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ABSTRACT

Classification of Hyperspectral Images With Ensemble
Learning Methods

Uğur ERGÜL

Department of Computer Engineering

Doctor of Philosophy Thesis

Advisor: Assoc. Prof. Dr. Gökhan BİLGİN

Hyperspectral imaging is a remote sensing technology that enables the acquisition of

hundreds of consecutive bands in high frequencies. Hyperspectral sensors allow to

capture images between 10-20nm wavelength intervals by operating in an area called

the optic region of the electromagnetic spectrum. The application of this technology

is increasing day by day in a number of disciplines including the defense industry,

chemistry, forestry, agriculture, urban planning, and medicine.

Developing hyperspectral imaging increases the need for advanced analysis of these

images. For this reason, hyperspectral image processing subjects are being processed

frequently in the fields of pattern recognition and machine learning. In this

thesis, multiple instance learning, multiple classifier systems and kernel methods are

emphasized in order to increase classification performance and to perform advanced

image analysis. The use of spatial information in the proposed methods is also

emphasized. In the proposed multiple instance ensemble learning approach, the use

of unlabeled areas on hyperspectral images was provided. Methods such as bagging

and random feature subspace selection have been used to increase the classification

performance. In this approach, base classifiers such as decision trees, support vector

machines, and k-nearest neighbors are used.

Combining more than one kernel methods provides an efficient way to manage data

with a compound distribution, such as hyperspectral images. However, the proposed

multiple kernel learning methods often require complex optimization procedures. In

order to address this issue, a boosting-based ensemble learning method is presented.
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Hybrid kernels are taken into consideration together with composite kernels which

allow the use of spatial information, and it is aimed to perform advanced hyperspectral

image analysis. Although this proposed method has shown high performance, the

ratio of hybrid and composite kernels should be determined manually. For this

reason, another method called multiple composite kernel extreme learning machine

is proposed. In this method, hybrid and composite kernels are presented as an

aggregated input, and the weight value of each kernel is determined automatically

with an extreme learning machine based optimization algorithm. Since the extreme

learning machine allows for multiple classification, the overloading calculation time

is avoided and the result is achieved in a less complicated way.

The proposed methods have been tested on hyperspectral images with ground-truth

information. Obtained results are compared with state-of-the-art methods in the

literature. Both numerical and statistical methods are used in these comparisons.

In addition to that, the obtained classification maps are presented together with the

experimental results for comparison purposes.

Keywords: Hyperspectral imaging, ensemble learning, multiple instance learning,

hybrid kernels, composite kernels, extreme learning machine
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ÖZET

Hiperspektral Görüntülerin Topluluk Öğrenme
Yöntemleri ile Sınıflandırılması

Uğur ERGÜL

Bilgisayar Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Doç. Dr. Gökhan BİLGİN

Hiperspektral görüntüleme yüksek frekanslarda yüzlerce sıralı bant elde edilmesine

imkan tanıyan bir uzaktan algılama teknolojisidir. Hipersepktral görüntüleyiciler,

elektromanyetik spektrumda optik bölge olarak adlandırılan kısımda çalı̧sarak

10-20nm dalga boyu aralıklarında görüntü elde edilmesini sağlarlar. Bu teknolojinin

her geçen gün savunma sanayi, kimya, ormancılık, tarım, şehir planlama, tıp gibi bir

çok disiplinde kullanımı artmaktadır.

Geli̧smekte olan hiperspektral görüntüleme, beraberinde bu görüntülerin ileri düzeyde

analiz edilmesine olan ihtiyacı da artırmaktadır. Bu sebeple örüntü tanıma ve makina

öğrenmesi alanlarında hiperspektral görüntü i̧sleme konuları sıklıkla i̧slenmeye

başlanmı̧stır. Sınıflama başarımlarının artırılması ve geli̧smi̧s görüntü analizinin

yapılabilmesi için bu tez çalı̧smasında çoklu örnek öğrenme, çoklu sınıflayıcı sistemler

ve çekirdek yöntemler üzerinde durulmuştur. Önerilen yöntemlerde uzamsal bilginin

de kullanımına önem gösterilmi̧stir. Önerilen çoklu sınıflayıcı topluluk örnek

öğrenme yaklaşımında hiperspektral görüntüler üzerinde bulunan etiketsiz alanların

da kullanımına olanak sağlanmı̧stır. Torbalama ve rastsal özellik alt uzayı seçimi

gibi yöntemler kullanılmı̧s ve sınıflama başarımının artırılması hedeflenmi̧stir. Bu

yaklaşımda karar ağaçları, destek vektör makineleri, k-enyakın komşu gibi temel

sınıflayıcı yöntemler kullanılmı̧stır.

Birden fazla çekirdek yönteminin bir araya getirilerek kullanılması hiperspektral

görüntüler gibi bileşik dağılıma sahip veriler için etkin bir yöntem sunar. Fakat

önerilmi̧s olan çoklu çekirdek öğrenme yöntemleri genellikle karmaşık optimizasyon
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prosedürlerine ihtiyaç duyar. Bunun önüne geçmek için artırım (boosting) tabanlı bir

topluluk öğrenme yöntemi sunulmuştur. Melez çekirdeklerle beraber uzamsal bilginin

kullanımına olanak tanıyan kompozit çekirdekler de i̧sin içine katılmı̧s ve geli̧smi̧s

hiperspektral görüntü analizinin yapılması amaçlanmı̧stır. Melezleştirilmi̧s kompozit

çekirdek artırım adı verilen bu yöntemde temel sınıflayıcı olarak aşırı öğrenme

makinası kullanılmı̧stır. Önerilen bu yöntem her ne kadar yüksek başarımlar vermi̧s

olsa da melez çekirdekler ile kompozit çekirdeklerin oranının manuel belirlenmesi

gerekmektedir. Bu sebeple çoklu kompozit çekirdek aşırı öğrenme makinesi ismi

verilen bir diğer yöntem önerilmi̧stir. Bu yöntemde, melez ve kompozit çekirdekler

topluca girdi olarak sunulmuş ve aşırı öğrenme makinesi tabanlı optimizasyon

algoritması ile her bir çekirdeğin ağırlık değeri otomatik olarak belirlenmi̧stir. Aşırı

öğrenme makinesi çoklu sınıflamaya olanak tanıdığı için hesaplama zamanından

tasarruf edilmi̧s ve daha az karmaşık bir yolla sonuca ulaşılmı̧stır.

Önerilen yöntemler yer doğrusu bilgisine sahip hiperspektral görüntüler üzerinde

test edilmi̧stir. Elde edilen sonuçlar literatürde bulunan önde gelen yöntemlerle

kıyaslanmı̧stır. Bu kıyaslamalarda hem nümerik hem de istatistiki yöntemler

kullanılmı̧stır. Ayrıca elde edilen sınıflandırma haritaları da karşılaştırma amacıyla

deneysel sonuçlarla beraber sunulmuştur.

Anahtar Kelimeler: Hiperspektral görüntüleme, topluluk öğrenme, çoklu örnek

öğrenme, melez çekirdekler, kompozit çekirdekler, aşırı öğrenme makinası

YILDIZ TEKNİK ÜNİVERSİTESİ
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1
Introduction

1.1 Literature Review

Hyperspectral remote sensing is part of a new generation of remote sensing

technology that operates within the visible wavelength (0.4− 0.7µm), near-infrared

wavelength (NIR) (0.7 − 1.5µm), short-wave infrared wavelength (SWIR) (1.5 −
3µm), middle-wave infrared wavelength (MWIR) (3− 5µm), and long-wave infrared

wavelength (5 − 14µm) in the electromagnetic spectrum. It also provides hundreds

of bands with high resolution [1]. Whereas standard imaging systems work within

the visible wavelength and obtain few bands, hyperspectral images (HSIs) contain

numerous bands that belong to a wide range of wavelength intervals within 10nm−
20nm. That feature of HSIs enables the sensing of different kind of features that

cannot be detected by other imaging systems.

Figure 1.1 Electromagnetic spectrum

Remotely sensed images can be organized into three groups according to their

spectral resolutions: panchromatic, multispectral, and hyperspectral. In particular,

panchromatic sensors create single band images with respect to the energy level of

reflected rays from objects [2]. Such sensors ordinarily operate between the visible

and NIR wavelengths in the optic region of the electromagnetic spectrum. By contrast,

multispectral sensors usually operate between the visible and SWIR wavelengths, in

which they produce images with from four to seven bands. In multispectral images,
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each band is obtained at wavelength intervals within 0.3− 0.4µm [3], [4].

Figure 1.2 Hyperspectral signatures of different objects on the hypercube

By further contrast, hyperspectral imaging can be regarded as an advanced version

of multispectral imaging. They contain hundreds of bands obtained at wavelengths

between 10nm – 20nm [5]. The three dimensional (3D) structure of HSIs that

presents all dimensions together is known as the hyperspectral cube or hypercube.

Although a hypercube contains spatial information on x (i.e., horizontal) and y

(i.e., vertical) dimensions, it also contains spectral information on the complete band

slices. Each pixel residing in an HSI has spectral information that varies for the

different objects and thus differentiates the objects’ reflective features at different

wavelengths. The spectral information of HSI pixels is also called the spectral signa-

ture, because different objects have unique spectral information that can identify them.

By extension, hyperspectral signatures have more information than other signatures

of images obtained with other kinds of sensors, which affords HSIs high performance

in methods of applied machine learning (ML) and pattern recognition.

Hyperspectral remote sensing has wide range of applications. Its capacity to obtain

significant information after processing remotely sensed images with rich content

for diverse domains has promoted its use in various fields of practice and research.

In particular, the ability of hyperspectral optic sensors to operate within infrared

wavelengths has transformed means of military defense. To date, hyperspectral sensor

systems have been used for target detection, the detection of mined regions, and the

identification of different types of military vehicles, [6]. By extension, microscopic

hyperspectral imaging has begun to arouse interest in the fields of medicine and

biomedicine, in which samples gathered from tissues and organs can now be analyzed

to diagnose diseases [7], [8]. At the same time, given the importance of cultivating

fresh, high quality products in agricultural and livestock industries, hyperspectral

imaging affords an efficient way to detect the deterioration and abnormal conditions

of such products automatically [9], [10]. In addition, hyperspectral imaging has been

used to determine the quality of soil that supports agricultural activities, to distinguish
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arid regions, and to evaluate damage to agricultural products as a result of external

factors such as precipitation, disease, and drought.

However, according to the so-called "no free lunch" theorem in ML, no single system

can solve all problems while offering superior performance [11]. For example, a

classifier may have high accuracy in a particular dataset but perform weakly in another.

To partly overcome that problem, ensemble learning (EnLe) methods can be used as

statistical paradigms for selecting and fusing the decisions of a group of classifiers in

multiple classifier systems. In selection, the most accurate (i.e. strongest) classifier is

selected among a group of classifiers; however such a strong classifier might not be

preferable, since a weak classifier may be able to produce more accurate results than a

strong classifier for a specific dataset. In fusion, a dataset is presented to all classifiers,

and the decisions of all classifiers are singularized by various procedures. In terms of

EnLe each of those classifiers are known as weak classifiers.

EnLe methods not only increase the accuracy of but also provide more robust

classifier systems [12]. The error of a classifier system can be calculated via binomial

distribution as shown in equation (1.1) [13].

P(r) =

�

T

r

�

εr(1− ε)(T−r) (1.1)

Here T is total number of classifiers, r is number of classifiers to be selected, and ε is

error rate of the each classifier.In a classifier system consisting of 21 weak classifiers,

if each weak classifier’s error is 0.3, then the error of the system can also be calculated

via binomial distribution as shown in equation (1.2). Since such a system needs at

least 11 accurate classifiers to make desired decisions, r should be greater than or

equal to 11 [14].

P(i ≥ 11) =
21
∑

i=11

�

21

i

�

εi(1− ε)(21−i) = 0.026 (1.2)

Figure 1.3 illustrates general topologies of ensemble systems, among which parallel

architecture has dominated in studies in the literature [15]. In parallel architecture,

each weak classifier is trained individually, and the final decision is made according to

a specific combination rule. The total number of weak classifiers is usually determined

before the classification process begins. By Contrast, in serial architecture, each weak

classifier is trained according to the output of the previous classifier and the total

number of weak classifiers is usually determined during the classification process [16],
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[17].

Figure 1.3 Architectures of ensemble systems

In a multiple classifier system (MCS) (i.e. ensemble system), it is desirable to have

weak classifiers that are both accurate and disagree about particular parts of the input

data. Therefore, the diversity of a system plays an important role in the success of

any ensemble classifier. There are two kinds of approaches that ensure such diversity:

homogeneous and heterogeneous [15]. In homogeneous approaches, the same kinds

of classifiers are trained by feeding them input data that have been manipulated,

usually by changing the input samples or features of the samples. In heterogeneous

approaches, by contrast, different kinds of classifiers are trained by using the same

input data [13], [18].

The manipulation of input data is a method of increasing the diversity of an MCS.

Therein, original input data are generally divided into sub-parts, or else some changes

are made to the original input data for each weak classifier. Bootstrap aggregation,

or bagging [19] is one such method that offers particularly simple implementation as

well as good generalization. In bagging, a system’s diversity is ensured by sampling a

subset of training data by choosing samples randomly from original training data. That

new subset is constructed by means of replacement, in which the original data do not

change, and every subset is constructed by using those original data. In relatively small

training samples, bagging provides an appealing method in which training subsets are

drawn at a high percentage from the original training data. Given the likelihood that

each constructed subset will contain mostly overlapping data, an ensemble system
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might not have satisfactory diversity. In response, unstable classifiers such as decision

trees and neural networks may be used such that, variant decision boundaries can be

obtained for minor changes [20].

Manipulating input features is another method of increasing the diversity of a system.

In that method, the original sample size of training data is preserved although features

of the input space are randomly selected with a replacement for each weak classifier.

The random subspace method [21] is another well-known approach of feature

manipulation for ensuring diversity that is not only simple but also affords surprisingly

high performance. Selected features in the training phase of random subspace

should be retained for classification phase. Random subspace is a useful method

for preventing overfitting during classifier design. Although decision tree-based

[22] and support vector machine (SVM)-based classifiers [23] have been employed

with random subspace to obtain remarkable results, the random subspace method

is not applicable for datasets with few dimensional feature spaces. Manipulation

of both input data samples and input spaces allow the creation of random forests

(RFs) [22], so called because decision trees are utilized as weak classifiers that

take randomly selected samples and feature subspaces into account. RFs exhibit

characteristics of bagging as well as random subspace methods but outperform both

of those approaches.

An important development in multiple classifier systems has been the use of

boosting—that is, a set of operations that convert individual weak classifiers into

strong decision makers [24]. As in bagging, instance resampling is performed in

boosting to ensure the diversity of a system. Unlike bagging, however, resampling

in boosting is performed in a way that can identify more informative instances. The

original boosting method proposes the creation of three weak classifiers. For the

first classifier (C1), the training process is performed with randomly selected samples

without replacement. After obtaining the model C1, another two-part training subset

is created from the original input data by having the desired size of input data passed

through C1. Each part is of equal size; the first contains data samples that are correctly

classified by C1, whereas the second contains data samples that are misclassified by

C1. Thereafter, the second weak classifier (C2) is trained by using that dataset. Last,

the final weak classifier (C3) is constructed by using data samples about which C1 and

C2 disagree. Ultimately, the final ensemble decision is made by way of majority voting.

Proposed in 1997, Adaptive Boosting (AdaBoost) is a kind of generalized version

of boosting [25]. Since AdaBoost can accommodate both multiclass classification

and regression problems, it has garnered considerable interest. AdaBoost iteration

commences with subsampling training data from original data in which all samples
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have initially equal probability distribution. During boosting trials, as the probabilities

of misclassified samples increase, hard-to-classify samples are drawn for each weak

classifier trial. AdaBoost uses the individual hypothesis of each weak classifier to

obtain results; more specifically, it combines each hypothesis via weighted majority

voting in order to reach the final hypothesis. Weighted majority voting is an intuitive

method in which the right to decide is not equal for each weak classifier. If a

weak classifier shows high performance in the training phase, then the effect of that

classifier’s decision on the final result will be high. Conversely, if a classifier shows

weak performance in the training phase, then the weight of the decision of that

classifier will decrease. Freund and Schapire have demonstrated that the training

error of the AdaBoost ensemble is limited in the following equation:

E < 2T
T
∏

t=1

Æ

εt(1− εt) (1.3)

Where E is the training error of ensemble, εt is training error of t th weak classifier, and

T indicates the total number of weak classifiers [25]. In AdaBoost, the training error of

weak classifiers usually yields values that are too small after a few iterations since εt <

1/2. In other methods, that situation causes overfitting, in which a classifier learns

not only training data but also the noise of training data in excess. Consequently, the

classifier memorizes and performs well with the training data but performs dismally

with testing data. However, AdaBoost does not suffer from overfitting, as Schapire

et al. have explained as part of margin theory [26], according to which an ensemble

error linked to the margin created from the classifier system decreases as the margin

increases. In AdaBoost, the margin of an instance is defined as the difference between

the total votes of correct classifiers and the maximum votes of any incorrect classifier.

Owing to its increasing margin capacity, the error of AdaBoost is typically slight.

Since any multiple classifier system should ideally be more diverse and have more

accurate weak classifiers, another method known as rotation forest has been proposed

[27] in which each weak classifier is constructed by using rotated features. Training

space rotation can be accomplished by way of various feature extraction techniques,

including principal component analysis (PCA), independent component analysis

(ICA), and local fisher discriminant analysis (LFDA) . Rotation forest can complete

multiclass classification tasks because it uses decision trees as weak classifiers. In the

beginning of the training process, the feature space of a training dataset is divided

into K subsets created to be either disjoint or intersecting, the former of which has

been recommended by authors when maximizing the diversity of a system is the

goal [27]. After that, for each feature subset, an instance subset is created using
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bootstrap aggregation with a 75% subsampling percentage. In that step, it is important

to ensure that the instance subset contains instances from all classes. Afterward,

for each bootstrapped subset, feature extraction is performed, and a sparse rotation

matrix constructed via eigenvectors is used for both training and testing samples in the

classification process. A decision tree classifier can be built with that rotation matrix,

via which a test sample is rotated and passed through the classifier. It is reported that

the rotation forest method produces more diverse and accurate results than bagging

[27].

Applications of EnLe methods on HSIs have shown better results than standard ML

methods [15]. Among them, SVM has been widely used as a weak learner for EnLe

methods on HSIs, and a particular SVM-based EnLe method has been proposed that

combines spectral, structural, and semantic features [28]. That SVM-based EnLe

approach outperforms multi-feature SVM methods such as vector stacking, feature

selection, and composite kernels. Another EnLe approach [29] that initially splits

original hyperspectral data into a few data sources according to the similarity of

spectral features also uses SVM to obtain results. An ensemble algorithm that

combines a mixture of Gaussian functions and support cluster machine models for

classification has additionally been proposed to deal with insufficient numbers of

training samples and the misrepresentation of the real distribution of the entire data

space [30]. As demonstrated by Waske et. al. [31], SVM ensembles based on random

feature selection have shown significant improvement compared to single SVM and

RFs. In other work, the application of the random subspace method using SVM

ensembles as weak classifiers revealed that noisy features or outliers have a reduced

effect on multiple classifier systems [32]. Random subspace optimization based on a

genetic algorithm has additionally been proposed that has shown better performance

than SVM ensemble methods based on standard random subspace [33]. Moreover,

an adaptive boosting-based multiple classifier system has been proposed to eliminate

problems caused by insufficient training samples and spectral band redundancies

[34]. In that method, base SVM learners are trained after removing redundant and

uninformative bands. In another method that tries to suppress limitations caused

by insufficient training samples, a multiple kernel learning (MKL) framework is used

that applies a boosting strategy [35]. Stump functions have also been used as weak

classifiers in an EnLe method for HSI classification [36], and bootstrap aggregation

without involving replacement has been employed to enhance the stability and

accuracy of the AdaBoost process. A kernel-based random feature subspace ensemble

technique has also been proposed for HSIs [37], in which it was aimed to combine

subdecisions by optimizing both the base classifier’s (i.e., SVM’s) hyperplane and

corresponding weights of the subdecisions. Applying an SVM-based transfer learning
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boosting strategy to HSIs [38] can be performed by labeling the pixels in the target

image manually and re-weighting instances from the source image in the training set.

