286 0.000551502 

0.8 2.377999159 2.378116734 0.000117575 

0.9 2.443161886 2.443035165 0.000126721 

1.0 2.506631205 2.506628274 0.2931 510−  

Example 5.2 Consider the following fractional Bagley-Torvik differential equation of the 

linear form with the initial conditions [18] 

( )2 3

2
2

( ) ( ) 1
d u t

D u t u t t
dt

+ + = +                                                                                       (5.17) 

subject to 

( ) ( )0 0,  0 1
du

u
dt

= =                                                                                                   (5.18) 

The exact solution of above system is   ( ) 1u t t= + .  

We implemented the method illustrated in Section 5.1 to the above problem with 2M =

, 0k = . Approximating solution following as 

( )( ) Tu t C t ,  ( )
( ) Tdu t

C D t
dt

 , 
( )

( )
2

2

2

T
d u t

C D t
dt

 , ( ) ( )
33

22 TD u t C D t
 
 
   
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Also, approximating ( ) 1g t t= +  following as  ( )( ) Tg t G t  

We have  

2

0 0 0 0 0 0

2 3 0 0 ,    0 0 0

0 2 15 0 4 3 15 0 0

D D

   
   

= =   
   

  

, 

3

2

0 0 0

0 0 0

16 5 16 3 5 16

5 7

D

  

 
 
 

 
 
 
 =
 
 

− 
 

 

If we consider (5.17) with (5.18), we have  

( ) ( ) ( ) ( ) ( )
3

2 2T T T TR t C D t C D t C t G t   
 
 
 = + + −                         

By computing 

( ) ( )
1

1

0

0t R t dt =  

we have 

0,2 0,047.01787591 -1.500000000  0c c+ =  

and by utilising initial conditions we have 

0,0 0,1 0,2

0,1 0,2

3 5 1

2 3 6 5 1

c c c

c c

− + =

− =
 

If we solve this system of linear algebraic equations, we get 

10

0,0 0,1 0,2, , 1.499999999, 0.2886751345, 0.2 10TC c c c   = =     

Consequently, 

( ) ( ) ( )

( )

10

2

1

1.499999999, 0.2886751345, 0.2 10 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

 = = − +  
 

− +  

 

The approximate solution with the exact solution are displayed in Table 5.2. 
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Table 5.2 Comparison between the exact solution and the approximate solution for 

Example 5.2 

 

t 

 

Exact Solution ( )u t  

 2,  0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 1.0000000000 0.999999999 0.1 810−  

0.1 1.1000000000 1.099999999 0.1 810−  

0.2 1.2000000000 1.199999999 0.1 810−  

0.3 1.3000000000 1.299999999 0.1 810−  

0.4 1.4000000000 1.399999999 0.1 810−  

0.5 1.5000000000 1.499999999 0.1 810−  

0.6 1.6000000000 1.599999999 0.1 810−  

0.7 1.7000000000 1.699999999 0.1 810−  

0.8 1.8000000000 1.799999999 0.1 810−  

0.9 1.9000000000 1.899999999 0.1 810−  

1.0 2.0000000000 1.999999999 0.1 810−  

Example 5.3 Consider the following FDE of the non-linear form [33] 

5

3 2 42( ) ( ) ( )D u t D u t u t t+ + =                                                                                       (5.19) 

subject to these initial conditions 

( ) ( ) ( )
2

2
0 0,   0 0,   0 =2, 

du d u
u

dt dt
= =                                                                           (5.20) 

The exact solution of above system is  ( ) 2u t t=  

We implemented the method illustrated in Section 5.2 with 3M = , 0k = . 

Approximating solution following as 

( ) ( )
( )

( ) ,    T Tdu t
u t C t C D t

dt
 = =  

( ) ( )
2 3

2 3

2 3

( ) ( )
,    T Td u t d u t

C D t C D t
dt dt

 = =   ( ) ( )
55

22 TD u t C D t
 
 
 =  
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Also, approximating 
4( )g t t=  following as  ( )( ) Tg t G t=  

We have  

0 0 0 0

2 3 0 0 0
,  

0 2 15 0 0

0 0 2 35 0

D

 
 
 

=  
 
 
 

2

0 0 0 0

0 0 0 0
 

4 3 15 0 0 0

0 4 15 35 0 0

D

 
 
 

=
 
 
 
 

 

3

0 0 0 0

0 0 0 0
,   

0 0 0 0

8 3 15 35 0 0 0

D

 
 
 =
 
 
 
 

5

2

0 0 0 0

0 0 0 0

0 0 0 0 

160 7 32 7 3 32 7 5 32

7 3

D

   

 
 
 

 
 
 
 =
 
 

− 
 

 

If we consider (5.19) with (5.20), we have  

( ) ( ) ( )( ) ( )
5

2
3 2( ) T T T TR t C D t C D t C t G t   

 
 
 = + + −                                            (5.21) 

Calculating Equation (5.21) at the first root of ( )4P t , i.e.  0

1 525 70 30

2 70
t

−
= −  

and by utilising initial conditions we have 

0,0 0,1 0,2 0,3

0,1 0,2 0,3

0,2 0,3

3 5 7 0

2 3 6 5 10 7 0

12 5 60 7 2

c c c c

c c c

c c

− + − =

− + =

− =

 

If we solve this system of non-linear algebraic equations, we get 

0,0 0,1 0,2 0,3

12

, , ,

    0.3333333334, 0.2886751345, 0.07453559922, -0.3178931093 10

TC c c c c

−

 =  

 =  

 

Consequently, 

( ) ( )
( )

( )

( )

2

12
3 2

1
0.3333333334

3 1 20.2886751345

5 6 6 10.07453559922

-0.3178931093 10 7 20 30 12 1

T

T
t

u t C t
t t

t t t



−

 
   
  − + 
 = =  

− +   
     − + −  
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The approximate solution with the exact solution are displayed in Table 5.3. 

