REPUBLIC OF TURKEY YILDIZ TECHNICAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

LEGENDRE WAVELET OPERATIONAL MATRIX METHOD FOR SOLVING SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

SELVÍ ALTUN

Ph.D. THESIS DEPARTMENT OF MATHEMATICAL ENGINEERING PROGRAM OF MATHEMATICAL ENGINEERING

ADVISER ASSOC. PROF. DR. AYDIN SEÇER

İSTANBUL, 2018

REPUBLIC OF TURKEY YILDIZ TECHNICAL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

LEGENDRE WAVELET OPERATIONAL MATRIX METHOD FOR SOLVING SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

A thesis submitted by Selvi ALTUN in partial fulfillment of the requirements for the degree of **DOCTOR OF PHILOSOPHY** is approved by the committee on 27.11.2018 in Department of Mathematical Engineering, Mathematical Engineering Program.

I nesis Adviser	
Assoc. Prof. Dr. Aydın SEÇER	
Yıldız Technical University	
Approved by the Examining Committee	
Assoc. Prof. Dr. Aydın SEÇER	
Yıldız Technical University	
Prof. Dr. İbrahim EMİROĞLU, Member	
Yıldız Technical University	
Prof. Dr. Mustafa BAYRAM, Member	
İstanbul Gelişim University	
Assoc. Prof. Dr. Mustafa Taylan ŞENGÜL, Member	
Marmara University	
Assoc. Prof. Dr. İnci ALBAYRAK, Member	
Yıldız Technical University	

ACKNOWLEDGEMENTS

I would like to express my highest appreciation to my advisor, Assoc. Prof. Dr. Aydın Seçer, for his constructive recommendations and superior counseling.

I would like to state my truthful gratitude to Prof. Dr. Mustafa Bayram and Prof Dr. İbrahim Emiroğlu for their helping and positive comments as members of my thesis committee.

I would like to extend my gratefulness to my dear friend, Research Assistant Neslihan Özdemir for her support and contrubitions.

I would also like to thank my dear husband and my family, for their deepest kindness and favour.

Finally, I would like to acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK), for its financial support with domestic doctoral scholarship.

November, 2018

Selvi ALTUN

TABLE OF CONTENTS

	Page
LIST OF SYMBOLS	vii
LIST OF ABBREVIATIONS	viii
LIST OF FIGURES	ix
LIST OF TABLES	X
ABSTRACT	xii
ÖZET	xiii
CHAPTER 1	
INTRODUCTION	1
1.1 Literature Review1.2 Objective of the Thesis1.3 Hypothesis	3
CHAPTER 2	
BASIC CONSEPTS	5
2.1 Fractional Calculus	
2.1.2 The Beta Function	
2.1.3 <i>L^p</i> Spaces	
2.1.4 The Riemann-Liouville Fractional Derivative	
2.1.6 The Caputo Fractional Derivative	
2.2 Orthogonal Polynomials	
2.2.1 Legendre Polynomials	11
2.3 Wavelets	12
2.3.1 Legendre Wavelets	13
2.3.1.1 Function Approximations	
2.4 The Operational Matrix of Derivative	
2.5 The Operational Matrix of Fractional Derivative	
2.6 Differential Equations	17

2	.6.1 Ordinary Differential Equations	17
	.6.2 Fractional Order Differential Equations	
2.7	Systems of Differential Equations	19
	.7.1 Systems of Ordinary Differential Equations	
2	.7.2 Systems of Fractional Order Differential Equations	20
CHAPTER	. 3	
THE APPL	ICATION OF THE OPERATIONAL MATRIX OF DERIVATIVE T	O.
HIGH ORI	DER DIFFERENTIAL EQUATIONS	22
3.1	Solving High Order Linear Differential Equations	23
3.2	• •	
3.3		
CHAPTER		
THE APPL	ICATION OF THE OPERATIONAL MATRIX OF DERIVATIVE T	O
SYSTEMS	OF ORDINARY DIFFERENTIAL EQUATIONS	46
4.1	Solving Systems of Linear Differential Equations	46
4.2	Solving Systems of Non-Linear Differential Equations	
4.3		
CHAPTER	.5	
THE APPL	JICATION OF THE OPERATIONAL MATRIX OF FRACTIONAL	
DERIVAT	IVE TO FRACTIONAL ORDER DIFFERENTIAL EQUATIONS	70
5.1	Solving Linear Fractional Differential Equations	70
5.2		
5.3		
CHAPTER	. 6	
THE APPL	ICATION OF THE OPERATIONAL MATRIX OF FRACTIONAL	
DERIVAT	IVE TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIO	NS . 86
6.1	Solving Systems of Fractional Differential Equations	86
6.2	Applications	
CHAPTER	••	
RESULTS	AND DISCUSSION	107
REFEREN	CES	109
CHRRICH	I IIM VITAE	11/

LIST OF SYMBOLS

D	Operational matrix of derivative
$\psi_{nm}(t)$	Legendre wavelet
ϕ	Scaling function
a	Dilation parameter
b	Translation parameter
I_a^{α}	Riemann-Liouville fractional integral
D_a^{lpha}	Riemann-Liouville fractional derivative
$^{C}D^{\alpha}$	Caputo fractional derivative
$L_p[a,b]$	Lebesque space
$\Gamma(n)$	Gamma function
()	
$\beta(m,n)$	Beta function
$\beta(m,n)$ $(X,\ .\)$	
- ()	Beta function
$(X, \ .\)$	Beta function Normed space Inner product

LIST OF ABBREVIATIONS

a.e. Almost everywhereBVP Boundary value problemDE Differential equation

et al. In addition

etc. And other similar things

FDE Fractional order differential equation HDE High order differential equation

IVP Initial value problem

i.e. That is

LPOMM Legendre polynomial operational matrix method LWOMM Legendre wavelet operational matrix method LWPT Legendre wavelet-polynomial transformation

MRA Multiresolution of analysis

PLSM Polynomial least squares method

LIST OF FIGURES

	Page
Figure 4.1	Comparison of our solutions $u(t), v(t)$ and the exact solution when $M = 2$
	and $M = 4$ for Example 4.258
Figure 4.2	Comparison of our solutions $u(t), v(t)$ and the exact solution when $M = 3$
Figure 4.3	and $M = 4$ for Example 4.4
	u_{LWPT} , v_{LWPT} and the approximate solution u_{PLSM} , v_{PLSM} for Example 4.568
Figure 6.1	Comparison of our solutions and the exact solution, when $\alpha = 0.5, 0.7, 0.9$ and 1 for Example 6.191
Figure 6.2	Comparison of our solutions $u(t), v(t)$ with the exact solution when
	$\alpha = 1.5 \ \beta = 0.5 \text{ for Example } 6.295$
Figure 6.3	Comparison of our solutions $u(t), v(t)$ with the exact solution, when
	$\alpha = 0.5, 0.7, 0.9$ and 1 for Example 6.3
Figure 6.4	Comparison of our solutions $u(t), v(t)$ with the exact solution, when
	$\alpha = 0.5, 0.7, 0.9$ and 1 for Example 6.4
Figure 6.5	Comparison of our solutions u_{LWOMM} , v_{LWOMM} with the approximate solution
	u_{LWPT} , v_{LWPT} and the approximate solution u_{PLSM} , v_{PLSM} when $\alpha = 0.98$ for
	Example 6.5

LIST OF TABLES

	Page
Table 3.1	Comparison between the exact solution and our numerical solution for Example 3.1
Table 3.2	Comparison between the exact solution and the approximate solution for Example 3.2
Table 3.3	Comparison between the exact solution and the approximate solution for Example 3.3
Table 3.4	Comparison between the exact solution and the approximate solution for Example 3.4
Table 3.5	Comparison between the exact solution and the approximate solution for Example 3.5
Table 3.6	Comparison between the exact solution and the approximate solution for Example 3.6
Table 4.1	Comparison between the exact solution and the approximate solution $u(t)$
Table 4.2	for Example 4.1
Table 4.3	for Example 4.1
1 aoic 4.5	for Example 4.155
Table 4.4	Comparison between the exact solution and the approximate solution $u(t)$ for Example 4.2
Table 4.5	Comparison between the exact solution and the approximate solution $v(t)$ for Example 4.2
Table 4.6	Comparison between the exact solution and the approximate solution $u(t)$ for Example 4.3
Table 4.7	Comparison between the exact solution and the approximate solution $v(t)$ for Example 4.3
Table 4.8	Comparison between the exact solution and the approximate solution $u(t)$
Table 4.9	for Example 4.4
Table 4.10	for Example 4.4

Table 4.11	Comparison between our approximate solution v_{LWOMM} , v_{LWPT} and v_{PLSM}
	for Example 4.569
Table 5.1	Comparison between the exact solution and the approximate solution for
	Example 5.1
Table 5.2	Comparison between the exact solution and the approximate solution for
	Example 5.2
Table 5.3	Comparison between the exact solution and the approximate solution for
T 11 7 4	Example 5.379
Table 5.4	Comparison between the exact solution and the approximate solution for
Table 5.5	Example 5.4
Table 5.5	Comparison between the exact solution and the approximate solution for Example 5.583
Table 5.6	Comparison between the exact solution and the approximate solution for
1 4010 5.0	Example 5.685
Table 6.1	Numerical solutions of $u(t)$ when $\alpha = 0.9$ attained by the introduced
Table 0.1	· /
T. 1.1. 6.2	method and the LPOMM for Example 6.190
Table 6.2	Numerical solutions of $v(t)$ when $\alpha = 0.9$ attained by the introduced
	method and the LPOMM for Example 6.191
Table 6.3	The numerical results attained by the introduced method in comparison with
	the LPOMM and the exact solution $u(t)$ for Example 6.294
Table 6.4	The numerical results attained by the introduced method in comparison with
	the LPOMM and the exact solution $v(t)$ for Example 6.295
Table 6.5	Our solutions $u(t)$, when $\alpha = 0.9$ attained by the presented method and the
14010 010	LPOMM for Example 6.3
Table 6.6	–
Table 6.6	Our solutions $v(t)$, when $\alpha = 0.9$ attained by the presented method and the
	LPOMM for Example 6.399
Table 6.7	Numerical solutions of $u(t)$ when $\alpha = 0.99$ obtained by the given method
	and the LPOMM for Example 6.4101
Table 6.8	Numerical solutions of $v(t)$ when $\alpha = 0.99$ obtained by the given method
	and the LPOMM for Example 6.4
Table 6.9	Comparison between our approximate solution u_{LWOMM} , u_{LWPT} and u_{PLSM}
	when $\alpha = 0.98$ for Example 6.5
Table 6.10	Comparison between our approximate solution v_{LWOMM} , v_{LWPT} and v_{PLSM}
	when $\alpha = 0.98$ for Example 6.5

LEGENDRE WAVELET OPERATIONAL MATRIX METHOD FOR SOLVING SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

Selvi ALTUN

Department of Mathematical Engineering

Ph.D. Thesis

Adviser: Assoc. Prof. Dr. Aydın SEÇER

This thesis introduces a new numerical approach to solve high order and fractional order differential equations of the linear and non-linear forms and systems of such equations utilizing the Legendre wavelet operational matrix method. We first formulated the operational matrix and its fractional derivatives in some special conditions by using some significant features of Legendre wavelets and shifted Legendre polynomials. Then, the high order and fractional order differential equations and systems of such equations were transformed to a system of algebraic equations by using these operational matrices. At the end of each chapter of the thesis, the introduced tecnique is tested on several illustrative examples. Comparing the methodology with several recognized methods demonstrates that the most important advantages of the introduced method are the understandibility of the calculations and its accuracy.

Key words: Legendre wavelet, operational matrix, fractional order differential equations, the system of fractional order differential equations, Caputo fractional derivative

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

KESİRLİ MERTEBEDEN DİFERANSİYEL DENKLEM SİSTEMLERİNİN ÇÖZÜMÜ İÇİN LEGENDRE DALGACIĞI OPERASYONEL MATRİS METODU

Selvi ALTUN

Matematik Mühendisliği Anabilim Dalı

Doktora Tezi

Tez Danışmanı: Doç. Dr. Aydın SEÇER

Bu tezde, Legendre dalgacığı operasyonel türev matris metodu kullanılarak, yüksek mertebeden ve kesirli mertebeden diferansiyel denklemlerin ve denklem sistemlerinin doğrusal ve doğrusal olmayan formlarının nümerik çözümleri için yeni bir yaklaşım geliştirilmiştir. Öncelikle, operasyonel matris ve kesirli türevi bazı özel koşullar altında, Legendre dalgacığı ve Legendre polinomlarının bazı önemli özellikleri kullanılarak formüle edilmiştir. Sonrasında, yüksek mertebeden ve kesirli mertebeden diferansiyel denklem ve denklem sistemleri bu operasyonel matrisler yardımıyla cebirsel denklem sistemlerine dönüştürülmüştür. Tezde önerilen metot her bölümün sonunda yeterli sayıda aydınlatıcı örnekle test edilmiştir. Sonuç olarak, bazı bilinen metotlarla karşılaştırması gösteriyor ki, Legendre dalgacığı operasyonel türev matrisi metodunun en büyük avantajı sadeliği ve hesaplamalardaki anlaşılabilirliğidir.

Anahtar Kelimeler: Legendre dalgacığı, operasyonel matris, kesir mertebeli diferansiyel denklemler, kesir mertebeli diferansiyel denklem sistemleri, Caputo kesir türevi

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

INTRODUCTION

1.1 Literature Review

Differential and integral operators are the basis of mathematical models and they are also used as a means of understanding the working principles of natural and artificial systems. Therefore, differential and integral equations are of great importance both theoretically and practically. Such equations have a wide range of applications, including in the physical sciences, such as physics and engineering, as well as in social science. The system of differential equations, as differential equations, are often used in issues such as theory of elasticity, dynamics, fluid mechanics, oscillation, and quantum dynamics [21], [22], [57].

Interest in differential and integral operators has led to the exploration of fractional differential and integral operators by examining these issues further in depth. Owing to a question, the origin of fractional calculus arose in a message from Leibniz to L'Hospital in 1695. Over the years, a variety of definitions that satisfy the idea of fractional derivative have been found by several great mathematicians, but Riemann-Liouville and Caputo fractional derivatives are most commonly utilized definements in the world of fractional calculus. Altough the theory about Riemann-Liouville definition was constituted very well, this consept has some troubles with using to real-world problems. To make a success of these troubles, Caputo derivative was established.

For three centuries, analysis of the fractional calculus has been restraint to the discipline of pure theoretical mathematics, but this topic has received attention in recent years because of its ability to simplify numerous physical, engineering and economics phenomena, such as the fluid-dynamic traffic model, damping laws, continuum and

statistical mechanics, diffusion process, solid mechanics, control theory, colored noise, viscoelasticity, electrochemistry and electromagnetic, among others.

Because variety of solution of fractional differential equations can not be found analytically, numerical and approximate methods are needed. There are a lot of tecniques that have been studied by many researchers to solve FDEs and the system of such equations numerically. Several of these tecniques are the Adomian decomposition method presented in [35] by Song *et al.*, collocation method, operational matrix method improved in [18], [19], [24] and [26], perturbation-iteration method introduced in [28] by Senol *et al.*, computational matrix method illustrated in [27] by Khader *et al.*, differential transform method demonstrated in [43] by Ertürk *et al.*, variational iteration method, Laplace transform method given in [41] by Gupta *et al.*, fractional complex transform method studied in [44] by Ghazanfari *et al.* etc. Also numerical solutions of these equations and the system of such equations were presented by using the Bernstein operational matrix method [29], Genocchi operational matrix method [49], Jacobi operational matrix method [34], Chebyshev wavelet operational matrix method [30], polynomial least squares method [47], Legendre wavelet-like operational matrix method [48] and Genocchi wavelet-like operational matrix method [50].

The orthogonal functions and polynomial series are very important field in science and engineering. Block-pulse fuctions, sine-cosine functions, Jacobi, Legendre, Hermite, Genocchi, Laguerre and Chebyshev polynomials are the most commonly utilized among these functions. What makes these functions important is that they permit the undertaking problem to be reduced to a system of algebraic equations and the approximation of analytic functions. The problem is solved by truncating series of orthogonal basis functions and utilising operational matrix and its derivatives.

The operational matrix of derivatives D is defined as:

$$\frac{d\psi(t)}{dt} \cong D\psi(t) \tag{1.1}$$

in which $\psi(t) = [\psi_1, \psi_2, ..., \psi_N]$ and ψ_i (i = 1, 2, ..., N) are orthogonal basis functions, orthogonal on a certain interval [a,b]. The matrix D can be uniquely identified on the basis of the specific orthogonal functions [9-11]. Many papers which are related to the application of operational matrix of derivative can be found in the literature [12], [15], [18], [19], [30], [33], [34], [48], [49], [50], [56].

Wavelet theory is very significant in science, engineering and technology and in recent years, wavelets have achieved to attract an enormous attention in many fields of investigation, such as spectroscopy, signal analysis, feature detection in earth science, time-frequency analysis, and image manipulation, among others. Many scholars have contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and Mallat are some of them. Thanks to their contribition, there has been a substantial increment in the number of studies on wavelets. There are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre, Legendre, Shannon, Lagrange, Hermitian and Chebyshev wavelets available. Among them, we choose Legendre wavelet in this thesis because of their orthonormality and explicitity. Many applications of Legendre wavelets can be viewed from [12-20].

This thesis focuses on the applications of high order and fractional order differential equations and systems of such equations by utilizing the LWOMM. The most important advantage of the proposed method is that it presents a comprehensible algorithm in reducing high order and fractional differential equations and the system of such equations to a system of algebraic equations. This thesis consists of seven chapters and the third, fourth, fifth and sixth chapters of this thesis have originality. First, we begin with presenting some basic definitions and fundamental relations relevant to the fractional calculus theory, orthogonal polynomials (especially shifted Legendre polynomials), wavelets (especially Legendre wavelets), approximations of these functions and operational matrix of derivative. The operational matrix of fractional derivative is then natively derivated in some special conditions in Chapter 2. Chapter 3 and Chapter 4 generalizes these operational matrices to high order differential equations and the system of such equations of the linear and non-linear forms. Similarly, Chapter 5 and Chapter 6 generalizes these operational matrices to fractional order differential equations and the system of such equations of the linear and non-linear forms. At the end of each chapter, several illustrative examples are tested on the introduced method. Finally, last chapter includes the conclusion and suggestions.

1.2 Objective of the Thesis

This thesis aims to improve an effective and comprehensive technique to solve high order differential equations and the system of such equations together with fractional order differential equations and the system of such equations. The most advantageous

characteristic of this method is that it gives an understandable procedure in reducing these equations and the system of such equations to a system of algebraic equations by utilizing operational matrix of derivative and fractional derivative. So, we can easily obtain the desired solution.

1.3 Hypothesis

In this thesis, the operational matrix of fractional derivative is natively derivated in some special conditions by taking advantage of some notable features of Legendre wavelets and shifted Legendre polynomials and these operational matrices are generalized to equations mentioned above and the system of such equations of the linear and non-linear forms for the first time. Numerical solutions of these equations and the system of such equations obtained by using introduced method have originality.

BASIC CONCEPTS

2.1 Fractional Calculus

Fractional calculus is the study of any real-order or complex-order derivative and integral composed of combining and extending the consepts of multiple integral and integer order derivative. The origin of fractional calculus arose in a message from Leibniz to L'Hospital in 1695. For three centuries, analysis of fractional calculus has been restraint to the discipline of pure theoretical mathematics. But, this topic has received attention in recent years, because of its suitability for the explanation of numerous physical, engineering and economics phenomena, such as the fluid-dynamic traffic model, damping laws, continuum and statistical mechanics, diffusion process, solid mechanics, control theory, colored noise, viscoelasticitiy, electrochemistry and electromagnetic, among others.

Let $D=\frac{d}{dt}$ be a differential operator and n be a positive integer. It is well known that, the meaning of the $D^nu(t)$ is the n^{th} derivative of the function u(t). But if n is not a positive integer, it is difficult to comment the meaning of the $D^{-\alpha}$ or D^{α} for $\text{Re}(\alpha)>0$. The meaning of these symbols will be explained in this section.

A variety of definitions that satisfy the idea of fractional derivative have been found by several great mathematician. But Riemann-Liouville and Caputo fractional derivatives are most commonly utilised definements in the world of fractional calculus. The differential and integral operators with fractional analysis operators are denoted as $(D_a^{\alpha}u)(t)$ and $(I_a^{\alpha}u)(t)$ respectively for $\text{Re}(\alpha) > 0$, where a is the boundary value of the fractional differentiation and integration operations [21, [22], [57].

It is necessary to know some mathematical definitions to understand the definitions and applications of the fractional analysis required for this thesis. Some of these definitions and theorems are presented below.

2.1.1 The Gamma Function

It is said that the Gamma function is obviously the generalization of the factorial for all real numbers. This function is defined by [57-58]

$$\Gamma(n) = \int_{0}^{\infty} e^{-t} t^{n-1} dt, \quad n \in \mathbb{R}^{+}$$
(2.1)

Using the following equation related to exponential function of the factorial function

$$n! = \int_{0}^{\infty} e^{-t} t^{n} dt = \int_{0}^{\infty} e^{-t} t^{(n+1)-1} dt = \Gamma(n+1)$$
(2.2)

The relation between Gamma function and factorial function is appropriated. Using integration by parts we can obtain for n > 0

$$\Gamma(n+1) = \int_{0}^{\infty} e^{-t} t^{n} dt = -e^{-t} t^{n} \Big|_{0}^{\infty} - \int_{0}^{\infty} (-e^{-t}) n t^{n-1} dt$$

$$= n \int_{0}^{\infty} e^{-t} t^{n-1} dt = n \Gamma(n)$$
(2.3)

The Gamma function is directly related to the fractional derivative and integral. These relations can be found by using following properties of Gamma function [57-58].

- i) For all n > 0, the integral $\int_{0}^{\infty} e^{-t} t^{n-1} dt$ is convergent.
- ii) The Gamma function Γ is positive for all n > 0,

iii)
$$\Gamma(1) = \int_{0}^{\infty} e^{-t} dt = 1.$$

iv) For
$$0 < n < 1$$
, $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$ and for $n = \frac{1}{2}$, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

- v) The Gamma function Γ is continuous for all n > 0.
- vi) The Gamma function Γ is differentiable for all n > 0 and we get

$$\Gamma'(n) = \int_{0}^{\infty} e^{-t} \ln(t) t^{n-1} dt$$
 (2.4)

Table 2.1 Some numerical values of the Gamma function

$\Gamma\left(-\frac{3}{2}\right)$	$\frac{4\pi}{3}$	Γ(1.0)	1.0000
Γ(2)	1	Γ(1.1)	0.9514
$\Gamma\left(-\frac{1}{2}\right)$	$-2\sqrt{\pi}$	Γ(1.2)	0.9182
$\Gamma\left(\frac{5}{2}\right)$	$\frac{3\sqrt{\pi}}{4}$	Γ(1.3)	0.8975
Γ(0)	undefined	Γ(1.4)	0.8873
Γ(3)	2	Γ(1.5)	0.8862
$\Gamma\left(\frac{1}{2}\right)$	$\sqrt{\pi}$	Γ(1.6)	0.8935
$\Gamma\left(\frac{7}{2}\right)$	$\frac{15\sqrt{\pi}}{8}$	Γ(1.7)	0.9086
Γ(1)	1	Γ(1.8)	0.9314
Γ(4)	6	Γ(1.9)	0.9618
$\Gamma(\infty)$	∞	Γ(2.0)	1.0000

2.1.2 The Beta Function

The Beta function is defined by a definite integral. Its definition is presented by [58]

$$\beta(m,n) = \int_{0}^{1} t^{m-1} (1-t)^{n-1} dt, \quad m,n \in \mathbb{R}^{+}$$
(2.5)

We can also express the Beta function in terms of the Gamma function:

$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}, \quad m,n \in \mathbb{R}^+$$
(2.6)

2.1.3 L^p Spaces

We consider L^p -spaces of functions whose *pth* powers are integrable.

Definition 2.1 Let (X, A, μ) be a measure space and $1 \le p < \infty$. The space $L^p(X)$ be composed of equivalence classes of measurable functions $f: X \to \mathbb{R}$ such that

$$\int \left| f \right|^p d\mu < \infty \tag{2.7}$$

where two measurable functions are equivalent if they are equal $\mu-a.e.$ The L^p -norm of $f \in L^p(X)$ is defined by

$$||f||_{L^p} = \left(\int |f|^p \, d\mu\right)^{1/p} \tag{2.8}$$

The notation $L^p(X)$ presumes that the measure μ on X is understood. We say that $f_n \to f$ in L^p if $\|f_n - f\|_{L^p} \to 0$. The reason to regard functions that are equal a.e as equivalent is so that $\|f\|_{L^p} = 0$ implies that f = 0 [57].

2.1.4 The Riemann-Liouville Fractional Integral

Let α be a real nonnegative number. For $t \in [a,b]$ in $L^1[a,b]$, the definition of the Riemann-Liouville fractional integral is given as [57-58]

$$\left(I_a^{\alpha}u\right)(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-\xi)^{\alpha-1} u(\xi)d\xi, \quad t \ge a, \quad \alpha > 0$$
(2.9)

where $\Gamma(\alpha)$ is the Gamma function.

An important feature of Riemann-Liouville fractional integral is that $I_a^0 = I$ is an identity operator for a = 0.

Some properties of the Riemann-Liouville fractional integral are as follows.

Suppose that $u(t) = (t-a)^{\beta}$ where $\beta > -1$, then the Riemann-Liouville fractional integral of u(t) of order α is

$$\left(I_a^{\alpha}u\right)(t) = \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}(t-a)^{\alpha+\beta} \tag{2.10}$$

2.1.5 The Riemann-Liouville Fractional Derivative

Using the definition of the Riemann-Liouville fractional integral, then we can define the fractional derivative. Assume that $v = n - \alpha$, where 0 < v < 1 and n is the smallest integer greater than α . Then, the definition of the Riemann-Liouville fractional derivative can be expressed as [57-58]

$$\left(D_a^{\alpha}u\right)(t) = \left(\frac{d}{dt}\right)^n \left(I_a^{\nu}u\right)(t)
= \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dt}\right)^n \int_a^t (t-\xi)^{\nu-1} f(\xi) d\xi \tag{2.11}$$

where $D_a^0 = I$ is an identity operator for a = 0.

Some properties of the Riemann-Liouville fractional derivative are as follows.

Suppose that $u(t) = (t-a)^{\beta}$ where $\beta > -1$, then the Riemann-Liouville fractional derivative of u(t) of order α is

$$\left(D_a^{\alpha}u\right)(t) = \frac{\Gamma(\beta+1)}{\Gamma(\beta-\alpha+1)}(t-a)^{\beta-\alpha} \tag{2.12}$$

2.1.6 The Caputo Fractional Derivative

Over the years, a variety of definitions that satisfy the idea of fractional derivative have been found by several great mathematician. But Riemann-Liouville and Caputo fractional derivatives are most commonly utilised definements in the world of fractional calculus. Altough the theory about Riemann-Liouville definition was constituted very well, this consept has some troubles with using to real-world problems. To make a success of these troubles, Caputo derivative was established.