Since HSIs typically have high feature space, multiple classifier systems based on

random feature subspace selection (e.g., RFs) are regarded as being more attractive

and more robust against overfitting. An RF approach with embedded feature

selection and a Markov random field has been reported as being highly compatible

with HSIs [39]. In another RF-based EnLe method [40], a binary hierarchical

multiclassifier system is implemented to improve the performance of generalization.

Another method of adaptive random feature selection with a binary hierarchical

classifier (BHC) returned results thought to be more accurate than those achieved

by classical classification and regression trees. Such work has been extended to

transfer learning by using binary hierarchical classifiers [41] in which extracted

information from existing labeled data is leveraged to test data. It is useful to apply

that approach when no labeled data are available instead of directly applying the

original classifier. RF-based HSI classification can be performed to detect harmful

plants in ecosystems [42]. In that work, two methods capable of unsupervised

classification—BHC and classification and regression tree (CART)—based approaches

representing two different RF-based approaches were compared in HSI analysis

[43]. An object-based hyperspectral classification is proposed that involves steps of

multiresolution segmentation (MRS) and RF classifier (RFC) [44]. In the method,

when classes starkly differ from each other, some segmentation errors may occur;

accordingly, the scale of segmentation needed to be calibrated at an appropriate level.

Recently, decision making methods based on deep learning have gained popularity;

however, such learning models require a great deal of training samples in order to tune

abundant parameters, which requires an exceptionally high capacity for calculation in

order to extrapolate. To overcome such adversities, a densely connected deep RF

has been proposed [45]. Since rotation forests [27] operate as a special kind of RF

ensemble learners, their application in HSIs has been reported outperform other sorts

of EnLe methods such as AdaBoost, RF, and bagging [46]. Authors who have proposed

the application of rotation forest on HSIs have also proposed using Markov random

fields [47] and extended morphological map features [48] for exploiting advanced

spatial features together with multiple classifier systems.

1.2 Objective of the Thesis

Since a variety of materials reside within HSIs obtained by remote sensors at long

distances, inferences need to be made for different applications of HSIs. However, for

experts working in fields involving the use of HSIs, it remains difficult to manually
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obtain meaningful results, because each material constitutes different pixel patterns.

Although that circumstance facilitates the use of ML methods, distorted signals,

format errors, and spectral clutters make HSIs incredibly challenging to work with.

Moreover, mislabeling and insufficiently labeled samples are frequently encountered.

To eliminate those adversities, advanced techniques remain necessary.

Using spatial information along with spectral information is highly significant in HSI

analysis. In any HSI, a pixel of remotely sensed image may cover from 1m2 to 10m2

depending on the distance and resolution of the sensor. Thus, a pixel may contain

more than one object. Moreover, it is often possible that neighboring pixels consist of

similar materials and thus naturally have similar spectral signatures. Consequently,

contextual information means far more than other kinds of information in 1D or 2D

datasets used in ML. For that reason, the spatial feature utilization of HSIs play an

important role in classification.

Remotely sensed HSI data are usually composed of compound distribution, which in

some circumstances reduces the linear separability of the data. When using spectral

classifiers, the success of the classifier heavily depends on the distribution of data.

To increase linear separability, kernel methods should be employed; however, the

selection of the proper kernel method continues to be a problem that needs to be

addressed. In most cases, a classifier exhibiting good performance with training

data might not perform well with unseen testing data. At the same time, different

classifiers might show divergent performance when generalizing the same training

and testing data, and such a high volume of data might be too complex to solve for

a single classifier. Therefore, multiple classifier systems also play important role in

classification.

Because the aim of the research reported in this thesis was to incorporate spatial and

spectral information jointly, spatial feature extraction procedures were used. Another

aim was to obtain classes within a reasonable level of separation. Since HSI data

usually exhibit compound distribution, different kinds of kernel methods were taken

into account during analysis such that linearly separable class distribution could be

achieved. Moreover, to obtain a more generalized classification performance, different

kinds of multiple classifier systems are proposed, which should provide less complex,

more stable classifier systems. In that way, complicated HSI data analysis can be

simplified for many kind of applications in diverse fields of research and practice.
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1.3 Hypothesis

Remote sensors located on the bodies of airplanes, satellites, and other kinds of

aircraft capture images from long distances, often with very large areas. A single

pixel in an HSI may also represent a fairly large area. Consequently, supervised as

well as unsupervised ML methods may not succeed in assigning a pixel to a class

or cluster. Instead of using those kinds of approaches based exclusively on spectral

signatures, the use of neighboring information may improve the success of those

methods. Compared to unlabeled areas, most labeled ones within HSIs occupy little

space. Therefore, a great deal of valuable data remain unused during supervised

classification applications. Even labeled samples can cause uncertain class labeling

problems because of ground-truth labeling by humans and format errors. Since all

of those situations negatively affect standard ML algorithms, consolidating uncertain

ground-truth information and using unlabeled areas during supervised learning might

yield better results. To that end, multiple-instance learning (MIL) seems to be the

most appropriate method, for it allows working with uncertain target information. As

a result, applying MIL in HSI analysis should afford similar improvements.

The success of any ML algorithm depends on the separation ability of the algorithm.

Since HSI data usually contain intertwined class distribution, it remains difficult to

generate models with a high capacity for linear separation. At that stage, kernel

methods facilitate data transformation from original input space to higher or even

infinite-dimensional Hilbert space, which might increase a classifier’s ability to perform

linear separation. Although kernel methods increase linear separability, transforming

whole data to kernel space is an expensive process. Therefore, some special kernel

based methods that take advantage of the so-called “kernel trick” have been proposed,

including SVMs and extreme learning machines (ELMs). Kernel versions of those

methods, kernel ELM (KELM) and kernel SVM (KSVM), provide elegant ways to

facilitate kernel space transformation at a reasonable computational cost. Although

applying KELM and KSVM with HSI should increase the success of classification, some

kernel transfer functions show superior generalization, whereas others show a strong

learning ability. Since having both with a single kernel may be impossible, combining

multiple kernels could represent an approach to increase both the generalization and

learning ability of the kernel classifier. In the same sense, hybridizing different kernels

should provide improved kernel based classification for HSIs.

A single classifier may perform in a desired way with training data, although that

classifier’s performance may not always be as high as with unseen data. Likewise,

different classifiers may achieve different kinds of success with the same data. For

those reasons, ensemble classifiers might provide more robust classification models.
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At the same time, some proposed approaches such as the feature subspace method

could provide a more efficient means for processing high volumes of data, for which

divide-and-conquer methods might be used with less complexity. Accordingly, using

multiple classifier systems may significantly improve HSI classification, since using

spatial information, kernel methods, hybrid kernels (HKs), and ensemble methods

can enhance HSI analysis, each in their own way. Combining those abilities in a single

classifier system should yield superior improvements.
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2
Theoretical Background

In this chapter, some theoretically related concepts of the proposed works are briefly

described. First of all, multiple instance learning method is introduced. Afterwords,

extreme learning machine, multiple kernel learning, and multiple kernel boosting

(MKBoost) methods are explained respectively. Finally, hybrid kernels (HKs) and

composite kernels (CKs) are described.

2.1 Multiple Instance Learning

In conventional supervised machine learning methods, all training samples in a dataset

contain a particular label and sample/label pairs are used to construct classifier

models. However, in many real world applications, whole training samples may not

have a corresponding label information. In addition to having a large amount of data,

only small portion of the data found as labeled just as in the hyperspectral images. In

multiple instance learning, sample/label pair ambiguity is tried to be handled. More

specifically, instead of assigning a specific label to each training sample, labels are

assigned to group of training samples which are called "bag" in MIL terminology.

MIL is a learning paradigm that is first introduced by Dietterich et al. [49] for drug

discovery. This problem is inspired from the shape of molecules which are found in

different shapes for same molecules. Thus, ambiguity arises for the molecules that

actually belong to same class but have different properties. Therefore, it is considered

that a bag is positive if at least one positive labeled sample resides in that bag. A MIL

bag is considered as negative on the opposite case. Obviously, only binary classification

is supported in MIL algorithms.

In standard machine learning methods it is straightforward to represent instance/label

pairs. Such that, supposing that we have n training samples (x1, x2, ..., xn) where

x i ∈ Rd and n labels (y1, y2, ..., yn) corresponding to each sample where yi ∈ {0,1}. It

is aimed to train a supervised model and classify each unknown test samples according
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to trained model. On the other hand, classifier model training phase is accomplished

by MI bags. An MI bag (B) gets positive label (YB = 1) if it has at least one positive

sample and it gets negative label (YB = −1) if it does not have any positive labeled

sample.

2.2 Extreme Learning Machine

In a single hidden layer feed forward neural network architecture that contains N

training sample pairs ({x i, yi}Ni=1), x i = [x i1, x i2, ..., x in]T ∈ Rn represents instances

that exist in n dimensional space and yi = [yi1, yi2, ..., yim]T ∈ Rm shows m possible

output nodes of the instances. A neural network structure that contains Ñ hidden

layer node can be expressed as in equation (2.1).

Ñ
∑

i=1

βi g(wi.x j + bi) = o j, j = 1, ..., N (2.1)

In this expression, g(.) refers to activation function of the hidden layer. wi =
[wi1, wi2, ..., win]T ∈ Rn is weight vector between input layer and i th hidden layer and

βi = [βi1,βi2, ...,βim]T ∈ Rm vector denotes the weights between i th hidden layer and

output layer nodes. bi is bias value of i th hidden layer node. Stated equation can

be rewritten in matrix format as in equation (2.2) in which Y indicates the expected

output values.

Hβ = Y (2.2)

H denotes hidden layer output values and can be rephrased in matrix form with

respect to βi , w , b j parameters as in equation (2.3).

H =







g(w1.x1 + b1) ... g(wÑ .x1 + bÑ )
... ... ...

g(w1.xN + b1) ... g(wÑ .xN + bÑ )







N×Ñ

(2.3)

β and Y are shown in equation (2.4). According to ELM theorem [50], [51] training

error is minimized together with the output norm (min : ‖Hβ − Y‖2 and ‖β‖2)

β =







β T
1

...

β T
Ñ







Ñ×m

and Y =







Y T
1

...

Y T
N







N×m

(2.4)

In Moore-Penrose generalized matrix inverse theorem [52] for an equation system

such as Hβ = Y , inverse of a non-square matrix providing minimum norm and least
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square solutions can be expressed as in equation (2.5).

β∗ = H†Y (2.5)

Different methodologies are used for Moore-Penrose generalized inverse operation.

One of them is orthogonal projection method and it has two kind of usage: 1) H† =
(H T H)−1H T if H T H is not singular and 2) H† = H T (HH T )−1 if HH T is not singular.

According to Ridge regression theorem [53], adding a positive value to the diagonal of

the H T H or HH T matrices allows to have more stable results and higher generalized

performance [51]. Equation in the (2.5) can be expanded as in (2.6), where ζ refers

a constant variable and I is a unit matrix.

β∗ = H T (
I
ζ
+HH T )−1Y (2.6)

After obtaining weights between hidden layer and output layer (β∗), hidden layer

output values are calculated for test data x t as in equation (2.7).

h(x t) = g(W T x t + b) (2.7)

In order to finalize the classification task, β∗ is utilized as shown in equation (2.8).

f (x t) = h(x t)β
∗ = h(x t)H

T (
I
ζ
+HH T )−1Y (2.8)

β , weights between hidden layer and output layer, is calculated analytically during

the training phase. However, if it is not needed to be known, h(x t)H T and HH T dot

products can be transferred to a kernel function as shown in (2.9).

K(x t , x T ) =







K(x t , x T
1 )

...

K(x t , x T
N )






and ΩELM = K(x i, x T

j ) (2.9)

Thus, final form of kernel based ELM (KELM) can be expressed as in equation (2.10).

f (x t) = K(x t , x T )(
I
ζ
+ΩELM)

−1Y (2.10)

2.3 Multiple Kernel Learning

MKL algorithms aim to find the optimal combination of P predefined kernels {Km :

Rdm × Rdm}Pm=1. Linear or non-linear functions may be used to combine kernels in an

efficient way. It is reasonable to take linear combination methods into consideration
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when using complex kernel functions like radial base functions for the purpose of

reducing complexity [54]. Weighted sum for multiple kernel constitution is formulated

as a linear function in (2.11):

Kη = fη({Km}Pm=1|η) =
P
∑

m=1

ηmKm (2.11)

where η denotes the kernel weights and usually used as convex combination (η > 0

and
∑P

m=1ηm = 1) to maintain positive-definiteness.

Hypothesis function ( f ∈ HK) learned from a kernel classifier is desired to produce

minimum norm and error and this can be achieved by a maximum margin optimization

task as shown in equation (2.12):

min
η

min
f
=

1
2
‖ f ‖2

HK
+ C

N
∑

i=1

`( f (x i)) (2.12)

where C is regularization parameter and ` is error measurement function for a given

specific input value x i via f hypothesis. This optimization can be expressed in dual

formulation as in equation (2.13).

min
η

max
α
=
§

αT v −
1
2
(α ◦ y)T

� P
∑

m=1

ηmKm

�

(α ◦ y)
ª

(2.13)

In this Lagrangian equation, α expresses a vector that corresponds to dual variables

for each separation constraint, v stands for a vector with all elements being one, and

◦ is Hadamard product.

2.4 Multiple Kernel Boosting

Adaptive boosting (AdaBoost) is a popular ensemble learning algorithm that combines

decisions of base learners through weighted majority voting [25], [55]. In AdaBoost,

input data distribution is updated adaptively with respect to previous misclassified

samples. Thus, samples more difficult to classify (i.e. probably more informative) will

have more influence on the system.

MKBoost idea is heavily based on boosting technique to train a classifier with multiple

kernels. MKBoost runs for T boosting trials to train ft kernel classifiers (t =
1, ..., T). At each boosting round, firstly n instances are sub-sampled from training

data set according to Dt distribution. After sub-sampling operation, two deterministic

approaches are introduced to train a kernel-based classifier ft and these are named
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as MKBoost-D1 and MKBoost-D2 respectively. In MKBoost-D1, one classifier f m
t is

trained with each kernel Km from the P kernel collection using SVM method. Each

f m
t classifiers’ performance with Km is measured for whole training data over Dt

distribution as in equation (2.14).

εm
t = ε( f

m
t ) =

N
∑

i=1

Dt(i)
�

f m
t (x i) 6= yi

�

(2.14)

Final classifier for t th boosting round is built by choosing best classifier according to

performance measure as in (2.15).

ft = argmin
f m
t

�

ε( f m
t )
�

(2.15)

It is clear that the MKBoost-D1 is only interested with the best one among P kernel

classifiers and rest of them is discarded. In MKBoost-D2, contribution of all P kernel

classifiers are calculated for t th round as in equation (2.16):

ft(x ) = si gn
P
∑

m=1

�

αm
t f m

t (x )
�

(2.16)

where α is referred to as coefficient of f and calculated with the inverse ratio of the

misclassification measure. Thus, contribution of more successful classifiers are kept

high accordingly.

Rest of the steps are similar with the AdaBoost computation for both deterministic

approaches. The misclassification rate εt for the combined classifier ft is computed

over Dt distribution on whole training data. In the last step of each boosting round,

distribution weights are updated for the next trial as in the regular AdaBoost.

It is reported that the MKBoost approach gives better results compared to some

state of the art MKL methods such as Subgradient Descent MKL, Semi-Infinite Linear

Programming, Lp-Norm MKL [56]. Two stochastic MKBoost methods (MKBoost-S1

and MKBoost-S2) are introduced along with deterministic ones. Stochastic methods

are claimed to reduce computation time. However, deterministic methods produce

more accurate results than stochastic approaches. Therefore, MKBoost-D1 and

MKBoost-D2 are utilized for comparison in the experimental design and results

section.
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2.5 Hybrid Kernels

In compliance with the general concept of pattern recognition, data taking place

in higher feature space have more linear separability. Thus, it is desired to have

linearly more separable data by transferring it into high dimensional space from low

dimensional space via K transfer function (K : Rd → F ; xn → K(xn)). Transferring

data individually into a high-dimensional domain is a high-cost job. In order to

reduce computational load and storage area, a method called "kernel trick" is used.

This method takes dot products results’ into account instead of data itself. Kernel

functions utilized in this thesis are radial transfer function (RTF), polynomial transfer

function (PTF), and logarithmic transfer function (LTF). These functions can be seen

in equations (2.17), (2.18), and (2.19) respectively.

RT F : K(u, v) = ex p
�

−
‖u − v‖2

2σ2

�

(2.17)

PT F : K(u, v) = (γ(u − v) + r)d ,γ > 0 (2.18)

LT F : K(u, v) = − log
�

‖u − v‖d + 1
�

(2.19)

Defining a kernel function for transferring data to high dimensional space is made with

respect to Mercer’s Theorem [57]. According to this theorem; a gram matrix or any

finite subset of this matrix should be positive semi-definite as a result of transferring

training data to R domain via K kernel function. This theorem plays a key role

during the constitution of kernel based classifiers in order to acquire global solution.

Following functions are valid according to Mercer’s Theorem:

1-)K(u, v) = K1(u, v) + K2(u, v)

2-)K(u, v) = λK1(u, v)

3-)K(u, v) = K1(u, v)K2(u, v)

4-)K(u, v) = f (u) f (u)

5-)K(u, v) = K3(Φ(u),Φ(v))

6-)K(u, v) = uT Bv

K1 and K2 are positive semi-definite kernels K : X × X → Rd , f (.) is a real-valued

function over X , Φ(.) is a feature mapping function on n dimensional space, K3 is a

kernel over X n×X n, λ is positive real value, and B is a symmetric positive semi-definite

matrix.

Having both superior generalization performance and strong learning ability with only
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single kernel function may not be practically possible. While some kernels like RTF are

locally effective and have strong learning ability, some kernels like PTF are globally

effective and have high generalization performance. Mixing/Hybridizing different

kind of kernel functions is an approach applied in the literature for the purpose of

increasing both generalization performance and learning ability of the kernel classifier

[58], [59], [60].

The most common hybrid kernel constitution method is convex combination method

and can be shown in (2.20).

KH(u, v) = λKa(u, v) + (1−λ)Kb(u, v) (2.20)

Ka and Kb are different kernel functions. Using direct summation Mercer’s condition

(first Mercer’s condition above) and multiplication by a constant coefficient (second

Mercer’s condition above), KH ensures Mercer’s theorem subject to 0 < λ < 1

constraint.

2.6 Composite Kernels

In a HSI, a pixel is usually correlated with neighbor pixels. Thus, it is desired to

produce joint spatial-spectral combination during HSI classification. For this purpose,

local spatial feature extraction based composite kernels (CKs) are used to exploit the

information that have high-separating ability. Given a pixel entity x i ∈ RN is denoted

as spectral feature xωi ∈ R
Nω . Spectral feature is exactly same as a pixel which reflects

continuous spectral band characteristic. Spatial features x s
i ∈ R

Ns are extracted from a

defined small area by using spectral signatures. Simple contextual feature extraction

methods such as mean and standard deviation are the most common and high-yielding

techniques.

