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ABSTRACT

LEGENDRE WAVELET OPERATIONAL MATRIX METHOD FOR
SOLVING SYSTEMS OF FRACTIONAL DIFFERENTIAL
EQUATIONS

Selvi ALTUN

Department of Mathematical Engineering

Ph.D. Thesis

Adviser: Assoc. Prof. Dr. Aydin SECER

This thesis introduces a new numerical approach to solve high order and fractional order
differential equations of the linear and non-linear forms and systems of such equations
utilizing the Legendre wavelet operational matrix method. We first formulated the
operational matrix and its fractional derivatives in some special conditions by using some
significant features of Legendre wavelets and shifted Legendre polynomials. Then, the
high order and fractional order differential equations and systems of such equations were
transformed to a system of algebraic equations by using these operational matrices. At
the end of each chapter of the thesis, the introduced tecnique is tested on several
illustrative examples. Comparing the methodology with several recognized methods
demonstrates that the most important advantages of the introduced method are the
understandibility of the calculations and its accuracy.

Key words: Legendre wavelet, operational matrix, fractional order differential equations,
the system of fractional order differential equations, Caputo fractional derivative
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OZET

KESIRLI MERTEBEDEN DIFERANSIYEL DENKLEM
SISTEMLERININ COZUMU iCIN LEGENDRE DALGACIGI
OPERASYONEL MATRIS METODU

Selvi ALTUN

Matematik Miihendisligi Anabilim Dali

Doktora Tezi

Tez Danigmani: Dog. Dr. Aydin SECER

Bu tezde, Legendre dalgacigi operasyonel tiirev matris metodu kullanilarak, yiiksek
mertebeden ve kesirli mertebeden diferansiyel denklemlerin ve denklem sistemlerinin
dogrusal ve dogrusal olmayan formlarmin niimerik ¢oziimleri i¢in yeni bir yaklagim
gelistirilmistir. Oncelikle, operasyonel matris ve kesirli tiirevi baz1 6zel kosullar altinda,
Legendre dalgacigi ve Legendre polinomlarinin bazi 6nemli 6zellikleri kullanilarak
formiile edilmistir. Sonrasinda, yiiksek mertebeden ve kesirli mertebeden diferansiyel
denklem ve denklem sistemleri bu operasyonel matrisler yardimiyla cebirsel denklem
sistemlerine doniistlirlilmiistiir. Tezde onerilen metot her boliimiin sonunda yeterli sayida
aydinlatic1 ornekle test edilmistir. Sonug olarak, bazi bilinen metotlarla karsilagtirmasi
gosteriyor ki, Legendre dalgacigi operasyonel tiirev matrisi metodunun en biiyiik avantaji
sadeligi ve hesaplamalardaki anlasilabilirligidir.

Anahtar Kelimeler: Legendre dalgacigi, operasyonel matris, kesir mertebeli diferansiyel
denklemler, kesir mertebeli diferansiyel denklem sistemleri, Caputo kesir tiirevi

YILDIZ TEKNiK UNiVERSITESI FEN BILIMLERI ENSTITUSU
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Differential and integral operators are the basis of mathematical models and they are also
used as a means of understanding the working principles of natural and artificial systems.
Therefore, differential and integral equations are of great importance both theoretically
and practically. Such equations have a wide range of applications, including in the
physical sciences, such as physics and engineering, as well as in social science. The
system of differential equations, as differential equations, are often used in issues such as
theory of elasticity, dynamics, fluid mechanics, oscillation, and quantum dynamics [21],
[22], [57].

Interest in differential and integral operators has led to the exploration of fractional
differential and integral operators by examining these issues further in depth. Owing to a
question, the origin of fractional calculus arose in a message from Leibniz to L’Hospital
in 1695. Over the years, a variety of definitions that satisfy the idea of fractional derivative
have been found by several great mathematicians, but Riemann-Liouville and Caputo
fractional derivatives are most commonly utilized definements in the world of fractional
calculus. Altough the theory about Riemann-Liouville definition was constituted very
well, this consept has some troubles with using to real-world problems. To make a success

of these troubles, Caputo derivative was established.

For three centuries, analysis of the fractional calculus has been restraint to the discipline
of pure theoretical mathematics, but this topic has received attention in recent years
because of its ability to simplify numerous physical, engineering and economics

phenomena, such as the fluid-dynamic traffic model, damping laws, continuum and



statistical mechanics, diffusion process, solid mechanics, control theory, colored noise,
viscoelasticitiy, electrochemistry and electromagnetic, among others.

Because variety of solution of fractional differential equations can not be found
analytically, numerical and approximate methods are needed. There are a lot of tecniques
that have been studied by many researchers to solve FDEs and the system of such
equations numerically. Several of these tecniques are the Adomian decomposition
method presented in [35] by Song et al., collocation method, operational matrix method
improved in [18], [19], [24] and [26], perturbation-iteration method introduced in [28] by
Senol et al., computational matrix method illustrated in [27] by Khader et al., differential
transform method demonstrated in [43] by Ertiirk et al., variational iteration method,
Laplace transform method given in [41] by Gupta et al., fractional complex transform
method studied in [44] by Ghazanfari et al. etc. Also numerical solutions of these
equations and the system of such equations were presented by using the Bernstein
operational matrix method [29], Genocchi operational matrix method [49], Jacobi
operational matrix method [34], Chebyshev wavelet operational matrix method [30],
polynomial least squares method [47], Legendre wavelet-like operational matrix method

[48] and Genocchi wavelet-like operational matrix method [50].

The orthogonal functions and polynomial series are very important field in science and
engineering. Block-pulse fuctions, sine-cosine functions, Jacobi, Legendre, Hermite,
Genocchi, Laguerre and Chebyshev polynomials are the most commonly utilized among
these functions. What makes these functions important is that they permit the undertaking
problem to be reduced to a system of algebraic equations and the approximation of
analytic functions. The problem is solved by truncating series of orthogonal basis

functions and utilising operational matrix and its derivatives.

The operational matrix of derivatives D is defined as:

dy (t
%; Dy (1) (1.1)

in which v (t)=[y,,¥,,...w, ] and v, (i=12,..,N) are orthogonal basis functions,

orthogonal on a certain interval [a,b]. The matrix D can be uniquely identified on the

basis of the specific orthogonal functions [9-11]. Many papers which are related to the
application of operational matrix of derivative can be found in the literature [12], [15],
[18], [19], [30], [33], [34], [48], [49], [50], [56].
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Wavelet theory is very significant in science, engineering and technology and in recent
years, wavelets have achieved to attract an enormous attention in many fields of
investigation, such as spectroscopy, signal analysis, feature detection in earth science,
time-frequency analysis, and image manipulation, among others. Many scholars have
contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and
Mallat are some of them. Thanks to their contribition, there has been a substantial
increment in the number of studies on wavelets. There are a wide variety of wavelet
functions such as Daubechies, Haar, Laguerre, Legendre, Shannon, Lagrange, Hermitian
and Chebyshev wavelets available. Among them, we choose Legendre wavelet in this
thesis because of their orthonormality and explicitity. Many applications of Legendre

wavelets can be viewed from [12-20].

This thesis focuses on the applications of high order and fractional order differential
equations and systems of such equations by utilizing the LWOMM. The most important
advantage of the proposed method is that it presents a comprehensible algorithm in
reducing high order and fractional differential equations and the system of such equations
to a system of algebraic equations. This thesis consists of seven chapters and the third,
fourth, fifth and sixth chapters of this thesis have originality. First, we begin with
presenting some basic definitions and fundamental relations relevant to the fractional
calculus theory, orthogonal polynomials (especially shifted Legendre polynomials),
wavelets (especially Legendre wavelets), approximations of these functions and
operational matrix of derivative. The operational matrix of fractional derivative is then
natively derivated in some special conditions in Chapter 2. Chapter 3 and Chapter 4
generalizes these operational matrices to high order differential equations and the system
of such equations of the linear and non-linear forms. Similarly, Chapter 5 and Chapter 6
generalizes these operational matrices to fractional order differential equations and the
system of such equations of the linear and non-linear forms. At the end of each chapter,
several illustrative examples are tested on the introduced method. Finally, last chapter

includes the conclusion and suggestions.

1.2 Objective of the Thesis

This thesis aims to improve an effective and comprehensive technigue to solve high order
differential equations and the system of such equations together with fractional order

differential equations and the system of such equations. The most advantageous



characteristic of this method is that it gives an understandable procedure in reducing these
equations and the system of such equations to a system of algebraic equations by utilizing
operational matrix of derivative and fractional derivative. So, we can easily obtain the

desired solution.

1.3 Hypothesis

In this thesis, the operational matrix of fractional derivative is natively derivated in some
special conditions by taking advantage of some notable features of Legendre wavelets
and shifted Legendre polynomials and these operational matrices are generalized to
equations mentioned above and the system of such equations of the linear and non-linear
forms for the first time. Numerical solutions of these equations and the system of such

equations obtained by using introduced method have originality.



CHAPTER 2

BASIC CONCEPTS

2.1 Fractional Calculus

Fractional calculus is the study of any real-order or complex-order derivative and integral
composed of combining and extending the consepts of multiple integral and integer order
derivative. The origin of fractional calculus arose in a message from Leibniz to L’Hospital
in 1695. For three centuries, analysis of fractional calculus has been restraint to the
discipline of pure theoretical mathematics. But, this topic has received attention in recent
years, because of its suitability for the explanation of numerous physical, engineering and
economics phenomena, such as the fluid-dynamic traffic model, damping laws,
continuum and statistical mechanics, diffusion process, solid mechanics, control theory,

colored noise, viscoelasticitiy, electrochemistry and electromagnetic, among others.

Let D =% be a differential operator and n be a positive integer. It is well known that,

the meaning of the D"u(t) is the n" derivative of the function u(t). But if n is not a

positive integer, it is difficult to comment the meaning of the D™ or D* for Re(a) >0
. The meaning of these symbols will be explained in this section.

A variety of definitions that satisfy the idea of fractional derivative have been found by
several great mathematician. But Riemann-Liouville and Caputo fractional derivatives

are most commonly utilised definements in the world of fractional calculus. The

differential and integral operators with fractional analysis operators are denoted as

(Du)(t) and (1;u)(t) respectively for Re(a) >0, where ais the boundary value of the

fractional differentiation and integration operations [21, [22], [57].



It is necessary to know some mathematical definitions to understand the definitions and
applications of the fractional analysis required for this thesis. Some of these definitions

and theorems are presented below.

2.1.1 The Gamma Function

It is said that the Gamma function is obviously the generalization of the factorial for all

real numbers. This function is defined by [57-58]

F(n):je"t“’ldt, neR" (2.1)
0

Using the following equation related to exponential function of the factorial function

ni=[e t'dt= [e 't dt=T(n~+1) (2.2)
0 0

The relation between Gamma function and factorial function is appropriated. Using

integration by parts we can obtain for n>0

0 o0

r(n+1)= Te‘t”dt =—e't" |- [(-e)nt"dt
0 0 o

] 2.3)
= n.[e“t”‘ldt =nr(n)
0

The Gamma function is directly related to the fractional derivative and integral. These

relations can be found by using following properties of Gamma function [57-58].

i) For all n>0, the integral _[ e 't"'dt is convergent.
0

i) The Gamma function T" is positive for all n>0,

i) F(1)=Te‘tdt=1.

iv) For O<n<1, I'(n)[(1-n)=

and for n:%, F(lj:\/;.

sinnz

V) The Gamma function T" is continous for all n>0.

Vi) The Gamma function T" is differentiable for all n>0 and we get



I'(n)= Te“ In(t)t"*dt

Table 2.1 Some numerical values of the Gamma function

(2.4)

r(_g) 4?,; r(1.0) 1.0000
r(2) 1 r(1.1) 0.9514
r[_ %j ~2x r(L2) 0.9182
r@] # r(1.3) 0.8975
r(0) undefined r(1.4) 0.8873
r() : r(15) 0.8862
r(%) 7 r(16) 0.8935
FG) 158 x r(L7) 0.9086
r() 1 r(1.8) 0.9314
r(4) 6 r(1.9) 0.9618
[ () o r(2.0) 1.0000

2.1.2 The Beta Function

The Beta function is defined by a definite integral. Its definition is presented by [58]

1
B(m,n)= J'tm‘l (1-t)"'dt, mneR"
0

(2.5)



We can also express the Beta function in terms of the Gamma function:

ﬂ(m,n)zm, m,neR* (2.6)

2.1.3 L" Spaces

We consider L" -spaces of functions whose pth powers are integrable.

Definition 2.1 Let (X, A, x) be a measure space and 1< p<oo. The space L°(X) be

composed of equivalence classes of measurable functions f : X — R such that
[If" dp<oo 2.7)
where two measurable functions are equivalent if they are equal —a.e. The L”-norm

of f eL”(X) is defined by

£l =([1[" dar)” (28)

The notation Lp(X) presumes that the measure x on X is understood. We say that
f,— f in P if ||f,—f], —0. The reason to regard functions that are equal a.e as

equivalent is so that | f || , =0 implies that f =0 [57].

2.1.4 The Riemann-Liouville Fractional Integral

Let o be a real nonnegative number. For te[a,b] in L'[a,b] , the definition of the

Riemann-Liouville fractional integral is given as [57-58]

(15u) _rl j u(&Me, t>a, @>0 (2.9)
a a

where I'(«)is the Gamma function.

An important feature of Riemann-Liouville fractional integral is that 12 = I is an identity

operator for a=0.

Some properties of the Riemann-Liouville fractional integral are as follows.



Suppose that u(t):(t—a)ﬂ where S >-1, then the Riemann-Liouville fractional

integral of u(t)of order & is

(I“u)(t):M(t—a)“+ﬁ (2.10)
: I'(a+pB+1)

2.1.5 The Riemann-Liouville Fractional Derivative

Using the definition of the Riemann-Liouville fractional integral, then we can define the
fractional derivative. Assume that v=n—a , where 0 <v<1and n isthe smallest integer
greater than « . Then, the definition of the Riemann-Liouville fractional derivative can

be expressed as [57-58]

(D;u)(t){%j”(uu)(t)
=ﬁ(§j i(t—fs)“ f ()

(2.11)

where D? =1 is an identity operator for a=0.
Some properties of the Riemann-Liouville fractional derivative are as follows.

Suppose that u(t):(t—a)ﬂ where S >-1, then the Riemann-Liouville fractional

derivative of u(t)of order o is

(Dfu)(t):%(t—a)ﬂ_“ (2.12)

2.1.6 The Caputo Fractional Derivative

Over the years, a variety of definitions that satisfy the idea of fractional derivative have
been found by several great mathematician. But Riemann-Liouville and Caputo fractional
derivatives are most commonly utilised definements in the world of fractional calculus.
Altough the theory about Riemann-Liouville definition was constituted very well, this
consept has some troubles with using to real-world problems. To make a success of these

troubles, Caputo derivative was established.



Definition 2.2 The fractional-order derivative in the Caputo sense is defined as [18-19]

Cna _ 1 t u(n)(éf)
D u(t)_l“(n—a)-l.(t_g)“”’” dé, n-l<a<n neN (2.13)

Some properties of the Caputo derivative are as follows.
°D“C =0 (2.14)
where C is a constant.

0, BeN, and <[]
‘D’ = T(B+1) (i-a

P AeNe wd p3fa] or pen am p2|

(2.15)

Here, | & |is the largest integer less than or equal to « and [« |indicates the smallest

integer greater than or equal to « .

The Caputo fractional order derivative is a linear operation as the integer-order derivative:
D (nu(t)+<v(t))=n D u(t)+¢ D(t) (2.16)

where n and £ are constant.

2.2 Orthogonal Polynomials

The orthogonal functions and polynomial series are very important field in science and
engineering. They are basis of several numerical methods developed for the solution of
differential equations and integro-differential equations. The reason is that the use of
orthogonal polynomials is easy. Because they have good convergence properties and they
properly represent the weight distribution of a function on a definite network. Mentioned
equations are solved by truncating series of orthogonal basis functions. Block-pulse
fuctions, sine-cosine functions, Legendre, Hermite, Jacobi, Laguerre and Chebyshev
polynomials are the most commonly utilized among these functions. What makes these
functions important is that they permit the undertaking problem to be reduced to system

of algebraic equations and the approximation of analytic functions.
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2.2.1 Legendre Polynomials

One of the kind of particular orthogonal polynomials used in the solution of real-world
problems is the class of functions called Legendre polynomials. They are the everywhere

regular solutions of a very significant differential equation, the Legendre Equation.

2
(1—x2)j—l;—2x3—u+m(m+1)u:0 (2.17)
X X

Since the Legendre differential equation is a second-order ordinary differential equation,
it has two linearly independent solutions. A solution L, (x) which is regular at finite
points is called a Legendre function of the first kind, while a solution Q. (x) which is

singular at +1 is called a Legendre function of the second kind. If m is an integer, the

function of the first kind reduces to a polynomial known as the Legendre polynomial. We

write the solution for a particular value of m as L (x) . Itis a polynomial of degree m.
If m is even/odd then the polynomial is even/odd. They are normalised such that

L, (1)=1.

The equation takes its name from Adrien Marie Legendre (1752-1833), a French
mathematician who became a professor in Paris in 1775. He made important contributions
to special functions, elliptic integrals, number theory, and the calculus of variations [59].

The well-known Legendre polynomials are defined on the interval [-1,1] and can be

designated by the help of the following formulae.

(m+YL, . (x)=m+)xL, (x)-mL, ,(x), m=123,.. (2.18)

m-+1

where L, (x) =1 and L (x) = x. Defining the so-called shifted Legendre polynomials by

presenting the change of variable x=2t—1, we can use Legendre polynomials on the

interval [0,1]. Let the shifted Legendre polynomials L (2t —1)be symbolized by P, (t).

Then we can express P, (t) as follows:
(m+HP, . (t)=2m+D)(2t-)P, (t)-mP, ,(t), m=123,.. (2.19)

The shifted Legendre polynomial P, (t) has the following analytic form [12]

P, (1) = 3y (M)t

ooy (m=k)!(k1y* (2.20)

m

11



and the orthogonality condition is

1
1 _
[P, (0P, ()t = 2ms1 """ (2.21)
0

0, for m=n

The Legendre polynomials are a special case of the Gegenbauer polynomials with a = %

, a special case of the Jacobi polynomials Pm(“’ﬂ) with o = =0 [59].