Table 5.3 Comparison between the exact solution and the approximate solution for 

Example 5.3 

 

t  

 

Exact Solution (t)u  

3,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.00 0.8410661107 1210−  0.8410661107 1210−  

0.1 0.01 0.01000000006 0.6 1010−  

0.2 0.04 0.04000000011 0.11 910−  

0.3 0.09 0.09000000014 0.14 910−  

0.4 0.16 0.16000000020 0.2 910−  

0.5 0.25 0.25000000020 0.2 910−  

0.6 0.36 0.36000000010 0.1 910−  

0.7 0.49 0.49000000010 0.1 910−  

0.8 0.64 0.64000000010 0.1 910−  

0.9 0.81 0.81000000000 0 

1.0 1.00 0.99999999999 0.1 910−  

Example 5.4 Consider the following FDE of the non-linear form with the initial 

conditions 

0.7
1.3 2 420

( ) ( )
7 (0.7)

t
D u t u t t+ = +


                                                                                 (5.17) 

subject to  

( )(0) 0,   0 0
du

u
dt

= =                                                                                                   (5.18) 

The exact solution of the above system is  ( ) 2u t t=  

To solve the above problem, we implemented the method presented in Section 5.2 with 

2,   0M k= = . Approximating solution following as 

( )( ) Tu t C t , ( ) ( )TDu t C D t , ( ) ( ) ( )1.31.3 TD u t C D t  
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Also approximating  
0.7

420
( )

7 (0.7)

t
g t t= +


 following as  ( ) ( )  Tg t G t  

We get 

( )1.3

0 0 0 0 0 0

2 3 0 0 ,   0 0 0

17.37179094 7.800806362 0.81655116550 2 15 0

D D

   
   

= =   
   −  

 

If we consider (5.17) with (5.18), we have  

( ) ( ) ( )( ) ( )
21.3

( ) T T TR t C D t C t G t  = + −                                                                 (5.19) 

Calculating Equation (5.19) at the first root of ( )3P t , i.e.  0

1 15

2 10
t = −  

and by utilising the boundary conditions we have 

0,0 0,1 0,2

0,1 0,2

3 5 0

2 3 6 5 0

c c c

c c

− + =

− =
 

If we solve this system of nonlinear algebraic equations, we get 

 0,0 0,1 0,2, , 0.3364347192,0.2913610134,0.07522909016TC c c c = =   

Consequently, 

( ) ( )   ( )

( )2

1

0.3364347192,0.2913610134,0.07522909016 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

The approximate solution and the exact solution are shown in Table 5.4. 
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Table 5.4 Comparison between the exact solution and the approximate solution for 

Example 5.4 

 

t  

 

Exact Solution ( )u t  

 2,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.00 -0.1 910−  0.1 910−  

0.1 0.01 0.01009304147 0.00009304147 

0.2 0.04 0.04037216618 0.00037216618 

0.3 0.09 0.09083737403 0.00083737403 

0.4 0.16 0.16148866500 0.00148866500 

0.5 0.25 0.25232603910 0.00232603910 

0.6 0.36 0.36334949640 0.00334949640 

0.7 0.49 0.49455903680 0.00455903680 

0.8 0.64 0.64595466040 0.00595466040 

0.9 0.81 0.81753636710 0.00753636710 

1.0 1.00 1.00930415700 0.00930415700 

Example 5.5 Consider the following FDE of the linear form [55] 

2 1/2 2 3/28
( ) ( ) ( ) 2

3
D u t D u t u t t t


+ + = + +                                                                 (5.20) 

subject to these boundary conditions 

( ) ( )0 0,    1 1u u= =                                                                                                     (5.21) 

The exact solution of the above system is  ( ) 2u t t=  

We implemented the method illustrated in Section 5.1 to the above problem with 2M =

, 0k = . Approximating solution following as 

( )( ) Tu t C t ,  
( )

( )
2

2

2

T
d u t

C D t
dt

 ,  ( ) ( )
11

22 TD u t C D t
 
 
   

Also, approximating 2 3/28
( ) 2

3
g t t t


= + +  following as  ( )( ) Tg t G t=  
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where  

( )
1

2 3/2

0

8
2

3
G t t t dt



 
= + + 

 
  

We have  

2

0 0 0 0 0 0

2 3 0 0 ,    0 0 0

0 2 15 0 4 3 15 0 0

D D

   
   

= =   
   

  

1

2

0 0 0

8 3 8 8 3 5

3 5 105

8 5 8 3 5 8

5 7 3

D
  

  

 
 
 

 
 
 
 

= − 
 
 
 − 
 

 

If we consider (5.20) with (5.21), we have  

( ) ( ) ( ) ( ) ( )
1

2 2T T T TR t C D t C D t C t G t   
 
 
 = + + −                         

By computing 

( ) ( )
1

1

0

0t R t dt =  

we have 

0,2 0,1 0,024.81430971 2.605880063 -2.935135555   0c c c+ + =  

and by utilising boundary conditions we have 

0,0 0,1 0,2

0,0 0,1 0,2

3 5 0

3 5 1

c c c

c c c

− + =

+ + =
 

If we solve this system of linear algebraic equations, we get 

 0,0 0,1 0,2, , 0.3333333332, 0.2886751345, 0.0745355993TC c c c = =   

Consequently, 
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( ) ( )   ( )

( )2

1

0.3333333332, 0.2886751345, 0.0745355993 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

The approximate solution with the exact solution are displayed in Table 5.5. 

Table 5.5 Comparison between the exact solution and the approximate solution for 

Example 5.5 

 

t 

 

Exact Solution ( )u t  

 2,  0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 0.00 -0.1 910−  0.1 910−  

0.1 0.01 0.0099999989 0.11 910−  

0.2 0.04 0.0399999988 0.12 910−  

0.3 0.09 0.0899999987 0.13 910−  

0.4 0.16 0.1599999999 0.1 910−  

0.5 0.25 0.2499999998 0.2 910−  

0.6 0.36 0.3599999998 0.2 910−  

0.7 0.49 0.4899999998 0.2 910−  

0.8 0.64 0.6399999998 0.2 910−  

0.9 0.81 0.8099999998 0.2 910−  

1.0 1.00 0.9999999998 0.2 910−  

Example 5.6 Consider the following FDE of the non-linear form with the boundary 

conditions [31] 

( )
( )

22 6 6 1 1

25 5 6 6
2

4 11 5 ( ) 1
(t) 2

5 9 6 10

d u t du t
t D u t t D u t

dt dt

     
+ +  − = +     

     
                          (5.22) 

subject to  

( )(0) 1,    1 2u u= =                                                                                                     (5.23) 

The exact solution of the previous system is  ( ) 21u t t= +  
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To solve the above problem, we implemented the method presented in Section 5.2 with 