Stacked features approach, direct summation kernel, weighted summation kernel,

and cross-information kernels are proposed kernel combination methods in [61].
Weighted summation kernel combination method is presented as a superior technique

compared to others and can be seen as in equation (2.21):

K(x i, x j) = λKs(x
s
i , x s

j ) + (1−λ)Kω(x
ω
i , xωj ) (2.21)

where Ks and Kω symbolize spatial and spectral kernel matrices respectively. The λ

is a positive constant value (0 < λ < 1) which determines contribution of spatial and

spectral information to the composed kernel.
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3
Hyperspectral Datasets and Validation Methods

In this chapter, utilized hyperspectral datsets and validation methods are described.

In section 3.1, AVIRIS Indian Pines, ROSIS-03 Pavia University, and AVIRIS Salinas

datasets are introduced. Afterwords in section 3.2, overall accuracy (OA), Kappa

statistics, t-test, and McNemar’s test are explained respectively.

3.1 Hyperspectral Datasets

3.1.1 AVIRIS Indian Pines

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) Indian Pines hyperspectral

scene was captured over Northwest Indiana, USA, in June 1992. The scene consists

of 145 rows/scene, 145 pixels/row. Indian Pines HSI contains 224 spectral bands

with a wavelength range of 400 - 2500 nm. Band number is reduced to 200 after

the removal of water absorption caused noisy bands. Ground-truth is available and

contains sixteen different classes. Some of the ground-truth labels occupy very small

spaces and they are not convenient for ensemble learning process. Therefore, nine

classes are selected to operate ensemble formation process. The selected classes are

corn-notill, corn-mintill, grass-pasture, grass-trees, hay-windrowed, soybean-notill,

soybean-mintill, soybean-clean, and woods. These nine classes have 9345 labeled

samples in total. Indian Pines HSI’s 25th band in gray scale and ground-truth map with

nine classes are shown in Figure 3.1. The class names and class sequence numbers

with the corresponding number of labeled samples are given in Table 3.1.

3.1.2 ROSIS-03 Pavia University

The ROSIS-03 (Reflective Optics System Imaging Spectrometer) Pavia University

hyperspectral scene was obtained over the Pavia University area in Italy by the

Deutsches Zentrum für Luft- und Raumfahrt (DLR, German Aerospace Center). Pavia

University HSI consists of 115 spectral bands with variable wavelengths between 430 -

860 nm and has 610 rows/scene, 340 pixels/row. The original band number is reduced
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(a) (b)

Figure 3.1 (a) Image of 25th band sample, (b) 9 class ground-truth information of
AVIRIS Indian Pines hyperspectral scene.

Table 3.1 Class names and number of labeled samples for AVIRIS Indian Pines
hyperspectral scene.

Indian Pines

Class No Class Names # of Labeled Samples

2 Corn no till 1428
3 Corn min till 830
5 Grass pasture 483
6 Grass trees 730
8 Hay widrowed 478

10 Soybean no till 972
11 Soybean min till 2455
12 Soybean clean till 593
14 Woods 1265

Total # of labeled samples 9234

to 103 after the removal of water absorption caused noisy bands. Nine different classes

are defined for this HSI; asphalt, meadows, gravel, trees, painted metal sheets, bare

soil, bitumen, self-blocking brick, and shadows. Pavia University HSI’s 50th band in

gray scale and ground-truth map with nine different classes are shown in Figure 3.2.

Class names and the number of labeled samples with corresponding class sequence

numbers are given in Table 3.2.

3.1.3 AVIRIS Salinas

AVIRIS Salinas data set was captured over Salinas Valley, California, USA, in October

1998. The scene consists of 512 row/scene, 217 pixel/row. Salinas HSI originally

contains 224 spectral bands. After the removal of water absorption caused noisy

bands, band number is reduced to 204. Spatial resolution of the scene is 3.7 meter
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(a) (b)

Figure 3.2 (a) Image of 50th band sample, (b) 9 class test ground-truth information
of ROSIS-03 Pavia University hyperspectral scene.

Table 3.2 Class names and number of labeled samples for ROSIS-03 Pavia University
hyperspectral scene.

Pavia University

Class No Class Names # of Labeled Samples

1 Tree 3064
2 Asphalt 6631
3 Bitumen 1330
4 Gravel 2099
5 Metal Sheet 1345
6 Shadow 947
7 Bricks 3682
8 Meadow 18649
9 Soil 5029

Total # of labeled samples 42776

per pixel. Ground-truth is available with 54129 labeled samples and sixteen different

classes. Some of them are herbs like broccoli, celery, grape, corn lettuce, vineyard

and non-plant areas like fallow, stubble, soil-winyard. Salinas HSI’s 75th band in gray

scale and ground-truth map with sixteen different classes are shown in Figure 3.3.

Class names and the number of labeled samples with corresponding class sequence

numbers are given in Table 3.3.
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(a) (b)

Figure 3.3 (a) Image of 75th band sample, (b) 16 class test ground-truth information
of Salinas hyperspectral scene.

Table 3.3 Class names and number of labeled samples for Salinas hyperspectral
scene.

Salinas

Class No Class Names # of Labeled Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11271
9 Soil_vinyard_develop 6203

10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total # of labeled samples 54129

3.2 Validation Methods

3.2.1 Overall Accuracy

Overall accuracy (OA) metric is used to evaluate the obtained classification results. OA

is determined by confusion matrix. A confusion matrix is constructed by comparing
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ground-truth information with the result of a classifier. Sample confusion matrix of a

binary classifier is shown in Figure 3.4.

Figure 3.4 A binary confusion matrix illustration

This matrix consists of TP (true positive), FP (false positive), FN (false negative),

and TN (true negative) values. An OA value for a classifier is calculated with

dividing total number of correctly classified instances by total number of samples as

in equation (3.1).

OA=
T P + T N

T P + F P + FN + T N
(3.1)

For a multi-class classifier, confusion matrix becomes u × u, here u indicates total

number of classes in a data set. OA calculation for a multi-class classifier is

accomplished with the same logic: sum up the values residing on the diagonal of

the confusion matrix (total number of correctly classified samples) and then divide it

by the total number of samples.

3.2.2 Kappa Statistics

Another evaluation metric, kappa statistic [62], is used for pairwise diversity

measurement and proposed for revealing agreement of classifiers’ decisions [63].
Kappa is calculated over the measurement of agreement (θ1) and disagreement (θ2).

Calculation of θ1 is shown in equation (3.2).

θ1 =

∑

i Fii

N
(3.2)

Measurement of disagreement is calculated as in equation (3.3). Here N is total

number of test samples and F is a contingency matrix. Fi j indicates the number of

pairs for which decision of first classifier equals to i and second one equals to j. Since,

we are trying to find out how similar the classification results are as compared to the

ground-truth, we have utilized ground-truth information instead of second classifier’s

decision.
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θ2 =
∑

i

�

∑

j

Fi j

N
∗
∑

j

F ji

N

�

(3.3)

Kappa statistic produces 1 in case of full agreement and -1 on the contrary. Kappa

coefficient (κ) is calculated as in equation (3.4).

κ=
θ1 − θ2

1− θ2
(3.4)

3.2.3 T-test

Pairwise t-test each vs. each is utilized [64] for the purpose of comparing the obtained

classification results with the other methods. T-test is a common way to determine

whether the results of classifiers are statistically different or not. T-test compares

overall accuracy vector of each method pairs by matching each overall accuracy

value with its corresponding element of the other method’s results. This statistical

test is based on the pairwise differences for the values of matched observations of

two samples (di = y1i − y2i). The paired t-test formulation can be expressed as in

equation (3.5):

td =
d −µ12

sd/
p

n
∼ tn−1(α) (3.5)

where n corresponds to the number of data in d vector. Expression of d represents the

mean value of d and sd represents the standard deviation of d. Zero value is assigned

to µ12 which also shows our null hypothesis value.

d =

∑

di

n
and sd =

√

√

√

∑

(di − d)
n− 1

(3.6)

The null hypothesis is defined as H0 : µ1−µ2 = 0 and that means there is no difference

between the mean values of two samples. In this case, the alternative hypothesis could

be presented as H1 : µ1−µ2 6= 0. The t-test result, calculated by equation (3.5), should

be compared to the t-distribution value according to the degree of freedom and an

alpha (α) number. The degree of freedom parameter of t-test is found by the n − 1

value. Alpha is a significance level. The most commonly used significance levels are

0.01, 0.05, and 0.1.
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3.2.4 McNemar’s Test

McNemar’s test is an objective and statistical criterion, utilized for comparing the

obtained classification results with the state-of-the-art methods. This test is a

common way to understand whether classifiers’ results are statistically different or

not. Nonparametric McNemar’s test is also suitable for thematic map comparison [65]
and can be calculated as in equation (3.7):

Z =
Q12 −Q21
p

Q12 +Q21

(3.7)

Another kind of 2× 2 contingency matrix (Q) is used for McNemar’s test. Q i j shows

the value in i th row and j th column. Q12 is the number of samples that are correctly

classified by the first classifier and misclassified by the second one. Evidently, Q21

shows the value that is acquired by the opposite case. Z value indicates the difference

between two classifiers. For comparison reason, different degree of freedom and

significance levels can be chosen. For example if first degree of freedom and 5%

significance level are chosen from the chi square distribution table, square root of

this value corresponds to 1.96. That means, two classifiers’ results are statistically

different from each other if the obtained |Z | value is bigger than 1.96. Null hypothesis

is defined as H0 : No and accepted when there is no significant difference between

two classifiers (if |Z | ≤ 1.96) and the alternative hypothesis is defined as H1 : Yes and

accepted when there is a significant difference between two classifiers (if |Z |> 1.96).
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4
Multiple Instance Ensemble Learning

In this chapter, an ensemble framework for multiple-instance (MI) learning (MIL) is

introduced to use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap

aggregation) method in ensemble learning. Ensemble-based bagging is performed by

a small percentage of training samples, and MI bags are formed by a local windowing

process with variable window sizes on selected instances. In addition to bootstrap

aggregation, random subspace is another method used to diversify base classifiers.

The proposed method is implemented using four MIL classification algorithms. The

classifier model learning phase is carried out with MI bags, and the estimation phase

is performed over single-test instances. In the experimental part of the study, two

different HSIs that have ground-truth information are used, and comparative results

are demonstrated with state-of-the-art classification methods. In general, the MI

ensemble approach produces more compact results in terms of both diversity and error

compared to equipollent non-MIL algorithms.

4.1 Introduction

Hyperspectral remote sensors operate from visible wavelength to the long-wave

infrared range of the electromagnetic spectrum. Hyperspectral imaging takes place

in the field of remote sensing and has attracted the attention of researchers from

different disciplines over the past few decades. Hyperspectral images (HSIs) consist of

quite rich content and contain lots of adjacent and narrow bands that are constituted

by a bunch of rays reflected from different materials. Due to the fact that HSIs

are obtained from long distances, it is commonplace to receive distorted signals,

format errors and spectral clutters [66]. Ground-truth information labelled by humans

and aforementioned adversities give rise to uncertain class label problems, and this

situation affects standard machine learning algorithms negatively. Multiple instance

(MI) learning (MIL) is a paradigm developed to provide the ability to work with

uncertain target information [67]. Multiple instance learning is an assumption system

first introduced by Dietterich et al. [49] for drug activity prediction. MIL has become
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the subject of intense interest in recent years in the field of computer vision. This

learning approach is being used for classification [68] and material detection in

hyperspectral scenes and remotely sensed images [66, 69, 70].

Ensemble Learning (EnLe) is another subject of interest in recent years in the field

of machine learning. Basically, EnLe aims to train base learners by increasing the

diversity of ensemble classifier systems. Ensemble classifiers are able to reach a quite

high success ratios compared to single classifiers and can be used in the classification of

hyperspectral images. In the literature, for the purpose of increasing the classification

success, it is proposed to use EnLe on hyperspectral images that have inadequate

training data, which do not represent the whole feature space distribution [30]. A

considerable improvement on the hyperspectral image classification is observed in a

different EnLe approach that uses support vector machines (SVMs) as base classifiers

[71]. Feature extraction based rotation forest ensemble learning is proposed [46] to

attain high classification ratios to HSIs. The spatial circle-neighborhood information is

combined with a semi-supervised classifier approach [72], and applied to HSIs using

classifier fusion in order to improve the classification ability.

There are quite a few studies in the literature that present ensemble learning along

with multiple instance learning. In one of these studies, the MIL is adapted to EnLe by

using bootstrap aggregation over preformed MIL bags, and EnLe methods are applied

to them [73]. Random forests with multiple instance learning is performed in [68],
and an optimization strategy is proposed to preserve the diversities of base classifiers.

The concept lattice infrastructure based ensemble learning approach is used for

content based image acquisition in [74]. MIL and boosting approaches are combined

in [75] and optimization of boosting is made over Noisy-OR, which views boosting as

a gradient descent process. Similarly, MIL and boosting are studied together in [76],
but in an online manner for real-time object tracking. A multi-instance multi-labelled

SVM-based ensemble classification framework is proposed in another work [77] for

the purpose of automatic video annotation. The classification capability of decision

trees [78] on data sets with more than two classes and binary soft margin classifiers

[79] are our preliminary works on multiple instance learning. In the aforementioned

studies, multiple instance bags are created over labeled samples and samples with

known label information are located in each EnLe bag in order to ensure randomness

and optimization during the training phase of ensemble classifiers.

In this work, a new EnLe framework for HSI is presented by the motivation of bagging

strategy in the EnLe methods. Ensemble learning-based bagging is made using a

small percentage of the training samples on a hyperspectral scene, and local multiple

instance bags are defined upon selected training samples. The proposed method
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is operated using four MIL classification algorithms, and experimental results are

demonstrated with state of the art classification algorithms comparatively.

4.2 Formation of ensemble framework with multiple-instance

bagging approach

In the multiple instance learning scenarios, a group of different sized data are

presented to the learners. These group of data are named multiple instance bags

in MIL literature. An MI bag (B) gets a positive label when at least one of the samples

in the bag is positive (YB = 1). If all the target samples in a bag stay negative or

unlabelled, then B MI bag gets a negative label (YB = −1). Since hyperspectral

images mostly consist of more than two different classes for land cover classification,

one against all classification strategy is applied during the MIL bag creation, training

and classification phases for consistency [80]. Ensuring to obtain different learning

models as a result of diversifying the same kind of base classifiers is the common

method followed during an ensemble classifier formation. Bootstrap aggregation

structure (so-called bagging) is one of these methods based on random sampling

from a training data set for the purpose of increasing the diversity of the ensemble

model [19]. The multiple instance bagging strategy proposed in this work relies on

randomly selected samples from the training data set. Each of the T base classifier’s

training stage is performed with m multiple instance bags that are generated by using

randomly selected m labelled spectral signatures. In the creation phase of the multiple

instance bags, spatial information of HSI is also utilized. Local k × k neighborhood

are defined in a windowed structure for each component/spectral signature x l ∈ Rd

within m randomly selected sample subset. Bl , l=(1, ..., m) multiple instance bags

are constituted with the samples around x l . Note that, x l is the centralized pixel in

the k × k windowed area, and it will be referred to as x i j for two-dimensional space.

The construction of Bl is formulated as in equation (4.1).

Bl =







x i− k−1
2 j− k−1

2
... x i− k−1

2 j+ k−1
2

... x i j ...

x i+ k−1
2 j− k−1

2
... x i+ k−1

2 j+ k−1
2






and l = 1, ..., m (4.1)

Each of the obtained Bl multiple instance bags contain k2 (k has an odd integer

value such as 3, 5, 7, 9) instances including the centralized spectral signature x l .

Exceptionally, an MI-bag may contain less than k2 instances when the centre pixel of

the bag is located close to the border of the HSI. Samples in an MI bag may exist in

three different cases: 1) Whole samples in the bag may have the same labels with
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x l . 2) Some of the samples may stay unlabelled, while the rest of them have the same

label information with the label of x l . 3) Some samples may have positive and negative

label information, while others have no labels. All these three cases are illustrated in

Figure 4.1. As can be seen from Figure 4.1, it is guaranteed that there will be at least

one labelled sample x l with Yx l
label information in the Bl . An MI-bag gets a positive

label in case x l has a positive label. If x l has negative label, the MI-bag Bl is more

likely to get a negative label. However, it should be considered that the possibility of

the existence of a positive labelled instance in the Bl .

In standard machine learning methods, all training instances unexceptionally belong

to a particular class. Whereas in MIL scenarios, it is more likely to have bags with

unlabelled samples in the training data. Some special MIL algorithms have been

proposed to overcome this weakness of the standard machine learning algorithms

in the MIL area. Diverse density, maximum likelihood, boosting, and logistic

regression are some MIL-based classification algorithms [81]. Citation-KNN, multiple

instance-based SVM (miSVM), multiple decision tree and MIL-boosting algorithms are

MIL adapted versions of standard KNN, SVM, decision tree and boosting algorithms.

These are examined in detail in the following subsections. In this work, we followed

the “MI-bag based training, single instance based classification" way. That means the

classifier model learning phase is carried out with MI-bags and the estimation phase

is performed over single test instances.

Figure 4.1 (a) Randomly selected samples in a labelled area, x l centred k× k
window that (b) stays completely inside labelled area, (c) stays partially inside

labelled and unlabelled area, (d) stays partially inside positive labelled, negative
labelled and unlabelled area.

4.2.1 Citation-KNN

Citation-KNN is a distance-based classification algorithm first introduced by Wang and

Zucker [82]. The popular distance-based KNN algorithm is adapted to MIL by defining

bag-level distance metric using the minimum Hausdorff distance. This algorithm could

be expressed as the shortest distance between members of two MI-bags. “MI-bag based

29



training, single instance based classification" scenario is expressed as in equation (4.2)

for citation KNN with respect to the Hausdorff distance between a training MI-bag and

an unlabeled sample :

Dist(B, x) =min
bi∈B
||bi − x || and ∀i, 1≤ i ≤ k2 (4.2)

An unlabelled instance in an MI-bag may not always belong to the class to which the

bag belongs (see Figure 4.1). Because the majority voting is an underlying concept

of the KNN’s prediction mechanism, it can easily make wrong decisions due to false

positive instances. The citation idea is suggested to overcome this drawback. This

idea is inspired by reference and citer concepts. Neighbours (references) of MI-bag Bl

are considered along with the other bags (citers) that have Bl as a neighbour. The final

decision is made through the combination of references and citers. It is empirically

proven that much more robust results are taken in this way.

4.2.2 Multiple Decision Tree

Multiple decision tree is presented to solve the MIL problems by Zucker and Chevaleyre

[83]. The standard machine learning method, C4.5, uses information gain to split

nodes of a decision tree. It makes node splits with respect to information gain

(IG) of the training samples’ features. The multiple decision tree is a customized

form of C4.5 developed for multiple instance solutions in particular. The notion of

information gain is intrinsically associated with the entropy (E) term. Computations

of these two statements are adapted to multiple instance learning as in equation (4.3)

and equation (4.4). Also, probability computations of two binary classes are given

explicitly in equation (4.5).

IG(S, Fi) = E(S)−
∑

v∈F

p(Sv) + n(Sv)
p(S) + n(S)

∗ E(Sv) (4.3)

E(S) = −
2
∑

i=1

gi log2(gi) (4.4)

g1 =
p(S)

p(S) + n(S)
and g2 =

n(S)
p(S) + n(S)

(4.5)

S indicates all instances in the training data set, and p(S) and n(S) show the samples

that belong to positive and negative bags respectively. Node splitting is performed
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in respect to feature Fi. The Sv statement in the information gain equation (4.3)

corresponds to the collection of instances that have specific feature value v ∈ Fi.