2.3  Wavelets

Wavelet theory is very significant in science, engineering and technology and in recent
years, wavelets have achieved to attract an enormous attention in many fields of
investigation, such as spectroscopy, signal analysis, feature detection in earth science,
time-frequency analysis, and image manipulation, among others. Many scholars have
contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and
Mallat are some of them. Thanks to their contribition, there has been a substantial
increment in the number of studies on wavelets. Many applications of wavelets can be
viewed from [12-17], [23-26], [33-34], [48-50], [56].

Wavelets establish a family of functions formulated from dilation parameter a and the
translation parameter b change continuously, we have the following family of continuous

wavelets [12]:

y/ab(t):|a|_1/21//(%j, abeR, az0 (2.22)

If these parameters a and b are restraint to discrete valuesas a=2"% , b=n2" | then
Vi (1) =2y (2t —n) (2.23)

forms an orthogonal basis. We use multiresolution of analysis (MRA) for structure

wavelets.

Definition 2.3 Let {Vj}_

jezZ

of subset of LZ(R) be the increasing sequence and ¢ be the

scaling function. If it satisfies the following conditions, we call {Vj}j , with scaling

function ¢ MRA [14].

12



i) u,V, isdensein L*(R)
iy NV, ={0
i) f(t)ev, < f(27't)eV,

iv)  {p(t-n)} _ isan orthogonal basis for V.

2.3.1 Legendre Wavelets

There are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre,
Legendre, Shannon, Lagrange, Hermitian and Chebyshev wavelets available. Among
them, we choose Legendre wavelet in this thesis because of their orthonormality and
explicitity.

Legendre wavelet basis is constructed using a linear combination of Legendre polynomial
functions. Legendre wavelets y, (t)=vw(k,n,m,t) have four parameters: where n
parameter, k can be presumed any positive integer, m is the order of Shifted Legendre

polynomials and t is the normalized time. They are defined on the interval [0,1] by

ki 1 n n+1
2 - k¢ _ _
v ()= 2 /m+2Pm(2t n), oStE=s .2

0, otherwise

where m=0,1,...M; n=0,1,...,(2“ -1). The coefficient ,,mTH is for orthonormality

[12].

2.3.1.1 Function Approximations

Suppose that a function u(t) is defined over [0,1] . Then u(t)may be expanded in the

terms of Legendre wavelet as

u(t)= iicnmy/nm (t) (2.25)

n=0 m=0

where ¢, =(u(t),y,, (t)) inwhich (.,.) denotes the inner product. Let the infinite series

in (2.25) be truncated, then it can be written as

13



21 M

u(t)= > > cutom (1) =CTy (1) (2.26)

n=0 m=0

where C and y (t) are matrices given by [12]

.
C= [Co,o’co,v'"’ Comtr+1Comres Cot g 01 Gty e Gy }
(2.27)

.
Y= |:l//0,0’[//0,1""’!//0,M e Womre s Wo g oW g Waam ]

2.4 The Operational Matrix of Derivative

The operational matrix of derivative D is given by

dy (1)

dt

1

Dy (t)

where  y(t)=[w..v,,...wy] and y, (i=12,..,N) are orthogonal basis functions,
orthogonal on a certain interval [a,b]. The matrix D can be uniquely identified on the

basis of the specific orthogonal functions. Many papers which are related to the
application of operational matrix of derivative can be found in the literature.

F. Mohammadi derived Legendre wavelet operational matrix of derivative in his paper

[12]. In this section, the theorem and corollary are just mentioned as follows.

Theorem 2.1 Let z//(t) be the Legendre wavelets vector given in (2.24), then we get

= Dy (t) (2.28)

u o 0
O uUu .- 0

D=|. . . . (2.29)
0O O U

in which U isan (M +1)(M +1) matrix and its (r,s)th element is defined as follows:

o ={2k+1\/(2r—1)(25—1), r=2,..,(M+1), s=1..,r-1and (r+s) odd (2.30)

0, otherwise

14



Corollary 2.1 If we use (2.28) then we have operational matrix for nth derivative as

dy (t
;/;( )< oy (1) (2.31)

where D" is the nth power of matrix D.

By using the property of the product of two Legendre wavelets vector functions, we have
e'wy' =y'E (2.32)

where e is a given vector and E isa (2“M +1)x(2“M +1) matrix dependent on vector

e[12].

2.5 The Operational Matrix of Fractional Derivative

A. Saadatmandi and M. Dehghan derived the operational matrix of fractional derivative
by using shifted Legendre polynomials in [18]. In this section, the Legendre wavelet
operational matrix of fractional derivative is derived in some special conditions by taking

advantage of theorem given in [18].

Lemma 2.1. Let y/(t) be the Legendre wavelets vector presented in Equation (2.24) and

assume that k =0 then
D, (t)=0, r=01..[a]-1 a>0 (2.33)

Proof. The Lemma can be proved by using Equations (2.14) and (2.16) in Equation
(2.24).

Theorem 2.2. Let y/(t) be the Legendre wavelets vector presented in Equation (2.24).

Assume that k=0 and « >0, then
Dy (t)= Dy (1) (2.34)

where D' is the (M-+1)x(M+1) operational matrix of the fractional derivative of the

order ¢ >0, N—-1<a <N inthe Caputo sense and is expressed as follows
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0 0 0
0 0 0
(] (2] (]
Z aJ:fot]Oh z é:(a]lh Z é:[a],m,h
h=[ a‘| h=la]
D = (2.35)
Z égr,o,h Z gr,l,h z gr,m,h
h=[a] h=[a h=[a
Z é:m,o,h z §m,1,h Z é:m,m,h
h=|_a-‘ h=|—a—| h=|_a—|
where &, ., is presented by
_q\r+s+h+l 1 |
£ . =~2r+1 st+1§: CH™ = (remis+D)! (2.36)

< (r—h)!h!C(h—a +1)(s— NI (h+1 - +1)
Take in consideration in D', the first [ o] rows are all zero.

Proof. Assume that v, (t) be the r""element of the vector y (t) presented in Equation

(2.24), where r=nM +(m+1), m=0,1..,M, n=0,1,...,(2-1). Then y, (t) can be

expressed as

wA0=;;J::gRQW—mlpnﬂ (2.37)
o

Suppose that k =0and by utilising the shifted Legendre polynomial, we get

”%r+m&
(r—hyhy A

v () =2, [r e Z:

(2.38)
If we utilise Equations (2.15), (2.16) and (2.38), then we get

/_ )Tt
=V ey s

\/2r+1z (1) (reh)! " Loy T=[ ] (2.39)

h:m(r—h)!(rn)r(h—ogﬂ)

Approximating t"* by (m+1) terms of Legendre wavelets, then we get
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" = ibh,sl//s (1) (2.40)
s=0

here

1

J‘ gh-ay, t=2.[s+= Z( 1)S+I(5+|) J‘th+| adt

> LDk (2.41)
«/ﬂz iy (I(Il I))I(S: | Izla +1)
If we utilise Equations (2.39) and (2.41), then we have
Doy, ()=v2ri1 Y S (2t b, < ()70,
S (=T (h-a+1) o (2.42)

Zm:( Zr: gf,s,h}/s(t)l[oyl]! r =[a1,...,m

s=0 \ h=[a]

in which &, . is presented in Equations (2.36). Also if we use Lemma 2.1, then we can

write
D, (t)=0, r=01..[a]|-1 &>0 (2.43)

Combining Equations (2.42) and (2.43), then we obtain the result.
2.6 Differential Equations

2.6.1 Ordinary Differential Equations

The general nth order linear differential equation for the function u=u (t) is written as
[57]

d"u d""u du
hy (t) o +hl(t)W+ Jrhn_l(t)EJrhn (Hhu=g(t), t,<t<t
For example,
4 3 2

:J(t)—cost:lT?+Zsint(ng+2cost3—Ltj+16u =4e'sin2t, O<t<l

The above differential equation is fourth order linear differential equation.

The general nthorder non-linear differential equation for the function u=u (t) IS written

as

17



U 1) = H (t,u(t),i—‘:(t),..., ?j::‘f (t)], t, <t<t,

For instance,

5
du v 2se% =28

T (1+US, O<t<l1

The previous differential equation is fifth order non-linear differential equation.
2.6.2 Fractional Order Differential Equations

The general linear FDE for the function u =u(t) is written as [57]

Du(t) =hy(t)D™u(t)+...+h_ ()D™u(t)+h (t)u(t) +g(t)

Linearity of the this equation arises from linearity of the fractional differential operator.

For instance,

A(t+1) Dg u(t)+4Dg u(t) + L u@t) =vt +vJr

Jt+1

and

3

D2u(t) + D2u(t) +u(t) =1+t
are linear FDEs.

The general non- linear fractional order differential equation for the function u =u(t) is

written as
Du(t)=H (t,u (t),D™u(t),.... D™u(t))

For instance,

5

Du(t) + D2u(t) +u?(t) =t*

and

0.7
D ) +uP () = 2L
7 T(0.7)

are non-linear FDEs.
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2.7 Systems of Differential Equations

2.7.1 Systems of Ordinary Differential Equations

The general system of linear differential equations for functions u; =u;(t)

(j=12,..,m) is written as [57]

d"u

dtnl = hll(t)ul +.t h].n (t)Um + kl(t)
d"u,
F =h,, (t)u, +...+h, (), +K,(t)
d"u,
W =h_,(Ou +...+h (), +k, (1)

where h;(t)and k(t) i=12,..,m j=1,2,..,n are known functions on some interval
a<t<b. The unknowns are the functions u,(t),...,u (t).

If all k,=0 then the system is called homogeneous, otherwise it is called non-

homogeneous. Linearity of the system arises from linearity of the diferential equations.

That is to say, if all diferential equations is linear then the system is a linear system.

For instance,

du(t) B
o w(t) —cost
av(t)
o MO
dw(t) B
T =u(t)—v(t)

The above system is first order, non-homogeneous and linear system of differential
equations.

The general system of non-linear differential equations for functions uj:uj(t)

(i=12,...m) is written as
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d"u, d"*u, d""u, d"u,
0= 1840 G000 o G 0 (0 S0
d'u, .\ d"*u, d"*"u, d"'u,
L0100 S 0.0, 0 G 010 0. S 1)
d'u, .\ d"'y, d""u, d""u
o 0 L) S 0 0 S 0 0 G )
For example,

d‘:jit) — _2u(t) + U (1) v(t)

dv(t)

e u(t) —u"(®) v(v

The above Brusselator system is first order non-linear system of differential equations.

2.7.2 Systems of Fractional Order Differential Equations

The general system of FDEs for functions U; =U;(t) (j=12,..,m) is written as [57]

D ™u, (t) =U,(t,u,u,,...,u,.),
D™u,(t) =U,(t,u,u,,..,u.),

D™u,(t)=U,(t,u,u,,..u.),

If U, s are linear functions of t,U;,U,,...,U_, then the system is a linear system of FDEs.

For example,

Deu(t)=u(t)+v(t)
Dev(t) =—u(t) +v(t)

The above system is a system of linear FDEs.

If U, s are non-linear functions of t,u,,u,,...,u_, then the system is a non-linear system
of FDEs.

For instance,
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3

3 8t2
D2u(t)=—-8u(t)+V3(t) -4t + 4t + ——-1
(t)=-8u(t)+v'(t) I

5
L 32t2

D2v(t)=t*Du(t)+v(t)-3t* -2+ —=-1

T

The previous system is a system of non-linear FDEs.
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CHAPTER 3

THE APPLICATION OF THE OPERATIONAL MATRIX OF
DERIVATIVE TO HIGH ORDER DIFFERENTIAL EQUATIONS

High-order differential equations have substantial attention, because of their fascinating
mathematical structures and properties and they play an important role in the thermal
science and mechanical engineering. Fluid-flow, heat transfer and other related physical
phenomena of interest are gained by principles of conservation and are symbolized in

terms of differential equations denoting these principles.

For example, fourth-order DEs are used in the numerical analysis of viscoelastic and
inelastic flows, the free vibration analysis of beam structures, deformation of beams and
plate deflection theory [1]. A fourth order analogue of it is the Orr-Sommerfield equation
explain to great correctness the cross-stream behavior of channel fluid-flow. Moreover,
sixth-order differential equations arise in the free vibration analysis of ring structures and
astrophysics [2]. Some related applications of high-order DEs can be found in [1-8]. In
[1], Noor and Mohyud-Din presented the variation iteration method for solving fourth-
order BVPs and in [4], [7] they illustrated the homotopy perturbation method for solving
fifth-order and sixth-order BVPs, respectively. Also, in [8], a Legendre Petrov-Galerkin
method was demonstrated for the solution of the fourth-order BVPs. In [5-6], the
numerical solution of fifth-order BVPs was presented by using a new cubic B-spline
method and a sixth-degree B-spline approximation, respectively. In [2], EI-Gamel et al.
applied sinc-Galerkin method for solving sixth-order BVPs. Secer and writer of this thesis
submitted a paper which deals with the numerical solution of high order differential

equations by using Legendre wavelet operational matrix method in [56].

In this chapter, the operational matrix of Legendre wavelet is generalized in order to solve

high-order linear and non-linear multi-point: initial and boundary value problems.
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3.1 Solving High Order Linear Differential Equations

This section introduces an alternative solution technique called LWOMM to obtain the

numerical solution of high order linear DEs. Consider the following equation

d"u
dt n-1

du
e +h (1) +"'+h”‘1(t)ﬁ+ h,(hu=g(), t,<t<t (3.1)

with these initial conditions

du d%u d"u
u(to) = Up» E(to) =uy, F(to) = Uzv-"W(to) =Uy4 (3.2)

or with these boundary conditions

du d2u diU
U(to)zuo, E(to)zul, F(IO)ZUZ""’W(tO):ui
! dU ! dzu ' diu ' . .
u(t) =, E(tl):ul’ F(tl)=uz,...,ﬁ(tl):ui i=0,1,..,n/2 if neven
du dzu diu
U(to):u01 E(t0)=ul, F(to):uz’""ﬁ(ti)):ui
A , du ;o d™ : : .
U(tl)zum E(tl):ul’ F(tl)zuz""'W(tl)zui_l i=01,..,(n+1)/2 if nodd
(3.3)
First of all, approximating u(t) by the Legendre wavelets, then we obtain
u(t)=Cly(t) 3.4)

where C is an unknown vector and  (t) is the vector defined in Equation (2.27). If we

utilise Equation (2.31) then we have

L=cop(n), L= CTDzw(t),...,%(t) =CTDy (1) (3.5)

Also approximating hy (t),h, (t),....h, (t) and g(t), then we get
h(t) = H'w (t), h(t)=Hy(t),...h (t)=H w(t), and g(t)=G w(t) (3.6)

where vectors H,,H,,...,H, and G are given by Equation (2.26). Substituting

Equations (3.5)-(3.6) in Equation (3.1) we obtain

23



R(t)=(Ho"w (1)) (CTD"w (1)) +(H, v (1)) (CTD" y (t)) +..
#(How (0)(C7Dy (1) +(H,w (1)(CTw (1) -Gy (1) =0

If we use the product operation matrix of Legendre wavelets, then we obtain

R<t>=<HJw<t>>(wT (1)(0") ¢)+(Hv ()(v" (©)(D™) € )
#(How (O) " (O0) ¢+ (Hy () (t)e)-v
=y (t)H, (D”) C+y" (t)H,(D") Ctuty (t)H,, (D) C+y” ()H~nC—¢//T(t)G

(3.8)

3.7)

where Hy,H,,...,H, are the product operation matrices and can be calculated by using

Equation (2.32).

We obtain 2“(M +1)—n linear equations by computing
v (OR(t)dt=0, j=1,..2(M+1)-n (3.9)

Also, if we substitute these initial conditions (3.2) in Equations (3.4)-(3.5) we obtain

du
u(ty)=Cy (ty)=u,, E(to);CTDw(to):

d%u d"u o
O|t2( )= C Dy (t, )=u2,...,F(to);CTD w(ty)=U,,

(3.10)

We obtain 2“(M +1) set of linear equations by using Equations (3.9) and (3.10). These
linear equations can be solved for unknown coefficients of the vector C . Accordingly,

u(t) which is given in Equation (3.1) can be computed.

3.2 Solving High Order Non-Linear Differential Equations

In this section, the LWOMM is implemented for solving n—th order non-linear DEs.

Consider the following equation

d" d d"*u
dtﬂ (t)=H (t,u(t),d—;J(t), B (t)) t,<t<t, (3.11)

with the initial conditions
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du d%u d"u
u(to) = U E(to) =Uuy, F(to) = Uzv--"W(to) =Uy4 (3.12)

or boundary conditions

iy, O

o j(tO)_uv dd2t: (tO)_uz’m,d(ijT(tO)_Ui i=01..,n/2 if neven
u(t)=up, o (t) = ()=t ()=
()=t M) =0, L) =u, D)0 |
du 42 4y i=01,..(n+1)/2 if nodd

u(t) =g, ()=t g (6) = (6) =

(3.13)
First we presume that the unknown function u(t) is approximated and given by
u(t)=Cly(t) (3.14)

where C is an unknown vector and ¥ (t) is the vector which given in Equation (2.27).

By utilising Equation (3.11) then we obtain
C'D"y (t)=H (t,CTy (t),CTDy(t),...C' D"y (1)) (3.15)
Also by substituting initial conditions (3.12) in Equations (3.4) and (3.5) we obtain

du

u(ty)=Cly(ty)=uy, E(to);CTDl//(to):ul
dZU dn—lu . (316)
W(tO) =C'Dy(t,)= uz,...,W(to) =C'D"y () =u,,

To obtain the solution u(t) , we first compute Equation (3.15) at 2(M +1)—n points.

