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ABSTRACT 

 

3-D AUTOMATIC SEGMENTATION AND MODELLING OF CARTILAGE 
COMPARTMENTS IN HIGH-FIELD MAGNETIC RESONANCE IMAGES OF THE 

KNEE JOINT 

 

 

Ceyda Nur ÖZTÜRK 

 

Department of Computer Engineering 

PhD. Thesis 

 

Adviser: Assoc. Prof. Dr. Songül ALBAYRAK 

 

Magnetic resonance (MR) images enable morphological and quantitative assessment 
of cartilaginous anatomic structures through their manual or automatic 
segmentations. Because structural changes in the joint compartments, especially 
deterioration of cartilaginous tissues, indicate strong correlation with a disorder so-
named as osteoarthritis, quantification and visualization of the cartilage can establish 
evidence or progression of this disorder as well as effectiveness of therapeutic or 
surgical practices. In this thesis, fully-automatic segmentation and modelling of the 
whole femoral cartilage (FC), tibial cartilage (TC), and patellar cartilage (PC) 
compartments in MR images of the knee joint was mainly aimed avoiding 
segmentation methods specialized for the anatomical structures of interest and 
considering systems with limited resources in particular. The secondary purpose of the 
thesis was to investigate if detection of the image features such as edges or interest 
points directly in three-dimensional (3-D) volumes, rather than in two-dimensional (2-
D) slices as usual, brings about some advantages or not for volumetric images. 

In the first study presented in this thesis, all cartilaginous compartments in the knee 
joint were automatically segmented in high-field MR images obtained from 
Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm 
with sample-expand method. Computational complexity of the classification was 



 

xviii 

alleviated via subsampling of the background voxels in the training MR images and 
selecting a small subset of significant features by taking into consideration systems 
with limited memory and processing power. Different subsampling techniques, which 
involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, 
were used to generate four training models. The segmentation system was 
experimented using 10 training and 23 testing MR images, and the effects of different 
training models on segmentation accuracies were investigated. Experimental results 
showed that the highest mean Dice similarity coefficient (DSC) values for all 
compartments were obtained when the training models of novel VC sparse 
subsampling technique were used. Mean DSC values optimized with this technique 
were 82.6%, 83.1%, and 72.6% for FC, TC, and PC, respectively. This study did not 
require finding a volume of interest, segmenting a bone, or determining bone-cartilage 
interface prior to segmentation of a cartilage compartment unlike most of the related 
studies in the literature. Therefore, computational complexity of such a prior operation 
was reduced in the system. Also, despite processing MR images with single modality 
for only osteoarthritic participants, the system obtained accuracies similar to those of 
the related works. About 30-min processing time was promising for segmenting all 
compartments in all slices of an MR image on a resource-limited platform. 

Moreover, a novel hybrid segmentation method was proposed to primarily deal with 
the oversegmentation problems of the former system. This method combined the 
results of voxel classification-based segmentation with results of active appearance 
model (AAM) segmentation of the cartilage compartments through an information 
fusion procedure. Experimental results for only FC compartment using the same sets of 
training and testing MR images indicated that AAM segmentation could approximately 
determine the appearance information of the compartments in most of the testing MR 
images. However, failure in some of the MR images prevented implementation the 
information fusion module as intended. Simply intersecting the segmentation results 
of the tissue classification and appearance modelling modules for information fusion, 
the hybrid segmentation method could not outperform the former voxel classification-
based segmentation method with its highest mean DSC value of 73.78% for FC. 

With regard to the secondary purpose, standard Marr-Hildreth edge detection and 
Harris corner detection methods were extended to run in 3-D volumetric images. The 
results of the standard methods, which were applied in 2-D slices of the volumetric 
images, were qualitatively compared with results of the 3-D methods. As a result, in 
knee MR images, 3-D Marr-Hildreth method prominently detected the principal bone 
and cartilage edges found by the standard 2-D Marr-Hildreth method gaining 
additional sensitivity to gradient changes along the slices. In volumetric images of FC, 
the proposed 3-D Harris corner detection method determined well-localized and more 
distinct interest points at salient positions close to the surface boundaries. 

Keywords: Image segmentation, three-dimensional modelling, high-field MR images, 
knee joint, articular cartilage, osteoarthritis, voxel classification, region-growing, 
subsampling, Marr-Hildreth edge detection, Harris corner detection, correspondence 
finding, active appearance model, hybrid segmentation 
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Manyetik rezonans (MR) görüntüleri kıkırdaksı anatomik yapıların elle veya otomatik 
bölütlenmeleri yoluyla şekilsel ve nicel değerlendirilmesine olanak tanır. Diz 
bölgelerindeki yapısal değişimler, özellikle kıkırdaksı dokuların bozulması, osteoartrit 
olarak adlandırılan bir hastalıkla sıkı ilişkili olduğundan kıkırdağın ölçümlenmesi veya 
görsellenmesi terapötik veya cerrahi uygulamaların etkinliğinin yanında bu hastalığın 
bulgu veya ilerlemesini saptayabilir. Bu tezde diz eklemi MR görüntülerindeki bütün 
femura ait kıkırdak (FK), tibiaya ait kıkırdak (TK), ve patellaya ait kıkırdak (PK) 
bölgelerinin anatomik ilgi bölgeleri için özelleşmiş yaklaşımlardan kaçınarak ve bilhassa 
sınırlı kaynakları olan sistemler düşünülerek tamamen otomatik bölütlenmesi ve 
modellenmesi temelde amaçlanmıştır. Hacimsel görüntüler için kenar ve ilgi noktaları 
gibi görüntü özelliklerinin genelde olduğu gibi iki boyutlu (2-B) kesitler yerine direkt üç 
boyutlu (3-B) hacimlerde tespitinin bazı faydalar sağlayıp sağlamayacağının 
araştırılması tezdeki ikincil amaç olarak belirlenmiştir. 

Tezde sunulan ilk çalışmada diz eklemindeki tüm kıkırdaksı bölgeler Osteoartrit 
Girişimi’nden elde edilen yüksek alan MR görüntülerinde örnekle-yay yöntemiyle 
voksel sınıflandırmaya dayalı bir bölge büyütme algoritması kullanılarak otomatik bir 
şekilde bölütlenmiştir. Kısıtlı hafızası ve işlemci gücü olan sistemler göz önüne alınarak 
sınıflandırmanın hesabi karmaşıklığı eğitim MR görüntülerindeki arka plan voksellerinin 
alt örneklenmesi ve küçük bir önemli özellik alt kümesi seçilmesiyle azaltılmıştır. 
Düzgün, Gauss, çevre ilişkili (Çİ) seyrek ve Çİ sık alt örneklemeyi içeren farklı alt 
örnekleme teknikleri kullanılarak dört eğitim modeli oluşturulmuştur. Bölütleme 
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sistemi 10 eğitim 23 test MR görüntüsü kullanılarak denenmiş ve farklı eğitim 
modellerinin bölütleme başarıları üzerine etkisi araştırılmıştır. Deneysel sonuçlar 
göstermiştir ki tüm bölgeler için en yüksek ortalama Dice benzerlik katsayısı (DBK) 
değerleri özgün Çİ seyrek alt örnekleme tekniğinin eğitim modelleri kullanıldığında elde 
edilmiştir. Bu teknikle eniyilenen ortalama DBK değerleri FK, TK ve PK için sırasıyla 
%82,6, %83,1 ve %72,6 olarak bulunmuştur. Literatürdeki ilgili çalışmaların çoğundan 
farklı olarak, bu çalışma bir kıkırdak bölgesinin bölütlenmesinden önce bir ilgi hacmi 
bulma, bir kemik bölütleme veya kemik kıkırdak arayüzü belirlemeyi gerektirmemiştir. 
Dolayısıyla sistemde böylesi bir ön işlemin hesapsal karmaşıklığı giderilmiştir. Ayrıca 
sadece osteoartritli katılımcılar için tek türde MR görüntüsünün işlenmesine rağmen 
sistemin elde ettiği başarılar ilgili çalışmalarınkine benzerdir. Kısıtlı kaynaklı bir ortamda 
bir MR görüntüsünün tüm kesitlerinde tüm bölgelerin bölütlenmesi için takribi 30 
dakikalık işleme süresi gelecek için ümit vericidir. 

Ayrıca çoğunlukla önceki sistemin aşırı bölütleme problemlerinin üstesinden gelmek 
için özgün bir hibrit bölütleme yöntemi önerilmiştir. Bu yöntem kıkırdak bölgelerinin 
voksel sınıflandırma tabanlı bölütleme sonuçlarını aktif görünüm modeli (AGM) 
bölütleme sonuçlarıyla bir bilgi kaynaştırma yordamı aracılığıyla birleştirmiştir. Aynı 
eğitim ve test MR görüntü kümeleri kullanıldığında deney sonuçları sadece FK bölgesi 
için göstermiştir ki AGM bölütleme test MR görüntülerinin çoğunluğunda bölgelerin 
görünüm bilgisini yaklaşık olarak belirleyebilmiştir. Bununla beraber, bazı MR 
görüntülerindeki başarısızlık bilgi kaynaştırma biriminin planlandığı gibi uygulanmasını 
önlemiştir. Bilgi kaynaştırma için sadece doku sınıflandırma ve görünüm modelleme 
birimlerinin sonuçları kesiştirildiğinde hibrit bölütleme yöntemi FK için %73.78’lik en 
yüksek ortalama DBK değeriyle önceki voksel sınıflandırma tabanlı bölütleme 
yönteminden daha üstün olamamıştır. 

İkincil amaçla ilgili olarak, standart Marr-Hildreth kenar tespit ve Harris köşe tespit 
yöntemleri hacimsel 3-B görüntülerde çalışmak üzere genişletilmiştir. Hacimsel 
görüntülerin 2-B kesitlerine uygulanan standart yöntemlerin sonuçları 3-B yöntemlerin 
sonuçlarıyla nitel olarak karşılaştırılmıştır. Sonuçta 3-B Marr-Hildreth yöntemi diz MR 
görüntülerinde kesit yönündeki eğim değişimlerine ek hassasiyet kazanarak 2-B Marr-
Hildreth yönteminin bulduğu ana kemik ve kıkırdak kenarlarını belirgin bir biçimde 
tespit etmiştir. Hacimsel FK görüntülerinde önerilen 3-B Harris köşe tanıma yöntemi 
yüzey sınırlarına yakın çıkıntılı kısımlarda iyi konumlandırılmış ve daha bağımsız ilgi 
noktaları belirlemiştir. 

Anahtar Kelimeler: Görüntü bölütleme, üç boyutlu modelleme, yüksek alan MR 
görüntüleri, diz eklemi, eklem kıkırdak, osteoartrit, voksel sınıflandırma, bölge 
büyütme, alt örnekleme, Marr-Hildreth kenar tanıma, Harris köşe tanıma, denklik 
bulma, aktif görünüm modeli, hibrit bölütleme 
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 CHAPTER 1 

INTRODUCTION 

Automated segmentation and three-dimensional (3-D) modelling of anatomical 

structures in medical images has attracted significant interest from researchers since 

the invention of volumetric medical imaging modalities, such as computed tomography 

(CT) and magnetic resonance (MR) imaging. These technologies have paved the way 

for possibilities of quantitative and visual analyses that can benefit clinical diagnoses 

and treatments, surgical interventions, pharmaceutical research, and educational 

activities [1], [2], [3].  

One such particular anatomical region of interest has been the knee joint for 

researchers. The knee joints are generally affected by a degenerative disorder named 

as osteoarthritis, which results in pain and movement disability in the joints due to 

deterioration of cartilage. The fact that in developed countries all of the people below 

the age of 60 are affected by and about 12% of the people above 60 symptomatically 

have osteoarthritis has increased the need for the methods that can be useful in 

diagnosis and the treatment of this disorder. Osteoarthritis is diagnosed and followed 

up by the expert radiologists depending proportionally on their expertise in knee MR 

images. When the need arises, the radiologists manually segment the compartments 

of interest for analysis. However, during manual segmentation both occurrences of 

intra-observer or inter-observer variations and long durations of the segmentation 

process led to design of fully automatic segmentation systems to aid in early diagnosis 

and treatment processes of osteoarthritis. 
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This chapter particularly reviews the fully automatic cartilage segmentation studies in 

the literature, and introduces the purposes and hypotheses of the studies presented in 

the thesis. In Chapter 2 the anatomy of a normal knee joint and some disorders due to 

traumatic and pathological syndromes in the knee joint are briefly described. The 

causes, symptoms, diagnosis, and treatment of osteoarthritis are clarified especially. 

Furthermore, the systems for semi-quantitative grading of this disorder in radiography 

and MR imaging are mentioned. Chapter 3 sheds light on the physics of the MR 

imaging by explaining the components of a typical MR scanner. Also it examines MR 

images in terms of their quality to represent the cartilage compartments.  

In the first automatic segmentation study presented in Chapter 4, the whole femoral, 

tibial, and patellar cartilage compartments in the knee joint were segmented in high-

field MR images obtained from Osteoarthritis Initiative (OAI) using a voxel-

classification-driven region-growing algorithm with sample-expand method. One-

versus-all voxel classifiers were constructed for tissue classification depending on the 

local image and voxel position features of each cartilage compartment in the MR 

images. Computational complexity of the classification was alleviated via subsampling 

of the background voxels in the training MR images and selecting a small subset of 

significant features by taking into consideration systems with limited memory and 

processing power. Therefore, different subsampling techniques, which involve 

uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were 

used to generate four training models. The automatic segmentation results obtained 

when the designed segmentation system was experimented with 10 training and 23 

testing MR image data sets are evaluated. 

Chapter 5 is about how Marr-Hildreth edge detection and Harris corner detection 

methods, which are mostly applied in two dimensional (2-D) images, can be extended 

to run in three-dimensional (3-D) volumetric images. The experiments involved 

applications of 3-D Marr-Hildreth method, 2-D Marr-Hildreth method that worked in 

slices, and the accelerated 3-D Marr-Hildreth method that reduced computational 

complexity in the knee MR images of OAI. Moreover, 3-D Harris corner detection 

method, 3-D Laplacian of Gaussian (LoG) filtering-based interest point detection 

method, and 2-D versions of these methods were run in volumetric images of femoral 
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cartilage model. The results of both the edge detection methods and interest point 

detection methods are qualitatively compared among themselves. 

In Chapter 6, a hybrid segmentation method was proposed for delineation of the 

cartilage compartments in knee MR images based on both the voxel classification-

based segmentation presented in Chapter 4 and active appearance model (AAM) 

segmentation. Therefore, the hybrid method enables fusion of probabilities obtained 

through the voxel classification-based segmentation and shape-texture information 

derived from AAM segmentation. The appearance model for each compartment was 

constructed with the same set of MR images used for training the former voxel 

classification-based segmentation system. Before the appearance model construction, 

dense set of correspondences were determined on the surfaces of cartilage atlases in 

training MR images through an iterative shape-context-based non-rigid registration 

approach. The error analyses of the former system and accuracies of AAM and hybrid 

segmentations in the same testing MR images are provided in the experimental 

results. Whether the hybrid system could improve the overall segmentation accuracies 

or not is discussed, in particular. 

Chapter 7 is a discussion of the accuracies and performance of the voxel classification-

based segmentation system described in Chapter 4 with respect to the related studies 

reviewed in Subsection 1.1.3. In addition to this, it concludes the studies presented 

throughout the thesis pointing out some future works possible. 

Appendix A presents general information about the OAI data sets, and reveals 

demographics of the participants for a subset of OAI MR image data sets used in our 

studies. Appendix B gives mathematical basics and formulations for some of the 

algorithms that were useful in the appearance modelling procedure of the hybrid 

segmentation method described in Chapter 6. 

1.1 Literature Review 

Segmentation is a fundamental problem of computer vision to delineate the objects of 

interest in the images, and primarily affects the accuracy and precision of higher level 

operations for analyses of these objects. Although segmentation problem has been 

prevalently studied so far, it has not been flexibly handled overall. Because, the 
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developed segmentation methods mostly had approaches specialized for the objects 

to be segmented or required a kind of user-interaction that breaks the automaticity of 

the system [2]. 

Thresholding and region growing algorithms, classification and clustering techniques, 

watershed algorithm, statistical shape models (SSM)s, deformable models, graph-

based algorithms, and atlas registration approaches are generally among the methods 

frequently applied in medical image segmentation [1], [4], [5], [6]. Different methods 

can be optimal depending on the anatomical structure of interest to be segmented. 

However, two or more of these methods are usually combined to improve the 

accuracies of the segmentation systems. Being independent of the method applied, 

totally automating the segmentation system including its initialization phase is an issue 

of concern to the researchers. Additionally, ability of the system to segment in 3-D 

paves the way for quantification and modelling of volumetric anatomical structures. 

3-D cartilage segmentation problem is challenging due to increased computational 

complexity when processing high dimensional MR images, non-trivial separability of 

the cartilage tissue intensities and the intensities of other tissues, fairly thin 

morphology of the cartilage tissue, and degeneration of the cartilage in time due to 

osteoarthritis. SSMs [7] can achieve segmentation of some anatomical structures by 

modelling shape or texture variances between participants. However, despite the fact 

that the cartilage compartments have approximate shapes, solving the segmentation 

problem of cartilage in MR images purely via shape-based methods such as SSMs or 

registration of cartilage atlases is not possible when the pathological cases are 

considered. Therefore, as the bones in knee MR images are generally segmented with 

SSMs, cartilaginous structures are segmented with manual [8] or manifold shape-

independent methods [9], [10], [11], [12]. Deformable models [13], graph-based 

methods [14], or classification-based approaches, all of which accomplish 

segmentation depending on intensity-related or derivative-related local image 

features, play an effective role in cartilage segmentation problem [9], [15], [16]. 

The coverage of this subsection is as follows. A number of knee MR image data sets 

mentioned to be used by the automatic cartilage segmentation studies in the literature 

are summarized in Subsection 1.1.1. Subsection 1.1.2 describes some of the 
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prevalently used validation measures to evaluate the accuracy of an automatic 

segmentation result. Studies in the literature, which realized fully-automatic 

segmentation of cartilage in MR images of the knee joint without any interaction 

during the testing phase, are reviewed in Subsection 1.1.3. For each study, the data 

processed, segmentation methods applied, experimental results obtained, and some 

critical evaluations are mainly presented. Subsection 1.1.4 includes a brief literature 

review of some 3-D edge and interest point detection studies, which are particularly 

related to Marr-Hildreth edge and Harris corner detection methods, since Chapter 5 

focuses on extension of these methods into third dimension. 

1.1.1 Knee MR Image Data Sets 

Private data sets were preferred mostly by some earlier cartilage segmentation studies 

[8], [9], [15], [17], [18]. Segmentation of the Knee Images 2010 (SKI10) is a challenge 

for segmentation of cartilage pertaining to surgery planning in knee MR image data 

sets that focuses on only volumes of interest (VOIs) at the central load-bearing parts of 

cartilage. The data sets of SKI10 as well as the results of the studies that attended this 

challenge [10], [12], [19], [20] are available through the link of http://www.ski10.org/. 

Osteoarthritis Initiative (OAI) database, which is also obtained and used for the studies 

presented in this thesis, was used by many other works [11], [16], [20], [21], [22], [23], 

and publicly accessible at http://www.oai.ucsf.edu/. More detailed information on OAI 

database can be found in Appendix 0. The knee MR image database of Pfizer 

Longitudinal Study (PLS) was noted to be utilized by Shan et al. [10], [24], [25], and the 

database of Center for Clinical and Basic Research (CCBR) was processed by Dam et al. 

[12]. But both of PLS and CCBR databases seem to be not provided for public-use. 

1.1.2 Validation Measures 

Automatic segmentations can be evaluated using a number of validation measures 

[10], [26], [27] with respect to the reference segmentations, which are generally 

performed by the domain experts or trained segmenters manually using pointing 

software or semi-manually with the running of point correction algorithms. These 

reference segmentations are accepted as ground truth segmentations, but they are 

http://www.oai.ucsf.edu/
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always prone to inter-segmenter and intra-segmenter variability. Consequently, 

measuring the segmenter variability is also a focused issue in most of the studies for 

supporting the reliability of the system accuracy and precision. 

Dice similarity coefficient (DSC) is a commonly used measure for validation, and is an 

important indicator of segmentation accuracy. Because, it is maximized in the case of a 

good compromise of sensitivity and specificity, which are true classification ratios of 

cartilage and background classes. If the sets of voxels in automatic segmentation and 

reference segmentation of an object are denoted by A and B, respectively, DSC, 

sensitivity, and specificity values can be computed according to the equations (1.1), 

(1.2), and (1.3). When the volumes of A and B are exactly the same, DSC measure 

reaches to its highest value of 1. If the volume of A is larger than B, which is the case of 

higher sensitivity and lower specificity, or the volume of A is smaller than B, which is 

the case of lower sensitivity and higher specificity, DSC measure decreases in value. 

         
  |   |

| |  | |
 (1.1)  

                 
|   |

| |
 (1.2)  

                 
|     |

|  |
 (1.3)  

Volume overlap error (VOE) in (1.4) is also a frequently preferred measure in the 

literature to indicate the error in overlapping volumes of A and B. Volume difference 

(VD) in (1.5) gives how much volume estimate of A differs from that of B with respect 

to the volume estimate of B, and yields zero value if these estimates are equal. 

However, the latter misleadingly results in low difference values if A and B both with 

similar volume estimates are at totally different locations, since it does not consider 

overlap of these volumes in the equation. 

            (  
 |   |

|   |
) (1.4)  
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 | |   | |

| |
 (1.5)  

Average symmetric surface distance (ASSD) and maximum symmetric surface distance 

(MSSD) are some of other measures that can be alternatively used to validate the 

automatic segmentations depending on only the boundary voxels of automatic and 

reference segmentations. Therefore, they can be convenient for contour-based 

segmentations, in particular. If the boundary voxel sets of A and B are denoted as Ab 

and Bb, and the number of these boundary voxels as NA
b and NB

b, ASSD is calculated as 

in (1.6) by averaging the sum of minimal distances between every voxel in Ab and the 

voxel set Bb (  
  ) as well as the sum of symmetrically determined minimal distances 

with reversal of the set order (  
  ). MSSD, which is also known as Haussdorf distance, 

finds the maximum value among these minimum distances   
   and   

   of the voxel 

pairs, which are computed between the sets Ab and Bb as formulated in (1.7). For a 

perfect segmentation result both ASSD and MSSD measures are zero. 

          
 

       
(∑  

  

 
  

   

 ∑   
  

 
  

   

) (1.6)  

             (   (  
  )         

   ), 

 i={1,…    }, j={1,…    } 
(1.7)  

Pearson's correlation coefficient (PCC) denoted with   is useful in validation of 

quantitative variables computed over the segmented anatomical object of interest 

with respect to the measures of reference segmentation. It basically describes how the 

two variables are linearly correlated. PCC equation in (1.8) is a ratio of the covariance 

of the computed variables and the product of their standard deviations, where   

symbolizes the computed variable to be validated against  .  

  
∑      ̅      ̅  

   

√∑      ̅   
   √∑      ̅   

   

 (1.8)  
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1.1.3 Fully-Automatic Cartilage Segmentation 

In some of the automatic cartilage segmentation studies, segmentation of the knee 

bones and determination of the parts of the bone surfaces that interact with the 

cartilage, which are so-called the bone-cartilage interface (BCI), were required in 

preprocessing stage to facilitate the reliable segmentation of the cartilage 

compartments [9], [16], [22]. Similarly, some other studies also required segmentation 

of the bones prior to cartilage segmentation, but did not focus on BCI determination 

[10], [11], [17], [20], [21], [23]. Unlike most of other works in the literature, few studies 

depended on the use of multi-modal MR images of the participants, which decreases 

the overlap between tissue intensity distributions, so structures such as bones, 

muscles, or cartilage can be well separated [17], [18], [28]. However, since the 

scanning of multiple MR images at a time for a patient is an uncommon clinical 

practice, such approaches may not be convenient for automatic segmentation of 

articular cartilage.  

Table 1.1 summarizes the details about the fully automatic cartilage segmentation 

studies in the literature, and enables a comparative analysis in between them. An 

exceptional study also presented in the table is the one by Williams et al. [8], who 

segmented the cartilage compartments manually, but this study is important in terms 

of quantitative measures of the cartilage compartments and how these measures can 

be computed. 

Folkesson et al. [15] segmented only the medial articular cartilage between the femur 

and tibia in 114 sagittal low-field Turbo 3-D T1 MR images of healthy and osteoarthritic 

populations using a region-growing algorithm based on the approximate k-nearest 

neighbours (k-NN). Around 40 significant features of voxels were selected among 

position, blurred intensities, the first, second, and third derivatives, and eigenvalues 

and eigenvectors of the Hessian and structure tensor matrices for the binary classifiers 

[29]. Then, randomly sampled central voxels in a test MR image were used as seed 

points for region growing if and only if they were classified as cartilage according to 

their approximate k-nearest neighbours among all voxel samples of 25 training MR 

images. The seeds were iteratively grown by merging with their 26-connected 

neighbours in the cartilage class. The average DSC measures between the automatic 
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and manual segmentations of the MFC and MTC were 77 ± 8% and 81 ± 6%, 

respectively, with 1% increase after the enhancement of position alignment. 

Statistically significant differences were detected with unpaired t-tests between the 

cartilage estimates of the healthy and osteoarthritic populations, and the greatest 

differences were obtained for the medial tibial cartilage. Although this segmentation 

algorithm is successful in handling the degenerative nature of the cartilage tissue with 

its voxel-based approach, it had a number of drawbacks. First of all, inclusion of all 

background voxels in training MR images to the training models results in an infeasible 

segmentation problem especially for high-field MR images with a great deal of voxels, 

and systems with limited memory or processing power. Second, over-segmented 

structures on the surfaces of the segmented cartilage compartments may occur due to 

misclassification of other nearby tissues as cartilage. In addition, because the greatest 

component grown as a result of region growing method was selected as the 

segmentation result, the algorithm cannot yield robust segmentation results in case a 

cartilage compartment is detected as more than one component due to severe 

deteriorations of the cartilage, or in case a false positive large component was 

mistakenly grown. 