Similar to standard C4.5, in this algorithm, instances from p(S) and n(S) are utilized

instead of MI-bags. Tree growing is sustained until pure class instances are obtained in

each leaf. For the classification of an unknown bag, each member of the bag is passed

through the tree and classified individually. The MI-bag is labelled as positive in case

at least one positive instance appears in a bag, otherwise negative label is assigned.

In the proposed “MI-bag based training, single instance classification” scenario, we

consider each test sample as an MI-bag that has exactly one instance.

4.2.3 Support Vector Machines for MIL

While defining the maximum margin solution for the MIL problem, the soft margin

definition algorithm supposes that all instances have negative labels in negative

labeled bags and at least one instance has a positive label in positive labeled bags.

For negative labeled bags, the maximum margin is defined as in the regular SVM case.

However, for positive labeled bags, the maximum margin optimization turns out to

be a mixed integer problem. Andrews et al. [84] proposed an SVM approach for MIL

problems called multiple instance-based SVM (miSVM) and also introduced a heuristic

in order to prevent the mixed integer problem. In miSVM, instances that do not belong

to any negative bag are considered as unknown integer variables. Thus, the equation

has to be maximized by a soft-margin criterion over the possible label assignments to

these unknown integer variables.

min
{yi}

min
w ,ξ

1
2
||w ||2 + C

∑

i

ξi (4.6)

The soft margin is maximized as in equation (4.6). This maximization is made subject

to ∀i as shown in equation (4.7). Where w stands for the normal vector, C is the

regularization parameter, and ξ is referred to as the slack variable.

∀i : yi(〈w , x i〉+δ)≥ 1− ξi,ξi ≥ 0, yi ∈ {−1,1} (4.7)

For the purpose of obtaining the optimal hyperplane and selecting the optimal pattern

from unknown integer variables, a heuristic method is suggested. According to this

heuristic method, labels are imputed to the instances in positive bags according to

maximum values achieved from (〈w , x i〉+δ). Then, for the positive bags, all outputs

are computed with the current classifier. These steps are repeated until convergence
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(i.e., until imputed labels stop changing). When the margin computation is finalized,

"single instance classification" is performed as in the regular case.

4.2.4 MIL-Boosting

The MILBoost algorithm is proposed by Viola et al. [75] as a gradient descent process

[85]. Maximization of log likelihood (max
∑

l log p(yl |Bl)) is desired. Log likelihood

is defined over the probability of training bags p(yl |Bl) in terms of the probability of

training instances. For doing this, the Noisy-OR MIL cost function is adopted and log

likelihood is assigned to training MIL bags as in equation (4.8) and equation (4.9)

respectively.

p(yl |Bl) = 1−
∏

i, j

�

1− p(yl |x i j)
�

(4.8)

L =
∏

l

p(yl |Bl)
yl (1− p(yl |Bl))

(1−yl ) (4.9)

In this model, the weight of each instance is obtained from the derivative of log

likelihood as in equation 4.10.

wl i j =
δ logL
δ y

=
y − p(yl |Bl)

p(yl |Bl)
p(yl |x i j) (4.10)

According to this approach, each round is a searching operation that maximizes the

likelihood. Intuitively, high probability of an instance increases the probability of

its bag. In this case, the likelihood of negative bags is always -1 since all instances

are assumed to be negative in negative bags. Boosting is a special case of instance

subspace selection and the MIL-Boosting method perfectly fits our proposed ensemble

formation framework on hyperspectral images.

4.2.5 Multiple Classifier System Design

So far, bootstrap aggregation has been sufficiently discoursed which is also the starting

point of our proposed approach. Besides bootstrap aggregation, random subspace

is another method used to diversify base classifiers. Random subspace for support

vector machines [23], k-nearest neighbors [86], decision trees [21], and AdaBoost

algorithms [55] are non-MIL versions of the MIL methods aforementioned in the

previous subsections. Briefly, the random subspace method relies on features that are
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randomly selected from the whole feature space for each base classifier. We applied

this method to each base MIL-classifier in order to increase diversity of the multiple

classifier system. The ensemble formation process steps for Citation-KNN, Multiple

Decision Tree and miSVM are shown in Algorithm 1. In contrast to the others, the

MILBoost algorithm does not use random subspace method. Instead of that it uses

weighted bootstrap aggregation with gradient descent process just as explained in

subsection 4.2.4.

Algorithm 1 The steps of the ensemble formation process

Xh(t r ): Hyperspectral Training Data set
Y : Class Label Information
T : Total Number of the Base Classifier
k: Window Size
F : Feature Space of Hyperspectral Data

1: for t=1 to T do
2: Select random feature subspace Fs for Xh(t r ) :

�

Xh(t r )
Fs−→ X′h(t r )

�

3: Select random m training samples from X′h(t r )

�

4: Define k × k windows for each x l ∈ Rd , l = {1, ..., m} sample where x l center
pixel of window and also referred to as x i j

5: Create Bl MI-bags with the instances inside the window
6: Train Ct base classifier with using Bl MI-bag and YBl

label information
7: end for

As a common characteristic of hyperspectral images, classes have unbalanced ratio

compared to each other. Besides that, hyperspectral data mostly have more unlabelled

data than labelled data. In order to simulate these situations and have a more

challenging environment; Xh(t r ): Hyperspectral training data set is subsampled from

the original training data set with 1%, 5% and 10% subsampling ratios. After that,

the proposed bagging-based windowing structure is applied to MIL classifiers as

formulated above. The complete training and testing phases are illustrated in the

Figure 4.2.

Profits of the proposed framework can be listed as below:

1-) Mostly, neighbor pixel correlation is high in hyperspectral images. So, taking

neighbor pixels into account by defining local windowing function during the MIL

bag creation step is evaluated as spatial-spectral association and it is thought to have

a positive effect on classification task.

2-) Unlabeled pixels on the HSI are valuable as much as labeled ones and usually

contain meaningful information. Thus, making use of the unlabeled pixels may

provide significant advantage. Proposed framework naturally allows unlabeled pixel
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Figure 4.2 Flowchart of the training and testing phases

usage and perfectly fits on MIL classification on HSI.

3-) Data sets with the small training size is arduous to classify. However ensemble

methods with bootstrap aggregation and random subspace adaptation on MIL based

classification methods increase the performance.

As an innovative way, multiple instance learning is combined with ensemble learning

by allowing the use of presumably valuable unlabeled data. Nevertheless, windowing

function in the bag creation phase may thought to be spatial-spectral association that

is considered to be of major importance on hyperspectral image classification task. At

the same time, proposed framework works as a pure MIL method on training phase

and works as a standard machine learning method on testing phase. As a consequence

of this, proposed approach can be considered as a hybrid method that enables to

use advantages of both multiple instance learning and standard machine learning

methodologies.

4.3 Experimental Design and Results

In the experiments, ROSIS-03 (Reflective Optics System Imaging Spectrometer)

Pavia University hyperspectral scene and AVIRIS (Airborne Visible/Infrared Imaging

Spectrometer) Indian Pines hyperspectral scene are used. Obtained results are

compared with the state-of-the art non-MIL and non-ensemble methods. Overall

accuracy of the algorithms calculated and t-test is utilized as a statistical criterion.

Another comparison criterion used for ensemble learners is pairwise diversity.

Diversity is defined to measure the difference level of two base classifiers. Kappa

statistic is proposed for revealing the agreement of classifier decisions. Kappa yields
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1 when the results of two classifiers are identical; otherwise, it yields result between

1 and -1. Since kappa measures the agreement level of the classification results, a

lower kappa value means more diverse classifiers. The diversity of each base learner

is calculated in a pairwise manner because of the definition of the kappa. In order to

calculate the pairwise kappa value, the first part of the pair vector is selected from the

base learner’s own classification decision over the test samples, and the second one is

determined as the majority voted result vector of the ensemble classifier system over

the test samples. The final diversity is obtained by averaging diversities of all classes.

For each case, algorithms are run for 10 times according to 10-fold cross validation,

and the d result vector is created with dual differences of the algorithms. KNN,

SVM, and decision tree classification algorithms are employed for ensemble creation

by bootstrap aggregation and random subspace selection. Therefore, the decision

tree is referred to as Random Forest (RF) [22, 87], and the obtained results from

these non-MIL ensemble methods are utilized for the purpose of comparison. Note

that the non-MIL classification processes are operated with the ‘instance base training

– instance based classification’ strategy. The K value of the KNN and citation-KNN

algorithms are selected as 1 and 3. Original training data set is sub-sampled by 10%,

5%, and 1% ratios. In the bagging phase, half of the training samples are picked out

randomly, and the feature space is halved in random subspace selection phases for

both MIL and non-MIL base classifiers. Thus, the MIL-based decision tree algorithm is

referred to as MIL Forest (milFr). In the formation of MI-bags, the window size is first

set to 3×3 and increased to 5×5, 7×7, and 9×9 respectively. Ensemble classifier sizes

are determined as 1, 10, 50, 100, and the final classification result of the ensemble is

ascertained by majority voting.

Overall classification accuracies obtained with non-MIL methods are shown in

Table 4.1 for both HSIs. The obtained results for MIL methods are shown in Table 4.2

and Table 4.3 for Pavia University and Indian Pines scenes respectively. In addition

to that, 1×1 windowing function (i.e practically no windowing function) is applied

with the selected MIL algorithms, and the obtained results are placed to Table 4.2

and Table 4.3 under the 1×1 column. The t-test was run for a 0.05 significance level

and applied to the resulting pairs of MIL and non-MIL versions of algorithms, like

1NN with 1% versus cit1NN with 1%, and all results for different window sizes under

this training sample percentage. In Table 4.4 and Table 4.5 the win\loss values are

presented for the Pavia University and Indian Pines hyperspectral scenes. Numerically,

the win\loss values appear along with statistically win\loss values in parentheses.

The proposed method’s overall classification accuracies, shown in Table 3.2 and

Table 4.3, are marked in bold font if they are statistically better than the equipollent
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non-MIL version of the algorithm, and they are marked in underlined italic font for

the opposite circumstances. The total comparisons of the given results are simply

summarized numerically and statistically and can be seen in Table 4.4 and Table 4.5.

All cases, except for Cit1NN and Cit3NN of Indian Pines, yield better classification

results than non-MIL versions of the algorithms. For example, one can interpret the

win\loss Table 4.4 for the first cell as Cit1NN wins 42 times and loses 6 times against

1NN in numerical manner, and Cit1NN wins 30 times and loses 1 time against 1NN

in statistical manner. The most extreme point of the win\loss Tables confronts us

in Table 4.5’s milFr vs. RF and MILBoost vs. AdaBoost cells. It shows that milFr

and MILBoost win both numerically and statistically for 48 different cases, which also

indicates the maximum possible case number.

The overall classification accuracies of four different MIL algorithms show the

superiority of the proposed framework against non-MIL versions. Random sample

selection originated multiple instance bag creation has not only empowered classifiers,

but also made it more consistent despite the use of a limited/small number of training

samples. In Table 4.2, one can see that almost all cases of Pavia University’s results

statistically increased in comparison with non-MIL versions of algorithms. In Table 4.3,

the obtained classification results of the Indian Pines scene indicate that the maximum

margin, decision tree and boosting based MIL methods performed better performance.

However, the distance based MIL algorithm did not perform satisfactory in a manner.

The experimental results of both hyperspectral scenes clearly show that ensemble

classifiers are convenient to have a more improved performance than single classifiers.

Also, increasing window size mostly affects the obtained accuracies positively.

Kappa-error diagrams are informative about ensemble characteristics as well. In

Figure 4.5 and Figure 4.6, scatter plots of 100 base classifiers’ kappa-error diagrams

are shown for Pavia University and Indian Pines scenes respectively. These diagrams

are drawn for only decision tree and support vector based algorithms using 10% of

training samples. Yet, they supply a general view of the proposed method about

diversity. Since ensemble classifier systems are desired to have more diverse base

classifiers as much as their higher accuracies, it is appropriate to say that the proposed

framework works as desired. In general, the multiple instance bagging approach

produces more compact results in terms of diversity and error compared to equipollent

non-MIL algorithms. Conspicuously, there is an inconsistency about window size

and diversity between the two different data sets. In the Pavia University data set,

increasing the window size made the ensemble more diverse, whereas increasing the

window size in Indian Pines decreased the diversity of the ensemble classifier system.

However, the proposed MIL-based method shows more success in classification error
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Table 4.1 The Pavia University and Indian Pines hyperspectral scenes’ overall
accuracy results obtained by non-MIL methods (The value of 1 denotes 100%

accuracy).

Non-MIL Methods

Ensemble Size Method

PAVIA UNIVERSITY INDIAN PINES

% of train samples % of train samples

1% 5% 10% 1% 5% 10%

1

1NN 0.812 0.818 0.838 0.818 0.821 0.844
3NN 0.771 0.814 0.836 0.813 0.83 0.859
SVM 0.763 0.771 0.794 0.851 0.863 0.867
RF 0.781 0.802 0.819 0.779 0.804 0.835

AdaBoost 0.787 0.805 0.809 0.789 0.809 0.827

10

1NN 0.827 0.831 0.85 0.842 0.857 0.878
3NN 0.829 0.841 0.848 0.861 0.872 0.876
SVM 0.756 0.76 0.778 0.853 0.859 0.866
RF 0.803 0.837 0.841 0.828 0.837 0.868

AdaBoost 0.799 0.802 0.822 0.806 0.814 0.821

50

1NN 0.84 0.848 0.856 0.844 0.854 0.882
3NN 0.843 0.856 0.853 0.863 0.871 0.88
SVM 0.755 0.774 0.799 0.855 0.862 0.866
RF 0.811 0.825 0.849 0.859 0.862 0.884

AdaBoost 0.786 0.822 0.822 0.804 0.823 0.837

100

1NN 0.861 0.86 0.86 0.845 0.859 0.881
3NN 0.853 0.857 0.859 0.862 0.87 0.881
SVM 0.754 0.761 0.794 0.855 0.859 0.866
RF 0.826 0.835 0.85 0.861 0.873 0.885

AdaBoost 0.794 0.813 0.827 0.819 0.814 0.831

Table 4.2 The Pavia University hyperspectral scene’s overall accuracy results
obtained by MIL methods (The value of 1 denotes 100% accuracy).

MIL Methods

Ensemble Size Method
1% of train 5% of train 10% of train

1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9

1

Cit1NN 0.819 0.825 0.801 0.824 0.799 0.819 0.842 0.851 0.864 0.834 0.849 0.877 0.886 0.882 0.849
Cit3NN 0.792 0.827 0.805 0.823 0.774 0.821 0.845 0.847 0.856 0.83 0.841 0.878 0.885 0.868 0.849
miSVM 0.781 0.794 0.792 0.809 0.801 0.785 0.801 0.842 0.859 0.863 0.808 0.822 0.868 0.876 0.881
MIL-Fr 0.773 0.779 0.837 0.77 0.784 0.813 0.828 0.835 0.827 0.846 0.82 0.832 0.841 0.854 0.869

MIL-Boost 0.813 0.846 0.846 0.848 0.834 0.838 0.86 0.857 0.861 0.859 0.842 0.852 0.859 0.862 0.861

10

Cit1NN 0.825 0.874 0.873 0.861 0.858 0.843 0.881 0.884 0.872 0.854 0.857 0.893 0.886 0.88 0.855
Cit3NN 0.819 0.881 0.865 0.862 0.858 0.846 0.883 0.877 0.87 0.841 0.846 0.891 0.885 0.869 0.85
miSVM 0.771 0.865 0.857 0.872 0.86 0.773 0.863 0.861 0.857 0.873 0.804 0.869 0.874 0.88 0.884
MIL-Fr 0.806 0.839 0.834 0.822 0.842 0.829 0.856 0.859 0.862 0.871 0.843 0.861 0.871 0.878 0.89

MIL-Boost 0.83 0.841 0.834 0.852 0.832 0.845 0.859 0.867 0.862 0.865 0.847 0.851 0.857 0.861 0.859

50

Cit1NN 0.832 0.879 0.879 0.857 0.845 0.852 0.885 0.875 0.872 0.857 0.862 0.894 0.89 0.881 0.863
Cit3NN 0.841 0.883 0.878 0.859 0.853 0.856 0.881 0.875 0.861 0.847 0.859 0.891 0.885 0.869 0.855
miSVM 0.746 0.847 0.859 0.869 0.845 0.779 0.861 0.864 0.871 0.878 0.81 0.872 0.877 0.88 0.883
MIL-Fr 0.812 0.848 0.841 0.821 0.821 0.829 0.859 0.863 0.872 0.881 0.857 0.87 0.872 0.878 0.892

MIL-Boost 0.839 0.836 0.841 0.842 0.836 0.834 0.862 0.858 0.857 0.859 0.839 0.859 0.863 0.86 0.862

100

Cit1NN 0.863 0.883 0.876 0.86 0.842 0.865 0.875 0.882 0.872 0.851 0.86 0.889 0.889 0.88 0.857
Cit3NN 0.844 0.884 0.873 0.864 0.86 0.87 0.888 0.873 0.863 0.858 0.859 0.891 0.885 0.871 0.856
miSVM 0.759 0.843 0.876 0.87 0.866 0.762 0.851 0.869 0.875 0.872 0.794 0.866 0.877 0.879 0.882
MIL-Fr 0.841 0.845 0.844 0.82 0.826 0.839 0.869 0.867 0.858 0.852 0.859 0.872 0.872 0.88 0.891

MIL-Boost 0.833 0.859 0.842 0.831 0.856 0.851 0.868 0.864 0.868 0.869 0.845 0.858 0.868 0.871 0.867

Bold: Statistically better than non-MIL version of the algorithm at same level of sampling percentage and ensemble size.
Italic: Statistically worse than non-MIL version of the algorithm at same level of sampling percentage and ensemble size.
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Table 4.3 Indian Pines hyperspectral scene’s overall accuracy results obtained by MIL
methods (The value of 1 denotes 100% accuracy).

MIL Methods

Ensemble Size Method
1% of train 5% of train 10% of train

1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9 1x1 3x3 5x5 7x7 9x9

1

Cit1NN 0.821 0.841 0.809 0.804 0.821 0.827 0.851 0.842 0.837 0.819 0.845 0.859 0.856 0.842 0.828
Cit3NN 0.817 0.863 0.823 0.82 0.85 0.833 0.859 0.852 0.839 0.802 0.865 0.86 0.852 0.842 0.808
mi-SVM 0.859 0.867 0.877 0.871 0.87 0.857 0.877 0.889 0.917 0.923 0.862 0.887 0.902 0.921 0.939
MIL-Fr 0.82 0.855 0.844 0.865 0.835 0.818 0.884 0.893 0.901 0.915 0.839 0.902 0.925 0.928 0.932

MIL-Boost 0.817 0.852 0.85 0.849 0.851 0.866 0.886 0.896 0.899 0.897 0.875 0.884 0.898 0.905 0.913

10

Cit1NN 0.849 0.864 0.861 0.807 0.818 0.845 0.872 0.863 0.86 0.828 0.876 0.882 0.867 0.86 0.839
Cit3NN 0.865 0.878 0.859 0.848 0.831 0.867 0.876 0.864 0.854 0.826 0.881 0.881 0.86 0.858 0.833
mi-SVM 0.851 0.873 0.874 0.871 0.875 0.849 0.863 0.882 0.923 0.941 0.869 0.868 0.894 0.945 0.973
MIL-Fr 0.827 0.891 0.902 0.917 0.914 0.831 0.915 0.937 0.948 0.952 0.865 0.947 0.968 0.979 0.975

MIL-Boost 0.825 0.847 0.858 0.847 0.859 0.858 0.886 0.892 0.895 0.897 0.869 0.891 0.896 0.899 0.918

50

Cit1NN 0.842 0.882 0.866 0.843 0.833 0.841 0.894 0.873 0.85 0.839 0.885 0.89 0.87 0.856 0.845
Cit3NN 0.867 0.879 0.866 0.842 0.834 0.866 0.884 0.867 0.853 0.846 0.882 0.891 0.863 0.853 0.843
mi-SVM 0.863 0.874 0.874 0.878 0.873 0.85 0.865 0.881 0.917 0.948 0.865 0.866 0.892 0.942 0.977
MIL-Fr 0.862 0.905 0.917 0.927 0.935 0.867 0.937 0.947 0.964 0.97 0.881 0.953 0.974 0.986 0.984

MIL-Boost 0.826 0.857 0.864 0.871 0.878 0.86 0.884 0.894 0.898 0.895 0.871 0.906 0.918 0.921 0.926

100

Cit1NN 0.844 0.877 0.867 0.848 0.829 0.857 0.892 0.882 0.847 0.842 0.886 0.891 0.871 0.857 0.847
Cit3NN 0.869 0.877 0.863 0.848 0.83 0.864 0.892 0.861 0.858 0.848 0.879 0.897 0.865 0.854 0.843
mi-SVM 0.861 0.874 0.874 0.882 0.878 0.859 0.871 0.878 0.923 0.957 0.871 0.866 0.885 0.941 0.978
MIL-Fr 0.871 0.912 0.917 0.927 0.937 0.873 0.952 0.963 0.969 0.971 0.887 0.953 0.975 0.987 0.986

MIL-Boost 0.858 0.866 0.893 0.879 0.885 0.864 0.887 0.895 0.902 0.909 0.886 0.92 0.927 0.926 0.938

Bold: Statistically better than non-MIL version of the algorithm at same level of sampling percentage and ensemble size.
Italic: Statistically worse than non-MIL version of the algorithm at same level of sampling percentage and ensemble size.