For a better result, we utilise the first 2*(M +1) —n roots of shifted Legendre polynomials

Py s (t). If we use these equations collectively with Equation (3.16), then we obtain

k . . . .
2 (M +1) non-linear equations. These non-linear equations can be solved for unknown

coefficients of the vector C. Accordingly u(t) given in Equation (3.11) can be

computed.
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3.3 Applications

In this section, we present some examples to demonstrate the performance of the
introduced tecnique for solving high order linear and non-linear DEs. It is shown that the
LWOMM vyield better results.

Example 3.1 Consider the following second-order non-linear BVP

d®u du Y’
—+2| — | +8u(t)=0, O0<t<l (3.17)
dt dt

with these boundary conditions
u(0)=0, u(@)=0 (3.18)
The exact solution of the previous system is u(t) =t —t*

To solve the above problem, we implemented the method presented in Section 3.2 with

M =2, k =0.Approximating solution following as

du du
u(t)=C'y (t), E;CT Dy (t), F;CTDZz//(t)

We get

0 0O O 0O 0 O
D=/23 0 0| D= 0 0O

0 2415 0 1256 0 0
If we consider (3.17) with (3.18), we have

CTD% (t)+2(CTDy (1)) +8(C"Dy (t))=0 (3.19)

NS

1
Calculating Equation (3.19) at the first root of Py(t), i.e. t,= 510

We get

¢, 153 +2(2¢,,\/3 + 26,153 (~1+ 2t))

+8C,,0 +8C,, /3 (—1+2t) +8C, ,+/5 (6t* —6t +1) =0

and by utilising boundary conditions we have
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Coo — \/gco,l + \/gco,z =0

Coo T \/éco,l + \/gco,z =0
If we solve this system of nonlinear algebraic equations, we get

C" =[Cy:Co1:Cy, | = 0.1666666666,-0.4309487636 107, -0.07453559926 |

Consequently,

1
u(t)=C"y (t)=[0.1666666666,-0.4309487636 10 %,-0.07453559926 || /3 (~1+2t)

\/5(6t* —6t+1)
The approximate solution with the exact solution are displayed in Table. 3.1.

Table 3.1 Comparison between the exact solution and our numerical solution for

Example 3.1
M=2 k=0
t Exact Solution u(t) Approximate Solution Absolute Error
0.0 0.00 -0.110° 0.110°
0.1 0.09 0.08999999994 0.6 107*°
0.2 0.16 0.15999999999 0.110°
0.3 0.21 0.20999999999 0.110°
0.4 0.24 0.23999999999 0.110°
0.5 0.25 0.24999999999 0.110°
0.6 0.24 0.23999999999 0.110°
0.7 0.21 0.20999999999 0.110°
0.8 0.16 0.15999999999 0.110°
0.9 0.09 0.08999999999 0.6 107*°
1.0 0.00 -0.110°° 0.110°

Example 3.2. We consider the following fourth-order linear VP
4 3 2
4d—zj(t)—costd—l:+25intd—l:+2costd—u+16u =4e'sin2t, O<t<1 (3.20)
dt dt dt dt

27



with these initial conditions

du d?u du
u(0)=0, E(O):l’ F(o):z, F(O):Z (3.21)

The exact solution of the previous system is known as u(t)=e'sint

To solve Equation (3.20), we applied the method presented in Section 3.1 with

M =5, k =0.Approximating solution following as

du(t
u(t) =Cly(t), %zCTDy/(t)
d’u(t) _ 1o 4°u(t) _ rpyo dU(t) _ v
=C Dyt =C Dy (t =C Dy(t
e v(t) —p v(t), —p v (t)

Also approximating h,(t) =sint, h(t)=cost, g(t)=e'sin2t following as
hy(t) = Hy (1), h(t)=Hy () and 9(t)=Cy ()

1 1 1
where Ho(t)=_[sintz//(t)dt, Hl(t):jcostw(t)dt and G(t)=je‘sin2tw(t)dt
0 0 0

We get
0 0 0 0 0 0
23 0 0 0 0 0
o 0 215 0 0 0 0
0 0 2J35 0 0 of
0 0 0 263 0 0
0 0 0 0 2J99 0
0 0 0 0 00
0 0 0 0 00
o 4153 0 0 0 00
|0 43515 0 0 00
0 0 4/63+/35 0 00
0 0 0 49963 0 0
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0 0 0 000
0 0 0 000
3 0 0 0 000
D" =5 /3541543 0 0 000
0 8163+/35+/15 0 000
0 0 8996335 0 0 0
0 0 0000
0 0 0000
i 0 0 0000
0 0 0000
1663354153 0 0000
0 161996335415 0 0 0 O

If we consider (3.20) with (3.21), we have

R(t) =4C" Dy (t)—H, D’y (t)+2H, D’ (t)+2H, Dy (t)+16C"y (t)— 4G w(t)
(3.22)

By computing

L

v (OR(t)dt=0, j=12

0
We obtain two linear equations following as

—5.387308351+16¢, , +5.829881996¢,, + 22.57903587¢,,
—222.6322963c, , + 20349.82385¢, , +118.3624723c, , =0
~3.173505657 +15.06490716¢,, -+ 25.84945221c, ,
+121.4121245c¢, , —1101.248082c, , +116247.0813c, , =0

and by utilising initial conditions we have

Coo — \/§c0'l + \/gcov2 - \/7c0’3 +3Cy, — \/1_100‘5 =0
24/3c,, —6+/5¢, , +10/7¢, 5 —42¢, , +18\11c,, =1
124/5¢, , —60~/7¢, , + 420c, , — 25211, = 2
1204/7¢,, — 2520c, , ~12604/11c, , = 2

If we solve this system of linear algebraic equations, we get
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T _
C _[CO,O’CO,17C0,2’CO,3'CO,4’CO,S]

=[0.9077018418,0.6482676542,0.1005609239,0.00298064330,-.00071311177,-.0000889418471]

Consequently,

1
[ 0.9077018418 T B(-1s20
0.6482676542 e
(1) =CTy (1) | 0:1005600238 5(6t°~6t+1)
= V= 0,00298064330 J7 (20t -30t? +12t 1)
~00071311177 3(70t* ~140t° +90t> — 20t +1)
-0000889418471
- . J1_1(252t5—630t4+560t3—210t2+30t—1)

The exact solution and our approximate solution are displayed in Table. 3.2.

Table 3.2 Comparison between the exact solution and the approximate solution for

Example 3.2
M =5 k=0

t Exact Solution u(t) Approximate Solution Absolute Error
0.0 0.0000000000 0.060 10 0.060 10™*
0.1 0.1103329887 0.1126216474 0.0022886587
0.2 0.2426552686 0.2466635725 0.0040083039
0.3 0.3989105540 0.4038963982 0.0049858442
0.4 0.5809439009 0.5859989519 0.0050550509
0.5 0.7904390834 0.7944690603 0.0040299768
0.6 1.0288456660 1.0305343470 0.0016886798
0.7 1.2972951110 1.2950630240 0.0022320878
0.8 1.5965053400 1.5884746930 0.0080306463
0.9 1.9266733040 1.9106511420 0.0160221600
1.0 2.2873552870 2.2608471370 0.0265081500
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Example 3.3 Consider the following fifth order linear IVP [5]

d?u du

d°u d‘u du ) 2
ey +(t- 2)d4 ZF—(t +2t— 1)d—+(2t +4t)— ” (3.23)
—2t?u =4e'cost—2t* +4t> +6t* —4t+2, O<t<1
subject to these initial conditions
du d?u d3u d‘u
u(0)=0, —(0)=2, —(0)=6, —(0)=4, —(0)=0 3.24

The exact solution of the above system is u(t)=2e'sint+t*

To solve the above problem, we applied the method presented in Section 3.1 with

M =7, k=0.Approximating solution following as

d? u(t)

u(t)ECTl//(t), du(t) ~C"Dy (1), ~C'D? l//( )

dt

Also, approximating h(t)=t-2, h(t)=t>+2t-1 h(t)=2t>+4t, h,(t)=2t>, and

g(t) =4e' cost —2t* +4t® + 6t° — 4t + 2 following as
O =H w(t), h®)=Hy), hO=H, w1, hO=H ) and g(t)=Cy ()

where

H, (t) = jt 2)y (t)dt, H,(t)= j t+ 2t — 1)y (t)dt, Hz(t):j(2t2+4t)y/(t)dt,

H,(t) = j (2t*)y (t)dt and G(t) = J'4e cost—2t* +4t° +6t” — 4t + 2y (1)

We get
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D’ =

o O

0
8351543

0
0
0
0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2J35 0 0 0 0 0
0 263 0 0 0 of
0 0 2499 0 0 0
0 0 0 24143 0 0
0 0 0 0 24195 0
0 0 0 0
0 0 0 0
0 0 0 0 0
443515 0 0 0 0
0 4./63/35 0 0 0
0 0 4:/99/63 0 0
0 0 0 414399 0
0 0 0 0 4195143
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8\/63+/35+/15 0 0 0 0
0 8\/99/63+/35 0 0 0
0 0 8143./99/63 0 0
0 0 0 8195143499 0
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0 0 0 0 0000
0 0 0 0 0000
0 0 0 0 0000
0 0 0 0 0000

4 _
D=l 16./63351543 0 0 0 0000
0 164/99+/63+/35+/15 0 0 0000
0 0 161/143+/99+/634/35 0 0000
0 0 0 1641951439963 0 0 0 0
0 0 0 00 O0O0TD O
0 0 0 00000
0 0 0 00000
0 0 0 00000

D° =
0 0 0 00 O0O0TD O
32499+/63+/35+/15+/3 0 0 00000
0 324/143/99/63+/35+/15 0 00000
0 0 324195/143/99+/63/35 0 0 0 0 0O

If we consider (3.23) with (3.24), we have
R(t) =CTD° (t)+(H, v (1))(C'Dw (1)) +2(CTD (t))—(H, v (1))(C" D’ (1))
+(H2T1//(t))(CT Dy (t))—(HBT!//(t))(CTl//(t)) ~Gy(t)
(3.25)

By computing

1

v, (OR(t)dt=0, j=123

0

We obtain three linear equations following as

10.6666666667c, , +8.660254039c, , +4.323064761c, , +557.3716095¢, ,
-7574.000000c, , +108652.6281c,, -0.3 107, , -0.15 10™*c, , -8.112098454 = 0

-1.782876059 - 0.5773502693c, , +5.200000001c,, - 2.065591121c, , -18.46123351c, ,
+4221.354229c, , - 43449.57403c, , +715526.8907¢, ,-0.110*c,, =0

0.1490711985¢, ,-0.986 107, ,+9.238095242c, ,-38.82075211c, ,-47.53241642¢, ,
+14713,31402c, ,-134121.8771c, , +2550146.901c, ,-0.3879252900=0
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and by utilising the initial conditions we have

2
u(0)=C"y (0)=0, ?gcbw(o):z, dd”tgo);cTDZl//(o)zes
3 4
d;go);CTD3w(o):4, %;CTD‘W(O):O

If we solve this system of linear algebraic equations, we get

-7

2.142158342
1.578792178
0.2730371723
0.0054607618
-0.001414419958
-0.000175507821
-0.86373431 10
| -0.96647696 10~

T
C = [Co,o 1C0,11C.21C031C.41Co 51 Co 6 Co,7] =

Consequently,

1
[ 2142158342 T B(-1+21)
1.578792178 2
0.2730371723 7 J§£6t _fm)
| 0o0steorers 7(20t° - 30t +12t-1)
u=CY (V=) 4 pora1a41056 3(70t* ~140¢ + 9012 - 20t +1)
0.000175507821 JI1(2521° -630t" +560t° - 210 +30t -1)
-0.86373431 10°°
096547696 10 J13 (924t6 —2772t° + 3150t* —1680t° + 420t% — 42t +1)
] BN (3432t7 ~12012t° +16632t° ~11550t" +4200t° — 756t + 56t -1)

The approximate solution with the exact solution are displayed in Table. 3.3.
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Table 3.3 Comparison between the exact solution and the approximate solution for

Example 3.3

t Exact Solution u(t) Appr';/lxi:n:étekszo(l)ution Absolute Error
0.0 0.0000000000 -0.542513010°° 0.542513010°°
0.1 0.2306659774 0.2349757869 0.0043098115
0.2 0.5253105372 0.5326889428 0.0073784060
0.3 0.8878211080 0.8965862650 0.0087651579
0.4 1.3218878020 1.3298579860 0.0079701859
0.5 1.8308781670 1.8353120110 0.0044338456
0.6 2.4176913320 2.4152287240 0.0024626060
0.7 3.0845902220 3.0711957340 0.0133944863
0.8 3.8330106800 3.8039211894 0.0290887837
0.9 4.6633466080 4.6130299590 0.0503166471
1.0 5.5747105740 5.4968272320 0.0778833389

Example 3.4 Consider the following sixth order linear BVP [2]

‘(’j:‘; ¥ z:‘j ¥ ‘;i‘j ~u=e(-15t2+ 78t -114), O<t<l (3.26)

subject to these boundary conditions

du @ du d?u

0(0)=0. Z(0)=0, F(0)=0,u(t)=L/e, TL()=2/e, F()e  (@2)

The exact solution of the above system is u(t) =t

To solve the above problem, we applied the method presented in Section 3.1 with

M =7, k=0.Approximating solution following as

WO - cpy, (1)

ut)=Cly(t), .
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diu(t)
dt?

dCu(t)
T dt®

=C'D () ~C'D% (t)

Also approximating g(t) =e™ (-15t* +78t—114) following as  g(t) = Gy(t)

We get
0 0 0 0 0 0 0 0
2d3 0 0 0 0 0 0 0
0 2415 0 0 0 0 0 0
o 0 0 235 0 0 0 0 0
0 0 0 263 0 0 0 of
0 0 0 0 2J9 o 0 O
0 0 0 0 0 24143 0 0
0 0 0 0 0 0 24195 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
4153 0 0 0 0 0 0
o 0 43515 0 0 0 0 0
0 0 46335 0 0 0 0
0 0 0 4./99/63 0 0 0
0 0 0 0 414399 0 0
0 0 0 0 0 4195143 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3 835153 0 0 0 0 0
b= 0 8/634/35+15 0 0 0 0
0 0 8/99/63+/35 0 0 0
0 0 0 8143/99/63 0 0
0 0 0 0 8195143199 0

O O O O o o o o
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0 0 000000
0 0 000000

0 0 000000

o 0 0 000000
0 0 000000

0 0 000000
64+/143/99/63+/3515+/3 0 000000O

0 64+/1954143+/994/63+/35\15 0 0 0 0 0 0

If we consider (3.26) with (3.27), we have
R(t) =C'D° (t)+C' D’y (t)+C D (t)-C'y (t)-G'w(t)

By computing

1

v (OR(t)dt=0, j=12

0

We obtain two linear equations following as

53.85097844 + 26.83281573¢, , - €, , +317.4901573c, , + 2398701.153¢, , = 0
26.41233933-C,, +91.65151390c, , +1454.922678, , 0.5 10°°c, ,-049 107c, , +19338946.95¢,

and by utilising the boundary conditions we have

U(O)ECTw(O):O, U(l)ECT(//(l):%

du T du T 2
—(0)=C'Dy(0)=0, —(1)=C Dy (l)=-—
dt() v (0) dt() v (1) o
d2u du 1
——(0)=C" D% (0)=0, —(1)=C'Dw(1)==

If we solve this system of linear algebraic equations, we get
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) . ]
[ 01161815354 | V3(-1+2t)
0.1069989365 Jg(Gtz gt +1)
0.03242759289 L
o 0001046948131 V7 (200 301" +12t-1)
u(t)=Cw(t)=| 4 orssesateos 3(70t* ~140¢° + 90 - 20t +1)
0.0004149720161 J1 (252t° -630t" +560t° - 210t* + 30t -1}
-0.0000226295487
01493379251 10° J13 (924t6 ~2772t° +3150t* ~1680t° + 420t — 42t +1)
i BN (3432t7 ~12012t° +16632t° ~11550t* + 4200t* — 756t + 56t —1)

The exact solution and our approximate solution that has been obtained by using proposed

method with M =7, k =0 are displayed in Table. 3.4.