Definition 2.2 The fractional-order derivative in the Caputo sense is defined as [18-19]

$$^{C}D^{\alpha}u(t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{u^{(n)}(\xi)}{(t-\xi)^{\alpha+1-n}} d\xi, \quad n-1 < \alpha \le n, \ n \in \mathbb{N}$$

$$(2.13)$$

Some properties of the Caputo derivative are as follows.

$$^{C}D^{\alpha}C=0 \tag{2.14}$$

where C is a constant.

$${}^{C}D^{\alpha}t^{\beta} = \begin{cases} 0, & \beta \in \mathbb{N}_{0} \text{ and } \beta < \lceil \alpha \rceil \\ \frac{\Gamma(\beta+1)}{\Gamma(\beta+1-\alpha)}t^{\beta-\alpha}, & \beta \in \mathbb{N}_{0} \text{ and } \beta \geq \lceil \alpha \rceil \text{ or } \beta \notin \mathbb{N} \text{ and } \beta > \lfloor \alpha \rfloor \end{cases}$$

$$(2.15)$$

Here, $\lfloor \alpha \rfloor$ is the largest integer less than or equal to α and $\lceil \alpha \rceil$ indicates the smallest integer greater than or equal to α .

The Caputo fractional order derivative is a linear operation as the integer-order derivative:

$${}^{C}D^{\alpha}(\eta u(t) + \zeta v(t)) = \eta {}^{C}D^{\alpha}u(t) + \zeta {}^{C}D^{\alpha}v(t)$$

$$(2.16)$$

where η and ζ are constant.

2.2 Orthogonal Polynomials

The orthogonal functions and polynomial series are very important field in science and engineering. They are basis of several numerical methods developed for the solution of differential equations and integro-differential equations. The reason is that the use of orthogonal polynomials is easy. Because they have good convergence properties and they properly represent the weight distribution of a function on a definite network. Mentioned equations are solved by truncating series of orthogonal basis functions. Block-pulse fuctions, sine-cosine functions, Legendre, Hermite, Jacobi, Laguerre and Chebyshev polynomials are the most commonly utilized among these functions. What makes these functions important is that they permit the undertaking problem to be reduced to system of algebraic equations and the approximation of analytic functions.

2.2.1 Legendre Polynomials

One of the kind of particular orthogonal polynomials used in the solution of real-world problems is the class of functions called Legendre polynomials. They are the everywhere regular solutions of a very significant differential equation, the Legendre Equation.

$$(1-x^2)\frac{d^2u}{dx^2} - 2x\frac{du}{dx} + m(m+1)u = 0$$
(2.17)

Since the Legendre differential equation is a second-order ordinary differential equation, it has two linearly independent solutions. A solution $L_m(x)$ which is regular at finite points is called a Legendre function of the first kind, while a solution $Q_m(x)$ which is singular at ± 1 is called a Legendre function of the second kind. If m is an integer, the function of the first kind reduces to a polynomial known as the Legendre polynomial. We write the solution for a particular value of m as $L_m(x)$. It is a polynomial of degree m. If m is even/odd then the polynomial is even/odd. They are normalised such that $L_m(1) = 1$.

The equation takes its name from Adrien Marie Legendre (1752-1833), a French mathematician who became a professor in Paris in 1775. He made important contributions to special functions, elliptic integrals, number theory, and the calculus of variations [59]. The well-known Legendre polynomials are defined on the interval [–1,1] and can be designated by the help of the following formulae.

$$(m+1)L_{m+1}(x) = (2m+1)xL_m(x) - mL_{m-1}(x), \quad m=1,2,3,...$$
 (2.18)

where $L_0(x)=1$ and $L_1(x)=x$. Defining the so-called shifted Legendre polynomials by presenting the change of variable x=2t-1, we can use Legendre polynomials on the interval [0,1]. Let the shifted Legendre polynomials $L_m(2t-1)$ be symbolized by $P_m(t)$. Then we can express $P_m(t)$ as follows:

$$(m+1)P_{m+1}(t) = (2m+1)(2t-1)P_m(t) - mP_{m-1}(t), \quad m = 1, 2, 3, \dots$$
 (2.19)

The shifted Legendre polynomial $P_m(t)$ has the following analytic form [12]

$$P_{m}(t) = \sum_{k=0}^{m} (-1)^{m+k} \frac{(m+k)!}{(m-k)!} \frac{t^{k}}{(k!)^{2}}$$
(2.20)

and the orthogonality condition is

$$\int_{0}^{1} P_{m}(t) P_{n}(t) dt = \begin{cases} \frac{1}{2m+1}, & \text{for } m=n\\ 0, & \text{for } m \neq n \end{cases}$$

$$(2.21)$$

The Legendre polynomials are a special case of the Gegenbauer polynomials with $\alpha = \frac{1}{2}$, a special case of the Jacobi polynomials $P_m^{(\alpha,\beta)}$ with $\alpha = \beta = 0$ [59].

2.3 Wavelets

Wavelet theory is very significant in science, engineering and technology and in recent years, wavelets have achieved to attract an enormous attention in many fields of investigation, such as spectroscopy, signal analysis, feature detection in earth science, time-frequency analysis, and image manipulation, among others. Many scholars have contributed to the development of wavelets. Especially, Daubechies, Belkin, Meyer and Mallat are some of them. Thanks to their contribition, there has been a substantial increment in the number of studies on wavelets. Many applications of wavelets can be viewed from [12-17], [23-26], [33-34], [48-50], [56].

Wavelets establish a family of functions formulated from dilation parameter a and the translation parameter b change continuously, we have the following family of continuous wavelets [12]:

$$\psi_{ab}\left(t\right) = \left|a\right|^{-1/2} \psi\left(\frac{t-b}{a}\right), \quad a, b \in R, \quad a \neq 0$$
(2.22)

If these parameters a and b are restraint to discrete values as $a = 2^{-k}$, $b = n2^{-k}$, then

$$\psi_{kn}(t) = 2^{k/2} \psi(2^k t - n) \tag{2.23}$$

forms an orthogonal basis. We use multiresolution of analysis (MRA) for structure wavelets.

Definition 2.3 Let $\{V_j\}_{j\in\mathbb{Z}}$ of subset of $L^2(R)$ be the increasing sequence and ϕ be the scaling function. If it satisfies the following conditions, we call $\{V_j\}_{j\in\mathbb{Z}}$ with scaling function ϕ MRA [14].

- i) $\bigcup_{i} V_{i}$ is dense in $L^{2}(R)$
- ii) $\cap_i V_i = \{0\}$
- iii) $f(t) \in V_j \iff f(2^{-j}t) \in V_0$
- $\text{iv)} \qquad \left\{ \varphi \big(t-n\big) \right\}_{n \in \mathbb{Z}} \quad \text{is an orthogonal basis for V_0} \, .$

2.3.1 Legendre Wavelets

There are a wide variety of wavelet functions such as Daubechies, Haar, Laguerre, Legendre, Shannon, Lagrange, Hermitian and Chebyshev wavelets available. Among them, we choose Legendre wavelet in this thesis because of their orthonormality and explicitity.

Legendre wavelet basis is constructed using a linear combination of Legendre polynomial functions. Legendre wavelets $\psi_{nm}(t) = \psi(k, n, m, t)$ have four parameters: where n parameter, k can be presumed any positive integer, m is the order of Shifted Legendre polynomials and t is the normalized time. They are defined on the interval [0,1] by

$$\psi_{nm}(t) = \begin{cases} 2^{\frac{k+1}{2}} \sqrt{m + \frac{1}{2}} P_m(2^k t - n), & \frac{n}{2^k} \le t \le \frac{n+1}{2^k} \\ 0, & otherwise \end{cases}$$
 (2.24)

where m = 0, 1, ..., M; $n = 0, 1, ..., (2^k - 1)$. The coefficient $\sqrt{\frac{m+1}{2}}$ is for orthonormality [12].

2.3.1.1 Function Approximations

Suppose that a function u(t) is defined over [0,1]. Then u(t) may be expanded in the terms of Legendre wavelet as

$$u(t) \cong \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{nm} \psi_{nm}(t)$$
(2.25)

where $c_{nm} = (u(t), \psi_{nm}(t))$ in which (.,.) denotes the inner product. Let the infinite series in (2.25) be truncated, then it can be written as

$$u(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} c_{nm} \psi_{nm}(t) = C^{T} \psi(t)$$
(2.26)

where C and $\psi(t)$ are matrices given by [12]

$$C = \begin{bmatrix} c_{0,0}, c_{0,1}, \dots, c_{0,M}, \dots, c_{2,M}, \dots, c_{2^{k}-1,0}, c_{2^{k}-1,1}, \dots, c_{2^{k}-1,M} \end{bmatrix}^{T}$$

$$\psi = \begin{bmatrix} \psi_{0,0}, \psi_{0,1}, \dots, \psi_{0,M}, \dots, \psi_{2,M}, \dots, \psi_{2^{k}-1,0}, \psi_{2^{k}-1,1}, \dots, \psi_{2^{k}-1,M} \end{bmatrix}^{T}$$
(2.27)

2.4 The Operational Matrix of Derivative

The operational matrix of derivative D is given by

$$\frac{d\psi(t)}{dt} \cong D\psi(t)$$

where $\psi(t) = [\psi_1, \psi_2, ..., \psi_N]$ and ψ_i (i = 1, 2, ..., N) are orthogonal basis functions, orthogonal on a certain interval [a,b]. The matrix D can be uniquely identified on the basis of the specific orthogonal functions. Many papers which are related to the application of operational matrix of derivative can be found in the literature.

F. Mohammadi derived Legendre wavelet operational matrix of derivative in his paper [12]. In this section, the theorem and corollary are just mentioned as follows.

Theorem 2.1 Let $\psi(t)$ be the Legendre wavelets vector given in (2.24), then we get

$$\frac{d\psi(t)}{dt} \cong D\psi(t) \tag{2.28}$$

where D is the $2^{k}(M+1)$ operational matrix of derivative defined as follows:

$$D = \begin{bmatrix} U & O & \cdots & O \\ O & U & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & U \end{bmatrix}$$
 (2.29)

in which U is an (M+1)(M+1) matrix and its (r,s)th element is defined as follows:

$$U_{r,s} = \begin{cases} 2^{k+1} \sqrt{(2r-1)(2s-1)}, & r = 2, ..., (M+1), \ s = 1, ..., r-1 \ and \ (r+s) \ odd \\ 0, & otherwise \end{cases}$$
 (2.30)

Corollary 2.1 If we use (2.28) then we have operational matrix for *nth* derivative as

$$\frac{d^n \psi(t)}{dt^n} \cong D^n \psi(t) \tag{2.31}$$

where D^n is the *nth* power of matrix D.

By using the property of the product of two Legendre wavelets vector functions, we have

$$e^T \psi \psi^T = \psi^T E \tag{2.32}$$

where e is a given vector and E is a $(2^k M + 1)x(2^k M + 1)$ matrix dependent on vector e [12].

2.5 The Operational Matrix of Fractional Derivative

A. Saadatmandi and M. Dehghan derived the operational matrix of fractional derivative by using shifted Legendre polynomials in [18]. In this section, the Legendre wavelet operational matrix of fractional derivative is derived in some special conditions by taking advantage of theorem given in [18].

Lemma 2.1. Let $\psi(t)$ be the Legendre wavelets vector presented in Equation (2.24) and assume that k = 0 then

$$D^{\alpha}\psi_{r}(t) = 0, \quad r = 0, 1, ..., \lceil \alpha \rceil - 1, \quad \alpha > 0$$
 (2.33)

Proof. The Lemma can be proved by using Equations (2.14) and (2.16) in Equation (2.24).

Theorem 2.2. Let $\psi(t)$ be the Legendre wavelets vector presented in Equation (2.24). Assume that k = 0 and $\alpha > 0$, then

$$D^{\alpha}\psi(t) \cong D^{(\alpha)}\psi(t) \tag{2.34}$$

where $D^{(\alpha)}$ is the (M+1)x(M+1) operational matrix of the fractional derivative of the order $\alpha > 0$, $N-1 < \alpha \le N$ in the Caputo sense and is expressed as follows

$$D^{(\alpha)} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \sum_{h=\lceil \alpha \rceil}^{\lceil \alpha \rceil} \xi_{\lceil \alpha \rceil, 0, h} & \sum_{h=\lceil \alpha \rceil}^{\lceil \alpha \rceil} \xi_{\lceil \alpha \rceil, 1, h} & \cdots & \sum_{h=\lceil \alpha \rceil}^{\lceil \alpha \rceil} \xi_{\lceil \alpha \rceil, m, h} \\ \vdots & \vdots & \cdots & \vdots \\ \sum_{h=\lceil \alpha \rceil}^{r} \xi_{r, 0, h} & \sum_{h=\lceil \alpha \rceil}^{r} \xi_{r, 1, h} & \cdots & \sum_{h=\lceil \alpha \rceil}^{r} \xi_{r, m, h} \\ \vdots & \vdots & \cdots & \vdots \\ \sum_{h=\lceil \alpha \rceil}^{m} \xi_{m, 0, h} & \sum_{h=\lceil \alpha \rceil}^{m} \xi_{m, 1, h} & \cdots & \sum_{h=\lceil \alpha \rceil}^{m} \xi_{m, m, h} \end{pmatrix}$$

$$(2.35)$$

where $\xi_{r,s,h}$ is presented by

$$\xi_{r,s,h} = \sqrt{2r+1}\sqrt{2s+1}\sum_{l=0}^{s} \frac{(-1)^{r+s+h+l}(r+h)!(s+l)!}{(r-h)!h!\Gamma(h-\alpha+1)(s-l)!(l!)^{2}(h+l-\alpha+1)}$$
(2.36)

Take in consideration in $D^{(\alpha)}$, the first $\lceil \alpha \rceil$ rows are all zero.

Proof. Assume that $\psi_r(t)$ be the r^{th} element of the vector $\psi(t)$ presented in Equation (2.24), where r = nM + (m+1), m = 0, 1, ..., M, $n = 0, 1, ..., (2^k - 1)$. Then $\psi_r(t)$ can be expressed as

$$\psi_r(t) = 2^{\frac{k+1}{2}} \sqrt{r + \frac{1}{2}} P_r(2^k t - n) \chi_{\left[\frac{n}{2^k}, \frac{n+1}{2^k}\right]}$$
(2.37)

Suppose that k = 0 and by utilising the shifted Legendre polynomial, we get

$$\psi_r(t) = \sqrt{2} \sqrt{r + \frac{1}{2}} \sum_{h=0}^{r} \frac{\left(-1\right)^{r+h} (r+h)!}{\left(r - h\right)! \left(h!\right)^2} t^h \chi_{[0,1]}$$
(2.38)

If we utilise Equations (2.15), (2.16) and (2.38), then we get

$$D^{(\alpha)}\psi_{r}(t) = \sqrt{2}\sqrt{r + \frac{1}{2}} \sum_{h=0}^{r} \frac{\left(-1\right)^{r+h} (r+h)!}{(r-h)!(h!)^{2}} D^{\alpha}(t^{h}) \chi_{[0,1]}$$

$$= \sqrt{2r+1} \sum_{h=\lceil \alpha \rceil}^{r} \frac{\left(-1\right)^{r+h} (r+h)!}{(r-h)!(h!)\Gamma(h-\alpha+1)} t^{h-\alpha} \chi_{[0,1]}, \quad r = \lceil \alpha \rceil, ..., m$$
(2.39)

Approximating $t^{h-\alpha}$ by (m+1) terms of Legendre wavelets, then we get

$$t^{h-\alpha} \cong \sum_{s=0}^{m} b_{h,s} \psi_s \left(t \right) \tag{2.40}$$

here

$$b_{h,s} = \int_{0}^{1} t^{h-\alpha} \psi_{s}(t) dt = \sqrt{2} \sqrt{s + \frac{1}{2}} \sum_{l=0}^{s} \frac{(-1)^{s+l} (s+l)!}{(s-l)! (l!)^{2}} \int_{0}^{1} t^{h+l-\alpha} dt$$

$$= \sqrt{2s+1} \sum_{l=0}^{s} \frac{(-1)^{s+l} (s+l)!}{(s-l)! (l!)^{2} (h+l-\alpha+1)}$$
(2.41)

If we utilise Equations (2.39) and (2.41), then we have

$$D^{\alpha}\psi_{r}(t) \cong \sqrt{2r+1} \sum_{h=\lceil \alpha \rceil}^{r} \sum_{s=0}^{m} \frac{(-1)^{r+h} (r+h)!}{(r-h)!(h!)\Gamma(h-\alpha+1)} b_{h,s} \psi_{s}(t) \chi_{[0,1]}$$

$$= \sum_{s=0}^{m} \left(\sum_{h=\lceil \alpha \rceil}^{r} \xi_{r,s,h} \right) \psi_{s}(t) \chi_{[0,1]}, \quad r = \lceil \alpha \rceil, ..., m$$
(2.42)

in which $\xi_{r,s,h}$ is presented in Equations (2.36). Also if we use Lemma 2.1, then we can write

$$D^{\alpha}\psi_{r}(t) = 0, \quad r = 0,1,...,\lceil \alpha \rceil - 1, \quad \alpha > 0$$
 (2.43)

Combining Equations (2.42) and (2.43), then we obtain the result.

2.6 Differential Equations

2.6.1 Ordinary Differential Equations

The general *nth* order linear differential equation for the function u = u(t) is written as [57]

$$h_0(t)\frac{d^n u}{dt^n} + h_1(t)\frac{d^{n-1} u}{dt^{n-1}} + \dots + h_{n-1}(t)\frac{du}{dt} + h_n(t)u = g(t), \quad t_0 < t < t_1$$

For example,

$$4\frac{d^4u}{dt^4}(t) - \cos t \frac{d^3u}{dt^3} + 2\sin t \frac{d^2u}{dt^2} + 2\cos t \frac{du}{dt} + 16u = 4e^t \sin 2t, \quad 0 < t < 1$$

The above differential equation is fourth order linear differential equation.

The general nth order non-linear differential equation for the function u = u(t) is written as

$$\frac{d^{n}u}{dt^{n}}(t) = H\left(t, u(t), \frac{du}{dt}(t), \dots, \frac{d^{n-1}u}{dt^{n-1}}(t)\right), \quad t_{0} < t < t_{1}$$

For instance,

$$\frac{d^5 u}{dt^5} + 24e^{-5u} = \frac{48}{(1+t)^5}, \quad 0 < t < 1$$

The previous differential equation is fifth order non-linear differential equation.

2.6.2 Fractional Order Differential Equations

The general linear FDE for the function u = u(t) is written as [57]

$$D^{\alpha}u(t) = h_0(t)D^{\eta_0}u(t) + \dots + h_{k-1}(t)D^{\eta_{k-1}}u(t) + h_k(t)u(t) + g(t)$$

Linearity of the this equation arises from linearity of the fractional differential operator. For instance,

$$4(t+1)D^{\frac{5}{2}}u(t) + 4D^{\frac{3}{2}}u(t) + \frac{1}{\sqrt{t+1}}u(t) = \sqrt{t} + \sqrt{\pi}$$

and

$$D^{2}u(t) + D^{\frac{3}{2}}u(t) + u(t) = 1 + t$$

are linear FDEs.

The general non-linear fractional order differential equation for the function u = u(t) is written as

$$D^{\alpha}u(t) = H(t,u(t),D^{\eta_1}u(t),...,D^{\eta_k}u(t))$$

For instance,

$$D^{3}u(t) + D^{\frac{5}{2}}u(t) + u^{2}(t) = t^{4}$$

and

$$D^{1.3}u(t) + u^{2}(t) = \frac{20}{7} \frac{t^{0.7}}{\Gamma(0.7)} + t^{4}$$

are non-linear FDEs.

2.7 Systems of Differential Equations

2.7.1 Systems of Ordinary Differential Equations

The general system of linear differential equations for functions $u_j = u_j(t)$ (j = 1, 2, ..., m) is written as [57]

$$\frac{d^{n}u_{1}}{dt^{n}} = h_{11}(t)u_{1} + \dots + h_{1n}(t)u_{m} + k_{1}(t)$$

$$\frac{d^{n}u_{2}}{dt^{n}} = h_{21}(t)u_{1} + \dots + h_{2n}(t)u_{m} + k_{2}(t)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{d^{n}u_{m}}{dt^{n}} = h_{m1}(t)u_{1} + ... + h_{mn}(t)u_{m} + k_{m}(t)$$

where $h_{ij}(t)$ and $k_i(t)$ i = 1, 2, ..., m j = 1, 2, ..., n are known functions on some interval a < t < b. The unknowns are the functions $u_1(t), ..., u_m(t)$.

If all $k_i = 0$ then the system is called homogeneous, otherwise it is called non-homogeneous. Linearity of the system arises from linearity of the differential equations. That is to say, if all differential equations is linear then the system is a linear system.

For instance,

$$\frac{du(t)}{dt} = w(t) - \cos t$$

$$\frac{dv(t)}{dt} = w(t) - e^{t}$$

$$\frac{dw(t)}{dt} = u(t) - v(t)$$

The above system is first order, non-homogeneous and linear system of differential equations.

The general system of non-linear differential equations for functions $u_j = u_j(t)$ (j = 1, 2, ..., m) is written as

$$\frac{d^{n}u_{1}}{dt^{n}}(t) = H_{1}\left(t, u_{1}(t), ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), ..., u_{m}(t), ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

$$\frac{d^{n}u_{2}}{dt^{n}}(t) = H_{2}\left(t, u_{1}(t), ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), ..., u_{m}(t), ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

$$\vdots$$

$$\frac{d^{n}u_{m}}{dt^{n}}(t) = H_{m}\left(t, u_{1}(t), ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), ..., u_{m}(t), ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

For example,

$$\frac{du(t)}{dt} = -2u(t) + u^{2}(t) v(t)$$

$$\frac{dv(t)}{dt} = u(t) - u^{2}(t) v(t)$$

The above Brusselator system is first order non-linear system of differential equations.

2.7.2 Systems of Fractional Order Differential Equations

The general system of FDEs for functions $u_j = u_j(t)$ (j = 1, 2, ..., m) is written as [57]

$$D^{\eta_1}u_1(t) = U_1(t, u_1, u_2, ..., u_m),$$

$$D^{\eta_2}u_2(t) = U_2(t, u_1, u_2, ..., u_m),$$

$$\vdots$$

$$D^{\eta_n}u_m(t) = U_m(t, u_1, u_2, ..., u_m),$$

If U_i 's are linear functions of $t, u_1, u_2, ..., u_m$, then the system is a linear system of FDEs.

For example,

$$D^{\alpha}u(t) = u(t) + v(t)$$
$$D^{\alpha}v(t) = -u(t) + v(t)$$

The above system is a system of linear FDEs.

If U_i 's are non-linear functions of $t, u_1, u_2, ..., u_m$, then the system is a non-linear system of FDEs.

For instance,

$$D^{\frac{3}{2}}u(t) = -8u(t) + v^{2}(t) - 4t^{6} + 4t^{3} + \frac{8t^{\frac{3}{2}}}{\sqrt{\pi}} - 1$$

$$D^{\frac{1}{2}}v(t) = t^{2}Du(t) + v(t) - 3t^{4} - 2t^{3} + \frac{32t^{\frac{5}{2}}}{5\sqrt{\pi}} - 1$$

The previous system is a system of non-linear FDEs.

THE APPLICATION OF THE OPERATIONAL MATRIX OF DERIVATIVE TO HIGH ORDER DIFFERENTIAL EQUATIONS

High-order differential equations have substantial attention, because of their fascinating mathematical structures and properties and they play an important role in the thermal science and mechanical engineering. Fluid-flow, heat transfer and other related physical phenomena of interest are gained by principles of conservation and are symbolized in terms of differential equations denoting these principles.

For example, fourth-order DEs are used in the numerical analysis of viscoelastic and inelastic flows, the free vibration analysis of beam structures, deformation of beams and plate deflection theory [1]. A fourth order analogue of it is the Orr-Sommerfield equation explain to great correctness the cross-stream behavior of channel fluid-flow. Moreover, sixth-order differential equations arise in the free vibration analysis of ring structures and astrophysics [2]. Some related applications of high-order DEs can be found in [1-8]. In [1], Noor and Mohyud-Din presented the variation iteration method for solving fourth-order BVPs and in [4], [7] they illustrated the homotopy perturbation method for solving fifth-order and sixth-order BVPs, respectively. Also, in [8], a Legendre Petrov-Galerkin method was demonstrated for the solution of the fourth-order BVPs. In [5-6], the numerical solution of fifth-order BVPs was presented by using a new cubic B-spline method and a sixth-degree B-spline approximation, respectively. In [2], El-Gamel *et al.* applied sinc-Galerkin method for solving sixth-order BVPs. Secer and writer of this thesis submitted a paper which deals with the numerical solution of high order differential equations by using Legendre wavelet operational matrix method in [56].

In this chapter, the operational matrix of Legendre wavelet is generalized in order to solve high-order linear and non-linear multi-point: initial and boundary value problems.

3.1 Solving High Order Linear Differential Equations

This section introduces an alternative solution technique called LWOMM to obtain the numerical solution of high order linear DEs. Consider the following equation

$$h_0(t)\frac{d^n u}{dt^n} + h_1(t)\frac{d^{n-1}u}{dt^{n-1}} + \dots + h_{n-1}(t)\frac{du}{dt} + h_n(t)u = g(t), \qquad t_0 < t < t_1$$
(3.1)

with these initial conditions

$$u(t_0) = u_0, \quad \frac{du}{dt}(t_0) = u_1, \quad \frac{d^2u}{dt^2}(t_0) = u_2, ..., \frac{d^{n-1}u}{dt^{n-1}}(t_0) = u_{n-1}$$
(3.2)

or with these boundary conditions

$$u(t_{0}) = u_{0}, \frac{du}{dt}(t_{0}) = u_{1}, \frac{d^{2}u}{dt^{2}}(t_{0}) = u_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{0}) = u_{i}$$

$$u(t_{1}) = u'_{0}, \frac{du}{dt}(t_{1}) = u'_{1}, \frac{d^{2}u}{dt^{2}}(t_{1}) = u'_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{1}) = u'_{i} \qquad i = 0, 1, ..., n/2 \quad if \quad n \text{ even}$$

$$u(t_{0}) = u_{0}, \frac{du}{dt}(t_{0}) = u_{1}, \frac{d^{2}u}{dt^{2}}(t_{0}) = u_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{0}) = u_{i}$$

$$u(t_{1}) = u'_{0}, \frac{du}{dt}(t_{1}) = u'_{1}, \frac{d^{2}u}{dt^{2}}(t_{1}) = u'_{2}, ..., \frac{d^{i-1}u}{dt^{i-1}}(t_{1}) = u'_{i-1} \qquad i = 0, 1, ..., (n+1)/2 \quad if \quad n \text{ odd}$$

$$(3.3)$$

First of all, approximating u(t) by the Legendre wavelets, then we obtain

$$u(t) \cong C^{T} \psi(t) \tag{3.4}$$

where C is an unknown vector and $\psi(t)$ is the vector defined in Equation (2.27). If we utilise Equation (2.31) then we have

$$\frac{du}{dt}(t) \cong C^T D \psi(t), \quad \frac{d^2 u}{dt^2}(t) \cong C^T D^2 \psi(t), \dots, \frac{d^n u}{dt^n}(t) \cong C^T D^n \psi(t)$$
(3.5)

Also approximating $h_0(t), h_1(t), ..., h_n(t)$ and g(t), then we get

$$h_0(t) \cong H_0^T \psi(t), h_1(t) \cong H_1^T \psi(t), \dots, h_n(t) \cong H_n^T \psi(t), \text{ and } g(t) \cong G^T \psi(t)$$
 (3.6)

where vectors $H_0, H_1, ..., H_n$ and G are given by Equation (2.26). Substituting Equations (3.5)-(3.6) in Equation (3.1) we obtain

$$R(t) = (H_0^T \psi(t)) (C^T D^n \psi(t)) + (H_1^T \psi(t)) (C^T D^{n-1} \psi(t)) + ...$$

$$+ (H_{n-1}^T \psi(t)) (C^T D \psi(t)) + (H_n^T \psi(t)) (C^T \psi(t)) - G^T \psi(t) = 0$$
(3.7)

If we use the product operation matrix of Legendre wavelets, then we obtain

$$R(t) = (H_0^T \psi(t)) (\psi^T(t) (D^n)^T C) + (H_1^T \psi(t)) (\psi^T(t) (D^{n-1})^T C) + ...$$

$$+ (H_{n-1}^T \psi(t)) (\psi^T(t) (D)^T C) + (H_n^T \psi(t)) (\psi^T(t) C) - \psi^T(t) G$$

$$= \psi^T(t) \tilde{H}_0 (D^n)^T C + \psi^T(t) \tilde{H}_1 (D^{n-1})^T C + ... + \psi^T(t) \tilde{H}_{n-1} (D)^T C + \psi^T(t) \tilde{H}_n C - \psi^T(t) G$$
(3.8)

where $\tilde{H}_0, \tilde{H}_1, ..., \tilde{H}_n$ are the product operation matrices and can be calculated by using Equation (2.32).