2,   0M k= = . Approximating solution following as 

( )( ) Tu t C t ,  ( ) ( )
2

2

2

( ) ( )
,    T Tdu t d u t

C D t C D t
dt dt

    

( ) ( ) ( ) ( )
1 61 6

6 56 5,    T TD u t C D t D u t C D t 
   
   
      

Approximating 

6 6 1

25 5 6
1 2

4 11 5 1
( ) ,    ( ) ,    ( ) 2

5 9 6 10
f t t D f t t g t t

   
=  =  = +   

   
  following as 

( ) ( )1 1 2 2( ) ,    ( ) ,    ( ) ( )  T T Tf t F t f t F t g t G t      

where 

( ) ( ) ( )
1 1 16 6 1

25 5 6
1 1

0 0 0

4 11 5 1
( ) ,    ( ) ,    ( ) 2

5 9 6 10
F t t D t dt F t t t dt G t t t dt  

     
=  =  = +     

     
    

We get 

0 0 0

2 3 0 0

0 2 15 0

D

 
 

=  
 
 

 

1

6

0 0 0

2.008717540 1.023294363 -0.05743771053

-2.288145774 0.5858729181 1.235012279

D

 
 
 

 
 

=  
 
 

 

6

5

0 0 0

0 0 0

16.00534636 7.920592311 -0.5381810900

D

 
 
 

 
 

=  
 
 

 

If we consider (5.22) with (5.23), we have  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
6 1

2
2 5 6

1 2( ) T T T T T T TR t C D t F t C D t F t C D t C D t G t      
   
   
   

   
= + + − −   

   
   

(5.24) 

Calculating Equation (5.24) at the first root of ( )3P t , i.e.   0

1 15

2 10
t = −  

and by utilising the boundary conditions we have 



85 

 

0,0 0,1 0,2

0,0 0,1 0,2

3 5 1

3 5 2

c c c

c c c

− + =

+ + =
 

If we solve this system of nonlinear algebraic equations, we get 

 0,0 0,1 0,2, , 1.333325434, 0.2886751345, 0.07453913186TC c c c = =   

Consequently, 

( ) ( )   ( )

( )2

1

1.333325434, 0.2886751345, 0.07453913186 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

The approximate solution with the exact solution are shown in Table 5.6. 

Table 5.6 Comparison between the exact solution and the numerical solution for 

Example 5.6 

 

t  

 

Exact Solution ( )u t  

 2,   0M k= =  

Approximate Solution 

 

Absolute Error 

0.0 1.00 0.9999999998 0.2 910−  

0.1 1.01 1.009995734 0.4266 510−  

0.2 1.04 1.039992417 0.7583 510−  

0.3 1.09 1.089990047 0.9953 510−  

0.4 1.16 1.159988625 0.000011375 

0.5 1.25 1.249988151 0.000011849 

0.6 1.36 1.359988625 0.000011375 

0.7 1.49 1.489990047 0.9953 510−  

0.8 1.64 1.639992416 0.7584 510−  

0.9 1.81 1.809995734 0.4266 510−  

1.0 2.00 2.000000000 0.000000000 
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CHAPTER 6 

THE APPLICATION OF THE OPERATIONAL MATRIX OF 

FRACTIONAL DERIVATIVE TO SYSTEMS OF FRACTIONAL 

DIFFERENTIAL EQUATIONS 

There are a lot of tecniques that have been studied by many researchers to solve systems 

of FDEs numerically. Some related applications of such systems can be found in [38-50]. 

 Solving Systems of Fractional Differential Equations  

In this section, the LWOMM is implemented to obtain the numerical solution of the 

system of FDEs. Consider the following system 

1

2

1 1 1 2

2 2 1 2

1 2

( ) ( , , ,..., ),

( ) ( , , ,..., ),

                   

( ) ( , , ,..., )n

m

m

m m m

D u t U t u u u

D u t U t u u u

D u t U t u u u







=

=

=

                                                                                      (6.1)
 

where iU ’s are linear/nonlinear functions of 1 2, , ,..., ,mt u u u  iD
  is the derivative of iu  

with order of i  in the sense of Caputo and 1 iN N−   , subjected to the initial 

conditions:
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1

1 1 1
1 0 10 0 11 0 12 0 1( 1)2 1

2 1

2 2 2
2 0 20 0 21 0 22 0 2( 1)2 1

,  ,  ,...,

,  ,  ,...,

                                                                         

n

nn

n

nn

du d u d u
u t u t u t u t u

dt dt dt

du d u d u
u t u t u t u t u

dt dt dt

−

−−

−

−−

= = = =

= = = =

( ) ( ) ( ) ( )
2 1

0 0 0 1 0 2 0 m( 1)2 1

            

,  ,  ,...,
n

m m m
m m m m nn

du d u d u
u t u t u t u t u

dt dt dt

−

−−
= = = =

                       (6.2) 
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First of all, approximating  ( ) ( )1 2( ), ,..., mu t u t u t  and ( ) ( ) ( )1 2

1 2, ,..., n

nD u t D u t D u t
 

, 

then we obtain  

( ) ( )

( ) ( )

( ) ( )

2 1

1 1 , , 1

0 0

2 1

2 2 , , 2

0 0

2 1

, ,

0 0

                        

k

k

k

M
T

n m n m

n m

M
T

n m n m

n m

M
T

m nn m n m m

n m

u t c C t

u t c C t

u t c C t

 

 

 

−

= =

−

= =

−

= =

 =

 =

 =







                                                                              (6.3) 

where ,   1,2,...,iC i m=  are unknown vectors and ( )t  is the vector introduced in (2.27). 

