

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND

SEMI-SUPERVISED TEXT CLASSIFICATION

BERNA ALTINEL

PhD. THESIS

DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM OF COMPUTER ENGINEERING

ADVISER

ASSOC. PROF. DR. BANU DİRİ

CO-ADVISER

ASSIST. PROF. DR. MURAT CAN GANİZ

İSTANBUL, 2015

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND

SEMI-SUPERVISED TEXT CLASSIFICATION

A thesis submitted byBerna ALTINELin partial fulfillment of the requirements for the

degree of DOCTOR OF PHILOSOPHYis approved by the committee on 30.12.2015

in Department of Computer Engineering, Computer Engineering Program.

Thesis Adviser

Assoc. Prof. Dr. Banu DİRİ

Yıldız Technical University

Co- Adviser

Assist. Prof. Dr. Murat Can GANİZ

Marmara University

Approved By the Examining Committee

Assoc. Prof. Dr. Banu DİRİ

Yıldız Technical University_____________________

Assist. Prof. Dr. Murat Can GANİZ

Marmara University _____________________

Assist. Prof. Dr. M. Fatih AMASYALI, Member

Yıldız Technical University _____________________

Assist. Prof. Dr. Zeynep ORHAN, Member

Fatih University _____________________

Prof. Dr. Zehra ÇATALTEPE, Member

İstanbul Technical University _____________________

Assoc. Prof. Dr. Elif KARSLIGİL, Member

Yıldız Technical University _____________________

Assist. Prof. Dr. Arzucan ÖZGÜR, Member

Boğaziçi University _____________________

This study was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK) Grant No: 111E239.

ACKNOWLEDGEMENTS

I am deeply thankful to my co-adviser,Assist. Prof. Dr. Murat Can Ganiz, forhis

valuable support and mentorship during my thesis journey. With the help of his

knowledge and guidance, I was able to look at my research from different viewpoints. It

would have been very difficult to complete this study without hissupport. I am very

grateful him for the big effort in teaching and directing me in this research. I really owe

him a lot for the enormous amount of time spent with me discussing different problems

ranging from theoretical issues down to technical details. I also would like to thank to

my adviser, Assoc. Prof. Dr. Banu Diri, for her support and mentorship during this

study. She did not only help me during my research but encouraged me to make it

better. She also gives me precious advice as well as the moral to overcome difficulties.

I would like to thank my committee members; Assist. Prof. Dr. M.Fatih Amasyalı and

Assist. Prof. Dr. Zeynep Orhan, for their support and contribution to my thesis. They

were always available to answer my questions and encourage me during this tough

work.

I also would like to thank to my previous advisers Prof. Dr. Zehra Çataltepe who is the

adviser of my MSc thesis and Assoc. Prof. Dr. Ender Özcan who is the adviser of my

BSc thesis. I am very grateful to them for directing and motivating me for the next step

in academic life and always support me even after my graduation.

I also would like to Prof. Dr. A. Coşkun Sönmez whowas one of the most wonderful

and helpful professors that I have ever seen. He was always positive and used to be at

student side and support his students. Even after his death, I am sure that our love for

him will not be less; because love and respect are actually immortal in life.

I thank very much all of my colleagues at Marmara University for their patient

understating of my overwhelming schedule.

I would like to thank all of my dearest friends who always support me and keep joy in

my life for the last fifteen years.

I also owe Ali a lot;because hehas been much safer, better and meaningful side of my

life for about eight years.

Finally, I would like to thank my family. All members of my family; my father

Nurettin, my mother Metine and my brother Baran are separately very important for me.

I am grateful them for the big support in my life. It would have been very hard to

complete this and my all previous studies without their unconditional and endless help

and support. They are always nearby me. I really need to thank to them for their support

for encouraging me and giving their full support with my every decision. I am very

lucky to have such a wonderful family.

This thesis is dedicated to my family, who has taken care of me without expecting any

return.

December, 2015

BernaALTINEL

vii

TABLE OF CONTENTS

Page

LIST OF SYMBOLS ... ix

LIST OF ABBREVIATIONS .. xi

LIST OF FIGURES ... xiii

LIST OF TABLES ... xiv

ABSTRACT ... xvi

ÖZET ... xviii

CHAPTER 1

INTRODUCTION .. 1

1.1Literature Review ... 1

1.2Aims of the Dissertation ... 3

1.3Hypothesis .. 3

CHAPTER 2

BACKGROUND AND RELATED WORK .. 6

2.1Traditional Classification Approaches ... 6

2.1.1Supervised Learning .. 7

2.1.1.1 Support Vector Machines ... 7

2.1.1.2 Semantic Supervised Approaches for Text Classification 10

2.1.2 Semi-Supervised Learning ... 14

2.1.2.1 Semi-Supervised Learning Approaches .. 16

2.2 Higher-Order Co-Occurrence Paths .. 19

2.3Term Weighting Methods .. 20

2.4Helmholtz Principle from Gestalt Theory and Meaning Calculation............... 23

CHAPTER 3

EXPERIMENTAL SETUP ... 29

viii

CHAPTER 4

HIGHER-ORDER SEMANTIC KERNELS .. 33

4.1 Higher-Order Semantic Kernel (HOSK) ... 33

4.1.1 Methodology .. 34

4.1.2 Experimental Results and Discussion .. 37

4.2 Iterative-Higher-Orders Semantic Kernel (IHOSK) 39

4.2.1 Methodology .. 39

4.2.2 Experimental Results and Discussion .. 41

4.3 Higher-Order Term Kernel (HOTK) ... 44

4.3.1 Methodology .. 44

4.3.2 Experimental Results and Discussion .. 45

CHAPTER 5

5.1 Class Meanings Kernel (CMK) ... 48

5.1.1 Methodology .. 48

5.1.2 Experimental Results and Discussion .. 52

5.2 Class Weighting Kernel (CWK) .. 60

5.2.1 Methodology .. 60

5.2.2 Experimental Results and Discussion .. 65

CHAPTER 6

INSTANCE LABELING IN SEMI-SUPERVISED LEARNING USING MEANING

VALUES OF TERMS .. 72

6.1 Instance Labeling Based on Meaning (ILBOM) ... 73

6.1.1 Methodology .. 73

6.1.1.1Meaning Calculation .. 73

6.1.1.2 Labeling .. 74

6.1.1.3 Kernel Evaluation ... 74

6.1.1.4 Classification .. 75

6.1.2 Experimental Results and Discussion .. 75

CHAPTER 7

RESULTS AND DISCUSSION ... 80

REFERENCES ... 85

CURRICULUM VITAE ... 93

ix

LIST OF SYMBOLS

a Number of documents in the positive category which containterm w

b Bias

B Length of a section (paragraph, class, etc.) in words

c Number of documents in the negative category which contain term w

C Regularization parameter (misclassification cost parameter)

|C| Number of classes

cfw Number of classes which contains term w

Cm Counts m-tuple of the elements of Sw appears in the same document

|di| The length of the document

dp Term vector of document p which shows terms with their frequency

dfw Number of documents which contains term w

D Term by document matrix of the corpus

D
T
 Transpose of D matrix

E (x) Expectation value

F First-order path matrix

FN Normalized first-order paths matrix

G Generator that displays the initial semantic similarities between words

Gp,q Gram matrix shows the kernel value between documents dp and dq

hi Initial learner

Lo Original labeled instances

Lp Previously unlabeled instances with their current predicted labels

L Total of Loand Lp

Llabeled Labeled training examples

Ld Length of a document

Mlabeled Matrix shows the meaningfulness of the terms in the labeled set for

each class

mij Occurrence frequency of the j
th

word in the ith document;

mi Row vector representing the document i

mj Column vector corresponding to word j

N Total number of documents in the corpus

Nw Total number of documents contain term w

N Total number of documents in the training set

NR Row normalization matrices

NC Column normalization matrices

P Probability

x

ptd Equals the number of times that t occurs in d divided by the total

number of times that t occurs

S Second-order path matrix

Si,j Semantic smoothing matrix shows the relatedness between words i

and j

SN Normalized second-order paths matrix

SR Row (document) similarity matrix

SC Column (word) similarity matrix

Sw The set of all words in N documents

ti Term

tfw Term frequency of word w

tfc w,c Total term frequency of word w in the documents of class c

tf w,d Total term frequency of word w in the document d

U Unlabeled examples

W Weight Matrix for each word w and class k

w Weight vector

)(1d Transformation of document

αi Langlier’s multiplier

α Significance level in student’s t-test


 Mapping from an input space into a feature space.