We obtain $2^{k}(M+1)-n$ linear equations by computing

$$\int_{0}^{1} \psi_{j}(t) R(t) dt = 0, \quad j = 1, ..., 2^{k} (M+1) - n$$
(3.9)

Also, if we substitute these initial conditions (3.2) in Equations (3.4)-(3.5) we obtain

$$u(t_0) \cong C^T \psi(t_0) = u_0, \quad \frac{du}{dt}(t_0) \cong C^T D \psi(t_0) = u_1$$

$$\frac{d^2 u}{dt^2}(t_0) \cong C^T D^2 \psi(t_0) = u_2, ..., \frac{d^{n-1} u}{dt^{n-1}}(t_0) \cong C^T D^{n-1} \psi(t_0) = u_{n-1}$$
(3.10)

We obtain $2^k(M+1)$ set of linear equations by using Equations (3.9) and (3.10). These linear equations can be solved for unknown coefficients of the vector C. Accordingly, u(t) which is given in Equation (3.1) can be computed.

3.2 Solving High Order Non-Linear Differential Equations

In this section, the LWOMM is implemented for solving n-th order non-linear DEs. Consider the following equation

$$\frac{d^{n}u}{dt^{n}}(t) = H\left(t, u(t), \frac{du}{dt}(t), ..., \frac{d^{n-1}u}{dt^{n-1}}(t)\right), \quad t_{0} < t < t_{1}$$
(3.11)

with the initial conditions

$$u(t_0) = u_0, \quad \frac{du}{dt}(t_0) = u_1, \quad \frac{d^2u}{dt^2}(t_0) = u_2, ..., \frac{d^{n-1}u}{dt^{n-1}}(t_0) = u_{n-1}$$
 (3.12)

or boundary conditions

$$u(t_{0}) = u_{0}, \frac{du}{dt}(t_{0}) = u_{1}, \frac{d^{2}u}{dt^{2}}(t_{0}) = u_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{0}) = u_{i}$$

$$u(t_{1}) = u'_{0}, \frac{du}{dt}(t_{1}) = u'_{1}, \frac{d^{2}u}{dt^{2}}(t_{1}) = u'_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{1}) = u'_{i}$$

$$u(t_{0}) = u_{0}, \frac{du}{dt}(t_{0}) = u_{1}, \frac{d^{2}u}{dt^{2}}(t_{0}) = u_{2}, ..., \frac{d^{i}u}{dt^{i}}(t_{0}) = u_{i}$$

$$u(t_{1}) = u'_{0}, \frac{du}{dt}(t_{1}) = u'_{1}, \frac{d^{2}u}{dt^{2}}(t_{1}) = u'_{2}, ..., \frac{d^{i-1}u}{dt^{i-1}}(t_{1}) = u'_{i-1}$$

$$i = 0,1, ..., n/2 \text{ if } n \text{ even}$$

$$i = 0,1, ..., (n+1)/2 \text{ if } n \text{ odd}$$

$$u(t_{1}) = u'_{0}, \frac{du}{dt}(t_{1}) = u'_{1}, \frac{d^{2}u}{dt^{2}}(t_{1}) = u'_{2}, ..., \frac{d^{i-1}u}{dt^{i-1}}(t_{1}) = u'_{i-1}$$

$$(3.13)$$

First we presume that the unknown function u(t) is approximated and given by

$$u(t) \cong C^T \psi(t) \tag{3.14}$$

where C is an unknown vector and $\psi(t)$ is the vector which given in Equation (2.27). By utilising Equation (3.11) then we obtain

$$C^{T}D^{n}\psi(t) \cong H\left(t, C^{T}\psi(t), C^{T}D\psi(t), \dots, C^{T}D^{n-1}\psi(t)\right)$$
(3.15)

Also by substituting initial conditions (3.12) in Equations (3.4) and (3.5) we obtain

$$u(t_{0}) \cong C^{T} \psi(t_{0}) = u_{0}, \quad \frac{du}{dt}(t_{0}) \cong C^{T} D \psi(t_{0}) = u_{1}$$

$$\frac{d^{2}u}{dt^{2}}(t_{0}) \cong C^{T} D^{2} \psi(t_{0}) = u_{2}, ..., \frac{d^{n-1}u}{dt^{n-1}}(t_{0}) \cong C^{T} D^{n-1} \psi(t_{0}) = u_{n-1}$$
(3.16)

To obtain the solution u(t), we first compute Equation (3.15) at $2^k(M+1)-n$ points. For a better result, we utilise the first $2^k(M+1)-n$ roots of shifted Legendre polynomials $P_{2^k(M+1)}(t)$. If we use these equations collectively with Equation (3.16), then we obtain $2^k(M+1)$ non-linear equations. These non-linear equations can be solved for unknown coefficients of the vector C. Accordingly u(t) given in Equation (3.11) can be computed.

3.3 Applications

In this section, we present some examples to demonstrate the performance of the introduced tecnique for solving high order linear and non-linear DEs. It is shown that the LWOMM yield better results.

Example 3.1 Consider the following second-order non-linear BVP

$$\frac{d^2u}{dt} + 2\left(\frac{du}{dt}\right)^2 + 8u(t) = 0, \quad 0 < t < 1$$
 (3.17)

with these boundary conditions

$$u(0) = 0, \quad u(1) = 0$$
 (3.18)

The exact solution of the previous system is $u(t) = t - t^2$

To solve the above problem, we implemented the method presented in Section 3.2 with $M=2,\ k=0$. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du}{dt} \cong C^{T} D \psi(t), \quad \frac{d^{2}u}{dt^{2}} \cong C^{T} D^{2} \psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}, \quad D^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 12\sqrt{5} & 0 & 0 \end{pmatrix}$$

If we consider (3.17) with (3.18), we have

$$C^{T}D^{2}\psi(t) + 2(C^{T}D\psi(t))^{2} + 8(C^{T}D\psi(t)) = 0$$
 (3.19)

Calculating Equation (3.19) at the first root of $P_3(t)$, i.e. $t_0 = \frac{1}{2} - \frac{\sqrt{15}}{10}$

We get

$$4c_{0,2}\sqrt{15}\sqrt{3} + 2\left(2c_{0,1}\sqrt{3} + 2c_{0,2}\sqrt{15}\sqrt{3}\left(-1 + 2t\right)\right)^{2} + 8c_{0,0} + 8c_{0,1}\sqrt{3}\left(-1 + 2t\right) + 8c_{0,2}\sqrt{5}\left(6t^{2} - 6t + 1\right) = 0$$

and by utilising boundary conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 0$$
$$c_{0,0} + \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 0$$

If we solve this system of nonlinear algebraic equations, we get

$$\boldsymbol{C}^{T} = \! \left[\boldsymbol{c}_{0,0}, \boldsymbol{c}_{0,1}, \boldsymbol{c}_{0,2} \right] = \! \left[0.1666666666, -0.4309487636 \ 10^{-22}, -0.07453559926 \right]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.16666666666, -0.4309487636 \ 10^{-22}, -0.07453559926 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table. 3.1.

Table 3.1 Comparison between the exact solution and our numerical solution for Example 3.1

		M = 2, k = 0	
t	Exact Solution $u(t)$	Approximate Solution	Absolute Error
0.0	0.00	-0.1 10 ⁻⁹	$0.1 10^{-9}$
0.1	0.09	0.08999999994	$0.6 10^{-10}$
0.2	0.16	0.15999999999	$0.1 10^{-9}$
0.3	0.21	0.20999999999	$0.1 10^{-9}$
0.4	0.24	0.23999999999	$0.1 10^{-9}$
0.5	0.25	0.24999999999	$0.1 10^{-9}$
0.6	0.24	0.23999999999	$0.1 10^{-9}$
0.7	0.21	0.20999999999	$0.1 10^{-9}$
0.8	0.16	0.15999999999	$0.1 10^{-9}$
0.9	0.09	0.0899999999	$0.6 10^{-10}$
1.0	0.00	-0.1 10 ⁻⁹	$0.1 10^{-9}$

Example 3.2. We consider the following fourth-order linear IVP

$$4\frac{d^4u}{dt^4}(t) - \cos t \frac{d^3u}{dt^3} + 2\sin t \frac{d^2u}{dt^2} + 2\cos t \frac{du}{dt} + 16u = 4e^t \sin 2t, \quad 0 < t < 1$$
 (3.20)

with these initial conditions

$$u(0) = 0, \quad \frac{du}{dt}(0) = 1, \quad \frac{d^2u}{dt^2}(0) = 2, \quad \frac{d^3u}{dt^3}(0) = 2$$
 (3.21)

The exact solution of the previous system is known as $u(t) = e^t \sin t$

To solve Equation (3.20), we applied the method presented in Section 3.1 with M = 5, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D \psi(t)$$

$$\frac{d^2u(t)}{dt^2} \cong C^T D^2 \psi(t), \quad \frac{d^3u(t)}{dt^3} \cong C^T D^3 \psi(t), \quad \frac{d^4u(t)}{dt^4} \cong C^T D^4 \psi(t)$$

Also approximating $h_0(t) = \sin t$, $h_1(t) = \cos t$, $g(t) = e^t \sin 2t$ following as

$$h_0(t) \cong H_0^T \psi(t), h_1(t) \cong H_1^T \psi(t) \text{ and } g(t) \cong G^T \psi(t)$$

where
$$H_0(t) = \int_0^1 \sin t\psi(t) dt$$
, $H_1(t) = \int_0^1 \cos t\psi(t) dt$ and $G(t) = \int_0^1 e^t \sin 2t\psi(t) dt$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 & 0 \\ 0 & 0 & 0 & 0 & 2\sqrt{99} & 0 \end{pmatrix},$$

If we consider (3.20) with (3.21), we have

$$R(t) = 4C^{T}D^{4}\psi(t) - H_{1}^{T}D^{3}\psi(t) + 2H_{0}^{T}D^{2}\psi(t) + 2H_{1}^{T}D\psi(t) + 16C^{T}\psi(t) - 4G^{T}\psi(t)$$
(3.22)

By computing

$$\int_{0}^{1} \psi_{j}(t) R(t) dt = 0, \quad j = 1, 2$$

We obtain two linear equations following as

$$\begin{split} -5.387308351 + 16c_{0,0} + 5.829881996c_{0,1} + 22.57903587c_{0,2} \\ -222.6322963c_{0,3} + 20349.82385c_{0,4} + 118.3624723c_{0,5} = 0 \\ -3.173505657 + 15.06490716c_{0,1} + 25.84945221c_{0,2} \\ +121.4121245c_{0,3} - 1101.248082c_{0,4} + 116247.0813c_{0,5} = 0 \end{split}$$

and by utilising initial conditions we have

$$\begin{split} c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} - \sqrt{11}c_{0,5} &= 0 \\ 2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} - 42c_{0,4} + 18\sqrt{11}c_{0,5} &= 1 \\ 12\sqrt{5}c_{0,2} - 60\sqrt{7}c_{0,3} + 420c_{0,4} - 252\sqrt{11}c_{0,5} &= 2 \\ 120\sqrt{7}c_{0,3} - 2520c_{0,4} - 1260\sqrt{11}c_{0,5} &= 2 \end{split}$$

If we solve this system of linear algebraic equations, we get

$$\begin{split} &C^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}, c_{0,4}, c_{0,5}\right] \\ &= \left[0.9077018418, 0.6482676542, 0.1005609239, 0.00298064330, -.00071311177, -.0000889418471\right] \\ &\text{Consequently,} \end{split}$$

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 0.9077018418 \\ 0.6482676542 \\ 0.1005609239 \\ 0.00298064330 \\ -.00071311177 \\ -.0000889418471 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \\ \sqrt{11}(252t^{5}-630t^{4}+560t^{3}-210t^{2}+30t-1) \end{bmatrix}$$

The exact solution and our approximate solution are displayed in Table. 3.2.

Table 3.2 Comparison between the exact solution and the approximate solution for Example 3.2

		M = 5, k = 0	
t	Exact Solution $u(t)$	Approximate Solution	Absolute Error
0.0	0.0000000000	$0.060 10^{-11}$	$0.060 10^{-11}$
0.1	0.1103329887	0.1126216474	0.0022886587
0.2	0.2426552686	0.2466635725	0.0040083039
0.3	0.3989105540	0.4038963982	0.0049858442
0.4	0.5809439009	0.5859989519	0.0050550509
0.5	0.7904390834	0.7944690603	0.0040299768
0.6	1.0288456660	1.0305343470	0.0016886798
0.7	1.2972951110	1.2950630240	0.0022320878
0.8	1.5965053400	1.5884746930	0.0080306463
0.9	1.9266733040	1.9106511420	0.0160221600
1.0	2.2873552870	2.2608471370	0.0265081500

Example 3.3 Consider the following fifth order linear IVP [5]

$$\frac{d^{5}u}{dt^{5}} + (t-2)\frac{d^{4}u}{dt^{4}} + 2\frac{d^{3}u}{dt^{3}} - (t^{2} + 2t - 1)\frac{d^{2}u}{dt^{2}} + (2t^{2} + 4t)\frac{du}{dt} - 2t^{2}u = 4e^{t}\cos t - 2t^{4} + 4t^{3} + 6t^{2} - 4t + 2, \quad 0 < t < 1$$
(3.23)

subject to these initial conditions

$$u(0) = 0, \frac{du}{dt}(0) = 2, \frac{d^2u}{dt^2}(0) = 6, \frac{d^3u}{dt^3}(0) = 4, \frac{d^4u}{dt^4}(0) = 0$$
 (3.24)

The exact solution of the above system is $u(t) = 2e^t \sin t + t^2$

To solve the above problem, we applied the method presented in Section 3.1 with M = 7, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D \psi(t), \quad \frac{d^{2} u(t)}{dt^{2}} \cong C^{T} D^{2} \psi(t),$$

$$\frac{d^3 u(t)}{dt^3} \cong C^T D^3 \psi(t), \quad \frac{d^4 u(t)}{dt^4} \cong C^T D^4 \psi(t), \quad \frac{d^5 u(t)}{dt^5} \cong C^T D^5 \psi(t)$$

Also, approximating $h_0(t) = t - 2$, $h_1(t) = t^2 + 2t - 1$, $h_2(t) = 2t^2 + 4t$, $h_3(t) = 2t^2$, and $g(t) = 4e^t \cos t - 2t^4 + 4t^3 + 6t^2 - 4t + 2$ following as

$$h_0(t) \cong H_0^T \psi(t), h_1(t) \cong H_1^T \psi(t), h_2(t) \cong H_2^T \psi(t), h_3(t) \cong H_3^T \psi(t) \text{ and } g(t) \cong G^T \psi(t)$$

where

$$H_0(t) = \int_0^1 (t-2)\psi(t)dt, \ H_1(t) = \int_0^1 (t^2+2t-1)\psi(t)dt, \ H_2(t) = \int_0^1 (2t^2+4t)\psi(t)dt,$$

$$H_3(t) = \int_0^1 (2t^2) \psi(t) dt \text{ and } G(t) = \int_0^1 (4e^t \cos t - 2t^4 + 4t^3 + 6t^2 - 4t + 2) \psi(t) dt$$

We get

If we consider (3.23) with (3.24), we have

$$R(t) = C^{T} D^{5} \psi(t) + (H_{0}^{T} \psi(t)) (C^{T} D^{4} \psi(t)) + 2(C^{T} D^{3} \psi(t)) - (H_{1}^{T} \psi(t)) (C^{T} D^{2} \psi(t)) + (H_{2}^{T} \psi(t)) (C^{T} D \psi(t)) - (H_{3}^{T} \psi(t)) (C^{T} \psi(t)) - G^{T} \psi(t)$$
(3.25)

By computing

$$\int_{0}^{1} \psi_{j}(t) R(t) dt = 0, \quad j = 1, 2, 3$$

We obtain three linear equations following as

$$-0.6666666667c_{0,0} + 8.660254039c_{0,1} + 4.323064761c_{0,2} + 557.3716095c_{0,3}$$

$$-7574.000000c_{0,4} + 108652.6281c_{0,5} - 0.3 \cdot 10^{-7}c_{0,6} - 0.15 \cdot 10^{-4}c_{0,7} - 8.112098454 = 0$$

$$-1.782876059 - 0.5773502693c_{0,0} + 5.200000001c_{0,1} - 2.065591121c_{0,2} - 18.46123351c_{0,3} \\ + 4221.354229c_{0,4} - 43449.57403c_{0,5} + 715526.8907c_{0,6} - 0.1\ 10^{-4}c_{0,7} = 0$$

$$-0.1490711985c_{_{0,0}}-0.986\ 10^{_{-10}}c_{_{0,1}}+9.238095242c_{_{0,2}}-38.82075211c_{_{0,3}}-47.53241642c_{_{0,4}}\\+14713.31402c_{_{0,5}}-134121.8771c_{_{0,6}}+2550146.901c_{_{0,7}}-0.3879252900=0$$

and by utilising the initial conditions we have

$$u(0) \cong C^{T} \psi(0) = 0, \quad \frac{du(0)}{dt} \cong C^{T} D \psi(0) = 2, \quad \frac{d^{2} u(0)}{dt^{2}} \cong C^{T} D^{2} \psi(0) = 6$$
$$\frac{d^{3} u(0)}{dt^{3}} \cong C^{T} D^{3} \psi(0) = 4, \quad \frac{d^{4} u(0)}{dt^{4}} \cong C^{T} D^{4} \psi(0) = 0$$

If we solve this system of linear algebraic equations, we get

$$C^{T} = \begin{bmatrix} c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}, c_{0,4}, c_{0,5}, c_{0,6}, c_{0,7} \end{bmatrix} = \begin{bmatrix} 2.142158342 \\ 1.578792178 \\ 0.2730371723 \\ 0.0054607618 \\ -0.001414419958 \\ -0.000175507821 \\ -0.86373431 \ 10^{-5} \\ -0.96647696 \ 10^{-7} \end{bmatrix}$$
Consequently.

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 2.142158342 \\ 1.578792178 \\ 0.2730371723 \\ 0.0054607618 \\ -0.001414419958 \\ -0.000175507821 \\ -0.86373431 \ 10^{-5} \\ -0.96647696 \ 10^{-7} \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \\ \sqrt{11}(252t^{5}-630t^{4}+560t^{3}-210t^{2}+30t-1) \\ \sqrt{13}(924t^{6}-2772t^{5}+3150t^{4}-1680t^{3}+420t^{2}-42t+1) \\ \sqrt{15}(3432t^{7}-12012t^{6}+16632t^{5}-11550t^{4}+4200t^{3}-756t^{2}+56t-1) \end{bmatrix}$$
The approximate solution with the exact solution are displayed in Table. 3.3.

The approximate solution with the exact solution are displayed in Table. 3.3.

Table 3.3 Comparison between the exact solution and the approximate solution for Example 3.3

t	Exact Solution $u(t)$	M = 7, k = 0 Approximate Solution	Absolute Error
0.0	0.0000000000	-0.542513010 ⁻⁹	0.542513010^{-9}
0.1	0.2306659774	0.2349757869	0.0043098115
0.2	0.5253105372	0.5326889428	0.0073784060
0.3	0.8878211080	0.8965862650	0.0087651579
0.4	1.3218878020	1.3298579860	0.0079701859
0.5	1.8308781670	1.8353120110	0.0044338456
0.6	2.4176913320	2.4152287240	0.0024626060
0.7	3.0845902220	3.0711957340	0.0133944863
0.8	3.8330106800	3.8039211894	0.0290887837
0.9	4.6633466080	4.6130299590	0.0503166471
1.0	5.5747105740	5.4968272320	0.0778833389

Example 3.4 Consider the following sixth order linear BVP [2]

$$\frac{d^{6}u}{dt^{6}} + \frac{d^{3}u}{dt^{3}} + \frac{d^{2}u}{dt^{2}} - u = e^{-t} \left(-15t^{2} + 78t - 114 \right), \quad 0 < t < 1$$
(3.26)

subject to these boundary conditions

$$u(0) = 0$$
, $\frac{du}{dt}(0) = 0$, $\frac{d^2u}{dt^2}(0) = 0$, $u(1) = 1/e$, $\frac{du}{dt}(1) = 2/e$, $\frac{d^2u}{dt^2}(1) = 1/e$ (3.27)

The exact solution of the above system is $u(t) = t^3 e^{-t}$

To solve the above problem, we applied the method presented in Section 3.1 with M = 7, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D\psi(t)$$

$$\frac{d^2u(t)}{dt^2} \cong C^T D^2 \psi(t), \quad \frac{d^3u(t)}{dt^3} \cong C^T D^3 \psi(t), \quad \frac{d^6u(t)}{dt^6} \cong C^T D^6 \psi(t)$$

Also approximating $g(t) = e^{-t} \left(-15t^2 + 78t - 114 \right)$ following as $g(t) \cong G^T \psi(t)$

We get

$$R(t) = C^{T} D^{6} \psi(t) + C^{T} D^{3} \psi(t) + C^{T} D^{2} \psi(t) - C^{T} \psi(t) - G^{T} \psi(t)$$

By computing

$$\int_{0}^{1} \psi_{j}(t) R(t) dt = 0, \ j = 1, 2$$

We obtain two linear equations following as

$$53.85997844 + 26.83281573c_{0,2} - c_{0,0} + 317.4901573c_{0,3} + 2398701.153c_{0,6} = 0$$

and by utilising the boundary conditions we have

$$u(0) \cong C^{T} \psi(0) = 0, \quad u(1) \cong C^{T} \psi(1) = \frac{1}{e}$$

$$\frac{du}{dt}(0) \cong C^{T} D \psi(0) = 0, \quad \frac{du}{dt}(1) \cong C^{T} D \psi(1) = \frac{2}{e}$$

$$\frac{d^{2}u}{dt^{2}}(0) \cong C^{T} D^{2} \psi(0) = 0, \quad \frac{d^{2}u}{dt^{2}}(1) \cong C^{T} D^{2} \psi(1) = \frac{1}{e}$$

If we solve this system of linear algebraic equations, we get

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.1161815354 \\ 0.1069989365 \\ 0.03242759289 \\ -0.001046948131 \\ -0.001556841602 \\ 0.0004149720161 \\ -0.0000226295487 \\ 0.1493379251 \ 10^{-5} \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \\ \sqrt{11}(252t^{5}-630t^{4}+560t^{3}-210t^{2}+30t-1) \\ \sqrt{13}(924t^{6}-2772t^{5}+3150t^{4}-1680t^{3}+420t^{2}-42t+1) \\ \sqrt{15}(3432t^{7}-12012t^{6}+16632t^{5}-11550t^{4}+4200t^{3}-756t^{2}+56t-1) \end{bmatrix}$$

The exact solution and our approximate solution that has been obtained by using proposed method with M = 7, k = 0 are displayed in Table. 3.4.

Table 3.4 Comparison between the exact solution and the approximate solution for Example 3.4

t	Exact Solution $u(t)$	M = 7, $k = 0$ Approximate Solution	Absolute Error
0.0	0.0000000000	0.30654210 ⁻⁹	0.30654210^{-9}
0.1	0.0009048374	0.0031672437	0.0022624063
0.2	0.0065498460	0.0089879497	0.0024381036
0.3	0.0200020919	0.0221105281	0.0021084361
0.4	0.0429004829	0.0449373620	0.0020368791
0.5	0.0758163324	0.0782004350	0.0023841026
0.6	0.1185433134	0.1214626682	0.0029193547
0.7	0.1703287592	0.1735549706	0.0032262115
0.8	0.2300564296	0.2329590100	0.0029025806
0.9	0.2963892819	0.2981457037	0.0017564224
1.0	0.3678794412	0.3678794407	0.25552210^{-9}

Example 3.5 Consider the following fifth order non-linear BVP [6]

$$\frac{d^5 u}{dt^5} + 24e^{-5u} = \frac{48}{(1+t)^5}, \quad 0 < t < 1$$
 (3.28)

with these boundary conditions

$$u(0) = 0$$
, $u(1) = \ln 2$, $\frac{du}{dt}(0) = 1$, $\frac{du}{dt}(1) = 0.5$, $\frac{d^2u}{dt^2}(0) = -1$ (3.29)

The exact solution of the above system is $u(t) = \ln(1+t)$

To solve the above problem, we applied the LWOMM introduced in Section 3.2 with M = 8, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D\psi(t)$$

$$\frac{d^2 u(t)}{dt^2} \cong C^T D^2 \psi(t), \quad \frac{d^5 u(t)}{dt^5} \cong C^T D^5 \psi(t)$$

Also approximating $g(t) = \frac{48}{(1+t)^5}$ following as $g(t) \cong G^T \psi(t)$

where
$$G(t) = \int_{0}^{1} \left(\frac{48}{(1+t)^5} \right) \psi(t) dt$$

We get

If we consider (3.28) with (3.29), we have

$$R(t) = C^{T} D^{5} \psi(t) + 24e^{-5(C^{T} \psi(t))} - G^{T} \psi(t) = 0$$
(3.30)

Calculating Equation (3.30) at the first four roots of $P_9(t)$, i.e.

$$t_{0} = \frac{1}{2}$$

$$t_{1} = \frac{1}{2} + \frac{1}{2}\sqrt{1 + 4RootOf(24310_Z^{4} + 11440_Z^{3} + 1716_Z^{2} + 88_Z + 1, index = 1)}$$

$$t_{2} = \frac{1}{2} - \frac{1}{2}\sqrt{1 + 4RootOf(24310_Z^{4} + 11440_Z^{3} + 1716_Z^{2} + 88_Z + 1, index = 1)}$$

$$t_{3} = \frac{1}{2} + \frac{1}{2}\sqrt{1 + 4RootOf(24310_Z^{4} + 11440_Z^{3} + 1716_Z^{2} + 88_Z + 1, index = 2)}$$

We obtain four non-linear equations and by utilising boundary conditions we have a system of non-linear algebraic equations

If we solve this system of non-linear algebraic equations, we get

$$C^{T} = \begin{bmatrix} c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}, c_{0,4}, c_{0,5}, c_{0,6}, c_{0,7}, c_{0,8} \end{bmatrix} = \begin{bmatrix} 0.3877430836 \\ 0.1961116976 \\ -0.01825787356 \\ 0.002530037833 \\ -0.0001049565766 \\ 0.6036072799 \ 10^{-4} \\ -0.7854936709 \ 10^{-5} \\ 0.1064101460 \ 10^{-5} \\ -0.1105550721 \ 10^{-6} \end{bmatrix}$$

Consequently,

$$u(t) = \begin{bmatrix} 0.3877430836 \\ 0.1961116976 \\ -0.01825787356 \\ 0.002530037833 \\ -0.0001049565766 \\ 0.6036072799 \ 10^{-4} \\ -0.7854936709 \ 10^{-5} \\ 0.1064101460 \ 10^{-5} \\ -0.1105550721 \ 10^{-6} \end{bmatrix}^T \begin{bmatrix} 1 \\ \sqrt{3}\left(-1+2t\right) \\ \sqrt{5}\left(6t^2-6t+1\right) \\ \sqrt{7}\left(20t^3-30t^2+12t-1\right) \\ 3\left(70t^4-140t^3+90t^2-20t+1\right) \\ \sqrt{11}\left(252t^5-630t^4+560t^3-210t^2+30t-1\right) \\ \sqrt{13}\left(924t^6-2772t^5+3150t^4-1680t^3+420t^2-42t+1\right) \\ \sqrt{15}\left(3432t^7-12012t^6+16632t^5-11550t^4+4200t^3-756t^2+56t-1\right) \\ \sqrt{17}\left(12870t^8-51480t^7+84084t^6-72072t^5+34650t^4-9240t^3+1260t^2-72t+1\right) \end{bmatrix}$$

The approximate solution with the exact solution are given in Table 3.5.