If we utilise Equation (2.34) then we have  

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

( )

1 1

( )

2 2

( )

               

n n

T

T

T

m m

D u t C D t

D u t C D t

D u t C D t

 

 

 













                                                                                             (6.4)

 

Substituting Equations (6.3)-(6.4) in Equation (6.1), then we obtain

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2

1 1 1 1 2

2 2 2 1 2

1 2

( ) ( , , ,..., )

( ) ( , , ,..., )

                                            

( ) ( , , ,..., )n

T T T T

m

T T T T

m

T T T T

m m m m

R t C D t U t C t C t C t

R t C D t U t C t C t C t

R t C D t U t C t C t C t







   

   

   

= −

= −

= −

                                      (6.5) 

If iU ’s are linear functions of 1 2, , ,..., ,mt u u u  then we produce ( )2 1k M mn+ −  linear 

equations by implementing 

( ) ( ) ( )
1

0

0,   1,..., 2 1 ,   1,2,...,k

j it R t dt j M mn i m = = + − =                                         (6.6) 

Also by substituting initial conditions (6.2) in Equation (6.4), then we obtain 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
11 1

1 0 1 0 10 0 1 0 11 0 1 0 1( 1)1

1
12 2

2 0 2 0 20 0 2 0 21 0 2 0 2( 1)1

,  ,...,

,  ,...,

                                                   

n
T T T n

nn

n
T T T n

nn

du d u
u t C t u t C D t u t C D t u

dt dt

du d u
u t C t u t C D t u t C D t u

dt dt

  

  

−
−

−−

−
−

−−

 =  =  =

 =  =  =

( ) ( ) ( ) ( ) ( ) ( )
1

1

0 0 0 0 0 1 0 0 m( 1)1

                                                                      

,  ,...,
n

T T T nm m
m m m m m m nn

du d u
u t C t u t C D t u t C D t u

dt dt
  

−
−

−−
 =  =  =

                                   

                                                                                                                                      (6.7) 

A ( )2 1k M +  set of linear equations was generated by combining Equations (6.6)-(6.7) . 

Solution of these linear equations can be obtained for unknown coefficients of the vector 

C . Consequently ( ) ( ) ( )1 2, ,..., mu t u t u t  introduced in Equation (6.1) can be computed. 

If iU ’s are non-linear functions of 1 2, , ,..., ,mt u u u first computing 1 2( ), ( ),..., ( )mR t R t R t  at 

2 ( 1)k M mn+ −   points and for a better result, using the first 2 ( 1)k M mn+ −  roots of shifted 

Legendre polynomials ( )
2 ( 1)k M

P t
+

, then these equations collectively with Equation (6.7) 

produce ( )2 1k M +  non-linear equations. Solution of these non-linear equations can be 

obtained for unknown coefficients of the vector C . Consequently ( ) ( ) ( )1 2, ,..., mu t u t u t  

introduced in Equation (6.1) can be computed. 

 Applications 

In this section, to show applicability and powerfulness of the introduced method, we solve 

five linear and non-linear system of FDEs. 

Example 6.1 We first consider the following linear system of FDEs [41], [43] 

( ) ( ) ( )

( ) ( ) ( )

D u t u t v t

D v t u t v t





= +

= − +
                                                                                                    (6.8) 

subject to 

( )0 0,    (0) 1u v= =                                                                                                       (6.9) 

The exact solution of this system when 1 =  is known to be  
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( ) ( )sin ,    cost tu t e t v t e t= =  

To solve the above system when 0.9 = , we applied the method presented in Section 6.1 

with 2,   0M k= = . Approximating solution following as 

( ) ( ) ( )( ) ,   T Tu t C t v t S t = = ,  
( ) ( ) ( ) ( )0.9 0.90.9 0.9( ) ,    ( )T TD u t C D t D v t S D t = =  

We get 

( )0.9

0 0 0 0 0 0

2 3 0 0 ,   1.911059300 3 0.2730084714 0.02642017466 15

0 2 15 0 0.273008472 5 1.664471004 15 0.6325806046

D D

   
   

= = −   
   

−   

 

If we consider (6.8) with (6.9), we have  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0.9

1

0.9

2

T T T

T T T

R t C D t C t S t

R t S D t C t S t

  

  

= − −

= + −
                              

By computing 

( ) ( )
1

0

0,   1,2  1,2  i jt R t dt i j = = =  

We obtain four linear equations following as 

0,2 0,1 0,0 0,00.6104655018 3.310051804 0c c c s− + − − =  

0,2 0,1 0,0 0,00.6104655018 3.310051804 0s s c s− + + − =  

0,1 0,2 0,10.7269915286 6.446468479 0c c s− + − =  

0,1 0,2 0,10.7269915286 6.446468479 0s s c− + + =  

and by utilising initial conditions we have 

0,0 0,1 0,2

0,0 0,1 0,2

3 5 0

3 5 1

c c c

s s s

− + =

− + =
 

If we solve this system of linear algebraic equations, we get 

 0,0 0,1 0,2, , 1.096167384,0.7531907067,0.09319805590TC c c c = =   
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 0,0 0,1 0,2, ,s 1.340038676,0.0532350665,-0.1108342136TS s s = =   

( ) ( )   ( )

( )2

1

1.096167384,0.7531907067,0.09319805590 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

( ) ( )   ( )

( )2

1

1.340038676,0.0532350665,-0.1108342136 3 1 2

5 6 6 1

Tv t S t t

t t



 
 

= = − + 
 

− +  

 

When the obtained results are matched against the exact solution when 1 =  as 

demonstrated in Figure 6.1, we can clearly observe that when   approaches 1, our results 

approach the exact solution. We also solved this problem by using LPOMM and we 

compared the results with the LWOMM. The numerical computations for u(t) and v(t) 

when 0.9 =  are also revealed in Table 6.1 and Table 6.2. 

Table 6.1 Numerical solutions of ( )u t  when 0.9 = attained by the introduced method 

and the LPOMM for Example 6.1 

t 
LWOMMu  LPOMMu  Absolute Error 

0.0 0.3 910−  0.0000000000 0.3 910−  

0.1 0.1483784330 0.1483784325 0.12 910−  

0.2 0.3217645283 0.3217645277 0.633 910−  

0.3 0.5201582862 0.5201582855 0.65 910−  

0.4 0.7435597067 0.7435597059 0.83 910−  

0.5 0.9919687898 0.9919687890 0.8 910−  

0.6 1.2653855360 1.265385535 0.53 910−  

0.7 1.563809944 1.563809943 0.95 910−  

0.8 1.887242014 1.887242014 0.733 910−  

0.9 2.235681748 2.235681748 0.62 910−  

1.0 2.609129144 2.609129144 0.3 910−  
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Figure 6.1 Comparison of our solutions and the exact solution when 

0.9,0.7,0.5   1and =  for Example 6.1 

 Table 6.2 Numerical solutions of ( )v t  when 0.9 = attained by the introduced method 

and the LPOMM for Example 6.1 

 
t 

 

LWOMMv  

 