Table 4.4 Win\Loss (statistically Win\Loss) Matrix for Pavia University hyperspectral
scene.

Methods Cit1NN Cit3NN miSVM MIL-Fr MIL-Boost

1NN
42\6

- - - -(30\1)

3NN -
45\2

- - -
(31\0)

SVM - -
48\0

- -
(47\0)

RF - - -
44\3

-
(38\0)

AdaBoost - - - -
48\0

(48\0)

38



Table 4.5 Win\Loss (Statistically Win\Loss) Matrix for Indian Pines hyperspectral
scene.

Methods Cit1NN Cit3NN miSVM MIL-Fr MIL-Boost

1NN
23\25

- - - -(13\8)

3NN -
19\29

- - -
(5\14)

SVM - -
46\0

- -
(39\0)

RF - - -
48\0

-
(48\0)

AdaBoost - - - -
48\0

(48\0)

Figure 4.3 Artificial classification maps of Pavia University after binary classification
with using (a) 1% of training set, 1NN and 100 base classifiers, (b) 1% of training
set, Cit3NN, 3× 3 window and 100 base classifiers, (c) 5% of training set, Cit3NN,
3× 3 window and 100 base classifiers, (d) 5% of training set, Mil-Fr, 9× 9 window
and 50 base classifiers, (e) 10% of training set, miSVM, 9× 9 window and 100 base
classifiers, (f) 10% of training set, Mil-Fr, 9× 9 window and 100 base classifiers, (g)
1% of training set, MILBoost, 1× 1 window and 1 base classifier, (h) 5% of training

set, MILBoost, 3× 3 window and 100 base classifiers, (i) 10% of training set,
MILBoost, 7× 7 window and 100 base classifiers, (j) 10% of training set, AdaBoost

and 100 base classifiers.
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Figure 4.4 Artificial classification maps of Indian Pines after binary classification
with using (a) 10% of training set, 1NN and 50 base classifiers, (b) 10% of training
set, RF and 100 base classifiers, (c) 1% of training set, cit1NN, 3× 3 window and 50
base classifiers, (d) 1% of training set, Mil-Fr, 9× 9 window and 100 base classifiers,

(e) 5% of training set, miSVM, 7× 7 window and 100 base classifiers, (f) 5% of
training set, Mil-Fr, 9× 9 window and 100 base classifiers, (g) 10% of training set,

miSVM, 9× 9 window and 100 base classifiers, (h) 10% of training set, Mil-Fr, 9× 9
window and 100 base classifiers. (i) 10% of training set, AdaBoost and 100 base

classifiers, (j) 5% of training set, MILBooost, 1× 1 window and 1 base classifer, (k)
10% of training, MILBoost, 3× 3 window and 50 base classifiers. (l) 10% of training,

MILBoost, 9× 9 window and 100 base classifiers.
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Figure 4.5 ROSIS Pavia University hyperspectral scene’s average pairwise kappa –
error diagrams for (a) decision tree and (b) SVM based algorithms using k= 3, 5, 7,

9 window sizes and 100 base classifiers with 10% of training samples.

Figure 4.6 AVIRIS Indian Pines hyperspectral scene’s average pairwise kappa – error
diagrams for (a) decision tree and (b) SVM based algorithms using k=3, 5, 7, 9

window sizes and 100 base classifiers with 10% of training samples.
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for both data sets.

4.4 Conclusions

Ensemble methods are becoming so popular and preferable in the area of hyperspectral

remote sensing due to their superior performance compared to single classifiers. In this

study, a multiple instance-based ensemble approach is proposed for high dimensional

spectral images. Having unreliable ground-truth information and insufficiently

labelled data make the proposed method more usable for many high dimensional

image data sets. The usage of unlabelled samples along with labelled ones makes

it possible to expand the limited sample space. The random subspaces method has

a positive effect by decreasing classifier error for different types of classification

algorithms. Model variances of MIL algorithms are shown to be reduced compared

to non-MIL ones. In most cases, increasing the window size decreases classification

error. But this situation varies according to different data sets. Effects of window size

on the classification success differ from one data set to another because of the labelled

class samples’ distribution on the hyperspectral scene.
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5
Hybridized Composite Kernel Boosting

Utilization of contextual information on the hyperspectral image analysis is an

important fact. On the other hand, multiple kernels (MKs) and hybrid kernels

(HKs) in connection with kernel methods have significant impact on the classification

process. Activation of spatial information via composite kernels (CKs) and exploiting

hidden features of the spectral information via MKs and HKs have been shown

great successes on hyperspectral images separately. In this chapter, it is aimed to

aggregate composite and hybrid kernels to obtain high classification success with a

boosting based community learner. Spatial and spectral hybrid kernels are constructed

using weighted convex combination approach with respect to individual success

of the predefined kernels. Composite kernel formation is realized with certain

proportions of the obtained spatial and spectral HKs. Computationally fast and

effective extreme learning machine (ELM) classification algorithm is adopted. Since,

main objective is to obtain optimal kernel during ensemble formation operation,

unlike the standard MKL methods, proposed method disposes off the complex

optimization processes and allows multi-class classification. Pavia University, Indian

Pines, and Salinas hyperspectral scenes that have ground truth information are used

for simulations. Hybridized composite kernels (HCK) are constructed using Gaussian,

polynomial, and logarithmic kernel functions with various parameters and then

obtained results are presented comparatively along with the state-of-the-art MKL, CK,

sparse representation, and single kernel based methods.

5.1 Introduction

Working with hyperspectral images (HSIs) is a challenging task because of the

high-dimensional characteristics of the images called Hughes phenomenon [88]. Due

to the fact that HSIs are remotely sensed from long distances, it is also possible to

receive distorted signals, format errors and spectral clutters [66]. On top of it, small

number of labeled samples and mislabeling make it quite arduous to classification

process [89]. In order to eliminate aforementioned adversities and have more accurate
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results kernel based methods have been proposed on hyperspectral images [89], [90],
[91].

Kernel-based methods operate on the basis of mapping original input space to higher

dimensional kernel space. These methods provide ability to interpret the learning

model of linearly non-separable data. Support vector machines (SVMs), one of the

most popular kernel-based algorithm, have been widely used for HSI classification

[92], [93], [89]. SVMs are preferable due to their handling capacity of large inputs

and surmounting ability of the noisy samples robustly [94]. Extreme learning machine

(ELM) is another thriving kernel-based method which has recently gained popularity

in the field of HSI classification [95], [96]. ELM, a special kind of single hidden layer

feed-forward neural network, provides a key solution for non-linear problems with

least norm and least square solutions at very low run-time.

Most of the kernel-based methods utilize a single predefined kernel such as radial

base kernel or polynomial kernel. However, real-world learning problems reveal

the necessity of multiple kernel usage since most data come from heterogeneous

data sources or could be encountered as different representations. Multiple kernel

learning (MKL) is a proposed method to combine multiple kernels for the purpose

of achieving higher and flexible solutions in the real-world scenarios [97], [54],
[98]. Different variations of MKL proposed for the HSI classification have shown the

enhanced accuracy results [99], [100], [101]. Although it is widely used, existing

regular MKL methods have some limitations such as complicated optimization process,

low efficiency, and scalability issues on the real-world large applications. In order

to address the limitations of the regular MKL approaches, a new ensemble based

algorithm, multiple kernel boosting (MKBoost) is proposed [56]. In MKBoost, it

is intended to learn optimal combination of the weak kernel-based learners’ results

without resolving a complicated optimization task. Performances of the proposed

MKBoost variations on the HSI classification job show superiority against regular MKL

methods [102], [103], [104].

Taking contextual information into account as much as spatial information has

great importance in the analysis of hyperspectral images. In recent years, some

HSI classification studies considering spatial information together with spectral

information are presented [105], [106], [107]. A full family of kernel-based method

that incorporates spatial and spectral information is proposed and referred to as

composite kernels (CKs) [61]. In SVM-CK, mean and standard deviation are utilized

as spatial information. Thus, it has straightforward implementation. However, it is

difficult to find the optimal SVM-CK regularization parameters and processing HSI

data is time consuming. In order to reduce the time consumption and increase the
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spectral and spatial separability, HSI classification with using CK and kernel-ELM

(KELM) is proposed [108].

Since, HSI data mostly contain compound distribution, it is convenient to represent

HSI data by a compound kernel function. In general, MKL methods do not fulfill this

desire because of the fact that MKL methods fuse classifiers itself instead of kernels.

Therefore, hybrid kernel functions are proposed by blending different kind of kernel

functions into one compound single kernel in appropriate proportions [58]. We have

proposed a hybrid kernel function based classification method with using KELM in

order to increase generalization performance [60]. Despite hybrid kernels are easy to

implement, proportion parameters should be adjusted properly.

In this work, we have proposed a novel framework by employing spatial information

along with spectral information and putting multiple different kernel functions

together. We adapted the boosting idea in order to adjust both ratio of the predefined

kernel functions on the composed hybrid kernel and sub-sampling likelihood of the

instances in the training data set. Together with the use of composite kernels, we

have named this framework as "hybridized composite kernel boosting (HCKBoost)".

Main contribution of our work can be summarized as follows: 1) We have proposed

a new framework that combines both CKs and HKs efficiently. HCKBoost offers

adaptive adjustment of the hybrid kernel composition and probability of the instance

sub-sampling with respect to the final hybridized composite kernel based classifier. 2)

Proposed framework aims to integrate the kernels itself instead of fusing classifiers

as in the MKL. Thus, it does not require complicated optimization processes.

Alternatively, an intuitive adaptive parameter regulation method is used during the

boosting task. It enables to obtain final result from an ensemble classifier that

provides robust generalization performance. 3) Computationally fast and effective

classification algorithm ELM is utilized. It does not require to tune hidden node

parameters and it can be simply adapted to kernel base. ELM also allows multi-class

classification. Thus, proposed framework removes the SVM-origin disadvantages.

5.2 Proposed method: hybridized composite kernel boosting

A kernel function provides effectiveness to a learning method. However, in most cases

choosing a kernel requires prior knowledge about the data. Moreover, different kind

of extracted contextual features or data come from varied sources make it challenging

to employ a single kernel. Some particular kernel functions may operate optimally for

some circumstances, yet there is no superior kernel function that fits in all applications

(no free lunch theorem [109]). As in kernel selection, spectral context may not be
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sufficient individually in order to extract meaningful results from high dimensional

data. Therefore, we intended to combine different kernels along with the spatial

information.

5.2.1 HCKBoost: hybridized composite kernel boosting

Hybridized Composite Kernel Boosting is rely on adaptive boosting trials to combine

kernel functions. According to this procedure, some kernel functions are learned

repeatedly for both spatial and spectral features during each boosting round (t =
1, ..., T). Before the beginning of the training step, whole elements of probability

distribution matrix D0 is set to 1/N in order to give equal selection chance to each

instance initially. During the boosting iteration, probability of selecting an instance is

increased if it is misclassified by the previous classifier and decreased in the opposite

case. So, it forces the classifier to focus on the samples that are difficult to classify.

In each boosting round, a subset of training data is sub-sampled with n predefined

number of instances. Sub-sampling process is made according to Dt distribution and

realized for spatial X s and spectral Xw data separately. After obtaining subset for

both input data, performance of kernel functions on spatial and spectral data are

calculated individually in the sequential loops. Performance measure calculation over

misclassified samples for i th(i = 1, ..., P s) and j th( j = 1, ..., Pw) sequential inner loop

iterations on t th boosting trial are shown in equation (5.1) and equation (5.2) for both

spatial and spectral kernel classifiers respectively:

εs
t(i) =

N
∑

k=1

Dt(k)
�

f si
t (xk) 6= yk

�

+ γ (5.1)

εw
t ( j) =

N
∑

k=1

Dt(k)
�

f
w j

t (xk) 6= yk

�

+ γ (5.2)

where γ is a very small positive real value and used to prevent division by zero

exception. Two different sequential loops allow to use distinct spatial ({K s
i }

Ps
i=1) and

spectral ({Kw
j }

Pw
j=1) kernel collections and content of them may differ from each other.

After obtaining the performance measurements (µ coefficients) through error ratios

(see equation (5.5)), spatial (K s
Ht

) and spectral (K w
Ht

) hybrid kernels are constructed

for t th trial as in equation (5.3) and equation (5.4) respectively.

K s
Ht
=

Ps
∑

i=1

�

µs
t(i) ∗ K s

i

�

(5.3)
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K w
Ht
=

Pw
∑

j=1

�

µw
t ( j) ∗ K w

j

�

(5.4)

As shown in the above expression, each kernel is weighted according to its

performance. µ coefficients of K s and K w are calculated over error rates as in

equation (5.5).

µs
t(i) =

�

1−
εs

t(i)
∑

i ε
s
t(i)

�

and µw
t ( j) =

�

1−
εw

t ( j)
∑

j ε
w
t ( j)

�

(5.5)

Global hybridized composite kernel (K g
t ) for t th boosting trial is constructed as a result

of spectral kernel combination together with spatial one as in equation (5.6):

K g
t = λK s

Ht
+ (1−λ)K w

Ht
(5.6)

where λ is a predefined constant value that balances the contribution of spatial and

spectral kernel to global kernel.

After construction of global kernel on t th boosting round, performance of classifier

built upon that global kernel is calculated through the error ratio over whole training

data set as in equation (5.7).

εg
t =

N
∑

k=1

Dt(k)
�

f g
t (xk) 6= yk

�

+ γ (5.7)

In the last step of weak classifier training, Dt distribution matrix is updated as in

following equation (5.8):

Dt+1(k) =
Dt(k)

Zt
×
�

e−αt i f f g
t (xk) = yk

eαt i f f g
t (xk) 6= yk

(5.8)

where Zt is normalization factor and αt is weighting element for Dt+1 and calculated

with αt =
1
2 ln(1−εg

t

ε
g
t
) equation. Entire HCKBoost algorithm can be seen in Algorithm

2.

Note that, since it is intended to find samples hard to classify on each trial, distribution

of the spatial and spectral data is kept common (Dt) that is calculated over global

kernel classifier which is considered more powerful than the spatial and spectral

classifiers individually. Besides that, summation of both µs and µw are set to 1 and each

element of µ is kept greater than or equal to 0. This is also called convex combination

which ensures to retain positive definiteness.
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Algorithm 2 The HCKBoost Algorithm
1: Inputs:

X s = [(x s
1, y1)...(x s

N , yN )]: Spatial training data
Xw = [(x w

1 , y1)...(x w
N , yN )]: Spectral training data

{K s
i }

Ps
i=1: Kernel functions for spatial data

{Kw
j }

Pw
j=1: Kernel functions for spectral data

D1(k) =
1
N : Initial distribution for k = 1, ..., N

T : Total Number of boosting trials
λ: constant value where 0< λ < 1

2: for t=1 to T do
3: sub-sample n instances from both spatial and spectral training data (Xw n

−→
X ′t

w and X s n
−→ X ′t

s) using Dt
4: for i =1, ..., P s do
5: train weak spatial kernel classifier:

f si
t with K s

i (X
′
t
s)

6: compute training error of spatial kernel classifier:

εs
t(i) =

∑N
k=1 Dt(k)

�

f si
t (xk) 6= yk

�

+ γ

7: end for
8: for j =1, ..., Pw do
9: train weak spectral kernel classifier:

f
w j

t with Kw
j (X
′
t
w)

10: compute training error of spectral kernel classifier:

εw
t ( j) =

∑N
k=1 Dt(k)

�

f
w j

t (xk) 6= yk

�

+ γ

11: end for
12: compute µs

t and µw
t coefficients:

µs
t(i) =

�

1− εs
t (i)

∑

i ε
s
t (i)

�

and µw
t ( j) =

�

1− εw
t ( j)

∑

j ε
w
t ( j)

�

13: construct hybridized spatial (K s
Ht

) and spectral (K w
Ht

) kernels:

K s
Ht
=
∑Ps

i=1

�

µs
t(i) ∗ K s

i

�

K w
Ht
=
∑Pw

j=1

�

µw
t ( j) ∗ K w

j

�

14: construct global kernel K g
t :

K g
t = λK s

Ht
+ (1−λ)K w

Ht

15: compute training error of global kernel classifier:

ε
g
t =

∑N
k=1 Dt(k)

�

f g
t (xk) 6= yk

�

+ γ

16: choose αt =
1
2 ln(1−εg

t

ε
g
t
)

17: update Dt+1(k):

Dt+1(k) =
Dt (k)

Zt
×
�

e−αt i f f g
t (xk) = yk

eαt i f f g
t (xk) 6= yk

18: end for
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MKL methods fuse the classifiers to reach the final decision. In HCKBoost method,

each boosting iteration provides the global kernel to converge superiority and final

decision is acquired from the created weak kernel classifiers during the boosting round

via majority voting process. Thus, HCKBoost preserves being an ensemble learning

method.

5.2.2 Complexity analysis of HCKBoost

HCKBoost algorithm shows similarity to KELM algorithm in the sense of complexity.

Such that, time complexity calculation of kernel matrix Ω (see equation (2.9)) equals

to O (N 2M) and hidden layer output matrix’s time complexity can be expressed as

O (2N 3 + CN 2) [110]. Where N shows the sample size, M is feature size of the

input data (i.e neuron size of the input layer) and C is class size (i.e neuron size of

the output layer). Combining these two time complexity gives the complete KELM’s

time complexity as O (2N 3 + (C + M)N 2). During the boosting trials sub-sampling

operation allows reduction when choosing the relatively small subset of the training

input data (n� N). So, time complexity of the each of the KELM classifier belonging

to HCKBoost can be expressed as O (2n3 + (C + M)n2). We denote C(n) notation

to indicate time complexity of the base kernel classifier instead of long form (i.e.

C(n) = O (2n3+(C+M)n2)). General worst case time complexity of HCKBoost can be

shown as O (T×P×C(n)). Where T is the total number of boosting trials and P is total

number of spatial and spectral kernels plus one global kernel (i.e. P = P s + Pw + 1).