Table 3.5 Comparison between the exact solution and the approximate solution for Example 3.5

t	Exact Solution $u(t)$	M = 8, k = 0 Approximate Solution	Absolute Error
0.0	0.0000000000	-0.851428 10 ⁻¹⁰	$0.851428 10^{-10}$
0.1	0.0953101798	0.09685278434	0.00154260454
0.2	0.1823215568	0.1848673057	0.0025457489
0.3	0.2623642645	0.2654062222	0.0030419577
0.4	0.3364722366	0.3395145459	0.0030423093
0.5	0.4054651081	0.4080466567	0.0025815486
0.6	0.4700036292	0.4717568670	0.0017532378
0.7	0.5306282511	0.5313642136	0.0007359625
0.8	0.5877866649	0.5875997863	0.0001868786
0.9	0.6418538862	0.6412425416	0.0006113446
1.0	0.6931471806	0.6931471809	$0.3 10^{-9}$

Example 3.6 Consider the following sixth order non-linear BVP [7]

$$\frac{d^6 u}{dt^6}(t) = e^t u^2(t), \quad 0 < t < 1 \tag{3.31}$$

subject to these boundary conditions

$$u(0) = 1, \quad \frac{du}{dt}(0) = -1, \quad \frac{d^{2}u}{dt^{2}}(0) = 1,$$

$$u(1) = 1/e, \quad \frac{du}{dt}(1) = -1/e, \quad \frac{d^{2}u}{dt^{2}}(1) = 1/e$$
(3.32)

The exact solution of the above system is $u(t) = e^{-t}$

To solve the above problem, we applied the method presented in Section 3.2 with M = 7, k = 0. Approximating solution following as

$$u(t) \cong C^T \psi(t), \quad \frac{du(t)}{dt} \cong C^T D \psi(t), \quad \frac{d^2 u(t)}{dt^2} \cong C^T D^2 \psi(t), \quad \frac{d^6 u(t)}{dt^6} \cong C^T D^6 \psi(t)$$

Also approximating $g(t) = e^t$ following as $g(t) \cong G^T \psi(t)$

where
$$G(t) = \int_{0}^{1} e^{t} \psi(t) dt$$

We get

If we consider (3.31) with (3.32), we have

$$R(t) = C^{T} D^{6} \psi(t) - \left(G^{T} \psi(t)\right) \left(C^{T} \psi(t)\right)^{2}$$
(3.33)

Calculating Equation (3.30) at the first two roots of $P_8(t)$, i.e.

$$t_1 = \frac{1}{2} + \frac{1}{2}\sqrt{1 + 4RootOf(12870 - Z^4 + 6864 - Z^3 + 1188 - Z^2 + 72 - Z + 1, index = 1)}$$

$$t_2 = \frac{1}{2} - \frac{1}{2} \sqrt{1 + 4RootOf(12870 - Z^4 + 6864 - Z^3 + 1188 - Z^2 + 72 - Z + 1, index = 1)}$$

We obtain two non-linear equations and by utilising boundary conditions we have

$$u(0) \cong C^{T} \psi(0) = 1, \quad u(1) \cong C^{T} \psi(1) = \frac{1}{e}$$

$$\frac{du}{dt}(0) \cong C^{T} D \psi(0) = -1, \quad \frac{du}{dt}(1) \cong C^{T} D \psi(1) = -\frac{1}{e}$$

$$\frac{d^{2}u}{dt^{2}}(0) \cong C^{T} D^{2} \psi(0) = 1, \quad \frac{d^{2}u}{dt^{2}}(1) \cong C^{T} D^{2} \psi(1) = \frac{1}{e}$$

If we solve this system of non-linear algebraic equations, we get

$$C^{T} = \begin{bmatrix} c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}, c_{0,4}, c_{0,5}, c_{0,6}, c_{0,7} \end{bmatrix} = \begin{bmatrix} 0.6318783499 \\ -0.1784202709 \\ 0.2307661619 \\ -0.002863931751 \\ 0.0001531565124 \\ 0.0001658259796 \\ 0.2825296276 \ 10^{-6} \\ -0.9394504404 \ 10^{-8} \end{bmatrix}$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.6318783499 \\ -0.1784202709 \\ 0.2307661619 \\ -0.002863931751 \\ 0.0001531565124 \\ 0.0001658259796 \\ 0.2825296276 \ 10^{-6} \\ -0.9394504404 \ 10^{-8} \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \\ \sqrt{11}(252t^{5}-630t^{4}+560t^{3}-210t^{2}+30t-1) \\ \sqrt{13}(924t^{6}-2772t^{5}+3150t^{4}-1680t^{3}+420t^{2}-42t+1) \\ \sqrt{15}(3432t^{7}-12012t^{6}+16632t^{5}-11550t^{4}+4200t^{3}-756t^{2}+56t-1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table. 3.6.

Table 3.6 Comparison between the exact solution and the approximate solution for Example 3.6

t	Exact Solution $u(t)$	M = 7, k = 0 Approximate Solution	Absolute Error
0.0	1.0000000000	1.0000000000	0.0000000000
0.1	0.9048374180	0.9035595802	0.0012778377
0.2	0.8187307531	0.8165310322	0.0021997209
0.3	0.7408182207	0.7385408499	0.0022773707
0.4	0.6703200460	0.6687962996	0.0015237462
0.5	0.6065306597	0.6062498912	0.0002807683
0.6	0.5488116361	0.5497646530	0.0009530170
0.7	0.4965853038	0.4982801468	0.0016948430
0.8	0.4493289641	0.4509791614	0.0016501970
0.9	0.4065696597	0.4074550200	0.0008853600
1.0	0.3678794412	0.3678794407	0.227001010^{-10}

THE APPLICATION OF THE OPERATIONAL MATRIX OF DERIVATIVE TO SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve systems of ordinary differential equations numerically. Some related applications of such systems can be found in [51-54]. In [51], Patil and Khambayat presented the differential transform method for solving systems of linear differential equations and in [52], Adio illustrated the same method for solving the system of second order differential equations. Also, in [53], the differential transform method and Laplace transform method were demonstrated for the solution of the such systems. In [54], the numerical solution of the system of differential equations was presented by using the Adomian decomposition method.

In this chapter, the Legendre wavelet operational matrix of derivative is generalized in order to solve systems of linear and non-linear differential equations.

4.1 Solving Systems of Linear Differential Equations

In this section, the LWOMM is implemented to solve systems of linear differential equations. Consider the following system

$$\frac{d^{n}u_{1}}{dt^{n}} = h_{11}(t)u_{1} + \dots + h_{1n}(t)u_{m} + k_{1}(t)$$

$$\frac{d^{n}u_{2}}{dt^{n}} = h_{21}(t)u_{1} + \dots + h_{2n}(t)u_{m} + k_{2}(t)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{d^{n}u_{m}}{dt^{n}} = h_{m1}(t)u_{1} + \dots + h_{mn}(t)u_{m} + k_{m}(t)$$
(4.1)

with these initial conditions

$$u_{1}(t_{0}) = u_{10}, \quad \frac{du_{1}}{dt}(t_{0}) = u_{11}, \quad \frac{d^{2}u_{1}}{dt^{2}}(t_{0}) = u_{12}, ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t_{0}) = u_{1(n-1)}$$

$$u_{2}(t_{0}) = u_{20}, \quad \frac{du_{2}}{dt}(t_{0}) = u_{21}, \quad \frac{d^{2}u_{2}}{dt^{2}}(t_{0}) = u_{22}, ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t_{0}) = u_{2(n-1)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u_{m}(t_{0}) = u_{m0}, \quad \frac{du_{m}}{dt}(t_{0}) = u_{m1}, \quad \frac{d^{2}u_{m}}{dt^{2}}(t_{0}) = u_{m2}, ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t_{0}) = u_{m(n-1)}$$

$$(4.2)$$

or with these boundary conditions

$$\begin{array}{l} u_{1}(t_{0})=u_{10}, \ \frac{du_{1}}{dt}(t_{0})=u_{11}, \ \frac{d^{2}u_{1}}{dt^{2}}(t_{0})=u_{12},..., \frac{d^{i}u_{1}}{dt^{i}}(t_{0})=u_{1i} \\ u_{2}(t_{0})=u_{20}, \ \frac{du_{2}}{dt}(t_{0})=u_{21}, \ \frac{d^{2}u_{2}}{dt^{2}}(t_{0})=u_{22},..., \frac{d^{i}u_{2}}{dt^{i}}(t_{0})=u_{2i} \\ \vdots & \vdots & \vdots \\ u_{j}(t_{0})=u_{j0}, \ \frac{du_{j}}{dt}(t_{0})=u_{j1}, \ \frac{d^{2}u_{j}}{dt^{2}}(t_{0})=u_{j2},..., \frac{d^{i}u_{j}}{dt^{i}}(t_{0})=u_{ji} \\ u_{1}(t_{1})=u_{i0}', \ \frac{du_{1}}{dt}(t_{1})=u_{11}', \ \frac{d^{2}u_{1}}{dt^{2}}(t_{1})=u_{12}', ..., \frac{d^{i}u_{1}}{dt^{i}}(t_{1})=u_{1i}' \\ \vdots & \vdots & \vdots \\ u_{j}(t_{1})=u_{j0}', \ \frac{du_{2}}{dt}(t_{1})=u_{j1}', \ \frac{d^{2}u_{2}}{dt^{2}}(t_{1})=u_{22}', ..., \frac{d^{i}u_{2}}{dt^{i}}(t_{1})=u_{2i}' \\ \vdots & \vdots & \vdots \\ u_{j}(t_{1})=u_{j0}', \ \frac{du_{1}}{dt}(t_{1})=u_{j1}', \ \frac{d^{2}u_{2}}{dt^{2}}(t_{1})=u_{j2}', ..., \frac{d^{i}u_{1}}{dt^{i}}(t_{1})=u_{ji}' \\ i=0,1,...,n/2 \ \ if \ n \ even, \ j=0,1,...,j/2 \ \ if \ m \ even \\ u_{1}(t_{0})=u_{10}, \ \frac{du_{1}}{dt}(t_{0})=u_{11}, \ \frac{d^{2}u_{1}}{dt^{2}}(t_{0})=u_{12}, ..., \frac{d^{i}u_{1}}{dt^{i}}(t_{0})=u_{1i} \\ u_{2}(t_{0})=u_{20}, \ \frac{du_{2}}{dt}(t_{0})=u_{21}, \ \frac{d^{2}u_{2}}{dt^{2}}(t_{0})=u_{22}, ..., \frac{d^{i}u_{2}}{dt^{i}}(t_{0})=u_{2i} \\ \vdots & \vdots & \vdots \\ u_{j}(t_{0})=u_{j0}, \ \frac{du_{1}}{dt}(t_{0})=u_{j1}, \ \frac{d^{2}u_{2}}{dt^{2}}(t_{0})=u_{22}, ..., \frac{d^{i}u_{2}}{dt^{i}}(t_{0})=u_{2i} \\ \vdots & \vdots & \vdots \\ u_{j}(t_{0})=u_{j0}, \ \frac{du_{1}}{dt}(t_{1})=u_{11}', \ \frac{d^{2}u_{1}}{dt^{2}}(t_{0})=u_{12}', ..., \frac{d^{i}u_{1}}{dt^{i}}(t_{0})=u_{ji} \\ u_{1}(t_{1})=u_{10}', \ \frac{du_{1}}{dt}(t_{1})=u_{11}', \ \frac{d^{2}u_{1}}{dt^{2}}(t_{1})=u_{12}', ..., \frac{d^{i}u_{1}}{dt^{i}}(t_{1})=u_{1(i-1)}' \\ u_{2}(t_{1})=u_{20}', \ \frac{du_{2}}{dt}(t_{1})=u_{21}', \ \frac{d^{2}u_{2}}{dt^{2}}(t_{1})=u_{22}', ..., \frac{d^{i}u_{1}}{dt^{i-1}}(t_{1})=u_{2(i-1)}' \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ u_{j-1}(t_{1})=u_{(j-1)0}', \ \frac{du_{1}}{dt}(t_{1})=u_{(j-1)(i-1)}', \ \frac{d^{2}u_{2}}{dt^{2}}(t_{1})=u_{(j-1)1}', \ \frac{d^{2}u_{2}}{dt^{2}}(t_{1})=u_{(j-1)1}', \ \frac{d^{i}u_{1}}{dt^{i-1}}(t_{1})=u_{(j-1)(i-1)}' \\ i=0,1,...,(n+1)/2 \ \ if \ n \ odd, \ j=0,$$

First we presume that unknown functions $u_1(t), u_2(t), ..., u_m(t)$ are approximated and given by

$$u_1(t) \cong C_1^T \psi(t), \ u_2(t) \cong C_2^T \psi(t), ..., u_m(t) \cong C_m^T \psi(t)$$
 (4.4)

where $C_1, C_2, ..., C_m$ are unknown vectors and $h_{11}(t), ..., h_{1n}(t), h_{21}(t), ..., h_{2n}(t), ..., h_{m1}(t), ..., h_{mn}(t)$ can be any function of the independent variable t and dependent variable h_{ij} (i=1,2,...,m j=1,2,...,n) and $\psi(t)$ is the vector which given in Equation (2.27). By utilising Equation (2.31) we obtain

$$\frac{du_{1}}{dt}(t) \cong C_{1}^{T}D\psi(t), \quad \frac{du_{2}}{dt}(t) \cong C_{2}^{T}D\psi(t), \dots, \frac{du_{m}}{dt}(t) \cong C_{m}^{T}D\psi(t)
\frac{d^{2}u_{1}}{dt^{2}}(t) \cong C_{1}^{T}D^{2}\psi(t), \quad \frac{d^{2}u_{2}}{dt^{2}}(t) \cong C_{2}^{T}D^{2}\psi(t), \dots, \frac{d^{2}u_{m}}{dt^{2}}(t) \cong C_{m}^{T}D^{2}\psi(t)
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (4.5)$$

$$\frac{d^{n}u_{1}}{dt^{n}}(t) \cong C_{1}^{T}D^{n}\psi(t), \quad \frac{d^{n}u_{2}}{dt^{n}}(t) \cong C_{2}^{T}D^{n}\psi(t), \dots, \frac{d^{n}u_{m}}{dt^{n}}(t) \cong C_{m}^{T}D^{n}\psi(t)$$

Approximating $h_{11}(t),...,h_{1n}(t),h_{21}(t),...,h_{2n}(t),...,h_{m1}(t),...,h_{mm}(t)$, we get

$$h_{11}(t) \cong H_{11}^{T} \psi(t), \quad h_{12}(t) \cong H_{12}^{T} \psi(t), ..., h_{1n}(t) \cong H_{1n}^{T} \psi(t)$$

$$h_{21}(t) \cong H_{21}^{T} \psi(t), \quad h_{22}(t) \cong H_{22}^{T} \psi(t), ..., h_{2n}(t) \cong H_{2n}^{T} \psi(t)$$

$$\vdots \qquad \qquad \vdots$$

$$h_{m1}(t) \cong H_{m1}^{T} \psi(t), \quad h_{m2}(t) \cong H_{m2}^{T} \psi(t), ..., h_{mn}(t) \cong H_{mn}^{T} \psi(t)$$

$$(4.6)$$

We can also approximate $k_1(t), k_2(t), ..., k_m(t)$ as

$$k_1(t) \cong K_1^T \psi(t), \quad k_2(t) \cong K_2^T \psi(t), ..., k_m(t) \cong K_m^T \psi(t)$$
 (4.7)

where vectors $K_1, K_2, ..., K_m$ are given by (2.26). Substituting Equations (4.5)-(4.6) and (4.7) in Equation (4.1) we obtain

$$R_{1}(t) = \left(C_{1}^{T}D^{n}\psi(t)\right) - \left(H_{11}^{T}\psi(t)\right)\left(C_{1}^{T}\psi(t)\right) - \dots - \left(H_{1n}^{T}\psi(t)\right)\left(C_{m}^{T}\psi(t)\right) - K_{1}^{T}\psi(t) = 0$$

$$R_{2}(t) = \left(C_{2}^{T}D^{n}\psi(t)\right) - \left(H_{21}^{T}\psi(t)\right)\left(C_{1}^{T}\psi(t)\right) - \dots - \left(H_{2n}^{T}\psi(t)\right)\left(C_{m}^{T}\psi(t)\right) - K_{2}^{T}\psi(t) = 0$$

$$\vdots$$

$$R_{m}(t) = \left(C_{m}^{T}D^{n}\psi(t)\right) - \left(H_{m1}^{T}\psi(t)\right)\left(C_{1}^{T}\psi(t)\right) - \dots - \left(H_{mn}^{T}\psi(t)\right)\left(C_{m}^{T}\psi(t)\right) - K_{m}^{T}\psi(t) = 0$$

$$(4.8)$$

We obtain $2^{k}(M+1)-mn$ linear equations by computing

$$\int_{0}^{1} \psi_{j}(t) R_{i}(t) dt = 0, \quad j = 1, ..., 2^{k} (M+1), \quad i = 1, 2, ..., m$$
(4.9)

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain

$$u_{1}(t_{0}) = C_{1}^{T}\psi(t_{0}) = u_{10}, \quad \frac{du_{1}}{dt}(t_{0}) = C_{1}^{T}D\psi(t_{0}) = u_{11}, ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t_{0}) = C_{1}^{T}D^{n-1}\psi(t_{0}) = u_{1(n-1)}$$

$$u_{2}(t_{0}) = C_{2}^{T}\psi(t_{0}) = u_{20}, \quad \frac{du_{2}}{dt}(t_{0}) = C_{2}^{T}D\psi(t_{0}) = u_{21}, ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t_{0}) = C_{2}^{T}D^{n-1}\psi(t_{0}) = u_{2(n-1)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u_{m}(t_{0}) = C_{m}^{T}\psi(t_{0}) = u_{m0}, \quad \frac{du_{m}}{dt}(t_{0}) = C_{m}^{T}D\psi(t_{0}) = u_{m1}, ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t_{0}) = C_{m}^{T}D^{n-1}\psi(t_{0}) = u_{m(n-1)}$$

$$(4.10)$$

We obtain $2^k (M+1)$ set of linear equations by using Equations (4.9)-(4.10). These linear equations can be solved for unknown coefficients of the vector C. Accordingly u(t) which is given in Equation (4.1) can be computed.

4.2 Solving Systems of Non-Linear Differential Equations

In this section, the LWOMM is implemented for solving systems of non-linear differential equations. Consider the following system with the initial conditions presented in (4.2) or boundary conditions presented in (4.3).

$$\frac{d^{n}u_{1}}{dt^{n}}(t) = H_{1}\left(t, u_{1}(t), \dots, \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), \dots, \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), \dots, u_{m}(t), \dots, \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

$$\frac{d^{n}u_{2}}{dt^{n}}(t) = H_{2}\left(t, u_{1}(t), \dots, \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), \dots, \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), \dots, u_{m}(t), \dots, \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

$$\vdots$$

$$\frac{d^{n}u_{m}}{dt^{n}}(t) = H_{m}\left(t, u_{1}(t), \dots, \frac{d^{n-1}u_{1}}{dt^{n-1}}(t), u_{2}(t), \dots, \frac{d^{n-1}u_{2}}{dt^{n-1}}(t), \dots, u_{m}(t), \dots, \frac{d^{n-1}u_{m}}{dt^{n-1}}(t)\right)$$

$$(4.11)$$

First we presume that unknown functions $u_1(t), u_2(t), ..., u_m(t)$ are approximated and given by

$$u_1(t) \cong C_1^T \psi(t), \quad u_2(t) \cong C_2^T \psi(t), ..., u_m(t) \cong C_m^T \psi(t)$$
 (4.12)

where $C_1, C_2, ..., C_m$ are unknown vectors and $\psi(t)$ is the vector which is given in Equation (2.27). If we use Equation (2.31), we obtain

$$\frac{du_{1}}{dt}(t) \cong C_{1}^{T} D\psi(t), \quad \frac{du_{2}}{dt}(t) \cong C_{2}^{T} D\psi(t), \dots, \frac{du_{m}}{dt}(t) \cong C_{m}^{T} D\psi(t)
\frac{d^{2}u_{1}}{dt^{2}}(t) \cong C_{1}^{T} D^{2}\psi(t), \quad \frac{d^{2}u_{2}}{dt^{2}}(t) \cong C_{2}^{T} D^{2}\psi(t), \dots, \frac{d^{2}u_{m}}{dt^{2}}(t) \cong C_{m}^{T} D^{2}\psi(t)
\vdots \qquad \vdots \qquad \vdots \qquad \vdots
\frac{d^{n}u_{1}}{dt^{n}}(t) \cong C_{1}^{T} D^{n}\psi(t), \quad \frac{d^{n}u_{2}}{dt^{n}}(t) \cong C_{2}^{T} D^{n}\psi(t), \dots, \frac{d^{n}u_{m}}{dt^{n}}(t) \cong C_{m}^{T} D^{n}\psi(t)$$
(4.13)

By utilising Equation (4.11) we obtain

$$C_{1}^{T}D^{n}\psi(t) \cong H_{1}(t,C_{1}^{T}\psi(t),...,C_{1}D^{n-1}\psi(t),C_{2}^{T}\psi(t),...,C_{2}D^{n-1}\psi(t),...,C_{m}^{T}\psi(t),...,C_{m}D^{n-1}\psi(t))$$

$$C_{2}^{T}D^{n}\psi(t) \cong H_{2}(t,C_{1}^{T}\psi(t),...,C_{1}D^{n-1}\psi(t),C_{2}^{T}\psi(t),...,C_{2}D^{n-1}\psi(t),...,C_{m}^{T}\psi(t),...,C_{m}D^{n-1}\psi(t))$$

$$\vdots$$

$$C_{m}^{T}D^{n}\psi(t) \cong H_{m}(t,C_{1}^{T}\psi(t),...,C_{1}D^{n-1}\psi(t),C_{2}^{T}\psi(t),...,C_{2}D^{n-1}\psi(t),...,C_{m}^{T}\psi(t),...,C_{m}D^{n-1}\psi(t))$$

$$(4.14)$$

Also by substituting initial conditions (4.2) in Equations (4.4)-(4.5) we obtain

$$u_{1}(t_{0}) \cong C_{1}^{T} \psi(t_{0}) = u_{10}, \quad \frac{du_{1}}{dt}(t_{0}) \cong C_{1}^{T} D \psi(t_{0}) = u_{11}, ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t_{0}) \cong C_{1}^{T} D^{n-1} \psi(t_{0}) = u_{1(n-1)}$$

$$u_{2}(t_{0}) \cong C_{2}^{T} \psi(t_{0}) = u_{20}, \quad \frac{du_{2}}{dt}(t_{0}) \cong C_{2}^{T} D \psi(t_{0}) = u_{21}, ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t_{0}) \cong C_{2}^{T} D^{n-1} \psi(t_{0}) = u_{2(n-1)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u_{m}(t_{0}) \cong C_{m}^{T} \psi(t_{0}) = u_{m0}, \quad \frac{du_{m}}{dt}(t_{0}) \cong C_{m}^{T} D \psi(t_{0}) = u_{m1}, ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t_{0}) \cong C_{m}^{T} D^{n-1} \psi(t_{0}) = u_{m(n-1)}$$

$$(4.15)$$

To obtain the solution $u_1(t), u_2(t), ..., u_m(t)$, we first compute Equation (4.14) at $2^k(M+1)-mn$ points. For a better result, we utilise the first $2^k(M+1)-mn$ roots of shifted Legendre polynomials $P_{2^k(M+1)}(t)$. If we use these equations collectively with Equation (4.15), then we obtain $2^k(M+1)$ non-linear equations. These non-linear equations can be solved for unknown coefficients of the vector C. Accordingly $u_1(t), u_2(t), ..., u_m(t)$ given in Equation (4.11) can be computed.

4.3 Applications

In this section, we present some examples we have wanted to demonstrate the performance of the proposed tecnique solving systems of linear and non-linear differential equations. It is shown that the LWOMM yield better results.