Even though Folkesson et al. [15] mentioned that their segmentation system lasted 

about 10 min on a standard desktop computer, Dam and Loog [30] pointed out the 

inefficient classification procedure of the study by Folkesson et al., and proposed 

sample-expand and sample-surround algorithms to solve the problem of classifying all 

voxels in an MR image for a segmentation task. They noted that the original algorithm 

by Folkesson et al. classified each voxel in a testing MR image twice by combining two 

binary classifiers which used around 500,000 training voxels for background, 120,000 

for TC, or 300,000 for FC. Segmentation of an object of interest was realized through 

classification of the full object volume for the sample-expand algorithm, and 

classification of only the object surface for the sample-surround algorithm. The original 

algorithm and the two algorithms all yielded the same segmentation accuracies of 77% 

for MFC and 82% for MTC. On the other hand, 2.5-hour segmentation duration of the 

original algorithm was decreased to approximately 16 min with the proposed 

algorithms.  
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Yin et al. [16] identified initial volumes of interest for each bone and its associated 

cartilage using AdaBoost classifiers based on 3-D Haar features. The bone surfaces in 

volumes of interest were determined by graph searching of mean bone surface 

meshes of the three bones based on trained random forest classifiers, and BCIs on 

bone surfaces were extracted through AdaBoost classification of some geometrical and 

local appearance-based features. Then, they simultaneously segmented the bone and 

corresponding cartilage surfaces of the femur, tibia, and patella in 60 sagittal 3-D DESS 

MR images of the knee joint obtained from OAI with a graph-based approach oriented 

by random forest classifiers. Their method satisfied some constraints established on 

the non-intersection of different surfaces and different objects. As a result, DSC 

measures obtained were 84 ± 4%, 80 ± 4%, and 80 ± 4% for the FC, TC, and PC tissues, 

respectively. No statistical significance was found between the surface positioning 

errors of all bone and cartilage segmentations of the asymptomatic and osteoarthritic 

groups. Validation was performed partially using some of the slices in both train and 

test data sets due to a large labour intensity of 3-D manual segmentations. 

Consequently, their accuracies were not probably provided for the whole 3-D cartilage 

compartments. 

Fripp et al. [9] compared performances of four different approaches: affine 

registration with a block-matching strategy, non-rigid registration via free-form 

deformation, tissue classification, and their hybrid deformable model (HDM), in 20 FS 

SPGR MR images of healthy volunteers for delineating the articular cartilage tissues of 

the knee joint. The tissue classification approach was inspired by the work of Folkesson 

et al., but modified to work in a localized region close to the bone-cartilage interface 

(BCI) extracted beforehand through segmentation of the bones by 3-D active shape 

models. Voxels were classified with support vector machine classifiers using a slightly 

different set of features and scale parameters. The HDM method referenced the same 

BCI to refine the cartilage segmentation through a 3-D deformable model depending 

on localization, patient specific tissue estimation, and a model of the thickness 

variation. Experiments showed that the best performing approaches were the tissue 

classifier and HDM. The two methods had no statistical difference in between their 

average DSC measures of FC, TC, and PC, which were 86 ± 4%, 81 ± 5%, and 82 ± 10% 
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for the former and 85 ± 8%, 83 ± 8%, and 83 ± 13% for the latter, respectively. Because 

deterioration of cartilage can affect the segmentation accuracies negatively [12], the 

higher DSC values obtained in this study than the DSC values of the other works can be 

attributed to the conduct of this study in MR images of only healthy participants.  

Vincent et al. [21] developed an active appearance model (AAM)-based method for 

segmenting the bones and cartilage of the knee. The AAM model was built using 80 3-

D DESS MR images of OAI data set, and the high-quality model correspondences were 

determined with minimum description length (MDL) groupwise image registration 

method. To build the model, first, manual segmentations of the anatomical structures 

were converted to surfaces. Then, MDL groupwise image registration method was 

applied to signed distance images derived from these surfaces. The outputs of this 

procedure were a reference mean image and a set of deformations to map mean 

image to each example image. Output reference mean image could be segmented 

using the zero-valued isosurface. Later, the mean surface was deformed for each 

example so that the deformed surface lied close to the segmented surface of the 

example to propagate the correspondence points. Cartilage correspondences were 

obtained depending on the intersection of normals to the bone correspondence points 

normally covered by cartilage with inside and outside of the cartilage structures. For 

femoral cartilage 37249 and for tibial cartilage 20459 correspondence points were 

determined. The model was matched to new images with multiple initial estimates at a 

grid of starting points, which were typically 30 mm apart on all directions. A 

hierarchical modelling scheme that involved a single model of femur and tibia, and 

individual models of femur, tibia, FC, and TC was used to enhance the segmentation 

results. Testing of the models was performed on SKI10 data set without additional 

tuning of the models. The average DSC values of their method were 86 ± 6% for FC and 

86 ± 5% for TC as indicated by Shan et al. [10]. 

Lee et al. [22] segmented the knee bones using constrained branch-and-min-cut 

method to find the minimum energy on a Markov random field (MRF) based on bone 

shape priors, and determined BCI voxels via classification of voxels on bone surfaces 

with binary classifiers of position and local appearance. Then, for cartilage 

segmentation a set of reference patches from training set that correspond to each 
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local patch centred on sampled BCI voxels of the testing MR image were identified 

using normalized cross correlation. The reference patches enabled computation of 

regional probabilities for each voxel according to local shape and appearance 

information, and boundary probabilities for neighbouring voxel pairs depending on the 

regional probabilities. MRF optimization of local patch labels was accomplished by 

graph-cut technique using the regional and boundary probabilities. Final labelling of 

the voxels was realized with combination of the patch segmentations in a global graph-

cut scheme. Three experiments were conducted in MR images of 17 participants at 

progression group of OAI data sets, which were validated against partial manual 

segmentations of two radiologists. Average DSC values obtained for the experiment, 

which involved LOOCV on 10 MR images, were 82 ± 3% for FC, 81 ± 3% for TC, and 82 ± 

4% for PC with respect to the manual segmentations of the first radiologist. The 

experiment, which trained the system with 2-year follow-up scan of one of 9 

participants, and tested with baseline scan of the same participant, showed that 

relevance of training and testing MR images results in better segmentation 

performance. Their approach was assessed to have tailored representations for objects 

of interest due to its ability to model local appearance and shape characteristics 

flexibly. Nevertheless, their experimental results with relatively limited data sets were 

not significantly different from those of other proposed methods. 

Unlike most of other works in the literature, automatic segmentation system of Zhang 

et al. [17] handled four MR image sequences of the participants, which included T1-w 

FS SPGR, T2/T1-w FIESTA, T2/T1-w IDEAL GRE water and fat scans, to obtain multi-

modal voxel intensities. In this manner, the overlap between tissue intensity 

distributions decreased, so structures such as bones, muscles, cartilage etc. could be 

well separated. Then, some geometrical features and local image structure-related 

features such as first order derivatives and eigen values of Hessian matrices were 

computed on multi-modal MR images. The geometrical features depended on the 

bone segmentations, which were determined by thresholding multi-modal image 

intensities. These features as well as the multi-modal image intensities were used to 

find parameters of a combined SVM-DRF classification model. SVM-based voxel 

classifier had generalized classification ability, and discriminative random field (DRF) 
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incorporated spatial correlations among neighbouring voxels. Same preprocessing and 

feature extraction stages were applied on a testing MR image, and then optimal voxel 

labels were predicted by an inference graphical model with loopy belief propagation 

depending on the learned classification model and its parameters. Experiments 

performed with 11 participants using leave one out cross validation (LOOCV) showed 

that employment of geometrical features in combination with other features in SVM-

DRF classifier yielded the best segmentation accuracies for all compartments. With the 

average DSC values of 86 ± 9% for FC, 88 ± 10% for TC, and 84 ± 7% for PC, this study is 

seemingly the best among the works in the literature. Although these accuracies may 

be attributed to the effectiveness of the proposed SVM-DRF classification model, the 

advantage of collective processing of four MR image sequences is indisputable. 

However, scanning of four MR image sequences for a participant at a time is unusual 

for clinical practice. Also, they had a limited data set for only 11 participants with 

unknown health statuses, which may be another reason of increased accuracies. 

Furthermore, predictably, parameter tuning in the training phase was noted to be time 

consuming, even with a 48-core high performance computer, and their 33-minute 

testing duration for an MR image using such a system is more than the average. 

Shan et al. [10], [24] developed a multi-atlas segmentation method with non-local 

patch-based label fusion, and used this to segment FC and TC compartments on 

longitudinal 706 T1-weighted SPGR MR scans of 155 participants. Their three-label 

segmentation method formulated the segmentation as a convex optimization problem 

which enabled globally optimal solutions for femur-tibia and FC-TC segmentations. For 

a testing MR image, initially the shape priors of femur and tibia were found with 

multiple atlases using affine and B-spline registrations. These shape priors and local 

bone likelihoods computed through a simple model were integrated into three-label 

formulation for optimal bone segmentation. Similarly, the shape priors for the 

cartilage regions were determined through affine bone transforms between the 

average-shape atlas or multiple atlases, and the computed bone segmentations. Local 

cartilage likelihoods were obtained from probabilistic k-NN or SVM classifications 

based on reduced set of features in comparison to Folkesson et al. [15]. Finally, the 

three-label cartilage segmentation energy was optimized after integration of the 
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cartilage shape priors and local likelihoods. As a result, multi-atlas registration with 

non-local patch-based label fusion and SVM produced the best mean DSC values of 76 

± 5% and 84 ± 4% for FC and TC, respectively. The reason of lower DSC values for the 

FC compartment was attributed to evaluation of only the load-bearing regions of this 

compartment. However, their method required at least 10 hours to segment an MR 

image with use of 18 atlases, and this duration can be unacceptably long in clinical 

practice. Also the three-label formulation was not appropriate for the segmentation 

problems with more than two objects of interest. 

In another study by Shan et al. [25], the same three-label segmentation framework 

was extended by adding a temporal consistency term, which could mitigate image 

noise effects, and enable segmentation consistency across time points. They evaluated 

the proposed longitudinal segmentation on registered PLS longitudinal data sets. 

Comparison of longitudinal segmentation to temporally independent segmentation 

indicated that longitudinal model did not improve the segmentation results with 

respect to temporally independent segmentation, but increased temporal consistency 

of the segmentations was achieved. 

Lee et al. [20] developed a segmentation algorithm, which consisted of mainly three 

procedures; multiple atlas building, locally-weighted voting, and region adjustment. 

Multiple atlas building involved non-rigid registration of all training MR images to a 

target image, and selection of the best matching atlases. On a testing MR image, the 

results of selected atlas registrations were merged by locally-weighted voting 

algorithm. For region adjustment, seed points inside and outside the bone regions 

were determined using the statistical information of bone, cartilage, and surrounding 

regions in the initial segmentation result. Then a graph-cut method depending on 

these seed points enabled revision of outliers, and inclusion of abnormal bone regions. 

Experimentation of the approach was on 150 MR images of SKI10 data set using two 

thirds of the images for the training, and the rest for the testing. The computation time 

of the proposed method was about 40 minutes, and average DSC values for femoral 

and tibial cartilage compartments were 72 ± 8% and 72 ± 7%. 

In their automated bone and cartilage segmentation system, Wang et al. [11] first of all 

segmented the bones in the knee joint using statistical shape models based on the 
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correspondences of coherent point drift (CPD) method, with boundary refinement by 

random walks algorithm. Then, they computed features that captured spatial relations 

between the bones and cartilage compartments according to the anatomical 

landmarks on bone surfaces, and contextual information with intensity differences 

between the image voxels and their neighbours at random distances. Later, an 

iterative classification scheme using random forests algorithm with 60 trees at depth 

of 18 in each pass was run, during which semantic context features based on voxel 

classification probabilities were exploited after each pass of the classification to 

enhance performance in the next pass. Finally, a post-processing step refined the 

segmentations with smoothness constraints through graphics-cut optimization using 

the probabilities of being the background and the three cartilage tissues. Their 

experiments were conducted on 176 MR image sequences of OAI data set that belong 

to two visits of 88 participants at progression group, by splitting the data into equally-

sized three subsets for 3-fold cross validation. Results indicated that context-depended 

features and distances to landmarks were very informative to embed spatial 

constraints, and 2-pass random forests classification significantly improved the DSC 

accuracies, which were computed as 85 ± 3% for FC, 84 ±4% for TC, 79 ± 9% for PC. 

These results obtained for the MR images of osteoarthritic participants were fairly 

successful in comparison to the results of other works especially for PC compartment. 

Nonetheless, they made no mention of the possibly high overhead of SSM-based bone 

segmentations and random forests voxel classification. 

Hani et al. [18], [28] tried to solve inhomogeneous intensity and low-contrast issues of 

proton-based MR images with fusion of sodium and proton MR images. First, sodium-

rich regions of sodium MR images were interpolated using cubic spline approach 

before fusion due to low resolution of these images. Then, histogram equalization was 

applied on fused MR images with saturation of high signal intensities. After that, 

connected components were selected, and convexity of region areas was measured for 

all image slices. Finally, automatic segmentation of AC was determined by edge 

detection of the objects in the image slices. The automated segmentation of articular 

cartilage (AC), without compartmental separation such as FC or TC, yielded sensitivity 

of 80.27%, and specificity of 99.65% on a data set of three 1.5 T sodium and proton MR 
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images in [18], and sensitivity of 80.21%, and specificity of 99.64% on a data set of four 

1.5 T sodium and proton MR images in [28] compared to the manual segmentations. 

However their data set was fairly limited for the both studies, and since the scanning 

of sodium and proton MR images at the same time is an uncommon clinical practice, 

their approach is not a convenient way for automatic segmentation of articular 

cartilage. 

Dam et al. [12] modified the work of Folkesson et al. [15] with the removal of the 

position alignment stage and introduction of a preprocessing stage of rigid multi-atlas 

registration instead to eliminate the differences between the training and testing MR 

images. A test MR image is transformed to the centre of the training MR images using 

the transformations, which registered the test image to the training MR images, 

combined with the median transformation computed from the similarity 

transformations in between the training MR images. Accordingly, rectangular regions 

of interest for the bones, cartilage compartments, and menisci were determined, and a 

voxel classification approach analogous to the approach of Folkesson et al. was applied 

within these interest regions. The problem in the study of Folkesson et al., which was 

selection of only the greatest component for the segmentation result even if a 

cartilage compartment was found as more than one component due to severe 

deterioration, was handled by inclusion of all other components with size greater than 

15 % of the size of the greatest component. Validation of the proposed method was 

performed on 1907 low and high-field MR images of three distinct data sets including 

the OAI data set. The average DSC values obtained for MFC, LFC, MTC, LTC, PC, MM, 

and LM on OAI data sets containing 3-D DESS knee MR images of 88 osteoarthritic 

participants were 81 ± 4%, 84 ± 4%, 81 ± 5%, 87 ± 3%, 74 ± 12%, 76 ± 8%, and 83 ± 5%, 

respectively, when half of the images were used for the training and the rest for the 

testing. These results were comparable to the results of other works in the literature 

especially if the belonging of MR images fully to osteoarthritic participants was taken 

into consideration. They alleviated the computational complexity by running the voxel 

classification algorithm in constrained regions of interest, but could not solve the 

oversegmentation problem at the periphery of the cartilage compartments. They 

indicated that a solution of this problem was a post-processing step that refines the 
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segmentation boundaries with either local or global shape information. The use of 

multi-object shape models or local regularization processes such as graph-cut 

optimization was exemplified for this purpose. 
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Table 1.1 The details about some of the studies in the literature on fully-automatic segmentation of cartilage.1 

Author(s) 
Data Set: Train #\Test # 

[Size] (Resolution) 
MR Type(s)\ 

View(s) 

Anatomic 
Structures 
of Interest 

[Localization], 
Segmentation 

Method(s) 

Average Measure(s) 
[Comp. Time, Processing Speed, Memory] 

Folkesson et al. 
[15] (2007) 

Private: 
25\114 (79 KLG≤1, 35 KLG≥2) 
[170x170x104 voxels]. 
(0.7x0.7x0.78 mm

3
)  

Turbo 3-D T1-w\ 
sagittal 

MFC, MTC 
[–], approximate k-NN-
based region growing 

DSC (MFC, MTC): (77± 8, 81±6)% 
Se (MFC, MTC): (80.3± 11.6, 86.8± 7.7)%, 
Sp (MFC, MTC):  (99.96±0.01, 99.91±0.03)% 
[10 min., standard 2.8 GHz desktop, –] 
 

Yin et al. [16] 
(2010) 

OAI: 
25+9 (15 incidence, 19 progression) \ 
60 (48 incidence, 12 progression) 
[384x384x160 voxels] 
(0.37x0.37x0.7 mm3) 

3-D DESS WE\ 
sagittal 

FB, TB, PB, 
FC, TC, PC 

[AdaBoost classification 
based on 3-D Haar 
features], s-t graph cut 
oriented by AdaBoost 
and RF classifiers 

DSC (FC,TC,PC): (84, 80, 80)±4% 
Se (FC,TC,PC): (80±7, 75±8, 76±8)%, 
Sp (FC,TC,PC): (100, 100, 100)±0% 
Unsigned Surface Positioning Error (FC,TC,PC):  
(0.45±0.12, 0.53±0.11, 0.53±0.14) mm 
Unsigned Surface Positioning Error (FB,TB,PB):  
(0.22±0.07, 0.23±0.06, 0.23±0.11) mm 
[20 min, Intel Core 2 Duo 2.6 GHz, 4GB RAM] 
 

Fripp et al. [9] 
(2010) 

Private: 
20 (all healthy)\LOOCV 
[–] 
(0.23x0.23x1.5 mm3) 
(0.46x0.46x1.5 mm3) 
 

T1-w FS SPGR\ 
sagittal 

FB, TB, PB, 
FC, TC, PC 

[ASM (for bones)],  
hybrid deformable 
model (for cartilage) 

DSC (FC,TC,PC): (84.8±7.6, 82.6±8.3, 83.3±13.5)% 
Se (FC,TC,PC): (83.7±16.2, 82.9±20.7, 82.1±13.5)% 
Sp (FC,TC,PC): (99.9, 99.9, 100) ±0% 
[15 min, –, –] 

 

                                                        

1 Some abbreviations used in the table: KLG: Kellgren Lawrence Grade, LOOCV: Leave One Out Cross Validation, w: weighted, inc.: incidence, prog.: progression; k-NN: k-
Nearest Neighbours, CPD: Coherent Point Drift, MDL: Minimum Description Length, MRF: Markov Random Field, NCC: Normalized Cross Correlation, SSM: Statistical Shape 
Models, RF: Random Forest, AAM: Active Appearance Model, ASM: Active Shape Model, SVM: Support Vector Machine; MEDIC: Multiecho Data Image Combination, FS: Fat 
Suppressed, SPGR: Spoiled Gradient Recall, GRE: Gradient Echo,  DESS WE: Double Echo in the Steady State Water-Excitation; DSC: Dice Similarity Coefficient, Se: Sensitivity, 
Sp: Specificity. 
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Table 1.1 The details about some of the studies in the literature on fully-automatic segmentation of cartilage. (cont’d) 

Author(s) 
Data Set: Train #\Test # 

[Size] (Resolution) 
MR Type(s)\ 

View(s) 

Anatomic 
Structures 
of Interest 

[Localization], 
Segmentation 

Method(s) 

Average Measure(s) 
[Approximate Comp. Time, Processor, Memory] 

Fripp et al. [9] 
(2010) 

Private: 
20 (all healthy)\LOOCV 
[–] (0.23x0.23x1.5 mm

3
), 

(0.46x0.46x1.5 mm
3
) 

T1-w FS SPGR\ 
sagittal 

FB, TB, PB, 
FC, TC, PC 

[ASM (for bones)], SVM-
based region growing 
(for cartilage) 

DSC (FC,TC,PC): (86.2±4, 81.2±5, 81.7±10.5)% 
Se (FC,TC,PC): (84.4±14.7, 86.7±6.7, 89.5±4)% 
Sp (FC,TC,PC): (99.7, 99.7, 99.8) ±0.1% 
[15-30 min, –, –] 

Vincent et al. [21] 
(2010) 

OAI: 
80\– 
[384x384x160 voxels] 
(0.37x0.37x0.7 mm3) 
SKI10: 
–\40 
[–](–) 

OAI:  
3-D DESS WE\ 
sagittal 
 
SKI10: 
miscellaneous 
including T1-w and 
T2-w GRE or SPGR 
(some with FS) 

FB, TB, FC, 
TC 

[–], MDL groupwise 
registration, hierarchical 
AAMs 

SKI10:  
VOE (FC, TC): (36.3±5.3, 34.6±7.9)% 
RMS surface distance (FB, TB):  
(1.49±0.44, 1.21±0.34) mm 
SKI10 score(FB, TB, FC, TC): 
(51±14, 51±14, 47±14, 61±17) 
[15 min., Intel Core 2 Duo and Core 2 Quad 
processors (Dell Vostro 420) , –] 

Lee et al. [22] 
(2011) 

OAI: 
Experiment 1: 
10 (KLG≥2)\LOOCV 
Experiment 2: 
7 (KLG≥2)\10 (KLG≥2) 
Experiment 3: 
9x(1 (2-year follow-up)\1 (baseline)) 
[384x384x160 voxels] 
(0.37x0.37x0.7 mm3) 

3-D DESS WE\ 
sagittal 
 

FB, TB, PB, 
FC, TC, PC 

[energy optimization on 
MRF with constrained 
branch-and-mincut 
method (for bones), 
binary voxel 
classification (for BCI)] 
identification of 
reference patches with 
NCC, MRF optimization 
of local patch labels with 
graph-cut using regional 
and boundary 
probabilities, 
combination of patch 
segmentations with 
graph-cut 

Experiment 1: 
DSC (FB): (95.2, 96.4, 95.4)% 
DSC (FC,TC,PC): (82.5±2.81, 80.8±2.57, 82.1±3.89)% 
Experiment 2: 
DSC (FC,TC,PC): (81.6, 80.2, 80.3)% 
Experiment 3: 
DSC (FC,TC,PC): (85.8, 83.6, 84.1)% 
 
[15-21 min, 2.4GHz core 2 Quad CPU, 2GB RAM] 
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Table 1.1 The details about some of the studies in the literature on fully-automatic segmentation of cartilage. (cont’d) 

Zhang et al. [17] 
(2013) 

Private: 
4x11 (unknown health status)\ 
LOOCV 
[256x256x– voxels] 
(0.625x0. 625x1.5 mm

3
) 

 

T1-w FS SPGR, 
T2/T1-w FIESTA, 
T2/T1-w IDEAL GRE 
(water), T2/T1-w 
IDEAL GRE (fat)\ all 
sagittal 
 

FB, TB, PB, 
FC, TC, PC 

[multi-modal image 
thresholding, connected 
component labeling, 
distance transform (for 
bones)]; combined SVM-
DRF classifier, graphical 
model with loopy belief 
propagation inference 
(for cartilage) 

DSC (FC,TC,PC): (86.4±8.7, 88.0±10.2, 84.1±7.4)% 
Se (FC,TC,PC): (82.6±10.8, 86.0±12.2, 81.9±11.0)% 
Sp (FC,TC,PC): (99.6±0.2, 99.5±0.4, 99.7±0.2) % 
[33 min, 48-core high performance computer, –] 

Hani et al.[18] 
(2013) 

Private: 
–\ 3 proton and 3 sodium MR images 
[–x–x48] (0.47x0.51x1.5 mm3) 
(proton) 
[–x–x12] (2.81x2.81x8 mm3) 
(sodium) 

3-D MEDIC\ sagittal 
(proton) 
3-D GRE\ sagittal 
(sodium) 

AC (FC+TC) 

[fusion of proton and 
interpolated sodium MR 
images], histogram 
equalization, connected 
component selection, 
convexity measurement 
of region area, edge 
detection  

Se (AC): 80.27% 
Sp (AC): 99.65%  
[–, –, –] 

Shan et al. [10] 
(2014) 

PLS: 
18\ 706 (53% KLG≤1, 47% KLG≥2) 
[–].(0.31x0.31x1.0 mm3) 
 
SKI10: 
15/50 
[–] (–) 

PLS : 
T1-w 3-D SPGR\ 
coronal 
 
SKI10: 
miscellaneous 
including T1-w and 
T2-w GRE or SPGR 
(some with FS) 

FB, TB, FC, 
TC 

[affine and B-spline 
multi-atlas registration 
and three-label 
segmentation of bones], 
k-NN/SVM probabilistic 
classification, average-
shape atlas or multi-atlas 
segmentation of spatial 
prior, three-label 
cartilage segmentation 

PLS : 
DSC (FB, TB): (97±1.1, 96.7±1.2)% 
DSC (FC, TC): (76±4.8, 84.1±3.7)% 
[at least 10 hours] 
SKI10: 
DSC (FC, TC): (85.6±5.7, 85.9±4.7)% 
[–, –, –] 

Lee et al. [20] 
(2014) 

SKI10: 
100/50 
[–] (–)  
 

miscellaneous 
including T1-w and 
T2-w GRE or SPGR 
(some with FS) 

FC, TC 

[–], multi-atlas non-rigid 
registration merged by 
locally-weighted voting, 
graph-cut-based method 
driven by statistical data 

DSC(FC, TC): (71.7 ± 8.0, 72.4 ± 6.9)% 
[40 min, –, –] 
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Table 1.1 The details about some of the studies in the literature on fully-automatic segmentation of cartilage. (cont’d) 

Wang et al. [11] 
(2014) 
 

OAI: 
176 (iMorphics: 2% KLG=1, 98% 
KLG≥2)\3-fold cross validation 
[384x384x160 voxels] 
(0.37x0.37x0.7 mm3) 

3-D DESS WE\ 
sagittal 
 

FB, TB, PB, 
FC, TC, PC 

[CPD-based SSM, 
random walks algorithm 
for segmentation of the 
bones], iterative random 
forests classification 
including contextual and 
distance-related 
features, graph-cut 
optimization 

DSC (FB,TB,PB): (94.86±1.85, 95.96±1.64, 
94.31±2.15)% 
DSC (FC,TC,PC): (84.96±3.3, 83.74±4, 79.16±8.88)% 
[–, –, –] 

Dam et al. [12] 
(2015) 

CCBR: 
30 (80% KLG≤1, 20% KLG≥2)\ 110 
(70% KLG≤1, 30% KLG≥2) 
[–] 
(0.7x0.7x0.8 mm3) 
OAI: 
44 (iMorphics: 2% KLG=1, 98% 
KLG≥2)\44 (iMorphics: 2% KLG=1, 
98% KLG≥2) + 150 (VirtualScopics: 
14% KLG≤1, 86% KLG≥2) + 1436 
(Chondrometrics: 26% KLG≤1, 74% 
KLG≥2) 
[384x384x160 voxels] 
(0.37x0.37x0.7 mm3) 
SKI10: 
60\90 [] (-) 

CCBR: 
Turbo 3-D T1-w\ 
sagittal  
 
OAI:  
3-D DESS WE\ 
sagittal 
 
SKI10: 
miscellaneous 
including T1-w and 
T2-w GRE or SPGR 
(some with FS) 

LFC, MFC, 
LTC, MTC, 
PC, LM, 
MM 

[rigid multi-atlas 
registration], k-NN based 
region growing 

CCBR: 
DSC(MFC, MTC): (80.4±5.9, 83.9±4.8)% 
[–, –, –] 
OAI (iMorphics): 
DSC (LFC, MFC, LTC, MTC, PC):  
(84.2±4.3, 81.4±4.4, 86.6±3.4, 81.2±5.5, 73.9±11.6)% 
DSC (LM, MM): (83±5.5, 76±8.3)% 
[–, –, –] 
SKI10:  
DSC on training set (FB+TB): 97% 
DSC on training set (FC+TC): [64,73] % 
(84.2±4.3, 81.4±4.4, 86.6±3.4, 81.2±5.5)% 
VOE (FC, TC): (25.9, 25.7)% 
RMS surface distance (FB, TB): (1.4, 1.0) mm 
SKI10 score(FB, TB, FC, TC): (63.2, 61.8, 65.4, 66.7) 
[–, –, –] 

Williams et al. [8] 
(2010) 

19 (all healthy)\  
31 (all osteoarthritic) 
[–] 
(0.62x0.62x1.6 mm3) 

T1-w GRE (for 
cartilage)\ sagittal 
T2-w (for bones)\ 
sagittal 

FB, TB, PB, 
FC, TC, PC 

[MDL-based SSM for 
correspondence, AAM 
(for bones)]; manual (for 
cartilage) 

–, 
for each MDL SSM: [34 days, single 2.8 GHz Intel 
Xeon, –]] 
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1.1.4 Edge and Interest Point Detection in Volumetric Images 

MR imaging, one of the medical imaging techniques used today, generates 3-D digital 

data that consists of rows, columns and slices. The fact that image processing 

algorithms are usually used in two dimensional (2-D) images has made it more 

common for MR images to be processed in slices. However, while processing a 3-D 

image, incorporating the data that belong to the third dimension directly into the 

process can allow the data to be more comprehensively assessed so that more reliable 

results can be obtained [31]. Moreover, 3-D edge or interest-point detection methods 

can detect robust features for reconstruction [32], mutual registration [33], 

correspondence finding [7], segmentation [6], or recognition [34] of anatomic 

structures in MR images.  