 Vector of slack variables

 Decay factor

xi

LIST OF ABBREVIATIONS

1A1 One-Against-One

1AA One-Against-All

1D One Dimensional

BOW Bag-of-Words

CBT Corpus-Based Thesaurus

CMK Class Meaning Kernel

CWK Class Weighting Kernel

EM Expectation–maximization

HONB Higher-Order Naive Bayes

HOSK Higher-Order Semantic Kernel

HOTK Higher-Order Term Kernel

IG Information Gain

IHOSK Iterative Higher-Order Semantic Kernel

ILBOM Instance Labeling Based on Meaning

IPL Inverted Path Length

IR Information Retrieval

k-NN K-Nearest Neighbor

LSA Latent Semantics Analysis

LSO Lowest Super Ordinate

NB Naive Bayes

NFA Number of False Alarms

RBF Radial Basis Function

QP Quadratic Programming

SMO Sequential Minimal Optimization

SO-CMK Second-Order Class Meaning Kernel

SO-CWK Second-Order Class Weighting Kernel

SSL Semi-supervised Learning

SSTK Semantic Syntactic Tree Kernel

SVM Support Vector Machine

TF Term Frequency

TF-ICF Term Frequency-Inverse Class Frequency

TF – IDF Term Frequency Inverse Document Frequency

TF-RF Term Frequency-Relative Frequency

TS Training set percentages

TSVM Transductive Support Vector Machine

UMK Unsupervised Meaning Kernel

xii

VS Vector Space

VSM Vector Space Model

WKNN Weighted K-Nearest Neighbor Method

WSD Word Sense Disambiguation

WWW World Wide Web

xiii

LIST OF FIGURES

Page

Figure 2.1 A block diagram of an inductive reasoning system. 15

Figure 2.2 A block diagram of a transductive inference system. 15

Figure 2.3 Graphical demonstration of first-order, second-order and third-order paths

between terms through documents [93]... 21

Figure 2.4 The Helmholtz Principle in human perception (adopted from [100]) 24

Figure 2.5 The Helmholtz Principle in human perception (adopted from [99]) 24

Figure 5.1 The architecture of CMK System .. 50

Figure 5.2 The total kernel computation time units of IHOSK, SO-CMK, CMK and

HOTK on SCIENCE dataset at 30% training set percentage 56

Figure 5.3 The Comparison of the accuracies of TF-ICF, UMK and CMK at different

training set percentages on SCIENCE dataset ... 57

Figure 5.4 The training phase for CWK ... 67

Figure 5.5 The total kernel computation time units of IHOSK, SO-CWK, HOTK and

CWK on SCIENCE dataset at 30% training set percentage 68

Figure 6.1 The architecture of ILBOM system ... 76

xiv

LIST OF TABLES

Page

Table 2.1 Comparison of the weights of four features in Category 00_acq and 03_earn

([79]) .. 23

Table 3.1 Comparison of properties of datasets before attribute selection 30

Table 3.2 Optimized C values for IHOSK on different datasets 31

Table 3.3 Optimized C values for HOTK on different datasets 31

Table 3.4 Optimized C values for CMK on different datasets 31

Table 3.5 Optimized C values for linear kernel on different datasets 32

Table 4.1 A document by term matrix representation of three documents 34

Table 4.2 Accuracy of HOSK and linear kernel on 1150 Haber dataset with varying

training set size .. 37

Table 4.3 Accuracy of HOSK and linearkernel on WEBKB5 dataset with varying

training set size .. 38

Table 4.4 Accuracy of HOSK and linearkernel on 20 Newsgroups-Comp dataset with

varying training set size ... 38

Table 4.5 Accuracy of HOSK and linearkernel on 20 Newsgroups-Science dataset with

varying training set size ... 38

Table 4.6 Accuracy of N-IHOSK and linear kernel on 20 Newsgroups-Science dataset

with varying training set size ... 42

Table 4.7Accuracy of N-IHOSK and linearkernel 20 Newsgroups-Politics dataset with

varying training set size ... 42

Table 4.8 Accuracy of N-IHOSK and other kernels WEBKB5 dataset with varying

training set size .. 42

Table 4.9 Accuracy of N-IHOSK and linearkernel on Mini-newsgroups dataset with

varying training set size ... 43

Table 4.10Accuracy of HOTK and linearkernel on 20 Newsgroups-Science dataset with

varying training set size ... 46

Table 4.11 Accuracy of HOTK and linearkernel on 20NewsPolitics dataset with varying

training set size .. 47

Table 4.12 Accuracy of HOTK and linearkernel on 20 Newsgroups-Comp dataset with

varying training set size ... 47

Table 4.13 Accuracy of HOTK and linearkernel on Mini-newsgroups dataset with

varying training set size ... 47

Table 5.1 Term frequencies in different classes ... 52

Table 5.2 Accuracy of CMK and otherkernels on 1150Haber dataset with varying

training set size .. 53

xv

Table 5.3Accuracy of CMK and otherkernels on 20 Newsgroups-Science dataset with

varying training set size ... 54

Table 5.4Accuracy of CMK and otherkernels on IMDB dataset with varying training set

size ... 54

Table 5.5Accuracy of CMK and otherkernels on 20 Newsgroups-Politics dataset with

varying training set size ... 59

Table 5.6Accuracy of CMK and otherkernels on 20 Newsgroups-Comp dataset with

varying training set size ... 59

Table 5.7Accuracy of CMK and otherkernels on 20 Newsgroups-Religion dataset with

varying training set size ... 59

Table 5.8Accuracy of CMK and otherkernels on Mini-newsgroups dataset with varying

training set size .. 60

Table 5.9Term frequencies on different classes [94] .. 63

Table 5.10Accuracy of CWK and otherkernels on 20 Newsgroups-Science dataset with

varying training set size ... 67

Table 5.11Accuracy of CWK and otherkernels on IMDB dataset with varying training

set size ... 68

Table 5.12Accuracy of CWK and otherkernels on 20 Newsgroups-Politics dataset with

varying training set size ... 69

Table 5.13Accuracy of CWK and otherkernels on 20 Newsgroups-Comp dataset with

varying training set size ... 69

Table 5.14Accuracy of CWK and otherkernels on 20 Newsgroups-Religion dataset with

varying training set size ... 70

Table 5.15Accuracy of CWK and otherkernels on Mini-newsgroups dataset with

varying training set size ... 71

Table 6.1 Accuracy of ILBOM and otherkernels on 20 Newsgroups-Science dataset

with varying training set size ... 78

Table 6.2 Accuracy of ILBOM and otherkernels on 20 Newsgroups- Politics dataset

with varying training set size ... 78

Table 6.3 Accuracy of ILBOM and otherkernels on IMDB dataset with varying training

set size ... 79

Table 6.4 Accuracy of ILBOM and otherkernels on Mini-Newsgroups dataset with

varying training set size ... 79

Table 7.1 Accuracy of our semantic kernels and linear kernel on 20 Newsgroups-

Science dataset with varying training set size……………………………82

Table 7.2 Accuracy of our semi-supervised semantic kernel and the other kernels on

20 Newsgroups-Science dataset with varying training set size…………..83

xvi

ABSTRACT

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND

SEMI-SUPERVISED TEXT CLASSIFICATION

Berna ALTINEL

Computer Engineering Department

Ph.D. Thesis

Adviser: Assoc. Prof. Dr. Banu DİRİ

Co-Adviser: Assist. Prof. Dr. Murat Can GANİZ

Text categorization plays a crucial role in both academic and commercial platforms due

to the growing demand for automatic organization of documents. Kernel-based

classification algorithms such as Support Vector Machines (SVM) have become highly

popular in the task of text mining. This is mainly due to their relatively high

classification accuracy on several application domains as well as their ability to handle

high dimensional and sparse data which is the prohibitive characteristics of textual data

representations. Recently, there is an increased interest in the exploitation of

background knowledge such as ontologies and corpus-based statistical knowledge in

text categorization. It has been shown that, by replacing the standard kernel functions

such as linear kernel with customized kernel functions which take advantage of this

background knowledge, it is possible to increase the performance of SVM in the text

classification domain. Based on this, we developed a variety of semantic kernel

methods in order to explore the capabilities of higher-order paths, class-based meaning

values and class-based weighting of terms in both supervised learning and SSL setting

for SVM.

We propose several corpus-based semantic kernels which implicitly extract and make

use of semantic relations such as Higher-Order Semantic Kernel (HOSK), Iterative

Higher-Order Semantic Kernel (IHOSK) and Higher-Order Term Kernel (HOTK) for

SVM. HOSK makes use of higher-order co-occurrence paths of terms between

xvii

documents. In HOSK, the simple dot-product between feature vectors of the documents

consist of term frequencies yields a first-order document relation matrix (F). Second–

order document matrix (S) is formed by multiplying F with itself. S is used as kernel

matrix in HOSK’s transformation from input space into feature space. The experimental

results show that HOSKshows an improvement on accuracy over linear kernel.A more

advanced model is IHOSK which uses higher-order paths between documents and terms

together in an iterative form. The document similarity matrix is produced iteratively

using SR (a similarity matrix between documents) and SC (a similarity matrix between

terms). Experiment results show that the classification performance increases relative to

the linear kernel. In our following study, we consider less complex higher-order kernel,

HOTK that is based on higher-order paths between terms only. HOTK is much simpler

than IHOSK and also requires less computational resources.