Table 3.4 Comparison between the exact solution and the approximate solution for

Example 3.4
M =7, k=0Approximate

t Exact Solution u(t) Solution Absolute Error
0.0 0.0000000000 0.30654210°° 0.30654210°°
0.1 0.0009048374 0.0031672437 0.0022624063
0.2 0.0065498460 0.0089879497 0.0024381036
0.3 0.0200020919 0.0221105281 0.0021084361
0.4 0.0429004829 0.0449373620 0.0020368791
0.5 0.0758163324 0.0782004350 0.0023841026
0.6 0.1185433134 0.1214626682 0.0029193547
0.7 0.1703287592 0.1735549706 0.0032262115
0.8 0.2300564296 0.2329590100 0.0029025806
0.9 0.2963892819 0.2981457037 0.0017564224
1.0 0.3678794412 0.3678794407 0.25552210°°

38



Example 3.5 Consider the following fifth order non-linear BVVP [6]

5
AU e B giran (3.28)
dt (1+1)

with these boundary conditions

du du d’u
0)=0, u(l)=In2, —(0)=1, —(1)=05 —-(0)=-1 .
The exact solution of the above system is u(t) = In(1+t)

To solve the above problem, we applied the LWOMM introduced in Section 3.2 with

M =8, k =0.Approximating solution following as

ut)=Cly (t), %;CT Dy (1)
d®u(t) _ ~r2 d’u(t) _ ~r s
=C Dy(t =C Dyt
i v(t), v(t)
48

Also approximating g(t) = followingas g(t)=G'y(t)

5

where G(t)—j[(lii)s}y(t)dt

We get
0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
0 2415 0 0 0 0 0 0 0
0 0 235 0 0 0 0 0 0

D= 0 0 0 263 0 0 0 0 0],
0 0 0 0 2499 0 0 0 0
0 0 0 0 0 24143 0 0 0
0 0 0 0 0 0 2195 0 0
0 0 0 0 0 0 0 24255 0
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0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 00

4153 0 0 0 0 0 0 00

0 43515 0 0 0 0 0 00

D2=| 0 0 46335 0 0 0 0 00|

0 0 0 49963 0 0 0 00

0 0 0 0 414399 0 0 00

0 0 0 0 0 4195143 0 00

0 0 0 0 0 0 44255\195 0 0

0 0 0 0 00000

0 0 0 0 00000

0 0 0 0 00000

0 0 0 0 00000

DF- 0 0 0 0 00000

329963135153 0 0 0 00000

0 32:/1431/99/63+/35+15 0 0 00000

0 0 32195+143,/99/63/35 0 00000

0 0 0 32/255+/195/1439963 0 0 0 0 0

If we consider (3.28) with (3.29), we have

R(t) = CT D%y () + 24e *(€0) _ Gy (t)=0 (3.30)

Calculating Equation (3.30) at the first four roots of P, (t), i.e.

t = %+%\/1+ 4R00tOf (24310 Z*+11440 Z3+1716 _Z°+88_ Z+1,index =1)

t, = %— % \/1+ 4RootOf (24310 _Z*+11440 Z3+1716 _Z*+88_Z+1,index =1)

t, = % + %\/1+ 4RootOf (24310 _Z*+11440 73+1716_Z?+88 _Z+1,index =2)

We obtain four non-linear equations and by utilising boundary conditions we have a
system of non-linear algebraic equations

If we solve this system of non-linear algebraic equations, we get
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T
C = [Co,o 1C01C0,21Co.31Co,41Co51Co 6 Co 7 Co,s] =

Consequently,

0.3877430836
0.1961116976
-0.01825787356
0.002530037833
-0.0001049565766
0.6036072799 10
-0.7854936709 10°°
0.1064101460 10°

1
gt

0.1105550721 10°°

|
]

0.3877430836
0.1961116976
-0.01825787356
0.002530037833
-0.0001049565766
0.6036072799 10°*
-0.7854936709 10°
0.1064101460 10°°
| -0.1105550721 10 |

1
V3(-1+2t)
J5(6t" -6t +1)
J7 (206 -301° +12t-1)
3(70t" ~140t° +.90t" - 20t +1)
Ji1(252t° - 630t* +560t" - 210t" + 30t -1)
Ji3(9241° - 27721° + 3150t* ~1680t° + 420t - 42t +1)
J15 (3432t7 ~12012t° +16632t° ~11550t* + 4200t° — 756t” + 56t —1)

7 (12870t8 —51480t" +84084t° — 72072t° + 34650t — 9240t° +1260t> - 72t +1)

The approximate solution with the exact solution are given in Table 3.5.

41




Table 3.5 Comparison between the exact solution and the approximate solution for

Example 3.5
M =8, k=0

t Exact Solution u(t) Approximate Solution Absolute Error
0.0 0.0000000000 -0.851428 107*° 0.851428 10°*°
0.1 0.0953101798 0.09685278434 0.00154260454
0.2 0.1823215568 0.1848673057 0.0025457489
0.3 0.2623642645 0.2654062222 0.0030419577
0.4 0.3364722366 0.3395145459 0.0030423093
0.5 0.4054651081 0.4080466567 0.0025815486
0.6 0.4700036292 0.4717568670 0.0017532378
0.7 0.5306282511 0.5313642136 0.0007359625
0.8 0.5877866649 0.5875997863 0.0001868786
0.9 0.6418538862 0.6412425416 0.0006113446
1.0 0.6931471806 0.6931471809 0.310°

Example 3.6 Consider the following sixth order non-linear BVP [7]

d°u

F(t):e‘uz(t), 0<t<1 (3.31)

subject to these boundary conditions

2
u(©0)=1 X(0)=1 TL(0)=1
s@)-17e, M)=—17e, TU1)=1re
dt dt?

The exact solution of the above system is u(t)=e™

To solve the above problem, we applied the method presented in Section 3.2 with

M =7, k=0.Approximating solution following as

d?u(t)
dt?

dCuf(t)
bt

u(t)=Cly(t), %;cmw(t),

~CTD (1)

~CTD (1)
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Also approximating g(t) =€' following as g(t) = Gy(t)

1
where G(t) = jetw(t)dt
0

We get
0 0 0 0 0 0 0 0
2d3 0 0 0 0 0 0 0
0 2415 0 0 0 0 0 0
o 0 0 235 0 0 0 0 0
0 0 0 263 0 0 0 O
0 0 0 0 2J9 0o 0 0
0 0 0 0 0 24143 0 0
0 0 0 0 0 0 24195 0
0 0 0 0 0
0 0 0 0 0
41543 0 0 0 0
o 0 43515 0 0 0
o0 0 46335 0 0
0 0 0 4/99/63 0
0 0 0 0 414399
0 0 0 0 0
0 0
0 0
0 0
. 0 0
- 0 0
0 0
641143+/99/63+/351151/3 0
0 644195+143+/99/63+/35115

If we consider (3.31) with (3.32), we have
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R(t) = CTD6z//(t)—(GTgy(t))(CTz//(t))2 (3.33)

Calculating Equation (3.30) at the first two roots of P, (t) ie.

t, = % + %\/1+ 4Ro00tOf (12870 _Z*+6864 Z°+1188 Z>+72 Z+1,index =1)

t, = % - % J1+ 4RootOf (12870 Z*+6864 7°+1188 Z°+72 Z+1,index =1)

We obtain two non-linear equations and by utilising boundary conditions we have

u(0)=CTy(0)=1, u(1)=C (1)%

du T du T 1

—(0)=C'Dy (0)=-1, —(1)=C'Dy(1)=-=
dt( ) v(0) dt (1) v (1) o
2 2

?szu(o);cTDzy/(o):l, deu(l);cTDZV,(l):%

If we solve this system of non-linear algebraic equations, we get

T

0.6318783499

-0.1784202709

0.2307661619
-0.002863931751
0.0001531565124
0.0001658259796
0.2825296276 10°°
| -0.9394504404 10°° |

T _ —
C = I:CO,O’ CO,l’ CO,Z ) C0,3’ C0,4 ! CO,S ! CO,6’ C0,7 :| -

Consequently,
) , _
06318783499 ' JB(-L+21)
-0.1784202709 2
0.2307661619 Jggm _fm)
0.002863931751 V(206 -30¢" +121-1)
— T — !
ut=Cv(t)= |, soo1s31565124 3(70t* ~1408+90¢° - 201 +1)
0.0001658259796 Ji1(252t° - 630t* +560t° - 21017 + 30t -1}
0.2825296276 10°° ) i ) -
09304504404 10° V13 (9241° - 27721° + 3150t° ~1680° + 420t° - 42t +1)
i ] t7 ~12012t° +16632t° ~11550t* + 4200t° — 756t + 56t —
J15(3432t7 ~12012t° +16632t° —11550t* + 4200t — 756t% + 56t 1
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The approximate solution with the exact solution are displayed in Table. 3.6.

Table 3.6 Comparison between the exact solution and the approximate solution for

Example 3.6
M=7 k=0

t Exact Solution u(t) Approximate Solution Absolute Error
0.0 1.0000000000 1.0000000000 0.0000000000
0.1 0.9048374180 0.9035595802 0.0012778377
0.2 0.8187307531 0.8165310322 0.0021997209
0.3 0.7408182207 0.7385408499 0.0022773707
0.4 0.6703200460 0.6687962996 0.0015237462
0.5 0.6065306597 0.6062498912 0.0002807683
0.6 0.5488116361 0.5497646530 0.0009530170
0.7 0.4965853038 0.4982801468 0.0016948430
0.8 0.4493289641 0.4509791614 0.0016501970
0.9 0.4065696597 0.4074550200 0.0008853600
1.0 0.3678794412 0.3678794407 0.227001010°*
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CHAPTER 4

THE APPLICATION OF THE OPERATIONAL MATRIX OF
DERIVATIVE TO SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve systems
of ordinary differential equations numerically. Some related applications of such systems
can be found in [51-54]. In [51], Patil and Khambayat presented the differential transform
method for solving systems of linear differential equations and in [52], Adio illustrated
the same method for solving the system of second order differential equations. Also, in
[53], the differential transform method and Laplace transform method were demonstrated
for the solution of the such systems. In [54], the numerical solution of the system of

differential equations was presented by using the Adomian decomposition method.

In this chapter, the Legendre wavelet operational matrix of derivative is generalized in

order to solve systems of linear and non-linear differential equations.

4.1 Solving Systems of Linear Differential Equations

In this section, the LWOMM is implemented to solve systems of linear differential

equations. Consider the following system

d"u
S = MUty Ou_ k()
d"u,
F = hy, (DU, +...+ hy, (DU, +K, (1)
| (4.2
d"u,,

= hml(t)ul to.t hmn (t)um + km (t)

n

with these initial conditions
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du d?u d"u
U, (to) = Uy, d_tl(to) =Uy, Tzl(to) = uw--wwj(to) = Uy
du du d"u
u, (to) = Uy, d_tz(to) =Uy, dez(to) = u22""vdt—nf(to) = u2(n-1) (4_2)
0 (1) =g 2o () =ty Y (1) =y S () =
m \ "0 mO dt (0} ml dtz 0 m2 dtn_l 0 m(n-1)
or with these boundary conditions
du d?u d'u
U, (to) = Uy, d_tl(to) = Uy, Tzl(to) = u12’---1Til(to) = Uy

du d?u d'u
U, (to) = Uy, d_tz(to) =U,, dt22 (to) = uzzy"-’Tiz(to) = Uy,

u; (t)) =uj, d_tj( 0)=Uj. dtzj (to)=Uj0m d,[.J (to)=uy
, du , d?u , d'u :
ul(tl) =Uyp , d_tl( 1) =U dtzl ( 1) =Up ""'_'l(tl):uli (4-3)

' i , du . d'u. ,
u; (t) =uj,, d_tj(t1)zuj1 ) dtzj (t)=uj, ,...,Ti’(tl):uji

i=0,1..,n/2 if neven, j=0,1,...,j/2 if meven

du d?u d'u
ul(to):ulo’ d_tl(to):un’ Tzl(to):uuv"vwil(to):uli

du d?u d'u
uz(to):uzo' d_tz(to)zuzv dt22 (tO)ZUZZ""’TiZ(tO)ZUZi

du. d?u. d'u.
u; (t) =y, d_tj(tO):Ujl' dtzj (tO):“jzv"’Tij(tO):”ji

, du , d?u ,d™u :

ul(tl):ulO’ d_tl(tl):ull’ Tzl(tl):uﬂ ""’F_ll(tl):ul(i—l)

, du , d?u ,du
u, (tl):u20’ d_tz(tl):uﬂ' Tzz(tl)zuzz ’---’T_E(H):uz(i—n

!

, du. . d%u. ., du. ,
Ujs (t) = Ugiao s d—il(tl):u(j_m, Tﬁl(tl):“(i—l)z 1---’Til(ﬁ):“(j—l)(i—1)

i=01..,(n+1)/2 if nodd, j=0,1,..,(m+1)/2 if modd
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First we presume that unknown functions U, (t),u,(t),...u, (t) are approximated and

given by
U (1) =C (1), u,(t)=C, w(t),...u, (t)=C, w(t) (4.4)
where C.C,,...C, are unknown vectors and

R (€, ey B (£, My (8), ey P (8), 0 M (8), o, P () can be any function of the independent
variable t and dependent variable h; (i=12,..,m j=12,..,n) and (t) is the vector

which given in Equation (2.27). By utilising Equation (2.31) we obtain

%(t) =Dy (1), %(t) =C, Dy (1), ., d;tm (t)=C, Dy (t)

T 1)=c10% (1), L ()=c, 0 (1), L) =C, D (1) .
T ()=CIDY (1), TE()=C/ DY (1), ddt“ (t)=C, D (1)

Approximating hy, (€),..., i (£), My (8, o By (€, b (£), sy (1) , We gt

hy ()= Hy 'y (1), hy(®) = Hy, w (t),h, (0 = Hy Ty (t)

.hﬂ(t) =H, y(t) hzz(t) =H,, w(t),... hzn(t) =H,, " (t) 4.6)
ha) =H, v (t), h,®O=H, w(t),.. .hmn(t) =H,, "v(t)

We can also approximate Kk, (t),k,(t),...k, (t) as

k (1) =K w(t), k(t)=K, w(t),..k, () =K, w(t) (4.7)

where vectors K, K,,...,K,, are given by (2.26). Substituting Equations (4.5)-(4.6) and
(4.7) in Equation (4.1) we obtain

R (t) :(ClTDn'//(t))_(H11T'//(t))(C1TW(t))_"'_(HlnTV/(t))(CmTV/(t))_ Ky (t)=0
R, (t) (CzTDnW(t))_(H21T'//(t))(C1TW(t))_"'_(HZnTW(t))(CmTV/(t))_ KzTV/(t): 0

Ry (t)=(C' D" (1)) = (Hu v (1)) (Cw (1)) =~ (Ha v (1) )(Cow (1)) - K, w (£) =0
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We obtain 2* (M +1)— mn linear equations by computing
1

[y, (DR (t)dt=0, j=1..,2(M+1), i=12,.,m (4.9)

0

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain

du d"u o
U, (to) = ClT'// (to) = Uy, d_tl(to) = C1T Dy (to) =Uyyeen F_ll(to) = C1T D 1W (to) = Uy
T du, : d"M, -
uz(to)zcz ‘/’(to):uzo’ E(to)zcz D‘//(to):uzl ----- W(to)zcz D l//(tO)ZUZ(n—l)
T dum T dnilum TmHn-1
um(tO):Cm V/(to):umo’ at (tO):Cm DV/(IO):uml""’W(tO):Cm D V/(to):um(n—l)

(4.10)
We obtain 2“ (M +1) set of linear equations by using Equations (4.9)-(4.10). These linear

equations can be solved for unknown coefficients of the vector C . Accordingly u(t)

which is given in Equation (4.1) can be computed.

4.2 Solving Systems of Non-Linear Differential Equations

In this section, the LWOMM is implemented for solving systems of non-linear
differential equations. Consider the following system with the initial conditions presented

in (4.2) or boundary conditions presented in (4.3).

d"u d"u d"*u d"u,

dtnl (t):Hl(t,ul(t),..., dt”*ll (t),u,(t),..., dt“*lz (t)""’um(t)""’—dt“*1 (t)]

d'u, .\ d"*u, d""u, d"u,

i (t)_HZLt’ul(t) ----- gt (1) (V) () sy (8) e o5 (1) (4.11)

d"u d"y,

U (1)= 1, (t,ul(t),...,w(t),uz 0. S 1), (t),...,%(t)]

First we presume that unknown functions U, (t),u,(t),....u, (t) are approximated and

given by

u (t)=Cly(t), u,(t)=C, w(t),...u, (t)=Cw(t) (4.12)
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where C,,C,,...,C,, are unknown vectors and y/(t) is the vector which is given in
Equation (2.27). If we use Equation (2.31), we obtain

du, du

du
d—tl(t)zClTDz//(t), " (t)zCZTDt//(t),...,d—tm(t);CmTDy/(t)
d’u d®u d?u
dtzl (t)=C D (1), dt22 (t)=C,’ Dzw(t),...,Tz’“(t) ~C, D% (t) (4.13)
d"u, Tn d"u, Tn d"u Tn
t)=C, D"y (1), t)=C, Dy (t),...—=(t)=C,, Dy (t
() =CTD"y (1), (D)2 €D (1), S (1) =C,T D (1)

By utilising Equation (4.11) we obtain

Dy ()= H, (t.Cly (t),...C,D" w (t),C, ' (1),...C,D" y (1),....C, T (t),..C, D"y (1))

C,' D"y (t) = H, (t.C/y (t),..C.D" 'y (1),C, p (t),..C,D" y (t),....C, "y (t),...C,D" (1))
c' D”y/(t) ~H_ (t,Cth//(t),...,ClD”’ll//(t),Cle//(t),...,CZD”’lt//(t),....,CmTl//(t),...,CmD”’lw(t))

(4.14)

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain

du d""u .
U (to) = C1TV/(to) = Uy, d_tl(to) = ClT D‘//(to) = u11’---’w,11(to) = C1TD lV/(to) = Uy
T du, T dHUz T 0L
Uz(to)zcz ’//(to)zuzo' E(to)zcz D‘//(to)zuzv---’w(to)gcz D ‘//(to)zuz(n—l)
du . d"'u_

Uy (t) = Cw (ty) =Upo. (t,)=C, Dy (ty) =Upy, ..o, (t,)=C," D" (ty) = Upgoy

dt dt"*

(4.15)

To obtain the solution u,(t),u,(t),...u,(t) , we first compute Equation (4.14) at

2“(M +1)—mn points. For a better result, we utilise the first 2*(M +1) —mn roots of

shifted Legendre polynomials P,

(M) (t) If we use these equations collectively with

Equation (4.15), then we obtain Zk(M +1) non-linear equations. These non-linear
equations can be solved for unknown coefficients of the vector C. Accordingly

u, (t),u, (t),....u, (t) given in Equation (4.11) can be computed.
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4.3 Applications

In this section, we present some examples we have wanted to demonstrate the
performance of the proposed tecnique solving systems of linear and non-linear
differential equations. It is shown that the LWOMM vyield better results.