Bomans et al. [32] performed 3-D reconstruction of anatomic surfaces in head MR 

images reasonably using morphological filtering and surface rendering algorithms, 

which were based on the contours found by 3-D Marr-Hildreth method [35], [36] 

accelerated with difference of Gaussians (DoG) technique. Pielot et al. [33] produced a 

reference template for the brain by using the interest points, which were detected in 

3-D windows through multiplication of first-order derivatives, in determination of 

anatomical correspondences within sub-volumes. They took the advantage of these 

interest points and the template in application of a distance-weighted warping 

process. Brejl and Sonka [37] designed a new 3-D edge detection method, which could 

work on anisotropic images, with interpolation of the image intensities in narrow 

neighbourhoods and calculation of their gradient directions. They showed that their 

method was superior to the 3-D Canny edge detection algorithm in most of the 

experiments performed on different data sets.  

Laplacian of Gaussian (LoG) filtering-based interest point detection was approximated 

by DoG operation in scale invariant feature transform (SIFT) algorithm by Lowe [38] to 

detect interest points at various scales. Scovanner et al. [34] proposed that the 

identifiers computed by expanding the SIFT algorithm into the third dimension could 

be more distinguishing in classification problems compared to 2-D SIFT identifiers for 

3-D data such as MR images or videos. In their experiments for action recognition in 
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video images the 3-D SIFT identifiers increased the classification accuracies due to their 

higher capability of representation.  

Harris and Stephens [39] developed Harris corner detection algorithm removing some 

disadvantages of the interest point detection method of Moravec [40], [41], which is 

based on the intensity differences between the local windows around the pixels and 

the shifted forms of these windows in different directions. The developed strategy to 

detect corners was more effective in terms of detection and repeatability, but had 

greater computational complexity due to convolution with a Gaussian window [42]. 

This convolution process was to take into consideration the intensity changes with 

respect to all directions, rather than only the 8 directions as in the method of Moravec, 

to assure rotation invariance. However, technically, the method of Harris computed 

intensity changes for the main directions of z and y alone. Therefore, Schmid et al. 

[43], who evaluated performances of several interest point detection methods, 

pointed out that the corners detected by the method of Harris were not completely 

independent of the direction of intensity changes, so cannot be regarded as 

rotationally invariant. 

Laptev and Lindeberg [44] described a spatio-temporal interest point detector based 

on Harris corner detection method to identify significant local intensity variations in 

both space and time. Separate scale parameters were used for the spatial and 

temporal domains to compensate their independence from each other. The results 

showed that 3-D spatio-temporal interest points corresponded to important events in 

video data, and the scale-invariant N-jets descriptors of these events were effective for 

compact representation and interpretation of video events. Sipiran and Bustos [45] 

emphasized that interest point detection in 3-D data that is defined as meshes is 

problematic. Because, computation of derivatives is ambiguous due to arbitrary 

topology in 3-D meshes. They developed an interest point detector for 3-D meshes 

depending on Harris operator, and obtained high repeatability values for the detected 

interest points under several transformations. Yu et al. [46] evaluated performances of 

several state of the art volumetric 3-D interest point detectors, which included Harris 

corner detection. Their quantitative analyses showed that, despite being the slowest 

detector, maximally stable extremal regions (MSER) achieved the best performance 
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with respect to the proposed combined metric of repeatability and accuracy. However, 

they concluded that the actual choice of the interest points does not only rely on such 

metrics, but primarily affected by the purpose of application, which may be object 

recognition, correspondence finding, or segmentation. 

1.2 Purpose of the Thesis 

The primary purpose of this thesis was to design a system that can achieve fully 

automatic segmentation of four cartilage compartments, which are FC, LTC, MTC, and 

PC, in high-field 3D-DESS sagittal knee MR images of OAI exclusively for the 

osteoarthritic participants. The system was considered to work in all slices of the MR 

images to enable 3-D segmentation and visualization of the compartments to aid 

further analyses. In general, approaches specialized for the cartilage compartments of 

interest were avoided so that the system can be adaptable for segmentation of other 

anatomical structures, which may deteriorate in time. The resulting automatic 

segmentations of the compartments were to be validated against their semi-manually 

delineated reference segmentations. 

First of all, the voxel classification-driven region-growing algorithm [15], [29] was 

intended for implementation as the segmentation method,, because it is an 

appropriate approach for the degenerative nature of the cartilage and does not 

require any operation prior to segmentation of cartilage. The system was especially 

targeted on platforms with limited resources to be able to conveniently respond 

without the need for sophisticated machines. For this purpose, one-versus-all 

classifiers were to be constructed for each cartilage compartment depending on 

effective training models, which could be generated using a number of subsampling 

techniques and smaller sets of significant positional and intensity-related local image 

features. The implemented system was expected to have comparable accuracies and 

efficiency with respect to the studies in the literature.  

Secondly, proposing a novel segmentation approach was the purpose in the light of 

the studies in the literature on fully automatic cartilage segmentation. Accordingly, a 

hybrid segmentation method was to be realized to regulate the automatic 

segmentation results of the former voxel classification-based system with use of high-
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level cues such as shape or texture via information fusion. Hence, misclassifications 

were expected to be corrected leading to an increase in the overall segmentation 

accuracies. For integration of high-level cues, compartmental appearance models were 

to be trained using dense set of correspondences on the surfaces of cartilage atlases. 

Then, AAM segmentation [47], [48] of the cartilage compartments formerly segmented 

by the voxel classification-based method was to be approximately achieved such that 

inter-participant transformations of the segmented cartilage compartments could also 

be enabled for information fusion. 

Thirdly, Marr-Hildreth edge detection based on LoG filtering operation, which enables 

isotropic derivation, and Harris corner detection methods were intended to be 

extended to work in 3-D volumetric images. The differences of the resulting edges 

from those detected by the standard Marr-Hildreth method applicable in 2-D slices 

were to be evaluated using MR images of the knee joint. Moreover, whether the 

interest points detected with the extended LoG filtering-based or Harris corner 

detection methods have advantages over the points detected by the slicewise 2-D 

implementations of these methods was to be assessed in volumetric binary or 

intensity-based images of FC model. 

From a broader perspective, the proposed cartilage segmentation and modelling 

systems in this thesis pave the way for analyses of cartilage with respect to the 

progression of osteoarthritis. Thus, they are aimed at supporting decisions of 

radiologists, orthopaedists, surgeons, pharmacologists, or other researchers for 

diagnosis or monitoring of osteoarthritis. 

1.3 Hypotheses 

The cartilaginous compartments of interest in knee MR images can be segmented 

without finding a VOI, requiring segmentation of the bones or determination of BCI 

unlike most of the studies in the literature. The voxel classification-driven region-

growing algorithm has such a straightforward approach suitable for the degenerative 

nature of the cartilage. A cartilage segmentation system that depends on this 

algorithm can be improved in accuracies and performance if a cartilage vicinity-
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correlated subsampling technique and a smaller set of significant features are used for 

the training models. 

The oversegmentation problem of the voxel-classification-driven region-growing 

algorithm [12] and the unreliable segmentation problem of the shape-based 

approaches for degenerative anatomical structures [8] may be solved by a hybrid 

cartilage segmentation system. The probabilities of voxel classification-based 

segmentation may be integrated with the shape and texture information of AAM 

segmentation in this hybrid system through an information fusion procedure. Although 

there are different hybrid studies in the literature for cartilage segmentation in knee 

MR images, the proposed hybrid system is novel overall in terms of the way the 

segmentation approaches are combined. If the appearance models can accurately 

synthesize the cartilaginous compartments of interest in the testing MR images, the 

hybrid system may improve the accuracies of the voxel classification-based 

segmentation system, and the shape information derived from the model may be 

useful in determining the approximate loss of compartmental cartilage for the 

participants. 

In addition to these, the standard algorithms for edge or interest point detection, 

which are applied in 2-D images, can be extended to work in 3-D volumetric images. 

Then, information along the third dimension is also taken into consideration. Hence, 

the edge or interest points detected by means of the extended methods may be more 

significant features to represent the objects of interest in volumetric images. 
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 CHAPTER 2 

THE KNEE JOINT 

The main anatomical structures in a normal knee joint of the human body are briefly 

described in Subsection 2.1 of this chapter. In addition, some disorders related to the 

knee joint are mentioned in Subsection 2.2 with a particular emphasis on the 

osteoarthritis, which mostly affect the cartilage compartments. The causes, symptoms, 

and diagnosis and treatment methods of osteoarthritis are explained as well as some 

semi-quantitative approaches to grade this disease in Subsection 2.2.1. 

2.1 Anatomy  

Joints are where bones articulate with each other, and based on their anatomical 

designs they can be categorized as immovable joints, slightly movable joints, and freely 

movable joints. Freely movable joints in the body are synovial joints (Figure 2.1 (a)). 

The articulating surfaces of the bones in synovial joints are covered by articular 

cartilage that reduces the friction between the bones, and absorbs shocks. Synovial 

cavities, also known as capsules, surround the articulating surfaces of a synovial joint, 

and within those cavities there exists synovial fluid that provides lubrication and 

nourishment of the articular cartilage [49]. 

One of the most important synovial joints in the human body is the knee joint (Figure 

2.1 (b)). It is formed by four bones: the femur, tibia, fibula, and patella, and movable 

due to articulations between the bones of femur and tibia, and the bones of femur and 

patella. During movement of the joint, wheel-shaped medial and lateral1 condyles of 

                                                        
1
 Anatomical terms of location. Medial describes the state of being near the centre of the human body. 

Lateral describes the state of being near the right or left sides of the human body. Anterior and 
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femur roll on the flat medial and lateral articulating surfaces of the tibial plateau 

(Figure 2.1 (c)) whilst patella articulates with the patellar surface of the femur. The 

knee joint with these articulations permits the flexion (forward movement) and 

extension (backward movement) as well as slight internal and external rotation of the 

lower leg relative to the thigh. 

Main anatomical structures of the knee joint are bones, cartilage compartments, 

ligaments, menisci, and a joint cavity filled with the synovial fluid as shown in Figure 

2.1 (b) and (d). Some other anatomical structures involve bursae, fat pads, tendons 

and muscles. Most of these structures are connective tissues with specialized cells 

called chondrocytes embedded in collagen and elastin fibers that break down with age 

[50]. 

2.1.1 Bones 

The four bones of the joint provide the knee with strength, stability, and flexibility. The 

outer layer of the bones is a thin, whitish skin layer known as the periosteum full of 

nerves and blood vessels, which supply oxygen and nutrients to the bone cells (Figure 

2.1 (a)). Periosteum is continuous with the ligaments that connect the bone to the 

surrounding bones and the tendons that connect the muscles to the bone. The layer 

below is a dense and rigid bone with thousands of tiny holes and passageways for the 

vessels, which is called the compact bone. It is made up of calcium and minerals, and 

supports the weight of the body. In the hollow centre of the bone, which is known as 

medullary or marrow cavity, is the spongy bone marrow surrounded and protected by 

the compact bone. Bone marrow produces red blood cells, which carry oxygen, white 

blood cells, which fight infection, or platelets, which help stop bleeding [51]. 

Femur: The upper leg bone, commonly called the thigh bone, is the longest, heaviest, 

and strongest bone in the human body. The head of the femur forms the hip joint with 

the acetabulum of the hip (coxal) bone, while its bottom end forms the knee joint with 

                                                                                                                                                                  

posterior are the terms used to describe the states of being near the front and back of the human body, 
respectively. Inferior and superior refer to the states of being below or above a given reference point. 

https://en.wikipedia.org/wiki/Extension_%28kinesiology%29
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tibia. In the knee joint femur has two round knobs called the medial and lateral 

condyles. 

  

(a) (b) 

 

  

(c) (d) 

Figure 2.1 Cut section views of (a) a typical synovial joint and (b) a normal knee joint 
[49]. (c) The femoral condyles and tibial plateau. (d) Main anatomical structures of the 

knee joint. 

Tibia: The larger and stronger of two lower leg bones, commonly called the shin bone, 

runs from the knee to the ankle medial to the fibula. The head of the tibia is made of 

two plateaus called the medial and lateral tibial plateaus, which forms the knee joint 

with the femoral condyles, and at the bottom end it is much narrower to form the 

ankle joint with the fibula and tarsus (an ankle bone). At the inferior edge of the lateral 
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plateau the tibia forms the proximal tibiofibular joint with the fibula, and this joint 

allows the position adjustment of the lower leg.  

Fibula: A long and thin bone parallel to the tibia is on the lateral side in the lower leg. It 

interacts with the tibia both in the tibiofemoral joint at the head and in the ankle joint 

at the bottom. Fibula functions as a support for the tibia, which bears the weight of the 

body from the knees to the ankles. 

Patella: A flat and triangular bone at the front of the knee joint, which is so-called the 

kneecap, protects the knee joint by relieving friction between the bones and muscles. 

As the knee moves, patella glides along the bottom front surface of the femur between 

the femoral condyles.  

2.1.2 Cartilage Compartments 

Articular surfaces of the bones are covered by the transparent hyaline articular 

cartilage, which is a thin, durable, extremely smooth, slightly flexible, and slippery 

tissue lubricated and nourished by the synovial fluid. Hence, articular cartilage protects 

the bones as the joint moves by reducing the friction between the bones and allowing 

the bones to move more easily against each other without pain. In addition, it acts as a 

shock absorber in cooperation with the joint cavity to resist impacts for the joints.  

Since cartilage has almost no blood vessels in contrast to bones, it is kept alive by the 

surrounding synovial fluid. Whenever the joint is loaded, squeeze of fluid enables 

removal of waste products out of the cartilage, and with relief of the load, the fluid 

seeps back in by supplying the cartilage with oxygen and nutrients. Therefore, the 

frequency of the joint use affects the health of cartilage [52].  

Cartilaginous compartments of the knee joint are femoral cartilage (FC) that covers the 

surface of inferior femur, tibial cartilage (TC) that covers the surface of superior tibia, 

and patellar cartilage (PC) that covers the surface of posterior patella. TC consists of 

two components called the lateral tibial cartilage (LTC) and medial tibial cartilage 

(MTC). When the knee joint is not flexed, LTC, MTC, and most of FC are located in 

tibiofemoral joint while PC and some of FC are in patellofemoral joint. Figure 2.2 

depicts these cartilaginous compartments as a 3-D model. 
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(a) (b) 

Figure 2.2 Cartilaginous compartments of the knee joint as 3-D models with (a) an 
inferior view and (b) a superior view. Red, green, magenta, and yellow represent FC, 

LTC, MTC, and PC compartments, respectively. 

2.1.3 Joint Cavity 

The joint cavity is surrounded by a thick and fibrous joint capsule that wraps around 

the knee joint. The synovial membrane is inside of this capsule, and a soft tissue called 

the synovium lines this membrane. The synovium secretes viscous synovial fluid, which 

fills in the joint cavity covering the surfaces of cartilage compartments. Thus, the 

synovial fluid aids lubrication of cartilage surfaces, and nourishes chondrocytes while 

at the same time it allows sliding motion between cartilaginous surfaces. In addition to 

these, synovial fluid can evenly distribute great pressures caused by the body 

movements or external forces without wear of the cartilage. 

2.1.4 Bursae 

In and around of the knee joint there are 13 sacs of connective tissue which are also 

lined by the synovial membrane and filled with the synovial fluid [49]. These sacs of 

various sizes are named as bursae, and they function to reduce the friction between 

bones, tendons, ligaments and soft tissue during the movement. One of the most 

significant bursae is the prepatellar bursa, which is located in between patella and skin 

to protect the patella. 

2.1.5 Fat Pads 

There are also pockets of adipose tissue so-called fat pads around the knee to protect 

the anatomical structures from external forces along with bursae. For example, the 
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largest fat pad known as infrapatellar fat pad absorbs shocks, and cushions the patella 

and ligaments during the movement of the knee joint. 

2.1.6 Muscles 

Three main muscle groups of the knee are quadriceps femoris with four muscles on 

the anterior thigh, hamstrings with three muscles on the posterior thigh, and the calf 

muscles. These muscle groups collaborate with each other in order to align, move, and 

stabilize the knee joint, so they play an important role in propelling of the body. 

Specifically, the quadriceps femoris muscles control extension of the leg at the knee 

and flexion of the thigh at the hip. The hamstrings group conversely contract for the 

flexion of the leg at the knee and extension of the thigh at the hip. The calf muscles 

control the flexion of the foot and the toes, so work for balancing the ankle joint and 

foot in addition to the knee joint. 

2.1.7 Tendons 

Fibrous and elastic portions of a muscle that connect the muscle to bones are known 

as tendons. The main function of tendons is to provide support for the joints. For 

instance, muscles of the thigh are connected to the patella by the quadriceps tendon 

to aid stabilization of the knee joint. 

2.1.8 Menisci 

There are two crescent-shaped pads entirely made up of rubbery fibrocartilage in 

between the articulating surfaces of the medial and the lateral femoral condyles, and 

the tibial plateau. These pads are called the medial meniscus and the lateral meniscus, 

respectively. 

The menisci prevent direct interaction of the femur and the tibia during activities, and 

absorb shocks by spreading the compressive forces over a wider area. Therefore, the 

cartilage compartments are protected from damage. Moreover, they contribute to 

lubrication of the knee joint compartments and lateral stabilization of the joint.  
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2.1.9 Ligaments 

Tough, fibrous and slightly elastic bands that surround the knee joint capsule are 

ligaments. They contribute the strength and stability of the knee joint by properly 

attaching the bones to each other. The major ligaments that support the knee joint are 

cruciate ligaments, collateral ligaments, patellar ligament, oblique popliteral ligament, 

and transverse ligament. Those within the articular joint capsule are called intrinsic 

ligaments, which include cruciate ligaments, and those outside of the capsule are 

called extrinsic ligaments, which involve collateral and popliteral ligaments. 

The two collateral ligaments in the knee joint are medial and lateral collateral 

ligaments, also known as tibial or fibular collateral ligaments. The medial collateral 

ligament binds medial side of the femur to the medial side of tibia, as the lateral 

collateral ligament connects the lateral side of the femur to the lateral head of the 

fibula. They prevent excessive medial or lateral movements by reinforcing the sides. 

The ligaments that cross each other in the centre of the knee are anterior cruciate 

ligament and the posterior cruciate ligament. The anterior cruciate ligament is located 

in front of the posterior cruciate ligament. The former obliquely extends from the 

lateral femoral condyle to the anterior intercondylar section of the tibia, while the 

latter obliquely extends from the inner surface of the medial femoral condyle to the 

posterior intercondylar section of the tibia. Anterior and posterior cruciate ligaments 

enable controlled movement of the tibia when sliding under the femoral condyles by 

limiting the forward and backward movements of the tibia to some extent as well as its 

rotation. Thus the knee is stabilized along its anterior and posterior axes. 

The patellar ligament aligns the patella with the tibia by extending from inferior side of 

patella to tibial tuberosity, which is below the tibial plateau on the anterior surface of 

tibia. This 5 to 8-cm long band of fibrous tissue supports anterior side of the knee joint. 

In addition to these, the oblique popliteral ligament attaches posterior part of the 

lateral femoral condyle to the posterior side of the medial tibial condyle to support the 

back of the knee joint, and the transverse ligament runs from anterior lateral meniscus 

to the anterior medial meniscus. 
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2.2 Disorders  

Stability and lubrication are two important characteristics of normal knee joint 

function, which were provided by the anatomical structures of the joint based on their 

morphological coordination and cooperative actions [52]. Any disorder of the knee 

joint directly or indirectly lead to malfunction of these characteristics, and such 

dysfunctional joints cannot totally recover even with artificial joint replacement. 

The knee joint disorders can be due to traumatic or pathological syndromes. The 

traumatic syndromes involve ligamental, meniscal, and cartilaginous injuries and tears, 

dislocation of the patella known as patellar subluxation, rupture of the tendons, or 

bone fractures. Figure 2.3 illustrates some of these traumatic syndromes in the knee 

joint. Among some pathological syndromes in the knee joint are osteoarthritis1, which 

is explained in more detail in Subsection 2.2.1, osteochondritis dissecans2, infectious 

arthritis3, chondromalacia patella4, gout5, rheumatoid arthritis6, patellar tendonitis7, 

knee bursitis8, and Baker’s cyst9 [53].  

Common causes of traumatic knee joint disorders are accidents or sudden actions 

while the weight is on a particular joint, which may occur during daily activities or 

sports in particular [50]. The underlying reasons of many of the pathological 

syndromes can be articular traumas previously mentioned, overuse of the joint, or 

gradual wear of the joint tissues with aging. Typical symptoms of these diseases 

include pain, swelling, crackles, tenderness, locks, giving way, or disability in 

movements with the damages in or dislocation of the anatomical structures. 

                                                        
1 Degeneration of articular cartilage mainly due to aging and wear 

2 Fracture or separation of a bone segment underneath the articular cartilage due to lack of calcium or 
blood flow, which is known as common cause of the loose body in the joint cavity 

3 Inflammation of the joint because of infection with bacteria or fungus 

4 Irritation of the cartilage on the posterior surface of the patella due to patellar traumas or overuse 

5 Arthritis due to build-up of acid crystals in the joint 

6 Chronic inflammation of the joints owing to attack of a faulty auto-immune system to the joint tissues 

7
 Inflammation of the tendon between the patella and the tibia 

8
 Inflammation of bursae caused by overuse of or injuries to the knee joint 

9 A result of fluid accumulation in the posterior knee 

http://www.webmd.com/osteoarthritis/guide/arthritis-tendinitis
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Accordingly, the joint cavity can contain fragments of bone, cartilage, or meniscus, 

which are called the loose body. Moreover, arthritic diseases or injuries may lead to 

knee effusion, which is increase of fluid over time inside the joint cavity mostly due to 

inflammation [53], [54].  

   
(a) (b) (c) 

Figure 2.3 Illustration of some traumatic syndromes in a knee joint: (a) anterior 
cruciate ligament tear, (b) meniscal tear, and (c) cartilage deterioration [50]. 

In addition to the knee joint symptoms, some other techniques can aid in diagnosis of 

the joint disorders. Among these techniques are physical examinations, some tests 

such as drawer test1 or valgus stress test2, X-ray and magnetic resonance imaging 

techniques, and arthrocentesis3 or arthroscopy4 of the knee joint. Once diagnosed, the 

knee joint disorders can be treated with pain or reconstructive medicines and 

injections, RICE5 and physical therapies, or arthroscopic and open surgeries. 

Arthroscopic surgery enables examination of the knee joint to find wears and tears of 

the meniscus and cartilage surfaces, detect loose bodies, and diagnose patellar 

misalignments in addition to treatment of these problems with minor operations. 

Thus, recoveries are quicker for arthroscopic surgeries than the open ones [54], [55]. 