We also propose a novel approach for building a semantic kernel for SVM, which we

name CMK. We applied CMK in a Semi-supervised Learning (SSL) setting with an

addition of a new approach to initial labeling of unlabeled data, called ILBOM. The

suggested approaches smooth the term weights of a document in BOW representation

by class-based meaning values of terms. These approaches reduce the disadvantages of

BOW by increasing the importance of class specific concepts which can be synonymous

or closely related in a class. The meaning values of terms are calculated according to the

Helmholtz principle from Gestalt theory in the context of classes. Our experimental

results show that both CMK and ILBOM widely outperform the classification accuracy

of the linear kernel.

Additionally we also propose another approach which is called Class Weighting Kernel

(CWK). This approach is similar to CMK however it provides an improvement over

CMK in terms of mainly the calculation time. This class-based weighting basically

groups terms based on their importance for each class. Therefore it smooths the

representation of documents which changes the orthogonality of the vector space model

by introducing class-based dependencies between terms.

The main contribution of this dissertation is building novel semantic kernels those are

applied to supervised and semi-supervised text classification.We show that kernels

performing much better than standard kernels in terms of classification accuracy. The

proposed approaches have independency of the outside semantic sources such as

WordNet, so that they can be applied to any language domain. They also form a

foundation that can easily be combined with other term-based semantic similarity

methods such as unsupervised semantic similarity measures. To the best of our

knowledge, higher-order paths and class-based values of terms are used in the

transformation phase of SVM for the first time in the literature and give significant

benefits on the semantic smoothing of terms in a kernel for text classification.

Key Words:Support Vector Machines, text classification, semantic smoothing kernel,

supervisedkernel, higher-order co-occurrence, higher-order paths, Helmholtz principle,

class-based term weighting.

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

xviii

ÖZET

EĞİTİCİLİ VE YARI-EĞİTİCİLİ METİN SINIFLANDIRMASI

İÇİN DERLEM TABANLI ANLAMBİLİMSEL ÇEKİRDEKLER

Berna ALTINEL

Bilgisayar Mühendisliği Bölümü

Doktora Tezi

Tez Danışmanı: Doç. Dr. Banu DİRİ

Tez Eş-Danışmanı : Yrd. Doç. Dr. Murat Can GANİZ

Metin sınıflandırma, belgelerin otomatik organizasyonu için artan talepten ötürü hem

akademik hem de ticari platformlarda önemli bir rol oynamaktadır.Destek Vektör

Makineleri (SVM) gibi çekirdek temellisınıflandırma algoritmaları metin madenciliği

görevinde son derece popüler hale gelmişlerdir. Bu durum esas olarak SVM’in çeşitli

uygulama alanları üzerindeki nispeten yüksek sınıflandırma doğruluğunun yanı sıra

yüksek boyutlu ve seyrek veriyi işlemeyebilme yeteneklerindende

kaynaklanmaktadır.Son zamanlarda, metin sınıflandırmasındaontolojiler ve derlem

temelli istatistiki bilgi gibi arka plan bilgi birikiminden yararlanmaya yönelik artan bir

ilgi söz konusudur.Doğrusal çekirdek gibi standart çekirdek fonksiyonları yerine bu

arka plan bilgisinin avantajlarından faydalanan özelleştirilmiş çekirdek

fonksiyonlarınıkullanarak SVM’in metin sınıflandırma alanındaki performansını

arttırmanın mümkün olduğu gösterilmiştir.Buna dayanarak,SVM için eğiticili ve yarı-

eğiticili anlambilimsel düzeltme çekirdeklerinde, daha yüksek mertebeden yolların,

terimlerin sınıf temelli anlamsal değerlerinin ve sınıf temelli ağırlık değerlerinin

yeteneklerini keşfetmek amacıyla çeşitli yöntemler geliştirilmiştir.

Bu çalışamda Yüksek MertebedenAnlambilimsel Çekirdek (HOSK), Özyineli Yüksek

Mertebeden Anlambilimsel Çekirdek (IHOSK) ve Yüksek Dereceden Terim Çekirdeği

(HOTK) gibi dolaylı anlambilimsel ilişkileri çıkartan ve kullanan derlemtemelli çeşitli

anlambilimsel çekirdekler önerilmiştir.HOSKterimlerin belgeler arasındaki yüksek

xix

mertebeden yolları kullanır. HOSK’ta belgelerin özellik vektörleri arasındaki basit iç

çarpım sonucunda birinci dereceden bir matris (F) elde edilir.HOSK belgeler, bu özellik

vektörleri arasında basit nokta ürünün birinci dereceden bir matris (F) elde edilir. İkinci

dereceden eş-oluşum matrisi (S), F’nin kendisi ile çarpılması sonucu oluşturulur. S,

HOSK’un giriş uzayından özellik uzayına dönüşümündeki çekirdek matrisi olarak

kullanılmaktadır. Deneysel sonuçlar HOSK’un doğrusal çekirdek üzerindedoğruluk

açısından bir iyileştirme sağladığını göstermektedir. HOSK’un daha gelişmiş bir modeli

debelgeler ve terimler arasındaki yüksek dereceli yolları yinelemeli bir şekilde kullanan

IHOSK’tur.Belgeler ve terimler arasındakianlambilimsel ilişki;belgeler arasındaki

benzerlik matrisini terimler arasındaki benzerlik matrisini kullanarak ve terimler

arasındaki benzerlik matrisini de belgeler arasındaki benzerlik matrisini kullanarak

hesaplayan ve χ-Sim olarak adlandırılan özyineli bir tekniktenuyarlanmıştır. Belge

benzerlik matrisi, SR (belgeler arası benzerlik matrisi) ve SC (terimler arası benzerlik

matrisi) kullanılarak özyineli bir şekilde üretilir. Deney sonuçları sınıflandırma

performansının doğrusal çekirdeğe kıyasla daha da arttığını göstermektedir. Bir sonraki

çalışmamızda, daha az karmaşıklıkta yüksek-mertebeli çekirdekler düşünülmüştür;

HOTK sadece terimler arasındaki yüksek-mertebeli yollara bağlıdır.HOTK’deki

anlambilimsel çekirdek dönüşümü sadece eğitim kümesindeki terimler arası yüksek-

mertebeli eş-oluşumlar kullanılarak yapılır. HOTK, IHOSK’dan daha basittir ve aynı

zamanda daha az hesaplama kaynakları gerektirir.

Bu çalışmada, SVM için anlambilimsel çekirdek inşa eden CMK olarak

adlandırılanyeni bir yaklaşım önerilmektedir. CMK’yı başlangıçtaki etiketsiz veriyi

etiketlendiren yeni bir yöntem eklentisi ile yarı-eğiticili öğrenmeye uyguladık ve bunu

ILBOM olarak adlandırdık. Önerilen yaklaşımlar bir belge içindeki BOW ile temsil

edilen terimlerin ağırlıklarını,terimlerin sınıf temelli anlamsal değerlerini kullanarak

düzeltmektedir. Bu da sınıflar üzerinde ayırt ediciliği olmayan genel amaçlı kullanılan

terimlerin önemini azaltırken,önemli ya da başka bir deyişle anlamlı terimlerin önemini

artırmaktadır. Bu yaklaşımlar, eşanlamlı terimler ya da sınıfla yakından ilgili terimler

gibi sınıfa özgü kavramların önemini arttırarak BOW’un dezavantajlarını azaltmaktadır.

Terimlerin sınıflar bağlamındaki anlamsal değerleri Gestalt teoriden Helmholtz esasına

göre hesaplanmaktadır. Deneysel sonuçlarımız CMK ve ILBOM’un doğrusal

çekirdekten daha üstün bir sınıflandırma keskinliğisağladığını göstermektedir.

Ayrıca Sınıf Ağırlıklı Çekirdek (CWK) olarak adlandırılan başka bir yaklaşım da bu

çalışmada önerilmiştir. Bu yöntem CMK’ya benzemektedir ancak; CWK özellikle

hesaplama zamanı konusunda bir gelişme sağlamaktadır. Temelde bu sınıf temelli

ağırlıklandırma her sınıf için terimleri önemlilik durumlarına göregruplandırır. Bu

nedenle bu sınıf temelli ağırlıklandırmabelgelerin gösterimini düzeltir ki, bu da terimler

arasına sınıf temelli bağımlılıklar getirerek vektör uzayı modelinin dikliğini değiştirir.

Sonuç olarak, istisnai durumlarda, hiç ortak terim içermedikleri halde eğer belirli bir

sınıf için benzer şekilde ağırlıklandırılmış iki belge benzer görülebilir.