Example 4.1 We first consider the following system of non-homogeneous differential

equations of the linear form [51]

du(y

it = w(t) —cost
d‘;(t) wit) e (4.16)
dw(t)

it =u(t)—v(t)

subject to these initial conditions

u(0)=1 v(0)=0, w(0)=2 (4.17)
The exact solution of the above system is

u(t)=e', v(t)=sint, w(t)=e'+cost

To solve the above problem, we applied the method presented in Section 4.1 with

M =2, k =0.Approximating solution following as

ut)=CTy(t), v(t)=STw(t), w(t)=W'y(t)

ta=cop). s, Sl=won

Also approximating hy(t) =cost and h, (t)=e" following as

h(t)=H, w(t) and h(t)=H, w(t)

where
1 1

Ho(t) = [costy (t)dt and H, (t) = ey (t)dt
0 0

We get
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0 0 0
D={2J3 0 0

0 215 0

If we consider (4.15) with (4.16), we have

Ry(t)=C Dy (t)-W Ty (t)+ H 'y (t)
R,(t)=S"Dy (t)-W y (t)+H, w(t)
R,(t)=WT™Dy (t)-C 'y (t)+STw(t)

By computing

[wi (R (t)dt=0, i=12 j=123

0
We obtain six linear equations following as

3.464101615¢, , — W, , +0.8414709848 = 0
3.464101615s,, — W, , +1.718281828 = 0
3.464101616W,, —C, , +5,, =0
—0.1349690260 — W, + 7.745966692¢, , = 0
0.4879501870 - w, , +7.745966692s, , = 0
7.745966698W, , —C, , +S,; =0

and by utilising initial conditions we have

Co0 ~ \/§Co,1 + \/gco,z =1
S0~ ‘/550,1 + \/gso,z =0

Wo 0 _\/§Wo,1 + \/gwo,z =2

If we solve this system of linear algebraic equations, we get

C" =501y o, | =[1.713532543,0.4950067009,0.06432908766]
ST = Sy0:S01:50, | =[0.4549484087,0.2418932127,-0.01608943696 |

WT =] W, 0, Wy, W, , | =[2.556224497,0.3633219442,0.03267681083]

Consequently,
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1
u(t)=C"y (t)=[1.713532543,0.4950067009,0.06432908766]| /3(~1+2t)

5 (6t* -6t +1)

1
v(t)=STy (t)=[0.4549484087,0.2418932127,-0.01608943696]| ~/3(~1+2t)

J5(6t” —6t+1)

1
w(t) =W "y (t) = [2.556224497,0.3633219442,0.03267681083]| /3 (-1+2t)

J/5(6t* -6t +1)

The approximate solution and the exact solution are displayed in Table. 4.1, Table 4.2
and Table 4.3.

Table 4.1 Comparison between the exact solution and the approximate solution u(t) for

Example 4.1
M =2, k=0

t Exact Solution u(t) | Approximate Solution Absolute Error
0.0 1.0000000000 0.9999999996 04107
0.1 1.105170918 1.093799476 0.011371442
0.2 1.221402758 1.204860258 0.016542500
0.3 1.349858808 1.333182345 0.016676463
0.4 1.491824698 1.478765738 0.013058960
0.5 1.648721271 1.641610436 0.007110835
0.6 1.822118800 1.821716441 0.000402359
0.7 2.013752707 2.019083751 0.005331044
0.8 2.225540928 2.233712366 0.008171438
0.9 2.459603111 2.465602287 0.005999176
1.0 2.718281828 2.714753512 0.003528316
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Table 4.2 Comparison between the exact solution and the approximate solution v(t) for
Example 4.1

Exact Solution V(t)

M=2 k=0

Approximate Solution

Absolute Error

0.0 0.00000000000 -0.5510°° 0.5510°
0.1 0.09983341665 0.1032218867 0.00338847005
0.2 0.1986693308 0.2021265251 0.0034571943
0.3 0.2955202067 0.2967139144 0.0011937077
0.4 0.3894183423 0.3869840548 0.0024342875
0.5 0.4794255386 0.4729369463 0.0064885923
0.6 0.5646424734 0.5545725887 0.0100698847
0.7 0.6442176872 0.6318909822 0.0123267050
0.8 0.7173560909 0.7048921268 0.0124639641
0.9 0.7833269096 0.7735760223 0.0097508873
1.0 0.8414709848 0.8379426685 0.0035283163
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Table 4.3 Comparison between the exact solution and the approximate solution W(t)

for Example 4.1

M=2 k=0
t Exact Solution w(t) | Approximate Solution Absolute Error
0.0 2.000000000 2.000000000 0.000000000
0.1 2.100175083 2.086401925 0.013773158
0.2 2.201469336 2.181571959 0.019897377
0.3 2.305195297 2.285510102 0.019685195
0.4 2.412885692 2.398216352 0.014669340
0.5 2.526303833 2.519690711 0.006613122
0.6 2.647454415 2.649933179 0.002478764
0.7 2.778594894 2.788943756 0.010348862
0.8 2.922247637 2.936722440 0.014474803
0.9 3.081213079 3.093269233 0.012056154
1.0 3.258584134 3.258584134 0.000000000

Example 4.2 Consider the following system of differential equations [53]

du(t)
dt
dv(t)

dt

dv(t) )
T'FU(t)-‘rV(t) =1

2u(t) +v(t)

subject to these initial conditions

u(0)=0, v(0)=1

The exact solution of the above system is known as

u(t)=e"-1, v({t)=2-¢"

To solve the above system, we used the method presented in Section 4.2 with

M =4, k =0.Approximating solution following as

ut)=C'y(t) and v(t)=S"w(t)
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dt dt
We get
0 0 0 0 0
2J3 0 0 0 0
D=l 0 215 0 0 0
0 0 235 0 0
0 0 0 263 0

If we consider (4.18) with (4.19), we have
R.(t)=C'Dy (t)+S Dy (t)+Cly(t)+S w(t)-1=0 (4.21)
R,(t)=S"Dy (t)-2C"w (t)-S"w(t)=0 (4.22)

Calculating Equations (4.21) and (4.22) at the first four roots of P, (t) ie.

c_Ll o 1 N245-14V70 1 24541470 1 245-1470
P20t 2 42 L2 42 Ft 2 42

and by utilising initial conditions we have

Coo — \/§Co,1 + \/gco,z - ﬁcos + 3Co,4 =0
So0 — \/gso,l + \/gso,z - ﬁso,a + 350,4 =1

If we solve this system of nonlinear algebraic equations, we get

C" =[-0.3719399342,-0.1812731838,0.02340226770,-0.00198837331,0.000125255710]

ST = [1.371939934, O.1812731837,-0.02340226756,0.001988373268,-0.0001252558]

Consequently,

i _ 1
-0.3719399342 T
101812731838 V3(-1+21)
2
u(t)=CTy (t)=| 0.02340226770 V5 (6t" -6t +1)

-0.00198837331 7 (20t° - 30t* +12t 1)
| 0-00012525571 ' 370+ 140t + 90t — 20t +1)
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_ - 1 )
1.371939934 T
0.1812731837 B(-1+2t)
2
v(t)=S"y (t)=| -0.02340226756 V5 (6t* -6t-+1)
0.001988373268 J7 (20t - 30t7 +12t 1)
00001252558 | | 3(70t* ~140t + 90t* ~ 20t +1)

The approximate solution with the exact solution are displayed in Table 4.4 and Table
4.5.

Table 4.4 Comparison between the exact solution and the approximate solution u (t) for

Example 4.2
M=2 k=0 M=4,k=0
t Exact Solution Approximate Approximate Absolute Error
u(t) Solution Solution

0.0 | 0.0000000000 -0.1410° 0.1120 10°° 0.1120 10°°
0.1 -0.0951625820 | -0.0941420851 | -0.09635576876 0.00119318676
0.2 -0.1812692469 | -0.1807908742 | -0.1835093329 0.00224008600
0.3 | -0.2591817793 | -0.2599463674 | -0.2623129320 0.0031311527
0.4 -0.3296799540 | -0.3316085648 | -0.3335556777 0.0038757237
0.5 | -0.3934693403 | -0.3957774661 | -0.3979635520 0.0044942117
0.6 -0.4511883639 | -0.4524530716 | -0.4561994083 0.0050110444
0.7 | -0.5034146962 | -0.5016353813 | -0.5088629711 0.0054482749
0.8 | -0.5506710359 | -0.5433243950 | -0.5564908362 0.0058198003
0.9 -0.5934303403 | -0.5775201129 | -0.5995564702 0.0061261299
1.0 | -0.6321205588 | -0.6042225348 | -0.6384702111 0.0063496523
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Legendie: Wavelel Opesational Mabix Melhod

Figure 4.1 Comparison of our solutions u(t),v(t) and the exact solution when
M =2 and M =4for Example 4.2

Table 4.5 Comparison between the exact solution and the approximate solution v(t) for

Example 4.2
M=2 k=0 M=4, k=0
t Exact Solution Approximate Approximate Absolute Error
v(t) Solution Solution

0.0 1.000000000 1.000000001 1.000000001 0.110°

0.1 1.095162582 1.094142086 1.096355770 0.001193188
0.2 1.181269247 1.180790875 1.183509333 0.002240086
0.3 1.259181779 1.259946368 1.262312933 0.003131154
0.4 1.329679954 1.331608566 1.333555679 0.003875725
0.5 1.393469340 1.395777467 1.397963553 0.004494213
0.6 1.451188364 1.452453073 1.456199409 0.005011045
0.7 1.503414696 1.501635383 1.508862972 0.005448276
0.8 1.550671036 1.543324395 1.556490838 0.005819802
0.9 1.593430340 1.577520114 1.599556471 0.006126131
1.0 1.632120559 1.604222535 1.638470212 0.006349653
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Example 4.3 Consider the following system of linear differential equations [53]

du(t) () =1
(4.23)
IVO iy =0
subject to these initial conditions
u(0)=0, (;“(0) 0, v(0)=0, (o) (4.24)

The exact solution of the above system is

1
t)==(e'+e" —2cost t)=1(a—e —e'—2cost
u(t) 4(e+e cost), v(t) ( e' —e' —2cost)

To solve the above linear system, we applied the method presented in Section 4.1 with

M =4, k =0.Approximating solution following as

ut)=C'y(t), v(t)=S"w(t)

du(t) D dv(t) o+
e 2 sty (t

. Dy (t) pm w(t)

d®u(t) _ ~rpe dv({t) _ o1

o =C'D (//(t), —=S'D z//(t)

We get
0 0 0 o0 0 0 0 00
23 0 0 0 0 0 0 0 00

D=| 0 215 0 0 0] D?=|4J315 0 0 00
0 0 235 0 0 0 415435 0 00
0 0 0 263 0 0 0 43563 0 0O

If we consider (4.23) with (4.24), we have

R (t)=C'D* (t)+STy(t)-1

R, (1) = S" D% (1)+Cy (1) (429

By computing
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1
[wi (R (t)dt=0, i=1,2,3 j=12

0

We obtain six linear equations following as

26.83281574c,, +5,,~1=0

26.83281574s, , +C,, =0

0.110""s, , +91.65151397c, , +1.000000001s,, =0

-0.1107c, , +91.65151397s, , +1.000000001c, , =0
~0.1107s,,+0.110°®s, , +187.8297100c, , +0.9999999992s, , =0

-0.1107¢,, +0.110°°c, , +187.8297100s, , +0.9999999992¢, , =0

and by utilising initial conditions we have

Coo — \/500’1 + \/500,2 - ﬁco,g +3Cy, =0
So0 — \/§So,1 + \/gsov2 7 So3+3S,4 =0
233y, —6+/5¢, , +103/7¢, 5 —42¢,, =0
24/3s,, — 655, , +10/7s,, — 425, , =0

If we solve this system of linear algebraic equations, we get

CT =[0.1680546197,0.1456667117,0.03781985846,0.0001588513170,0.00003334417056]

S'= [-0.01481329344,-0.01455896371,-0.006263025891,-0.001589354125,-0.000201351845]

Consequently,

) ] 1
0.1680546197 ' i
0.1456667117 3(-1+2t)
2
u(t)=CTy (t)=| 0.03781985846 V5 (6t -6t-+1)
0.000158851317 J7 (20t3 —30t2 +12t —1)
0-000033344170 ] | 3(70t* —140¢% +90t* — 20t +1)
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_ I 1 ]
-0.01481329344
10.01455896371 V3(-1+2t)
2
v(t)=STy (t)=| -0.006263025891 V5(6t" ~6t+1)
-0.001589354125 || /7 (20>~ 30t* +12t 1)
-0-000201351845 ]} 570t —140t° + 90t> - 20t +1)

The approximate solution with the exact solution are displayed in Table. 4.6 and Table
4.7.

Table 4.6 Comparison between the exact solution and the approximate solution u (t) for

Example 4.3
M=2 k=0 M=4 k=0
t Exact Solution Approximate Approximate Absolute Error
u(t) Solution Solution

0.0 | 0.0000000000 | 0.00000000000 -0.1685 10°° 0.1685 10°°
0.1 0.0050000014 | 0.00514285717 | 0.00505714932 0.000057147920
0.2 0.0200000889 | 0.02057142862 | 0.02016653121 0.00016644231
0.3 | 0.0450010126 | 0.04628571436 | 0.04531976012 0.00031874752
0.4 0.0800056890 | 0.08228571438 | 0.08052525613 0.00051956713
0.5 0.1250217017 0.1285714286 0.1258082447 0.0007865430
0.6 0.1800648016 | 0.1851428573 0.1812107570 0.0011459554
0.7 | 0.2451634092 | 0.2520000001 0.2467916294 0.0016282202
0.8 | 0.3203641184 | 0.3291428572 0.3226265038 0.0022623854
0.9 0.4057382085 | 0.4165714287 0.4088078275 0.0030696190
1.0 0.5013891643 | 0.5142857144 0.5054448535 0.0040556892
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Table 4.7 Comparison between the exact solution and the approximate solution v(t) for

Example 4.3
M=2 k=0 M=4, k=0
t Exact Solution Approximate Approximate Absolute Error
v(t) Solution Solution

0.0 | 0.0000000000 0110 0.150 10°*° 0.150 10°*°
0.1 -0.41666 10° | -0.000857142850 | -0.000604747500 | 0.0006005809000
0.2 | -0.0000666667 | -0.003428571425 | -0.001510714801 | 0.001444048101
0.3 -0.0003375018 | -0.007714285713 | -0.002867321525 | 0.002529819725
0.4 | -0.0010666830 | -0.01371428572 | -0.004925468639 | 0.003858785639
0.5 -0.0026042637 | -0.02142857143 | -0.008037538438 | 0.005433274738
0.6 | -0.0054004164 | -0.03085714285 | -0.01265739455 | 0.00725697815
0.7 | -0.0100055964 | -0.04200000000 | -0.01934038193 | 0.00933478553
0.8 -0.0170708276 | -0.05485714286 | -0.02874332686 0.01167249926
0.9 | -0.0273481769 | -0.06942857143 | -0.04162453697 | 0.01427636007
1.0 -0.0416914703 | -0.08571428571 | -0.05884380119 0.01715233089

Example 4.4 Consider the following system of non-linear differential equations [49]

du(t) _

dv(t)

dt

u(t) —v(t) —v3(t)

~1002u(t) +1000v2(t)

subject to these initial conditions

u(0)=1, v(0)=1

The exact solution of the above system is

u(t)=

e, v(t)=e"

(4.26)

(4.27)

To solve the above system, we implemented the method presented in Section 4.2 with

M =4, k =0.Approximating solution following as
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ut)=C'y(t) and v(t)=S"y(t) %:CTDW(Q and ¥:STDW(t)

We get

o O O o o

If we consider (4.26) with (4.27), we have

R.()=C" Dy (1) +1002(CTy (1)) ~1000(S Ty (1))

X (4.28)
R,(t) =S"Dy () CTy (1) + STy (t)+(STw (1))

Calculating Equation (4.28) at the first four roots of P,(t), i.e.

L1 1 N245-14V70 1 24541470 1 245-1470
C2n 2 42 L2 42 Ft2 42

and by utilising initial conditions we have

Coo — \/éco,l + \/gco,z - \/7003 + 3Co,4 =1

So0 \/gso,l + \/gso,z - ‘/750,3 + 350,4 =1
If we solve this system of nonlinear algebraic equations, we get

C'= [0.4286121774,-0.2341012934,0.06111143031,-0.008961478897,0.001851110478]

ST = [0.6280482694,-0.1812595585,0.02343895161,-0.001955630037,0.0001385886922]

Consequently,

) _ 1
0.4286121774
-0.2341012934 3 (-1+21)
2
u(t)=C"y(t)=| 0.06111143031 V5 (6t" -6t+1)
-0.008961478897 7 (20° - 30t° +12t 1)
| 0-001851L10478 ] | 570+ _140¢° + 90t - 20t +1)
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— _ B 1 =
0.6280482694 ' 5
10.1812595585 3(-1+2t)
2
v(t)=STy (t)=| 0.02343895161 J5(6t* 6t +1)
-0.001955630037 V7 (200 -30t? 1121 1)
0000138588692 | | 3700+ 1400+ o0 - 20t +1)

Comparison of our results and the exact solution supports that our results approaches the
exact solution as the value of M increases. Finally, we also present the numerical

computations for u(t) and v(t) with the exact solution in Table 4.8 and Table 4.9.