                                                        
1 A test to examine the stability of the ACL and PCL by pulling and pushing the lower leg while holding 
the foot steady and the knee bent 

2 A test to examine injuries to MCL and LCL by pushing the lower leg laterally and medially, respectively, 
while holding the thigh steady 

3 Insertion of a needle into the knee joint space, and aspiration of synovial fluid 

4 A surgical operation with use of an endoscope, which is a flexible tube with camera and surgical tools 
on its end 

5
 A therapy for sprains and injuries, which is combination of resting, ice treatment, compression with 

bandages, and elevation of the joint close to or above the level of heart 
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2.2.1 Osteoarthritis 

Osteoarthritis is the most common form of arthritis that leads to articular pain, 

stiffness, and swelling due to significant deterioration or destruction of cartilage or 

degradation of the synovial cavity filled with synovial fluid. This degenerative joint 

disease mostly affects the load bearing regions of the thigh, knees, and spine. 

In developed countries with large populations of the elderly and obese people, 

osteoarthritis is highly prevalent and assessed as the main reason of disability. 

Approximately one third of the people are affected by this disease before they reach 

middle age, and nearly all of them is affected before the age of 60, but half of these 

people do not have any symptoms of the disease at all. Only 12% of the people at the 

age of 60 or above have symptomatic knee osteoarthritis [56]. 

2.2.1.1 Causes and Symptoms 

Deterioration of the cartilage mainly due to aging, excess weight, poor posture, 

articular overuse, and injuries can cause osteoarthritis. However, fractures of bones, 

meniscal problems, or ligamental tears can indirectly contribute to cartilage 

deterioration and, in consequence, osteoarthritic joints. Moreover, heredity and 

abnormal skeletal phenotypes are among the factors that make a person more prone 

to have this disorder. Some pathological syndromes such as inflammation or 

rheumatoid arthritis, diabetes, and hypothyroidism may also pave the way for 

osteoarthritis [57]. 

Some of the main symptoms of osteoarthritis are degradation and loss of articular 

cartilage, structural changes in bone, degeneration and inflammation of synovium, 

discomfort, pain, swelling, stiffening, grating, and loss of mobility of the affected joints, 

particularly during and after activity [56], [57]. Most significant cartilage deterioration 

occurs in central medial regions of tibiofemoral cartilage and posterior femoral 

cartilage [58], [59]. Once the cartilage softens and begins to deteriorate, in fact all 

other anatomical structures of the joint get affected. Deterioration process of cartilage 

can continue until most of this tissue is removed from the bone surfaces [54]. As a 

result of full-depth articular cartilage damages, local regions where articulated bones 

rub each other occur on the subchondral bone surfaces normally under cartilage. 
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Therefore bone spurs, known as osteophytes [60], may be formed in the joint to repair 

the cartilage damage and provide smoother joint surface. However, this attempt by 

the joint cannot resolve the problem due to lack of cartilage over the spurred bone 

surfaces [52]. Although articular cartilage lacks nerves, the frequency and degree of 

pain in the joint increase with the progression of osteoarthritis due to loose bodies, 

osteophytes, inflammation of the synovium, and fluid accumulation. In addition to 

these, in time osteoarthritis may cause skeletal abnormalities such as bowed legs, 

which is a consequence of the fact that medial side of the joint is affected by 

osteoarthritis more than the lateral side. 

2.2.1.2 Diagnosis and Treatment 

Since osteoarthritis progresses gradually, it may be difficult to definitively diagnose this 

disease in its earlier phases. Diagnosis of osteoarthritis is commonly made by 

examining the knee joint physically and paying attention to history of the disorder in 

patient. Arthrocentesis or blood tests can aid for diagnosis. Arthroscopy can be used to 

directly examine the deteriorated joint compartments such as cartilage and menisci. 

However, CT and MR images can non-invasively indicate the cartilage lesions, joint 

space narrowing (JSN) between the bones, osteophytes, and cysts, therefore are very 

effective to recognize osteoarthritis [57]. 

The damaged cartilage has a limited ability to repair itself, and if it could, recovery may 

take months depending on the severity of the damage [52], [54]. According to a 

longitudinal study on 43 osteoarthritic patients over 1.8 years in average, it was shown 

that 12% of the lesions prevalent at baseline were not detectable at follow-up, 6% 

changed to a lower grade, 32% remained the same, and 50% progressed towards 

higher grades [58]. Whether the disappeared lesions were healed, repaired, or could 

not be detected on follow-up examinations remained unclear. However, when the 

damage cannot be naturally repaired and tend to progress, medication and surgical 

procedures are generally preferred as treatment methods to reduce the symptoms 

and prevent the progression [61]. Approaches such as bringing in new cells or drilling 

can repair small cartilage lesions by stimulating the formation of cartilage cells. 
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Medium to large cartilage lesions can be reconstructed by filling of the defects with 

autologous tissue or synthetic material [62]. 

Heat and movement of the joints enable lubrication of cartilage, strengthen the 

muscles, and restrain pain. Therefore, simple precautions for early treatment can be 

physical therapies, daily exercises, and thermal baths. Furthermore, walking aids, 

shock-absorbing shoes or walking ways, braces to reduce the stress on medial knee, 

and staying fit can protect the joint [57].  

When these approaches were not useful for treatment, arthroscopy can be a solution 

for cleaning loose bodies or stimulating the development of cartilaginous tissue. 

Bowed legs can be straightened with a procedure called as proximal tibial osteotomy, 

in which the angles of the legs are re-aligned to reduce the pain and delay progression 

of the disorder in medial joint. The final treatment solution for osteoarthritis in the 

knee is replacement with an artificial knee joint. But, this solution is operative only a 

few decades, so more preferable for the elderly than the young. 

2.2.1.3 Semi-Quantitative Grading 

Kellgren-Lawrence grading system is used to define the severity of osteoarthritis with 

one of five grades in radiography. Kellgren-Lawrence grade (KLG) 0 indicates the 

absence of any radiographic finding regarding osteoarthritis; KLG 1, possible JSN and 

initial phases of osteophytes (bone spurs around the joint); KLG 2, probable JSN and 

explicit osteophytes, KLG 3, explicit JSN, multiple osteophytes, sclerosis (tissue 

stiffening), and probable deformation of bones; and KLG 4, large osteophytes, 

apparent JSN, extreme sclerosis, and significant deformation of bones [63]. Some 

other grading systems defined for the same purpose in MRI are whole-organ review 

MRI scoring system (WORMS), Boston-Leeds osteoarthritis scoring system (BLOKS), 

and knee osteoarthritis scoring system (KOSS) [62]. These grading systems are more 

comprehensive, and assess both the cartilage and its surrounding anatomical 

structures according to some described percentage damage intervals [64], [65]. 
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 CHAPTER 3 

MAGNETIC RESONANCE IMAGING 

Having its roots in 1940’s, magnetic resonance imaging (MRI) is today one of the most 

important techniques in medicine to generate the anatomical images which are useful 

for diagnosis of many disorders, clinical researches, or operative decision processes. 

Among the reasons why MRI is widely preferred are its non-invasiveness, high quality 

in tissue discrimination, and non-hazardous operating based on radio frequency (RF) 

signals lack of molecule-ionizing energy that may damage the tissues. 

Magnetic resonance (MR) scanners, which have magnetization capability higher than 

1.5 Teslas (T), are called high-field scanners, while those with magnetization capability 

lower than 1.5 T are called low field scanners. Even though the latter produces lower 

quality images, they have reduced costs per scan, for installation and maintenance as 

well as being highly comfortable without claustrophobic feelings and with minimal 

noise level [15]. However, the former generates higher quality images which enable 

better quantification and morphological evaluation of anatomical structures via 

manual or automated image segmentation techniques. MR machines incorporated 

with such automated functionalities for certain structures are referred as quantitative 

MRI [61]. Table 3.1 comparatively summarizes the high-field and low-field scanners. 

Table 3.1 Comparison of low-field and high-field scanners. 

Low-field Scanners High-field Scanners 
Relatively lower quality images High quality images 
Low scanning and maintenance costs High scanning and maintenance costs 
Minimal noise level High noise level 
No reason for claustrophobic feelings Lead to claustrophobic feelings 
Enable morphologic and quantitative 
evaluation  

Enable better morphologic and 
quantitative evaluation 
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3.1 Physics of MRI 

MRI principally works based on the excitation of the magnetic moment of hydrogen 

nuclei existent in different tissue molecules such as water and fat in order to produce 

images [2]. The hydrogen nuclei each spinning around its own axis as a charged 

particle have a magnetic moment, and since normally their direction of spin is 

randomly orientated, there is no dominant magnetic field exerting on them. A typical 

MRI scanner (Figure 3.1) is composed of four components; the primary magnet, 

gradient coils, RF coils, and a computer system [66]. Each component is briefly 

explained through the following subsections. 

 

Figure 3.1 A typical MRI scanner [67]. 

3.1.1 Primary Magnet 

The primary magnet transmits a strong external magnetic field to the human body it 

surrounds, which results in precession of the nuclei in the body around the direction of 

the field. The nuclei precess either being parallel (spin-up) or anti-parallel (spin-down) 

to the direction of the magnetic field. Because the nuclei in spin-up state have lower 

energy compared to the ones in spin-down state, there can be found more nuclei in 

spin-up state, and this generates a net magnetization along the external field. 
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All spinning nuclei have arbitrary precession frequencies and phases. The precession 

frequency   of a spinning nucleus in an external magnetic field   is called Larmor 

frequency, and given by the equation (3.1), where γ is a constant of gyro-magnetic 

ratio depending on the nucleus type, e.g. γ of hydrogen is     (
   

 
). 

       (3.1)  

3.1.2 Gradient Coils 

In order to localize slices and to obtain spatial information on each slice, magnetic 

fields generated by gradient coils are superimposed over the external magnetic field so 

that the external magnetization in places other than the slice of interest is cancelled. 

Three oppositely positioned gradient coils are available in MR scanner for sagittal, 

coronal, and axial (transverse) imaging which are depicted in Figure 3.2. 

 

Figure 3.2 Sagittal, coronal, and axial imaging planes. 

3.1.3 RF Coils 

RF coils transmit RF pulse to form a secondary magnetic field      over the external 

magnetic field     , and receive the signals in MRI scanner. When an RF pulse at the 

same frequency with the Larmor frequency of the nuclei is applied, the system starts 

absorbing the energy, and this case is called nuclear magnetic resonance. Then, some 

spin-up nuclei turn into spin-down state, and the precessions of the nuclei are 

synchronized, in other words the precessions become in-phase. As a result, the in-

phase net magnetization is headed towards the transverse plane at perpendicular 

angles to the direction of the external magnetic field. After termination of the RF 
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pulse, the nuclei return to their prior magnetization states influenced purely by the 

external magnetic field. This event known as relaxation decreases magnetization in the 

transverse plane when increases the magnetization along the external magnetic field. 

Such varying net magnetic field results in free induction decay during which the 

receiver RF coils receive the current induced in the transverse plane to generate 

images. Two relaxation processes are further explained in the following subsections. 

T1 Relaxation:  As some of the nuclei turn back to spin-up state due to loss of energy, 

the energy from the RF pulse stored in the spin system is transferred to the 

surrounding lattice, and the magnetization along the external magnetic field is 

recovered. This process is longitudinal relaxation, or spin-lattice relaxation. Time 

needed to recover 63 % of the relaxed magnetization in the direction of the external 

magnetic field is the decay time T1, and five times T1 indicates when the longitudinal 

relaxation is almost complete. Because T1 depends on the size and bonding type of the 

tissue molecules, it has an important function in imaging and contrast of different 

tissues. For example, small and movable water molecules loosely bonded in liquids 

have long relaxation times since they are limited in interaction with their surrounds, 

whereas large fat molecules in dense atomic bonding have short relaxation times. 

T2 Relaxation: The decay of magnetization in transverse plane because of de-phasing 

of the nuclei precessions is transverse relaxation, or spin-spin relaxation. T2 is spin-spin 

relaxation time constant, and is significantly shorter than the spin-lattice relaxation 

time T1, because spin-spin interaction is stronger. However, similar to T1, T2 is shorter 

for bodies with strong bonding of nuclei compared to liquids with loose bonding of 

nuclei. 

Now that inhomogeneity in the magnetic field cause additional de-phasing of spins, in 

fact T2 is shorter than expected which is then called effective time constant T2*. To 

reverse the effect of the inhomogeneity, a second RF pulse is applied after a time 

period of τ. At the echo time after another time period of τ, the spins have recovered 

and a new signal less in amplitude called spin echo is measured.  
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3.1.4 Computer System 

The received RF signals are processed by a computer system to produce the final MR 

images to be displayed. After analogue to digital conversion of the signals is 

performed, the resulting temporary frequency domain images are transformed to the 

spatial domain images via inverse Fourier transform. Each element of a digitalized 

spatial domain MR image is called a voxel, which is abbreviation of volume element. 

3.2 MRI for the Knee Joint 

MR scanners can generate highly detailed images of the knee joint, so most common 

means to directly visualize the cartilage. It enables detection of cartilage lesions and 

allows contrast adjustment to highlight different tissue types [62]. Furthermore, MR 

images are known to be effective in quantifying articular cartilage in the knee when 

processed through robust image segmentation methods. The reliability of MR imaging 

in morphological assessment and quantification of cartilage has been proven by a 

number of segmentation studies validated through the method of water displacement 

of surgically retrieved tissues using cadaveric joints, amputated joints or patient joints 

prior to total knee arthroplasty [61]. Therefore, cartilage loss in osteoarthritis can be 

non-invasively measured from MR images, and this aids in monitoring the effects of 

surgical or pharmacological treatments.  

The measures obtained via automatic segmentation must be scalable for the proper 

analysis of large number of clinical trials, and sensitive enough to small and localized 

changes in cartilage thickness for early diagnosis of the osteoarthritis. MR images 

suitable for cartilage quantification need sufficient signal-to-noise ratio (SNR) and 

contrast-to-noise ratio to delineate the bone and cartilage surfaces, high spatial 

resolutions within 0.5-2.5 mm to measure the thickness of cartilage either healthy or 

worn, and reasonable scanning times to prevent movement artefacts. 

3.2.1 Imaging Standards to Highlight Cartilage 

Although high-field MR scanners with magnetization capability greater than 1.5 T have 

better imaging quality than low-field MR scanners, cartilage measures at 3 T had only 

small differences compared to measures at 1.5 T [68]. Some MR imaging standards 
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involving fat-suppressed (FS) T1-weighted spoiled gradient echo (SPGR), which is also 

named as fast low-angle shot (FLASH), or selective water excitation (WE) 3-D double 

echo in the steady state (DESS) are particularly effective for representing cartilage 

tissue [62]. However, in a study of National Institute of Health 3-D DESS standard at 3 T 

had measurements consistent with SPGR standard at 3 T [69]. Furthermore, sagittal 

MR images can better visualize the articular cartilage in a knee joint without loss of 

continuity of the compartmental tissue. Figure 3.3 shows slices of some OAI MR image 

data sets in various standards and imaging views. 

  
(a) (b) 

  

(c) (d) 

Figure 3.3 MR image slices of the knee joint in (a) sagittal 3-D DESS, (b) sagittal T2 map, 
(c) coronal T1 3-D FLASH, and (d) axial multi-planar reconstruction standards. 

The sagittal OAI MR images scanned at 3T in 3-D DESS WE standard were used in the 

studies presented in this thesis. Frequency selective WE is a way of fat suppression 

that leads to higher contrast in between tissue types, and has shorter acquisition 
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times. In reconstruction of 3-D DESS MR images two or more gradient echoes are 

acquired by separating each pair with a refocusing pulse, and the data from these 

echoes are combined. This standard allows shorter acquisition times than SPGR, high 

SNR, high cartilage-to-fluid contrast, multi-planar reconstruction due to isotropic 

voxels, and decreased partial volume artefacts. Along with these strengths in imaging 

the cartilaginous tissue, some of its drawbacks include unreliable depiction of signal 

intensity changes within cartilage and vulnerability to susceptibility artefacts [62]. 

3.2.2 Anatomical Structures in Knee Joint MR Images 

With better inter-tissue contrast and high-quality imaging capabilities, MR images have 

been widely preferred in the literature to realize the segmentation of articular 

cartilage in the knee joint. Studies aimed at reliable systems for monitoring the 

evidence or progress of osteoarthritis segment some or all of the cartilage 

compartments in knee MR images. In addition, segmentation of bones can be 

performed to aid the delineation of cartilage in local volumes. Synovial fluid, ligaments, 

and menisci are usually anatomical structures of no interest for such segmentation 

systems. Nonetheless, since they are located near cartilage compartments and have 

similar appearance to cartilage in MR images, they may be easily confused with 

cartilage tissue. Therefore, their accurate separation from the segmented cartilage 

compartments is also an important issue for robust systems. 

Figure 3.4 depicts the bones and cartilaginous compartments that were segmented 

semi-manually in a slice of a knee MR image in 3-D DESS standard and with a sagittal 

view, which is cross-sectional view orthogonal to the left-right directions of the human 

body. The axial labels of the MR image with respect to the reference frame of an MR 

scanner are also designated in the upper left side of the figure. Appearances of bone, 

cartilage, or some other anatomical structures of the knee joint in axial FS and coronal 

MR image slices are as in Figure 3.5. It can be noticed in the axial slice in Figure 3.5 (a) 

that the cartilage is bright, and the synovial fluid is even brighter. 
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Figure 3.4 The compartments of FC, LTC, and PC, which are delineated in red, green 
and yellow, respectively, and their corresponding bones labelled in a sagittal 3-D DESS 

MR image slice. 

 
(a) 

 

(b) 

Figure 3.5 Appearances of some anatomical structures of the knee joint in (a) an axial 
MR image slice and (b) a coronal MR image slice [70]. 
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 CHAPTER 4 

AUTOMATIC SEGMENTATION OF CARTILAGE WITH AN IMPROVED 

VOXEL-CLASSIFICATION-DRIVEN REGION-GROWING ALGORITHM 

The study presented in this chapter focuses on the classification-driven region-growing 

algorithm proposed by Folkesson et al. [15], because this algorithm is an appropriate 

segmentation method for the degenerative nature of cartilage with its voxel-based 

approach compared to methods strictly depending on the shape information of the 

compartments of interest such as statistical shape models [7], [47], [48], [71], [72] or 

atlases [73]. However, deformable approaches [13], [74], [75], [76] or graph-based 

approaches [14] may handle the cartilage segmentation problem as accurately by 

using some contour or image dynamics such as curvature, intensities, or derivatives. 

But, for all approaches the initialization step of the segmentation method should be 

designed so that the automatic operation of the system is sustained. Consequently, 

some researchers have used shape-based methods to segment the knee bones with 

rigid shapes, and proposed local solutions to segment the cartilage compartments via 

individual or combined classification, deformable, or graph-based approaches [9], [10], 

[11], [16], [20], [22], [23]. Unlike such segmentation approaches, the focused 

classification-driven region-growing algorithm requires neither segmentation of bones 

nor determination of BCI, which makes it rather practical to apply.  

Nonetheless, Folkesson et al. [15] did not clearly explain how the background voxels in 

the training MR images were handled in their work. Dam and Loog [30] noted their use 

of the original work by Folkesson et al., and that the original work combined two 

binary classifiers which used around 500,000 training voxels for background, 120,000 

voxels for TC, and 300,000 voxels for FC. This indicates that the original work also 
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suffered from the abundance of MR image voxels, and somehow reduced their 

amount. Moreover, the classification-driven region-growing algorithm had the 

oversegmentation problem around the surfaces of cartilage compartments, which 

could not totally be solved even by a more localized implementation of the method by 

Dam et al. [12].  

If all voxels in the training MR images are included into the training models, models 

become more general, but this can result in an infeasible segmentation problem 

especially for high-field MR images with a great deal of voxels, and systems with 

limited memory or processing power. Subsampling of the MR image voxels can cure 

this problem with the cost of loss of generality [12]. However, running effective 

techniques for selecting the voxels can preserve the segmentation accuracies of most 

of the works in the literature by enabling a trade-off between the oversegmentation 

and undersegmentation issues. Therefore, investigation of the effects of various 

subsampling techniques in segmentation accuracies, as in this study, is important to 

guide the researchers interested in MR image segmentation through classification, and 

we believe that our study makes an incremental contribution in this respect. 

In the study described in this chapter, high-field MR images in the 3-D DESS standard 

obtained from the Osteoarthritis Initiative (OAI) database were processed to 

automatically segment the whole FC, LTC, MTC, and PC tissues of the osteoarthritic 

knee joints using a variation of a voxel-classification-driven region-growing algorithm 

[15] with sample-expand method [30]. In consideration of systems with limited 

resources concerning memory or processing power, the infeasibility of classification 

that depends on training models composed of millions of voxel samples with high 

dimensions was eliminated. This was achieved via reduction of the background voxels 

through Gaussian, uniform, vicinity-correlated (VC) sparse, or VC dense subsampling 

techniques, and determining a subset of significant features through feature selection. 

Four training models were generated by various subsampling techniques, and their 

effects on the final segmentation accuracies were investigated for cartilaginous 

compartments of interest in test image sequences. 

This chapter is organized as follows. Subsection 4.1 clarifies the materials handled and 

methods implemented in realization of the training phase (Subsection 4.1.3) and the 
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testing phase (Subsection 4.1.4) of the automatic cartilage segmentation system. 

Subsection 4.2 elaborates on the subsampling techniques applied when generating the 

training models. Subsection 0 presents the experiments performed and the results 

obtained for the OAI data sets. Subsection 4.3.1 analyses computationally most 

intensive procedure of the system as well as segmentation durations. 

4.1 Materials and Methods 

Morphological analysis of cartilage for healthy populations may have significance for 

some studies, such as those targeting the determination of population statistics on 

cartilage measurements [8]. However, in clinical or surgical practice, it is more 

probable to encounter patients with frequent knee symptoms due to degenerated 

articular cartilage, which makes analysis of osteoarthritic knees in MR images crucial. 

Consequently, this study was conducted using MR images of knee joints that were 

categorically assessed as osteoarthritic with Kellgren and Lawrence (K-L) grade ≥ 2 but 

visually evaluated not to have large full-depth deterioration of the cartilage, especially 

in the FC and TC compartments. The latter condition was due to the use of one third of 

these MR images for training and to reflect the features of the cartilage voxels 

properly.  

In total, 33 MR images of OAI [77] participants in the progression subcohort [78], 

which were scanned at baseline, and their corresponding data files of cartilage semi-

manually segmented with EndPoint software were used in this study. Appendix A.1 

presents further information on the subset of OAI data assessed by Imorphics and 

demographics of these 33 participants. 10 MR images were processed in training phase 

of the study, and 23 MR images were processed in testing phase. The original size of 

the image sequences was 384 × 384 × 160 with resolutions along the z, y, and x axes of 

rz = 0.36, ry = 0.36, and rx = 0.7 mm, respectively. The labelling of dimensions is based 

on the reference frame of the MR scanner designated in Figure 3.4. 

A block diagram of the implemented cartilage segmentation system for the training 

and testing phases is shown in Figure 4.1 in an integrated manner. The arrows, dashed 

blocks, and solid blocks in the chart indicate the course of data flow and system 

procedures for which the potential of a multi-core processor was exploited and was 
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not exploited. The green blocks represent offline procedures with output data that 

were recorded on a hard disk, and white blocks represent online procedures retrieving 

this recorded data from the hard disk on demand. Additionally, the training and testing 

procedures are separately depicted in Figure 4.2 and Figure 4.3 for further clarification 

of this chart. The following subsections elaborate on these procedures in an order that 

is close to the course of data flow. 

 

Figure 4.1 Block diagram of the implemented cartilage segmentation system for the 
training and testing phases. 

4.1.1 Preprocessing 

Initially, all MR images were cropped to a size of 280 × 280 × 143 both to reduce the 

burden of the feature extraction process and to remove noisy voxels near the image 

borders. The cropped region was determined using semi-manual segmentations of the 

cartilage compartments so that the information pertaining to any compartments in any 

MR images was retained. The next step was normalization of intensities of each MR 

image in between values of [0, 1]. Lastly, MR images of right knees were flipped along 

the x axis to relocate cartilage compartments to relatively consistent positions among 

all image sequences. 
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Figure 4.2 Detailed block diagram of the training phase. 

 

Figure 4.3 Detailed block diagram of the testing phase. 

4.1.2 Feature Extraction 

In total, 150 features were computed for each voxel of every MR image, which can be 

denoted as I, using three scales of the physical world as   = {0.65 mm, 1.1 mm, 2.5 
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mm}. These scales were also found to be reasonable according to the means and 

standard deviations of the subcompartmental cartilage thicknesses of healthy and 

osteoarthritic populations measured by Williams et al. [8] based on manual 

segmentations of the cartilage in MR images. The features consisted of voxel 

coordinates              , smoothed intensities     ; first-order derivatives   
  ,   

  , 

and    
   ; second-order derivatives    

  ,    
  ,    

  ,    
  ,    

  , and     
   ; third-order 

derivatives     
  ,     

  ,and      
   ; eigenvalues and eigenvectors of Hessian matrix    ; 

and eigenvalues and eigenvectors of structure tensor matrix          .  

The corresponding digital standard deviations on the axes for each value of scale    

were calculated as                              depending on the spatial 

resolutions (     ,   ) of the image axes. Then, smoothed intensities of the voxels 

were found by convolution of the MR image with the 3-D Gaussian filter     , the 

values of which are computed according to a multivariate Gaussian function in (4.1), 

where Σ is a 3 × 3 covariance matrix with diagonal values of    
 ,   

 ,   
  , and   is the 

vector of variables            indicating coordinates of the filter elements. 

         (√      | | )
  

   ( 
 

 
       ) (4.1)  

First, second, and third-order derivatives were computed by convolution of smoothed 

MR images     with the Prewitt filters of related axes shown in Figure 4.4, 

consecutively when necessary. Eigenvalues and eigenvectors of      and           for 

each voxel were estimated by decomposition of the matrices given in equations (4.2) 

and (4.3), respectively. As a result of this decomposition, 12 features comprising 3 

sorted eigenvalues and their corresponding eigenvectors each of length 3 were 

obtained. The scale    for the structure tensor matrix determined the standard 

deviations of the 3-D Gaussian filter      applied to the image sequences of multiplied 

first-order derivatives before the decomposition operation. Values of   = {1.1 mm, 2.5 

mm} led to six combinations of the (  ,   ) tuple. 