Bu tezin temel katkısı standart çekirdeklerden çok daha iyi sınıflandırma doğruluğu

sergileyebilen çözümler geliştirilmesi olarak düşünülebilir. Önerilen yaklaşımların

ikinci katkısıbu modellerin WordNet gibi dış anlambilimsel kaynaklardan bağımsız

olmaları ve bu sebepten ötürü herhangi bir dile uygulanabilir olmalarıdır. Bizim

yöntemlerimizin diğer bir katkısı da eğiticisiz anlambilimsel benzerlik ölçümleri gibi

diğer terim temelli anlambilimsel benzerlik yöntemleri ile kolayca kombine edilebilir

bir yapıya temel oluşturmalarıdır.

Yöntemlerimizin özellikle sınıf bazlı yöntemlerimizi başka bir avantajı da, bunların

yürütüm süresi ile ilgilidir. Bizim bilgimize göre, yüksek dereceli yollar ve terimlerin

xx

sınıf temelli değerleri SVM’in dönüşüm aşamasında ilk kez kullanılmaktadırve metin

sınıflandırma için bir çekirdekte terimlerin anlambilimsel olarakdüzeltilmesi üzerine

önemli bir bakış açısı kazandırabilir.

Anahtar Kelimeler:Destek Vektör Makineleri, metin sınıflandırma, anlambilimsel

düzeltmeli çekirdek, eğiticili çekirdek, yüksek-mertebeli eş-oluşum, yüksek-mertebeli

yollar, Helmholtz presibi, sınıf-temelli terim ağırlıklandırma.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1

CHAPTER 1

INTRODUCTION

1.1 Literature Review

In recent years, with the ever accumulating online information on the Internet and social

media, text categorization has become one of the key techniques for organizing and

handling textual data. Automatically processing these huge amounts of textual data is an

essential problem. Text classification can be defined as the utilization of a supervised

learning methodology to assign predefined class labels to documents using a model

learned from labels of the documents in the training set. An important requirement of

efficient and accurate text classification systems is to organize documents into pre-

determined categories that contain similar documents. In order to achieve this goal,

several classification algorithms depend on similarity or distance measures that compare

pairs of text documents similarity. It is also known that vector space representation of

textual documents yields high dimensionality and related to this; sparsity. This is

especially a problem when there are a large number of category labels but limited

amount of training data. It is thus crucial that a good text classification algorithm should

scale well with the increasing number of features and classes. Most importantly, words

in textual data carry semantic information, i.e., the sense carried by the terms of the

documents. Consequently, an ideal text classification algorithm should be able to make

use of this semantic information.

Bag-of-words (BOW) feature representation is well accepted as the fundamental

approach in the domain of text classification. In BOW approach documents are

characterized by the frequencies of individual words or terms that occur in the

2

document and each term represents a dimension in a vector space independent of other

terms in the same document[1]. It basically focuses on the frequency of words. The

BOW approachover simplifies the representation of terms in documents by ignoring the

several different syntactic or semantic relations between terms in natural language, e.g.

it treats polysemous words (words with multiple meanings) as a single entity. For

instance the term “bank” may have different meanings like financial institution or a

river side based on the context it appears. Additionally, the BOW feature representation

maps synonymous words into different components [1]. In principle, as Steinbach et al.

[3] investigate, each class of documents has two kinds of vocabulary: one is “core”

vocabulary which are intimately associated to the topic of that class, the other type is

“general” vocabulary (e.g. stop words) those may have similar distributions on different

classes. Therefore, two different documents from different classes may share many

general words and will have high similarity based on their BOW representations.

In order to address these problems several methods have been proposed which use a

measure of relatedness between term on Word Sense Disambiguation (WSD), Text

Classification and Information Retrieval (IR) domains. Semantic relatedness

computations fundamentally can be categorized into three such as knowledge-based

systems, statistical approaches and hybrid methods which combine both ontology-based

and statistical information[4]. Knowledge-based systems use a thesaurus or ontology to

enhance the representation of terms by taking advantage of semantic relatedness among

terms, for examples see[5], [6], [7], [8],[9], [10],[11] and [2]. For instance in [5]and

[11] the distance between words in WordNet [12] is used to capture semantic similarity

between English words. The study in [5] uses super-concept declaration with different

distance measures between words from WordNet such as Inverted Path Length (IPL),

Wu-Palmer Measure, Resnik Measure and Lin Measure. A recent study of this kind can

be found in [13], which uses HowNet as a Chinese semantic knowledge-base. The

second type of semantic relatedness computations between terms are corpus-based

systems in which some statistical analysis based on the relations of terms in the set of

training documents is performed in order to reveal latent similarities between them [44].

One of the famous corpus-based systems is Latent Semantics Analysis (LSA) [45] that

partially solves the synonymy problem. Finally, approaches of the last category are

called hybrid since they combine the information acquired both from the ontology and

3

the statistical analysis of the corpus [9] and[92]. There is a recent survey in [44] about

these studies.

1.2 Aims of the Dissertation

The aim of this work is to develop semantic kernels which make use of implicit

semantic relations to improve the accuracy of kernel based classifier such as SVM. The

proposed approaches explore the capabilities of higher-order paths and class-based

meaning and class-based term weights in both supervised learning and SSL settings for

SVM. The suggested approaches smooth the terms of a document in BOW

representation (document vector represented by term frequencies) by higher-order paths

between both documents and terms, class-based meaning values of terms and class-

based term weights. Our target is to capture latent semantic information between the

terms and between the documents. It is important to note that SVM with linear kernel is

one the state of the art algorithms for text classification [19], [20]. This traditional

kernel can be considered as a first-order method since its context is a single document

and it model just the first-order co-occurrences of the terms. However, higher-order

kernels make use of the higher-order paths that include several different terms and

documents in the context of the whole dataset. Furthermore, class-based kernels

increase the importance of significant or in other words meaningful terms for each class

while reducing the importance of general terms which are not useful for discriminating

the classes. Theseproposed approaches reduce the above mentioned disadvantages of

BOW and improves the prediction abilities in comparison with standard linear kernels

by exploiting latent semantics between terms and documents also by increasing the

importance of class specific concepts which can be synonymous or closely related in the

context of a class.

1.3 Hypothesis

It has been shown that [2], [4], [5],[11], [12], [13]; by replacing the standard kernel

functions such as linear kernel with customized kernel functions which take advantage

of some background knowledge such as Wikipedia, WordNet it is possible to increase

the performance of SVM in the text classification domain. Based on this, we design

broad variety of methods in order to explore the capabilities of higher-order paths,

class-based meaning values and class-based weighting of terms in both supervised

4

learning and SSLsettings for SVM. Some of the suggested kernels are based on higher-

order paths and motivated by the studies of higher-order Naïve Bayes [14], [15] and

Higher-Order Smoothing [16], [17] which make use of the higher-order paths between

terms, and the work of [18]which focuses on the higher-order paths between both terms

and documents. We applied this methodology in a SSL setting with an addition of a new

approach to initial labeling of unlabeled data. The other suggested approaches are based

on class-based term values. One of them is based on a meaning measure, which

calculates the meaningfulness of the terms in the context of classes. The documents

vectors are smoothed based on these meaning values of the terms in the context of

classes. The other class-based approach is based on the abstract term weights. In these

class-based methods, since we efficiently make use of the class information in the

smoothing process, they can be considered supervised smoothing kernels.

In our context semantic kernel refers to an approach which extracts or implicitly makes

use of semantic relations between terms that seem to be unrelated in Bag-of-words

(BOW) model. These semantic relations can be language-wise general relations such as

synonyms as explicitly encoded in WordNet or they can be precise to a specific domain

such as a particular class of documents.

The first advantage of our suggested solutions is the capability of them to perform much

better than standard kernels in terms of classification accuracy. To demonstrate

performance improvements, we conduct several experiments on varied benchmark

datasets with several different test environments. According to our experimental results

our models exceed the performance of linear kernel which is one the state of the art

kernels for text classification. In linear kernel, the inner product between two document

vectors is used as kernel function, which utilizes the information about shared terms in

these two documents. However, our models can take advantage of higher-order paths

and class-based values of terms; therefore they extend the boundaries of being a single

document as the context.

The second advantage of the proposed approaches is about their simplicity and

independency of the outside semantic sources such as WordNet. As a result they can be

applied to any language domain without adjustments or parameter optimizations. To

show this wide applicability of our kernels we present results with different

experimental settings, such as: (i) several datasets from different domains such as

newsgroups postings and movie reviews classified into sentiments, (ii) several datasets

5

with different languages such as English and Turkish, (iii) different training portions of

the dataset in order to observe the effect of sparsity, and (iv) varying values of

misclassification cost (C) parameter of the SVM.