Table 4.8 Comparison between the exact solution and the approximate solution u (t) for

Example 4.4
M =3 k=0 M =4, k=0
t Exact Solution Approximate Approximate Absolute Error
ut) Solution Solution

0.0 | 1.0000000000 | 1.000000000 1.000000000 | 0.0000000000
0.1 | 08187307531 | 0.8165316851 | 0.8164539898 | 0.0022767633
0.2 | 0.6703200460 | 0.6660452088 | 0.6665620472 | 0.0037579988
0.3 | 05488116361 | 5437106133 | 05442136317 | 0.0045980044
0.4 | 04493289641 | 04446979406 | 44449311630 | 0.0050978011
0.5 | 03678794412 | 03641772334 | 0.3623700203 | 0.0055094209
0.6 | 03011942119 | 02973185321 | 0.2953185417 | 0.0058756702
0.7 | 0.2465969639 | 0.2392918810 | 0.2406980273 | 0.0058989366
0.8 | 0018965180 | 0.1852673211 | 0.1970627334 | 0.0048337846
0.9 | 0.1652988882 | 0.1304148956 | 0.1638998799 | 0.0013990083
10 | 01353352832 | 0.0699046455 | 0.1416296414 | -0.0062943582
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Figure 4.2 Comparison of our solutions u(t),v(t) and the exact solution when
M =2, M =3and M =4for Example 4.4

Table 4.9 Comparison between the exact solution and the approximate solution v(t) for

Example 4.4
M=3 k=0 M=4,k=0
t Exact Solution Approximate Approximate Absolute Error
v(t) Solution Solution

0.0 1.0000000000 1.000000000 1.000000000 0.0000000000
0.1 | 0.9048374180 0.9037386313 0.9036350375 0.0012023805
0.2 0.8187307531 0.8165106052 0.8164828594 0.0022478937
0.3 0.7408182207 0.7375975458 0.7376781019 0.0031401188
0.4 0.6703200460 0.6662810770 0.6664252500 0.0038947960
0.5 0.6065306597 0.6018428229 0.6019986373 0.0045320224
0.6 | 0.5488116361 0.5435644074 0.5437424462 0.0050691899
0.7 0.4965853038 0.4907274546 0.4910707077 0.0055145961
0.8 | 0.4493289641 0.4426135883 0.4434673016 0.0058616625
0.9 0.4065696597 0.3985044327 0.4004859565 0.0060837032
1.0 0.3678794412 0.3576816116 0.3617502495 0.0061291917
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Example 4.5 Consider the following Brusselator system presented in [47] and [48]

du(t) _ —2u(t) +u?(t) v(t)
! (4.29)

dv(t) o
pm =u(t) —u“(t) v(t)

subject to these initial conditions
u(0) =1, v(0)=1 (4.30)

The approximate solution of this system when « =1 was presented by Chang and Isah
using Legendre wavelet operational matrix of fractional derivative through wavelet-
polynomial transformation (LWPT) in [48] and by Bota and Caruntu using the
polynomial least squares method (PLSM) in [47]. These numerical solutions of this

system are given by

Uper (1) =1-1.0120t +0.1211t7 + 0.1517¢,
Viyer (t) =1+0.0096t +0.4069t” —0.2461t°

Up gy (t) =1-1.02827t +0.2010281* +0.0750974¢’,
v(t),.q, =1+0.0271107t+0.334087t* ~180088t"

To solve the above Brusselator system, we implemented the method presented in Section

4.2 with M =4, k =0. Approximating solution following as

ut)=Cy (t), v(t)= STy (t) and % =C"Dy (t), ?z S"Dy (t)

We get
0 0 0
2J3 0 0
D= 0 215 0

o O O o o

If we consider (4.29) with (4.30), we have
CTDy (t)+2CTy (t)—(CTy (1)) (STw (1)) (4.31)
STDl//(t)—CTw(t)Jr(CT(//(t))Z(STt//(t)) (4.32)
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Calculating Equations (4.31) and (4.32) at the first four roots of Ps(t), ie.

(L t_;_\/245—14\/% 1 \J245+14470 _3+\/245—14\/%
©20 2 42 . 42 Ct2 42

and by utilising initial conditions we have

Coo — \/§Co,1 + ‘/gco,z - ﬁco,s + 3Co,4 =1
So0 — \/530,1 + \/gso,z - ﬁso,s + 330,4 =1

If we solve this system of nonlinear algebraic equations, we get

C'= [0.5745339305,-O.2192448444,0.02298952682,0.001262676590,-0.0007808523319]

S" =[1.069834705,0.05308541875,0.005100236422,-0.003352119819,0.0006128621024]

Consequently,

T 1
0.5745339305 | G |
10.2192448444 3(-1+2t)
2
u(t)=CTy(t)=| 002298952682 V5 (6t" ~6t+1)
0.001262676590 J7(20t° - 30t2 + 12t -1)
|-0.0007808523319 ] | 370+ 1401 g0t — 201 +1) |
. 1 |
1.069834705 T N
0.05308541875 3(-1+2t)
2
v(t)=STy (t)=| 0.005100236422 V5 (6t -6t+1)
-0.003352119819 V7 (20t -30t° +12t 1)
0006128621024 | | 5704 _y 1 g0r? — 201 +1)

Comparison of our results and these approximate solutions introduced in [47] and [48]
are also displayed in Figure 4.3. The figures support that our results approaches the
approximate solutions presented in [47] and [48]. Finally, we also present the numerical
computations for u(t) and v(t) in Table 4.10 and Table 4.11.

67



Table 4.10 Comparison between our approximate solution U, gyum » Uiwer and Up gy for

Example 4.5.
t uLWOMM uLWPT uPLSM
0.0 1.000000000 1.0000000 1.0000000000
0.1 0.9022538826 0.9001627 0.8992583774
0.2 0.8065945278 0.8036576 0.8029878992
0.3 0.7148002463 0.7113949 0.7116391498
0.4 0.6282557996 0.6242848 0.6256627136
0.5 0.5479523993 0.5432375 0.5455091750
0.6 0.4744877078 0.4691632 0.4716291184
0.7 0.4080658376 0.4029721 0.4044731282
0.8 0.3484973516 0.3455744 0.3444917888
0.9 0.2951992633 0.2978803 0.2921356846
1.0 0.2471950367 0.2608000 0.2478554000
Logensiee Wanelot Opeslbonal Motx Method Logenitc Wanclet Opexabonch s Mctod
= o pam

Figure 4.3 Comparison of our solutions U gy » Viowmw With the approximate solution

U pst, Vipst and the approximate solution Up .y, Vpgu for Example 4.5.
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Table 4.11 Comparison between our approximate solution Vioum » Viwer and Vo, for

Example 4.5.
t VLWOMM VLWPT VPLSM
0.0 0.9999999996 1.0000000 1.000000000
0.1 1.001804569 1.0047829 1.005871852
0.2 1.011179960 1.0162272 1.017344916
0.3 1.025980819 1.0328563 1.033338664
0.4 1.044370674 1.0531936 1.052772568
0.5 1.064821937 1.0757625 1.074566100
0.6 1.086115901 1.0990864 1.097638732
0.7 1.107342743 1.1216887 1.120909936
0.8 1.127901522 1.1420928 1.143299184
0.9 1.147500177 1.1588221 1.163725948
1.0 1.166155534 1.1704000 1.181109700
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CHAPTER 5

THE APPLICATION OF THE OPERATIONAL MATRIX OF
FRACTIONAL DERIVATIVE TO FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve FDEs

numerically. Some related applications of FDEs can be found in [18-37].

5.1 Solving Linear Fractional Differential Equations

In this section, we apply the Legendre wavelet operational matrix of fractional derivative
for solving linear FDEs. Consider the following equation

D7u(t) =hy ())D™u(t)+...+h_, () D™ u(t)+h, (t)u(t) + g(t) (5.1)
with these initial conditions

du d’u d""u
u(to):uo’ a(to):ul' F(to):uzv“"W(to):uM (5.2)
where hy(t),h (t),...h (t) can be any function of the independent variable t and
dependent variable h (i=0,1,...,k) and n<a<n+1, O<p<np <..<np_,<a and

D“ indicates the Caputo fractional derivative of order & .

First approximating U(t), g(t) and hy(t),h(t),....h (t) by the Legendre wavelets, then
we obtain
21 ™ ;
u(t)= > > c,Wom =CTw(t) (5.3)
n=0 m=0
2*awm

OEDIPICMAENZ0) (5.4)

n=0 m=0
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21 M

hO (t) = Z Z hOn,ml//n,m :H OTl//(t)

n=0 m=0

(5.5)

X1 M

hk (t) = Z Z hkn,mlr//n,m =H le//(t)

n=0 m=0

where S and H; (i=0,1,...,k) are known vector but C is an unknown vector and

w(t) is the vector given in Equation (2.27). If we utilise Equations (2.34) and (5.3), then

we obtain
D“u(t)=C D (t)=CTD“y (t) (5.6)
D"u(t)=C'D"y (t)=C' D"y (t), i=0,...,(k-1) (5.7)

Substituting Equations (5.3)-(5.4) and (5.5) in Equation (5.1) the residual R(t)can be

expressed:

R(t)=CTD“y (1)~ (HyTy (1)) (CTD™ly (1)) = ..~ (H, T (1)) (CTD™y (1)

(5.8)
~(Hw ()(CD™y (1))~ (Hy v (1) (STw )

We get 2 (M +1)— N linear equations by employing

<R(t),wr(t)>:Jl.t//r(t)R(t)dt:O, r=0,..,2“(M+1)-n (5.9)

If we substitute Equation (5.3) in Equation (5.2) then we have

u(0)=C'y (0)=u,
du T

= (0)=C"Dy (0)=y,
dt
d’u

57 (0)=CTDY (0)=u, (5.10)

d"u

W(O) =C'D" Yy (0)=u,.,

2 (M +1) set of linear equations are obtained Equations (5.9) and (5.10). We can solve

these linear equations for unknown coefficients of the vector C . Consequently, u(t)
presented in Equation (5.1) can be computed.
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5.2 Solving Non-Linear Fractional Differential Equations

In this section, we apply Legendre wavelet operational matrix of fractional derivative for

solving non-linear FDEs. Consider the following equation
D“u(t)=H(t.u(t),D"u(t),... D"u(t)) (5.11)
with these initial conditions

du d?u d""u
u(to) = Uy, E(to) = Uy, F(to) - uzv"’w(to) =Uny (5.12)

where N<a<n+l, 0<7 <7, <..<n,<a and D“ indicates the Caputo fractional

derivative of order & .

First approximating u(t), D“u(t) and for i=12,..,k D"u(t) by the Legendre

wavelets as Equations (5.3), (5.6) and (5.7) respectively and substituting these equations

in Equation (5.11), then we obtain
C'D Wy (t)= H (t,CTW(t),CTD(’h)y/(t) ..... c’ D('”)l//(t)) (5.13)
Also, if we substitute Equation (5.3) in Equation (5.122) then we have

u(0)=C'y (0)=u,

du

E(O);CTDw(O):ul

d )= cTp? 5.14

42 (0)=CDy(0)=u, (5.14)
n-1

(;tn‘l’ (0)=C'D"y (0)=u,.,

First collocating Equation (5.13) at 2k(|\/| +1)-n points, then we can obtain the solution
u(t). We should use the first 2(M +1)-n roots of shifted Legendre polynomials

P

2X(M+1)

(t) to get a better result. Utilising these equations together with Equation (5.14),

then we have 2° (M +1) non-linear equations. These non-linear equations can be solved

for unknown coefficients of the vector C . Consequently, u(t) presented in Equation

(5.11) can be computed.
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5.3 Applications

In this section, we solve five linear and non-linear fractional differential equations by
using LWOMM.

Example 5.1 We first consider the following FDE of the linear form [32]

5 3

d 2 1
4(t+1) D2 u(t) +4 D2 u(t) + u(t) =Vt +vz 5.15
(t+1) D2 u(t) (t) NS (t) (5.15)
subject to

d

u(0)=+r, d—‘:(o):g, u(l) =27 (5.16)
The exact solution of above system is u(t)=/z(t+1)

We implemented the method illustrated in Section 5.1 with M =3, k=0.

Approximating solution following as

5 5

ut)=C'y(t), Du(t)=C'Dy(t), Dgu(t);CTD@w(t), D2u(t);CTD(2)y/(t)

1
Also, approximating h,(t) =t+1, h(t)= N and g(t) =+t +V7 following as
+

h(®) =H, w(t), ht)=Hw(t) and g(t)=GTy(t)

1

where Ho(t):j'(t+1)z//(t)dt, Hl(t):jﬂw(t)dt and G(t):j.(\/f+\/;)l//(t)dt
0 o Vi+ 0

We have
0 0 0 0
0 0 0 0 0 0 0 0
_ 243 0 0 0 D(S): 165 16J5643 16 16745
0 215 0 o0f NN Wr 105z |
0 0 235 0 _16V7 80V73 16V75 80
NS N Wr  1Wr
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0 0 0 0
. 0 0 0 0
D@ ) 0 0 0

160V7 32743 3275 32
Voo Wr  3x

If we consider (5.15) with (5.16), we have

5 3

R(t)=4( HOTt//(t)){CT D(ij/(t)J+4CT D(Z]y/(t) +(Hw (1))(CTw (1))-GTw (1)
By computing

v (OR(t)dt=0

0

We have

-2.439120518 + 0.8284271247c¢, , —0.08206204062c, , +80.75114673c, , +1432.995536¢, , =0
and by utilising initial conditions we have

Coo— \/gco,l + ‘/gco,z - ﬁco,s = ‘/;

24/3c,, —6/5¢, , +104/7¢, , = %

Coot \/gco,l + \/gco,z + ﬁco,s = \/g

If we solve this system of linear algebraic equations, we get

C'= [Co,o 1Co11Co20 Co,s]
= [2.161308708, 0.2103901234,-0.00973478719,0.00101325788]

Consequently,

2161308708 T 1
o(t)=CTy (1) <| 02103001234 V3(-1+2t)
=~ V=1 0.00973478719 J5 (61" —6t+1)
000101325788 | | 7 (201" - 301" +12t 1)

The approximate solution with the exact solution are displayed in Table 5.1.
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Table 5.1 Comparison between the exact solution and the approximate solution for

Example 5.1
M=3, k=0

t Exact Solution u(t) Approximate Solution Absolute Error
0.0 1.772455923 1.772453851 0.2072 10°
0.1 1.858967455 1.859556019 0.000588564
0.2 1.941628183 1.942759272 0.001131089
0.3 2.020910686 2.022385308 0.001474622
0.4 2.097198131 2.098755828 0.001557697
0.5 2.170806302 2.172192531 0.001386229
0.6 2.241999108 2.243017118 0.001018010
0.7 2.310999784 2.311551286 0.000551502
0.8 2.377999159 2.378116734 0.000117575
0.9 2.443161886 2.443035165 0.000126721
1.0 2.506631205 2.506628274 0.293110°

Example 5.2 Consider the following fractional Bagley-Torvik differential equation of the

linear form with the initial conditions [18]

dau(t) 3

%()+D2u(t)+u(t)=l+t (5.17)
subject to

u(0)=0, ‘;'I—‘t‘(o)zl (5.18)

The exact solution of above systemis U (t) =1+t.

We implemented the method illustrated in Section 5.1 to the above problem with M =2
, k=0. Approximating solution following as
uf(t 3 8

ut)=Cly(t), %;CTDV/(I), ddtg );CTDzw(t), Dzu(t);CTD(zjy/(t)
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Also, approximating g(t) =1+t followingas g(t)=G'y
We have
0 0 0 0 00 [ﬁj
D=/2/3 0 o0 D’=| 0o 0 0| D¥=
0 2415 0 4315 0 0

If we consider (5.17) with (5.18), we have

3

R(t)=C"D%(t)+C" D(E]w ()+CTyw (1) -Gy (1)

By computing

[y (OR(t)dt=0

0

we have
47.017875910012 +Cq0 -1.500000000 = 0

and by utilising initial conditions we have

Coo ~ \/§CO,1 + \/gco,z =1
24/3¢,, —6+/5¢, , =1

If we solve this system of linear algebraic equations, we get

C" =[ Co1Cors Gy, | =[ 1499999999, 0.2886751345, 0.2 10 |

Consequently,

u(t)=CTy (t)=[1.499999999, 0.2886751345, 0.2 10" || /3(-1+2t)

/5 (6t* —6t +1)

(v
0 0 0
0 0 0
16V5 16435 16
o 5z Wr
1

The approximate solution with the exact solution are displayed in Table 5.2.
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Table 5.2 Comparison between the exact solution and the approximate solution for

Example 5.2
M=2 k=0
t Exact Solution u(t) Approximate Solution Absolute Error
0.0 1.0000000000 0.999999999 0.110°
0.1 1.1000000000 1.099999999 0.110°°
0.2 1.2000000000 1.199999999 0.110°
0.3 1.3000000000 1.299999999 0.110°°
04 1.4000000000 1.399999999 0.110°
0.5 1.5000000000 1.499999999 0.110°°
0.6 1.6000000000 1.599999999 0.110°
0.7 1.7000000000 1.699999999 0.110°
0.8 1.8000000000 1.799999999 0.110°®
0.9 1.9000000000 1.899999999 0.110°
1.0 2.0000000000 1.999999999 0.110°®

Example 5.3 Consider the following FDE of the non-linear form [33]

5
D%u(t) + D2u(t) +u’(t) =t* (5.19)
subject to these initial conditions

du du, .\ _
u(0)=0, E(O)_O’ F(O)_Z’ (5.20)

The exact solution of above system is U (t)=t*

We implemented the method illustrated in Section 5.2 with M =3, k=0.

Approximating solution following as

du(t)

u®) =Cy (1), = ~=C'Dy(t)
ddligt):CTDZV/(t), ddligt):CTDSW(t) Dgu(t):CTD(gjl//(t)
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Also, approximating g(t) =t* following as g(t) =Gy (t)

We have
0 0 0 0 0 0 0 0
2d3 0 0 0 ) 0 0 00
o 25 o0 of DTaBB 0 00
0 0 235 0 0 4415435 0 0
0 0 0 0 0 0 0 0
o I -
0 000/
8 J3VESE 0 0 0 160V7 32473 32745 32
Jr Jr e 3Wr

If we consider (5.19) with (5.20), we have

5

R(t) =C"D% (t)+C’ D(E)l// (t)+(CTy (t))2 -Gy (t) (5.21)

Calculating Equation (5.21) at the first root of P,(t), i.e. t, :%— 525 ;gom

and by utilising initial conditions we have

Co.0 _‘/éco,l + \/gco,z - ﬁco,s =0
2:/3¢,, —6+/5c,, +10/7c,, =0

12/5¢, , —60/7c, , =2
If we solve this system of non-linear algebraic equations, we get

C'= [Co,o 1Co1:Co C0,3]

= [0.3333333334, 0.2886751345, 0.07453559922, -0.3178931093 10‘12]

Consequently,

0.3333333334 | L
u(t)=Cy(t)o| 02B8ET5LE4S J3(-1+21)
— VT 007453559922 J5(6t? -6t +1)
0.3178981093 10| | /7 (201" ~30¢% + 121 -1)
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The approximate solution with the exact solution are displayed in Table 5.3.

Table 5.3 Comparison between the exact solution and the approximate solution for

Example 5.3
M=3, k=0
t Exact Solution u(t) Approximate Solution Absolute Error

0.0 0.00 0.8410661107 10 ** 0.8410661107 107"
0.1 0.01 0.01000000006 0.6 10*
0.2 0.04 0.04000000011 0.1110°
0.3 0.09 0.09000000014 0.14 10°
0.4 0.16 0.16000000020 0.210°
0.5 0.25 0.25000000020 0.210°
0.6 0.36 0.36000000010 0.110°
0.7 0.49 0.49000000010 0.110°
0.8 0.64 0.64000000010 0.110°
0.9 0.81 0.81000000000 0

1.0 1.00 0.99999999999 0.110°

Example 5.4 Consider the following FDE of the non-linear form with the initial

conditions
0.7
DMu(t) + () = 20— g (5.17)
7 1°(0.7)
subject to
du
u(0) =0, E(O):O (5.18)

The exact solution of the above system is U (t) =t?