LPOMMv  

 
Absolute Error 

0.0 1.000000000 1.000000000 0.2 910−  

0.1 1.152270899 1.152270900 0.5 910−  

0.2 1.274801858 1.274801858 0.599 910−  

0.3 1.367592877 1.367592878 0.67 910−  

0.4 1.430643956 1.430643957 0.13 810−  

0.5 1.463955094 1.463955094 0.1 810−  

0.6 1.467526291 1.467526293 0.13 810−  

0.7 1.441357549 1.441357551 0.171 810−  

0.8 1.385448866 1.385448868 0.1461 810−  

0.9 1.299800244 1.299800245 0.15 810−  

1.0 1.184411680 
1.184411682 

0.18 810−  
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Example 6.2 Consider the following non-linear system of FDEs [49] 

( ) ( )

( ) ( )

3
3 2

2 6 32

5
1 2

2 4 32

8
8 ( ) 4 4 1

32
( ) 3 2 1

5

t
D u t u t v t t t

t
D v t t Du t v t t t





= − + − + + −

= + − − + −

                                                            (6.10) 

subject to  

 
(0) (1)

(0) 0,   (0) 1,   (1) 1,   (1) 3,   0,   3
du du

u v u v
dt dt

= = = = = =                                 (6.11) 

The exact solution of this system is known to be  

( ) ( )3 3,    2 1u t t v t t= = +  

To solve the above system, we implemented the method presented in Section 6.2 with 

3,   0M k= = . Approximating solution following as 

( )( ) Tu t C t , ( )( ) Tv t S t ( ) ( )TDu t C D t  

( ) ( ) ( ) ( )
3 13 1

2 22 2,    T TD u t C D t D v t S D t 
   
   
      

Approximating 

3

2
6 3

0

8
( ) 4 4 1

t
g t t t


= − + + − , 2( )h t t= , 

5

2
4 3

1

32
( ) 3 2 1

5

t
g t t t


= − − + −  

following as  0 0( ) ( )  Tg t G t , 1 1( ) ( )  Tg t G t and   ( ) ( )  Th t H t=  

where 

( )

3
1 2

6 3

0

0

8
G ( ) 4 4 1

t
t t t t dt



 
 = − + + −
 
 
 

  

( )

5
1 2

4 3

1

0

32
G ( ) 3 2 1

5

t
t t t t dt



 
 = − − + −
 
 
 

  

and 

( )
1

2

0

( )H t t t dt=   
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We get 

0 0 0 0

2 3 0 0 0

0 2 15 0 0

0 0 2 35 0

D

 
 
 

=  
 
 
 

,  
3

2

0 0 0 0

0 0 0 0

16 5 16 15 16 16 35

5 7 105

16 7 80 21 16 35 80

7 3 11

D
   

   

 
 
 

 
 
 
 

= − 
 
 
 − − 
 

 

1

2

0 0 0 0

8 3 8 8 15 8 21

3 5 105 315

8 5 8 15 8 8 35

5 7 3 77

16 7 16 21 304 35 688

7 45 385 195

D

   

   

   

 
 
 

 
 
 −
 
 

=  
− − 
 
 

− 
 

 

If we consider (6.10) with (6.11), we have  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( )

3
2

2

1 0

1

2

2 1

8T T T T

T T T T T

R t C D t C t S t G t

R t S D t H t C D t S t G t

   

    

 
 
 

 
 
 

= + − −

= − − −

                                      (6.12) 

Calculating Equations (6.12) at the first root of ( )4P t , i.e.  0

1 525 70 30

2 70
t

−
= +  

We have two non-linear equations and by utilising (6.11) we have 

0,0 0,1 0,2 0,3

0,0 0,1 0,2 0,3

0,0 0,1 0,2 0,3

0,0 0,1 0,2 0,3

0,1 0,2 0,3

0,1 0,2 0,3

3 5 7 0

3 5 7 1

3 5 7 1

3 5 7 3

2 3 6 5 10 7 0

2 3 6 5 10 7 3

c c c c

c c c c

s s s s

s s s s

c c c

c c c

− + − =

+ + + =

− + − =

− + − =

− + =

+ + =

 

If we solve this system of nonlinear algebraic equations, we get 

 0.2500000001,0.2525907427,0.1118033988,0.02362277957TC =  

 1.490829745,0.4893097218,0.2277078606,0.05763606744TS =  
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Consequently, 

( ) ( )
( )

( )

( )

2

3 2

1
0.2500000001

3 1 20.2525907427

5 6 6 10.1118033988

0.02362277957 7 20 30 12 1

T

T
t

u t C t
t t

t t t



 
   
  − + 
 = =  

− +   
     − + −  

 

( ) ( )
( )

( )

( )

2

3 2

1
1.490829745

3 1 20.4893097218

5 6 6 10.2277078606

0.05763606744 7 20 30 12 1

T

T
t

v t S t
t t

t t t



 
   
  − + 
 = =  

− +   
     − + −  

 

We applied both the proposed method and the LPOMM to solve this problem and show 

that our approach is more efficient and useful. Our numerical results support that our 

solution approaches the exact solution more than the approximate solution LPOMM. 

Comparison of the approximate and exact solutions are presented in Table 6.3 and Table 

6.4. 

Table 6.3 The numerical results attained by the introduced method in comparison with 

the LPOMM and the exact solution u(t) for Example 6.2. 

t Exact Solution ( )u t  LWOMMu  LPOMMu  

0.0 0.000 90.12 10−−  0.000000000000 

0.1 0.001 0.01000000005 0.001000000000 

0.2 0.008 0.02000000016 0.008000000000 

0.3 0.027 0.03750000021 0.027000000000 

0.4 0.064 0.07000000020 0.064000000000 

0.5 0.125 0.12500000001 0.125000000000 

0.6 0.216 0.21000000000 0.216000000000 

0.7 0.343 0.33249999998 0.343000000000 

0.8 0.512 0.49999999996 0.512000000000 

0.9 0.729 0.71999999993 0.729000000000 

1.0 1.000 0.99999999989 1.000000000000 
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Figure 6.2 Comparison of our solutions ( ) ( ),u t v t  with the exact solution when 

1.5,   0.5 = = for Example 6.2 

Table 6.4 The numerical results attained by the introduced method in comparison with 

the LPOMM and the exact solution ( )v t  for Example 6.2. 