The other benefit of our methods is that they also form a foundation that can easily be

combined with other term-based semantic similarity methods such as unsupervised

semantic similarity measures. It is also possible to combine with similarities between

terms derived from a semantic source like WordNet or Wikipedia.

Another advantage of our methods, in particular of our class-based methods is about

their execution time. We evaluate this by conducting several experiments. Our class-

based methods outperform other corpus-based semantic kernels in many cases in terms

of accuracy with less execution time.

Additionally, to the best of our knowledge, all of our kernels are the first studies to use

higher-order paths, meaning measure and abstract term weights in a semantic kernel for

SVM. We evaluated all of the proposed approaches by conducting a large number of

experiments on well-known textual datasets and present results with respect to different

experimental conditions. We compare our results with linear kernel which is the

traditional kernel used in SVM. Please note that linear kernel is one the state of the art

kernels for text classification [19], [20]. Our results show that proposed approaches

outperform other kernels in most of the cases.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

Text classification can be defined as automatically classifying documents according to

predefined category-labels, usually by using machine learning algorithms. There are

large amounts of textual data accumulated both in organizations and especially on the

World Wide Web (WWW) through social networks, blogs, news, forums…etc. This

huge set of documents continues to increase by the contribution of millions of people

every day. Automatically processing these increasing amounts of textual data is one of

the critical problems for research and commercial entities. Text classification is the

basis for several important applications such as document filtering and sentiment or

opinion classification.

2.1 Traditional Classification Approaches

In machine learning applications there are two conventional strategies; supervised

learning and unsupervised learning. Traditional supervised learning algorithms need a

set of sufficient labeled data as training set to train the classifier, which will be used to

predict the class memberships of the unlabeled instances. On the other hand,

unsupervised learning, solely based on unlabeled samples, doesn’t need any labeled data

to learn a model. So as to train a classifier, it attempts to discover the indirect structure

of unlabeled data [21]. There has been massive amounts of accumulated data on the

web, especially on social networks, blogs and forums and continue to increase day by

day without any doubt. But unfortunately most of the available data does not have pre-

assigned labels which limit their use in several practical machine learning application

fields such as text classification, sentiment recognition, speech recognition. Moreover,

generally it can be time-consuming, tedious and expensive to assign labels to them

7

manually. Most importantly, learning a classifier using a small number of labeled

training data may not generate sufficient performance. In situations where labeled data

is inadequate, many algorithms have suggested exploiting and utilizing the unlabeled

data to support to learning process for better classification. SSL approaches utilize not

only labeled data but also unlabeled data to increase the classification accuracy.

2.1.1 Supervised Learning

Supervised Classification is a supervised task, where supervision is provided in the form

of a set of labeled training data, each data point having a class label selected from a

fixed set of classes [22]. The goal in supervised classification is to learn a model from

the training data that gives the best prediction of the class label of unseen (test) data

points.The learned model is represented in the form of classification rules, decision

trees, or mathematical formulae. Then, the model is used for classification. First, the

predictive accuracy of the model (or classifier) is estimated. A simple way is to use a

test set of class-labeled samples, which are randomly selected and are independent of

the training samples. The accuracy of a model on a given test set is the percentage of

test set samples that are correctly classified by the model. If the accuracy of the model is

considered acceptable, the model can be used to classify future data of which the class

label is not known[22].

The popular classification techniques are listed below:

 Decision Tree Induction

 Bayesian Classification

 Genetic Algorithms for Classification

 kNearest Neighbor Classifier (k-NN)

 Support Vector Machines (SVMs)

2.1.1.1 Support Vector Machines

Support Vector Machines (SVM) was first proposed by Vapnik, Guyon and Boser [23].

A more detailed analysis is given in [24]. In general, SVM is a linear classifier that aims

to finds the optimal separating hyperplane between two classes. The common

representation of linearly separable space is

8

0)( bdwT (2. 1)

where w is a weight vector, b is a bias and d is the document vector to be classified. The

problem of finding an optimal separating hyperplane can be solved by linearly

constrained quadratic programming which is defined in the following equations:

minimize: 



l

i
iCw

1

2

2

1
 (2.2)

with the constraints

ii

T

i bdwy   1))((
,

0i , i
 (2.3)

where T

l)...,(21   is the vector of slack variables and C is the regularization

parameter, which is used to make a balance between training error and generalization,

and has a critical role: if it is chosen as too large, there will be a high penalty for non-

separable points, many support vectors will be stored, and the model will overfit; on the

other hand if it is chosen too small, there will be underfitting [25].

The problem in Eq. (2.2) can be solved using the Lagrange method [25]. After

thesolution the resultant decision function can be formulated as:





l

i
jiii bddkyxf

1

)),(sgn()( (2.4)

where i is a Lagrange multiplier, k is a proper kernel function and samples id with

0i are called support vectors. An important property of a kernel function is that it

has to satisfy Mercer’s condition which means being semi-positive[25]. We can

consider a kernel function as a kind of similarity function, which calculates the

similarity values of data points, documents in our case, in the transformed space.

Therefore, defining an appropriate kernel has the direct effect on finding a better

representation of these data points as mentioned in in [2], [11]. Popular kernel functions

include linear kernel, polynomial kernel and RBF kernel:

 Linear kernel: jiji ddddk ),((2.5)

 Polynomial kernel:2,1,)1(),(etcqddddk q
jiji  (2.6)

 RBF kernel:)exp(),(
2

jiji ddddk   (2.7)

9

For the problems of multiclass classification where there are more than two classes, a

decomposition methodology is used to divide it into sub problems. There are basically

two categories of multiclass methodology [26]: the all-in-one approach considers the

data in one optimization formula [27], whereas the second approach is based on

decomposing the original problem into several smaller binary problems, solving them

separately and combining their solutions. There are two widely used strategies for this

category: “one-against-the-rest” and “one-against-one” approaches [20],[26].It is

possible and common to use a kernel function in SVM which can map or transform the

data into a higher dimensional feature space if it is impossible or difficult to find a

separating hyperplane between classes in the original space; besides SVM can work

very well on high dimensional and sparse data [19]. Because of these benefits of SVM,

linear kernel is one of the best performing algorithms in text classification domain since

textual data representation with BOW approach is indeed quite sparse and requires high

dimensionality.

Originally, SVMs were developed to perform binary classification. However,in real

world classification problems involve more than twoclasses. A number of methods to

generate multiclass SVMs from binary SVMs have beenproposed by researchers and is

still a continuing research topic [28].There are two strategies[29]:

The One-Against-All (1AA) approach represents the earliest and most common SVM

multiclass approach [30]. This method is also called winner-take-all classification. It

assumes that the dataset is tobe classified into M classes: Therefore, M binary SVM

classifiers may be created whereeach classifier is trained to distinguish one class from

the remaining M-1 classes. Forexample, class one binary classifier is designed to

discriminate between class one datavectors and the data vectors of the remaining

classes. Other SVM classifiers areconstructed in the same manner. During the testing or

application phase, data vectors areclassified by finding margin from the linear

separating hyperplane. The final output isthe class that corresponds to the SVM with the

largest margin.

The One-Against-One (1A1) approachis another methodology in whichSVM binary

classifiers for all possible pairs of classes are created[31], [32]. The output from each

classifier in the form of a class label is obtained. Theclass label with the highest

frequency is assigned to that point in the data vector. In case of a tie,a tie-breaking

strategy may be adopted. A common tie-breaking strategy is to randomlyselect one of

10

the class labels that are tied. The main disadvantage of this method is the increase in

thenumber of classifiers as the number of class increases. For example, for 7 classes of

interest, 21 classifiers will be created.

SVM is powerful to approximate any training data and generalizes good results on

given datasets. The complexity in terms of kernel affects the performance on new

datasets [34]. SVM supports parameters for controlling the complexity and above all

SVM does not tell how to set these parameters and one should be able to determine

these parameters by Cross-Validation on the given datasets [22], [33]. The major

strengths of SVM are the training is relatively easy. It scales relatively well to high

dimensional data and the trade-off between classifier complexity and error can be

controlled explicitly.

Choosing the most appropriate kernel and its parameters highly depends on the problem

at hand. The choice of a kernel depends on the problem at hand because it depends on

what is trying to be modeled. For example, radial basis functions allowpicking out

circles (or hyperspheres) - in contrast with the linear kernel, which allows only picking

out lines (or hyperplanes).The motivation behind the choice of a particular kernel can be

very intuitive and straightforward depending on what kind of information is being

expected to extract about the data[37]. Automatic kernel selection is possible and is

discussed in the works by Tom Howley and Michael Madden[36].So the weakness of

SVM includes choosing the most appropriate kernel function [33], [34], [35], [38].