Example 4.1 We first consider the following system of non-homogeneous differential equations of the linear form [51]

$$\frac{du(t)}{dt} = w(t) - \cos t$$

$$\frac{dv(t)}{dt} = w(t) - e^{t}$$

$$\frac{dw(t)}{dt} = u(t) - v(t)$$
(4.16)

subject to these initial conditions

$$u(0) = 1, \ v(0) = 0, \ w(0) = 2$$
 (4.17)

The exact solution of the above system is

$$u(t) = e^{t}, v(t) = \sin t, w(t) = e^{t} + \cos t$$

To solve the above problem, we applied the method presented in Section 4.1 with $M=2,\ k=0$. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad v(t) \cong S^{T} \psi(t), \quad w(t) \cong W^{T} \psi(t)$$
$$\frac{du(t)}{dt} \cong C^{T} D \psi(t), \quad \frac{dv(t)}{dt} \cong S^{T} D \psi(t), \quad \frac{dw(t)}{dt} \cong W^{T} D \psi(t)$$

Also approximating $h_0(t) = \cos t$ and $h_1(t) = e^t$ following as

$$h_0(t) \cong H_0^T \psi(t)$$
 and $h_1(t) \cong H_1^T \psi(t)$

where

$$H_0(t) = \int_0^1 \cos t\psi(t) dt \text{ and } H_1(t) = \int_0^1 e^t \psi(t) dt$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}$$

If we consider (4.15) with (4.16), we have

$$R_{1}(t) = C^{T}D\psi(t) - W^{T}\psi(t) + H_{0}^{T}\psi(t)$$

$$R_{2}(t) = S^{T}D\psi(t) - W^{T}\psi(t) + H_{1}^{T}\psi(t)$$

$$R_{3}(t) = W^{T}D\psi(t) - C^{T}\psi(t) + S^{T}\psi(t)$$

$$(4.18)$$

By computing

$$\int_{0}^{1} \psi_{i}(t) R_{j}(t) dt = 0, \quad i = 1, 2, j = 1, 2, 3$$

We obtain six linear equations following as

$$\begin{aligned} 3.464101615c_{0,1} - w_{0,0} + 0.8414709848 &= 0 \\ 3.464101615s_{0,1} - w_{0,0} + 1.718281828 &= 0 \\ 3.464101616w_{0,1} - c_{0,0} + s_{0,0} &= 0 \\ -0.1349690260 - w_{0,1} + 7.745966692c_{0,2} &= 0 \\ 0.4879501870 - w_{0,1} + 7.745966692s_{0,2} &= 0 \\ 7.745966698w_{0,2} - c_{0,1} + s_{0,1} &= 0 \end{aligned}$$

and by utilising initial conditions we have

$$\begin{split} c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} &= 1 \\ s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} &= 0 \\ w_{0,0} - \sqrt{3}w_{0,1} + \sqrt{5}w_{0,2} &= 2 \end{split}$$

If we solve this system of linear algebraic equations, we get

$$\begin{split} C^T = & \left[c_{0,0}, c_{0,1}, c_{0,2} \right] = \left[1.713532543, 0.4950067009, 0.06432908766 \right] \\ S^T = & \left[s_{0,0}, s_{0,1}, s_{0,2} \right] = \left[0.4549484087, 0.2418932127, -0.01608943696 \right] \\ W^T = & \left[w_{0,0}, w_{0,1}, w_{0,2} \right] = \left[2.556224497, 0.3633219442, 0.03267681083 \right] \end{split}$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 1 & 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 0.4549484087, 0.2418932127, -0.01608943696 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

$$w(t) = W^{T}\psi(t) = \begin{bmatrix} 2.556224497, 0.3633219442, 0.03267681083 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution and the exact solution are displayed in Table. 4.1, Table 4.2 and Table 4.3.

Table 4.1 Comparison between the exact solution and the approximate solution u(t) for Example 4.1

t	Exact Solution $u(t)$	M = 2, $k = 0Approximate Solution$	Absolute Error
0.0	1.0000000000	0.999999996	0.4 10 ⁻⁹
0.1	1.105170918	1.093799476	0.011371442
0.2	1.221402758	1.204860258	0.016542500
0.3	1.349858808	1.333182345	0.016676463
0.4	1.491824698	1.478765738	0.013058960
0.5	1.648721271	1.641610436	0.007110835
0.6	1.822118800	1.821716441	0.000402359
0.7	2.013752707	2.019083751	0.005331044
0.8	2.225540928	2.233712366	0.008171438
0.9	2.459603111	2.465602287	0.005999176
1.0	2.718281828	2.714753512	0.003528316

Table 4.2 Comparison between the exact solution and the approximate solution v(t) for Example 4.1

		$M=2,\ k=0$	
t	Exact Solution $v(t)$	Approximate Solution	Absolute Error
0.0	0.00000000000	-0.55 10 ⁻⁹	$0.55 10^{-9}$
0.1	0.09983341665	0.1032218867	0.00338847005
0.2	0.1986693308	0.2021265251	0.0034571943
0.3	0.2955202067	0.2967139144	0.0011937077
0.4	0.3894183423	0.3869840548	0.0024342875
0.5	0.4794255386	0.4729369463	0.0064885923
0.6	0.5646424734	0.5545725887	0.0100698847
0.7	0.6442176872	0.6318909822	0.0123267050
0.8	0.7173560909	0.7048921268	0.0124639641
0.9	0.7833269096	0.7735760223	0.0097508873
1.0	0.8414709848	0.8379426685	0.0035283163

Table 4.3 Comparison between the exact solution and the approximate solution w(t) for Example 4.1

t	Exact Solution $w(t)$	M = 2, k = 0 Approximate Solution	Absolute Error
0.0	2.000000000	2.000000000	0.000000000
0.1	2.100175083	2.086401925	0.013773158
0.2	2.201469336	2.181571959	0.019897377
0.3	2.305195297	2.285510102	0.019685195
0.4	2.412885692	2.398216352	0.014669340
0.5	2.526303833	2.519690711	0.006613122
0.6	2.647454415	2.649933179	0.002478764
0.7	2.778594894	2.788943756	0.010348862
0.8	2.922247637	2.936722440	0.014474803
0.9	3.081213079	3.093269233	0.012056154
1.0	3.258584134	3.258584134	0.000000000

Example 4.2 Consider the following system of differential equations [53]

$$\frac{du(t)}{dt} + \frac{dv(t)}{dt} + u(t) + v(t) = 1$$

$$\frac{dv(t)}{dt} = 2u(t) + v(t)$$
(4.19)

subject to these initial conditions

$$u(0) = 0, \ v(0) = 1$$
 (4.20)

The exact solution of the above system is known as

$$u(t) = e^{-t} - 1$$
, $v(t) = 2 - e^{-t}$

To solve the above system, we used the method presented in Section 4.2 with M = 4, k = 0. Approximating solution following as

$$u(t) = C^{T} \psi(t)$$
 and $v(t) = S^{T} \psi(t)$

$$\frac{du(t)}{dt} = C^T D\psi(t)$$
 and $\frac{dv(t)}{dt} = S^T D\psi(t)$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 \end{pmatrix}$$

If we consider (4.18) with (4.19), we have

$$R_{1}(t) = C^{T} D \psi(t) + S^{T} D \psi(t) + C^{T} \psi(t) + S^{T} \psi(t) - 1 = 0$$
(4.21)

$$R_{2}(t) = S^{T} D \psi(t) - 2C^{T} \psi(t) - S^{T} \psi(t) = 0$$
(4.22)

Calculating Equations (4.21) and (4.22) at the first four roots of $P_5(t)$, i.e.

$$t_0 = \frac{1}{2}, \quad t_1 = \frac{1}{2} - \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \quad t_2 = \frac{1}{2} - \frac{\sqrt{245 + 14\sqrt{70}}}{42}, \quad t_3 = \frac{1}{2} + \frac{\sqrt{245 - 14\sqrt{70}}}{42}$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} = 0$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} + 3s_{0,4} = 1$$

If we solve this system of nonlinear algebraic equations, we get

$$C^{T} = \begin{bmatrix} -0.3719399342, -0.1812731838, 0.02340226770, -0.00198837331, 0.000125255710 \end{bmatrix}$$

$$S^{T} = [1.371939934, 0.1812731837, -0.02340226756, 0.001988373268, -0.0001252558]$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} -0.3719399342 \\ -0.1812731838 \\ 0.02340226770 \\ -0.00198837331 \\ 0.00012525571 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.371939934 \\ 0.1812731837 \\ -0.02340226756 \\ 0.001988373268 \\ -0.0001252558 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table 4.4 and Table 4.5.

Table 4.4 Comparison between the exact solution and the approximate solution u(t) for Example 4.2

t	Exact Solution $u(t)$	M = 2, $k = 0ApproximateSolution$	M = 4, $k = 0ApproximateSolution$	Absolute Error
0.0	0.0000000000	-0.14 10 ⁻⁹	$0.1120 \ 10^{-9}$	0.1120 10 ⁻⁹
0.1	-0.0951625820	-0.0941420851	-0.09635576876	0.00119318676
0.2	-0.1812692469	-0.1807908742	-0.1835093329	0.00224008600
0.3	-0.2591817793	-0.2599463674	-0.2623129320	0.0031311527
0.4	-0.3296799540	-0.3316085648	-0.3335556777	0.0038757237
0.5	-0.3934693403	-0.3957774661	-0.3979635520	0.0044942117
0.6	-0.4511883639	-0.4524530716	-0.4561994083	0.0050110444
0.7	-0.5034146962	-0.5016353813	-0.5088629711	0.0054482749
0.8	-0.5506710359	-0.5433243950	-0.5564908362	0.0058198003
0.9	-0.5934303403	-0.5775201129	-0.5995564702	0.0061261299
1.0	-0.6321205588	-0.6042225348	-0.6384702111	0.0063496523

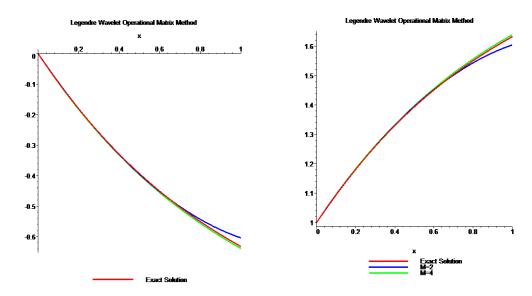


Figure 4.1 Comparison of our solutions u(t), v(t) and the exact solution when M = 2 and M = 4 for Example 4.2

Table 4.5 Comparison between the exact solution and the approximate solution v(t) for Example 4.2

t	Exact Solution $v(t)$	M = 2, $k = 0ApproximateSolution$	M = 4, k = 0 Approximate Solution	Absolute Error
0.0	1.000000000	1.000000001	1.000000001	$0.1 10^{-8}$
0.1	1.095162582	1.094142086	1.096355770	0.001193188
0.2	1.181269247	1.180790875	1.183509333	0.002240086
0.3	1.259181779	1.259946368	1.262312933	0.003131154
0.4	1.329679954	1.331608566	1.333555679	0.003875725
0.5	1.393469340	1.395777467	1.397963553	0.004494213
0.6	1.451188364	1.452453073	1.456199409	0.005011045
0.7	1.503414696	1.501635383	1.508862972	0.005448276
0.8	1.550671036	1.543324395	1.556490838	0.005819802
0.9	1.593430340	1.577520114	1.599556471	0.006126131
1.0	1.632120559	1.604222535	1.638470212	0.006349653

Example 4.3 Consider the following system of linear differential equations [53]

$$\frac{d^{2}u(t)}{dt^{2}} + v(t) = 1$$

$$\frac{d^{2}v(t)}{dt^{2}} + u(t) = 0$$
(4.23)

subject to these initial conditions

$$u(0) = 0, \quad \frac{du}{dt}(0) = 0, \quad v(0) = 0, \quad \frac{dv}{dt}(0) = 0,$$
 (4.24)

The exact solution of the above system is

$$u(t) = \frac{1}{4} \left(e^{t} + e^{-t} - 2\cos t \right), \quad v(t) = \frac{1}{4} \left(4 - e^{t} - e^{-t} - 2\cos t \right)$$

To solve the above linear system, we applied the method presented in Section 4.1 with $M=4,\ k=0$. Approximating solution following as

$$u(t) = C^T \psi(t), \quad v(t) = S^T \psi(t)$$

$$\frac{du(t)}{dt} = C^{T} D\psi(t), \quad \frac{dv(t)}{dt} = S^{T} D\psi(t)$$

$$\frac{d^2u(t)}{dt^2} = C^T D^2 \psi(t), \quad \frac{d^2v(t)}{dt^2} = S^T D^2 \psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 \end{pmatrix}, D^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 4\sqrt{3}\sqrt{15} & 0 & 0 & 0 & 0 \\ 0 & 4\sqrt{15}\sqrt{35} & 0 & 0 & 0 \\ 0 & 0 & 4\sqrt{35}\sqrt{63} & 0 & 0 \end{pmatrix}$$

If we consider (4.23) with (4.24), we have

$$R_{1}(t) = C^{T}D^{2}\psi(t) + S^{T}\psi(t) - 1$$

$$R_{2}(t) = S^{T}D^{2}\psi(t) + C^{T}\psi(t)$$
(4.25)

By computing

$$\int_{0}^{1} \psi_{i}(t) R_{j}(t) dt = 0, \quad i = 1, 2, 3 \quad j = 1, 2$$

We obtain six linear equations following as

$$26.83281574c_{0.2} + s_{0.0} - 1 = 0$$

$$26.83281574s_{0.2} + c_{0.0} = 0$$

$$-0.110^{-7} s_{0.3} + 91.65151397 c_{0.3} + 1.000000001 s_{0.1} = 0$$

$$-0.110^{-7}c_{0.3} + 91.65151397s_{0.3} + 1.000000001c_{0.1} = 0$$

$$-0.1 \, 10^{-7} \, s_{0,4} + 0.1 \, 10^{-8} \, s_{0,3} + 187.8297100 c_{0,4} + 0.9999999992 s_{0,2} = 0$$

$$-0.1\,10^{-7}\,c_{0,4}+0.1\,10^{-8}\,c_{0,3}+187.8297100\,s_{0,4}+0.999999992\,c_{0,2}=0$$

and by utilising initial conditions we have

$$\begin{split} c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} &= 0 \\ s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} + 3s_{0,4} &= 0 \\ 2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} - 42c_{0,4} &= 0 \\ 2\sqrt{3}s_{0,1} - 6\sqrt{5}s_{0,2} + 10\sqrt{7}s_{0,3} - 42s_{0,4} &= 0 \end{split}$$

If we solve this system of linear algebraic equations, we get

$$\boldsymbol{C}^{T} = \begin{bmatrix} 0.1680546197, 0.1456667117, 0.03781985846, 0.0001588513170, 0.00003334417056 \end{bmatrix}$$

$$S^{T} = \begin{bmatrix} -0.01481329344, -0.01455896371, -0.006263025891, -0.001589354125, -0.000201351845 \end{bmatrix}$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.1680546197 \\ 0.1456667117 \\ 0.03781985846 \\ 0.000158851317 \\ 0.000033344170 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} -0.01481329344 \\ -0.01455896371 \\ -0.006263025891 \\ -0.0001589354125 \\ -0.000201351845 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table. 4.6 and Table 4.7.

Table 4.6 Comparison between the exact solution and the approximate solution u(t) for Example 4.3

t	Exact Solution $u(t)$	M = 2, k = 0 Approximate Solution	M = 4, k = 0 Approximate Solution	Absolute Error
0.0	0.0000000000	0.00000000000	-0.1685 10 ⁻⁹	$0.1685 10^{-9}$
0.1	0.0050000014	0.00514285717	0.00505714932	0.000057147920
0.2	0.0200000889	0.02057142862	0.02016653121	0.00016644231
0.3	0.0450010126	0.04628571436	0.04531976012	0.00031874752
0.4	0.0800056890	0.08228571438	0.08052525613	0.00051956713
0.5	0.1250217017	0.1285714286	0.1258082447	0.0007865430
0.6	0.1800648016	0.1851428573	0.1812107570	0.0011459554
0.7	0.2451634092	0.2520000001	0.2467916294	0.0016282202
0.8	0.3203641184	0.3291428572	0.3226265038	0.0022623854
0.9	0.4057382085	0.4165714287	0.4088078275	0.0030696190
1.0	0.5013891643	0.5142857144	0.5054448535	0.0040556892

Table 4.7 Comparison between the exact solution and the approximate solution v(t) for Example 4.3

t	Exact Solution $v(t)$	M = 2, k = 0 Approximate Solution	M = 4, k = 0 Approximate Solution	Absolute Error
0.0	0.0000000000	$0.1 10^{-10}$	$0.150 10^{-10}$	$0.150 10^{-10}$
0.1	-0.41666 10 ⁻⁵	-0.000857142850	-0.000604747500	0.0006005809000
0.2	-0.0000666667	-0.003428571425	-0.001510714801	0.001444048101
0.3	-0.0003375018	-0.007714285713	-0.002867321525	0.002529819725
0.4	-0.0010666830	-0.01371428572	-0.004925468639	0.003858785639
0.5	-0.0026042637	-0.02142857143	-0.008037538438	0.005433274738
0.6	-0.0054004164	-0.03085714285	-0.01265739455	0.00725697815
0.7	-0.0100055964	-0.04200000000	-0.01934038193	0.00933478553
0.8	-0.0170708276	-0.05485714286	-0.02874332686	0.01167249926
0.9	-0.0273481769	-0.06942857143	-0.04162453697	0.01427636007
1.0	-0.0416914703	-0.08571428571	-0.05884380119	0.01715233089

Example 4.4 Consider the following system of non-linear differential equations [49]

$$\frac{du(t)}{dt} = -1002u(t) + 1000v^{2}(t)$$

$$\frac{dv(t)}{dt} = u(t) - v(t) - v^{2}(t)$$
(4.26)

subject to these initial conditions

$$u(0) = 1, \ v(0) = 1$$
 (4.27)

The exact solution of the above system is

$$u(t) = e^{-2t}, \quad v(t) = e^{-t}$$

To solve the above system, we implemented the method presented in Section 4.2 with $M=4,\ k=0$. Approximating solution following as

$$u(t) = C^{T} \psi(t)$$
 and $v(t) = S^{T} \psi(t)$ $\frac{du(t)}{dt} = C^{T} D \psi(t)$ and $\frac{dv(t)}{dt} = S^{T} D \psi(t)$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 \end{pmatrix}$$

If we consider (4.26) with (4.27), we have

$$R_{1}(t) = C^{T} D \psi(t) + 1002 (C^{T} \psi(t)) - 1000 (S^{T} \psi(t))^{2}$$

$$R_{2}(t) = S^{T} D \psi(t) - C^{T} \psi(t) + S^{T} \psi(t) + (S^{T} \psi(t))^{2}$$
(4.28)

Calculating Equation (4.28) at the first four roots of $P_5(t)$, i.e.

$$t_0 = \frac{1}{2}, \quad t_1 = \frac{1}{2} - \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \quad t_2 = \frac{1}{2} - \frac{\sqrt{245 + 14\sqrt{70}}}{42}, \quad t_3 = \frac{1}{2} + \frac{\sqrt{245 - 14\sqrt{70}}}{42}$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} = 1$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} + 3s_{0,4} = 1$$

If we solve this system of nonlinear algebraic equations, we get

$$\boldsymbol{C}^{T} = \begin{bmatrix} 0.4286121774, -0.2341012934, 0.06111143031, -0.008961478897, 0.001851110478 \end{bmatrix}$$

$$S^{T} = [0.6280482694, -0.1812595585, 0.02343895161, -0.001955630037, 0.0001385886922]$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 0.4286121774 \\ -0.2341012934 \\ 0.06111143031 \\ -0.008961478897 \\ 0.001851110478 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 0.6280482694 \\ -0.1812595585 \\ 0.02343895161 \\ -0.001955630037 \\ 0.0001385886922 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

Comparison of our results and the exact solution supports that our results approaches the exact solution as the value of M increases. Finally, we also present the numerical computations for u(t) and v(t) with the exact solution in Table 4.8 and Table 4.9.

Table 4.8 Comparison between the exact solution and the approximate solution u(t) for Example 4.4

t	Exact Solution $u(t)$	M = 3, k = 0 Approximate Solution	M = 4, k = 0 Approximate Solution	Absolute Error
0.0	1.0000000000	1.000000000	1.000000000	0.0000000000
0.1	0.8187307531	0.8165316851	0.8164539898	0.0022767633
0.2	0.6703200460	0.6660452088	0.6665620472	0.0037579988
0.3	0.5488116361	0.5437106133	0.5442136317	0.0045980044
0.4	0.4493289641	0.4446979406	0.4442311630	0.0050978011
0.5	0.3678794412	0.3641772334	0.3623700203	0.0055094209
0.6	0.3011942119	0.2973185321	0.2953185417	0.0058756702
0.7	0.2465969639	0.2392918810	0.2406980273	0.0058989366
0.8	0.2018965180	0.1852673211	0.1970627334	0.0048337846
0.9	0.1652988882	0.1304148956	0.1638998799	0.0013990083
1.0	0.1353352832	0.0699046455	0.1416296414	-0.0062943582

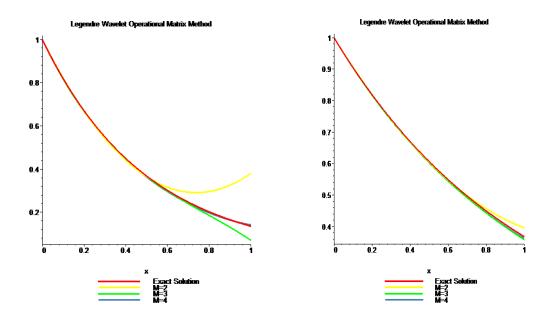


Figure 4.2 Comparison of our solutions u(t), v(t) and the exact solution when M = 2, M = 3 and M = 4 for Example 4.4

Table 4.9 Comparison between the exact solution and the approximate solution v(t) for Example 4.4

t	Exact Solution $v(t)$	M = 3, k = 0 Approximate Solution	M = 4, k = 0 Approximate Solution	Absolute Error
0.0	1.0000000000	1.000000000	1.000000000	0.0000000000
0.1	0.9048374180	0.9037386313	0.9036350375	0.0012023805
0.2	0.8187307531	0.8165106052	0.8164828594	0.0022478937
0.3	0.7408182207	0.7375975458	0.7376781019	0.0031401188
0.4	0.6703200460	0.6662810770	0.6664252500	0.0038947960
0.5	0.6065306597	0.6018428229	0.6019986373	0.0045320224
0.6	0.5488116361	0.5435644074	0.5437424462	0.0050691899
0.7	0.4965853038	0.4907274546	0.4910707077	0.0055145961
0.8	0.4493289641	0.4426135883	0.4434673016	0.0058616625
0.9	0.4065696597	0.3985044327	0.4004859565	0.0060837032
1.0	0.3678794412	0.3576816116	0.3617502495	0.0061291917

Example 4.5 Consider the following Brusselator system presented in [47] and [48]

$$\frac{du(t)}{dt} = -2u(t) + u^{2}(t) v(t)$$

$$\frac{dv(t)}{dt} = u(t) - u^{2}(t) v(t)$$
(4.29)

subject to these initial conditions

$$u(0) = 1, \quad v(0) = 1$$
 (4.30)

The approximate solution of this system when $\alpha = 1$ was presented by Chang and Isah using Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation (LWPT) in [48] and by Bota and Caruntu using the polynomial least squares method (PLSM) in [47]. These numerical solutions of this system are given by

$$\begin{split} u_{LWPT}\left(t\right) &= 1 - 1.0120t + 0.1211t^2 + 0.1517t^3, \\ v_{LWPT}\left(t\right) &= 1 + 0.0096t + 0.4069t^2 - 0.2461t^3, \\ u_{PLSM}\left(t\right) &= 1 - 1.02827t + 0.201028t^2 + 0.0750974t^3, \\ v\left(t\right)_{PLSM} &= 1 + 0.0271107t + 0.334087t^2 - 180088t^3, \end{split}$$

To solve the above Brusselator system, we implemented the method presented in Section 4.2 with M = 4, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \ v(t) \cong S^{T} \psi(t) \text{ and } \frac{du(t)}{dt} \cong C^{T} D \psi(t), \ \frac{dv(t)}{dt} \cong S^{T} D \psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 \end{pmatrix}$$

If we consider (4.29) with (4.30), we have

$$C^{T}D\psi(t) + 2C^{T}\psi(t) - (C^{T}\psi(t))^{2}(S^{T}\psi(t))$$
 (4.31)

$$S^{T}D\psi(t) - C^{T}\psi(t) + \left(C^{T}\psi(t)\right)^{2} \left(S^{T}\psi(t)\right) \tag{4.32}$$

Calculating Equations (4.31) and (4.32) at the first four roots of $P_5(t)$, i.e.

$$t_0 = \frac{1}{2}, \ t_1 = \frac{1}{2} - \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \ t_2 = \frac{1}{2} - \frac{\sqrt{245 + 14\sqrt{70}}}{42}, \ t_3 = \frac{1}{2} + \frac{\sqrt{245 - 14\sqrt{70}}}{42}$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} = 1$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} + 3s_{0,4} = 1$$

If we solve this system of nonlinear algebraic equations, we get

$$\boldsymbol{C}^{\scriptscriptstyle T} = \begin{bmatrix} 0.5745339305, -0.2192448444, 0.02298952682, 0.001262676590, -0.0007808523319 \end{bmatrix}$$

$$S^{T} = \begin{bmatrix} 1.069834705, 0.05308541875, 0.005100236422, -0.003352119819, 0.0006128621024 \end{bmatrix}$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.5745339305 \\ -0.2192448444 \\ 0.02298952682 \\ 0.001262676590 \\ -0.0007808523319 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.069834705 \\ 0.05308541875 \\ 0.005100236422 \\ -0.003352119819 \\ 0.0006128621024 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

Comparison of our results and these approximate solutions introduced in [47] and [48] are also displayed in Figure 4.3. The figures support that our results approaches the approximate solutions presented in [47] and [48]. Finally, we also present the numerical computations for u(t) and v(t) in Table 4.10 and Table 4.11.

Table 4.10 Comparison between our approximate solution u_{LOWMM} , u_{LWPT} and u_{PLSM} for Example 4.5.

t	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LWPT}$	$u_{\scriptscriptstyle PLSM}$
0.0	1.000000000	1.0000000	1.0000000000
0.1	0.9022538826	0.9001627	0.8992583774
0.2	0.8065945278	0.8036576	0.8029878992
0.3	0.7148002463	0.7113949	0.7116391498
0.4	0.6282557996	0.6242848	0.6256627136
0.5	0.5479523993	0.5432375	0.5455091750
0.6	0.4744877078	0.4691632	0.4716291184
0.7	0.4080658376	0.4029721	0.4044731282
0.8	0.3484973516	0.3455744	0.3444917888
0.9	0.2951992633	0.2978803	0.2921356846
1.0	0.2471950367	0.2608000	0.2478554000



Figure 4.3 Comparison of our solutions u_{LOWMM} , v_{LOWMM} with the approximate solution u_{LPST} , v_{LPST} and the approximate solution u_{PLSM} , v_{PLSM} for Example 4.5.

Table 4.11 Comparison between our approximate solution v_{LOWMM} , v_{LWPT} and v_{PLSM} for Example 4.5.

t	$v_{\scriptscriptstyle LWOMM}$	$v_{\scriptscriptstyle LWPT}$	$v_{\scriptscriptstyle PLSM}$
0.0	0.999999996	1.0000000	1.000000000
0.1	1.001804569	1.0047829	1.005871852
0.2	1.011179960	1.0162272	1.017344916
0.3	1.025980819	1.0328563	1.033338664
0.4	1.044370674	1.0531936	1.052772568
0.5	1.064821937	1.0757625	1.074566100
0.6	1.086115901	1.0990864	1.097638732
0.7	1.107342743	1.1216887	1.120909936
0.8	1.127901522	1.1420928	1.143299184
0.9	1.147500177	1.1588221	1.163725948
1.0	1.166155534	1.1704000	1.181109700

THE APPLICATION OF THE OPERATIONAL MATRIX OF FRACTIONAL DERIVATIVE TO FRACTIONAL ORDER DIFFERENTIAL EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve FDEs numerically. Some related applications of FDEs can be found in [18-37].