We denoted the space complexity as S(n) for KELM trained from a small subset of

input data (n � N). In this way, the worst case space complexity of HCKBoost

can be expressed as O (T × P × S(n)). Since, KELM does not require to store all

predefined kernels on the memory as in standard MKL methods, instead micro-kernels

are constructed during boosting trials. Thus, significant amount of memory space has

been earned. This situation provides effective solution in large-scale applications such

as HSI analysis.

5.3 Experimental design and results

In the experiments, proposed HCKBoost algorithm is compared with several state

of the art methods and obtained classification results with different parameters are

presented. Three different benchmark datasets are utilized to investigate performance

of the proposed method against state of the art methods. Pavia University, Indian

Pines, and Salinas. Details of the experimental setup is discussed in the following

subsections.
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5.3.1 Comparison schemes

The proposed HCKBoost algorithm is compared with the various state of the art

multiple kernel learning, composite kernel, and sparse representation algorithms.

Also, results of the basic machine learning algorithms are inserted into comparison

scheme.

• Basic classification algorithms:

– SVM ([111]): Basic support vector machine.

– KSVM ([112]): Kernel support vector machine.

– ELM ([50]): Basic extreme learning machine.

– KELM ([51]): Kernel extreme learning machine.

• Composite kernel classification algorithms:

– CK-SVM ([61]): Composite kernel support vector machine.

– CK-ELM ([108]): Composite kernel extreme learning machine.

• Sparse representation based classification algorithms:

– KOMP ([113]): Kernel orthogonal matching pursuit sparse representation

algorithm.

– KSOMP ([113]): Kernel simultaneous orthogonal matching pursuit sparse

representation algorithm.

– MASR ([114]): Multiscale adaptive sparse representation algorithm.

• Multiple kernel learning algorithms:

– SimpleMKL ([115]): Mixed-norm regularization simple multiple kernel

learning.

– SM1MKL ([116]): Soft margin multiple kernel learning.

– L1-MKL ([117]): L1 norm multiple kernel learning.

– L2-MKL ([117]): L2 norm multiple kernel learning.

– MKBoost-D1 ([56]): First deterministic multiple kernel boosting algorithm.

– MKBoost-D2 ([56]): Second deterministic multiple kernel boosting

algorithm.

– L1-MK-ELM ([118]): L1 norm Extreme learning machine based multiple

kernel learning algorithm.

– L2-MK-ELM ([118]): L2 norm Extreme learning machine based multiple

kernel learning algorithm.
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5.3.2 Experimental Settings

For the experimental settings, single Gaussian kernel is utilized for the basic

classification algorithms (KSVM, KELM), the composite kernel classification

algorithms (CK-SVM, CK-ELM), and the kernel based sparse representation algorithms

(KOMP, KSOMP). In the state of the art MKL algorithms, 12 different kernels

are used as follows: Gaussian kernels with 9 different width parameters

(2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24), polynomial kernels with 2 different degrees (1, 2),

and 1 logarithmic kernel with the parameter d = 2. When using KOMP, KSOMP, and

MASR algorithms, dictionary is constructed with using 10% of the training samples.

In the MASR method, window widths are set to 3, 5, 7, 9, 11, 13, and 15.

HCKBoost is composed of spatial and spectral kernel parts. Each part is a hybrid kernel

in itself. Gaussian kernel has global approximation ability and polynomial kernel is

known with its local learning ability. Logarithmic kernel is a robust kernel function

against noisy data and its success has been reported as almost equal to Gaussian

kernel on the spectral reflectance estimation [119]. That’s why, Gaussian, polynomial,

and logarithmic kernel functions are used to form spatial and spectral hybrid kernels

separately. Each kernel function is utilized with its single parameter. To be more

specific, one Gaussian kernel with 21 width value, one polynomial kernel with degree

of 2, and one logarithmic kernel with d = 2 are only kernels used for both spatial and

spectral parts. That means, 6 kernels are handled within HCKBoost. Since, logarithmic

kernel is conditionally positive definite for 0< d ≤ 2 [120], in each log kernel, d value

is taken as 2 in order to maintain positive definiteness of the composed global kernel.

Spatial domain of the algorithm is managed by a simple feature extraction method

named mean statistics [121]. Since, it is considered that the neighbor pixels reflect

similar spectral characteristics, mean statistic may expose overall tendency of the

central pixels’ (x i ∈ RN ) surrounding area. A group of pixel belonging to a material

more likely does not have identical spectral signatures with each others. So, defining

a windowing area around central pixel will produce convergent result to the general

characteristic of the desired spectral signature of the material. Therefore, spatial

information serves as a complementary content to spectral information. This situation

is valid when all or most of the pixels belong to one class (homogeneous case),

otherwise (heterogeneous case) spatial information become distorted away from

original spectral signature. Thus, determining optimum window size plays significant

role. In our experiments, surrounding window widths are set to 3, 5, 7, 9, 11, 13, and

15.

K-fold cross validation is performed over whole data set. At first, data is divided into

five parts randomly. One part is reserved for testing phase and remaining four parts
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are divided by two in themselves. As a result, obtained 2/5 portion of the data is

used for training, 2/5 is used for validation, and 1/5 is utilized for testing phases.

This method may also called as 5x2 cross validation and naturally allows us to run

each algorithm 10 times. Final result is obtained by averaging 10 results. For the

comparison purpose, Overall Accuracy (OA), Average Accuracy (AA), and Kappa (κ)

statistics [62] are applied to all methods to disclose the classification successes.

HCKBoost inherits some key features of boosting method such as sub-sampling of the

instances hard to classify in an iteration. Sub-sampling ratio is determined as 0.5 (i.e.

50% of the training samples) for trials. In each iteration a weak classifier is trained

with sub-sampled instances and obtained results of that classifier is stored to be used

in majority voting phase for the purpose of getting final result. During HCKBoost

trials, T parameter is set to 10 for all experiments (T = 10) presented in this paper.

Effects of variable sub-sampling ratios and T parameters are specifically examined in

the subsection 5.3.5.

5.3.3 Experimental Results

Overall Accuracy (OA), Average Accuracy (AA), and Kappa (κ) statistic results of

single kernel, composite kernel based methods, and sparse representation based

methods are demonstrated in Table 5.1, Table 5.2, and Table 5.3. OA, AA, and κ

statistic results of MKL algorithms and proposed HCKBoost algorithm are shown in

Table 5.4, Table 5.5, and Table 5.6 for Indian Pines, Pavia University, and Salinas

HSIs respectively. Classification maps of proposed method and four other methods are

inserted into the Figure 5.4, Figure 5.5, and Figure 5.6. Unless otherwise indicated,

demonstrated HCKBoost results on the tables and classifications maps are obtained

with utilizing 13 × 13 window size on the spatial feature extraction phase and λ= 0.9

parameter value on the global kernel composition phase.

Effects of various window sizes used in the spatial feature extraction phase and

different λ values on the OA, AA, and κ are investigated. Obtained results for 3× 3,

5× 5, 7× 7, 9× 9, 11× 11, 13× 13, and 15× 15 window sizes with λ = 0, λ = 0.1,

λ= 0.5, λ= 0.9, and λ= 1 are illustrated in the Figure 5.1, Figure 5.2, and Figure 5.3

for three HSI data sets. According to these figures, most accurate results are acquired

with the high λ values. That means, contribution of spatial kernel to global kernel

has significant impact in the case of high spatial kernel proportion for our proposed

method on the HSI data. Also, accuracy increases directly proportional with the

window size. But after some certain width of window (mostly after 13 for our cases),

accuracy results show declining trend. This circumstance mostly occurs because of

distorted and inadequate representation of the center pixel resides in the middle of
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the windowing area by the sample collections in that windowing area. Which means,

extracting mean statistic based spatial features does not work well with bigger than

some specific window sizes. Of course, optimal size of the window depends on the

used data sets. Note that, since spatial information is not effective in case of λ = 0,

changes of the window widths are ineffective on the accuracy results. In the λ = 1

case, no spectral kernel contributes the global kernel. So, obtained results become

relatively lower than the cases in which 0< λ < 1.

Table 5.1 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SVM, ELM, KSVM, KELM, CK-SVM,

CK-ELM, KOMP, KSOMP, and MASR methods for Indian Pines HSI

Indian Pines

Class Standard Methods Kernel Methods Sparse Representation Methods CK Methods

Label SVM ELM KSVM KELM KOMP KSOMP MASR CK-SVM CK-ELM

2 0.764 0.769 0.755 0.842 0.723 0.831 0.988 0.873 0.962
3 0.661 0.667 0.672 0.827 0.675 0.836 0.982 0.824 0.951
5 0.942 0.911 0.937 0.931 0.788 0.950 0.989 0.957 0.963
6 0.978 0.967 0.971 0.977 0.925 0.981 0.987 0.983 0.979
8 0.999 0.988 0.996 0.975 0.971 0.991 1.000 0.995 0.994

10 0.729 0.665 0.705 0.805 0.673 0.938 0.968 0.761 0.958
11 0.785 0.785 0.809 0.849 0.782 0.862 0.990 0.912 0.954
12 0.770 0.763 0.761 0.841 0.610 0.933 0.977 0.834 0.957
14 0.993 0.988 0.987 0.994 0.980 0.999 0.996 0.992 0.996

AA 0.847 0.834 0.844 0.893 0.792 0.924 0.986 0.903 0.968
±std ±0.123 ±0.124 ±0.122 ±0.071 ±0.129 ±0.062 ±0.009 ±0.080 ±0.016
OA 0.827 0.817 0.828 0.880 0.804 0.907 0.987 0.904 0.965
±std ±0.010 ±0.010 ±0.045 ±0.077 ±0.112 ±0.078 ±0.034 ±0.069 ±0.014
κ 0.807 0.796 0.808 0.865 0.786 0.898 0.982 0.878 0.961
±std ±0.011 ±0.011 ±0.050 ±0.084 ±0.124 ±0.075 ±0.038 ±0.076 ±0.016

5.3.4 Statistical Evaluation

It is required to be defined an objective and statistical criterion for comparing the

obtained classification results with the state-of-the-art methods. For this purpose,

non-parametric McNemar’s test is utilized. We have chosen first degree of freedom

and 5% significance level that corresponds to 1.96 value. That means, two classifiers’

results are statistically different from each other if the obtained |Z | value is bigger than

1.96. Obtained McNemar’s test results are presented in the Table 5.7 for all data sets.

As shown in the Table 5.7, all Z values are bigger than 1.96 and produce statistically

different results except MASR method result on the Salinas HSI. MASR exposes the

similar thematic map to the HCKBoost. However, since the Z value is greater than 0,

the proposed method is still not statistically but numerically better than MASR.
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Table 5.2 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SVM, ELM, KSVM, KELM, CK-SVM,

CK-ELM, KOMP, KSOMP, and MASR methods for Pavia University HSI

Pavia University

Class Standard Methods Kernel Methods Sparse Representation Methods CK Methods

Label SVM ELM KSVM KELM KOMP KSOMP MASR CK-SVM CK-ELM

1 0.859 0.854 0.938 0.951 0.832 0.745 0.963 0.963 0.992
2 0.941 0.929 0.964 0.982 0.714 0.918 0.985 0.984 0.998
3 0.763 0.747 0.839 0.853 0.751 0.721 0.984 0.924 0.964
4 0.908 0.917 0.951 0.974 0.704 0.928 0.981 0.975 0.992
5 0.998 0.997 0.991 0.997 0.996 0.999 0.999 0.997 0.993
6 0.816 0.756 0.897 0.938 0.553 0.748 0.965 0.958 0.988
7 0.727 0.716 0.877 0.912 0.631 0.781 0.994 0.936 0.982
8 0.829 0.819 0.916 0.929 0.783 0.767 0.917 0.958 0.967
9 0.999 0.988 0.999 0.997 0.998 0.995 0.997 0.998 0.998

AA 0.871 0.858 0.930 0.948 0.774 0.845 0.976 0.966 0.986
±std ±0.092 ±0.100 ±0.050 ±0.044 ±0.142 ±0.107 ±0.024 ±0.024 ±0.012
OA 0.868 0.857 0.933 0.949 0.785 0.830 0.956 0.967 0.981
±std ±0.016 ±0.003 ±0.030 ±0.003 ±0.146 ±0.053 ±0.045 ±0.012 ±0.004
κ 0.832 0.816 0.914 0.934 0.773 0.823 0.953 0.957 0.978
±std ±0.02 ±0.004 ±0.039 ±0.041 ±0.178 ±0.072 ±0.047 ±0.016 ±0.005

Table 5.3 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SVM, ELM, KSVM, KELM, CK-SVM,

CK-ELM, KOMP, KSOMP, and MASR methods for Salinas HSI

Salinas

Class Standard Methods Kernel Methods Sparse Representation Methods CK Methods

Label SVM ELM KSVM KELM KOMP KSOMP MASR CK-SVM CK-ELM

1 1.000 0.999 0.988 0.999 0.989 1.000 0.999 0.994 0.999
2 0.999 0.998 0.992 0.999 0.993 1.000 0.999 0.996 0.999
3 0.998 0.949 0.976 0.997 0.889 0.913 1.000 0.991 0.998
4 0.993 0.987 0.992 0.994 0.976 0.965 0.995 0.991 0.994
5 0.993 0.955 0.984 0.994 0.971 0.984 0.998 0.990 0.995
6 0.999 0.998 0.998 0.999 0.996 0.996 0.999 0.999 1.000
7 0.999 0.997 0.998 0.999 0.993 0.996 1.000 0.999 1.000
8 0.831 0.842 0.838 0.897 0.738 0.856 0.996 0.891 0.960
9 0.996 0.992 0.994 0.997 0.990 0.997 1.000 0.999 0.999

10 0.984 0.953 0.918 0.985 0.859 0.962 0.998 0.983 0.985
11 0.994 0.940 0.961 0.993 0.851 0.890 1.000 0.974 0.995
12 0.998 0.972 0.995 0.995 0.976 0.981 1.000 0.997 0.998
13 0.998 0.958 0.983 0.993 0.931 0.962 0.998 0.996 0.997
14 0.986 0.947 0.969 0.985 0.924 1.000 0.997 0.991 0.993
15 0.671 0.714 0.717 0.832 0.646 0.777 0.996 0.831 0.952
16 0.996 0.991 0.991 0.996 0.926 0.985 0.998 0.994 0.999

AA 0.965 0.950 0.956 0.978 0.915 0.954 0.998 0.976 0.991
±std ±0.086 ±0.072 ±0.073 ±0.045 ±0.098 ±0.062 ±0.002 ±0.045 ±0.014
OA 0.919 0.917 0.918 0.953 0.871 0.928 0.998 0.951 0.983
±std ±0.002 ±0.003 ±0.020 ±0.013 ±0.085 ±0.079 ±0.002 ±0.007 ±0.004
κ 0.912 0.910 0.910 0.949 0.856 0.917 0.998 0.947 0.986
±std ±0.002 ±0.003 ±0.022 ±0.014 ±0.081 ±0.064 ±0.002 ±0.008 ±0.005
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Table 5.4 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SimpleMKL, L1MKL, L2MKL,
SM1MKL, MKBoost-D1, MKBoost-D2, L1-MK-ELM, L2-MK-ELM, and proposed

HCKBoost methods for Indian Pines HSI

Indian Pines

Class MKL Methods Proposed

Label SimpleMKL L1MKL L2MKL SM1MKL MKBoost-D1 MKBoost-D2 L1-MK-ELM L2-MK-ELM HCKBoost

2 0.891 0.891 0.910 0.910 0.904 0.908 0.831 0.869 0.992
3 0.887 0.898 0.916 0.917 0.902 0.913 0.853 0.887 0.995
4 0.948 0.956 0.933 0.955 0.958 0.955 0.950 0.958 0.992
6 0.989 0.989 0.978 0.984 0.994 0.993 0.991 0.991 0.991
8 1.000 0.999 0.987 0.992 0.996 0.997 0.997 0.996 1.000

10 0.898 0.907 0.918 0.919 0.916 0.918 0.890 0.903 0.992
11 0.896 0.917 0.886 0.888 0.886 0.889 0.863 0.881 0.995
12 0.879 0.918 0.937 0.937 0.929 0.926 0.857 0.900 0.989
14 0.985 0.985 0.982 0.993 0.994 0.993 0.984 0.987 0.998

AA 0.930 0.940 0.939 0.944 0.942 0.944 0.913 0.930 0.994
±std ±0.047 ±0.052 ±0.068 ±0.056 ±0.075 ±0.071 ±0.023 ±0.016 ±0.001
OA 0.921 0.932 0.927 0.931 0.929 0.931 0.898 0.917 0.994
±std ±0.098 ±0.068 ±0.086 ±0.082 ±0.085 ±0.074 ±0.014 ±0.009 ±0.001
κ 0.873 0.884 0.876 0.882 0.879 0.882 0.859 0.866 0.993
±std ±0.154 ±0.011 ±0.137 ±0.132 ±0.134 ±0.119 ±0.006 ±0.003 ±0.001

Table 5.5 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SimpleMKL, L1MKL, L2MKL,
SM1MKL, MKBoost-D1, MKBoost-D2, L1-MK-ELM, L2-MK-ELM, and proposed

HCKBoost methods for Pavia University HSI

Pavia University

Class MKL Methods Proposed

Label SimpleMKL L1MKL L2MKL SM1MKL MKBoost-D1 MKBoost-D2 L1-MK-ELM L2-MK-ELM HCKBoost

1 0.972 0.972 0.969 0.977 0.973 0.975 0.954 0.964 0.999
2 0.972 0.973 0.971 0.980 0.979 0.980 0.949 0.951 0.999
3 0.965 0.969 0.969 0.965 0.956 0.968 0.919 0.920 0.999
4 0.984 0.978 0.977 0.987 0.986 0.987 0.912 0.914 0.997
5 0.982 0.992 0.995 0.997 0.995 0.997 0.965 0.966 1.000
6 0.961 0.965 0.939 0.968 0.965 0.969 0.923 0.922 1.000
7 0.972 0.968 0.956 0.972 0.971 0.974 0.922 0.921 0.999
8 0.967 0.974 0.969 0.967 0.965 0.968 0.931 0.933 0.997
9 0.998 1.000 1.000 1.000 0.997 1.000 0.989 0.990 1.000

AA 0.975 0.977 0.972 0.979 0.976 0.980 0.940 0.942 0.999
±std ±0.038 ±0.032 ±0.039 ±0.029 ±0.046 ±0.033 ±0.090 ±0.010 ±0.001
OA 0.973 0.977 0.973 0.976 0.975 0.977 0.940 0.943 0.998
±std ±0.034 ±0.024 ±0.034 ±0.026 ±0.037 ±0.027 ±0.001 ±0.001 ±0.001
κ 0.950 0.957 0.950 0.955 0.953 0.956 0.922 0.926 0.998
±std ±0.061 ±0.044 ±0.061 ±0.048 ±0.068 ±0.050 ±0.001 ±0.001 ±0.001

5.3.5 Boosting parameters evaluation

In boosting trials, sub-sampling ratio and ensemble size (T) parameters may effect

the obtained results of the HCKBoost. Sub-sampling ratio determines the proportion

of training samples which are selected from whole training data for each boosting

round. We have evaluated the different sub-sampling ratios starting from 10% to 90%

as shown in the Figure 5.7 for Indian Pines, Pavia University, and Salinas HSIs. In

general, we have found that the small sub-sampling ratios reduce the performance
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Table 5.6 Overall Accuracy (OA), Average Accuracy (AA)(1 denotes 100%
accuracy), and Kappa (κ) results obtained from SimpleMKL, L1MKL, L2MKL,
SM1MKL, MKBoost-D1, MKBoost-D2, L1-MK-ELM, L2-MK-ELM, and proposed

HCKBoost methods for Salinas HSI

Salinas

Class MKL Methods Proposed

Label SimpleMKL L1MKL L2MKL SM1MKL MKBoost-D1 MKBoost-D2 L1-MK-ELM L2-MK-ELM HCKBoost

1 0.998 0.999 0.999 0.999 0.999 0.999 0.998 0.998 1.000
2 0.997 0.999 0.999 0.999 0.999 0.999 0.998 0.999 1.000
3 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.997 1.000
4 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.996 0.996
5 0.996 0.996 0.996 0.996 0.996 0.996 0.995 0.995 0.998
6 0.999 1.000 1.000 1.000 0.999 1.000 0.999 0.999 1.000
7 0.999 0.999 0.999 0.999 0.999 1.000 0.998 0.998 1.000
8 0.701 0.937 0.939 0.937 0.940 0.942 0.791 0.790 0.999
9 0.998 0.998 0.998 0.998 0.999 0.999 0.998 0.998 1.000

10 0.983 0.983 0.985 0.985 0.989 0.990 0.985 0.982 1.000
11 0.993 0.993 0.992 0.993 0.997 0.997 0.992 0.993 1.000
12 0.999 0.999 0.999 0.999 1.000 0.999 0.999 0.999 1.000
13 0.996 0.997 0.997 0.997 0.999 0.999 0.996 0.997 1.000
14 0.993 0.994 0.993 0.993 0.994 0.992 0.992 0.993 0.999
15 0.846 0.918 0.919 0.919 0.921 0.925 0.901 0.902 0.999
16 0.996 0.996 0.996 0.996 0.997 0.997 0.995 0.995 1.000

AA 0.968 0.988 0.988 0.988 0.989 0.989 0.977 0.977 0.999
±std ±0.112 ±0.034 ±0.042 ±0.036 ±0.025 ±0.027 ±0.011 ±0.009 ±0.001
OA 0.914 0.974 0.973 0.974 0.975 0.976 0.941 0.940 0.999
±std ±0.138 ±0.019 ±0.021 ±0.020 ±0.019 ±0.018 ±0.001 ±0.002 ±0.001
κ 0.876 0.954 0.953 0.954 0.955 0.957 0.935 0.935 0.999
±std ±0.184 ±0.036 ±0.04 ±0.037 ±0.036 ±0.034 ±0.002 ±0.002 ±0.001

of the algorithm. Ratios around the 50% produce best accuracy results. While

approximating to the 100% sub-sampling ratio, performance slightly slides down.