To solve the above problem, we implemented the method presented in Section 5.2 with

M =2, k =0.Approximating solution following as
u(t)=C'y(t), Du(t)=C'Dy(t), D" u(t)=CTD Iy (1)
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0.7
Also approximating g(t)=§ t

+t* following as §(t) =G y(t)

7 1(0.7)
We get
0 0 0 0 0 0
D=[2/3 0 o0} D% = 0 0 0
0 215 0 17.37179094 7.800806362 —0.8165511655

If we consider (5.17) with (5.18), we have

R(t) =CTD™y (t)+(CTy (1)) ~G Ty (t) (5.19)

5

1
Calculating Equation (5.19) at the first root of Py(t), i.e. t,= T

and by utilising the boundary conditions we have

Coo — ‘/gco,l + \/gco,z =0
24/3c,, —6+/5¢,, =0

If we solve this system of nonlinear algebraic equations, we get
CT =[Cy:Co1: o, | =[0.3364347192,0.2913610134,0.07522909016]
Consequently,

1
u(t)=CTy (t)=[0.3364347192,0.2913610134,0.07522909016]| /3 (~1+2t)

/5 (6t* -6t +1)

The approximate solution and the exact solution are shown in Table 5.4.
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Table 5.4 Comparison between the exact solution and the approximate solution for

Example 5.4
M=2, k=0
t Exact Solution u(t) Approximate Solution Absolute Error

0.0 0.00 -0.110° 0.110°

0.1 0.01 0.01009304147 0.00009304147

0.2 0.04 0.04037216618 0.00037216618

0.3 0.09 0.09083737403 0.00083737403

0.4 0.16 0.16148866500 0.00148866500

05 0.25 0.25232603910 0.00232603910

0.6 0.36 0.36334949640 0.00334949640

0.7 0.49 0.49455903680 0.00455903680

0.8 0.64 0.64595466040 0.00595466040

0.9 0.81 0.81753636710 0.00753636710

1.0 1.00 1.00930415700 0.00930415700
Example 5.5 Consider the following FDE of the linear form [55]
D?u(t) + D"2u(t) + u(t) = 2+t +%t3’2 (5.20)
subject to these boundary conditions
u(0)=0, u(1)=1 (5.21)

The exact solution of the above system is u(t)=t*

We implemented the method illustrated in Section 5.1 to the above problem with M =2

, k=0. Approximating solution following as

d?u(t)
dt?

ut)=Cly(t),

=C'D% (t), D2y (t)=C’ D@l//(t)

Also, approximating g(t) = 2+1? +—o—t>2 followingas g(t)=G"y(t)
<N
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where

1
G:J‘(2+t2+%t3’2jyx(t)dt
0
We have
0 0 0 0 00
D={2/3 0 0| D= 0 00
0 2415 0 4315 0 0

0 0 0
oli)_| 88 8 8B
Wr  5zr  105Jx
8J5 836 8
NN N

If we consider (5.20) with (5.21), we have

1

R(t)=C"D%(t)+C" D(ZJy/(t)+CT1//(t)—GT1//(t)

By computing

[vi(OR(t)dt=0

0

we have
24.81430971c, , +2.605880063c, , - 2.935135555+C,, = 0

and by utilising boundary conditions we have

Co,0 ~ ‘/gco,l + \/gco,z =0

Coo + ‘/§Co,1 + \/gco,z =1
If we solve this system of linear algebraic equations, we get

CT =] y0:C1: Gy, | =[0.3333333332, 0.2886751345, 0.0745355993]

Consequently,
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1
u(t)=CTy(t)=[0.3333333332, 0.2886751345, 0.0745355993]| /3(~1+2t)

J/5(6t” —6t+1)
The approximate solution with the exact solution are displayed in Table 5.5.

Table 5.5 Comparison between the exact solution and the approximate solution for

Example 5.5
M=2 k=0
t Exact Solution u(t) Approximate Solution Absolute Error
0.0 0.00 -0.110°° 0.110°
0.1 0.01 0.0099999989 0.1110°
0.2 0.04 0.0399999988 0.1210°
0.3 0.09 0.0899999987 0.1310°°
0.4 0.16 0.1599999999 0.110°
0.5 0.25 0.2499999998 0.210°
0.6 0.36 0.3599999998 0.210°°
0.7 0.49 0.4899999998 0.210°
0.8 0.64 0.6399999998 0.210°°
0.9 0.81 0.8099999998 0.210°
1.0 1.00 0.9999999998 0.210°

Example 5.6 Consider the following FDE of the non-linear form with the boundary
conditions [31]

2 6 6 1 1 2

d ugt)+F(éjt5D5U(t)-l-EF(EthDGU(t)—(Mj :2+it2 (5.22)
dt 5 9 \6 dt 10

subject to

u(0)=1 u(1)=2 (5.23)

The exact solution of the previous system is U(t)=1+t’
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To solve the above problem, we implemented the method presented in Section 5.2 with

M =2, k =0.Approximating solution following as

du(t)

U(t)ECT!//(t), TECTDW(t), d* U(t)

=C'Dy(t)

6

Deu (t)=C' D(é)y/(t), Du(t)=C’ D(:)y/(t)

. 4\ 2 8 11 _(5).} 1, _
Approximating f (t)=T c t°D?, f(t)_—F s ts, g(t)=2+Et following as

LO=FY(), LO2FY(), 0=y

where

F(t) = jr( ]t5D5 (tdt, F(t)= i% ( jtfs (tdt, G()= j(2+1—tj (t)dt

We get
0 0 0
D={2/3 0 0
0 215 0
0 0 0

1
D(6j =| 2.008717540 1.023294363 -0.05743771053
-2.288145774 0.5858729181  1.235012279

a 0 0 0
D\* = 0 0 0
16.00534636 7.920592311 -0.5381810900

If we consider (5.22) with (5.23), we have

R(t)=CTD2w(t>+(FJw(t>)[CTD@wt)}(FJw(t))[cT D@w(t)]—(d ow (1)) -Gy (1)
(5.24)

1 15

Calculating Equation (5.24) at the first root of P;(t),i.e. t,= PR

and by utilising the boundary conditions we have
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Coo — \/gco,l + \/gco,z =1

Coo T \/éco,l + \/gco,z =2

If we solve this system of nonlinear algebraic equations, we get

C" =[Co01Cou:Cy, |=[1-333325434, 02886751345, 0.07453913186]

Consequently,

u(t)=CTy (t)=[1.333325434, 0.2886751345, 0.07453913186]

1
\/5(—1+ 2t)
/5 (6t* -6t +1)

The approximate solution with the exact solution are shown in Table 5.6.

Table 5.6 Comparison between the exact solution and the numerical solution for

Example 5.6

Exact Solution u(t)

M=2 k=0

Approximate Solution

Absolute Error

0.0 1.00 0.9999999998 0.2107°

0.1 1.01 1.009995734 0.4266 10°
0.2 1.04 1.039992417 0.7583 10
0.3 1.09 1.089990047 0.9953 10°
0.4 1.16 1.159988625 0.000011375
0.5 1.25 1.249988151 0.000011849
0.6 1.36 1.359988625 0.000011375
0.7 1.49 1.489990047 0.9953 10°
0.8 1.64 1.639992416 0.7584 10°°
0.9 1.81 1.809995734 0.4266 10°
1.0 2.00 2.000000000 0.000000000
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CHAPTER 6

THE APPLICATION OF THE OPERATIONAL MATRIX OF
FRACTIONAL DERIVATIVE TO SYSTEMS OF FRACTIONAL
DIFFERENTIAL EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve systems

of FDEs numerically. Some related applications of such systems can be found in [38-50].

6.1 Solving Systems of Fractional Differential Equations

In this section, the LWOMM is implemented to obtain the numerical solution of the
system of FDEs. Consider the following system
D™u,(t) =U,(t,u,u,,...,u.),

D "u,(t) =U.2(t,ul,u2,...,um), 6.1)

D™u_ (t)=U,(tu,u,,..u.)

where U ’s are linear/nonlinear functions of t,U;,U,,...,U., D" is the derivative of U;

with order of 77; in the sense of Caputo and N —=1<7. <N | subjected to the initial

conditions:
du, d?u, d"*u,
u, (to) = Uy, E(to) =Uy, F(to) =l W(to) = Uy
du d®u d""u
u, (to) = Uy, d_tz(to) =Uy, ?zz(to) =Ugyyeen Wf(to) =Uy(ny (6.2)
du, d?u, d""u,,
um (to)zumO’ dt (tO):um17 dt2 (tO):um2""7W(tO):um(n—1)
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First of all, approximating U,(t),u,(t),...u,(t) and D™u,(t),D™u,(t),..,D™u,(t),

then we obtain

1M

; Z Cln ml//n m (t)
n=0 m=0
XM

E C n, ml//n m = C l//
= Z i v (V) (6.3)
1M

E chn ml//nm = l//(t)
n=0 m=0

where C,, i=12,....m are unknown vectors and y/(t) is the vector introduced in (2.27).

If we utilise Equation (2.34) then we have

D™u, (t) =C,'D"™y (1)
D™u, (t)=C," D™y (1)

(6.4)
D, (=G, Dy (1)
Substituting Equations (6.3)-(6.4) in Equation (6.1), then we obtain
R.(t) =C," D™y (t)-U,(t,C v (t),C, v (1),...C, w (1))
Ro(0) =C" D™y (1) ~U, (.Gl ().C,Tw (1), Gy () (6.5)

R,(t)=C," D"y (t)-U, (t,C. Ty (1),C, v (t),...C, w (1))

If U,’s are linear functions of t,U;,U,,...,U., then we produce 2k(M +1)—mn linear

equations by implementing
[y (DR (t)dt=0, j=1..2“(M+1)-mn, i=12,.,m (6.6)

Also by substituting initial conditions (6.2) in Equation (6.4), then we obtain
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d"u o
- (to) = C1T D lV/ (to) = Uy

du, du,
dt T gt
T du, T dHUz T 01
Uz(to):C2 V/(to)zuzo’ E(to)gcz Dl//(to)=u21,...,W(t0);C2 D ‘//(to)zuz(n-l)
T du, T dn_lum T ~n-1
um(tO)ECm l//(to)zumO’ dt (tO)ECm DW(tO):umli""W(tO)ECm D l//(to):um(n—l)

(6.7)

A 2 (M +1) set of linear equations was generated by combining Equations (6.6)-(6.7) .
Solution of these linear equations can be obtained for unknown coefficients of the vector

C . Consequently U, (t),u, (t),....u, () introduced in Equation (6.1) can be computed.

If U,’s are non-linear functions of t,U;,U,,...,U,, first computing R, (t), R,(t),... R, (t) at
2“(M +1)-mn points and for a better result, using the first 2(M +1)—Mn roots of shifted

Legendre polynomials P, - (t), then these equations collectively with Equation (6.7)

produce 2* (M +1) non-linear equations. Solution of these non-linear equations can be

obtained for unknown coefficients of the vector C . Consequently U, (t),u, (t),....u, (t)

introduced in Equation (6.1) can be computed.

6.2 Applications

In this section, to show applicability and powerfulness of the introduced method, we solve
five linear and non-linear system of FDEs.

Example 6.1 We first consider the following linear system of FDEs [41], [43]

Deu(t) =u(t)+v(t)

(6.8)
Dev(t) =—u(t) +v()
subject to
u(0)=0, v(0)=1 (6.9)

The exact solution of this system when « =1 is known to be
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u(t)=e'sint, v(t)=ecost

To solve the above system when « =0.9, we applied the method presented in Section 6.1

with M =2, k =0. Approximating solution following as

ut)=C'y(t), v(t)=S"y(t), Du(t)=C'D*y(t), D*v(t)=S"D"y(t)

We get
0 0 0 0 0 0
D=[2J3 0 0| D® =| 1.911059300/3  0.2730084714 —0.02642017466+/15
0 2415 0 ~0.273008472+/5 1.664471004/15 0.6325806046

If we consider (6.8) with (6.9), we have

R (1)=C"D" (1)-CTy (1)-S"w (1
R, (t)=S"D )y (1)+CTy (t)-STw (1)

By computing

jl//i (t)R,(t)dt=0, i=12 j=12

0

We obtain four linear equations following as

—0.6104655018c, , +3.310051804c,,, G, , —5,, =0
—0.6104655018s, , +3.310051804s,, +C, , —5,, =0
—0.7269915286¢, , +6.446468479C, , -5, =0

—0.7269915286s,, +6.4464684795, , +Cy, =0

and by utilising initial conditions we have

Co,0 ~ ‘/gco,l + \/gco,z =0
So0 ~ \/§So,1 + \/gso,z =1

If we solve this system of linear algebraic equations, we get

C" =] Cy0:Cyy: Gy, | =[1.096167384,0.7531907067,0.09319805590]
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ST =[ 5501501150, | =[1.340038676,0.0532350665,-0.1108342136]

u(t)=C"y (t)=[1.096167384,0.7531907067,0.09319805590]

v(t)=S"w(t)=[1.340038676,0.0532350665,-0.1108342136

1
J3(-1+2t)
/5 (6t* -6t +1)

1
V3(-1+2t)
J5(6t° -6t +1)

When the obtained results are matched against the exact solution when a=1 as

demonstrated in Figure 6.1, we can clearly observe that when & approaches 1, our results

approach the exact solution. We also solved this problem by using LPOMM and we

compared the results with the LWOMM. The numerical computations for u(t) and v(t)

when « =0.9 are also revealed in Table 6.1 and Table 6.2.

Table 6.1 Numerical solutions of u(t) when « = 0.9 attained by the introduced method

and the LPOMM for Example 6.1

t ULwomm UL pomm Absolute Error
0.0 0310° 0.0000000000 0.310°
0.1 0.1483784330 0.1483784325 0.1210°
0.2 0.3217645283 0.3217645277 0.633 10°
0.3 0.5201582862 0.5201582855 0.6510°
0.4 0.7435597067 0.7435597059 0.83 107
0.5 0.9919687898 0.9919687890 0.810°
0.6 1.2653855360 1.265385535 0.53 10
0.7 1.563809944 1.563809943 0.9510°
0.8 1.887242014 1.887242014 0.733 10°
0.9 2.235681748 2.235681748 0.62 107
1.0 2.609129144 2.609129144 0.310°
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Table 6.2 Numerical solutions of v(t) when o =0.9attained by the introduced method

Legendie Wavelet Operalional Malrix Method

02

04 06

Exact Solulion

Solubon
.9
.f
b

Figure 6.1 Comparison of our solutions and the exact solution when

15

05

Legendie Wavelet Operational Malix Method

05

a=0.9,0.7,0.5 and 1 for Example 6.1

and the LPOMM for Example 6.1

t vV, womm Vi poum Absolute Error
0.0 1.000000000 1.000000000 0.2 10°
0.1 1.152270899 1.152270900 0.510°
0.2 1.274801858 1.274801858 0.599 10°*
0.3 1.367592877 1.367592878 0.67 10°
0.4 1.430643956 1.430643957 0.13 10°
0.5 1.463955094 1.463955094 0.110°
0.6 1.467526291 1.467526293 0.13 10°
0.7 1.441357549 1.441357551 0.171 10°
0.8 1.385448866 1.385448868 0.1461 10
0.9 1.299800244 1.299800245 0.15 10°
1.0 1.184411680 1.184411682 0.18 10°
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Example 6.2 Consider the following non-linear system of FDEs [49]

3

, 3
Dzu(t):—8u(t)+v2(t)—4t6+4t3+%—1
i (6.10)
D%v(t) =t’Du(t)+v(t)-3t" —2t° + 32t -1
N
subject to
u(0) =0, v(0)=1 u@=1 v@y=3 MO _o D _; (6.12)

dt ©odt
The exact solution of this system is known to be
u(t)=t*, v(t)=2t°+1

To solve the above system, we implemented the method presented in Section 6.2 with

M =3, k=0.Approximating solution following as

ut)=Cy (t), v(t)= STy (t) Du(t)=C' Dy (t)

1

Diu(t)=C Dy (1), Div(t)=5TD\hy (1

2 5
Approximating g, (t) = —4t°® + 4t +£—1 h() =t2, g,(t)=-3t"-2t° +—32t2 -1
0 \/; ) S y 1 5\/;

followingas 9,(t) =G, w(t) ,9,t)=Gw(t) and h(t)=HTy(t)

where

3

(| a6 4 a0, 82
Go(t) = [| —4t° +4t° + ==—1 |y (t)dt
0

N

5
32t2

G,(t) = j{—&“ —2t% + N —1 |y (t)dt

and

H() = [ty (t)t
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We get

0 0 0 0
o 0 0 0 0 0 0 0
5|23 0 0 0 ) 1165 165 16 16435
0 215 0 0 Jr sdr r 105Vx
0 0 235 0 1647 80V21 16V35 80
e Wr 3Wr 1z
0 0 0 0

83 8 8J15  8V21
a 3Wr  5Jr  105Jr 315V%
07 oF 8 o s
NN N/ 77%
1687 16421 304435 688
Wr 45Jr  385Jr 1957

If we consider (6.10) with (6.11), we have

3

R (t)=C" D(2jw(t)+8CTt//(t)—(STl//(t))

e (Y (6.12)

1

R, (t)= STD(ij(t)—(HTV/(t))(CTDw (1) -STw ()G w(t)

Calculating Equations (6.12) at the first root of P, (t), i.e. t, :%+ 525 ;go*/%

We have two non-linear equations and by utilising (6.11) we have

Coo ™ \/50011 + \/§coy2 - \/700’3 =0
Coo t+ \/§Co,1 + \/gcovz + \/700,3 =1
oo — \/550'1 + «/gsov2 - \/730'3 =1
So0 \/550’1 + \/gso'2 - \/730’3 =3
24/3c,, —6+/5c, , +10/7C,, =0
2:/3¢,, +6+/5¢, , +10/7c,, =3

If we solve this system of nonlinear algebraic equations, we get

C'= [0.2500000001,0.2525907427,0.1118033988,0.02362277957]

S" =[1.490829745,0.4893097218,0.2277078606,0.05763606744]
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Consequently,

0.2500000001 |' L
ey (g | 0.2525907427 V3(-1+2t)
“O=CW=] 5 1118033088 \/5(6t* -6t +1)
0.02362277957 ﬁ(20t3—30t2 +12t—1)
1.490829745 T 1
A ar(q)| 0:4893007218 V3(-1+21)
V(=S ()=| 277078606 /5 (6t* -6t +1)
0.05763606744 ﬁ(20t3—30t2 +12t—1)

We applied both the proposed method and the LPOMM to solve this problem and show
that our approach is more efficient and useful. Our numerical results support that our
solution approaches the exact solution more than the approximate solution LPOMM.
Comparison of the approximate and exact solutions are presented in Table 6.3 and Table
6.4.