Computational complexity was greatest for the features of eigenvalues and 

eigenvectors of the structure tensor matrix. Although such features could have been 
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computed for only a subset of voxels after subsampling (Subsection 4.1.3.2) on each 

training MR image, they were computed for all voxels both to enable regeneration of 

training models and feature visualization. On the other hand, computation of only the 

significant features selected (Subsection 4.1.3.3) sufficed for the test MR images. 

   

 

(a) (b) (c)  

Figure 4.4 Prewitt filters used to compute the derivatives along the (a) z, (b) y, and (c) x 
axes. 
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All features of each training MR image were max-min normalized to be in between 

values [-1, 1] except position features that were normalized to be in between values 

[0, 4]. This was because they were selected as significant features, so position error 

during classification can be penalized a little bit more. The feature normalization 

parameters for every training image sequence were also stored for use during the 

automatic segmentation of voxels of test MR images. 

4.1.3 Construction of Training Models 

To construct the training models, using 10 MR images overall composed of 

approximately 110 million voxels with 150 features each leads to a system that cannot 

be feasibly realized in case of limited resources concerning memory or processing 

power. Even storage of such a large amount of data in memory of typical size is 

impossible, not to mention the overhead of constructing a parametric model of data or 

of dealing with the all of the data as the model. Consequently, abundance of the voxels 
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was eliminated for each MR image via uniform, Gaussian, VC sparse, or VC dense 

background subsampling techniques, and the high dimensionality of the voxel samples 

was reduced by feature selection to overcome this problem. Then, the training data 

sets decreased in size and dimension were directly treated as the models through a 

non-parametric one-versus-all classification approach enabling parallelization, which is 

further explained in Subsection 4.1.4.2. 

4.1.3.1 Central Coordinate Computation 

After preprocessing sequences of training images, central coordinates of each cartilage 

compartment were calculated by evaluating the training MR images both individually 

and collectively. To compute the individual central coordinate of a cartilage 

compartment, 3-D coordinates of the voxels within volume of the compartment, which 

was delineated by a trained segmenter beforehand, were averaged in the axes for a 

single training MR image. To compute the collective central coordinate of a cartilage 

compartment, the same averaging operation was performed by taking voxel 

coordinates of the compartment in all of 10 training MR images into consideration. 

Individual central coordinates of the compartments over MR images were useful in 

Gaussian subsampling of background voxels, and collective central coordinates were 

useful in seed selection and position alignment in test image sequences. 

4.1.3.2 Subsampling 

When constructing the training models of each cartilage compartment in each training 

MR image for one-versus-all classification of the cartilage voxels, all cartilage voxels of 

the related compartment were labelled as positive samples, whereas the rest were 

labelled as negative. Nevertheless, since the number of cartilage voxels in an MR 

image is much lower than the number of background voxels, all cartilage voxels were 

included in a training model whereas equal number of background voxels were 

selected via uniform, Gaussian, VC sparse, or VC dense background subsampling 

techniques. Hence computational infeasibility of the classification problem could be 

resolved substantially. The four background subsampling techniques enabled 

construction of four different training models for each cartilage compartment of each 

training MR image. The subsampling strategies of these techniques are separately 
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explained in Subsection 4.2, because the main contribution of this study is based on 

investigation of the subsampling techniques introduced.  

4.1.3.3 Dimensionality Reduction 

The dimension of voxel features was reduced from 150 to 18 for each cartilage 

compartment. This was done by comparing the features selected by a forward feature 

selection algorithm in Gaussian subsampled training models of 3 MR images. The 

algorithm ran separately for each of those MR images using 10-fold cross-validation of 

their training models and the classification procedure described in Subsection 4.1.4.2. 

Due to long response times of the classification algorithm for high dimensions, feature 

selection was forwardly run for only up to 20 features by treating all features 

individually.  

Next, among the features selected in the training models, significant features for the 

respective cartilage compartment were identified as those that are exactly the same 

for at least 2 MR images, those differing only in scale for at least 2 MR images, and 

those highly discriminative for any of the 3 MR images, in order of decreasing priority. 

Table 4.1 lists the 18 significant features for each cartilaginous compartment of 

interest without indicating any priority of significance. Numbers at the lower right 

corner of the Hessian and structure tensor matrices refer to one of their 12 eigenvalue 

and eigenvector features in the order stated in Subsection 4.1.2. Figure 4.5 (a) through 

(d) visualize some significant features selected for FC, LTC, MTC, and PC, respectively. 

Because MTC and LTC were visible in only the first and second halves of the image 

sequences, (c) depicts slice number 50, while (a), (b), and (d) depict slice number 110 

of the same MR image. 

An exhaustive search could not be performed when selecting the features owing to 

computational constraints, but features found as significant were sufficiently effective 

in their corresponding classifiers of cartilage compartments. Furthermore, selecting 

features on the training models of other subsampling techniques did not affect the 

primarily identified significant features. 
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4.1.4 Automatic Segmentation 

Segmentation of cartilage in test MR images involved a blind approach in a way that no 

prior information related to entries on the position of cartilage or manual 

interventions was assumed other than the information derived from the training data 

sets. To realize the automatic segmentation, the seed selection and position alignment 

procedures relied on the central coordinates of cartilage compartments, while the 

classification procedure relied on the training models of various subsampling 

techniques. 

Table 4.1 Significant features selected for classification of the cartilaginous 
compartments of interest. 

Compartment Selected Features 
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4.1.4.1 Seed Selection and Region-Growing 

The classification-driven region-growing algorithm involved the sample-expand 

method, which enables efficient segmentation of objects of interest with large surface 

area-to-volume ratio [30]. The algorithm was initialized through determination of at 

least 100 seed points that belong to the cartilage compartment to be segmented. To 

achieve this, voxels were randomly chosen using a 3-D Gaussian image with the centre 
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shifted to the collective centre of the respective cartilage compartment in the entire 

training data sets as the weights. The chosen voxels were classified with respect to the 

corresponding training model of a subsampling technique. Then, the voxels classified 

as cartilage became the seed points of the region-growing algorithm and were grown 

iteratively by integrating them with the cartilage voxels in their 26-neighbourhood 

until all of the neighbours were background. During the region-growing procedure, 

classification probabilities of the voxels were also maintained for each classifier to 

resolve the issue of multi-labelled voxels in the post-processing procedure. 

   

 

 

 

(a) (b) (c)  (d)  

Figure 4.5 (a)    
         , (b)   

    , (c)    
    , and (d)    

     in 50th (c) and 110th (a, b, d) 

slices of the same MR image. 

4.1.4.2 One-Versus-All Classification 

The four cartilage compartments of interest have relative positional and morphological 

differences. However, they have the same structural components and resembling local 

morphologies, making their appearance similar in MR images. Hence, distinguishing all 

of these compartments at once with a multi-class classifier was considered to be more 

prone to failure than distinguishing them separately with one-versus-all classifiers each 

trained for a cartilage compartment. Four classifiers of FC-versus-all, LTC-versus-all, 

MTC-versus-all, and PC-versus-all were run to segment the respective cartilage 

compartment using the selected features of the training model generated by one of 

the subsampling techniques. The classifiers depended on the approximate k-NN 

algorithm in the statistical learning toolbox [79] implemented by Mount and Arya [80], 

[81]. For a training data set of size n and dimension d, the approximate k-NN algorithm 

constructs a data structure of size       in            time. For any query sample, 

the approximate k-NN are determined with a relative error bound   from the exact k-
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NN in  (               ) time, where      is a constant that depends on 

parameters d and  . These parameters were given as 100 and 3 in this study so that 

the approximate 100-NN of the queried samples, which had error bound of 3 from the 

exact 100-NN, were retrieved [82]. 

Even after subsampling, roughly 300 thousand, 100 thousand, and 70 thousand data 

samples were available for the training models of FC, TC, and PC, respectively, for a 

training MR image. When 10 MR images were processed for the training phase, the 

computational or memory-related capabilities of a resource-limited system would be 

overwhelmed if a predictive model out of so much data via parametric approaches was 

built or if all of the data was handled for every query sample in a test image sequence 

via standard nonparametric approaches. The approximate k-NN algorithm performs 

quite efficiently on data sets composed of hundreds of thousand samples with 

dimensions as high as 20 [80]. Consequently, parallelization of the classification 

procedure on multi-core systems was considered by assigning to each core the task of 

classification of query samples depending on the training model and feature 

normalization parameters of only a single MR image. Then, 100 approximate 

neighbours of the query samples were identified in each task, and the nearest 100 

among one thousand neighbours were later determined again. If at least 90% of these 

neighbours were cartilage of a compartment, then the query samples were labelled as 

cartilage of that compartment. Otherwise, they were labelled as background. This 

threshold is indicated by        and was essential to remove most of the 

oversegmented fragments of the main cartilage component. Its value was set 

empirically to maximize the DSC measure of automatic segmentations on a subset of 5 

test MR images. 

4.1.4.3 Post-Processing 

The result of the classification-driven region-growing algorithm was a number of 

components that represent a cartilage compartment. However, small components 

were generally false positives, while large components were true positives. Therefore, 

a connected component-finding algorithm was run, and size of each component was 

estimated by voxel counting. The component with the greatest size was accepted as 
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the true segmentation result of the compartment, since this was a relatively robust 

approach.  

When all cartilaginous compartments were segmented, multi-labelled voxels were 

assigned to a single label based on their probabilities of classification for different 

compartments. For this purpose, the intersection of the segmented tuples of LTC-MTC, 

FC-LTC, FC-MTC, FC-PC, LTC-PC, and MTC-PC were investigated in order, and multi-

labels were cleared. This operation required the connected component-finding 

algorithm to be run a second time separately on the segmentation result of each 

cartilage compartment to remove small isolated components and obtain the greatest 

component as the final segmentation result. 

4.1.4.4 Position Alignment 

Positional differences of the knee joints among MR images could affect the accuracies 

of segmentation negatively since features related to position were significant for most 

of the classifiers. To tolerate these differences, test MR images can be shifted so that 

the cartilage compartment to be segmented becomes closer to its counterparts in the 

training data sets. The amount of shift for each cartilage compartment in a testing 

image sequence was computed by subtracting the central coordinate of the 

automatically segmented region of cartilage before position alignment (BPA) and the 

collective central coordinate of the corresponding cartilage compartment in the 

training MR images. Because feature extraction procedure was performed offline in 

this study, position alignment was realized through only relocation of the features 

other than the position according to the shifting amount instead of shifting the test 

image sequence itself and computing the significant features as required. 

Subsequently, the procedures of Subsection 4.1.4.1 to Subsection 4.1.4.3 were 

repeated, and automatic segmentation of cartilage after position alignment (APA) was 

achieved. 

4.2 Subsampling Techniques 

The principle of the subsampling procedure described in Subsection 4.1.3.2 is to select 

a reasonable subset of background voxels in each training MR image for each 
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compartment to solve the infeasibility problem of classification. Although partial 

representation of large amount of background voxels may affect the segmentation 

accuracies negatively, effective selection of these voxels rather than performing only a 

random selection can compensate this.  

In this study, first of all, uniform subsampling (Subsection 0) of background voxels was 

implemented for construction of the training models, but this technique did not result 

in satisfactorily high segmentation accuracies as expected, especially for smaller 

compartments such as LTC, MTC, and PC. Then, Gaussian subsampling (Subsection 0) 

of the background voxels was realized, which yielded better segmentation accuracies 

yet poorer representations for the compartments with highly curved and large shapes 

such as FC. Therefore, a cartilage vicinity-correlated subsampling technique 

(Subsection 0) was designed to generate proper representations by flexibly adapting to 

the shape of the object of interest, and was used to derive VC sparse and VC dense 

representations for each compartment in the training MR images. 

Each subsampling technique adopted a different strategy to determine the selection 

weights of the background voxels, and then similarly performed a random selection of 

these voxels depending on the weights. The pseudo-code of the generic algorithm that 

was run to apply one of the subsampling techniques is as in Figure 4.6. This algorithm 

common for all techniques first determines the background volume (Vbg) that 

surrounds a cartilage compartment (Vobj), and the number of voxels in this 

compartment (nobj). Second, the selection weights of the background voxels (W) are 

computed depending on the choice of subsampling technique. Then, nobj unique voxels 

with the label of 1 in Vbg are randomly selected among the background voxels using W. 

Finally, the algorithm integrates the cartilage voxel coordinates Cobj and subsampled 

background voxel coordinates Cbg as well as the corresponding labels of these voxels to 

generate the training model of the cartilage compartment for a training MR image and 

a subsampling technique. 

Subsampling strategies of the techniques are demonstrated in Figure 4.7 through 

slicewise visualization of some voxels included in the models of FC for a training image 

sequence in the first row, and 3-D visualization of all voxels included in the FC training 
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models of a training MR image in the second row. The voxels of FC compartment are 

depicted in red, as background voxels are in blue in this figure. 

Data:   sizeMR: size of the training MR image in (z, y, x) axes; 

Vobj : Volume in which object of interest voxels in the training MR 

image are labelled as 1, and background voxels are labelled as 0; 

Cobj : (z, y, x) coordinates of the object of interest voxels; 

technique: choice of subsampling technique  

Result: Ctrain: Coordinates of the voxels selected for the training model of 

the object of interest in the training MR image; 

labels: labels of the voxels selected for the training model 

1 nobj = count(Vobj == 1);    // number of object voxels 

2 /* Negate the volume that highlights object of interest */ 

3 Vbg =  Vobj ;        // volume that highlights background 

4 nbg = count(Vbg == 1);        // number of background voxels 

5 Cbg =  ;         // (z,y,x) coordinates of subsampled background voxels 

6 i = 0; // counter 

7 /* Compute selection weights W of the background voxels depending on technique */ 

8 if technique==’Uniform’ then 

9            W = UniformWeights(sizeMR, Vbg, nbg); 

10 else if technique==’Gaussian’ then 

11           W = GaussianWeights(sizeMR, Cobj , nobj , Vbg); 

12 else if technique==’VC sparse’ then 

13           W = VicinityCorrelatedWeights(sizeMR, Vobj , Vbg, 0.9); 

14 else if technique==’VC dense’ then 

15           W = VicinityCorrelatedWeights(sizeMR, Vobj , Vbg, 0.67); 

16 /* Iterate until nobj background voxels are selected */ 

17 while i   nobj do 

18 /* Select randomly a voxel in Vbg based on weights W */ 

19 cvoxel = randomSelect(Vbg, W);          // selected voxel coordinate 

20 /*If the voxel is not already selected store its coordinate*/ 

21 if cvoxel   Cbg then 

22 Cbg = Cbg  cvoxel; 

23 i = i + 1; 

24 Ctrain = Cobj   Cbg; 

25 /* Merge label sequences of nobj 1’s and nbg 0’s*/ 

26 labels = merge(sequence(nobj , 1); sequence (nbg, 0)); 

Figure 4.6 The generic algorithm: Subsample. 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 4.7 Voxels of FC models subsampled in a slice (first row) and in all slices (second 
row) of a training MR image according to (a, e) uniform, (b, f) Gaussian, (c, g) VC 

sparse, and (d, h) VC dense subsampling techniques. 

4.2.1 Uniform Subsampling 

Uniform subsampling is the simplest technique, since it used uniform weights during 

random selection of the background voxels. As Figure 4.7 (a) and (e) show, subsampled 

background voxels are widely distributed throughout the MR image with uniform 

subsampling. The algorithm in Figure 4.8, which is called within the generic algorithm 

in Figure 4.6, presents the pseudo-code of the weight generation process of this 

subsampling technique for the background voxels.  

Data:   sizeMR, Vbg , nbg 

Result: W  

/* A sequence of uniform weights of the same size as the MR image */ 

W = sequence(sizeMR, 1/ nbg); 

/* Assign uniform weights to voxels labelled as 1 in Vbg */ 

W = Vbg    W; // element-wise product 

Figure 4.8 Algorithm: Uniform weights. 

A training model generated with uniform subsampling technique is strong to represent 

the background voxels in the entirety of MR image. However, it is weak to represent 

the background voxels in a localized sub-volume of the same MR image. Therefore, 
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representation of surrounding background voxels of especially small objects of interest 

in an MR image is insufficient with this technique. 

4.2.2 Gaussian Subsampling 

Gaussian subsampling technique weighted background voxels according to the 

intensities of a 3-D Gaussian image, which has the same size as the MR images and a 

centre shifted to the centre of the cartilage compartment of interest. The weight 

generation algorithm of this technique is pseudo-coded in Figure 4.9.  

Data:   sizeMR, Cobj, nobj, Vbg  

Result: W  

/*Find (z, y, x) central coordinate of the object of interest*/ 

centreobj = sum(Cobj)/nobj ; 

/* Generate a 3-D Gaussian image with size of sizeMR and standard deviation of sizeMR/6 */ 

Gauss3D = generate3DGauss(sizeMR, sizeMR/6); 

/* Compute the amount of shift to carry the centre of 3-D Gaussian image to the centre of 
object */ 

centreGauss = sizeMR/2; 

shiftAmount = centreobj - centreGauss;           

/* Translate 3-D Gaussian image by the shift amount */ 

Gauss3Dshifted = translate(Gauss3D, shiftAmount); 

/* Assign Gaussian weights to voxels labelled as 1 in Vbg */ 

W = Vbg    Gauss3Dshifted;           // element-wise product 

Figure 4.9 Algorithm: Gaussian weights. 

Gaussian subsampling samples in a more localized volume in comparison to uniform 

subsampling so can generate better representations for objects that can be fully 

bounded by the constructed Gaussian sphere. However, it can fail to represent the 

objects with large and curved shapes properly. This problem is well-defined in Figure 

4.7 (b) and (f) for FC compartment. Central coordinate of FC compartment do not 

exactly coincide with the compartment itself due to curved shape of FC. In addition to 

this, FC is the largest compartment of all, so the sphere in 3-D Gaussian image cannot 

envelope this compartment. Consequently, the background voxels near central 

coordinate of FC are frequently selected, whereas those distant from the centre are 

rarely selected. Although modifying the values of the covariance matrix of the 

Gaussian function to adjust the shape of Gaussian according to the shape of the object 
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of interest as much as possible might mitigate this problem, a more flexible solution is 

required as presented in the next subsection. 

4.2.3 Vicinity-Correlated Subsampling 

A subsampling approach that can be conveniently adaptable for objects with any 

shape and size is necessary for generation of effective representations, and vicinity-

correlated subsampling was designed for this purpose. The background voxel-

weighting algorithm of vicinity-correlated subsampling is presented in Figure 4.10, 

which is the basis of both VC sparse and VC dense subsampling techniques. 

Data:   sizeMR, Vobj, Vbg, sparseness 

Result: W  

W = sequence(sizeMR, 0);                   // weights matrix of zeroes 

sphere = prepareSphere(5);             // 3-D sphere with 5-pixel diameter 

Vcurrent = Vobj ; 

Cdilated = sequence(3, 0);                      // dummy initialization with (0,0,0) 

weightcurrent = 100; 

/* Dilate Vcurrent until it covers the entire MR image */ 

while   (Cdilated ==  ) do 

/* Morphologically dilate Vcurrent with sphere */ 

Vdilated = dilate(Vcurrent, sphere); 

/* Find dilated portion of Vdilated */ 

Vdifference = Vdilated Vcurrent;                   // element-wise subtract 

/* Find coordinates of voxels with value 1 in Vdifference */ 

Cdilated = coordinatesOf(Vdifference == 1); 

if   (Cdilated ==  ) then 

/* Assign weightcurrent to Cdilated coordinates in W */ 

W(Cdilated) = weightcurrent; 

Vcurrent = Vdilated;                                         // update Vcurrent 

/* Modify weightcurrent using sparseness */ 

weightcurrent = weightcurrent *sparseness; 

/* Normalize W so that its values add up to 1 */ 

W =W/sum(W); 

Figure 4.10 Algorithm: Vicinity-correlated weights. 

To weight the background voxels, VC subsampling iteratively dilates the volume of the 

cartilage compartment by a spherical morphological operator with a diameter of 5 
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voxels until the full size of the MR image was reached, and assigns each dilated portion 

to a weight that constantly decreases with the number of iterations. The difference 

between the VC sparse and VC dense subsampling techniques is related to the rate of 

change of these assigned weights. As the lines 13 and 15 of the algorithm in Figure 4.6 

define, sparse and dense techniques apply decreases of 10% and 33% in the weight of 

the previous iteration, respectively, through the sparseness parameter of the 

algorithm in Figure 4.10. Figure 4.7 (g) and (h) show how the background volume 

around FC can be represented as intended with vicinity-correlated subsampling 

approach. Background voxels that surround FC are selected within a wider volume for 

VC sparse subsampling, and within a narrower volume for VC dense subsampling. 

4.3 Experimental Results 

The automatic segmentation results of FC, LTC, MTC, and PC for 23 test MR images 

were validated against their reference semi-manual segmentations by computing the 

measures of DSC, sensitivity, and specificity according to equations (1.1), (1.2), and 

(1.3). Table 4.2 presents the means and standard deviations of these measures for 

each compartment of cartilage in all test image sequences before and after the 

enhancement of position alignment for the four different training models. The results 

demonstrate that uniform subsampling enabled the highest sensitivity values when VC 

dense subsampling produced the highest specificity values for all cartilage 

compartments. Most of the best DSC values were observed in the case of VC sparse 

subsampling, which had relatively balanced sensitivity and specificity values. The 

reasons for these results can be clarified through the classification trade-off between 

background and cartilage voxels for the various subsampling techniques. The degree of 

separability of the classifier affects the accuracy of segmentation now that there is no 

other restriction on termination of the growing cartilage volume other than the 

neighbouring voxels classified as background in this segmentation approach.  

When uniform subsampling collected excessively distributed background samples for 

the training models, the representation of background samples was weaker in the 

vicinity of cartilage. Thus, there was oversegmentation of the respective cartilage 

compartments combined with other similar structures. This resulted in maximization 
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of sensitivity and minimization of specificity measures. The situation was reversed 

when VC dense subsampling intensely collected background samples near cartilage. 

Then, the bias toward strong representation of those background samples caused 

undersegmentation of the cartilage. However, it should be noted that augmentation of 

DSC measures could be possible for these two techniques if the classification threshold 

   is assigned proper values so that        for uniform subsampling and        for 

VC dense subsampling. But even then the DSC measures for VC sparse subsampling 

with        remained optimal. Table 4.3 indicates this effect of    on mean DSC 

measures when differently subsampled training models were used. 

Table 4.2 Means and standard deviations (Std.) of DSC, sensitivity (Sens.), and 
specificity (Spec.) measures of the automatically segmented cartilaginous tissues in the 

knee joint with respect to their manual segmentations before and after the 
enhancement of position alignment for the training models generated by different 

subsampling techniques. 

Cartilage Compartment FC TC LTC MTC PC Total 

Sampling Measure (%) BPA APA BPA APA BPA APA BPA APA BPA APA BPA APA 

Uniform 

DSC Mean 79.51 80.59 69.10 66.49 69.02 65.89 69.25 67.00 56.72 57.31 74.70 74.76 

DSC Std. 4.00 2.90 3.91 4.93 6.43 7.02 4.71 5.26 13.33 13.24 3.14 4.01 

Sens. Mean 85.98 90.69 94.90 97.82 94.24 98.55 95.64 96.91 90.08 92.68 90.61 94.86 

Sens. Std. 9.51 4.23 5.80 1.48 8.81 1.12 4.33 2.41 10.85 6.71 7.13 2.63 

Spec. Mean 99.65 99.59 99.66 99.58 99.83 99.78 99.83 99.81 99.68 99.67 99.01 98.87 

Spec. Std. 0.09 0.10 0.09 0.08 0.06 0.04 0.05 0.05 0.13 0.13 0.26 0.24 

Gaussian 

DSC Mean 79.28 80.50 80.48 82.04 80.75 83.17 79.89 80.65 66.16 71.03 79.10 81.03 

DSC Std. 3.67 3.07 3.82 3.23 6.38 4.72 3.49 2.72 12.41 8.93 3.61 2.63 

Sens. Mean 82.85 87.47 85.82 90.54 85.80 92.76 85.94 88.30 70.84 76.45 83.08 88.08 

Sens. Std. 8.18 4.62 7.94 3.33 11.83 3.13 6.40 4.89 15.12 9.88 7.86 3.68 

Spec. Mean 99.69 99.64 99.88 99.87 99.95 99.94 99.94 99.94 99.90 99.91 99.49 99.44 

Spec. Std. 0.10 0.11 0.04 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.14 0.14 

VC 
Sparse 

DSC Mean 79.37 82.60 80.71 83.08 81.37 84.57 79.69 81.28 66.01 72.60 78.71 81.93 

DSC Std. 5.79 3.55 4.46 2.96 6.55 3.71 4.33 3.33 13.85 8.53 5.35 2.88 

Sens. Mean 74.45 79.89 78.66 84.00 79.36 86.87 78.07 81.10 63.18 71.50 74.47 80.12 

Sens. Std. 9.83 5.86 7.80 4.36 11.23 4.31 7.70 6.34 15.76 9.60 8.83 4.46 

Spec. Mean 99.85 99.84 99.93 99.92 99.97 99.96 99.96 99.96 99.94 99.94 99.73 99.71 

Spec. Std. 0.05 0.05 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.03 0.07 0.07 

VC 
Dense 

DSC Mean 74.24 76.87 72.50 76.55 74.26 79.43 70.26 73.17 59.20 66.48 72.41 75.75 

DSC Std. 5.82 4.80 5.57 3.94 7.48 3.98 6.09 5.44 14.58 8.68 5.44 3.84 

Sens. Mean 63.00 66.51 59.94 65.56 62.34 69.79 57.55 61.19 48.07 56.19 60.55 65.06 

Sens. Std. 8.13 6.60 7.36 5.34 10.42 6.13 7.98 7.33 14.19 9.28 7.01 4.94 

Spec. Mean 99.93 99.93 99.98 99.98 99.99 99.99 99.99 99.99 99.97 99.97 99.88 99.88 

Spec. Std. 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 



 

67 
 

The training models of the VC sparse subsampling technique enabled an effective 

representation of the voxels in training data sets. Consequently, they resulted in the 

highest DSC measures especially APA, and resolved both problems of 

oversegmentation and undersegmentation to some extent. This implies that the VC 

sparse subsampling technique can be appropriate for similar classification-based 

segmentation approaches both to reduce the computational complexity of handling all 

voxel samples of an MR image and to accomplish robust delineation of an object of 

interest. 