t Exact Solution ( )v t  LWOMMv  LPOMMv  

0.0 1.000 1.000000000 0.9999999998 

0.1 1.002 1.034841367 1.165803114 

0.2 1.016 1.057587628 1.283854751 

0.3 1.054 1.086537668 1.374911456 

0.4 1.128 1.139990370 1.459729770 

0.5 1.250 1.236244618 1.559066242 

0.6 1.432 1.393599296 1.693677414 

0.7 1.686 1.630353290 1.884319831 

0.8 2.024 1.964805482 2.151750038 

0.9 2.458 2.415254758 2.516724579 

1.0 3.000 3.000000000 3.000000000 
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Example 6.3 Consider the following non-linear system of FDEs [41], [49] 

( )

2

( )

2

( ) ( ) ( )

u t
D u t

D v t u t v t





=

= +

                                                                                                  (6.13) 

subject to  

(0) 1,   (0) 0u v= =                                                                                                       (6.14) 

The exact solution of this system when 1 =  is known to be  

( ) ( )2 ,    

t

tu t e v t te

 
 
 = =  

To solve the above system when 0.9 = , we applied the method presented in Section 6.1 

with 2,   0M k= = . Approximating solution following as 

( ) ( ) ( )( ) ,   T Tu t C t v t S t = =  

( ) ( ) ( ) ( )0.9 0.90.9 0.9( ) ,    ( )T TD u t C D t D v t S D t = =  

We get 

0 0 0

2 3 0 0

0 2 15 0

D

 
 

=  
 
 

 

( )0.9

0 0 0

1.911059300 3 0.2730084714 0.02642017466 15

0.273008472 5 1.664471004 15 0.6325806046

D

 
 

= − 
 
− 

 

If we consider (6.13) with (6.14), we have  

( ) ( ) ( )
( )

( ) ( ) ( ) ( )( ) ( )

0.9

1

20.9

2

2

T

T

T T T

C t
R t C D t

R t S D t C t S t




  

= −

= − −

                                                              (6.15) 

Calculating Equations (6.15) at the first two roots of ( )3P t , i.e.  

0 1

1 1 15
,    

2 2 10
t t= = −  
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We obtain four non-linear equations following as 

( )

0,1 0,2 0,0

2

0,1 0,2 0,0 0,1 0,2 0,0

0,1 0,2 0,0

0,1 0,2 0,0

3.523070728 -9.140726844 - 0.5   0

4.193891122 9.587940439 1.341640787 0.8944271908c 0

3.424454517 - 0.7586951239 - 0.5  0

3.424454517 0.1996781297

c c c

s s c c s

c c c

s s c

=

− − − + − =

=

− − ( )
2

0,2 0,01.118033988c 0s− − =

 

and by utilising initial conditions we have 

0,0 0,1 0,2

0,0 0,1 0,2

3 5 1

3 5 0

c c c

s s s

− + =

− + =
 

If we solve this system of non-linear algebraic equations, we get 

 0,0 0,1 0,2, , 1.332807545, 0.1951100121, 0.002295506718TC c c c = =   

 0,0 0,1 0,2, , 1.215158677,  0.8796261200,  0.1379199819TS s s s = =   

Consequently, 

( ) ( )   ( )

( )2

1

1.332807545, 0.1951100121, 0.002295506718 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

( ) ( )   ( )

( )2

1

1.215158677,  0.8796261200,  0.1379199819 3 1 2

5 6 6 1

Tv t S t t

t t



 
 

= = − + 
 

− +  

 

The parameters 2M =  ,  0k =   and 0.9,0.7,0.5 =  were utilised. Comparison of our 

results and the exact solution when 1 =  were also displayed in Figure 6.3. The figures 

support that when   approximates 1, our results approximate the exact solution. We also 

solved this problem by using LPOMM and we compared the results with the LWOMM. 

Finally, we also presented the numerical computations for u(t) and v(t) when 0.9 =  in 

Table 6.5 and Table 6.6. 
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Table 6.5 Our solutions ( )u t  when 0.9 = attained by the presented method and the 

LPOMM for Example 6.3. 

t 
LWOMMu  LPOMMu  Absolute Error 

0.0 1.000000000 1.000000000 0.37 1010−  

0.1 1.064816320 1.064816320 0.132 910−  

0.2 1.130248589 1.130248589 0.1375 910−  

0.3 1.196296807 1.196296807 0.44 1010−  

0.4 1.262960975 1.262960975 0.808 910−  

0.5 1.330241091 1.330241091 0.532 910−  

0.6 1.398137156 1.398137156 0.168 910−  

0.7 1.466649171 1.466649171 0.756 910−  

0.8 1.535777134 1.535777134 0.1375 910−  

0.9 1.605521046 1.605521046 0.468 910−  

1.0 1.675880908 1.675880908 0.163 910−  

 
 

 

Figure 6.3 Comparison of our solutions ( ) ( ),u t v t with the exact solution when 

0.9,0.7,0.5   1and =  for Example 6.3. 
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Table 6.6 Our solutions ( )v t  when 0.9 = attained by the presented method and the 

LPOMM for Example 6.3. 

 
t 

 

LWOMMv  

 

LPOMMv  

 
Absolute Error 

0.0 -0.1 910−  0.0000000000 0.1 910−  

0.1 0.1381762607 0.1381762609 0.7 910−  

0.2 0.3133603361 0.3133603363 0.2 910−  

0.3 0.5255522260 0.5255522263 0.37 910−  

0.4 0.7747519305 0.7747519309 0.5 910−  

0.5 1.060959450 1.060959450 0.5 910−  

0.6 1.384174783 1.384174784 0.8 910−  

0.7 1.744397932 1.744397932 0.47 910−  

0.8 2.141628895 2.141628895 0.7 910−  

0.9 2.575867672 2.575867672 0.3 910−  

1.0 3.047114264 3.047114264 0.1 910−  

Example 6.4 Consider the following non-linear system of FDEs [49] 

( ) 2

2

1002 ( ) 1000 ( )

( ) ( ) ( ) ( )

D u t u t v t

D v t u t v t v t





= − +

= − −
                                                                               (6.16) 

subject to  

(0) 1,   (0) 1u v= =                                                                                                        (6.17) 

The exact solution of this system when 1 =  is known to be  

( ) ( )2 ,    t tu t e v t e− −= =  

To solve the above system when 0.99 = , we applied the method presented in Section 