However, results are still remain being satisfactory.

We have examined effect of the total number of boosting rounds and presented

obtained results in the Figure 5.8. At first, T value is set to 1 which actually does

not yield an ensemble algorithm but single classifier. Afterwards, T value is set to 5,

10, 25, 50, 100, and 200. It is observed that the increasing ensemble size has raised

the performance. However, improvements on classification accuracies become very

small when using T > 10. This proves that the proposed algorithm works well even if

the small ensemble size is used. Certainly, bigger T values produce better accuracies,

but tradeoff between time complexity and obtained accuracy should be considered

according to time and accuracy sensitivity of the applications.

5.4 Conclusion

In this chapter, we proposed a boosting based new methodology which combines

composite and hybrid kernels efficiently. In combination with the extreme learning

machine which is considered as a computationally effective classification algorithm,
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(a) (b)

(c) (d)

(e)

Figure 5.1 Overall Accuracy (OA), Average Accuracy (AA), and Kappa (κ) results of
proposed HCKBoost method constructed with contribution of spatial kernels (i.e.
relatively spatial features extracted with utilizing various window sizes) using (a)
λ= 0, (b) λ= 0.1, (c) λ= 0.5, (d) λ= 0.9, (e) λ= 1 values for Indian Pines HSI

proposed hybridized composite kernel boosting method confront multi-class

classification tasks rapidly. The proposed method is compared with numerous

state-of-the-art CK, MKL, and sparse representation methods along with the basic

classification algorithms. The results presented in the previous sections show

superiority of HCKBoost compared to others in terms of accuracy and kappa statistics.

HCKBoost is designed as an ensemble method, thus it may also be considered

as a low-cost method against optimization based MKL methods since it does not

require complicated optimization tasks. Spatial and spectral domains are hybridized

within themselves by using different type of kernels with various parameters. As

a consequence of this, global kernel comes up with HK as much as CK. Although,

simple spatial feature extraction method (mean statistic) has been used via windowing

structure, it yielded pleasing results. Each HSI data may have different pixel resolution
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(a) (b)

(c) (d)

(e)

Figure 5.2 Overall Accuracy (OA), Average Accuracy (AA) and Kappa (κ) results of
proposed HCKBoost method constructed with contribution of spatial kernels (i.e.
relatively spatial features extracted with utilizing various window sizes) using (a)
λ= 0, (b) λ= 0.1, (c) λ= 0.5, (d) λ= 0.9, (e) λ= 1 values for Pavia University HSI

and settlement diversity of classes on 2 dimensional plane, so optimal window size

may differ from one HSI data to another.

In most cases, ensemble performance increases with the increasing number of trials.

However, final results show the robustness of our proposed method even in the case

of having a small ensemble. In summary, the use of spatial information has been

influential on the hyperspectral image analyses if the parameters are set properly.

So, window size is a situation that needs to be adjusted and may be considered as a

future work. Also, extracting more sophisticated spatial features may provide further

improvements.
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(a) (b)

(c) (d)

(e)

Figure 5.3 Overall Accuracy (OA), Average Accuracy (AA) and Kappa (κ) results of
proposed HCKBoost method constructed with contribution of spatial kernels (i.e.
relatively spatial features extracted with utilizing various window sizes) using (a)
λ= 0, (b) λ= 0.1, (c) λ= 0.5, (d) λ= 0.9, (e) λ= 1 values for Salinas HSI
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(a) (b) (c)

(d) (e)

Figure 5.4 Classification maps obtained with (a) KELM, (b) CK-ELM, (c)
MKBoost-D2, (d) MASR, and (e) Proposed HCKBoost (using λ= 0.9, 13×13 window

size, T = 10, and 50% sub-sampling ratio) methods for Indian Pines HSI

Table 5.7 McNemar’s Test Results for Indian Pines, Pavia University, and Salinas HSIs

McNemar’s Test Results (Z value / selected hypothesis)

Method
Indian Pines Pavia University SalinasName

SVM 39.80/Yes 70.27/Yes 64.90/Yes
ELM 40.65/Yes 77.03/Yes 66.73/Yes

KSVM 38.73/Yes 52.69/Yes 65.98/yes
KELM 31.89/Yes 45.62/Yes 49.44/Yes

CK-SVM 31.16/Yes 36.00/Yes 50.65/Yes
CK-ELM 11.75/Yes 14.99/Yes 10.42/Yes
KOMP 51.16/Yes 127.36/Yes 83.13/Yes

KSOMP 41.46/Yes 92.39/Yes 61.76/Yes
MASR 5.25/Yes 31.66/Yes 0.78/No

SimpleMKL 27.09/Yes 126.43/Yes 145.79/Yes
L1MKL 25.50/Yes 126.36/Yes 146.26/Yes
L2MKL 22.29/Yes 126.04/Yes 146.13/Yes

SM1MKL 20.95/Yes 125.94/Yes 146.22/Yes
MKBoost-D1 22.12/Yes 126.55/Yes 146.12/Yes
MKBoost-D2 21.61/Yes 126.11/Yes 145.90/Yes
L1-MK-ELM 26.25/Yes 126.28/Yes 146.54/Yes
L2-MK-ELM 26.25/Yes 126.28/Yes 146.54/Yes
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(a) (b) (c)

(d) (e)

Figure 5.5 Classification maps obtained with (a) KELM, (b) CK-ELM, (c)
MKBoost-D2, (d) MASR, and (e) Proposed HCKBoost (using λ= 0.9, 13×13 window

size, T = 10, and 50% sub-sampling ratio) methods for Pavia University HSI
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(a) (b) (c)

(d) (e)

Figure 5.6 Classification maps obtained with (a) KELM, (b) CK-ELM, (c)
MKBoost-D2, (d) MASR, and (e) Proposed HCKBoost (using λ= 0.9, 13×13 window

size, T = 10, and 50% sub-sampling ratio) methods for Salinas HSI
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(a) (b)

(c)

Figure 5.7 Overall Accuracy (OA), Average Accuracy (AA), and Kappa (κ) results of
proposed HCKBoost method with respect to boosting sub-sampling ratio for (a)

Indian Pines, (b) Pavia University, (c) Salinas HSIs (obtained using λ= 0.9, 13× 13
window size, and T = 10).

(a) (b)

(c)

Figure 5.8 Overall Accuracy (OA), Average Accuracy (AA), and Kappa (κ) results of
proposed HCKBoost method with respect to boosting ensemble size (T) for (a)

Indian Pines, (b) Pavia University, (c) Salinas HSIs (obtained using λ= 0.9, 13× 13
window size, and 50% sub-sampling ratio).
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6
Multiple Composite Kernel Extreme Learning Machine

Multiple kernel (MK) learning (MKL) methods have significant impact on improving

the classification performance. Besides that, composite kernel (CK) methods have

high capability on the analysis of hyperspectral images (HSIs) due to making use

of the contextual information. In this work, it is aimed to aggregate both CKs

and MKs autonomously without the need of kernel coefficient adjustment manually.

Convex combination of predefined kernel functions is implemented by using multiple

kernel extreme learning machine (MK-ELM). Thus, complex optimization processes of

standard MKL are disposed of and the facility of multi-class classification is profited.

Different types of kernel functions are placed into MKs in order to realize hybrid

kernel (HK) scenario. Proposed methodology is performed over Pavia University,

Indian Pines, and Salinas hyperspectral scenes that have ground-truth information.

Multiple composite kernels (MCKs) are constructed using Gaussian, polynomial, and

logarithmic kernel functions with various parameters and then obtained results are

presented comparatively along with the state-of-the-art standard machine learning,

MKL, and CK methods.

6.1 Introduction

High-dimensional characteristics of hyperspectral images (HSIs) make them very

compelling to work on [88]. Distorted signals, format errors, and spectral clutters

are frequently encountered situations due to HSIs are remotely sensed from long

distances [66]. In addition to them, inadequate and mislabeled samples make it a very

challenging task to classify HSIs [89]. Kernel-based methods have been proposed on

hyperspectral images in order to overcome these adverse situations [89], [90].

Kernel-based methods improve separation ability of a learning model on the linearly

non-separable data by mapping data from original input space to high dimensional

Hilbert space. Support vector machines (SVMs) and extreme learning machines

(ELMs) are leading methods used in the field of kernel-based HSI classification in
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recent years [122], [92], [95], [96]. Both methods provide remarkable performance

and robust accuracy results. SVM is designed for binary classification through margin

maximization operation and usually preferred for their large input handling and noisy

sample dispatching capacity [94]. On the other hand, ELM stands out as a special sort

of single hidden layer neural network that has very low run-time and provides an

elegant solution for non-linear problems with least norm and least square solutions.

Assigning random weights to a neural network is a method that has been applied for

a long time. An artificial neural network which is initialized with randomly assigned

weights of the input layer and bias values of the hidden layer is proposed to be trained

with using optimization process [123], [124]. So that, only hidden layer weight

values need to be learned. Random link assignment based methods like "random

vector functional link" show good generalization performance on different applications

[125], [126]. On the other hand, randomly assigned network weights may cause

instability. Thus, optimization of the random link values that are initially assigned to

a feed forward neural network architecture is offered by using Fisher solution [127].
Another method named extreme learning machine that works with randomly assigned

input weights and biases is claimed to have easy implementation, tendency to reach

the smallest training error, and smallest norm of weights [50]. It is preferable due to

its good generalization performance and high speed. ELM is also applicable to kernel

base which provides more separability to a learning model.

Although, a kernel function provides effectiveness to a learning method, in the

real-world problems, single predefined kernels are often inadequate to represent

data obtained from heterogeneous sources or that have different representations.

Multiple kernel learning (MKL) is a paradigm proposed to provide more accurate

and flexible solutions to real-world problems by trying to find optimal combination

of multiple kernels [54], [98]. In recent years, different variations of MKL have been

proposed that have attempted to enhance accuracies on HSI analysis [99], [100].
Existing SVM based MKL methods have extensive usage. However, they have some

negative aspects such as requirement of complicated optimization, low ability of

scaling, and less effectiveness. Moreover, only binary classification ability of SVM

reveals requirement of new strategies for multi-class classification. Multiple kernel

extreme learning machine (MK-ELM) is proposed to eliminate the limitations of SVM

based MKL approaches [118], [128]. In MK-ELM, optimal kernel is assumed to be

obtained as a linear combination of base kernels and optimization process is carried

out without the need of quadratic programming solver. In this paper, we have adopted

the ELM based MK optimization process from the work in [118].

Considering spatial information along with spectral information brings added value
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to hyperspectral image analysis. Performing spatial-spectral kernel combination

on HSIs via SVM and kernel functions is reported with promising results and this

combination is referred to as composite kernels (CKs) [61]. Since, HSIs usually

contain high-volume data, SVM requires much more time to extrapolate. Thus,

kernel ELM (KELM) based CK is proposed for the purpose of reducing run-time and

increasing the classification performance on HSIs [108]. Remotely sensed HSI data

is usually composed of compound distribution. Therefore, utilizing different kinds of

kernel functions as much as contextual information may have crucial impact on HSI

classification. Indeed, a hybrid kernel (HK) that consists of different type of kernels

has been proposed and demonstrated its superiority against single type of kernels [60].
However, kernel coefficients need to be determined manually in this method.

In this chapter, extreme learning machine application of different types of kernels

together with contextual information on HSIs is proposed. The MKL methodology for

ELM is adapted to find optimal kernel combination. By taking contextual information

into account through CKs, we named this method as multiple composite kernel

extreme learning machine (MCK-ELM). The main contribution of this work can

be summarized as follows: 1) A new classification strategy is proposed for HSIs.

Constructing multiple kernels with different types of kernel functions paves the way

for exposing hidden features on a HSI scene. Incorporating spatial information with

this procedure allows further inferences due to high correlation between neighboring

pixels and enables to get promising results. 2) Although, both HKs and CKs are

beneficial on image analysis, manual kernel coefficient assignment makes usage of

these methods difficult. Therefore, proposed methodology may thought to be an

automated association of HKs and CKs for both individually and jointly. 3) Opposite

to standard MKL methods, computationally fast and effective ELM algorithm has

been benefited. Results are obtained faster by using multi-class classification and by

avoiding SVM-originated complicated optimization processes.

6.2 Multiple composite kernel extreme learning machine frame-

work

When working with kernel based classifiers, kernel functions and parameters of these

kernel functions have great impact on the results to be obtained. So far, the goal of the

proposed MKL methods has been to find the optimal combination of the given P kernel

functions ({Km(·, ·)}Pm=1). For this purpose, linear or nonlinear combination methods

have been used. It is rational to choose linear combination methods in order to reduce

complexity when using complex kernel functions such as radial based kernels [54]. As

a linear method, configuration of weighted summation for multiple kernel is shown
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in (6.1).

K(·, ·;η) = fη({Km}Pm=1|η) =
P
∑

m=1

ηmKm (6.1)

In this expression, K(·, ·;η) represents desired optimal kernel. f is hypothesis function

learned from kernel based classifier. η is kernel weights and generally positive

numbers are assigned to η during applications. Equation (6.1) can be expressed

equivalently with feature mapping functions as in (6.2).

h(·;η) = [
p

η1h1(·), · · · ,
p

ηmhm(·), · · · ,
p
ηPhP(·)] (6.2)

Various constraints are applied to η coefficients to ensure that the resulting multiple

kernel is positive semi-definite. One of them is Lq norm and other one is being equal

to or greater than zero constraint (ηm ≥ 0,∀m). In Lq norm, exponential coefficients

of each η are set to q and sum of η values is equalized to 1 (
∑

ηq
m = 1).

In multiple kernel extreme learning machine, structural parameters are learned by

assuming that the optimal kernel is the linear combination of the base kernels. The

objective function to be written with the imposed non-negative constraint for η

coefficients and Lq norm is as in (6.3), where q ≥ 1.

min
η

min
β ,ξ

1
2

P
∑

m=1

||β̃m||2F
ηm

+
C
2

n
∑

i=1

||ξi||2

s.t.
P
∑

m=1

β̃>mhm(x i) = yi − ξi, ∀i, (6.3)

P
∑

m=1

ηq
m = 1, ηm ≥ 0, ∀m

Before this objective function is written, β̃m =
p
ηmβm, m = 1, ..., P conversion is

made. Along with the specified constraints, Lagrangian of this objective function will

be as in (6.4).

L (β̃ ,ξ,η) =
1
2

P
∑

m=1

||β̃m||2F
ηm

+
C
2

n
∑

i=1

||ξi||2

−
T
∑

t=1

n
∑

i=1

αi t

� P
∑

m=1

β̃>mhm(x i)− yi + ξi

�

+τ
� P
∑

m=1

ηq
m − 1

�

(6.4)

In this equation, α and τ represent Lagrange multipliers. Since, there is no possibility

to ηm to become zero during the update process, transformation of inequality
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constraint ηm ≥ 0 is removed.

Finding dual form of Lagrangian of convex optimization problems allows reducing

the number of coefficients to be optimized by turning the minimization problem

into a maximization problem. In order to achieve this, Lagrangian needs to fulfill

Karush-Kuhn-Tucker (KKT) optimality conditions. It is assumed that there is no

duality gap in the convex optimization functions that satisfy the KKT optimality

conditions. While stationary condition is given in (6.5), (6.6), and (6.7), primal

feasibility condition is shown in (6.8) for Lagrangian given in (6.4).

β̃m = ηm

T
∑

t=1

n
∑

i=1

αi thm(x i),∀m (6.5)

ξt i =
αt i

C
, ∀t∀i (6.6)

1
2

||β̃m||2F
η2

m

− qτηq−1
m = 0, m= 1, ..., P (6.7)

P
∑

m=1

β̃>mhm(x i) = yi − ξi, ∀i (6.8)

As can be seen, equations (6.5), (6.6), and (6.7) are calculated using gradients of

Lagrangian. Equation (6.8) is obtained from differential which is taken with respect

to α multiplier. Equation (6.9) is acquired after applying (6.5) and (6.6) over the

equation (6.8).
T
∑

t=1

P
∑

m=1

αi t

�

ηmhm(x i)hm(x i) +
1
C

�

= yi (6.9)

This can be expressed in matrix form as in (6.10).

�

K(·, ·;η) +
I
C

�

α= Y> (6.10)

K(·, ·;η) represents the target multiple kernel. In this case, α stands for a structural

element of ELM and can be calculated by matrix inversion operation as in (6.11).

α=
�

K(·, ·;η) +
I
C

�−1

Y> (6.11)

Equation (6.12) (which is needed for η coefficient update in every iteration) is

obtained by combining equation (6.7) and
∑P

m=1η
q
m = 1 equality constraint.

η′m =
||β̃m||

2/(1+q)
F

�

∑P
m=1 ||β̃m||

2q/(1+q)
F

�1/q
(6.12)
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In this equation, η′m expression shows updated coefficient to be used for mth kernel

and can be expressed as ηt+1
m alternatively. ||β̃m||F values are calculated according to

(6.13).

||β̃m||F = ηm

Æ

Km(·, ·)α (6.13)

η′ coefficients remain non-negative. Therefore, ηm ≥ 0 inequality constraint in

equation (6.3) is provided automatically. All iteration steps of Lq norm MCK-ELM

are shown in algorithm 3.