5.1 Solving Linear Fractional Differential Equations

In this section, we apply the Legendre wavelet operational matrix of fractional derivative for solving linear FDEs. Consider the following equation

$$D^{\alpha}u(t) = h_0(t)D^{\eta_0}u(t) + \dots + h_{k-1}(t)D^{\eta_{k-1}}u(t) + h_k(t)u(t) + g(t)$$
(5.1)

with these initial conditions

$$u(t_0) = u_0, \quad \frac{du}{dt}(t_0) = u_1, \quad \frac{d^2u}{dt^2}(t_0) = u_2, ..., \frac{d^{n-1}u}{dt^{n-1}}(t_0) = u_{n-1}$$
(5.2)

where $h_0(t), h_1(t), ..., h_k(t)$ can be any function of the independent variable t and dependent variable h_i (i=0,1,...,k) and $n<\alpha\leq n+1, \ 0<\eta_0<\eta_1<...<\eta_{k-1}<\alpha$ and D^α indicates the Caputo fractional derivative of order α .

First approximating u(t), g(t) and $h_0(t)$, $h_1(t)$,..., $h_k(t)$ by the Legendre wavelets, then we obtain

$$u(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} c_{n,m} \psi_{n,m} = C^{T} \psi(t)$$
(5.3)

$$g(t) \cong \sum_{m=0}^{2^{k}-1} \sum_{m=0}^{M} s_{n,m} \psi_{n,m} = S^{T} \psi(t)$$
(5.4)

$$h_{0}(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} h_{0n,m} \psi_{n,m} = H_{0}^{T} \psi(t)$$

$$\vdots$$

$$h_{k}(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} h_{kn,m} \psi_{n,m} = H_{k}^{T} \psi(t)$$
(5.5)

where S and H_i (i = 0,1,...,k) are known vector but C is an unknown vector and $\psi(t)$ is the vector given in Equation (2.27). If we utilise Equations (2.34) and (5.3), then we obtain

$$D^{\alpha}u(t) \cong C^{T}D^{\alpha}\psi(t) \cong C^{T}D^{(\alpha)}\psi(t)$$
(5.6)

$$D^{\eta_i} u(t) \cong C^T D^{\eta_i} \psi(t) \cong C^T D^{(\eta_i)} \psi(t), \quad i = 0, ..., (k-1)$$
(5.7)

Substituting Equations (5.3)-(5.4) and (5.5) in Equation (5.1) the residual R(t) can be expressed:

$$R(t) \cong C^{T} D^{(\alpha)} \psi(t) - \left(H_{0}^{T} \psi(t) \right) \left(C^{T} D^{(\eta_{0})} \psi(t) \right) - \dots - \left(H_{k-1}^{T} \psi(t) \right) \left(C^{T} D^{(\eta_{k-1})} \psi(t) \right)$$

$$- \left(H_{k}^{T} \psi(t) \right) \left(C^{T} D^{(\eta_{k})} \psi(t) \right) - \left(H_{k+1}^{T} \psi(t) \right) \left(S^{T} \psi(t) \right)$$
(5.8)

We get $2^k (M+1) - n$ linear equations by employing

$$\langle R(t), \psi_r(t) \rangle = \int_0^1 \psi_r(t) R(t) dt = 0, \quad r = 0, ..., 2^k (M+1) - n$$
 (5.9)

If we substitute Equation (5.3) in Equation (5.2) then we have

$$u(0) \cong C^{T} \psi(0) = u_{0}$$

$$\frac{du}{dt}(0) \cong C^{T} D \psi(0) = u_{1}$$

$$\frac{d^{2}u}{dt^{2}}(0) \cong C^{T} D^{2} \psi(0) = u_{2}$$

$$\vdots$$

$$\frac{d^{n-1}u}{dt^{n-1}}(0) \cong C^{T} D^{(n-1)} \psi(0) = u_{n-1}$$
(5.10)

 $2^k (M+1)$ set of linear equations are obtained Equations (5.9) and (5.10). We can solve these linear equations for unknown coefficients of the vector C. Consequently, u(t) presented in Equation (5.1) can be computed.

5.2 Solving Non-Linear Fractional Differential Equations

In this section, we apply Legendre wavelet operational matrix of fractional derivative for solving non-linear FDEs. Consider the following equation

$$D^{\alpha}u(t) = H(t, u(t), D^{\eta_1}u(t), ..., D^{\eta_k}u(t))$$
(5.11)

with these initial conditions

$$u(t_0) = u_0, \quad \frac{du}{dt}(t_0) = u_1, \quad \frac{d^2u}{dt^2}(t_0) = u_2, ..., \frac{d^{n-1}u}{dt^{n-1}}(t_0) = u_{n-1}$$
(5.12)

where $n < \alpha \le n+1$, $0 < \eta_1 < \eta_2 < ... < \eta_k < \alpha$ and D^{α} indicates the Caputo fractional derivative of order α .

First approximating u(t), $D^{\alpha}u(t)$ and for i=1,2,...,k $D^{\eta_i}u(t)$ by the Legendre wavelets as Equations (5.3), (5.6) and (5.7) respectively and substituting these equations in Equation (5.11), then we obtain

$$C^{T}D^{(\alpha)}\psi(t) \cong H\left(t, C^{T}\psi(t), C^{T}D^{(\eta_{1})}\psi(t), ..., C^{T}D^{(\eta_{k})}\psi(t)\right)$$

$$(5.13)$$

Also, if we substitute Equation (5.3) in Equation (5.122) then we have

$$u(0) \cong C^{T} \psi(0) = u_{0}$$

$$\frac{du}{dt}(0) \cong C^{T} D \psi(0) = u_{1}$$

$$\frac{d^{2}u}{dt^{2}}(0) \cong C^{T} D^{2} \psi(0) = u_{2}$$

$$\vdots$$

$$\frac{d^{n-1}u}{dt^{n-1}}(0) \cong C^{T} D^{(n-1)} \psi(0) = u_{n-1}$$
(5.14)

First collocating Equation (5.13) at $2^k(M+1)-n$ points, then we can obtain the solution u(t). We should use the first $2^k(M+1)-n$ roots of shifted Legendre polynomials $P_{2^k(M+1)}(t)$ to get a better result. Utilising these equations together with Equation (5.14), then we have $2^k(M+1)$ non-linear equations. These non-linear equations can be solved for unknown coefficients of the vector C. Consequently, u(t) presented in Equation (5.11) can be computed.

5.3 Applications

In this section, we solve five linear and non-linear fractional differential equations by using LWOMM.

Example 5.1 We first consider the following FDE of the linear form [32]

$$4(t+1)D^{\frac{5}{2}}u(t) + 4D^{\frac{3}{2}}u(t) + \frac{1}{\sqrt{t+1}}u(t) = \sqrt{t} + \sqrt{\pi}$$
(5.15)

subject to

$$u(0) = \sqrt{\pi}, \quad \frac{du}{dt}(0) = \frac{\sqrt{\pi}}{2}, \quad u(1) = \sqrt{2\pi}$$
 (5.16)

The exact solution of above system is $u(t) = \sqrt{\pi(t+1)}$

We implemented the method illustrated in Section 5.1 with M=3, k=0. Approximating solution following as

$$u(t) \cong C^T \psi(t), \quad Du(t) \cong C^T D\psi(t), \quad D^{\frac{3}{2}}u(t) \cong C^T D^{\left(\frac{3}{2}\right)}\psi(t), \quad D^{\frac{5}{2}}u(t) \cong C^T D^{\left(\frac{5}{2}\right)}\psi(t)$$

Also, approximating $h_0(t) = t + 1$, $h_1(t) = \frac{1}{\sqrt{t+1}}$ and $g(t) = \sqrt{t} + \sqrt{\pi}$ following as

$$h_0(t) \cong H_0^T \psi(t), \quad h_1(t) \cong H_1^T \psi(t) \quad \text{and} \quad g(t) \cong G^T \psi(t)$$

where
$$H_0(t) = \int_0^1 (t+1)\psi(t)dt$$
, $H_1(t) = \int_0^1 \frac{1}{\sqrt{t+1}}\psi(t)dt$ and $G(t) = \int_0^1 (\sqrt{t} + \sqrt{\pi})\psi(t)dt$

We have

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 \end{pmatrix}, D^{\left(\frac{3}{2}\right)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{16\sqrt{5}}{\sqrt{\pi}} & \frac{16\sqrt{5}\sqrt{3}}{5\sqrt{\pi}} & -\frac{16}{7\sqrt{\pi}} & \frac{16\sqrt{7}\sqrt{5}}{105\sqrt{\pi}} \\ -\frac{16\sqrt{7}}{\sqrt{\pi}} & \frac{80\sqrt{7}\sqrt{3}}{7\sqrt{\pi}} & \frac{16\sqrt{7}\sqrt{5}}{3\sqrt{\pi}} & \frac{-80}{11\sqrt{\pi}} \end{pmatrix},$$

If we consider (5.15) with (5.16), we have

$$R(t) = 4\left(H_0^T \psi(t)\right) \left(C^T D^{\left(\frac{5}{2}\right)} \psi(t)\right) + 4C^T D^{\left(\frac{3}{2}\right)} \psi(t) + \left(H_1^T \psi(t)\right) \left(C^T \psi(t)\right) - G^T \psi(t)$$

By computing

$$\int_{0}^{1} \psi_{1}(t) R(t) dt = 0$$

We have

 $-2.439120518 + 0.8284271247 c_{0,0} - 0.08206204062 c_{0,1} + 80.75114673 c_{0,2} + 1432.995536 c_{0,3} = 0$ and by utilising initial conditions we have

$$\begin{split} c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} &= \sqrt{\pi} \\ 2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} &= \frac{\sqrt{\pi}}{2} \\ c_{0,0} + \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} + \sqrt{7}c_{0,3} &= \sqrt{2\pi} \end{split}$$

If we solve this system of linear algebraic equations, we get

$$C^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}\right]$$
$$= \left[2.161308708, 0.2103901234, -0.00973478719, 0.00101325788\right]$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 2.161308708 \\ 0.2103901234 \\ -0.00973478719 \\ 0.00101325788 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table 5.1.

Table 5.1 Comparison between the exact solution and the approximate solution for Example 5.1

t	Exact Solution $u(t)$	M = 3, k = 0 Approximate Solution	Absolute Error
0.0	1.772455923	1.772453851	0.2072 10 ⁻⁵
0.1	1.858967455	1.859556019	0.000588564
0.2	1.941628183	1.942759272	0.001131089
0.3	2.020910686	2.022385308	0.001474622
0.4	2.097198131	2.098755828	0.001557697
0.5	2.170806302	2.172192531	0.001386229
0.6	2.241999108	2.243017118	0.001018010
0.7	2.310999784	2.311551286	0.000551502
0.8	2.377999159	2.378116734	0.000117575
0.9	2.443161886	2.443035165	0.000126721
1.0	2.506631205	2.506628274	0.2931 10 ⁻⁵

Example 5.2 Consider the following fractional Bagley-Torvik differential equation of the linear form with the initial conditions [18]

$$\frac{d^2u(t)}{dt^2} + D^{\frac{3}{2}}u(t) + u(t) = 1 + t \tag{5.17}$$

subject to

$$u(0) = 0, \frac{du}{dt}(0) = 1$$
 (5.18)

The exact solution of above system is u(t) = 1 + t.

We implemented the method illustrated in Section 5.1 to the above problem with M=2, k=0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D \psi(t), \quad \frac{d^{2} u(t)}{dt^{2}} \cong C^{T} D^{2} \psi(t), \quad D^{\frac{3}{2}} u(t) \cong C^{T} D^{\left(\frac{3}{2}\right)} \psi(t)$$

Also, approximating g(t) = 1 + t following as $g(t) \cong G^T \psi(t)$

We have

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}, \quad D^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4\sqrt{3}\sqrt{15} & 0 & 0 \end{pmatrix}, \quad D^{\left(\frac{3}{2}\right)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{16\sqrt{5}}{\sqrt{\pi}} & \frac{16\sqrt{3}\sqrt{5}}{5\sqrt{\pi}} & -\frac{16}{7\sqrt{\pi}} \end{pmatrix}$$

If we consider (5.17) with (5.18), we have

$$R(t) = C^{T}D^{2}\psi(t) + C^{T}D^{\left(\frac{3}{2}\right)}\psi(t) + C^{T}\psi(t) - G^{T}\psi(t)$$

By computing

$$\int_{0}^{1} \psi_{1}(t) R(t) dt = 0$$

we have

$$47.01787591c_{0.2} + c_{0.0} - 1.5000000000 = 0$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 1$$
$$2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} = 1$$

If we solve this system of linear algebraic equations, we get

$$C^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2} \right] = \left[1.499999999, 0.2886751345, 0.2 \ 10^{10} \right]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \left[1.499999999, 0.2886751345, 0.2 \ 10^{10}\right] \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table 5.2.

Table 5.2 Comparison between the exact solution and the approximate solution for Example 5.2

t	Exact Solution $u(t)$	M = 2, k = 0 Approximate Solution	Absolute Error
0.0	1.0000000000	0.99999999	0.110^{-8}
0.1	1.1000000000	1.099999999	0.110^{-8}
0.2	1.2000000000	1.199999999	0.110^{-8}
0.3	1.3000000000	1.29999999	0.110^{-8}
0.4	1.400000000	1.39999999	0.110^{-8}
0.5	1.5000000000	1.499999999	0.110^{-8}
0.6	1.6000000000	1.599999999	0.110^{-8}
0.7	1.7000000000	1.69999999	0.110^{-8}
0.8	1.8000000000	1.799999999	0.110^{-8}
0.9	1.9000000000	1.89999999	0.110^{-8}
1.0	2.0000000000	1.999999999	0.110^{-8}

Example 5.3 Consider the following FDE of the non-linear form [33]

$$D^{3}u(t) + D^{\frac{5}{2}}u(t) + u^{2}(t) = t^{4}$$
(5.19)

subject to these initial conditions

$$u(0) = 0, \quad \frac{du}{dt}(0) = 0, \quad \frac{d^2u}{dt^2}(0) = 2,$$
 (5.20)

The exact solution of above system is $u(t) = t^2$

We implemented the method illustrated in Section 5.2 with M=3, k=0. Approximating solution following as

$$u(t) = C^{T} \psi(t), \quad \frac{du(t)}{dt} = C^{T} D\psi(t)$$

$$\frac{d^{2}u(t)}{dt^{2}} = C^{T}D^{2}\psi(t), \quad \frac{d^{3}u(t)}{dt^{3}} = C^{T}D^{3}\psi(t) \quad D^{\frac{5}{2}}u(t) = C^{T}D^{\left(\frac{5}{2}\right)}\psi(t)$$

Also, approximating $g(t) = t^4$ following as $g(t) = G^T \psi(t)$

We have

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 \end{pmatrix}, \quad D^2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 4\sqrt{3}\sqrt{15} & 0 & 0 & 0 \\ 0 & 4\sqrt{15}\sqrt{35} & 0 & 0 \end{pmatrix}$$

If we consider (5.19) with (5.20), we have

$$R(t) = C^{T} D^{3} \psi(t) + C^{T} D^{\left(\frac{5}{2}\right)} \psi(t) + \left(C^{T} \psi(t)\right)^{2} - G^{T} \psi(t)$$
(5.21)

Calculating Equation (5.21) at the first root of $P_4(t)$, i.e. $t_0 = \frac{1}{2} - \frac{\sqrt{525 - 70\sqrt{30}}}{70}$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} = 0$$
$$2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} = 0$$
$$12\sqrt{5}c_{0,2} - 60\sqrt{7}c_{0,3} = 2$$

If we solve this system of non-linear algebraic equations, we get

$$C^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}\right]$$

$$= \left[0.3333333334, 0.2886751345, 0.07453559922, -0.3178931093 \cdot 10^{-12}\right]$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 0.3333333334 \\ 0.2886751345 \\ 0.07453559922 \\ -0.3178931093 \ 10^{-12} \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table 5.3.

Table 5.3 Comparison between the exact solution and the approximate solution for Example 5.3

		M = 3, k = 0	
t	Exact Solution $u(t)$	Approximate Solution	Absolute Error
0.0	0.00	$0.8410661107 \ 10^{-12}$	$0.8410661107 \ 10^{-12}$
0.1	0.01	0.01000000006	$0.6 10^{-10}$
0.2	0.04	0.0400000011	$0.11\ 10^{-9}$
0.3	0.09	0.0900000014	$0.14 10^{-9}$
0.4	0.16	0.16000000020	$0.2 10^{-9}$
0.5	0.25	0.25000000020	$0.2 10^{-9}$
0.6	0.36	0.36000000010	$0.1 10^{-9}$
0.7	0.49	0.4900000010	$0.1 10^{-9}$
0.8	0.64	0.6400000010	$0.1 10^{-9}$
0.9	0.81	0.81000000000	0
1.0	1.00	0.9999999999	0.1 10 ⁻⁹

Example 5.4 Consider the following FDE of the non-linear form with the initial conditions

$$D^{1.3}u(t) + u^{2}(t) = \frac{20}{7} \frac{t^{0.7}}{\Gamma(0.7)} + t^{4}$$
(5.17)

subject to

$$u(0) = 0, \quad \frac{du}{dt}(0) = 0$$
 (5.18)

The exact solution of the above system is $u(t) = t^2$

To solve the above problem, we implemented the method presented in Section 5.2 with $M=2,\ k=0$. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), Du(t) \cong C^{T} D\psi(t), D^{1.3} u(t) \cong C^{T} D^{(1.3)} \psi(t)$$

Also approximating
$$g(t) = \frac{20}{7} \frac{t^{0.7}}{\Gamma(0.7)} + t^4$$
 following as $g(t) \cong G^T \psi(t)$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}, D^{(1.3)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 17.37179094 & 7.800806362 & -0.8165511655 \end{pmatrix}$$

If we consider (5.17) with (5.18), we have

$$R(t) = C^{T} D^{(1.3)} \psi(t) + (C^{T} \psi(t))^{2} - G^{T} \psi(t)$$
(5.19)

Calculating Equation (5.19) at the first root of $P_3(t)$, i.e. $t_0 = \frac{1}{2} - \frac{\sqrt{15}}{10}$

and by utilising the boundary conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 0$$
$$2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} = 0$$

If we solve this system of nonlinear algebraic equations, we get

$$\boldsymbol{C}^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2} \right] = \left[0.3364347192, 0.2913610134, 0.07522909016 \right]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.3364347192, 0.2913610134, 0.07522909016 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution and the exact solution are shown in Table 5.4.

Table 5.4 Comparison between the exact solution and the approximate solution for Example 5.4

		M = 2, k = 0	
t	Exact Solution $u(t)$	Approximate Solution	Absolute Error
0.0	0.00	-0.1 10 ⁻⁹	0.1 10-9
0.1	0.01	0.01009304147	0.00009304147
0.2	0.04	0.04037216618	0.00037216618
0.3	0.09	0.09083737403	0.00083737403
0.4	0.16	0.16148866500	0.00148866500
0.5	0.25	0.25232603910	0.00232603910
0.6	0.36	0.36334949640	0.00334949640
0.7	0.49	0.49455903680	0.00455903680
0.8	0.64	0.64595466040	0.00595466040
0.9	0.81	0.81753636710	0.00753636710
1.0	1.00	1.00930415700	0.00930415700

Example 5.5 Consider the following FDE of the linear form [55]

$$D^{2}u(t) + D^{1/2}u(t) + u(t) = 2 + t^{2} + \frac{8}{3\sqrt{\pi}}t^{3/2}$$
(5.20)

subject to these boundary conditions

$$u(0) = 0, \quad u(1) = 1$$
 (5.21)

The exact solution of the above system is $u(t) = t^2$

We implemented the method illustrated in Section 5.1 to the above problem with M=2 , k=0. Approximating solution following as

$$u(t) \cong C^T \psi(t), \quad \frac{d^2 u(t)}{dt^2} \cong C^T D^2 \psi(t), \quad D^{\frac{1}{2}} u(t) \cong C^T D^{\left(\frac{1}{2}\right)} \psi(t)$$

Also, approximating
$$g(t) = 2 + t^2 + \frac{8}{3\sqrt{\pi}}t^{3/2}$$
 following as $g(t) = G^T \psi(t)$

where

$$G = \int_{0}^{1} \left(2 + t^{2} + \frac{8}{3\sqrt{\pi}} t^{3/2} \right) \psi(t) dt$$

We have

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}, \quad D^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 4\sqrt{3}\sqrt{15} & 0 & 0 \end{pmatrix}$$

$$D^{\left(\frac{1}{2}\right)} = \begin{pmatrix} 0 & 0 & 0\\ \frac{8\sqrt{3}}{3\sqrt{\pi}} & \frac{8}{5\sqrt{\pi}} & -\frac{8\sqrt{3}\sqrt{5}}{105\sqrt{\pi}}\\ -\frac{8\sqrt{5}}{5\sqrt{\pi}} & \frac{8\sqrt{3}\sqrt{5}}{7\sqrt{\pi}} & \frac{8}{3\sqrt{\pi}} \end{pmatrix}$$

If we consider (5.20) with (5.21), we have

$$R(t) = C^{T}D^{2}\psi(t) + C^{T}D^{\left(\frac{1}{2}\right)}\psi(t) + C^{T}\psi(t) - G^{T}\psi(t)$$

By computing

$$\int_{0}^{1} \psi_{1}(t) R(t) dt = 0$$

we have

$$24.81430971c_{0.2} + 2.605880063c_{0.1} - 2.935135555 + c_{0.0} = 0$$

and by utilising boundary conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 0$$
$$c_{0,0} + \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 1$$

If we solve this system of linear algebraic equations, we get

$$C^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2}\right] = \left[0.3333333332, 0.2886751345, 0.0745355993\right]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.3333333332, 0.2886751345, 0.0745355993 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution with the exact solution are displayed in Table 5.5.

Table 5.5 Comparison between the exact solution and the approximate solution for Example 5.5

t	Exact Solution $u(t)$	M = 2, k = 0 Approximate Solution	Absolute Error
0.0	0.00	-0.110-9	0.110^{-9}
0.1	0.01	0.0099999989	0.1110^{-9}
0.2	0.04	0.039999988	0.1210^{-9}
0.3	0.09	0.089999987	0.1310^{-9}
0.4	0.16	0.1599999999	0.110^{-9}
0.5	0.25	0.249999998	0.210^{-9}
0.6	0.36	0.359999998	0.210^{-9}
0.7	0.49	0.489999998	0.210^{-9}
0.8	0.64	0.639999998	0.210^{-9}
0.9	0.81	0.809999998	0.210^{-9}
1.0	1.00	0.999999998	0.210^{-9}

Example 5.6 Consider the following FDE of the non-linear form with the boundary conditions [31]

$$\frac{d^{2}u(t)}{dt^{2}} + \Gamma\left(\frac{4}{5}\right)t^{\frac{6}{5}}D^{\frac{6}{5}}u(t) + \frac{11}{9}\Gamma\left(\frac{5}{6}\right)t^{\frac{1}{6}}D^{\frac{1}{6}}u(t) - \left(\frac{du(t)}{dt}\right)^{2} = 2 + \frac{1}{10}t^{2}$$
(5.22)

subject to

$$u(0) = 1, \quad u(1) = 2$$
 (5.23)

The exact solution of the previous system is $u(t) = 1 + t^2$

To solve the above problem, we implemented the method presented in Section 5.2 with $M=2,\ k=0$. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \quad \frac{du(t)}{dt} \cong C^{T} D \psi(t), \quad \frac{d^{2} u(t)}{dt^{2}} \cong C^{T} D^{2} \psi(t)$$

$$D^{\frac{1}{6}}u(t) \cong C^T D^{\left(\frac{1}{6}\right)}\psi(t), \quad D^{\frac{6}{5}}u(t) \cong C^T D^{\left(\frac{6}{5}\right)}\psi(t)$$

Approximating
$$f_1(t) = \Gamma\left(\frac{4}{5}\right)t^{\frac{6}{5}}D^{\frac{6}{5}}$$
, $f_2(t) = \frac{11}{9}\Gamma\left(\frac{5}{6}\right)t^{\frac{1}{6}}$, $g(t) = 2 + \frac{1}{10}t^2$ following as

$$f_1(t) \cong F_1^T \psi(t), \quad f_2(t) \cong F_2^T \psi(t), \quad g(t) \cong G^T \psi(t)$$

where

$$F_{1}(t) = \int_{0}^{1} \Gamma\left(\frac{4}{5}\right) t^{\frac{6}{5}} D^{\frac{6}{5}} \psi(t) dt, \quad F_{1}(t) = \int_{0}^{1} \frac{11}{9} \Gamma\left(\frac{5}{6}\right) t^{\frac{1}{6}} \psi(t) dt, \quad G(t) = \int_{0}^{1} \left(2 + \frac{1}{10}t^{2}\right) \psi(t) dt$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}$$

$$D^{\left(\frac{1}{6}\right)} = \begin{pmatrix} 0 & 0 & 0\\ 2.008717540 & 1.023294363 & -0.05743771053\\ -2.288145774 & 0.5858729181 & 1.235012279 \end{pmatrix}$$

$$D^{\left(\frac{6}{5}\right)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 16.00534636 & 7.920592311 & -0.5381810900 \end{pmatrix}$$

If we consider (5.22) with (5.23), we have

$$R(t) = C^{T} D^{2} \psi(t) + \left(F_{1}^{T} \psi(t)\right) \left(C^{T} D^{\left(\frac{6}{5}\right)} \psi(t)\right) + \left(F_{2}^{T} \psi(t)\right) \left(C^{T} D^{\left(\frac{1}{6}\right)} \psi(t)\right) - \left(C^{T} D \psi(t)\right)^{2} - G^{T} \psi(t)$$

$$(5.24)$$

Calculating Equation (5.24) at the first root of $P_3(t)$, i.e. $t_0 = \frac{1}{2} - \frac{\sqrt{15}}{10}$

and by utilising the boundary conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 1$$

$$c_{0,0} + \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 2$$

If we solve this system of nonlinear algebraic equations, we get

$$\boldsymbol{C}^{T} = \! \left[\boldsymbol{c}_{0,0}, \boldsymbol{c}_{0,1}, \boldsymbol{c}_{0,2} \right] \! = \! \left[1.333325434, \, 0.2886751345, \, 0.07453913186 \right]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 1.333325434, 0.2886751345, 0.07453913186 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The approximate solution with the exact solution are shown in Table 5.6.

Table 5.6 Comparison between the exact solution and the numerical solution for Example 5.6

		M = 2, k = 0	
t	Exact Solution $u(t)$	Approximate Solution	Absolute Error
0.0	1.00	0.999999998	0.2 10-9
0.1	1.01	1.009995734	0.4266 10 ⁻⁵
0.2	1.04	1.039992417	$0.7583 \ 10^{-5}$
0.3	1.09	1.089990047	$0.9953 \ 10^{-5}$
0.4	1.16	1.159988625	0.000011375
0.5	1.25	1.249988151	0.000011849
0.6	1.36	1.359988625	0.000011375
0.7	1.49	1.489990047	0.9953 10 ⁻⁵
0.8	1.64	1.639992416	0.7584 10 ⁻⁵
0.9	1.81	1.809995734	$0.4266\ 10^{-5}$
1.0	2.00	2.000000000	0.000000000

THE APPLICATION OF THE OPERATIONAL MATRIX OF FRACTIONAL DERIVATIVE TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS

There are a lot of tecniques that have been studied by many researchers to solve systems of FDEs numerically. Some related applications of such systems can be found in [38-50].