6.1 with 4,   0M k= = . Approximating solution following as 

( ) ( ) ( )( ) ,   T Tu t C t v t S t = =  

( ) ( ) ( ) ( )0.99 0.990.99 0.99( ) ,    ( )T TD u t C D t D v t S D t = =  
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We get 

0 0 0 0 0

2 3 0 0 0 0

0 2 15 0 0 0

0 0 2 35 0 0

0 0 0 2 63 0

D

 
 
 
 

=  
 
 
 
 

 

( )0.99

0 0 0 0 0

3.449375852 0.02972385188 -0.01262112773 0.007410898821 -0.005015065172

-0.06646455361 7.610540026 0.07375369729 -0.03451765405 0.02160663680

5.225899340 -0.06725669 11.54413503 0.1255710707 -0.062603187

D =

30

-0.1231327500 10.1398707 -0.05433257 15.41452292 0.1827775379

 
 
 
 
 
 
 
 

 

If we consider (6.16) with (6.17), we have  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

20.99

1

20.99

2

1002C 1000T T T

T T T T

R t C D t t S t

R t S D t C t S t S t

  

   

= + −

= − + +

                                             (6.18) 

Calculating Equations (6.18) at the first four roots of ( )5P t , i.e.  

0 1 2 3

1 1 245 14 70 1 245 14 70 1 245 14 70
,    ,    ,    

2 2 42 2 42 2 42
t t t t

− + −
= = − = − = +  

We obtain eight non-linear equations and by utilising initial conditions we have 

0,0 0,1 0,2 0,3 0,4

0,0 0,1 0,2 0,3 0,4

3 5 7 3 1

3 5 7 3 1

c c c c c

s s s s s

− + − + =

− + − + =
 

If we solve this system of non-linear algebraic equations, we get 

 

0,0 0,1 0,2 0,3 0,4, , , ,

     0.4415217604, -0.2476343090, 0.05158027301, -0.01297029961, -0.006696716433

TC c c c c c =  

=
 

 

0,0 0,1 0,2 0,3 0,4, , , ,

    0.6431515334, -0.1801527132, 0.02407737838, 0.0006364975451, -0.002446608841

TS s s s s s =  

=
 

Consequently, 
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( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.4415217604

3 1 2
-0.2476343090

5 6 6 10.05158027301

-0.01297029961 7 20 30 12 1

-0.006696716433
3 70 140 90 20 1

T

T

t

t tu t C t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

( ) ( )

( )

( )

( )

( )

2

3 2

4 3 2

1
0.6431515334

3 1 2
-0.1801527132

5 6 6 10.02407737838

0.0006364975451 7 20 30 12 1

-0.002446608841
3 70 140 90 20 1

T

T

t

t tv t S t

t t t

t t t t



 
   

− +   
   

− + = =  
   

− + −   
     − + − +  

 

We solved this problem by using LPOMM and we compared the results with the 

LWOMM for 4M = , 0k =  and 0.99,0.9,0.7 = . The numerical computations for u(t) 

and v(t) when 0.99 =  are also revealed in Table 6.7 and Table 6.8. 

Table 6.7 Numerical solutions of ( )u t  when 0.99 = obtained by the given method 

and the LPOMM for Example 6.4. 

t 
 

LWOMMu  

 

LPOMMu  

 
Absolute Error 

0.0 1.000000000 1.000000000 0.4 1010−  

0.1 0.8144351529 0.8144351528 0.21 1010−  

0.2 0.6639425233 0.6639425233 0.15 910−  

0.3 0.5429947229 0.5429947230 0.34 910−  

0.4 0.4460643636 0.4460643636 0.42 910−  

0.5 0.3676240568 0.3676240568 0 

0.6 0.3021464142 0.3021464147 0.68 910−  

0.7 0.2441040487 0.2441040481 0.24 910−  

0.8 0.1879695699 0.1879695690 0.53 910−  

0.9 0.1282155920 0.1282155905 0.461 910−  

1.0 0.0593147248 0.0593147222 0.144 810−  
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Figure 6.4 Comparison of our solutions ( ) ( ),u t v t  with the exact solution when 

0.5,0.7,0.9   1and =  for Example 6.4. 

Table 6.8 Numerical solutions of ( )v t  when 0.99 = obtained by the given method 

and the LPOMM for Example 6.4. 

 

t 

 

LWOMMv  

 

LPOMMv  

 
Absolute Error 

0.0 1.000000000 0.9999999999 0.79 1010−  

0.1 0.9025601837 0.9025601837 0.1498 910−  

0.2 0.8152646487 0.8152646488 0.119 910−  

0.3 0.7371116577 0.7371116578 0.8 1010−  

0.4 0.6670994737 0.6670994739 0.11 910−  

0.5 0.6042263597 0.6042263600 0.24 910−  

0.6 0.5474905785 0.5474905788 0.19 910−  

0.7 0.4958903932 0.4958903935 0.26 910−  

0.8 0.4484240664 0.4484240670 0.443 910−  

0.9 0.4040898614 0.4040898620 0.5898 910−  

1.0 0.3618860408 0.3618860417 0.719 910−  
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Example 6.5 Consider the following fractional-order Brusselator system presented in 

[47] and [48] 

( ) 2

2

2 ( ) ( ) v(t)

( ) ( ) ( ) v(t)

D u t u t u t

D v t u t u t





= − +

= −
                                                                                      (6.19) 

subject to  

(0) 1,   (0) 1u v= =                                                                                                        (6.20) 

The approximate solution of this system when 1 =  and 0.98 =  was presented by 

Chang and Isah using Legendre wavelet operational matrix of fractional derivative 

through wavelet-polynomial transformation (LWPT) in [48] and by Bota and Caruntu 

using the polynomial least squares method (PLSM) in [47]. The solution of this system 

when 1 =  was presented in [47] and [48] following as  

( )

( )

2 3

2 3

1 1.0120 0.1211 0.1517 ,   

1 0.0096 0.4069 0.2461

LWPT

LWPT

u t t t t

v t t t t

= − + +

= + + −
 

( )

( )

2 3

2 3

1 1.02827 0.201028 0.0750974 ,   

1 0.0271107 0.334087 180088

PLSM

PLSM

u t t t t

v t t t t

= − + +

= + + −
 

The approximate solution of this system when 0.98 =  was presented in [47] and [48] 

following as 

( )