2.1.1.2 Semantic Supervised Approaches for Text Classification

Linear kernel has a wide usage in the domain of text classification due to the high

dimensionality of the representation. As shown in Eq. (2.5) the kernel function is based

on the inner products of feature vectors of the documents. So a linear kernel captures

similarity between two documents as much as the terms they share. This yields certain

problems due to the nature of natural language such as synonymy and polysemy since it

is not considering semantic relations between terms. This can be addressed by

integrating semantic information between words using semantic kernels such as [2], [4],

[8], [11], [27], [39], [40].

According to the definition given in [2], [8], [23], [25],[41] any function in the form

given in Eq. (2.8) is a valid kernel function:

http://en.wikipedia.org/wiki/Hyperplane
http://www2.it.nuigalway.ie/m_madden/profile/pubs/ai_review_05.pdf
http://www2.it.nuigalway.ie/m_madden/profile/pubs/ai_review_05.pdf

11

)(),(),(qpqp ddddk  (2.8)

wheredp and dq are input space vectors and  is a suitable mapping from an input space

into a feature space.

As mentioned in Section 1, studies which enhance the representation of documents can

be categorized according to their design principles follows:

 Domain knowledge based systems: These systems use ontology or thesaurus to

capture the concepts in the documents and incorporate the domain knowledge of

separate terms into the words for representation in textual data. They enhance the

representation of terms by taking advantages of semantic relatedness among terms.

These include [2], [6], [7], [8], [9], [10], [11]. For instance in[11], WordNet [12] is

used to calculate semantic similarity between English words. The study in [41] uses

super concept declaration with some distance measures between words from

WordNet like Wu-Palmer Measure, Inverted Path Length (IPL), Lin Measure and

Resnik Measure. A recent study of this kind uses HowNet as a Chinese semantic

knowledge-base[13]. In[42], the authors present distinct types of approaches to

combine the background knowledge in ontologies into the representation of textual

data and show the improvement in the classification accuracy. Similar works also

can be found in[10], [43].

 Statistical approaches: These systems use statistical analysis depending on the

relations of terms in the set of training documents to expose latent similarities

between them[44]. One of the well-known corpus-based systems is Latent

Semantics Analysis (LSA) [45]which partially solves the synonymy problem.

 Hybrid methods: These approaches combine the information gathering from

ontology and statistical analysis results from the corpus as in[9]. There is a recent

survey in [7] about these methods.

 Word sequence enhanced systems: These types of representations treat the words as

string sequences. Typically the main idea is based on a word sequence taken out

from documents by customary string matching technique. N-gram based

representation [46] and similar works in[47], [48], [49]are conventional examples of

these kinds of systems.

12

 Linguistic enriched methods: They make use of syntactic and lexical rules to extract

the noun phrases, terminologies and entities from documents and improve the

representation using these linguistic units. For instance in [50] multi-words are used

to expand the effectiveness of text retrieval system. Also Lewis [51] compares the

word-based indexing and phrase-base indexing for representation of documents.

Siolas and d’Alché-Buc in [11] propose a semantic kernel that is intuitively generated

from the semantic relations of English words in WordNet. The hierarchies and

connections between terms in WordNet are used to calculate semantic relatedness

between two words. They benefit from this information to enrich the Gaussian kernel.

According to this study, using a semantic similarity metric as a smoothing technique

increases the correct classifications.

Bloehdorn et al.[41], uses a semantic kernel with super-concept declaration. Their

purpose is to create a kernel function that captures the knowledge of topology that

belongs to their super-concept expansion. This kernel function is given in Eq. (2.9),

where Q is a semantic smoothing matrix. The Q is composed of P and P
T
 which

contains super-concept information about the corpus. Their results show that they get

remarkable improvement in performance, particularly in situations where the feature

representations are highly sparse or little training data exists[41].

T

q

T

pqp dPPdddk ),((2.9)

Bloehdorn and Moschitti [5] designed a Semantic Syntactic Tree Kernel (SSTK) by

combining syntactic dependencies like linguistic structures with semantic knowledge

that is gathered from WordNet. Similarly, in[8], WordNet is used as a resource of

semantic knowledge base. Nevertheless, they express that WordNet’s coverage is not

sufficient and a more extensive background knowledge resource is required. This is also

one of the key reasons that other studies aim to use resources with a wider coverage

such as Wikipedia.

One of those works is [1]. The similarity between two documents in the kernel function

designed as in Eq. (2.9)and P is a semantic proximity matrix that is created from

Wikipedia. The semantic proximity matrix is composed of three measures: 1) content-

based similarity measure which depends on Wikipedia articles’ BOW representation, 2)

out-link category-based measure that brings an information related to the out-link

categories of two associative articles in Wikipedia, 3) distance measure which is

13

calculated as the length of the shortest path connecting the two categories of two articles

belong to, in the Wikipedia’s category taxonomy. The authors state that adding

semantic knowledge that is extracted from Wikipedia into document representation

overcomes some of the shortages of the BOW approach and improves the accuracy.

The study in [4] also use WordNet to build a semantic proximity matrix based on

Omiotis[40], which is a knowledge based measure for computing the relatedness

between terms. Nasir et al. incorporated this measure into a (Term Frequency-Inverse

Document Frequency) TF-IDF weighting approach. They show that their Omiotis

embedded methodology is superior to standard BOW representation. Nasir et al. further

broadened their work by taking just top-k semantically related terms and utilizing some

evaluation metrics on larger text datasets [9].

Semantic Diffusion Kernel is presented and studied in[27], [39]. Such a kernel is

obtained by an exponential transformation on a given kernel matrix as in

)exp()(00 KKK   (2.10)

where 0K is the gram (kernel) matrix of the corpus in BOW representation and  is the

decay factor. As stated in [27] the kernel matrix 0K is created by using Eq. (2.11)

TDDG  (2.11)

where D is the term by document matrix of the corpus. In [27], [39] it has been

demonstrated that)(K relates to a semantic matrix)
2

exp(
G

 as in Eq. (2.12).

)
!0!2

2(
2

1
)

2
exp(

22

 



 GG

GIGS (2.12)

where G is a generator that displays the initial semantic similarities between words and

Sis the semantic matrix of the exponential of the generator. According to the

experiments in [27] the diffusion matrix exploits higher-order co-occurrences to gather

latent semantic relationships between terms in the WSD tasks from SensEval.

Zhang et al. [52], [52], focuses on the usage of multi-word phrases for text

representation in the task of text classification. In their work they extract multi-word

phrases by using the syntactical structure of the noun phrases. They present two

strategies which are called general concept representation and subtopic representation,

to represent the documents using extracted multi-word phrases[52]. Their first strategy

14

is based on the usage of general concepts for the representation of documents. The

second strategy uses the subtopics of the general concepts of representation. Following

this they carry out a serious of experiments with SVM linear kernel and non-linear

kernels in order to see the effects of using multi-word phrases in a kernel function. They

express the benefits of using multi-word phrases with the following aspects[52]: Firstly,

using multi-word phrases decreases the number of dimensions. Secondly, acquiring

multi-word phrases is an easy task. Thirdly, multi-word phrases carry more semantics

than individual words. According to their experimental results, their approach with

multi-word linear kernel outperforms the standard linear kernel[52].

2.1.2 Semi-Supervised Learning

There has been massive amounts of accumulated data on the web, especially on social

networks, blogs and forums and continue to increase day by day without any doubt. But

unfortunately most of the available data does not have pre-assigned labels which limit

their use in several practical machine learning application fields such as text

classification, sentiment recognition, speech recognition. Moreover, generally it can be

time-consuming, tedious and expensive to assign labels to them manually. Most

importantly, learning a classifier using a small number of labeled training data may not

generate sufficient performance. In situations where labeled data is inadequate, many

algorithms have suggested exploiting and utilizing the unlabeled data to support to

learning process for better classification. Semi-supervised Learning (SSL) approaches

utilize not only labeled data but also unlabeled data to increase the classification

accuracy. Recently, SSL has become popular and gained increased attention of both

academic and commercial platforms as a new machine learning strategy. SSL is

different from two ordinary classification approaches by the usage of unlabeled data to

mitigate the effect of insufficient labeled data on classifier accuracy.

Many SSL algorithms have been offered in the past decades, like co-training [53], self-

training [54],[55] graph-based methods [56], semi-supervised support vector

machines[21], Expectation-Maximization (EM) with generative mixture models [57],

transductive support vector machines[58].

Semi-supervised learning can be either transductive or inductive. Most of the learning

models and systems in artificial intelligence apply inductive inference where a model is

derived from data and this model is further applied on new data. The model is created

15

without taking into account any information about a particular new data vector. The

new data would fit into the model to certain degree (an error is estimated). The model is

in most cases a global model, covering the whole problem space. Creating a global

model that would be valid for the whole problem space is a difficult task and in most

cases but; it is not necessary. The output for a new vector is calculated based on the

activation of one or several neighboring local models (rules). The inductive learning and

inference approach is useful when a global model of the problem is needed even in its

very approximate form, when incremental, on-line learning is applied to adjust this

model on new data and trace its evolution[59]. A block diagram of an inductive

reasoning system is shown in Figure 2.1.