6.1 Solving Systems of Fractional Differential Equations

In this section, the LWOMM is implemented to obtain the numerical solution of the system of FDEs. Consider the following system

$$D^{\eta_1}u_1(t) = U_1(t, u_1, u_2, ..., u_m),$$

$$D^{\eta_2}u_2(t) = U_2(t, u_1, u_2, ..., u_m),$$

$$\vdots$$

$$D^{\eta_n}u_m(t) = U_m(t, u_1, u_2, ..., u_m)$$
(6.1)

where U_i 's are linear/nonlinear functions of $t, u_1, u_2, ..., u_m$, D^{η_i} is the derivative of u_i with order of η_i in the sense of Caputo and $N-1 \le \eta_i < N$, subjected to the initial conditions:

$$u_{1}(t_{0}) = u_{10}, \quad \frac{du_{1}}{dt}(t_{0}) = u_{11}, \quad \frac{d^{2}u_{1}}{dt^{2}}(t_{0}) = u_{12}, ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t_{0}) = u_{1(n-1)}$$

$$u_{2}(t_{0}) = u_{20}, \quad \frac{du_{2}}{dt}(t_{0}) = u_{21}, \quad \frac{d^{2}u_{2}}{dt^{2}}(t_{0}) = u_{22}, ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t_{0}) = u_{2(n-1)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u_{m}(t_{0}) = u_{m0}, \quad \frac{du_{m}}{dt}(t_{0}) = u_{m1}, \quad \frac{d^{2}u_{m}}{dt^{2}}(t_{0}) = u_{m2}, ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t_{0}) = u_{m(n-1)}$$

$$(6.2)$$

First of all, approximating $u_1(t), u_2(t), ..., u_m(t)$ and $D^{\eta_1}u_1(t), D^{\eta_2}u_2(t), ..., D^{\eta_n}u_n(t)$, then we obtain

$$u_{1}(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} c_{1n,m} \psi_{n,m} = C_{1}^{T} \psi(t)$$

$$u_{2}(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} c_{2n,m} \psi_{n,m} = C_{2}^{T} \psi(t)$$

$$\vdots$$

$$u_{m}(t) \cong \sum_{n=0}^{2^{k}-1} \sum_{m=0}^{M} c_{nn,m} \psi_{n,m} = C_{m}^{T} \psi(t)$$

$$(6.3)$$

where C_i , i = 1, 2, ..., m are unknown vectors and $\psi(t)$ is the vector introduced in (2.27). If we utilise Equation (2.34) then we have

$$D^{\eta_1} u_1(t) \cong C_1^T D^{(\eta_1)} \psi(t)$$

$$D^{\eta_2} u_2(t) \cong C_2^T D^{(\eta_2)} \psi(t)$$

$$\vdots$$

$$D^{\eta_n} u_m(t) \cong C_m^T D^{(\eta_n)} \psi(t)$$
(6.4)

Substituting Equations (6.3)-(6.4) in Equation (6.1), then we obtain

$$R_{1}(t) = C_{1}^{T} D^{(\eta_{1})} \psi(t) - U_{1}(t, C_{1}^{T} \psi(t), C_{2}^{T} \psi(t), ..., C_{m}^{T} \psi(t))$$

$$R_{2}(t) = C_{2}^{T} D^{(\eta_{2})} \psi(t) - U_{2}(t, C_{1}^{T} \psi(t), C_{2}^{T} \psi(t), ..., C_{m}^{T} \psi(t))$$

$$\vdots$$

$$R_{m}(t) = C_{m}^{T} D^{(\eta_{n})} \psi(t) - U_{m}(t, C_{1}^{T} \psi(t), C_{2}^{T} \psi(t), ..., C_{m}^{T} \psi(t))$$
(6.5)

If U_i 's are linear functions of $t, u_1, u_2, ..., u_m$, then we produce $2^k (M+1) - mn$ linear equations by implementing

$$\int_{0}^{1} \psi_{j}(t) R_{i}(t) dt = 0, \quad j = 1, ..., 2^{k} (M+1) - mn, \quad i = 1, 2, ..., m$$
(6.6)

Also by substituting initial conditions (6.2) in Equation (6.4), then we obtain

$$u_{1}(t_{0}) \cong C_{1}^{T} \psi(t_{0}) = u_{10}, \quad \frac{du_{1}}{dt}(t_{0}) \cong C_{1}^{T} D \psi(t_{0}) = u_{11}, ..., \frac{d^{n-1}u_{1}}{dt^{n-1}}(t_{0}) \cong C_{1}^{T} D^{n-1} \psi(t_{0}) = u_{1(n-1)}$$

$$u_{2}(t_{0}) \cong C_{2}^{T} \psi(t_{0}) = u_{20}, \quad \frac{du_{2}}{dt}(t_{0}) \cong C_{2}^{T} D \psi(t_{0}) = u_{21}, ..., \frac{d^{n-1}u_{2}}{dt^{n-1}}(t_{0}) \cong C_{2}^{T} D^{n-1} \psi(t_{0}) = u_{2(n-1)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u_{m}(t_{0}) \cong C_{m}^{T} \psi(t_{0}) = u_{m0}, \quad \frac{du_{m}}{dt}(t_{0}) \cong C_{m}^{T} D \psi(t_{0}) = u_{m1}, ..., \frac{d^{n-1}u_{m}}{dt^{n-1}}(t_{0}) \cong C_{m}^{T} D^{n-1} \psi(t_{0}) = u_{m(n-1)}$$

$$(6.7)$$

A $2^k \left(M+1\right)$ set of linear equations was generated by combining Equations (6.6)-(6.7) . Solution of these linear equations can be obtained for unknown coefficients of the vector C. Consequently $u_1(t), u_2(t), ..., u_m(t)$ introduced in Equation (6.1) can be computed. If U_i 's are non-linear functions of $t, u_1, u_2, ..., u_m$, first computing $R_1(t), R_2(t), ..., R_m(t)$ at $2^k (M+1)-mm$ points and for a better result, using the first $2^k (M+1)-mm$ roots of shifted Legendre polynomials $P_{2^k (M+1)}(t)$, then these equations collectively with Equation (6.7) produce $2^k \left(M+1\right)$ non-linear equations. Solution of these non-linear equations can be obtained for unknown coefficients of the vector C. Consequently $u_1(t), u_2(t), ..., u_m(t)$ introduced in Equation (6.1) can be computed.

6.2 Applications

In this section, to show applicability and powerfulness of the introduced method, we solve five linear and non-linear system of FDEs.

Example 6.1 We first consider the following linear system of FDEs [41], [43]

$$D^{\alpha}u(t) = u(t) + v(t)$$

$$D^{\alpha}v(t) = -u(t) + v(t)$$
(6.8)

subject to

$$u(0) = 0, \quad v(0) = 1$$
 (6.9)

The exact solution of this system when $\alpha = 1$ is known to be

$$u(t) = e^t \sin t$$
, $v(t) = e^t \cos t$

To solve the above system when $\alpha = 0.9$, we applied the method presented in Section 6.1 with M = 2, k = 0. Approximating solution following as

$$u(t) = C^{T}\psi(t), \quad v(t) = S^{T}\psi(t), \quad D^{0.9}u(t) = C^{T}D^{(0.9)}\psi(t), \quad D^{0.9}v(t) = S^{T}D^{(0.9)}\psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}, D^{(0.9)} = \begin{pmatrix} 0 & 0 & 0 \\ 1.911059300\sqrt{3} & 0.2730084714 & -0.02642017466\sqrt{15} \\ -0.273008472\sqrt{5} & 1.664471004\sqrt{15} & 0.6325806046 \end{pmatrix}$$

If we consider (6.8) with (6.9), we have

$$R_{1}(t) = C^{T} D^{(0.9)} \psi(t) - C^{T} \psi(t) - S^{T} \psi(t)$$

$$R_{2}(t) = S^{T} D^{(0.9)} \psi(t) + C^{T} \psi(t) - S^{T} \psi(t)$$

By computing

$$\int_{0}^{1} \psi_{i}(t) R_{j}(t) dt = 0, \quad i = 1, 2 \quad j = 1, 2$$

We obtain four linear equations following as

$$-0.6104655018c_{0.2} + 3.310051804c_{0.1} - c_{0.0} - s_{0.0} = 0$$

$$-0.6104655018s_{0,2} + 3.310051804s_{0,1} + c_{0,0} - s_{0,0} = 0$$

$$-0.7269915286c_{0.1} + 6.446468479c_{0.2} - s_{0.1} = 0$$

$$-0.7269915286s_{0,1} + 6.446468479s_{0,2} + c_{0,1} = 0$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 0$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} = 1$$

If we solve this system of linear algebraic equations, we get

$$\boldsymbol{C}^{T} = \left[\boldsymbol{c}_{0,0}, \boldsymbol{c}_{0,1}, \boldsymbol{c}_{0,2} \right] = \left[1.096167384, 0.7531907067, 0.09319805590 \right]$$

$$S^{T} = \left[s_{0,0}, s_{0,1}, s_{0,2} \right] = \left[1.340038676, 0.0532350665, -0.1108342136 \right]$$

$$S = [S_{0,0}, S_{0,1}, S_{0,2}] = [1.340038676, 0.0332330663, -0.1108342136]$$

$$u(t) = C^{T}\psi(t) = [1.096167384, 0.7531907067, 0.09319805590] \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.340038676, 0.0532350665, -0.1108342136 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

When the obtained results are matched against the exact solution when $\alpha = 1$ as demonstrated in Figure 6.1, we can clearly observe that when α approaches 1, our results approach the exact solution. We also solved this problem by using LPOMM and we compared the results with the LWOMM. The numerical computations for u(t) and v(t) when $\alpha = 0.9$ are also revealed in Table 6.1 and Table 6.2.

Table 6.1 Numerical solutions of u(t) when $\alpha = 0.9$ attained by the introduced method and the LPOMM for Example 6.1

t	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	0.3 10-9	0.0000000000	0.3 10-9
0.1	0.1483784330	0.1483784325	0.12 10-9
0.2	0.3217645283	0.3217645277	0.633 10-9
0.3	0.5201582862	0.5201582855	0.65 10-9
0.4	0.7435597067	0.7435597059	0.83 10-9
0.5	0.9919687898	0.9919687890	0.8 10-9
0.6	1.2653855360	1.265385535	0.53 10-9
0.7	1.563809944	1.563809943	0.95 10-9
0.8	1.887242014	1.887242014	0.733 10-9
0.9	2.235681748	2.235681748	0.62 10-9
1.0	2.609129144	2.609129144	0.3 10-9

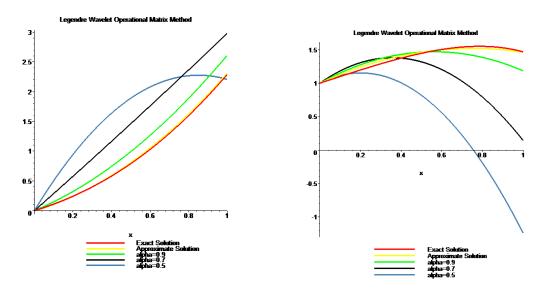


Figure 6.1 Comparison of our solutions and the exact solution when $\alpha = 0.9, 0.7, 0.5$ and 1 for Example 6.1

Table 6.2 Numerical solutions of v(t) when $\alpha = 0.9$ attained by the introduced method and the LPOMM for Example 6.1

t	$v_{\scriptscriptstyle LWOMM}$	$v_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	1.000000000	1.000000000	0.2 10-9
0.1	1.152270899	1.152270900	0.5 10-9
0.2	1.274801858	1.274801858	0.599 10-9
0.3	1.367592877	1.367592878	0.67 10-9
0.4	1.430643956	1.430643957	0.13 10-8
0.5	1.463955094	1.463955094	0.1 10-8
0.6	1.467526291	1.467526293	0.13 10-8
0.7	1.441357549	1.441357551	0.171 10 ⁻⁸
0.8	1.385448866	1.385448868	0.1461 10-8
0.9	1.299800244	1.299800245	0.15 10-8
1.0	1.184411680	1.184411682	0.18 10-8

Example 6.2 Consider the following non-linear system of FDEs [49]

$$D^{\frac{3}{2}}u(t) = -8u(t) + v^{2}(t) - 4t^{6} + 4t^{3} + \frac{8t^{\frac{3}{2}}}{\sqrt{\pi}} - 1$$

$$D^{\frac{1}{2}}v(t) = t^{2}Du(t) + v(t) - 3t^{4} - 2t^{3} + \frac{32t^{\frac{5}{2}}}{5\sqrt{\pi}} - 1$$
(6.10)

subject to

$$u(0) = 0$$
, $v(0) = 1$, $u(1) = 1$, $v(1) = 3$, $\frac{du(0)}{dt} = 0$, $\frac{du(1)}{dt} = 3$ (6.11)

The exact solution of this system is known to be

$$u(t) = t^3$$
, $v(t) = 2t^3 + 1$

To solve the above system, we implemented the method presented in Section 6.2 with M = 3, k = 0. Approximating solution following as

$$u(t) \cong C^{T} \psi(t), \ v(t) \cong S^{T} \psi(t) Du(t) \cong C^{T} D\psi(t)$$

$$D^{\frac{3}{2}}u(t) \cong C^T D^{\left(\frac{3}{2}\right)}\psi(t), \quad D^{\frac{1}{2}}v(t) \cong S^T D^{\left(\frac{1}{2}\right)}\psi(t)$$

Approximating
$$g_0(t) = -4t^6 + 4t^3 + \frac{8t^{\frac{3}{2}}}{\sqrt{\pi}} - 1$$
, $h(t) = t^2$, $g_1(t) = -3t^4 - 2t^3 + \frac{32t^{\frac{5}{2}}}{5\sqrt{\pi}} - 1$

following as
$$g_0(t) \cong G_0^T \psi(t)$$
, $g_1(t) \cong G_1^T \psi(t)$ and $h(t) = H^T \psi(t)$

where

$$G_0(t) = \int_0^1 \left(-4t^6 + 4t^3 + \frac{8t^{\frac{3}{2}}}{\sqrt{\pi}} - 1 \right) \psi(t) dt$$

$$G_1(t) = \int_0^1 \left(-3t^4 - 2t^3 + \frac{32t^{\frac{5}{2}}}{5\sqrt{\pi}} - 1 \right) \psi(t) dt$$

and

$$H(t) = \int_{0}^{1} t^{2} \psi(t) dt$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 \end{pmatrix}, D^{\left(\frac{3}{2}\right)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{16\sqrt{5}}{\sqrt{\pi}} & \frac{16\sqrt{15}}{5\sqrt{\pi}} & -\frac{16}{7\sqrt{\pi}} & \frac{16\sqrt{35}}{105\sqrt{\pi}} \\ -\frac{16\sqrt{7}}{\sqrt{\pi}} & \frac{80\sqrt{21}}{7\sqrt{\pi}} & \frac{16\sqrt{35}}{3\sqrt{\pi}} & -\frac{80}{11\sqrt{\pi}} \end{pmatrix}$$

$$D^{\left(\frac{1}{2}\right)} = \begin{pmatrix} 0 & 0 & 0 & 0\\ \frac{8\sqrt{3}}{3\sqrt{\pi}} & \frac{8}{5\sqrt{\pi}} & -\frac{8\sqrt{15}}{105\sqrt{\pi}} & \frac{8\sqrt{21}}{315\sqrt{\pi}} \\ -\frac{8\sqrt{5}}{5\sqrt{\pi}} & \frac{8\sqrt{15}}{7\sqrt{\pi}} & \frac{8}{3\sqrt{\pi}} & -\frac{8\sqrt{35}}{77\sqrt{\pi}} \\ \frac{16\sqrt{7}}{7\sqrt{\pi}} & -\frac{16\sqrt{21}}{45\sqrt{\pi}} & \frac{304\sqrt{35}}{385\sqrt{\pi}} & \frac{688}{195\sqrt{\pi}} \end{pmatrix}$$

If we consider (6.10) with (6.11), we have

$$R_{1}(t) = C^{T}D^{\left(\frac{3}{2}\right)}\psi(t) + 8C^{T}\psi(t) - \left(S^{T}\psi(t)\right)^{2} - G_{0}^{T}\psi(t)$$

$$R_{2}(t) = S^{T}D^{\left(\frac{1}{2}\right)}\psi(t) - \left(H^{T}\psi(t)\right)\left(C^{T}D\psi(t)\right) - S^{T}\psi(t) - G_{1}^{T}\psi(t)$$

$$(6.12)$$

Calculating Equations (6.12) at the first root of
$$P_4(t)$$
, i.e. $t_0 = \frac{1}{2} + \frac{\sqrt{525 - 70\sqrt{30}}}{70}$

We have two non-linear equations and by utilising (6.11) we have

$$\begin{split} c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} &= 0 \\ c_{0,0} + \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} + \sqrt{7}c_{0,3} &= 1 \\ s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} &= 1 \\ s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} &= 3 \\ 2\sqrt{3}c_{0,1} - 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} &= 0 \\ 2\sqrt{3}c_{0,1} + 6\sqrt{5}c_{0,2} + 10\sqrt{7}c_{0,3} &= 3 \end{split}$$

If we solve this system of nonlinear algebraic equations, we get

$$C^{T} = [0.2500000001, 0.2525907427, 0.1118033988, 0.02362277957]$$

$$S^{T} = [1.490829745, 0.4893097218, 0.2277078606, 0.05763606744]$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 0.2500000001 \\ 0.2525907427 \\ 0.1118033988 \\ 0.02362277957 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.490829745 \\ 0.4893097218 \\ 0.2277078606 \\ 0.05763606744 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \end{bmatrix}$$

We applied both the proposed method and the LPOMM to solve this problem and show that our approach is more efficient and useful. Our numerical results support that our solution approaches the exact solution more than the approximate solution LPOMM. Comparison of the approximate and exact solutions are presented in Table 6.3 and Table 6.4.

Table 6.3 The numerical results attained by the introduced method in comparison with the LPOMM and the exact solution u(t) for Example 6.2.

t	Exact Solution $u(t)$	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LPOMM}$
0.0	0.000	-0.12 10 ⁻⁹	0.000000000000
0.1	0.001	0.01000000005	0.001000000000
0.2	0.008	0.0200000016	0.00800000000
0.3	0.027	0.03750000021	0.027000000000
0.4	0.064	0.07000000020	0.064000000000
0.5	0.125	0.12500000001	0.125000000000
0.6	0.216	0.21000000000	0.216000000000
0.7	0.343	0.33249999998	0.343000000000
0.8	0.512	0.4999999996	0.512000000000
0.9	0.729	0.71999999993	0.729000000000
1.0	1.000	0.9999999989	1.000000000000

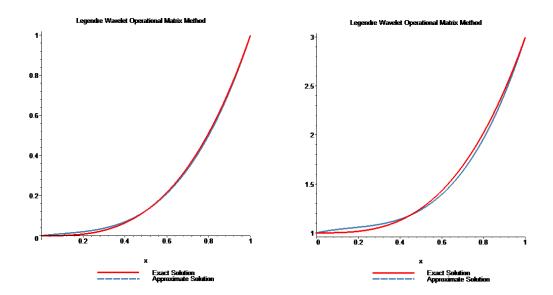


Figure 6.2 Comparison of our solutions u(t), v(t) with the exact solution when $\alpha = 1.5$, $\beta = 0.5$ for Example 6.2

Table 6.4 The numerical results attained by the introduced method in comparison with the LPOMM and the exact solution v(t) for Example 6.2.

t	Exact Solution $v(t)$	$v_{\scriptscriptstyle LWOMM}$	v_{LPOMM}
0.0	1.000	1.000000000	0.999999998
0.1	1.002	1.034841367	1.165803114
0.2	1.016	1.057587628	1.283854751
0.3	1.054	1.086537668	1.374911456
0.4	1.128	1.139990370	1.459729770
0.5	1.250	1.236244618	1.559066242
0.6	1.432	1.393599296	1.693677414
0.7	1.686	1.630353290	1.884319831
0.8	2.024	1.964805482	2.151750038
0.9	2.458	2.415254758	2.516724579
1.0	3.000	3.000000000	3.000000000

Example 6.3 Consider the following non-linear system of FDEs [41], [49]

$$D^{\alpha}u(t) = \frac{u(t)}{2}$$

$$D^{\alpha}v(t) = u^{2}(t) + v(t)$$
(6.13)

subject to

$$u(0) = 1, \quad v(0) = 0$$
 (6.14)

The exact solution of this system when $\alpha = 1$ is known to be

$$u(t) = e^{\left(\frac{t}{2}\right)}, \quad v(t) = te^{t}$$

To solve the above system when $\alpha = 0.9$, we applied the method presented in Section 6.1 with M = 2, k = 0. Approximating solution following as

$$u(t) = C^{T} \psi(t), \quad v(t) = S^{T} \psi(t)$$

$$D^{0.9}u(t) = C^T D^{(0.9)}\psi(t), \quad D^{0.9}v(t) = S^T D^{(0.9)}\psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}$$

$$D^{(0.9)} = \begin{pmatrix} 0 & 0 & 0 \\ 1.911059300\sqrt{3} & 0.2730084714 & -0.02642017466\sqrt{15} \\ -0.273008472\sqrt{5} & 1.664471004\sqrt{15} & 0.6325806046 \end{pmatrix}$$

If we consider (6.13) with (6.14), we have

$$R_{1}(t) = C^{T} D^{(0.9)} \psi(t) - \frac{C^{T} \psi(t)}{2}$$

$$R_{2}(t) = S^{T} D^{(0.9)} \psi(t) - (C^{T} \psi(t))^{2} - S^{T} \psi(t)$$
(6.15)

Calculating Equations (6.15) at the first two roots of $P_3(t)$, i.e.

$$t_0 = \frac{1}{2}, \quad t_1 = \frac{1}{2} - \frac{\sqrt{15}}{10}$$

We obtain four non-linear equations following as

$$\begin{split} 3.523070728c_{0,1} - 9.140726844c_{0,2} - 0.5c_{0,0} &= 0 \\ 4.193891122s_{0,1} - 9.587940439s_{0,2} - \left(c_{0,0} - 1.341640787c_{0,1} + 0.8944271908c_{0,2}\right)^2 - s_{0,0} &= 0 \\ 3.424454517c_{0,1} - 0.7586951239c_{0,2} - 0.5c_{0,0} &= 0 \\ 3.424454517s_{0,1} - 0.1996781297s_{0,2} - \left(c_{0,0} - 1.118033988c_{0,2}\right)^2 - s_{0,0} &= 0 \end{split}$$

and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 1$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} = 0$$

If we solve this system of non-linear algebraic equations, we get

$$C^{T} = [c_{0,0}, c_{0,1}, c_{0,2}] = [1.332807545, 0.1951100121, 0.002295506718]$$

$$S^{T} = [s_{0,0}, s_{0,1}, s_{0,2}] = [1.215158677, 0.8796261200, 0.1379199819]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 1 \\ 332807545, 0.1951100121, 0.002295506718 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.215158677, \ 0.8796261200, \ 0.1379199819 \end{bmatrix} \begin{bmatrix} 1\\ \sqrt{3}(-1+2t)\\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The parameters M=2, k=0 and $\alpha=0.9,0.7,0.5$ were utilised. Comparison of our results and the exact solution when $\alpha=1$ were also displayed in Figure 6.3. The figures support that when α approximates 1, our results approximate the exact solution. We also solved this problem by using LPOMM and we compared the results with the LWOMM. Finally, we also presented the numerical computations for u(t) and v(t) when $\alpha=0.9$ in Table 6.5 and Table 6.6.

Table 6.5 Our solutions u(t) when $\alpha = 0.9$ attained by the presented method and the LPOMM for Example 6.3.

t	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	1.000000000	1.000000000	0.37 10 ⁻¹⁰
0.1	1.064816320	1.064816320	0.132 10 ⁻⁹
0.2	1.130248589	1.130248589	0.1375 10-9
0.3	1.196296807	1.196296807	$0.44 10^{-10}$
0.4	1.262960975	1.262960975	$0.808 10^{-9}$
0.5	1.330241091	1.330241091	$0.532 \ 10^{-9}$
0.6	1.398137156	1.398137156	0.168 10-9
0.7	1.466649171	1.466649171	0.756 10 ⁻⁹
0.8	1.535777134	1.535777134	0.1375 10 ⁻⁹
0.9	1.605521046	1.605521046	0.468 10-9
1.0	1.675880908	1.675880908	0.163 10-9

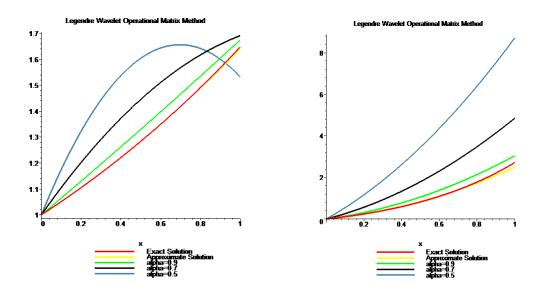


Figure 6.3 Comparison of our solutions u(t), v(t) with the exact solution when $\alpha = 0.9, 0.7, 0.5$ and 1 for Example 6.3.