( )

2 3

2 3

1 1.0791 0.2711 0.0638 ,   

1 0.0151 0.4185 0.2624

LWPT

LWPT

u t t t t

v t t t t

= − + −

= + + −
 

( )

( )

2 3

2 3

1 1.08655 0.311138 0.0243682 ,   

1 0.0349127 0.333424 0.184414

PLSM

PLSM

u t t t t

v t t t t

= − + +

= + + −
 

To solve the above system when 0.98 = , we applied the method presented in Section 

6.1 with 2,   0M k= = . Approximating solution following as 

( ) ( ) ( )( ) ,   T Tu t C t v t S t = =  

( ) ( ) ( ) ( )0.98 0.980.98 0.98( ) ,    ( )T TD u t C D t D v t S D t = =  

We get 
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0 0 0

2 3 0 0

0 2 15 0

D

 
 

=  
 
 

 

( )0.98

0 0 0

1.982905202 3 0.05889817430 0.006370884195 15

-0.1317003230 7.476321502 0.1450477428

D

 
 

= − 
 
 

 

If we consider (6.19) with (6.20), we have  

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )( )

20.98

1

20.98

2

2T T T T

T T T T

R t C D t C t C t S t

R t S D t C t C t S t

   

   

= + −

= − +

                                           (6.21) 

Calculating Equations (6.21) at the first two roots of ( )3P t , i.e.  0 1

1 1 15
,    

2 2 10
t t= = −  

We obtain four non-linear equations and by utilising initial conditions we have 

0,0 0,1 0,2

0,0 0,1 0,2

3 5 1

3 5 1

c c c

s s s

− + =

− + =
 

If we solve this system of non-linear algebraic equations, we get 

 0,0 0,1 0,2, , 0.5654293689, -0.2188337915, 0.02483796840TC c c c = =   

 0,0 0,1 0,2, , 1.087682270,  0.06669943989, 0.01245246086TS s s s = =   

Consequently, 

( ) ( )   ( )

( )2

1

0.5654293689, -0.2188337915, 0.02483796840 3 1 2

5 6 6 1

Tu t C t t

t t



 
 

= = − + 
 

− +  

 

( ) ( )   ( )

( )2

1

1.087682270,  0.06669943989, 0.01245246086 3 1 2

5 6 6 1

Tv t S t t

t t



 
 

= = − + 
 

− +  

 

The parameters 2M =  ,  0k =   with 0.98 =  were utilized. Comparison of our results 

and these approximate solutions introduced in [47] and [48] are also displayed in Figure 

6.5. The figures support that our solution approaches the approximate solutions presented 
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in [47] and [48]. Finally, we also presented the numerical computations for u(t) and v(t) 

when 0.98 =  in Table 6.9 and Table 6.10. 

 

Figure 6.5 Comparison of our solutions LOWMMu , LOWMMv  with the approximate solution 

LPSTu , LPSTv  and the approximate solution PLSMu , PLSMv  when 0.98 =  for Example 

6.5. 

Table 6.9 Comparison between our approximate solution LOWMMu  and LWPTu and PLSMu  

when 0.98 =  for Example 6.5. 

 

t 

 

LWOMMu  

 

LWPTu  

 

PLSMu  

0.0 1.000000000 1.0000000 1.0000000000 

0.1 0.8942024826 0.8947372 0.8944807482 

0.2 0.7950696916 0.7945136 0.7953304656 

0.3 0.7026016268 0.6989464 0.7026953614 

0.4 0.6167982883 0.6076528 0.6167216448 

0.5 0.5376596761 0.5202500 0.5375555250 

0.6 0.4651857902 0.4363552 0.4653432112 

0.7 0.3993766306 0.3555856 0.4002309126 

0.8 0.3402321973 0.2775584 0.3423648384 

0.9 0.2877524902 0.2018908 0.2918911978 

1.0 0.2419375095 0.1282000 0.2489562000 
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Table 6.10 Comparison between our approximate solution LOWMMv  with LWPTv and PLSMv  

when 0.98 =  for Example 6.5. 

 

t 

 

LOWMMv  

 

LWPTv  

 

PLSMv  

0.0 1.000000000 1.0000000 1.000000000 

0.1 1.008069307 1.0054326 1.006641096 

0.2 1.019479961 1.0176608 1.018844188 

0.3 1.034231959 1.0351102 1.035502792 

0.4 1.052325304 1.0562064 1.055510424 

0.5 1.073759995 1.0793750 1.077760600 

0.6 1.098536032 1.1030416 1.101146836 

0.7 1.126653415 1.1256318 1.124562648 

0.8 1.158112143 1.1455712 1.146901552 

0.9 1.192912217 1.1612854 1.167057064 

1.0 1.231053638 1.1712000 1.183922700 
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CHAPTER 7 

RESULTS AND DISCUSSION 

Because variety of solution of higher order differential equations and the system of such 

equations can not be found analytically, numerical and approximate methods are needed. 

This situation is more difficult and complicated for the solution of fractional order 

differential equations and the system of such equations. There are a lot of tecniques that 

have been studied by many researchers to solve fractional differential equations 

numerically. In this thesis, high order differential equations and the system of such 

equations of the linear and non-linear form were solved by utilising operational matrix of 

derivative and by generalizing these matrices to these equations and systems. Also, 

fractional order differential equations and the system of such equations of the linear and 

non-linear form were examined by derivating a new operational matrix of the fractional 

derivative in some special conditions and by benefiting from charachteristics of these 

matrices. 

So then the Legendre wavelet operational matrix method is introduced in related chapters 

of this thesis by using some significant features of shifted Legendre polynomials and 

Legendre wavelets. The most advantage of this method is that it gives a understandable 

procedure in reducing these equations and the system of such equations to a system of 

algebraic equations. Also, very effective algorithm have been also formulated to obtain 

the solution of equations and systems mentioned above on the Maple. We produced all 

numerical results and graphical representations via Maple. The results illustrate that the 

introduced procedure can solve such equations and systems very efficaciously and 

simply. 

As the next step, the method introduced in this thesis can be applied to fractional partial 

differential equations and the system of such equations, fractional integral equations and 

the system of such equations, fractional integro-differential equations. These equations 
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are at least as important as fractional differential equations and they are very significant 

in science, engineering and technology. 
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