Table 4.3 The effect of    on the mean DSC APA (%) for each compartmental training 
model of the subsampling techniques in a subset of 5 testing MR images by setting the 

parameters of   and               , respectively. 

Subsampling    FC LTC MTC PC 

Uniform 

0.95 82.60 67.82 74.61 66.84 
0.9 80.12 61.02 69.59 59.13 
0.7 70.58 48.04 55.74 43.50 
0.5 60.74 40.65 46.95 32.97 

Gaussian 

0.95 81.25 81.78 81.31 71.37 
0.9 80.00 79.34 80.98 69.44 
0.7 72.46 68.26 74.60 52.28 
0.5 65.29 59.23 66.98 38.84 

VC sparse 

0.95 79.95 81.25 78.03 69.32 
0.9 83.12 82.22 81.69 72.09 
0.7 81.34 74.76 78.67 66.71 
0.5 76.10 67.14 73.56 57.74 

VC dense 

0.95 72.10 72.14 66.24 56.09 
0.9 77.69 77.89 73.14 64.91 
0.7 82.92 81.93 81.43 51.86 
0.5 78.78 73.54 80.45 16.23 

Superiority of the DSC measures APA for VC sparse subsampling technique was also 

indicated with paired t-tests performed at 5% significance level. As shown in Table 4.4, 

compartmental DSC measures APA for VC sparse are statistically significantly better 

than DSC measures BPA for VC sparse, and DSC measures BPA or APA for the other 

techniques. However, the difference of DSC measures APA for Gaussian subsampling 

technique in segmentation of MTC and PC were insignificant, which means that 

Gaussian subsampling can approximate to VC sparse subsampling for such small and 

ellipsoid structures. 

Figure 4.11 shows the plots of the individual DSC measures of the segmented 

compartments in each test MR image BPA and APA for the subsampling techniques. 
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The information related to DSC means and standard deviations in Table 4.2 was 

overlaid on the plots. The blue and red dots point out individual DSC measures BPA 

and APA, the blue and red solid lines connect the mean DSC measures BPA and APA, 

and dashed blue and red lines parallel to the horizontal axis designate mean ± 

standard deviation BPA and APA, respectively. The position alignment procedure 

improved the average DSC for all compartments of cartilage, with the greatest 

improvement for PC. The only exception was tibial compartments for the training 

models of uniform subsampling. These compartments are smaller volumes so closely 

positioned to each other and FC that position alignment increased false positive rate 

more than increasing true positive rate due to random subsampling of background. 

The poorer DSC values and larger standard deviations for PC revealed in Table 4.2 

indicate relative inadequacy of PC-versus-all classifier. This may be due to severe 

osteoarthritic deteriorations of cartilage for this compartment or similarity of the 

significant features of PC to the corresponding features of other nearby anatomical 

structures such as synovial fluid. 

Table 4.4 Statistical significance of compartmental DSC measures APA for VC sparse 
subsampling technique. NS denotes statistically insignificance, when S denotes 

statistically significance of the measures. 

Significance 
Uniform Gaussian VC Sparse VC Dense 

BPA APA BPA APA BPA APA BPA APA 

FC S S S S S   S S 

LTC S S S S S   S S 

MTC S S S NS S   S S 

PC S S S NS S   S S 

Figure 4.12 presents the 3-D views of semi-manually and automatically segmented 

compartments of interest for one of the test MR images. The system again achieved 

highest DSC measures when the training models of the VC sparse subsampling were 

used for this MR image, and these measures were 85%, 82%, 83%, and 82% for FC, LTC, 

MTC, and PC, respectively. 

The principal problems encountered during experimentation of the automatic 

segmentation system were solved as follows. Because some MR images were 

composed of a wide range of intensities due to noise, especially near the borders of 

the images, such images had low inter-tissue contrast after normalization. Therefore, 
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use of un-cropped full MR images prevented the system from distinguishing between 

the cartilage regions and background for such images. This problem was eliminated by 

cropping the MR images. Another problem was related to accepting the largest 

component as the segmentation result of a cartilage compartment in the post-

processing procedure. For instance, when a cartilage compartment was detected in 

the form of several connected components due to worn-out regions of the cartilage, 

the largest component was only a partial representation of the whole compartment. In 

another instance, when some misclassified large components were grown, the truly 

classified cartilage component was totally eliminated. However, these difficulties were 

mostly overcome by optimization of the system parameters.  

  

  

(a) (b)   

  

  

(c) (d)   

Figure 4.11 Plots of the individual percentage DSC measures for the cartilage 
compartments in each test MR image. The information related to DSC means and 

standard deviations in Table 4.2 is overlaid on the plots. 

Some other observations emerged from sub-experiments are that an increase in the 

number of training MR images affected DSC measure positively, random subsampling 

of training models to improve system performance resulted in lower DSC values, and 

adding more features for the training models did not contribute to average 

segmentation accuracies. Furthermore, halving the MR images in slices in order to 
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reduce the computational complexity resulted in significant fall in segmentation 

accuracies as presented in Table 4.5 due to rather thin morphology of the cartilage. 

Figure 4.13 demonstrates the inadequacy of the automatic segmentations in halved 

MR images for one of the testing MR images with the larger tears in worn-out regions 

of the cartilage and greater volumes of oversegmented protrusions. 

   

 

  

 

(a) (b) (c)  (d) (e)  

   

 

  

 

(f) (g) (h)  (i) (j)  

Figure 4.12 Superior (first row) and inferior (second row) 3-D views of cartilage 
compartments, which were manually segmented (a, f) and automatically segmented 

based on the training models of uniform (b, g), Gaussian (c, h), VC sparse (d, i), and VC 
dense (e, j) subsampling techniques, for one of the test MR images. 

Table 4.5 The effect of halving the MR images slicewise on the mean DSC (%) measures 
and segmentation durations for each compartmental training model of the 

subsampling techniques in a subset of 5 testing MR images by setting the parameters 
of       and    to        and    , respectively. 

Subsampling         FC LTC MTC PC 

Uniform 
DSC_BPA 64.18 39.45 48.05 39.41 
DSC_APA 63.49 37.97 47.63 39.35 

Duration_APA 20.66 2.26 1.87 3.01 

Gaussian 
DSC_BPA 63.81 54.80 61.94 42.62 
DSC_APA 63.24 52.34 62.69 44.13 

Duration_APA 18.76 1.98 1.82 2.39 

VC sparse 
DSC_BPA 72.65 56.62 63.31 41.50 
DSC_APA 73.28 56.45 65.56 41.03 

Duration_APA 13.43 1.72 1.51 2.46 

VC dense 
DSC_BPA 74.21 54.30 62.18 37.93 
DSC_APA 73.43 50.93 62.89 39.54 

Duration_APA 16.05 2.19 1.68 2.76 
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(a) (b)   

  

  

(c) (d)   

Figure 4.13 Superior (a, c) and inferior (b, d) 3-D views of manually (a, b) and 
automatically (c, d) segmented cartilage compartments in one of the testing MR 

images that were halved slicewise. 

4.3.1 Computational Analyses 

The system described in Subsection 4.1 was experimented on a 4-core 2.8 GHz 

laptop with 6 GB of RAM and a 500 GB hard disk using MATLAB, which facilitated the 

implementation with its toolboxes. The computationally most intensive procedure was 

one-versus-all classification based on approximate k-NN, which was a C++ application 

called by MATLAB. For instance, according to the computational complexities of 

approximate k-NN in Subsection 4.1.4.2, classifying a voxel as cartilage or background 

depending on the FC model of 10 training image sequences would require 

preprocessing time of             for data structure construction and            

time to find the approximate 100-NN while ignoring the constant     . However, the 

computation time of the same task with classification procedure in parallel on 4 cores 

was ⌈    ⌉ [                        ]. Therefore, the parallel version was 

slightly more advantageous in this approach as long as not too many query samples 

were tested at a time frequently.  

The automatic segmentation durations were greatest for FC, which is the largest 

compartment among all, as listed in Table 4.6.The durations increased proportionally 
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to the sensitivity of the subsampling techniques for all cartilage compartments 

because generally the cartilage region had been grown larger than before in the case 

of increased sensitivity. Also, segmentation durations APA were twice the durations 

BPA, since the position alignment procedure used the central coordinate information 

of a cartilage component, which was produced as a result of the first run of the 

segmentation algorithm. However, those durations can be reduced further by 

increasing the error bound   and decreasing the number of nearest neighbours   in 

the approximate  -NN algorithm. The probable consequence is that the segmentation 

accuracies will be affected. For example, when   was 10 and   was 2, average DSC for 

FC APA decreased to 15 min for the training models of VC sparse subsampling with 

approximately 4% decline in average DSC. Increasing the value of   affected the 

average segmentation accuracies less negatively than decreasing the value of  . Table 

4.7 and Table 4.8 demonstrate these effects of the parameters   and  , respectively, 

on the mean DSC measures and segmentation durations. 

Table 4.6 Automatic segmentation durations of the cartilage compartments in minutes 
BPA and APA when differently subsampled training models were used. 

Duration (min) Uniform Gaussian VC Sparse VC Dense 

FC BPA 12.67 12.29 9.81 9.48 
APA 24.56 23.14 19.22 17.64 

LTC BPA 2.44 2.20 2.09 1.76 
APA 4.05 3.30 3.07 2.65 

MTC BPA 2.15 1.94 1.93 1.60 
APA 3.47 2.93 2.82 2.41 

PC BPA 2.71 2.13 2.09 1.40 
APA 4.99 3.64 3.49 2.55 

Total BPA 19.97 18.56 15.93 14.23 
APA 37.07 33.01 28.60 25.24 
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Table 4.7 The effect of parameter   on the mean DSC measures and segmentation 
durations for the compartmental training models of VC sparse subsampling in a subset 

of 5 testing MR images, when   is    , and     is    . 

Measure   FC LTC MTC PC 

DSC_BPA (%) 

0 82.61 76.70 81.62 66.63 
1 82.51 76.59 81.42 67.22 
2 82.04 76.69 80.92 66.63 
3 81.53 76.35 80.22 66.01 

DSC_APA (%) 

0 83.35 80.98 81.82 69.82 
1 83.31 81.45 81.93 70.97 
2 83.12 82.22 81.69 72.09 
3 82.89 82.26 81.26 72.04 

Duration_APA 
(min) 

0 89.00 11.25 11.85 18.33 
1 25.19 3.71 3.37 4.46 
2 18.12 3.03 2.81 3.32 
3 18.71 2.87 2.68 3.12 

 

Table 4.8 The effect of parameter   on the mean DSC measures and segmentation 
durations for the compartmental training models of VC sparse subsampling in a subset 

of 5 testing MR images, when   is  , and     is    . 

Measure   FC LTC MTC PC 

DSC_BPA (%) 
100 82.04 76.69 80.92 66.63 
50 81.64 76.48 80.18 65.35 
10 79.13 73.70 76.66 61.92 

DSC_APA (%) 
100 83.12 82.22 81.69 72.09 
50 82.61 81.78 81.13 71.32 
10 79.76 79.65 78.16 68.91 

Duration_APA (min) 
100 18.12 3.03 2.81 3.32 
50 17.29 2.66 2.36 2.81 
10 14.86 2.56 2.46 3.06 
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 CHAPTER 5 

APPLICATON OF MARR-HILDRETH EDGE AND HARRIS CORNER 

DETECTION METHODS IN VOLUMETRIC IMAGES 

In this chapter, how Marr-Hildreth edge detection and Harris corner detection 

methods can be extended to work in 3-D images is explained in Subsection 5.1 and 

Subsection 5.2. Subsection 5.3 evaluates advantageous and disadvantageous aspects 

of the explained 3-D methods overall. The results obtained by processing knee MR 

images of OAI using the following methods are compared in Subsection 5.3.1; 3-D 

Marr-Hildreth, 2-D Marr-Hildreth run consecutively in slices, and accelerated 3-D Marr-

Hildreth that reduced computational complexity. In Subsection 5.3.2, the interest point 

detection performances of 2-D and 3-D implementations of the LoG and Harris corner 

detection methods in binary and intensity-based volumetric images of FC model are 

discussed. 

5.1 Extension of Marr-Hildreth Method 

Marr-Hildreth is a method firstly defined to be applied in 2-D images [35], [36]. Its edge 

detection procedure is based on identification of zero-crossings after LoG filtering that 

enables revealing of direction-invariant (isotropic) points in images. To extend the 2-D 

Marr-Hildreth edge detection method into 3-D, first, a mathematical model of the LoG 

function that considers probable variations in standard deviations of the parameters 

was derived. Then, an algorithm, which determines the zero-crossing points in rows, 

columns, and slices depending on 6-connectivity of the voxels, was designed.  
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5.1.1 LoG Filtering 

When rows, columns, and slices of an MR image are denoted with (z, y, x) axes, it is 

generally the case that the resolution of x axis in these images is lower compared to 

the resolutions of z and y axes. If smoothing is performed using a spatial filter with a 

standard deviation of    in physical world units for all axes, the digital standard 

deviations of this filter can be calculated as described in Subsection 4.1.2. Accordingly, 

the sizes (        ) of the filter to be applied in the image can be calculated as in (5.1). 

[        ]  [ ⌈   ⌉     ⌈   ⌉     ⌈   ⌉   ] (5.1)  

Probability distribution of a multivariate Gaussian function      is given in equation 

(4.1), which is used to compute the 3-D Gaussian filter elements with the mean vector 

µ = [0 0 0], covariance matrix Σ that have diagonal values of    
 ,   

 ,   
  , and axial 

coordinate vector of the filter elements   composed of the variables             The 

Laplacian function that is the sum of second order partial derivatives of the 3-variable 

Gaussian function can be derived with (5.2) ignoring the multiplier of the exponential 

term in (4.1). For the response of the Laplacian filter produced with this function to be 

suppressed in regions with homogenous density, the sum of filter values must be 0, 

and this can be obtained by subtracting the mean filter value from all values of the 

filter. 
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(5.2)  

Figure 5.1 visualizes 3-D Gaussian and 3-D LoG filters produced according to the 

related equations, with higher filter values in darker and lower values in lighter colours 

for the filter values scaled between [0, 1]. It can be observed from the figure that, as in 

2-D, Gaussian filter values are highest around the filter centre, and positive values 

located close to the centre of the LoG filter are surrounded by negative values. 
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(a) (b) 

Figure 5.1 (a) 3-D Gauss, (b) 3-D LoG filters. 

Since visualization of 3-D LoG filter values in Figure 5.1 does not allow it to be fully 

understood, details in some filter slices taken along the z axis are shown in Figure 5.2. 

When the MR image is isotropic the filter slices along each axis are symmetric as in 

Figure 5.2 (a), and otherwise they are asymmetric as in Figure 5.2 (b). 

  

(a) (b) 

Figure 5.2 Some slices of 3-D LoG filters along z axis for (a) isotropic and (b) anisotropic 
MR images. 

5.1.2 Finding Zero Crossings 

In the Laplacian image generated by convolution of the MR image and LoG filter, the 

coordinates, where the values of neighbouring elements change sign, indicate the 

zero-crossing points. When the amplitude of the difference between neighbouring 

values that change sign is greater than a certain threshold, the zero-crossing points are 
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assigned as edge points. Thus, thicker edges are thinned, and more robust edge points 

can be obtained [83]. 

The two cases illustrated in Figure 5.3 are examined to identify zero-crossing points in 

a 3-D image by taking the values of the image elements and their neighbours at 6-

connectivity into account. In the first case, the image element shown with the minus 

sign is compared one by one to its 6 neighbours shown with plus sign, and the 

condition that the element itself is negative, and its neighbour is positive is controlled. 

When at least one of the six comparisons meets this condition, the element designated 

with the minus sign is a zero-crossing point. The same element becomes an edge point, 

if the difference between the values of element-neighbour couples that satisfy the 

zero-crossing condition is larger than a multiple (for example 0.7 times) of the mean 

absolute value of the Laplacian image.  

In the second case, if at least one of the three axially opposing neighbour couples of a 

zero-valued image element has a sign change, the central element with the value of 0 

becomes the zero-crossing point. If the value difference between any of the opposing 

neighbours with a sign change is larger than 2 times the threshold used in the first 

case, the zero-valued central element is determined as an edge point. 

  

(a) (b) 

Figure 5.3 (a) First case and (b) second case examined on Laplacian image to find zero 
crossing points. 

5.2 Extension of Harris Corner Detection Method 

Standard Harris corner detection works in 2-D images to search for pixel coordinates, 

which have significant gradients both along z and y axes within a neighbourhood 

surrounding themselves. Such pixel coordinates mostly correspond to the corner 



 

78 
 

points, and are particularly useful since they can be repetitively detected in images 

that have similar contents. Therefore, they can be identified as the interest points of 

the image. When extending the Harris corner detection method into 3-D for volumetric 

images, the effect of gradients along the x axis is taken into consideration as well to 

compute local intensity differences within Gaussian smoothed windows, and the 

cornerness value of the voxels is measured according to these integral differences. 

Then voxel coordinates with high cornerness value are determined as the possible 

corner or interest points. 

5.2.1 Scale-Space Representation 

In the standard case, the scale-space representation of a volumetric image   is 

constructed by repetitively smoothing the image using spherical Gaussian filters     to 

detect the corner points with various scales of the physical world denoted by   . 

Hence, details at fine scale are gradually removed to enable the significant gradients at 

coarser scales to be caught as the probable interest points. This repetitive smoothing 

operation can be applied again every time the image is resized so that the scale-space 

is represented at multiple levels of details [38], which significantly contribute the scale 

invariance of the interest point detectors. 

The scale-space of   is a four-dimensional data structure for each level of the image, so 

a voxel element of the scale-space is indexed by the scale and coordinate tuple of 

(    ). The corner detection algorithm is run in each 3-D image     with the scale of   , 

and the cornerness image     is obtained. Then, the voxel coordinates that have 

maximal cornerness value within their four-dimensional local neighbourhood  , which 

contain the voxels from rectangular spatial regions in the contiguous scales, are 

searched in each level of the scale-space. 

However, detection of corners using the scale-space representation of intensities may 

lead to poor localization of the corners on the surface of an object of interest, because 

the gradient estimation for cornerness measurement is performed in smoothed 

volumetric images within the constructed scale-space. The case of low localization of 

the corner points may constitute a disadvantage depending on the purpose of the 

corner detection procedure, especially when the corners are used to establish 



 

79 
 

automatic correspondences on the object surfaces. Consequently, a slightly different 

approach was followed in our 3-D Harris corner detection method to determine well-

localized corners in the scale-space representation, which involved iteratively 

smoothing the first-order derivative products rather than smoothing the intensities, as 

clarified in the following subsection. 

5.2.2 Measurement of Cornerness 

Initially, the first-order partial derivatives,   ,   , and   , were computed squeezing the 

derivative of a 1-D Gaussian filter along the respective axes similar to the filters in 

Figure 4.4 to accurately determine the coordinates of salient locations in the 

volumetric image  . Then, pairwise products of the first-order derivatives were 

repetitively smoothed as in (5.3) with the 3-D Gaussian filters     both to construct a 

scale-space representation and an auto-correlation matrix  . Accordingly, each 

element in the images of derivative products was weighted by its surrounding 

neighbours within a Gaussian sphere of radius     depending on their distances so that 

farther neighbours had less effect on the subsequently constructed matrix  . Thus, 

convolving the derivative products with local Gaussian windows defined by       could 

represent the image gradients along different directions, other than the three main 

directions of z, y, and x, and define local geometry of the image plane. The 

correspondent elements of the pairwise products of first-order derivatives at a 

coordinate   comprise the     auto-correlation matrix    given in (5.4). 

      [

  
         

      
     

          
 

]  [  
   
   
   

  ] (5.3) 

   [  

            
            
            

  ] (5.4) 

The cornerness values     of the image voxels were measured through the linearized 

formula in (5.5), which was based on the determinant and trace of the auto-correlation 

matrix   as well as a constant coefficient   . Although a coefficient depending on    

was also added prior to the determinant term in the study by Yu et al. [46], it did not 



 

80 
 

indicate an improvement on the resulting corners detected. Therefore, this coefficient 

was neglected in (5.5). The determinant of   was calculated as in (5.6) according to 

the Sarrus rule defined for finding determinant of 3x3 matrices. The trace of   given in 

(5.7) was obtained by addition of the diagonal values of    for every voxel coordinate 

 . Alternatively, the determinant and trace of   could have been found by 

multiplication and addition of the three eigenvalues of   , respectively. Nevertheless, 

the latter approach would be computationally more complex, since it requires 

eigenvalue decomposition of every   . 

    | |            (5.5) 

| |                                         (5.6) 

            (5.7) 

Consequently, unlike the standard approach of Harris corner detection method run in 

the scale-space of image intensities, instead of first performing smoothing operations 

on the image, then computing the first-order derivative products, and again smoothing 

these products for determining the weighted gradients, only computation of the first-

order derivative products and their convolution with the filters of     were realized in 

the proposed approach. However, the proposed approach was considered to 

incorporate the basic functionalities of the standard one. 

5.2.3 Suppression of Weak Corners 

According to the formula in (5.5), the cornerness value is expected to increase for the 

interior region voxels, edge voxels, and corner voxels with respect to the order of their 

mentioning. Therefore, to detect the true corner points in the image a threshold   
   

over the cornerness values     should be applied such that voxel coordinates with 

cornerness value greater than or equal to   
   are accepted as the probable corners. 

This threshold was dynamically computed according to (5.8) based on the maximum 

and minimum cornerness values of the voxels at scale   , and the coefficient    that 

specified the narrowing ratio of range of cornerness values. 

  
       

      |    
       

  | (5.8) 
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Finally, the corners not locally maximum in cornerness value in the scale-space 

representation were suppressed to emphasize the strong corners alone. For this 

purpose, every element in each     were controlled whether it has the maximal 

cornerness value in a multi-rectangular window  , which was centred at coordinate   

of the controlled element at   . The checked condition to assign   as the corner point 

or not for a   with the size of [           ] can be defined as in (5.9), where        

pair denoted the coordinate and scale of the elements in  , and was assigned to a 

range of values that are indicated by the following set: 
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 (5.9)  

5.3 Experimental Results 

Marr-Hildreth edge detection and Harris corner detection methods in 3-D, which are 

described in Subsection 5.1 and Subsection 5.2, were implemented, and evaluated 

through two separate sets of experiments. Subsection 5.3.1 presents the experiments 

for comparison of 3-D Marr-Hildreth method with its accelerated 3-D and 2-D versions. 

The experiments in Subsection 5.3.2 were performed for comparative analysis of 3-D 

Harris corner detection method, its 2-D version, and LoG filtering approaches that 

were modified for finding the interest points in 2-D slices of a volumetric image or 

directly in a volumetric image. 

5.3.1 Edge Detection with Marr-Hildreth Method 

20 3-D DESS knee MR images of OAI with dimensions of (280 x 280 x 143) in (z, y, x) 

were processed using 3-D Marr-Hildreth, 2-D Marr-Hildreth applied on every slice of 

the image, and accelerated 3-D Marr-Hildreth method that reduced computational 

complexity. Figure 5.4 shows three consecutive slices of one of the MR images used in 

comparison of these methods. 

When the number of elements in the MR image is denoted with N, and each 

dimension of the LoG filter is roughly accepted as s, computational complexity of the 

convolution of the 3-D filter with the entire MR image and convolution of the 2-D filter 
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with each slice of the image are        and       , respectively. The accelerated 3-

D filtering technique that reduces the complexity of 3-D filtering operation, which 

exponentially increase with a rise in the value of s, down to        without 

significantly changing the precision of the filtering operation, was based on the 

separability property of the 3-D LoG filter according to (5.10) [32]. In this technique, 

convolution of one dimensional (1-D) LoG and Gauss filters stretched along z, y, and x 

dimensions were consecutively convolved with the MR image in the order they appear 

in the equation, and the obtained results were merged.  

                     (     )           

                                     (     )           

                                   (     )             

(5.10) 

The dimensions of the LoG and Gauss filters were computed using equation (5.1) with 

the σ value assigned to be 1.1 mm, which is the approximate cartilage thickness in 

knee joint [8]. Accordingly, 3-D LoG filter was in dimensions of (21 x 21 x 11), 2-D Log 

filter was (21 x 21), and 1-D Gauss or 1-D LoG filters used by the accelerated 3-D 

method in z, y, and x axes were (21 x 1), (21 x 1), and (11 x 1), respectively. In a 

computer with a processing power of 2.8 GHz, while the convolution of an MR image 

with 3-D LoG filter lasted about 57 seconds, convolution with 1-D filters used for the 

accelerated 3-D LoG filtering method only lasted about 2 seconds. 

The edge points found in the images after LoG filtering were identified by detecting 

zero-crossing points depending on 6-connectivity of the voxels for 3-D and accelerated 

3-D Marr-Hildreth methods (Subsection 5.1.2), and 4-connectivity of the pixels in the 

slices for 2-D Marr-Hildreth method. Figure 5.5 shows the LoG filtering results of 3-D, 

2-D, and accelerated 3-D methods from left to right; for 53rd, 54th, and 55th MR image 

slices in Figure 5.4 from top to bottom. The edge points detected in the 54th slice of the 

same MR image are as in Figure 5.6 for the three methods from left to right with the 

same order. 
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(a) (b) (c)  

Figure 5.4 (a) 53rd, (b) 54th, and (c) 55th slices of an MR image. 

Since 3-D LoG filtering also took the image elements along the axis of slices into 

account, its filtering results appeared smoother and more photographic compared to 

2-D filtering results. However, it can be observed that the edge images of 3-D methods 

contained most of the principal edges of bone and cartilage tissues in the edge images 

of 2D method. Additionally, the fact that 3-D method is sensitive to variations in the z 

dimension caused more prominent edges and locally clustered edge points in Figure 

5.6 (a) in comparison to Figure 5.6 (b) due to the differences between the LoG image 

slices in Figure 5.5 (a), (d) and (g). The LoG and edge images of the accelerated 3-D 

method were indistinguishably similar to those of the 3-D method. 