Algorithm 3 Lq norm MCK-ELM

1: INPUTS:

{Km}Pm=1 = {K
w
mw

, K s
ms
}: Predefined spatial (K s) and spectral

(K w) kernels

yi: Output class values

q: Lq norm degree

C: Regulation parameter

γ: Threshold value for stop criterion

2: OUTPUTS:

α: ELM structural element

η: Multiple kernel coefficients

3: Initialization Parameters:

η= η0 and t = 0:

4: repeat

5: K(·, ·;η) =
∑P

m=1η
t
mK p

6: Update αt with equation (6.9)

7: Update ηt+1 with equation (6.10)

8: t = t + 1

9: until |ηt+1 −ηt | ≤ γ

As can be seen from the algorithm 1, optimization process contains spatial and

spectral predefined kernel collections as input in addition to standard MK-ELM. Both

kernels are also hybridized with different type of kernel transfer functions and various

parameters. Whole kernel formation details are discussed in the next section.

6.3 Experiments and results

In the experiments, proposed MCK-ELM methodology is compared with several state

of the art methods and obtained classification results with different parameters are

presented. Three different benchmark datasets are utilized to investigate performance
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Figure 6.1 A general diagram for single kernel, multiple kernel, composite kernel,
and proposed MCK methodologies
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of the proposed method against state of the art methods. Pavia University, Indian

Pines, and Salinas. Details of the experimental setup is discussed in the following

subsections.

Table 6.1 Overall Accuracy (OA)(1 denotes %100 accuracy), Kappa (κ), and run
Time(sec) results for Indian Pines, Pavia University, and Salinas HSIs

Indian Pines Pavia University Salinas

OA κ Time(sec) OA κ Time(sec) OA κ Time(sec)
±std ±std ±std ±std ±std ±std ±std ±std ±std

St
an

da
rd

M
ac

hi
ne

Le
ar

ni
ng

M
et

ho
ds

ELM 0.817 0.796 3.86 0.857 0.816 168.7 0.917 0.910 302.4
±0.010 ±0.011 ±0.185 ±0.003 ±0.004 ±2.85 ±0.003 ±0.003 ±22.86

SVM 0.827 0.807 68.45 0.868 0.832 2970 0.919 0.912 5108
±0.010 ±0.011 ±1.85 ±0.016 ±0.020 ±48.65 ±0.002 ±0.002 ±82.38

KELM 0.880 0.865 4.810 0.949 0.934 189.6 0.953 0.947 346.1
±0.077 ±0.084 ±0.250 ±0.003 ±0.041 ±3.529 ±0.013 ±0.008 ±26.39

KSVM 0.828 0.808 77.570 0.933 0.914 3409.0 0.918 0.910 5915.0
±0.045 ±0.050 ±2.010 ±0.03 ±0.039 ±56.07 ±0.02 ±0.022 ±93.01

SCN 0.826 0.805 236.2 0.889 0.857 203.7 0.922 0.914 1353.0
±0.011 ±0.013 ±5.67 ±0.001 ±0.002 ±3.15 ±0.002 ±0.002 ±34.22

C
om

po
si

te

Ke
rn

el

M
et

ho
ds

CK-ELM 0.965 0.961 5.220 0.981 0.978 202.9 0.983 0.986 352.3
±0.014 ±0.016 ±0.630 ±0.004 ±0.005 ±2.971 ±0.004 ±0.005 ±31.03

CK-SVM 0.904 0.878 69.710 0.967 0.957 2373.0 0.951 0.947 4169.0
±0.069 ±0.076 ±1.370 ±0.012 ±0.016 ±67.45 ±0.007 ±0.008 ±31.88

M
ul

ti
pl

e

Ke
rn

el

M
et

ho
ds

SimpleMKL 0.925 0.874 1947.0 0.973 0.874 9632.0 0.914 0.876 13233.0
±0.097 ±0.152 ±8.34 ±0.034 ±0.152 ±380.8 ±0.138 ±0.184 ±1973

SM1MKL 0.932 0.884 742.8 0.977 0.957 13794.0 0.974 0.954 7227.0
±0.068 ±0.011 ±5.12 ±0.024 ±0.044 ±158.9 ±0.019 ±0.036 ±1809

L1MKL 0.927 0.876 871.0 0.973 0.950 19185.0 0.973 0.953 11476.0
±0.086 ±0.137 ±5.43 ±0.034 ±0.061 ±436.4 ±0.021 ±0.040 ±231.5

L2MKL 0.931 0.882 882.0 0.976 0.955 21492.0 0.974 0.954 12056.0
±0.082 ±0.132 ±6.74 ±0.026 ±0.048 ±553.24 ±0.020 ±0.037 ±245.7

MKBoost-D1 0.929 0.879 348.1 0.975 0.953 7674.0 0.975 0.955 4102.0
±0.085 ±0.134 ±1.89 ±0.037 ±0.068 ±197.2 ±0.019 ±0.036 ±129.3

MKBoost-D2 0.931 0.882 378.8 0.977 0.956 8597.0 0.976 0.957 4805.0
±0.074 ±0.119 ±6.54 ±0.027 ±0.050 ±219.1 ±0.018 ±0.034 ±102.1

L1-MK-ELM 0.898 0.859 113.0 0.940 0.922 1871.0 0.941 0.935 4205.0
±0.014 ±0.006 ±4.967 ±0.001 ±0.001 ±43.78 ±0.001 ±0.002 ±167.3

L2-MK-ELM 0.917 0.866 101.4 0.943 0.926 1508.0 0.940 0.935 4387.0
±0.009 ±0.003 ±19.54 ±0.001 ±0.001 ±33.45 ±0.002 ±0.002 ±178.7

Pr
op

os
ed

L1-MCK-ELM 0.981 0.978 113.0 0.990 0.991 1877.0 0.998 0.998 4057.0
±0.024 ±0.027 ±4.846 ±0.009 ±0.011 ±31.06 ±0.003 ±0.004 ±125.6

L2-MCK-ELM 0.984 0.981 96.3 0.991 0.989 1484.0 0.985 0.983 3971.0
±0.001 ±0.001 ±18.260 ±0.008 ±0.010 ±18.26 ±0.028 ±0.031 ±70.74

Three different types of kernel transfer functions are taken into account during

kernel formations: Gaussian transfer function (GTF) (equation (6.14)), polynomial

transfer function (PTF) (equation (6.15)), and logarithmic transfer function (LTF)

(equation (6.16)).

GT F : K(u, v) = ex p
�

−
‖u − v‖2

2σ2

�

(6.14)

PT F : K(u, v) = (λ(u − v) + r)d ,λ > 0 (6.15)

LT F : K(u, v) = − log
�

‖u − v‖r + 1
�

(6.16)

Proposed MCK-ELM methodology is compared with the various state-of-the-art

composite kernel and multiple kernel algorithms. Also some basic machine
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(a) (b) (c)

(d) (e)

Figure 6.2 Classification maps for Indian Pines HSI acquired with using (a) SCN, (b)
KELM, (c) CK-ELM, (d) MKBoost-D2, and (e) L2-MCK-ELM

learning algorithms such as SVM [111], ELM [50], KSVM [112], KELM [51], and

stochastic configuration networks (SCN) [126] are inserted into the comparison

scheme. CK-SVM [61] and CK-ELM [108] algorithms are the composite kernel based

state-of-the-art methods. Multiple kernel based algorithms used for comparison are

as follows: SimpleMKL [115], SM1MKL [116], LpMKL [117], MK-Boost [56], and

MK-ELM [118]. General flowchart of all methodologies are demonstrated as a diagram

in Figure 6.1.

Single Gaussian kernel is used for both basic kernel based classifiers (KSVM and KELM)

and composite kernel based classifiers (CK-SVM and CK-ELM). Following 12 different

kernels are defined for the MKL algorithms: Gaussian kernel that has 9 different widths

(2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24), polynomial kernels that have 2 different degrees

(1 and 2), logarithmic kernel with the parameter r = 2. Since, logarithmic kernel is

conditionally positive definite for 0 < r ≤ 2 range [120], r value is chosen between

this range.

MCK-ELM consists of spatial and spectral parts. Each part is composed of different

types of kernels. Thus, each part can be considered as a hybrid kernel in itself.

Gaussian kernels with 4 different widths (2−2, 2−1, 21, 22), polynomial kernel with

d = 2, and logarithmic kernel with r = 2 parameters are used to construct spatial and
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(a) (b) (c)

(d) (e)

Figure 6.3 Classification maps for Pavia University HSI acquired with using (a) SCN,
(b) KELM, (c) CK-ELM, (d) MKBoost-D2, and (e) L2-MCK-ELM
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(a) (b) (c)

(d) (e)

Figure 6.4 Classification maps for Salinas HSI acquired with using (a) SCN, (b)
KELM, (c) CK-ELM, (d) MKBoost-D2, and (e) L1-MCK-ELM
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spectral kernels individually. In summary, 6 kernels are utilized for both spatial and

spectral kernels separately. As a result, 12 different kernels are defined for MCK-ELM

just as in the other MKL algorithms.

Simple mean statistic is utilized as a spatial feature extraction method. To do this,

windowing areas are defined for each pixel x i ∈ RN . Success of mean statistic in

the sense of representing a group of pixel’s mutual reflection has been shown in the

previous CK based studies [61], [108]. In our case, 7 × 7 window is structured and

applied on each HSI scene. Input weights and hidden nodes’ bias values of ELM

classifier are assigned randomly from uniform distribution between the range of [-1,1].
Also, k-fold cross validation is performed to divide data into testing and training. k

value is set to 10 for simulations. In this way, we were able to run algorithm 10

times. Final result is obtained after averaging 10 results. Therewithal, occurrence of

a potential system instability, on account of a classifier which has randomly assigned

input weights and bias values, is tried to be eliminated.

6.3.1 Statistical evaluation

McNemar’s test is an objective and statistical criterion, utilized for comparing the

obtained classification results with the state-of-the-art methods. This test is a common

way to understand whether classifiers’ results are statistically different or not. We have

chosen first degree of freedom and 5% significance level that corresponds to 1.96

value. That means, two classifiers’ results are statistically different from each other

if the obtained |Z | value is bigger than 1.96. Obtained McNemar’s test results for

L1-MCK-ELM and L2-MCK-ELM are presented in Table 6.2 and Table 6.3 respectively.

6.3.2 Discussion

Overall Accuracy (OA) and Kappa (κ) statistic results of proposed method along

with the results of state-of-the-art methods are demonstrated in Table 6.1 for Indian

Pines, Pavia University, and Salinas HSIs respectively. It is clearly seen that MCK-ELM

performs better in terms of accuracy against other algorithms. Improved results are

observed in classification maps obtained by standard machine learning, CK, MKL, and

MCK-ELM methods in Figure 6.2, Figure 6.3, and Figure 6.4 for related HSIs. Since,

SVM is a binary classifier, one vs. all strategy is utilized in all SVM based MKL methods.

Thus, some classification maps may contain unlabeled areas.

L1 and L2 norm constraints are applied to proposed method and referred them

to as L1-MCK-ELM and L2-MCK-ELM on Table 6.1. These two constraints lead to

different accuracy results. Since, L1 norm promotes sparsity, different data sets may
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Table 6.2 McNemar’s Test Results of L1-MCK-ELM for Indian Pines, Pavia University,
and Salinas HSIs (|Z | value / selected hypothesis)

Method
Indian Pines Pavia University SalinasName

ELM 36.72/Yes 74.62/Yes 66.39/Yes
SVM 35.34/Yes 67.27/Yes 64.58/Yes
KELM 26.32/Yes 40.89/Yes 49.09/Yes
KSVM 34.89/Yes 48.74/Yes 65.66/Yes
SCN 94.84/Yes 65.49/Yes 62.34/Yes

CK-ELM 2.05/Yes 3.07/Yes 9.38/Yes
CK-SVM 25.93/Yes 30.06/Yes 50.37/Yes

SimpleMKL 20.72/Yes 124.72/Yes 145.67/Yes
SM1MKL 13.19/Yes 124.19/Yes 146.08/Yes
L1MKL 18.79/Yes 124.64/Yes 146.13/Yes
L2MKL 14.91/Yes 124.30/Yes 145.98/Yes

MKBoost-D1 14.47/Yes 124.78/Yes 145.99/Yes
MKBoost-D2 13.91/Yes 124.34/Yes 145.76/Yes
L1-MK-ELM 19.75/Yes 124.58/Yes 146.41/Yes
L2-MK-ELM 19.75/Yes 124.58/Yes 146.41/Yes

Table 6.3 McNemar’s Test Results of L2-MCK-ELM for Indian Pines, Pavia University,
and Salinas HSIs (|Z | value / selected hypothesis)

Method
Indian Pines Pavia University SalinasName

ELM 38.69/Yes 74.60/Yes 66.15/Yes
SVM 37.48/yes 67.36/Yes 64.32/Yes
KELM 29.22/Yes 40.97/Yes 48.68/Yes
KSVM 36.95/Yes 48.68/Yes 65.44/Yes
SCN 95.25/Yes 65.30/Yes 62.11/Yes

CK-ELM 5.79/Yes 3.14/Yes 7.85/Yes
CK-SVM 28.81/Yes 30.06/Yes 50.05/Yes

SimpleMKL 24.15/Yes 124.76/Yes 145.56/Yes
SM1MKL 17.15/Yes 124.24/Yes 145.97/Yes
L1MKL 22.45/Yes 124.69/Yes 146.02/Yes
L2MKL 18.71/Yes 124.33/Yes 145.87/Yes

MKBoost-D1 18.33/Yes 124.83/Yes 145.89/Yes
MKBoost-D2 17.72/Yes 124.35/Yes 145.68/Yes
L1-MK-ELM 23.27/Yes 124.60/Yes 146.30/Yes
L2-MK-ELM 23.27/Yes 124.60/Yes 146.30/Yes
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produce different outcomes for this constraint. So that, L1-MCK-ELM shows better

performance than L2-MCK-ELM on the Salinas HSI scene. That means, some of the

utilized spatial and spectral kernel weights (η) vanish during L1 optimization. This

constraint may be helpful in case of having so many kernels and not knowing which

one is useful.

Algorithms’ run time results are also shown in Table 6.1. Run time is measured

according to total time consumption in training and testing phases. Standard machine

learning and composite kernel algorithms usually reach the goal in only one step. So,

these algorithms show relatively low run time compared to MKL methods. Since,

our proposed algorithm’s optimization phase is based on MK-ELM method, these two

algorithms perform similar time consumption. Variations of the kernel constructions

may cause small differences. Although, MKBoost method is proposed as an ensemble

method, it does not operate on outstanding base. Of course, using larger ensembles

may produce more accurate results. But, there is a trade-off between time and

accuracy.

McNemar’s test results on Table 6.2 and Table 6.3 indicate how much our proposed

algorithm statistically differ from others. As shown in tables, null hypothesis is

accepted for all cases. That means, proposed method has produced not only

numerically but also statistically better results than the other methods. McNemar’s

test utilizes thematic maps for contingency matrix construction. Thus, most similar

classification maps yield smaller |Z | values. These circumstances can be shown for

classification maps of the CK-ELM methods compared to proposed method’s results in

Figure 6.2, Figure 6.3, and Figure 6.4.

6.4 Conclusion

In this chapter, we proposed a new strategy which combines CKs and HKs via

ELM based MKL algorithm. The proposed method is compared with numerous

state-of-the-art MKL and CK methods. All results presented in the previous section

show advantageous position of MCK-ELM compared to others in terms of accuracy.

It is also a cost-effective solution as it does not require complex optimization tasks.

In contrast to classical CK methods, manual arrangement of the spatial and spectral

parts are not needed anymore. Joining these two domains is automated within

the MCK-ELM. The spatial and spectral kernels are individually hybridized by using

different type of kernels with various parameters. As a result of this, final kernel comes

up with as a HK as much as a CK, naturally. Essentially, taking contextual information

into account gave the fruit on HSI classification. Although, simple mean statistic is
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used for spatial feature extraction via windowing structure, promising results have

been achieved. Since, each HSI data have different pixel resolution, optimal window

width may differ from one HSI data to another. Thus, window size is a parameter that

needs to be adjusted and may be considered as a future work. Also, more sophisticated

spatial feature extraction methods may provide some improvement.
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7
Results And Discussion

In this thesis, HSI classification is addressed along with EnLe. Because HSI processing

is a challenging task due to high-dimensional structure of images, processing raw data

exclusively is usually inadequate to extrapolate. Therefore, some assisting methods

need to be used, to which end approaches based on multiple instances, composite and

hybrid kernels, and multiple kernels have been proposed.

Multiple classifier systems have become exceedingly popular in recent years due to

their high performance compared to traditional learning systems based on single

classifiers. Since labeling an image is a typically unreliable, expensive procedure,

the ground-truth information of an image is generally insufficient. In addition,

some valuable high-volume data in an image dataset such as in HSIs often remain

unused. Using unlabeled data together with labeled ones, however, allows expanding

the limited instance space and obtaining advanced analytical results. The proposed

ensemble methods based on multiple instances for HSI yielded such enhanced

classification results. Furthermore, random feature subspace selection seems to have

reduced classification errors. Since the use of contextual information is pivotal in HSI

analysis, taking spatial information into account via a windowing structure allows the

use of unlabeled data in MIL methods. In that way, more sophisticated results can be

obtained with the help of multiple classifier systems.

Diversity is another important factor in an ensemble classifier that needs to be ensured.

Although bootstrap aggregation (i.e., bagging) and the random subspace methods

are effective approaches for providing systems with diversity, boosting-based methods

are more effective for classification. At the same time, the original feature space of

data may not always possess linear separability. In that case, data transformation

is needed to increase the linear separation ability of the classifier, for which kernel

functions can be used. Although a kernel function improves the linear separation

ability of a classifier, a single kernel function may not be sufficient for that task. Thus,

systems with multiple kernels should be used to provide a more effective solution.

Since hyperspectral data usually contain compound distribution, some kernel mapping
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functions greatly influence classification. Furthermore, using more than one kernel

function may become mandatory to ensure the maximum coverage of the distribution

of the data. MKL seems suitable for that purpose, though it usually requires more

complicated optimization processes, especially in SVM-based algorithms. To eliminate

that unfavorable situation, a multiple kernel optimization approach based on ELMs has

been proposed herein.

Although MKL seems able to represent compound data distribution, it usually requires

a complicated optimization process. To reduce time complexity and to take different

types of kernel functions into account, hybrid kernels have been proposed for use

in HSI analysis. The convex combination of different kinds of kernels allow a less

complex, more effective solution, as well as the use of spatial information. Using

both hybrid and composite kernels has thus been proposed, both of which are

used in hybridized composite kernel boosting and multiple composite kernel ELM

approaches. In each proposed method, ELM was chosen as base learner to accelerate

the completion of multiclass classification.

In most cases, the performance of an ensemble increases along with the number of

base classifiers. However, increasing the number of trials can also require more time

for computation. In that sense, there is a trade-off between time complexity and a

system’s success, which underscores the importance of having an ensemble system that

yields robust results even fewer base classifiers are present. Therefore, the methods

proposed herein may be regarded as examples of robust ensemble systems. Another

factor that affects the success of HSI classification is spatial feature extraction. In

all of our proposed methods, we have used simple mean statistics for spatial feature

extraction, which, despite their simplicity, nevertheless yielded satisfactory results.

In sum, the use of contextual information heavily influences the effectiveness of

HSI analysis. However, because parameters of the windowing function depend

on the data, and that parameters need to be set appropriately on a case-by-case

basis. More sophisticated methods of spatial feature extraction may improve the

success of classification, which can be considered as future work. At the same time,

using different types of kernels can be helpful when working with a data exhibiting

compound distribution, in which case kernel-type selection plays an important role.

In particular, multiple composite kernel ELM provides an elegant way of choosing

kernels, by proposing L1 norm optimization, which is handy in the presence of

numerous kernels whose usefulness is not known.
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91



2. "Yüksek Boyutlu İ̧saret ve Görüntülerin Grafik İ̧slem Birimleri ile Paralel
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