Figure 2.1A block diagram of an inductive reasoning system.

A simple transductive inference method is the k-nearest neighbor method (k-NN),

where a new data vector xi is classified into one of the existing classes in the data

samples from D based on the majority of classes among k nearest to the new vector

samples that form the set Di. The distance is measured as Euclidean distance or as

another type of distance. In terms of prediction systems, the output value yi for the new

vector xi is calculated as the average value of the output values of the k-nearest samples

from the data set Di[59]. A block diagram of a transductive reasoning system is shown

in Figure 2.2

Figure 2.2A block diagram of a transductive inference system.

Data set D for

training

Training a model M

Recall M for

any new

data x

New input vector x

Output y

Data set D for

training

New input vector x

A new

model M

generated

for the input

vector x
Model M

Output y

Data selected from

D based on x

16

2.1.2.1Semi-Supervised Learning Approaches

Semi-Supervised Learning (SSL) methods make use of unlabeled examples to build

better classifiers with higher accuracy when there are a few amounts of labeled training

examples. In a typical SSL scenario there are labeled training examples (L) and

unlabeled examples (U). Co-training and Self-training are two popular SSL algorithms.

Self-training works as follows [54]; a classifier is constructed from L and used to

estimate the labels for samples in U. Then m unlabeled samples that the classifier has

high classification confidence in U are assigned labels and moved to extend L. After

that, the classifier is re-trained using the enlarged data set L. Although it is a very

simple algorithm; since it is not easy to guarantee the convergence of it, the latter three

steps are commonly repeated for a pre-defined maximum iteration number of times or

reaching up until some heuristic convergence standard (i.e., there is no remaining

unlabeled instances in U).

Co-training works like self-training except that it assumes that attributes can be divided

into two different views. According to co-training algorithm input features are logically

partitioned into two independent groups, and two separate classifiers are trained on

these two subsets in labeled data set (L) [53]. Following this, each classifier is attempted

to label the unlabeled samples in U; to put it in more detail; for each classifier, the

instances in U with the highest classification confidence are selected and added to the

labeled data set L. Consequently these two classifiers can assist for enlarging the data

set L. Both classifiers are retrained on this expanded data set, and the steps are re-

performed a fixed number of times. Thus each classifier then categorizes the unlabeled

data, and teaches the other classifier with some unlabeled instances (those have their

newly estimated labels with high classification confidence). Each classifier will be

trained again with the supplementary training examples specified by the other classifier,

and the procedure is repeated for higher accuracy[21],[53],[60]. As it is discussed in

[61] the main idea in co-training is that a classifier may give suitable labels to some

samples whereas it may be challenging for the other classifier to do so. Therefore, each

classifier can enlarge the training set with instances which are actually informative and

important for the other classifier.

Different kinds of self-training and co-training algorithms have offered by researchers

over the years. One variant of them is to use entire unlabeled data in each iteration

17

therefore there will no need for the selection criterion. One example of this kind is

presented in [62]. The labels of the all unlabeled examples are predicted and then used

to extend the training set and update the classifier at all iterations. In [57], co-EM (co-

Expectation Maximization) is presented which uses all the unlabeled samples rather

than a number of samples chosen from the data pool. Another kind of approaches is to

use active learning technique to choose unlabeled examples and then ask some human

experts to label them which yields no mislabeled examples will occur, in principle. In

[63], a system with active learning is applied to choose unlabeled examples for the

multi-view semi-supervised co-EM algorithm. In [64], in each iteration, uncertainty

sampling is used to select unlabeled instances, then a cost-sensitive classifier is built on

the expanded labeled data and all unlabeled instances with assigned labels. EM

algorithm is used in an active learning framework in order to improve SSL in RBF and

is applied to content-based image retrieval in [111]. A very similar method (with the

addition of suitable preprocessing of the data) is described in [112] for text

classification. Nevertheless active learning methods are difficult to apply since they

cannot be accomplished without human experts.

Confidence selection is a popular instance selection criterion, which selects unlabeled

instances to add to the training set which are classified with high classification

confidence [53],[54], [57], [65],[66]. Other selection methods have also been suggested

by researchers. For instance, Wang et al., [66], offered an adapted value difference

metric as the selection technique in self-training. Their approach is based on decision

tree classifiers and used to classify sentences as subjective or objective. They use the

Naive Bayes trees algorithm, in order to build a Naive Bayes Classifier at each leaf of

the tree. Their approach works well on very small datasets. In [67], a new data editing

approach, named SETRED, is presented. Their approach benefits from the information

of the neighbors of each self-labeled instance to recognize and remove the mislabeled

samples from the self-labeled data. In [68], ISBOLD selection strategy is used to

roughly prevent possible performance degradation in self-training and co-training.

Li et al. [69]presents a new methodology which uses three learners. According to [69]L

denotes the labeled example set, h1, h2 and h3indicate initial learners and U show the

unlabeled example set and x is an example in U. Firstly, three classifiers are trained

from labeled examples. Then, any two of those classifiers are used to label the

unlabeled sample x, if two of them predict the same label; then that example will be

18

utilized to teach the third classifier. It repeats this procedure until none of h1, h2 and h3

changes. The final estimation is accomplished with a majority vote among all the

learners.

Ideally, the selected unlabeled examples (together with the assigned labels) can finally

assist to learn a better classifier. However, Cozman (2003) [70]stated that unlabeled

data may degrade classification accuracy in some extreme situations and when the

model assumptions are not correct. For instance in [71], an extensive empirical study

was conducted on several popular SSL algorithms (including co-training and self-

training) using different base Bayesian classifiers. According to their results on 26 UCI

datasets, if the classifier has poor performance and incorrectly assigns labels to some

self-labeled examples, there will be accumulated mislabeled data which yields the final

performance will be jeopardized. McCallum and Nigam (1998) [62]mention that, they

get better classification performance by combining a small set of labeled samples with a

large set of unlabeled data with EM . Unfortunately, there are many studies show that

unlabeled samples are quite often detrimental to the performance of classifier in many

situations [70]. According to those studies the more unlabeled data are joined with a

fixed number of labeled instances, the poorer is the classification performance of the

corresponding classifier. Therefore, it is obvious that, the classifier should have a good

classification performance on the original labeled data if it desires to have good

prediction performance on future data. More accurately, utilizing the accuracy on the

original labeled data to select more reliable unlabeled samples seems critical for the

final classification performance of the SSL algorithm.

In [72], a C4SVM algorithm is presented, which includes misclassification costs into

the optimization function of a semi-supervised SVM. In some algorithms only one base

learner is applied, which use the unlabeled samples iteratively based on its own

knowledge. Some approaches include using EM algorithm to estimate posterior

parameters of a generative model, Naive Bayes, by labeling each unlabeled sample, i.e.

a probability for each class as it is done in [62]; using the unlabeled data to search for a

better configuration of Bayesian Network [73]; using a transductive inference for SVM

on a special test set [19]. The self-training algorithm[57] is of that kind, where all

iterations the learner converts the most confidently classified unlabeled sample of each

class into a labeled training example. These methods and their variants are also

19

described, analyzed and compared in[65]. Furthermore there is a comprehensive survey

that includes almost all of well-known semi-supervised learning algorithms in [21].

Transductive Support Vector Machines (TSVMs) is an extension of traditional SVM

with the contribution of unlabeled data. The aim is to predict the labels of the unlabeled

data and use them in the training step; therefore a linear boundary has the maximum

margin on the labeled data (the original labeled data with the addition of labeled

unlabeled data this time). One of the recent studies is presented in [113] which is the

implementation of semi-supervised support vector machines (S3VMs). Li et al. name

their approach as S4VMs and explain that S4VMs tries to exploit multiple candidate

low-density separators in contrast to common S3VMs which typically focus on

approaching one optimal low density separator. Their comprehensive experiments

validate the effectiveness of S4VMs.Also there is a recent study [114]in which several

semi-supervised methods and applications are described.

2.2 Higher-Order Co-Occurrence Paths

There are numerous systems with higher-order co-occurrences in text classification. One

of the most widespread of them is the Latent Semantic Indexing (LSI) algorithm. The

study in [74] verified arithmetically that performance of LSI has a direct relationship

with the higher-order paths. LSI’s higher-order paths extract “latent semantics”[15], [74].

Based on these work, the authors in [14], [15] built a new Bayesian classification

framework called Higher-Order Naive Bayes (HONB) which presents that words in

documents are strongly connected by such higher-order paths and that they can be

exploited in order to get better performance for classification. Both HONB [14] and HOS

[16], [17] are based on Naïve Bayes.

A higher-order path can also be represented as a chain of co-occurrences of entities

(attribute values, words, terms, etc.) in different records (instances, documents, etc.).