When DSC measure in (1.1) was calculated between the edge points found by the 3-D 

and accelerated 3-D methods for 20 MR images, the average DSC value was found as 

0.99. This indicates that there were some, albeit minor, differences between these 

methods. On the other hand, since the scope of the 3-D methods is wider than that of 

the 2-D method, it is not plausible to directly compare the edge points found by these 

two methods using DSC measure. But, it was found that on the average of 20 MR 

images 37% of the edge points detected by the 2-D method overlap with the edge 

points detected by the 3-D method. Slight deviations in the relative locations of the 

edge points found by the methods owing to the smoothing property of LoG filtering, 

and loss of significance in some high intensity differences within 2-D slices, when 

differences in all three dimensions are taken into consideration, can be regarded 

among the factors that caused this percentage of overlap to be low. 
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(a) (b) (c)  

   

 

(d) (e) (f)  

   

 

(g) (h) (i)  

Figure 5.5 LoG filtering results of 3-D (a,d,g), 2-D (b,e,h) and accelerated 3-D (c,f,i) 
Marr-Hildreth methods in 53rd (a-c), 54th (d-f), and 55th (g-i) MR image slices given in 

Figure 5.4. 
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(a) (b) (c)  

Figure 5.6 Edge points detected with (a) 3-D, (b) 2-D, and (c) accelerated 3-D Marr-
Hildreth methods in 54th MR image slice given in Figure 5.4. 

5.3.2 Interest Point Detection with LoG Filtering and Harris Corner Detection  

Volumetric binary and intensity-based images of FC model were interpolated to have 

the property of isotropy along the axes. Then, they were processed to qualitatively 

assess the proposed 3-D Harris corner detection method, LoG filtering-based 3-D 

interest point detection method, and slicewise 2-D implementations of these methods. 

Interest point finding with LoG filtering approach was realized via weak corner 

suppression (Subsection 5.2.3) in both the original and negative LoG filtered 

volumetric images, and then finding local maximum or minimums in their scale-space 

representation (Subsection 5.2.1). The 3-D LoG filtering operation explained in 

Subsection 5.1.1 was implemented according to the optimized equation in (5.10) for 

the experiments presented in this subsection. Similarly, all 3-D Gaussian filtering 

operations in the methods were optimized with consecutive convolutions using 1-D 

Gaussian filters as in (5.11) to reduce the computational complexity of the volumetric 

image smoothing. 

                 (     )           (5.11) 

Figure 5.7 shows the interest points detected by the four methods at various scales, 

which were indicated by lighter colours as the scale increased. The constant coefficient 

   in (5.5) is known to yield best results with a value in between      and      for 2-D 

Harris corner detection method [42], so was assigned to      for 2-D implementation 

of the method. However, it was observed to be effective with the value of       for 

the 3-D implementation of the method as proposed in the study by Laptev and 
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Lindeberg [44]. The coefficient     in (5.8) was given different values for different 

methods to have a subset of strongest interest points roughly in similar regions so that 

a qualitative evaluation of the methods could be feasible.     was determined as   for 

the 2-D implementations to maintain the strongest interest points only whereas it was 

0.9 for 3-D LoG filtering method to remove some of the densely distributed corners 

over the interior surface of the object of interest. In 3-D method of Harris, corners at 

most salient locations of the object were obtained when     was    . The scale of 

physical world    was set to each of the values in the set of {             } in mm.   

was determined as [     ]  for the 2-D and [       ] for the 3-D implementations to 

detect locally maximal corners greater in cornerness value than their neighbours in all 

scales by the threshold        . The standard deviation of 1-D Gaussian filter, which 

was differentiated to compute the first-order derivatives in Harris corner detection 

method, was set to 0.08 for both of the 2-D and 3-D implementations. This 

approximately resulted in the differentiating vector of [      ], which was squeezed 

along the  ,  , and   axes.  

  
(a) (b) 

  

(c) (d) 

Figure 5.7 The interest points detected by (a) 2-D and (b) 3-D methods of Harris as well 
as (c) 2-D and (d) 3-D LoG filtering-based methods in a binary image of FC model. 
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According to Figure 5.7, 2-D implementations of Harris and LoG filtering generated 

interest points assembled near the boundaries of FC surface, since local maximization 

procedures did not take the voxels along x axis into consideration. The interest points 

of 3-D LoG filtering-based method tended to be distributed over the interior surface of 

the object when corners of 3-D Harris method were in most salient positions on the 

object surface. This tendency of 3-D LoG filtering-based method did not alter even 

when values of    or    were changed to      and    , respectively, as demonstrated 

in Figure 5.8. In general, interest points of LoG filtering-based method deviated from 

their expected positions near the surface boundaries with the rise of the values in the 

set of scales. However, interest points were rather stable in their salient positions with 

the proposed 3-D Harris corner detection method even when the values in scale set 

were increased to {           } (see Figure 5.9). 

   

(a) (b) 

Figure 5.8 The interest points detected when (a)    was changed to     , or (b)    was 
changed to     for 3-D LoG filtering-based method. 

  

(a) (b) 

Figure 5.9 The interest points detected with (a) 3-D Harris corner detection method 
and (b) 3-D LoG filtering-based method when the values in scale set were doubled. 

Running of the methods with the same parameter values in an intensity-based 

volumetric image of FC produced the interest points depicted in Figure 5.10. For all of 
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the methods, the detected points differed from those detected in binary FC image due 

to the effects of noise or inhomogeneity of the cartilage tissue voxels in intensity-

based images. Nevertheless, the interest points of 2-D or 3-D Harris corner detection 

method were observed to be influenced by these effects less than the points of LoG 

filtering-based method. 

  
(a) (b) 

  
(c) (d) 

Figure 5.10 The interest points detected by (a) 2-D and (b) 3-D methods of Harris as 
well as (c) 2-D and (d) 3-D LoG filtering-based methods in an intensity-based FC image. 

Moreover, the proposed implementation of Harris corner detection in scale-spaces 

based on first-order derivative products was compared to its standard implementation 

in scale spaces based on intensities in Figure 5.11 using parameters similar to those 

aforementioned. The proposed method was observed to produce more stable interest 

points in significant positions near the surface boundaries. Although for the standard 

implementation   
   and    were set to directly   and a very small value of 0.005, the 

number of found interest points was fairly insufficient.  
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(a) (b) 

Figure 5.11 The results of 3-D Harris corner detection method on volumetric binary 
model of FC using the scale-space representations based on (a) first-order derivative 

products or (b) intensities. 

The proposed 3-D Harris corner detection method resulted in a sparser set of interest 

points near the surface boundaries of FC with the introduced values of parameters. 

But, it was also possible to produce a dense set of interest points over the FC surface 

decreasing the value of coefficient    in (5.8) as shown in Figure 5.12. Consequently, 

the proposed method enables implementation of automatic correspondence finding 

algorithms that establish correspondences of dense sets of interest points over the 

objects of interest. 

 

Figure 5.12 A denser set of interest points on the surface of FC with the proposed 3-D 
Harris corner detection method. 
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 CHAPTER 6 

HYBRID CARTILAGE SEGMENTATION WITH INTEGRATION OF VOXEL 

CLASSIFICATION-BASED SEGMENTATION AND ACTIVE APPEARANCE 

MODEL SEGMENTATION 

Segmentation by classification-driven region-growing algorithm is an appropriate 

approach for the degenerative nature of the cartilage. However, it may be prone to 

inaccurate segmentations especially in the case of severe full-depth deteriorations, 

and cannot totally handle oversegmentation and undersegmentation issues alone as 

indicated in Figure 6.1. Integration of high-level cues such as relative positions and 

shapes of the cartilage compartments with the voxel classification-driven region-

growing algorithm may address the aforementioned segmentation problems, and 

enhance the automatic segmentation results. Because, the relative positions of 

cartilaginous compartments are fixed, and these compartments have roughly similar 

morphology in spite of their probability of degeneration in time. 

Consequently, this chapter describes a hybrid cartilage segmentation system, which 

was designed to fuse the segmentation results of a tissue classification module and an 

appearance modelling module. The tissue classification module was based on the 

classification-driven region-growing algorithm described in Chapter 4. The appearance 

modelling module segmented the testing MR images masked with the initial 

segmentation results of tissue classification module using the previously trained 

appearance model that depended on statistical parameters of shape and texture. 

Thus, the hybrid segmentation system paves the way for that the classification 

probabilities of the former module can be regulated by the shape and texture 

information of the latter module.  
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(a) (b) (c) 

Figure 6.1 Some oversegmented cartilage spurs in automatic segmentation results of 
voxel-classification-driven region-growing algorithm that ran depending on training 
models of VC sparse subsampling. The spurs are especially distinguishable for (a) FC, 

(b) PC, and (c) LTC. 

Figure 6.2 illustrates the interaction between the main modules of the hybrid cartilage 

segmentation system. Since the tissue classification module is explained in detail in 

Chapter 4, only the modules of appearance modelling and information fusion are 

clarified in the Subsection 6.1. The results of the experiments related to the AAM 

segmentation and early hybrid segmentation are assessed especially for FC 

compartment in Subsection 6.2. 

 

Figure 6.2 The main modules of the hybrid cartilage segmentation system. 

6.1 Methodology 

The proposed hybrid cartilage segmentation system is presented in detail particularly 

for appearance modelling and information fusion modules in Figure 6.3. Atlas 

generation and correspondence finding are auxiliary modules to enable running of 

appearance model generation procedure.  
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Figure 6.3 The main and auxiliary modules of the proposed hybrid cartilage 
segmentation system in detail. 

The tissue classification module of the hybrid system ran depending on the training 

models of VC sparse subsampling technique. In atlas generation, correspondence 

finding, and appearance modelling modules, 10 training MR images used in tissue 

classification module were also processed during the course of training the appearance 

models. Before training of the appearance model, first of all, the semi-manual 

segmentations of the training MR images were preprocessed to generate binary or 

intensity-based atlases of every cartilage compartment in atlas generation module. 

Then, set of dense correspondences were determined on the atlas surfaces of each 

compartment so that an appearance model of the respective compartment was 

constructed to represent statistical variations of shape and texture between the 

atlases.  

Prior to AAM segmentation, the binary automatic segmentation results of tissue 

classification module were used to mask 23 testing MR images to remove most of the 

irrelevant parts and focus roughly on the cartilage compartment of interest. During 

segmentation, the masked intensity-based volumetric images of a compartment were 

tried to be synthesized by the related appearance model using a search algorithm, 

which was previously trained to guess the optimal parameter update for the model. 

Thus, the belonging probabilities of image voxels to a cartilage compartment were 
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obtained through the segmentation based on voxel classification-driven region 

growing algorithm in a testing MR image. Furthermore, the compartmental 

appearance information, which combined both the shape and texture information, 

was obtained through the AAM segmentation. Finally, information fusion module was 

considered for integration of the appearance information and belonging probabilities 

to correct false classifications in segmentation results especially due to oversegmented 

spurs in cartilage compartments. 

6.1.1 Atlas Generation 

Atlases can be conveniently generated based on the semi-manual segmentations of 

the cartilage compartments. Better representation of the anatomical variations of the 

compartmental morphology in between participants requires use of multiple atlases 

[84]. However, rise in number of atlases leads to a further increased computational 

complexity for multi-atlas registration-based segmentation methods [10], [85], [86]. 

Hence, the number of atlases used by the method should be adjusted so that trade-off 

between the segmentation accuracies and computational complexity is satisfied. 

Accordingly, the cartilage compartments that did not have large significant 

deterioration in 10 training MR images were retrieved as volumes delineated by the 

semi-manual segmentations to generate the atlases. Then, each compartmental 

cartilage volume was morphologically closed through 5 times dilation followed by 5 

times erosion using a sphere with 5-pixel diameter to fill in small holes, and obtain a 

slightly smoother atlas. The resulting binary volume was used as a mask on the original 

training MR image to obtain an atlas composed of intensities. Therefore, 10 binary 

atlases and 10 intensity-based atlases were recorded both for each compartment 

separately and for all compartments in a combined manner as multi-object atlases. 

The multi-object atlases were considered to be useful for incorporation of relative 

positional information of the compartments into segmentation process. Figure 6.4 

shows a slice of the semi-manually delineated FC volume in a training MR image, and 

the corresponding slices of the binary and intensity-based FC atlases generated for this 

MR image. Figure 6.5 depicts various binary FC compartment atlases, which were 

generated with the described closing operation, in 3-D view. 
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(a) (b) (c) 

Figure 6.4 The corresponding slices of (a) semi-manually segmented volume, (b) binary 
atlas, and (c) intensity-based atlas of FC compartment in a training MR image. 

 

Figure 6.5 Various binary atlases generated for FC compartment using morphological 
closing operation in 3-D. 

6.1.1.1 Landmark Selection 

A subset of interest points at salient positions close to the atlas boundaries were semi-

automatically selected as landmarks from among those detected over a binary atlas 

surface. Since 2-D Harris corner detection algorithm could determine larger number of 

well-localized interest points that have higher probability of correspondence in 

between atlases (see Subsection 5.3.2), this algorithm was run in binary atlases of the 

compartments. Then, a number of interest points roughly in similar positions were 

collected through a user interface to determine the corresponding landmarks for the 

atlases of each compartment type. 
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(a) (b) 

 
 

(c) (d) 

Figure 6.6 Interest points semi-automatically collected as landmarks on the surfaces of 
(a) FC, (b) LTC, (c) MTC, and (d) PC atlases of a training MR image. 

These compartmental landmarks were firstly useful to measure the accuracy of found 

correspondences in correspondence finding procedure (Subsection 6.1.2). After 

correspondence finding via registration, the landmarks on a reference atlas surface 

were propagated to the target atlas surfaces so that the difference between the 

propagated landmarks of the reference atlas and semi-automatically collected 

landmarks of a target atlas could be computed. Secondly, compartmental landmarks 

enable computation of some geometric features, which can be effective in designing 

classifiers for the information fusion module (Subsection 6.1.4). Computation of the 

geometric features is possible via propagation of the landmarks on reference atlas to 

the AAM segmentation result, which is the synthesized cartilage compartment in a 

testing MR image by the appearance model (Subsection 6.1.3.2). The landmark 
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propagation operation was achieved through B-spline registration process based on 

the point correspondences between the reference and target surfaces. 

6.1.2 Correspondence Finding 

The point correspondences between the atlas surfaces were established to be able to 

construct an appearance model for a compartment. One of the atlases for each 

compartment of interest was selected as the reference atlas volume denoted by    

and the rest were determined as the target atlas volumes denoted by   . The surfaces 

of    and    were represented at two scales as triangular meshes of faces and vertices 

that form each of these faces. The set of vertices, in other words points, at two scales 

constituted two point clouds so that the point cloud in fine scale included larger 

number of points than the one in coarse scale. The point clouds for    at coarse and 

fine scales are denoted by    and    , where   is a fixed integer that identifies the 

reference atlas. Similarly, the point clouds for    at coarse and fine scales are denoted 

by    and    , where   is an integer in the set of {        } that includes  , and    is 

the number of atlases for a cartilage compartment of interest. Accordingly, an iterative 

procedure using shape context [88] was run to register the reference point cloud    to 

the target point cloud    in coarse scale by executing a number of steps, which are 

depicted in Figure 6.7, and explained through the following subsections. 

 

Figure 6.7 Steps of the iterative registration procedure for finding point 
correspondences on atlas surfaces. 
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6.1.2.1 Point Normalization 

Each point in the point cloud of   ,    ,   , or     was normalized by being shifted 

with the mean and scaled with the mean length of its respective point cloud. Equations 

(6.1) and (6.2) give the mean and scale computations for the point cloud   , and 

equation (6.3) indicates how the normalization of each point   
 
 in    was performed, 

where    denotes the number of points in   . 

   
 

  
∑  
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               (6.3)   

6.1.2.2 Iterative Closest Point Algorithm 

After point normalization, iterative closest point (ICP) algorithm [89], [90] was run to 

register a target atlas point cloud    to the reference atlas point cloud   . Main steps 

of ICP are briefly explained in the following paragraphs.  

1. Determine the closest point    
  as    

 
 in    for each point    

 
 in    using 1-NN 

algorithm with Euclidean distance.    
 
 indicates jth normalized point of tth 

target atlas. 

2. For the closest point pairs (   
 

,    
 
), compute alignment parameters of 

translation  , scale  , and rotation   according to the equations (6.4), (6.5), 

and (6.6), respectively. Because   and   are needed to compute  , and   is 

needed to compute  , the parameters should be computed in proper order.  

            (6.4)  
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3. Transform target point cloud    according to the alignment parameters  ,  , 

and  , and obtain the registered target point cloud    . 

4. Compute the cost of iteration by averaging the point differences between     

and   . 

5. Iterate as if    is     while the cost of iteration is improved more than its 2%. 

Appendix B clarifies the ICP algorithm in Subsection B.2 by focusing on derivation of 

the optimal translation  , scale  , and rotation   for determining the point 

correspondences with minimal error. Mathematical basics of the quaternions, which 

are useful to derive the optimal rotation equation (6.6), are given in Subsection B.1. 

6.1.2.3 Feature Histogram Computation 

Histograms of features for both the reference atlas points    and registered target 

atlas points     were individually formed in this step. For each point of a shape in 

coarse scale, its difference from each other point of the same shape in fine scale was 

computed. Then, the computed features for a point using these differences included 

the logarithm of point difference norms denoted by   ; a normalized angle between z-

y coordinates of the differences denoted by   ; and unit x direction of the differences, 

denoted by   . The resulting values of   ,   , and    were scaled with 10, 10 and 7, 

respectively. As a result, a histogram with 10x10x7 bins for    ,  ,  ) sequence was 

constructed and stored for each point. 

6.1.2.4 Point Matching 

The reference atlas points    were matched to registered target atlas points     that 

had closest feature histograms. For every point in    the histogram distances were 

computed for every other point in    . Point pairs farther than the maximum distance 
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threshold were assigned to a cost of infinity. Then, point matches between the first 

and second sets with the minimum costs were identified. If the cost of matching for 

matched point pairs was infinite, these matches were removed. 

6.1.2.5 B-spline Registration 

The point matches were regulated with a B-spline grid using a coarse-to-fine 

refinement strategy. B-spline warped point positions were computed using original 

target atlas points   , reference atlas points   , and the determined matches. The 

warping between data sets is kept diffeomorphic, by constraining the Jacobian of the 

B-spline transformation grid. Accordingly, the registered reference atlas point cloud 

    was obtained by updating the point coordinates of   . 

    as part of a triangulated mesh was converted into a volume of voxels, and the 

holes of this volume were filled in. Later, the warped reference atlas points were 

matched to interpolated points on the object boundary    to increase DSC between 

the registered reference atlas and the target atlases. Finally, already registered 

reference atlas was again B-spline warped based on the interpolated point positions 

found in the previous step. 

6.1.3 Appearance Modelling 

6.1.3.1 Model Construction 

Training of appearance model was constructed using the corresponding meshes, which 

describe the atlas surfaces [91]. Using 4 scales of these meshes, the following steps 

were performed. 

1) A shape model was prepared to describe the mean and variance of the atlas 

meshes with principal component analysis [92]. 

2) A texture model was prepared to describe the mean and variance of the 

intensity-based atlas texture with principal component analysis. 

3) A combined model of shape and texture information was prepared, since they 

can be correlated to each other. 
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4) A search model was prepared to find the parameters of the location and the 

combined shape-texture of interested compartment in testing MR images.  

When training for the search model, the appearance model and translation 

parameters were modified with a known amount, and error was measured between 

the intensities that form the genuine atlas and intensities described by the model. 

Then, correlations between the modification amount and the found error were used to 

prepare an inverse model. 

6.1.3.2 Synthesis 

The models constructed at different scales during AAM training was applied beginning 

from the coarsest scale up to the finest scale in the accordingly resized testing MR 

images masked with the automatic segmentations that were obtained through tissue 

classification using training models of VC sparse subsampling method. AAM 

segmentation was accomplished by iteratively preparing an error vector with the 

difference between the model and testing MR image intensities, and querying the 

search model with this error vector to obtaining the optimal parameter and location 

update for the appearance model. Thus, approximate synthesis of the automatically 

segmented compartment by the model without loss of main shape information was 

targeted. 

6.1.4 Information Fusion 

The final hybrid segmentations are considered to be produced by the classifiers, which 

were trained mainly with the false classifications, depending on the probabilities, 

intensities of AAM segmentation, and some geometrical features, which were 

computed according to the surface points of AAM segmentation and the propagated 

landmarks on this surface. 

6.2 Experimental Results 

Table 6.1 gives the results of the correspondence finding procedure for FC when a KLG-

2 right knee of a male at age 72 and with height 1.70 m, weight 77.8 kg, and BMI 27.0 

kg/m2 was used as the reference atlas. Figure 6.8 shows the reference FC atlas in 
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combination with some target FC atlases, and the registered reference atlas as well as 

the mapped landmarks after the correspondence finding procedure. 

Two experiments were performed for the appearance model segmentation. The first 

experiment involved training the AAM with 10 FC atlases, which were also in the 

training set of tissue classification module. In the second experiment the training set 

was split into two groups one of which included five participants with heights greater 

than or equal to 1.60 m and weights greater than or equal to 90 kg, and the other 

contained the remaning five. The former and latter groups were named as large and 

small groups, respectively. The aim of the second experiment was to observe whether 

the model could be improved when its description for the principal variations of 

appearance is limited to samples with similar properties so that all testing MR images 

could be approximately segmented with this appearance model without loss of overall 

segmentation accuracies. AAM segmentation with these models resulted in the 

accuracies in Table 6.2. 

Table 6.1 Accuracies and durations of correspondence finding phase for each of 10 
training FC compartment atlases. 

Atlas ID 
Mean Point 

Distance 
Landmark 

Distance Mean 
Landmark 

Distance Std. 
Duration 

(hour) 
Number of 

Vertices 

1 0.52 9.70 10.44 3.07 19270 

2 0.69 14.38 10.36 5.26 26676 

3 0.63 11.29 8.17 3.76 22092 

4 0.58 11.00 7.72 3.44 21000 

5 0.72 7.89 4.02 6.33 28972 

6 0.59 8.65 5.81 2.44 18232 

7 (reference) 0.010 4.82x10-3 6.34x10-3 3.42 20806 

8 0.65 15.76 8.22 4.24 23882 

9 0.57 7.98 6.14 2.58 18396 

10 0.55 10.82 7.12 2.94 18442 
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(a) 

 
(b) 

 
(c) 

Figure 6.8 (a) Reference atlas, which is illustrated at lower left, in blue drawn on to red 
target atlases shown in Figure 6.5. (b) Reference atlas drawn on to target atlases after 

registration. (c) Landmarks of target atlases in green and propagated landmarks of 
registered reference atlas in yellow enumerated on the registered atlas surfaces in (b). 
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Table 6.2 AAM segmentation accuracies and durations for the two experiments. 

Test Model of 10 training FC atlases Models of 5 large/5 small FC atlases 

MR ID DSC sensitivity specificity duration 
(min) 

DSC sensitivity specificity duration 
(min) 1 75.21 79.09 99.68 13.13 62.69 67.02 99.52 13.47 

2 14.11 15.22 98.41 14.31 73.66 82.02 99.36 13.26 

3 68.05 74.39 99.56 13.95 64.74 71.68 99.51 13.55 

4 75.01 82.32 99.53 14.17 73.63 80.65 99.52 13.95 

5 33.63 40.11 99.30 13.93 72.19 85.65 99.63 14.27 

6 80.11 80.08 99.73 14.15 73.00 74.86 99.59 13.26 

7 77.15 88.91 99.62 14.35 74.30 87.96 99.55 13.47 

8 73.65 84.99 99.58 14.60 71.18 84.73 99.51 14.01 

9 25.00 20.08 99.43 13.22 57.93 67.84 99.06 13.20 

10 72.94 85.48 99.54 14.04 63.87 77.47 99.39 13.83 

11 76.14 86.75 99.51 13.77 71.93 83.99 99.41 13.67 

12 67.40 75.63 99.25 14.16 63.51 72.36 99.15 13.41 

13 73.61 82.88 99.54 14.22 70.78 81.52 99.47 13.79 

14 71.40 76.37 99.61 13.24 67.78 73.97 99.54 13.99 

15 71.39 80.89 99.54 13.90 40.57 34.39 99.65 13.35 

16 75.86 83.04 99.43 13.91 74.62 83.18 99.37 13.79 

17 3.53 2.41 99.59 13.39 3.60 2.82 99.34 13.62 

18 31.17 31.09 99.33 13.57 62.98 64.07 99.62 13.91 

19 73.11 77.10 99.46 14.16 66.81 72.22 99.30 13.63 

20 66.13 68.37 99.38 13.32 74.73 75.85 99.56 13.41 

21 68.77 77.19 99.30 13.84 1.11 0.92 99.05 14.28 

22 74.82 72.20 99.68 13.77 74.43 75.75 99.57 13.87 

23 76.94 81.66 99.48 14.17 73.69 77.00 99.46 14.20 

Mean 61.96 67.23 99.46 13.88 62.33 68.60 99.44 13.70 

 

The training of AAM was achieved in about 80 min and 60 min for the first and second 

experiments, respectively. Mean AAM segmentation durations of FC in a testing MR 

image did not significantly differed for the two experiments, and were approximately 

14 min. 
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Figure 6.9 Box plots of DSC values obtained with classication-based segmentation of 
tissue classification module (TC), segmentation with AAM trained using all trainin 

atlases, segmentation with AAM trained using splited training atlases into large and 
small groups. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.10 Sample AAM segmentations of FC compartment, which could roughly 
adapt to the automatic segmentation results in three different MR images in (a), (b), 

and (c). AAM segmentations are in green and drawn on top of the manual 
segmentations (left hand side) and automatic segmentations (right hand side) of FC 

depicted in red. 
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 (a) 

 
(b) 

 
(c) 

Figure 6.11 Sample AAM segmentations of FC compartment, which could not 
apparently adapt to the automatic segmentation results in three different MR images 
in (a), (b), and (c). AAM segmentations are in green and drawn on top of the manual 
segmentations (left hand side) and automatic segmentations (right hand side) of FC 

depicted in red. 