Table 6.3 The numerical results attained by the introduced method in comparison with

the LPOMM and the exact solution u(t) for Example 6.2.

t Exact Solution u(t) Uiwomm Utpomm
0.0 0.000 -0.1210°° 0.000000000000
0.1 0.001 0.01000000005 0.001000000000
0.2 0.008 0.02000000016 0.008000000000
0.3 0.027 0.03750000021 0.027000000000
0.4 0.064 0.07000000020 0.064000000000
0.5 0.125 0.12500000001 0.125000000000
0.6 0.216 0.21000000000 0.216000000000
0.7 0.343 0.33249999998 0.343000000000
0.8 0.512 0.49999999996 0.512000000000
0.9 0.729 0.71999999993 0.729000000000
1.0 1.000 0.99999999989 1.000000000000
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0.2

Legendre Wavelet Operational Mairix Method

02 04 06 o8

Legendre Wavelet Opesalional Matrix Method

25

15

Figure 6.2 Comparison of our solutions u(t),v(t) with the exact solution when

Table 6.4 The numerical results attained by the introduced method in comparison with

a =15, p=0.5for Example 6.2

the LPOMM and the exact solution v(t) for Example 6.2.

t Exact Solution v(t) Viwomm Viromm
0.0 1.000 1.000000000 0.9999999998
0.1 1.002 1.034841367 1.165803114
0.2 1.016 1.057587628 1.283854751
0.3 1.054 1.086537668 1.374911456
0.4 1.128 1.139990370 1.459729770
0.5 1.250 1.236244618 1.559066242
0.6 1.432 1.393599296 1.693677414
0.7 1.686 1.630353290 1.884319831
0.8 2.024 1.964805482 2.151750038
0.9 2.458 2.415254758 2.516724579
1.0 3.000 3.000000000 3.000000000
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Example 6.3 Consider the following non-linear system of FDEs [41], [49]

pu(t) =

(6.13)
Dv(t) = u?(t) + v(t)
subject to
u(0)=1, v(0)=0 (6.14)

The exact solution of this system when « =1 is known to be

To solve the above system when « =0.9, we applied the method presented in Section 6.1

with M =2, k =0. Approximating solution following as
ut)=C'y (t), v(t)=S"w(t)

D*u(t) =C'D%y (1), D°v(t) =S"D*y (1)

We get

0
0

2./15

0 0
D=|23 0
0 0

0 0 0
D® —| 1.911059300+/3  0.2730084714 —0.02642017466+/15
~0.273008472/5 1.664471004+/15 0.6325806046

If we consider (6.13) with (6.14), we have

0.9 CT
R (1)=CTD™y (1) V;(t) (6.15)

R, (t)=S5"D"y (t)-(CTy (1) STy (t)

Calculating Equations (6.15) at the first two roots of P,(t), i.e.

1 1 15
==, t=——">
2 2 10
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We obtain four non-linear equations following as

3.523070728c,, -9.140726844c, , -0.5¢,, = O

4.193891122s,, —9.587940439s, , —(C,, —1.341640787c,, +0.8944271908c, , )’
3.424454517¢,, - 0.7586951239c, , - 0.5¢,, = 0

3.424454517s,, —0.1996781297s, , —(c, , —1.118033988c,, )2 ~S50 =0

and by utilising initial conditions we have

%D—V6%4+J§52:1
Sp0 ~ \/§So,1 + \/gso,z =0

If we solve this system of non-linear algebraic equations, we get

CT =[Cy0:Cy1: Gy, | =[1.:332807545, 0.1951100121, 0.002295506718]

S’ =[soyo,sovl,so,2] =[1.215158677, 0.8796261200, 0.1379199819)]
Consequently,

1
u(t)=CTy (t)=[1.332807545, 0.1951100121, 0.002295506718]| ~/3(~1+2t)

J/5(6t* -6t +1)

1
v(t)=STy (t)=[1.215158677, 0.8796261200, 0.1379199819]| /3(~1+2t)

J5(6t* —6t+1)

—Sp0 =0

The parameters M =2 , k=0 and « =0.9,0.7,0.5 were utilised. Comparison of our

results and the exact solution when « =1 were also displayed in Figure 6.3. The

figures

support that when & approximates 1, our results approximate the exact solution. We also

solved this problem by using LPOMM and we compared the results with the LWOMM.

Finally, we also presented the numerical computations for u(t) and v(t) when « =0.9 in

Table 6.5 and Table 6.6.
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Table 6.5 Our solutions u (t) when o = 0.9 attained by the presented method and the
LPOMM for Example 6.3.

t UL womm U, pomm Absolute Error
0.0 1.000000000 1.000000000 0.37 10
0.1 1.064816320 1.064816320 0.132 10°°
0.2 1.130248589 1.130248589 0.137510°°
0.3 1.196296807 1.196296807 0.44 10"
0.4 1.262960975 1.262960975 0.808 10°°
0.5 1.330241091 1.330241091 0.532 10°°
0.6 1.398137156 1.398137156 0.168 10°°
0.7 1.466649171 1.466649171 0.756 10°°
0.8 1.535777134 1.535777134 0.137510°°
0.9 1.605521046 1.605521046 0.468 10°°
1.0 1.675880908 1.675880908 0.163 10°°

17

15

144

13

12

11

Legendre Wavelet Opesalional Malrix Method

Figure 6.3 Comparison of our solutions u(t),v(t)with the exact solution when
a=0.9,0.7,0.5 and 1 for Example 6.3.
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Table 6.6 Our solutions v(t) when o = 0.9 attained by the presented method and the

LPOMM for Example 6.3.

t Viwomm Vi pomm Absolute Error
0.0 -0.110°° 0.0000000000 0.110°
0.1 0.1381762607 0.1381762609 0.7 10°°
0.2 0.3133603361 0.3133603363 0.210°
0.3 0.5255522260 0.5255522263 0.37 10°
0.4 0.7747519305 0.7747519309 0.510°
0.5 1.060959450 1.060959450 0.510°
0.6 1.384174783 1.384174784 0.810°
0.7 1.744397932 1.744397932 0.47 10°
0.8 2.141628895 2.141628895 0.7 10°
0.9 2.575867672 2.575867672 0.310°
1.0 3.047114264 3.047114264 0.110°

Example 6.4 Consider the following non-linear system of FDEs [49]

D“u(t)=-1002u(t) +1000v(t)

D“v(t) = u(t) —v(t) —v?(t)

subject to

u(0) =1, v(0)=1

The exact solution of this system when « =1 is known to be

(6.16)

(6.17)

To solve the above system when a=0.99, we applied the method presented in Section

6.1 with M =4, k =0. Approximating solution following as

ut)=C'y(t), v(t)=S"w(t)

Do.99u(t) _CT D(o.99)l// (t) ’ Do.ggv(t) —gT D(o.gg)l// (t)
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0 0 0 0 0
23 0 0 0 0
D=| 0 215 0 0 0
0 0 235 0 0
0 0 0 263 0

0 0 0 0 0

3.449375852  0.02972385188 -0.01262112773 0.007410898821 -0.005015065172
D% | .0.06646455361  7.610540026  0.07375369729 -0.03451765405 0.02160663680
5.225899340 -0.06725669 11.54413503  0.1255710707  -0.06260318730
-0.1231327500  10.1398707 -0.05433257 15.41452292 0.1827775379

If we consider (6.16) with (6.17), we have
R, (t)=C"D "y (t)+1002C" y (1) ~1000(S "y (t)) 619
R, (1) = S"D*ly (1)~ CTyr (1) + 8Ty (1) + (ST (1)) |

Calculating Equations (6.18) at the first four roots of P, (t) i.e.

C_L o 1 N245-1470 1 V245414470 1 V245-1470
2t 2 42 "2 2 72 42

We obtain eight non-linear equations and by utilising initial conditions we have

Coo — \/§Co,1 + ‘/gco,z - ﬁco,a + 3C0,4 =1
Sp0 — \/530,1 + \/gso,z - ﬁso,s + 380,4 =1

If we solve this system of non-linear algebraic equations, we get

C'= [Co,o’co,i' Co,z’Co,s’CoA]
= [0.4415217604, -0.2476343090, 0.05158027301, -0.01297029961, -0.006696716433]

S [So,o 19011 50,21 50,31 50,4]
= [0.6431515334, -0.1801527132, 0.02407737838, 0.0006364975451, -0.002446608841]

Consequently,
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u(t)=

]

[ 0.4415217604 |
-0.2476343090
0.05158027301
-0.01297029961

|-0.006696716433

Cly(t)=

]

[ 0.6431515334 |
-0.1801527132
0.02407737838

0.0006364975451
| -0.002446608841 |

1
«/§(—1+ 2t)
5 (6t° 6t +1)

J7 (20t —30t* +12t 1)

3(70t4 —140t® + 90t? — 20t +1)

1
J3(~1+2t)
J5(6t° -6t +1)

J7 (20t° 30t +12t -1)
3(70t4 ~140t° + 90t — 20t +1)

We solved this problem by using LPOMM and we compared the results with the
LWOMM for M =4 ,k=0 and o =0.99,0.9,0.7 . The numerical computations for u(t)

and v(t) when o =0.99 are also revealed in Table 6.7 and Table 6.8.

Table 6.7 Numerical solutions of u(t) when o =0.99 obtained by the given method
and the LPOMM for Example 6.4.

t U, womm U, pomm Absolute Error
0.0 1.000000000 1.000000000 0.4 10"
0.1 0.8144351529 0.8144351528 0.21 10"
0.2 0.6639425233 0.6639425233 0.1510°
0.3 0.5429947229 0.5429947230 0.34 10
0.4 0.4460643636 0.4460643636 0.42 10°
0.5 0.3676240568 0.3676240568 0
0.6 0.3021464142 0.3021464147 0.68 10
0.7 0.2441040487 0.2441040481 0.24 10°
0.8 0.1879695699 0.1879695690 0.53 10°
0.9 0.1282155920 0.1282155905 0.461 10°°
1.0 0.0593147248 0.0593147222 0.144 10°®
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Figure 6.4 Comparison of our solutions u(t),v(t) with the exact solution when
a=0.5,0.7,0.9 and 1 for Example 6.4.

Table 6.8 Numerical solutions of v(t) when ¢ =0.99 obtained by the given method
and the LPOMM for Example 6.4.

t vV womm Vi pomm Absolute Error
0.0 1.000000000 0.9999999999 0.79 10"
0.1 0.9025601837 0.9025601837 0.1498 10°°
0.2 0.8152646487 0.8152646488 0.119 10°°
0.3 0.7371116577 0.7371116578 0.8 10"
0.4 0.6670994737 0.6670994739 0.11 10°
0.5 0.6042263597 0.6042263600 0.24 10°
0.6 0.5474905785 0.5474905788 0.19 10°
0.7 0.4958903932 0.4958903935 0.26 10°
0.8 0.4484240664 0.4484240670 0.443 10°
0.9 0.4040898614 0.4040898620 0.5898 10°°
1.0 0.3618860408 0.3618860417 0.719 10°°
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Example 6.5 Consider the following fractional-order Brusselator system presented in
[47] and [48]

Deu(t) =—2u(t) +u®(t) v(t)

(6.19)
D“v(t) = u(t) —u?(t) v(t)
subject to
u(0) =1, v(0)=1 (6.20)

The approximate solution of this system when o =1 and a=0.98 was presented by
Chang and lIsah using Legendre wavelet operational matrix of fractional derivative
through wavelet-polynomial transformation (LWPT) in [48] and by Bota and Caruntu
using the polynomial least squares method (PLSM) in [47]. The solution of this system
when a =1 was presented in [47] and [48] following as

Uyyer (1) =1-1.0120t +0.1211t? +0.1517¢,
Viyer (t) =1+0.0096t +0.4069t* —0.2461t°

Up gy (t) =1-1.02827t +0.20102812 +0.0750974t’,
v(t),.q, =1+0.0271107t+0.334087t* ~180088t"

The approximate solution of this system when « =0.98 was presented in [47] and [48]

following as

Uer (t)=1-1.0791t +0.2711t* — 0.0638t°,
Viyer (1) =1+0.0151t +0.4185t* - 0.2624t°

Upy s (1) =1—1.08655t +0.31113812 +0.0243682t%,
V(t),.,, =1+0.0349127t +0.333424t" —0.184414t°

To solve the above system when « =0.98, we applied the method presented in Section

6.1 with M =2, k =0. Approximating solution following as
ut)=C'y(t), v(t)=S"w(t)
Do.gsu(t) _CT D(0.98)l// (t), Do.gav(t) g7 D(o.gs)w (t)

We get
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0 0 0
D={24/3 0 0
0 215 0
0 0 0
D% = | 1.982905202+/3 0.05889817430 —0.006370884195+/15
-0.1317003230  7.476321502 0.1450477428

If we consider (6.19) with (6.20), we have

R (1)=CTD "y (t)+2CTy (1) —(CTy (1)) (STw (1))

(6.21)
R, (t)=STD "y (t)~CTy (t)+(CTy (1)) (Sw (1))
Calculating Equations (6.21) at the first two roots of B, (t), i.e. t, =%, t,= %—%

We obtain four non-linear equations and by utilising initial conditions we have

Co0 ~ \/gco,l + ‘/gco,z =1
So0 — \/gso,l + \/gso,z =1

If we solve this system of non-linear algebraic equations, we get

C" = Cy01Co1: Gy, |=[0.5654293689, -0.2188337915, 0.02483796840]

S =[Sy01 5015 | =[1.087682270, 0.06669943989, 0.01245246086]

Consequently,

1
u(t)=CTy (t)=[0.5654293689, -0.2188337915, 0.02483796840]| ~/3(~1+2t)

J/5(6t*—6t +1)

1
v(t)=STy (t)=[1.087682270, 0.06669943989, 0.01245246086] /3 (—1+2t)

J5(6t° -6t +1)

The parameters M =2 , k=0 with «=0.98 were utilized. Comparison of our results
and these approximate solutions introduced in [47] and [48] are also displayed in Figure

6.5. The figures support that our solution approaches the approximate solutions presented
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in [47] and [48]. Finally, we also presented the numerical computations for u(t) and v(t)
when « =0.98 in Table 6.9 and Table 6.10.
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Figure 6.5 Comparison of our solutions U gy » Viowmw With the approximate solution

U pst, Vipst and the approximate solution Up gy, Vosw When o =0.98 for Example
6.5.

Table 6.9 Comparison between our approximate solution U gy and U yer and Up gy
when « =0.98 for Example 6.5.

t Upwom Upwpr Upsm
0.0 1.000000000 1.0000000 1.0000000000
0.1 0.8942024826 0.8947372 0.8944807482
0.2 0.7950696916 0.7945136 0.7953304656
0.3 0.7026016268 0.6989464 0.7026953614
0.4 0.6167982883 0.6076528 0.6167216448
0.5 0.5376596761 0.5202500 0.5375555250
0.6 0.4651857902 0.4363552 0.4653432112
0.7 0.3993766306 0.3555856 0.4002309126
0.8 0.3402321973 0.2775584 0.3423648384
0.9 0.2877524902 0.2018908 0.2918911978
1.0 0.2419375095 0.1282000 0.2489562000
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Table 6.10 Comparison between our approximate solution V gy With Viyer and Vp gy
when « =0.98 for Example 6.5.

i Viowmm Viwer VoLsm
0.0 1.000000000 1.0000000 1.000000000
0.1 1.008069307 1.0054326 1.006641096
0.2 1.019479961 1.0176608 1.018844188
0.3 1.034231959 1.0351102 1.035502792
0.4 1.052325304 1.0562064 1.055510424
0.5 1.073759995 1.0793750 1.077760600
0.6 1.098536032 1.1030416 1.101146836
0.7 1.126653415 1.1256318 1.124562648
0.8 1.158112143 1.1455712 1.146901552
0.9 1.192912217 1.1612854 1.167057064
1.0 1.231053638 1.1712000 1.183922700
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CHAPTER 7

RESULTS AND DISCUSSION

Because variety of solution of higher order differential equations and the system of such
equations can not be found analytically, numerical and approximate methods are needed.
This situation is more difficult and complicated for the solution of fractional order
differential equations and the system of such equations. There are a lot of tecniques that
have been studied by many researchers to solve fractional differential equations
numerically. In this thesis, high order differential equations and the system of such
equations of the linear and non-linear form were solved by utilising operational matrix of
derivative and by generalizing these matrices to these equations and systems. Also,
fractional order differential equations and the system of such equations of the linear and
non-linear form were examined by derivating a new operational matrix of the fractional
derivative in some special conditions and by benefiting from charachteristics of these

matrices.

So then the Legendre wavelet operational matrix method is introduced in related chapters
of this thesis by using some significant features of shifted Legendre polynomials and
Legendre wavelets. The most advantage of this method is that it gives a understandable
procedure in reducing these equations and the system of such equations to a system of
algebraic equations. Also, very effective algorithm have been also formulated to obtain
the solution of equations and systems mentioned above on the Maple. We produced all
numerical results and graphical representations via Maple. The results illustrate that the
introduced procedure can solve such equations and systems very efficaciously and

simply.

As the next step, the method introduced in this thesis can be applied to fractional partial
differential equations and the system of such equations, fractional integral equations and
the system of such equations, fractional integro-differential equations. These equations
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are at least as important as fractional differential equations and they are very significant
in science, engineering and technology.
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