Table 6.6 Our solutions v(t) when $\alpha = 0.9$ attained by the presented method and the LPOMM for Example 6.3.

t	$v_{\scriptscriptstyle LWOMM}$	$v_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	-0.1 10 ⁻⁹	0.0000000000	$0.1 10^{-9}$
0.1	0.1381762607	0.1381762609	0.7 10-9
0.2	0.3133603361	0.3133603363	$0.2 10^{-9}$
0.3	0.5255522260	0.5255522263	0.37 10-9
0.4	0.7747519305	0.7747519309	0.5 10-9
0.5	1.060959450	1.060959450	0.5 10-9
0.6	1.384174783	1.384174784	0.8 10-9
0.7	1.744397932	1.744397932	0.47 10-9
0.8	2.141628895	2.141628895	0.7 10-9
0.9	2.575867672	2.575867672	0.3 10-9
1.0	3.047114264	3.047114264	0.1 10-9

Example 6.4 Consider the following non-linear system of FDEs [49]

$$D^{\alpha}u(t) = -1002u(t) + 1000v^{2}(t)$$

$$D^{\alpha}v(t) = u(t) - v(t) - v^{2}(t)$$
(6.16)

subject to

$$u(0) = 1, \quad v(0) = 1$$
 (6.17)

The exact solution of this system when $\alpha = 1$ is known to be

$$u(t) = e^{-2t}, \quad v(t) = e^{-t}$$

To solve the above system when $\alpha = 0.99$, we applied the method presented in Section 6.1 with M = 4, k = 0. Approximating solution following as

$$u(t) = C^T \psi(t), \quad v(t) = S^T \psi(t)$$

$$D^{0.99}u(t) = C^T D^{(0.99)}\psi(t), \quad D^{0.99}v(t) = S^T D^{(0.99)}\psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{15} & 0 & 0 & 0 \\ 0 & 0 & 2\sqrt{35} & 0 & 0 \\ 0 & 0 & 0 & 2\sqrt{63} & 0 \end{pmatrix}$$

$$D^{(0.99)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 3.449375852 & 0.02972385188 & -0.01262112773 & 0.007410898821 & -0.005015065172 \\ -0.06646455361 & 7.610540026 & 0.07375369729 & -0.03451765405 & 0.02160663680 \\ 5.225899340 & -0.06725669 & 11.54413503 & 0.1255710707 & -0.06260318730 \\ -0.1231327500 & 10.1398707 & -0.05433257 & 15.41452292 & 0.1827775379 \end{pmatrix}$$

If we consider (6.16) with (6.17), we have

$$R_{1}(t) = C^{T} D^{(0.99)} \psi(t) + 1002 C^{T} \psi(t) - 1000 (S^{T} \psi(t))^{2}$$

$$R_{2}(t) = S^{T} D^{(0.99)} \psi(t) - C^{T} \psi(t) + S^{T} \psi(t) + (S^{T} \psi(t))^{2}$$
(6.18)

Calculating Equations (6.18) at the first four roots of $P_5(t)$, i.e.

$$t_0 = \frac{1}{2}, \quad t_1 = \frac{1}{2} - \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \quad t_2 = \frac{1}{2} - \frac{\sqrt{245 + 14\sqrt{70}}}{42}, \quad t_3 = \frac{1}{2} + \frac{\sqrt{245 - 14\sqrt{70}}}{42}$$

We obtain eight non-linear equations and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} - \sqrt{7}c_{0,3} + 3c_{0,4} = 1$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} - \sqrt{7}s_{0,3} + 3s_{0,4} = 1$$

If we solve this system of non-linear algebraic equations, we get

$$C^{T} = \begin{bmatrix} c_{0,0}, c_{0,1}, c_{0,2}, c_{0,3}, c_{0,4} \end{bmatrix}$$
$$= \begin{bmatrix} 0.4415217604, -0.2476343090, 0.05158027301, -0.01297029961, -0.006696716433 \end{bmatrix}$$

$$\begin{split} S^T = & \left[s_{0,0}, s_{0,1}, s_{0,2}, s_{0,3}, s_{0,4} \right] \\ = & \left[0.6431515334, -0.1801527132, 0.02407737838, 0.0006364975451, -0.002446608841 \right] \end{split}$$

Consequently,

$$u(t) = C^{T} \psi(t) = \begin{bmatrix} 0.4415217604 \\ -0.2476343090 \\ 0.05158027301 \\ -0.01297029961 \\ -0.006696716433 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

$$v(t) = S^{T} \psi(t) = \begin{bmatrix} 0.6431515334 \\ -0.1801527132 \\ 0.02407737838 \\ 0.0006364975451 \\ -0.002446608841 \end{bmatrix}^{T} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \\ \sqrt{7}(20t^{3}-30t^{2}+12t-1) \\ 3(70t^{4}-140t^{3}+90t^{2}-20t+1) \end{bmatrix}$$

We solved this problem by using LPOMM and we compared the results with the LWOMM for M=4, k=0 and $\alpha=0.99,0.9,0.7$. The numerical computations for u(t) and v(t) when $\alpha=0.99$ are also revealed in Table 6.7 and Table 6.8.

Table 6.7 Numerical solutions of u(t) when $\alpha = 0.99$ obtained by the given method and the LPOMM for Example 6.4.

t	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	1.000000000	1.000000000	$0.4 10^{-10}$
0.1	0.8144351529	0.8144351528	$0.21 10^{-10}$
0.2	0.6639425233	0.6639425233	0.15 10-9
0.3	0.5429947229	0.5429947230	0.34 10-9
0.4	0.4460643636	0.4460643636	0.42 10-9
0.5	0.3676240568	0.3676240568	0
0.6	0.3021464142	0.3021464147	0.68 10-9
0.7	0.2441040487	0.2441040481	0.24 10-9
0.8	0.1879695699	0.1879695690	0.53 10-9
0.9	0.1282155920	0.1282155905	0.461 10-9
1.0	0.0593147248	0.0593147222	$0.144 10^{-8}$

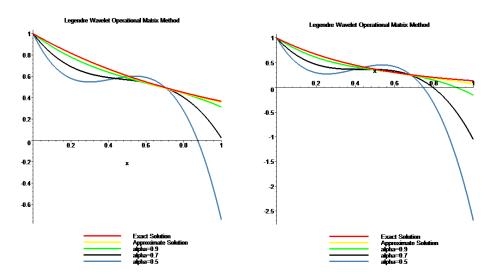


Figure 6.4 Comparison of our solutions u(t), v(t) with the exact solution when $\alpha = 0.5, 0.7, 0.9$ and 1 for Example 6.4.

Table 6.8 Numerical solutions of v(t) when $\alpha = 0.99$ obtained by the given method and the LPOMM for Example 6.4.

t	$v_{\scriptscriptstyle LWOMM}$	$v_{\scriptscriptstyle LPOMM}$	Absolute Error
0.0	1.000000000	0.999999999	0.79 10 ⁻¹⁰
0.1	0.9025601837	0.9025601837	$0.1498 10^{-9}$
0.2	0.8152646487	0.8152646488	0.119 10-9
0.3	0.7371116577	0.7371116578	$0.8 10^{-10}$
0.4	0.6670994737	0.6670994739	0.11 10-9
0.5	0.6042263597	0.6042263600	0.24 10-9
0.6	0.5474905785	0.5474905788	0.19 10-9
0.7	0.4958903932	0.4958903935	0.26 10-9
0.8	0.4484240664	0.4484240670	0.443 10-9
0.9	0.4040898614	0.4040898620	0.5898 10-9
1.0	0.3618860408	0.3618860417	0.719 10-9

Example 6.5 Consider the following fractional-order Brusselator system presented in [47] and [48]

$$D^{\alpha}u(t) = -2u(t) + u^{2}(t) v(t)$$

$$D^{\alpha}v(t) = u(t) - u^{2}(t) v(t)$$
(6.19)

subject to

$$u(0) = 1, \quad v(0) = 1$$
 (6.20)

The approximate solution of this system when $\alpha = 1$ and $\alpha = 0.98$ was presented by Chang and Isah using Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation (LWPT) in [48] and by Bota and Caruntu using the polynomial least squares method (PLSM) in [47]. The solution of this system when $\alpha = 1$ was presented in [47] and [48] following as

$$u_{LWPT}(t) = 1 - 1.0120t + 0.1211t^{2} + 0.1517t^{3},$$

$$v_{LWPT}(t) = 1 + 0.0096t + 0.4069t^{2} - 0.2461t^{3}$$

$$u_{PLSM}(t) = 1 - 1.02827t + 0.201028t^{2} + 0.0750974t^{3},$$

$$v(t)_{PLSM} = 1 + 0.0271107t + 0.334087t^{2} - 180088t^{3}$$

The approximate solution of this system when $\alpha = 0.98$ was presented in [47] and [48] following as

$$u_{LWPT}(t) = 1 - 1.0791t + 0.2711t^{2} - 0.0638t^{3},$$

$$v_{LWPT}(t) = 1 + 0.0151t + 0.4185t^{2} - 0.2624t^{3}$$

$$u_{PLSM}(t) = 1 - 1.08655t + 0.311138t^{2} + 0.0243682t^{3},$$

$$v(t)_{PLSM} = 1 + 0.0349127t + 0.333424t^{2} - 0.184414t^{3}$$

To solve the above system when $\alpha = 0.98$, we applied the method presented in Section 6.1 with M = 2, k = 0. Approximating solution following as

$$u(t) = C^{T} \psi(t), \quad v(t) = S^{T} \psi(t)$$

$$D^{0.98} u(t) = C^{T} D^{(0.98)} \psi(t), \quad D^{0.98} v(t) = S^{T} D^{(0.98)} \psi(t)$$

We get

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{15} & 0 \end{pmatrix}$$

$$D^{(0.98)} = \begin{pmatrix} 0 & 0 & 0 \\ 1.982905202\sqrt{3} & 0.05889817430 & -0.006370884195\sqrt{15} \\ -0.1317003230 & 7.476321502 & 0.1450477428 \end{pmatrix}$$

If we consider (6.19) with (6.20), we have

$$R_{1}(t) = C^{T} D^{(0.98)} \psi(t) + 2C^{T} \psi(t) - (C^{T} \psi(t))^{2} (S^{T} \psi(t))$$

$$R_{2}(t) = S^{T} D^{(0.98)} \psi(t) - C^{T} \psi(t) + (C^{T} \psi(t))^{2} (S^{T} \psi(t))$$
(6.21)

Calculating Equations (6.21) at the first two roots of $P_3(t)$, i.e. $t_0 = \frac{1}{2}$, $t_1 = \frac{1}{2} - \frac{\sqrt{15}}{10}$

We obtain four non-linear equations and by utilising initial conditions we have

$$c_{0,0} - \sqrt{3}c_{0,1} + \sqrt{5}c_{0,2} = 1$$

$$s_{0,0} - \sqrt{3}s_{0,1} + \sqrt{5}s_{0,2} = 1$$

If we solve this system of non-linear algebraic equations, we get

$$\boldsymbol{C}^{T} = \left[c_{0,0}, c_{0,1}, c_{0,2} \right] = \left[0.5654293689, -0.2188337915, 0.02483796840 \right]$$

$$S^{T} = [s_{0,0}, s_{0,1}, s_{0,2}] = [1.087682270, 0.06669943989, 0.01245246086]$$

Consequently,

$$u(t) = C^{T}\psi(t) = \begin{bmatrix} 0.5654293689, -0.2188337915, 0.02483796840 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

$$v(t) = S^{T}\psi(t) = \begin{bmatrix} 1.087682270, \ 0.06669943989, \ 0.01245246086 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}(-1+2t) \\ \sqrt{5}(6t^{2}-6t+1) \end{bmatrix}$$

The parameters M=2, k=0 with $\alpha=0.98$ were utilized. Comparison of our results and these approximate solutions introduced in [47] and [48] are also displayed in Figure 6.5. The figures support that our solution approaches the approximate solutions presented

in [47] and [48]. Finally, we also presented the numerical computations for u(t) and v(t) when $\alpha = 0.98$ in Table 6.9 and Table 6.10.

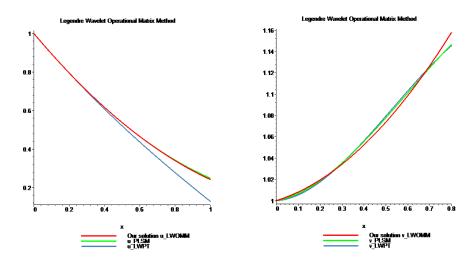


Figure 6.5 Comparison of our solutions u_{LOWMM} , v_{LOWMM} with the approximate solution u_{LPST} , v_{LPST} and the approximate solution u_{PLSM} , v_{PLSM} when $\alpha = 0.98$ for Example 6.5.

Table 6.9 Comparison between our approximate solution u_{LOWMM} and u_{LWPT} and u_{PLSM} when $\alpha = 0.98$ for Example 6.5.

t	$u_{\scriptscriptstyle LWOMM}$	$u_{\scriptscriptstyle LWPT}$	$u_{\scriptscriptstyle PLSM}$
0.0	1.000000000	1.0000000	1.0000000000
0.1	0.8942024826	0.8947372	0.8944807482
0.2	0.7950696916	0.7945136	0.7953304656
0.3	0.7026016268	0.6989464	0.7026953614
0.4	0.6167982883	0.6076528	0.6167216448
0.5	0.5376596761	0.5202500	0.5375555250
0.6	0.4651857902	0.4363552	0.4653432112
0.7	0.3993766306	0.3555856	0.4002309126
0.8	0.3402321973	0.2775584	0.3423648384
0.9	0.2877524902	0.2018908	0.2918911978
1.0	0.2419375095	0.1282000	0.2489562000

Table 6.10 Comparison between our approximate solution v_{LOWMM} with v_{LWPT} and v_{PLSM} when $\alpha = 0.98$ for Example 6.5.

t	v_{LOWMM}	$v_{\scriptscriptstyle LWPT}$	$v_{\scriptscriptstyle PLSM}$
0.0	1.000000000	1.0000000	1.000000000
0.1	1.008069307	1.0054326	1.006641096
0.2	1.019479961	1.0176608	1.018844188
0.3	1.034231959	1.0351102	1.035502792
0.4	1.052325304	1.0562064	1.055510424
0.5	1.073759995	1.0793750	1.077760600
0.6	1.098536032	1.1030416	1.101146836
0.7	1.126653415	1.1256318	1.124562648
0.8	1.158112143	1.1455712	1.146901552
0.9	1.192912217	1.1612854	1.167057064
1.0	1.231053638	1.1712000	1.183922700

RESULTS AND DISCUSSION

Because variety of solution of higher order differential equations and the system of such equations can not be found analytically, numerical and approximate methods are needed. This situation is more difficult and complicated for the solution of fractional order differential equations and the system of such equations. There are a lot of tecniques that have been studied by many researchers to solve fractional differential equations numerically. In this thesis, high order differential equations and the system of such equations of the linear and non-linear form were solved by utilising operational matrix of derivative and by generalizing these matrices to these equations and systems. Also, fractional order differential equations and the system of such equations of the linear and non-linear form were examined by derivating a new operational matrix of the fractional derivative in some special conditions and by benefiting from charachteristics of these matrices.

So then the Legendre wavelet operational matrix method is introduced in related chapters of this thesis by using some significant features of shifted Legendre polynomials and Legendre wavelets. The most advantage of this method is that it gives a understandable procedure in reducing these equations and the system of such equations to a system of algebraic equations. Also, very effective algorithm have been also formulated to obtain the solution of equations and systems mentioned above on the Maple. We produced all numerical results and graphical representations via Maple. The results illustrate that the introduced procedure can solve such equations and systems very efficaciously and simply.

As the next step, the method introduced in this thesis can be applied to fractional partial differential equations and the system of such equations, fractional integral equations and the system of such equations, fractional integro-differential equations. These equations

are at least as important as fractional differential equations and they are very significant in science, engineering and technology.

- [1] Noor, M. A., Mohyud-Din, S.T., (2007). "An Efficient Method for Solving Fourth-Order Boundary Value Problems", Computers and Mathematics with Applications, 54, 7-8: 1011-1111.
- [2] El-Gamel, M., Cannon, J.R. and Zayed, A.I., (2003). "Sinc-Galerkin Method for Solving Linear Sixth-Order Boundary Value Problems", Mathematics of Computation, 73 (273): 1325-1343.
- [3] Wang, Y., Zhao, Y.B. and Wei, G.W., (2003). "A Note on the Numerical Solution of High-Order Differential Equations", Journal of Computational and Applied Mathematics, 159 (2): 387-398.
- [4] Noor, M. A., Mohyud-Din, S. T., (2007). "An Efficient Algorithm for Solving Fifth-Order Boundary Value Problems", Mathematical and Computer Modelling, 45 (7-8): 954-964.
- [5] Feng-Gong, L., (2011). "A New Cubic B-Spline Method for Linear Fifth Order Boundary Value Problems", Journal of Applied Mathematics and Computing, 36 (1-2): 101-116.
- [6] Caglar, H. N., Caglar, S. H., (1999). "The Numerical Solution of Fifth-Order Boundary Value Problems with Sixth- Degree B-Spline Functions", Applied Mathematics Letters, 12 (5): 25-30.
- [7] Noor, M. A., Mohyud-Din, S. T., (2008). "Homotopy Perturbation Method for Solving Sixth-Order Boundary Value Problems", Computers and Mathematics with Applications, 55 (12): 2953-2972.
- [8] Shen, T. T., Xing, K.Z. and Ma, H.P., (2011). "A Legendre Petrov-Galerkin Method for Fourth-Order Differential Equations", Computers and Mathematics with Applications, 61 (1): 8-16.
- [9] Sadek, I., Bokhari, M., (1998). "Optimal Control of a Parabolic Distributed Parameter System via Orthogonal Polynomials", Optimal Control Appl. Methods, 19 (3): 205-213.
- [10] Razzaghi, M., Arabshabi, A., (1989). "Optimal Control of Linear Distributed Parameter Systems Via Polynomial Series", International Journal of Systems Science, 20 (7): 1141-1148.
- [11] Chang, R., Yang, S., (1986). "Solutions of Two-Point-Boundary-Value-Problems by Generalized Orthogonal Polynomials and Applications to Control of Lumped and Distributed Parameter Systems", International Journal Control, 43 (6): 1785-1802.

- [12] Mohammadi, F., Hosseini, M. M., (2011). "A New Legendre Wavelet Operational Matrix of Derivative and Its Applications in Solving the Singular Ordinary Differential Equations", Journal of The Franklin Institute, 348 (8): 1787-1796.
- [13] Mishra, V., Sabina, (2011). "Wavelet Galerkin Solutions of Ordinary Differential Equations", International Journal of Math. Analysis, 5 (9): 407-424.
- [14] Khellat, F., Yousefi, S. A., (2006). "The Linear Legendre Mother Wavelets Operational Matrix of Integration and Its Application", Journal of The Franklin Institute, 343 (2): 181-190.
- [15] Mohammadi, F., Hosseini, M.M., (2011). "Legendre Wavelet Galerkin Method for Solving Ordinary Differential Equations with Non-Analytic Solution", International Journal of Systems Science, 42 (4): 579-585.
- [16] Razzaghi, M., Yousefi, S., (2011). "Legendre Wavelets Operational Matrix of Integration", International Journal of Systems Science, 32 (4): 495-502.
- [17] Venkatesh, S.G., Ayyaswamy, S.K. and Balachandar, S.R., (2012). "The Legendre wavelet method for solving initial value problems of Bratu-type", Computers and Mathematics with Applications, 63: 1287-1295.
- [18] Saadatmandi, A., Dehghan, M., (2010). "A New Operational Matrix for Solving Fractional-Order Differential Equations", Computers and Mathematics with Applications, 59 (3): 1326-1336.
- [19] Mohammadi, F., Hosseini, M.M. and Mohyud-Din, S.T., (2011). "A New Operational Matrix for Legendre Wavelets and Its Applications for Solving Fractional Order Boundary Value Problems", International Journal of Systems Science, 6 (32): 7371-7378.
- [20] Mohammadi, F. and Hosseini, M.M., (2011). "A comparative study of numerical methods for solving quadratic Riccati differential equations", Journal of The Franklin Institute, 348: 156-164.
- [21] Miller, K.S. and Ross, B., (1993). "An introduction to the fractional calculus and fractional differential equations", Wiley, New York.
- [22] Oldham, K.B. and Spanier, J., (1974). "The fractional calculus", Academic Press, New York.
- [23] Jafari, H., Yousefi, S.A., Firoozjaee, M.A, Momani, S. and Khalique, C.M., (2011). "Application of Legendre wavelets for solving fractional differential equations", Computers and Mathematics with Applications, 62: 1038-1045.
- [24] Balaji, S., (2015). "Legendre wavelet operational matrix method for solution of fractional order Riccati differential equation", Journal of the Eqyptian Mathematical Society, 23: 263-270.
- [25] Yi-Ming Chen, Yan-Qiao Wei, Da-Yan Liu, Hao Yu, (2015). "Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets", Applied Mathematics Letters, 46: 83-88.
- [26] Rehman, M. and Khan, R.A., (2011). "The Legendre wavelet method for solving fractional differential equations", Commun Nonlinear Sci Numer Simulat, 16: 4163-4173.

- [27] Khader, M.M., Danaf, T.S. and Hendy, A.S., (2013). "A computational matrix method for solving systems of high order fractional differential equations", Applied Mathematical Modelling, 37: 4035-4050.
- [28] Şenol, M. and Dolapçı, İ.T., (2016). "On the perturbation-iteration algorithm for fractional differential equations", Journal of King Saud University-Science, 28: 69-74.
- [29] Alshbool, M.H.T., Bataineh, A.S., Hashim, I. and Işık, O.R., (2017). "Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions", Journal of King Saud University-Science, 29: 1-18.
- [30] Mohammadi, F., (2014). "Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative", International Journal of Advances in Applied Mathematics and Mechanics, 2 (1): 83-91.
- [31] Isah, A. and Phang, C., (2017). "New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials", Journal of King Saud University-Science.
- [32] Isah, A. and Phang, C., (2016). "Genocchi wavelet-like operational matrix and its application for solving non-linear fractional differential equations", Open Phys., 14: 463-472.
- [33] Isah, A. and Phang, C., (2015). "Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation and its applications in solving fractional order differential equations", International Journal of Pure and Applied Mathematics, 105: 97-114.
- [34] Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S., (2012). "A new Jacobi operational matrix: An application for solving fractional differential equations", Applied Mathematical Modelling, 36: 4931-4943.
- [35] Demirci, E. and Ozalp, N., (2012). "A method for solving differential equations of fractional order", Journal of Computational and Applied Mathematics, 236: 2754-2762.
- [36] Song, L. and Wang, W., (2013). "A new improved Adomian decomposition method and its application to fractional differential equations", Applied Mathematical Modelling, 37: 1590-1598.
- [37] Feng, M., Zhang, X. and Ge, W., (2013). "New existence results for high-order non-linear fractional differential equation with integral boundary conditions", Hindawi Publishing Corporation Boundary Value Problems.
- [38] Daftardar-Gejji, V. and Babakhani, A., (2004). "Analysis of a system of fractional differential equations", Journal of Mathematical Analysis and Applications, 293: 511-522.
- [39] Daftardar-Gejji, V. and Jafari, H., (2005). "Adomian decomposition: a tool for solving a system of fractional differential equations", Journal of Mathematical Analysis and Applications, 301: 508-518.
- [40] Khader, M.M., Danaf, T.S. and Hendy, A.S., (2013). "A computational matrix method for solving systems of high order fractional differential equations", Applied Mathematical Modelling, 37: 4035-4050.

- [41] Gupta, S., Kumar, D. and Singh, J., (2015). "Numerical study for systems of fractional differential equations via Laplace transform", Journal of the Egyptian Mathematical Society, 23: 256-262.
- [42] Jafari, H. and Daftardar-Gejji, V., (2016). "Solving a system of nonlinear fractional differential equations using Adomian decomposition", Journal of Computational and Applied Mathematics, 196: 644-651.
- [43] Ertürk, V.S. and Momani, S., (2008). "Solving systems of fractional differential equations using differential transform method", Journal of Computational and Applied Mathematics, 215: 142-151.
- [44] Ghazanfari, B. and Ghazanfari, A.G., (2012). "Solving system of fractional differential equations by fractional complex transform method", Asian Journal of Applied Sciences, 5 (6): 438-444.
- [45] Khan, N.A., Jamil, M., Ara, A. and Khan, N., (2011). "On efficient method for system of fractional differential equations", Hindawi Publishing Corporation Advances in Difference Equations.
- [46] Hesameddini, E. and Rahimi, A., (2013). "A novel iterative method for solving systems of fractional differential equations", Hindawi Publishing Corporation Advances in Difference Equations.
- [47] Bota, C. and Caruntu, B., (2015). "Approximate analytical solutions of the fractional-order brusselator system using the polynomial least squares method", Hindawi Publishing Corporation Advances in Difference Equations.
- [48] Chang, P. and Isah, A., (2016). "Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation and its applications in solving fractional order brusselator system", Journal of Physics, Conference Series 693:012001.
- [49] Isah, A. and Phang, C., (2017). "New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials", Journal of King Saud University-Science.
- [50] Isah, A. and Phang, C., (2016). "Genocchi wavelet-like operational matrix and its application for solving non-linear fractional differential equations", Open Phys., 14: 463-472.
- [51] Patil, N. and Khambayat, A., (2014). "Differential transform method for system of linear differential equations", Research Journal of Mathematical and Statistical Sciences, 2(3), 4-6, March.
- [52] Adio, A.K., (2015). "Numerical solution of system of second order differential equations by differential transform method", International Journal of Mathematics and Computer Applications Research, 5 (5): 21-28.
- [53] Thongmoona, M. and Pusjuso, S., (2010). "The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations", Nonlinear Analysis: Hybrid Systems, 4: 425-431.
- [54] Biazar, J., Babolian, E. and Islam, R., (2004). "Solution of the system of ordinary differential equations by Adomian decomposition method", Applied Mathematics and Computation, 147: 713–719.

- [55] Benattia, M. and Kacem, B., (2017). "Numerical Solution for solving fractional differential equations using shifted Chebyshev wavelet", General Letters in Mathematics, 3 (2): 102-111.
- [56] Seçer, A. and Altun, S., (2018). "A new numerical approach for solving high-order linear and non-linear differential equations", Thermal Science, 22 (1): 67-77.
- Pirim, N., (2014). "Kesirli Mertebeden Değişken Katsayılı Diferansiyel Denklem Ve Denklem Sistemlerinin Hermite Collocation Yöntemi İle Yaklaşık Çözümleri", Phd Thesis, Gazi University, Graduate School of Natural and Applied Sciences, Ankara.
- [58] Kimeu, J., (2009). "Fractional Calculus: Definitions And Applications", MSc Thesis, Western Kentucky University, The Faculty of the Department of Mathematics, Kentucky.
- [59] Weisstein, W., Legendre polynomial:http://mathworld.wolfram.com/Legendre polynomial.

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Selvi ALTUN

Date of birth and place : 23/02/1989-Bursa

Foreign Languages : English

E-mail : selvialtun89@gmail.com

EDUCATION

Degree	Department	University	Date of Graduation
Master	Mathematical	Yıldız Technical	2013
	Engineering	University	
Undergraduate	Mathematics	Gazi University	2011
High School	Natural and	Bursa Girls High	2007
	Applied Sciences	School	

WORK EXPERIENCE

Year	Corporation/Institute	Enrollment
2015-2015	Van Yüzüncü Yıl Üniversity/	Research Assistant
	Faculty of Economics and	
	Administrative Sciences	

PUBLISHMENTS

Papers

- 1.Secer, A. and Altun, S., (2018). "A new numerical approach for solving high order linear and non-linear differential equations", Thermal Science, 22 (1): 67-77.
- 2.Secer, A. and Altun, S., (2018). "A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets", Mathematics, 6 (238): doi:10.3390/math6110238.

Conference Papers

- 1. Secer, A., Altun, S. and Bayram, M., (2018). "The Legendre wavelet operational matrix method: An efficient approximation for solving fractional order Brusselator system", ICAAMM 2018, 20-24 June, Istanbul.
- 2. Secer, A., Altun, S. and Bayram, M., (2018). "Numerical solution of linear and non-linear fractional differential equations by the Legendre wavelet operational matrix method", ICAAMM 2018, 20-24 June, Istanbul.
- 3. Secer, A., Altun, S. and Bayram, M., (2017). "Numerical solution of fractional Bagley-Torvik equation by the Legendre wavelet operational matrix method", ICAAMM 2017, 3-7 July, Istanbul.
- 4. Secer, A., Altun, S. and Bayram, M., (2017). "The Legendre wavelet operational matrix method and its applications on high order non-linear differential equations", ICAAMM 2017, 3-7 July, Istanbul.
- 5. Altun, S., (2015). "Mathematical analyzing of epidemic diseases and its applications", ICAAMM 2015, 8-12 June, Istanbul.
- 6. Secer, A., Altun, S. and Bayram, M., (2013). "The sinc-Galerkin method for solving singular, Dirichlet-type boundary value problems and treatment of the boundary conditions", ICAAMM 2013, 2-5 June, Istanbul.

AWARDS

1.TUBITAK domestic doctoral scholarship