The confusion matrix for the automatic segmentation results of FC by the tissue 

classification module is as in Table 6.3. According to these automatic segmentation 

results, intersection of the voxels that have probabilities of being FC higher than 0 with 

the voxels classified as cartilage despite being background (FP) is 100%. In addition, 

intersection of the voxels that have probabilities of being FC higher than 0 with the 

voxels classified as background despite being cartilage (FN) is 72.41%, so 27.59% of the 

FC voxels had 0% probability of being cartilage in average. 
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Table 6.3 Confusion matrix for automatic segmentation results of FC by the tissue 
classification module. 

Positive 
TP FN 

0.97% 0.25% 
Average 109,270 28,506 

Negative 
TN FP 

98.61% 0.16% 
Average 11,055,846 17,582 

 

  
(a) (b) 

  
(c) (d) 

Figure 6.12 Segmentation results of FC for the testing MR images that had DSC values 
above 50% in Table 6.2 (a) without any transformation and (b) with transformation 

into the frame of reference atlas. The transformed (c) FN and (d) FP classifications into 
the frame of reference atlas. 

 

Figure 6.13 Combined error map of FP and FN classifications of tissue classification. 
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 CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

This chapter mainly discusses the methodological approaches and results of the 

segmentation system described in Chapter 4 in comparison to related works. Then, it 

concludes the thesis with an overview of the core findings and contributions of the 

presented studies in Chapter 4, Chapter 5, and Chapter 6, and a few suggestions on 

future works that may worth researching. 

Direct comparison of the results of the related studies in the literature is generally 

unreasonable because of their dependence on distinct data sets of MR images. These 

data sets are constructed through different standards with various sizes or qualities by 

scanning participants who have specific symptoms of osteoarthritis or do not have any 

symptoms at all. Moreover, manual segmentations used for validation of the 

automatic segmentations are always affected by segmenter variability. Nonetheless, 

taking these factors into account, the results of the studies mentioned in Subsection 

1.1 and our study can be mutually assessed. 

Since most of the related studies used DSC measure to validate the automatic 

segmentations, Table 7.1 lists the DSC means and standard deviations of segmented 

cartilage compartments for these studies to facilitate the assessments. The studies 

were grouped in the table according to their requirement to find a volume of interest 

(VOI), segment a bone, or determine BCI before segmentation of a cartilage 

compartment. The average DSC values for the study by Vincent et al. [21], which came 

first in the SKI10 challenge [19], were given as presented by Shan et al. [10]. 

Because deterioration of cartilage can affect the segmentation accuracies 

negatively [8], [12], high DSC values obtained in some studies may be attributed to 
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their conduct of the experiments in MR images of only healthy participants [9]. Zhang 

et al. [17] processed MR images of participants with unknown health status. Some 

studies [10], [15], [16], [23] partially involved osteoarthritic participants, whereas 

some others [11], [12], [22] included osteoarthritic participants exclusively as our study 

did. Studies that used SKI10 data set [20], [21] segmented MR images scanned before 

knee surgeries, so they handled purely pathological cases. 

In addition to this, validation was performed partially for some studies by using the 

selected slices of MR images due to large labour intensity of 3-D manual 

segmentations [16], [22], or evaluating parts of the cartilage compartments [10], [15], 

[20], [21]. Studies that used SKI10 data set [20], [21] segmented only load-bearing 

regions of articular cartilage in tibiofemoral joint, and Shan et al. [10] segmented load-

bearing regions of FC. Consequently, accuracies of the whole 3-D cartilage 

compartments could not be provided by these studies. Although segmentation of only 

load-bearing regions that have higher probability of cartilage deterioration can lead to 

a fall in average accuracies, pieces of the cartilage compartment boundaries, where 

segmentation errors mostly occur due to oversegmentation, were eliminated with 

partial validation. 

Furthermore, an increase in the number of training MR images can improve 

system accuracies [22] bringing about yet longer segmentation durations. Therefore, 

studies that trained their system using a greater number of MR images were more 

probable to obtain higher DSC values, e.g. [11] with 58, [21] with 80, and [12] with 44 

training MR images. Leave-one-out cross-validation method, which enables use of 

most of the MR images for training while achieving testing of all MR images, was 

applied in [9], [17], [22], [23]. The studies with limited data sets were Lee et al. [22] 

with 10 MR images, Tamez-Pena et al. [23] with 6 images, Zhang et al. [17] with 11 

images, and Hani et al. [18] with 3 images. In spite of being an uncommon practice, 

processing of multi-modal images for each participant can highlight the cartilaginous 

tissues so that notable accuracies can be obtained as in the study by Zhang et al. [17], 

which processed four MR images with different modalities for a participant. 

It is hard to mention if any method is significantly superior to another overall. 

Though, as can be understood from Table 7.1 that accuracies of PC compartment 
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considerably increased for the methods that had localized segmentation strategies. 

Among the other studies, our work is mostly comparable to the work by Dam et al. 

[12], which used the same MR image data sets of OAI as ours. But, they could improve 

the accuracies approximately 2% for LTC and 1% for PC compartments despite their 

heavy preprocessing with multi-atlas registration. Consequently, it can be inferred that 

our study has attained comparable segmentation accuracies with respect to some 

previous studies, especially when application of our approach on exclusively knee MR 

images of symptomatic participants is taken into consideration.  

Table 7.1 Percentage means and standard deviations of the compartmental DSC values 
for some of the studies in the literature and our study. 

 Study FC LFC MFC TC LTC MTC PC 

NONE 
Folkesson et al. [15]     77±8     81±6   

Our study 82.6±3.6     83.1±3.0 84.6±3.7 81.3±3.3 72.6±8.5 

VOI Dam et al. [12]   84.2±4.
3 

81.4±4.4   86.6±3.4 81.2±5.5 73.9±11.6 

B
O

N
E 

&
 B

C
I Yin et al. [16] 84±4     80±4     80±4 

Fripp et al. [9] (SVM) 86.2±4     81.2±5     81.7±10.5 

Fripp et al. [9] (HDM) 84.8±7.6     82.6±8.3     83.3±13.5 

Lee et al. [22] 82.5±2.8
1 

    80.8±2.57     82.1±3.89 

B
O

N
E 

Vincent et al. [21], [10] 86.1±6.5     86.5±5.4       

Tamez-Pena et al. [23] 88±4.     84±5.       

Zhang et al. [17] 86.4±8.7     88.0±10.2     84.1±7.4 

Shan et al. [10] 76±4.8     84.1±3.7       

Wang et al. [11] 85.0±3.3     83.7±4     79.2±8.88 

Lee et al. [20] 72±8     72±7       

Similarly, due to the fact that our work and the other works processed MR images with 

different sizes, segmented some or parts of cartilage compartments in the knee joint, 

or were run on different platforms, a direct computational performance comparison 

among them cannot be made. Moreover, most of the researchers did not clearly 

explain if the provided measures were for the entire cartilage segmentation procedure 

including the VOI, bone, or BCI determination, and segmentation of all cartilage 

compartments. As to computational performances of the studies in Table 7.1, 

Folkesson et al. [15] noted that they had achieved automatic segmentation of MFC and 

MTC in a testing MR image in 10 min on a 2.8 GHz standard desktop. But, Dam and 

Loog [30] stated that their efficient algorithms dropped 2.5-hour computation time of 

the original work by Folkesson et al. [15] to 16 min. Some researchers made no 

mention of the segmentation durations of their possibly computationally demanding 
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approaches requiring multi-atlas registrations or statistical shape model searches [11], 

[12], [23]. The studies that had segmentation durations for an MR image above the 

average were Zhang et al. [17] with 33 min when using a 48-core high performance 

computer and Shan et al. [10] with at least 10 hours. Other studies that had roughly 

close performances provided the following details on their approximate segmentation 

durations and experimental platforms; Yin et al. [16] in 20 min with Intel Core 2 Duo 

2.6 GHz processor and 4 GB RAM, Fripp et al. [9] 15 min for SVM-based and 15-30 min 

for HDM-based methods, Vincent et al. [21] in 15 min with Intel Core 2 Duo and Core 2 

Quad processors, Lee et al. [22] in 15-21 min, and Lee et al. [20] in 40 min with 2.4 GHz 

2 Quad processor and 2 GB RAM. Our study can be ranked among these studies with 

its 29-minute mean segmentation duration in total for training models of VC sparse 

subsampling (Table 4.6). 

In conclusion, it is necessary to deal with large number of voxels in MR images either 

using localized approaches or subsampling methods to implement efficient MR image 

segmentation systems based on voxel-classification approaches. In the study 

mentioned in Chapter 4, we experimentally showed that vicinity-correlated 

background voxel subsampling method is a better choice than uniform or Gaussian 

subsampling to distinguish objects of interest from other similar and close structures 

frequently encountered in MR images, especially for objects with highly curved and 

complex shapes. Furthermore, it was possible to obtain reasonable accuracies with 

respect to the studies in the literature for segmentation of cartilage compartments in 

high-field knee MR images through voxel-classification-driven region-growing 

algorithm, when training models of VC sparse subsampling and a proper set of values 

for the system parameters were used. Consequently, the findings of this study can 

provide a basis for other researches that focus on segmentation of anatomical 

structures in MR images with voxel-classification. The performance of the classification 

procedure could be substantially increased due to elimination of a great deal of 

background voxels in the training models and reduced number of features. 

Additionally, the proposed system could segment the cartilage compartments without 

prior segmentation of bones or determination of BCI, and requiring multiple MR 

images of a participant. Therefore, the system can be applied efficiently without 
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significant loss of accuracies even for MR images of osteoarthritic participants, which 

makes it promising from clinical point of view. 

In 3-D Marr-Hildreth edge detection study presented in Chapter 5, it was observed that 

the method expanded into third dimension could maintain the ability of the standard 

method in finding the principal edges within 2-D slices along with gaining further 

sensitivity against intensity differences in the direction of the slices. Moreover, it was 

experimentally verified that the described accelerated 3-D Marr-Hildreth 

implementation can perform a successful approximation by expediting the application 

of high-dimensional LoG filter of the 3-D method. Nonetheless, there are some 

shortcomings related to the presented 3-D Marr-Hildreth method. Since Marr-Hildreth 

edge points do not depend on direction information, improving the points with 

directional information as in the Canny edge detection method, or finding the surface 

normal for the points, which are known to belong to anatomical surfaces [31], require 

additional computations. Furthermore, when the LoG filter is constructed with 

different digital standard deviations on the axes as allowed by the equation (5.2), the 

symmetry of the filter within the slices disappears, and the method is applied at the 

cost of losing its property of isotropy. To overcome this issue MR images can be 

interpolated so that the image resolutions are equal in all axes [37].  

With regard to the conclusions of the interest point detection study in Chapter 5, 3-D 

methods prevented the points assembled in local regions on FC surface, since they 

took the voxels along the slices into consideration when computing the local 

maximums in all scales. Therefore, they led to more distinct points in more 

distinguishable positions. The fact that 3-D Harris corner detection method found 

interest points especially near the surface boundaries was intuitively reasonable, since 

strongest interest points are expected to be located in such salient positions. But, this 

did not necessarily mean that the method of 3-D Harris could not find interest points 

on interior surfaces. A denser set of interest points over FC surface was possible with 

this method by increasing the range of cornerness values for the detected points. 

However, strongest interest points tended to reside only over interior surfaces of FC 

for 3-D LoG filtering-based method. The dissimilarity between these two methods in 

positions of strongest points probably resulted from their different definitions of 
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interest points such that 3-D LoG filtering-based method assumed interest points to 

have large gradients in all directions rather than taking mainly the three directions of 

        into account as in 3-D method of Harris [46]. Overall, results indicated that the 

proposed 3-D Harris corner detection, which worked depending on scale-space of the 

first-order derivative products, was superior in determining well-localized corners in 

salient positions near the surface boundaries of FC models. Nevertheless, the rotation 

or scale invariance comparison of the interest points detected by the assessed 

methods remains as an open question for future works. 

In Chapter 6, AAM segmentation could not successfully synthesize the FC 

compartments in all testing MR images, and hence the information fusion module 

could not be realized as intended. Therefore, voxel classification-based segmentation 

method was experimentally shown to be more effective than the hybrid segmentation 

method for FC. This result was in contradiction with the hypothesis revealed in 

Subsection 1.3. However, in spite of being trained with only 5 or 10 atlases, the 

appearance models approximately accomplished synthesis of FC compartment in most 

of the testing MR images by preserving the main shape of FC. Moreover, AAM 

segmentation results enabled inter-participant transformation of the reference atlas 

among testing MR images. Accordingly, error analysis of the tissue classification 

module could be performed. 

If segmentation of all testing MR images is achieved by the appearance modelling 

module and the information fusion module is implemented as described in Subsection 

6.1.4 depending on the learned misclassifications, then the hybrid segmentation 

method may lead to a more reliable cartilage segmentation system. Because then, 

both the degenerative characteristic and approximate appearance of the cartilage 

compartments are to be taken into consideration to obtain the final segmentations. In 

addition to this, compartmental shape information determined via AAM segmentation 

may refer to non-deteriorated original morphology of the cartilage compartment, so 

be useful in measurement of approximate tissue loss when analysed in comparison to 

the results of the tissue classification module. 

The following future works may be considered concerning automatic segmentation 

and assessment of the cartilage in MR images of the knee joint. Training of the 
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appearance models with greater number of atlases or proper modification of AAM 

segmentation algorithm may be tried in order to improve the hybrid segmentation 

method. If the cartilage compartments can be delineated with high accuracies, 

quantitative measurements such as thickness [93], [94], [95], volume [8], [96], or 

surface area over the segmented cartilage compartments are possible. Because most 

of the segmentation errors occur close to the compartmental boundaries and most of 

deterioration is over the load-bearing regions of the cartilage, trimming of the 

compartmental segmentation results or sub-compartmental evaluation may be 

considered [8]. But such operations are likely to require also segmentation of the 

bones as well as BCI determination. Furthermore, temporal assessment of the MR 

images of a participant with respect to his previous scans is important to monitor the 

progress of osteoarthritis. For this purpose, it is reasonable that training the 

segmentation system using the scans of a single participant and testing it with the 

subsequent scans of the same participant can yield better segmentation results [97]. 

Nonetheless, this requires all training images of each participant to be manually 

segmented, which is an extremely laborious task for the trained segmenters. 
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 APPENDIX A 

OSTEOARTHRITIS INITIATIVE 

The OAI [77] is a public-private partnership comprised of five contracts (N01-AR-2-

2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the 

National Institutes of Health, a branch of the Department of Health and Human 

Services, and conducted by the OAI Study Investigators. Private funding partners 

include Merck Research Laboratories; Novartis Pharmaceuticals Corporation, 

GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the OAI is managed by the 

Foundation for the National Institutes of Health. This thesis was prepared using an OAI 

public use data set and does not necessarily reflect the opinions or views of the OAI 

investigators, the NIH, or the private funding partners. 

OAI public use database, which is available at http://www.oai.ucsf.edu/, include 4796 

participants in total. Each of these participants is assigned to one of three subcohorts, 

which are progression subcohort (1390 participants), incidence subcohort (3284 

participants), and non-exposed control subcohort (122 participants), by assessing the 

knee X-ray images for osteophytes and joint space narrowing [78]. Clinical data and 

medical images have been collected for the participants at baseline visit, and yearly or 

half-yearly (interim) follow-up visits. Medical images available for the participants are 

MR images of knee and thigh, and X-ray images of some anatomical regions such as 

knee, hands, or pelvis.  

The MR images of the knee joint have been scanned in coronal, axial, or sagittal 

imaging planes with various imaging standards including 3-D DESS, T2 MAP, and T1 3-D 

FLASH. The knee MR image acquisition standards available for the OAI participants are 

presented in Table A.1 as well as their scan times. The sagittal 3-D DESS image 

http://www.oai.ucsf.edu/
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sequences produced with Siemens Trio 3.0T high-field MR scanners are composed of 

(384×384x160) voxels, each of which represents a volume of (0.36 x 0.36 x 0.7) mm3. 

The coronal and axial 3-D DESS images are not separately scanned but reconstructed 

using the sagittal 3-D DESS MR images. 

Table A.1 The knee MR image sequences and their scan times in minutes. 

No Scan Type 
Scan Time (min) 

Right knee Left knee Total 
1 Localizer (3-plane) 0.5 0.5 1.0 
2 Sagittal 3-D DESS WE 10.6 10.6 21.2 
3 Coronal MPR 3-D DESS WE 0.0 0.0 0.0 
4 Axial MPR 3-D DESS WE 0.0 0.0 0.0 
5 Coronal IW Turbo SE FS 3200 29 3.4 3.4 6.8 
6 Sagittal IW Turbo SE FS 3200 30 4.7 4.7 9.4 
7 Coronal T1 3-D FLASH WE 8.6 - 8.6 
8 Sagittal T2 MAP 120mm field of view 10.6 - 10.6 

 Total 38.4 19.2 57.6 

A.1 Imorphics MR Image Assessments 

3-D cartilage and meniscus regions in sagittal 3-D DESS MR images were semi-manually 

segmented by iMorphics using EndPoint software [98], [99] for the baseline and 12-

month follow-up visits of 88 participants in the progression subcohort, and also have 

kindly been provided for public access1. The semi-manual segmentations of cartilage 

compartments in each MR image were performed by a trained segmenter, who could 

repeatedly segment these compartments with an intraobserver coefficient of variation 

of less than 3%, and reviewed by two experts. Because the same segmenter 

segmented all images of a subject through quality assurance of the segmentations by 

the experts, the effects of interobserver variation were minimized [98].  

The data files that contain 3-D coordinates of the semi-manually segmented femoral 

cartilage, medial and lateral tibial cartilage, patellar cartilage, and medial and lateral 

meniscus contours were stored both as a text file format and a MATLAB variable file 

format. These contours of cartilage compartments have been useful in generating the 

                                                        
1 These data can be requested by contacting the OAI Coordinating Center with an e-mail to the address 
of OAIImageHelp@psg.ucsf.edu, and mentioning that the data files of segmented cartilage and meniscus 
from MR images are interested in. 
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training models for the cartilage segmentation procedures and validating the 

automatic segmentation results. 

In the studies presented throughout this thesis, the baseline MR images of 33 

participants in the OAI data sets assessed by Imorphics were used along with their 

corresponding data files of semi-manually segmented cartilage. The studies explained 

in Chapter 4 and Chapter 6 processed all of these 33 MR images whereas the studies 

explained in Chapter 5 worked on a subset of them. Table A.2 reveals the 

demographics of 33 participants involved in either the training or testing phases of our 

studies. 

Table A.2 Demographics of the 33 participants involved in the training and testing 
phases of the studies presented in this thesis. 

Criterion Train Data (10 MR images) Test Data (23 MR images) 

Gender 
Female Male Female Male 

5 5 10 13 

Race 
Black White Black White 

3 7 1 22 

Knee 
Right Left Right Left 

4 6 13 10 

Age 
40-49 50-59 60-69 70-79 40-49 50-59 60-69 70-79 

5 3 - 2 2 5 7 9 

Height (m) 
<1.6 [1.6-1.7) [1.7-1.8) ≥1.8 <1.6 [1.6-1.7) [1.7-1.8) ≥1.8 

1 6 1 2 4 6 7 6 

Weight 
(kg) 

<70 [70-90) [90-110) ≥110 <70 [70-90) [90-110) ≥110 
- 5 5 - 4 4 12 3 

BMI 
<25 [25-30) [30-35) ≥35 <25 [25-30) [30-35) ≥35 

- 4 3 3 - 7 12 4 

KLG 
0 1 2 3 4 0 1 2 3 4 
- - 2 8 - - - 2 21 - 
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 APPENDIX B 

MATHEMATICAL FORMULATIONS 

B.1 Fundamentals of Quaternions 

A quaternion is used to indicate a vector perpendicular to the required plane of 

rotation in 3-D such as x-z plane or an arbitrary plane. This vector can be the z axis, y 

axis, or an arbitrary axis. In particular, unit quaternions are useful in representing 

rotations since they lend themselves directly to the geometrical intuition of axis and 

angle notation [100]. A quaternion   can be defined as a complex number with three 

imaginary parts as in (B.1), where     ,      ,     ,      ,       ,      , 

and            . As in equation (B.2), a rotation about a unit vector 

  [        ]
  by   is represented by a unit quaternion   [101]. 

  [              ]
  (B.1)  

  [   
 

 
      

 

 
      

 

 
      

 

 
]  (B.2)  

Product of two arbitrary quaternions   and   is performed according to (B.3) using the 

complex representations of the quaternions, or (B.4) using an orthogonal 4x4 matrix 

representation   of   and the vector representation of  . To practically find the 

product of   , 3x3 lower left portion of   is transposed to obtain  ̅, and  ̅  

multiplication is calculated.  
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   (                   )   (                   )

  (                   )

  (                   ) 
(B.3)  

      [

           
         
         
         

]   (B.4)  

Dot product of two quaternions is computed as in (B.5), and preserved so that 

                     . Dot product of a unit quaternion   is given by (B.6). The 

corollary that magnitude of a dot product is the product of magnitudes is formulated 

in (B.7). 

                        (B.5)  

    ‖ ‖    (B.6)  

                       (B.7)  

Conjugate of an arbitrary quaternion q is denoted by                  . 

Inverse of a non-zero quaternion   can be obtained as in (B.8).    is associated with 

  . Since   is orthogonal, it holds that                . This formulation yields 

that          considering (B.8) and the fact that        for orthogonal matrices. 

If   is a unit quaternion       . 

    
  

   
 (B.8)  

An arbitrary vector can be represented as a quaternion with no real part. If   

[        ]
 , then the quaternion                . Because no real part is 

associated, the matrix   of quaternion   is skew symmetric so that       and 

 ̅    ̅. Then, rotation of pure imaginary quaternion  , which represents either a 3-

D point or vector, by a unit quaternion   is achieved by the composite product in (B.9), 

where    is the rotated pure imaginary quaternion. 
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        (B.9)  

B.2 Iterative Closest Point Algorithm 

Given a reference shape and a target shape denoted by the point sets of    and   , 

respectively, iterative closest point algorithm iteratively estimates the optimal 

translation, scaling, and rotation to align    to    by minimizing the Euclidean distance 

between the two shapes. The following subsections explain how the point 

correspondences between    and    are found, and the parameters of alignment are 

estimated in this algorithm. 

B.2.1 Finding Point Correspondences 

Closest point correspondence is assumed to determine the point correspondences. 

However, convergence is usually possible with this assumption if coordinates of 

reference shape points are close enough to the coordinates of target shape points. For 

every point   
 
 in    the closest point   

  in    is determined according to (B.10). 

These closest points among the reference shape points   
  are denoted by   

 
 as the 

correspondents of   
 
, where           , and    is the number of points in   . The 

set of correspondent points   
 

 is represented by   . 

       
 

‖  
 
   

 ‖ (B.10)  

When the set of correspondent points         is established, the optimal parameters 

of translation  , scale  , and rotation   are estimated such that             is 

satisfied with a minimal residual error that can be computed as in (B.11). 

  ∑‖  ‖
 

  

   

 ∑‖  
 
   (  

 )    ‖
 

  

   

 (B.11)  

B.2.2 Translation Estimation 

Centred zero-mean points are computed for all points in    according to (B.12), 

where    is computed as in (6.1). The same centring step is also performed for the 

point set   . Then, the total error equation can be rearranged as in (B.13), where    is 

defined according to (B.14). 
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(B.13)  

The term in the middle of the final expansion in (B.13) is accepted as zero, since the 

point sets are centred to be zero-mean, and scaling or rotation do not affect the mean. 

The first term does not depend on   , but the third term is useful to estimate 

translation. Because the third term cannot be negative,    should be 0 to minimize the 

total error. Then, the optimal translation is derived as in (B.14). 

                  

                                            
 
⇒              

(B.14)  

B.2.3 Scale Estimation 

With removal of the second and third terms of the total error equation in (B.13), only 

the first term remains. This term is further expanded in (B.15). Because rotation 

preserves the length of the points, the expression of ‖ (   
 )‖ can be replaced with 

‖   
 ‖. Accordingly, the terms denoted by    and    are the sums of the squared 

lengths of the centred points in    and   , whereas the term represented by   is the 

sum of the dot products of the rotated target shape points in    with their 

corresponding reference shape points in   . 

  ∑‖   
 
   (   
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(B.15)  



 

129 
 

    ∑‖   
 ‖

 
  

   ⏟      
  

   ∑   
 
 (   

 )
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   ⏟      
  

 

Then, the total error can be rewritten as in (B.16) such that only the first term depends 

on  . Similarly, with the first term equalized to zero to minimize  , the estimate of 

optimal scale is found according to (B.17). 
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(B.17)  

B.2.4 Rotation Estimation 

To minimize   with respect to the remaining second term that includes rotation   in 

(B.15), this term is set to zero too.   ,   , and      are greater than or equal to zero, 

and do not depend on  .    is also greater than or equal to zero, but depends on  . 

Therefore, the nominator of the term         is minimized by maximizing  . 

Maximization of   can be geometrically interpreted as in (B.18), where   is the angle 

between the reference shape points and rotated target shape points. The point sets 

are aligned so that   gets 0 for an optimal rotation. When   is  ,      is   and the 

maximum value of the expression   is obtained. Therefore, angle   should be 

minimized to maximize  . If optimal rotation   is represented by the unit quaternion 

 ,   can be rearranged as in (B.19) based on (B.9) and (B.8).  
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The multiplications of     
 
 and    

 
  can be realized with skew-symmetric matrices of 

  ̅ 
 
 and    

 
, which are based on pure imaginary quaternions    

 
and    

 
, respectively. 

According to the rule of skew-symmetric matrices mentioned in Subsection B.1, the 

equation of   is reformulated as in (B.20) to obtain a compact form of known and 

unknown variables. The matrix   in (B.20) can be defined as in (B.21), where 

    ∑    
     

    
   ,     ∑    

     
    

   , etc. 
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 (B.21)  

A quaternion that maximizes      is the eigenvector that corresponds to the most 

positive eigenvalue of the matrix  . Then, optimal rotation   is determined as     

lower left corner of the matrix given in (B.22), which can be alternatively computed as 

in (B.23). 
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