Actually they can extract co-occurrence relations from virtually any dataset as long as

there is a meaningful context of entities[15]. Kontostathis et al.[74] proved

mathematically and demonstrated empirically that LSI is based on the use of higher-

order relations, in particular higher-order co-occurrences. The authors also

demonstrated that the retrieval performance of LSI is correlated with higher-order

relations. Higher-order relations in LSI capture “latent semantics” [15], [74].

20

Ganiz et al. claimed that their results on several textual datasets show that when training

data is scarce (i.e., a small number of labeled instances), HONB significantly reduces

the generalization error by leveraging higher-order paths[15].

Benefits of using on higher-order paths between documents between terms[14], [17] are

demonstrated inFigure 2.3. There are three documents, d1, d2, and d3, which consist of a

set of terms {t1, t2}, {t2, t3, t4},and {t4, t5}, respectively. Using a traditional similarity

measure which is based on the common terms (e.g. dot product), the similarity value

between documents d1 and d3 will be zero since they do share any terms. But this

measure is misleading since these two documents have some connections in the context

of the dataset over d2 as it can be perceived inFigure 2.3. This supports the idea that

using higher-order paths between documents, it is possible to obtain a non-zero similarity

value between d1 and d3 which is not possible in the BOW representation. This value

turns out to be larger if there are many interconnecting documents like d2between d1 and

d3. This is caused by the fact that the two documents are written on the same topic using

different but semantically closer sets of terms.

InFigure 2.3, there is also a higher-order path between t1 and t3. This is an illustration of

a novel second-order relation since these two terms do not co-occur in any of these

documents and can remain undetected in traditional BOW models. However, we know

that t1 co-occurs with t2 in document d1, and t2 co-occurs with t3 in document d2. The

same principle that is mentioned in the case of documents above applies in here. The

similarity between t1 and t3 becomes more eminent if there are many interconnecting

terms such as t2 or t4 and interconnecting documents like d2. The regularity of these

second-order paths may reveal latent semantic relationships such as synonymy [17].

2.3 Term Weighting Methods

There are different approaches to assign appropriate weights to the terms to improve the

classification performance: For example; binary, TF, TF-IDF [75], [76] and its variants

are the traditional methods borrowed from IR field and belong to the unsupervised term

weighting methods. Also there are approaches which have proper place in the supervised

term weighting category since term weights are calculated according to the category

membership information of training documents. One type of them is to weight terms by

using feature selection metrics, i.e. gain ratio, Information Gain (IG), odds ratio and so

21

t1

t2

t2

t3

t4

 t4

 t5

d1 d2 d3

t1 t2 t3 t4 t5

d1 d2 d2 d3

1st -order 1st -order 1st -order 1st -order

2nd-order

2nd-order

2nd-order

2nd-order

3
rd

-order

1
st
-order term co-occurrence {t1, t2}, {t2, t3}, {t3, t4}, {t2, t4}, {t4, t5}

2
nd

-order term co-occurrence {t1, t3}, {t1, t4}, {t2, t5}, {t3, t5}

3
rd

-order term co-occurrence {t1, t5}

Figure 2.3Graphical demonstration of first-order, second-order and third-order paths

between terms through documents[93].

on, in[77], [78]. Another recent approach that improves the terms’ discriminating power

for text categorization task is Term Frequency-Relative Frequency (TF-RF)[79]which

considers only the frequency of relevant documents (i.e. those which contain this term).

Furthermore [80], [81] is inspired from Term Frequency-Inverse Class Frequency (TF-

ICF)[82], [83] and extends the boundaries of traditional weighting method TF-IDF [75]

by the contribution of category information of terms in the training set.

TF-IDF [75] is the most popular term weighting method. Its formula is given in Eq.

(2.14), where tfw represents the frequency of the term w in the document and IDF is the

inverse of the document frequency of the term in the dataset. IDF’s formula is also given

in Eq. (2.13) where |D| denotes the total number of documents and dfwrepresents the

number of documents which contains term w. TF indicates the occurrence of word w in

document di. The TF-IDF has proved extraordinarily robust and difficult to beat, even by

much more carefully worked out models and theories [84].

wdf

D
wIDF

||
)( (2.13)

))(log(),(wIDFtfdwIDFTF wi  (2.14)

22

A similar but supervised version of TF-IDF is called TF-ICF whose formula given in

Eq. (16) as in[82], [83]. In Eq. (2.16), |C| represents number of classes and cfw indicates

the number of classes which contains term w.

wcf

C
wICF

||
)( (2.15)

    wICFtfcwICFTF
jcd

wj log,  


 (2.16)

In [79]a new term weighting method is proposed with the idea of simplifying a multi-

label classification problem into multiple independent binary classification problems. In

their methodology, a chosen category is tagged as the positive category and all the

remaining categories in the same dataset are combined together as the negative

category. According to their methodology; the more focused a high frequency term is in

the positive category than in the negative category, the more contributions it makes in

selecting the positive samples from the negative samples. Their term weightings

formula is as follows:











),1max(
2log

c

a
tfRFTF w

 (2.17)

where tfwis the term frequency of word w, a is the number of documents in the positive

category which contain term w and c is the number of documents in the negative

category which contain term w. Table 2.1 demonstrates the difference between the

discriminative powers of both IDF and RF. Table 2.1 lists the IDF and RF values of

four terms based on two categories, namely, 00_acq and 03_earn respectively. The first

two terms, acquire and stake, are closely related to the theme discussed in category

00_acq while the last two terms, payout and dividend, are closely related to the theme

discussed in category 03_earn. However, the IDF disregards the category or label

information of the training set. Thus, each of these four terms is weighted equally by the

IDF even in terms of the two different categories. On the other hand, by using the RF

scheme which pays attention to category information, each term is assigned more

appropriate weights in terms of different categories[79].

By being inspired from the idea of both IDF and ICF, a new term weighting method

which is designed as a part of a feature extraction algorithm is proposed in [80], [81].

According to their approach the effect of a term over a class is calculated as follows:

23

)log()1log(,,
w

cwcw
N

N
tfcW  (2.18)

where tfc w,c is the total term frequency of word w in the documents of class c, N is the

total number of documents in the corpus and Nw is the total number of documents those

contain term w. By using this class-dependent term weighting scheme they develop a

feature extraction method for text classification. They carry out experiments on

benchmark datasets to compare the classification performance with well-known feature

extraction algorithms. Their experimental results show that using this feature extraction

with a class-dependent term weighting scheme enhances classification performance on

the classifiers they use when compared with other feature extraction methods.

Table 2.1Comparison of the weights of four features in Category 00_acq and 03_earn

([79])

 Feature Category:00_acq Category:03_earn

 IDF RF IDF RF

acquire 3.553 4.368 3.553 1.074

stake 4.201 2.975 4.201 1.082

payout 4.999 1 4.999 7.820

dividend 3.567 1.033 3.567 4.408

2.4 Helmholtz Principle from Gestalt Theory and Meaning Calculation

According to Helmholtz principle from Gestalt theory in image processing; “observed

geometric structure is perceptually meaningful if it has a very low probability to appear

in noise” [100]. This means that events that have a large deviation from randomness or

noise can be noticed easily by humans. This can be illustrated inFigure 2.4. In the left

hand side of Figure 2.4, there is a group of five aligned dots but it is not easy to notice it

due to the high noise. Because of the high noise, i.e. large number of randomly placed

dots, the alignment probability of five dots increases.On the other hand, if we remove

the number of randomly placed dots considerably, we can immediately perceive the

alignment pattern in the right hand side image since it is very unlikely to happen by

chance. This phenomenon means that unusual and rapid changes will not happen by

chance and they can be immediately perceived.

24

Figure 2.4The Helmholtz principle in human perception (adopted from [100])

As an example, assume you have unbiased coin and it is tossed 100 times. Any 100-

sequence of heads and tails can be generated with probability of (½)100 and Figure

2.5is generated where 1 represents heads and 0 represents tails [99].

    
timestimes

s

s

5050

2

1

000000...000000000111111...111111111

100100100000111...010011101010101





Figure 2.5The Helmholtz principle in human perception (adopted from [99])

First sequence, s1 is expectable for unbiased coin but second output, s2 is highly

unexpected. This can be explained by using methods from statistical physics where we

observe macro parameters but we don’t know the particular configuration. For instance

expectation calculations can be used for this purpose[99].

A third example is known as birthday paradox in literature. There are 30 students in a

class and we would like to calculate the probability of two students having the same

birthday and how likely or interesting is this. Firstly, we assume that birthdays are

independent and uniformly distributed over the 365 days of a year. Probability P1 of all

students having different birthday in the class is calculated in Eq. (2.19)[109].

294.0
365

336...364365
301 

xxx
P (2.19)

The probability P2 of at least two students born on same day is calculated in Eq.

(2.20).This means that approximately 70% of the students can have the same birthday

with another student in the class of 30 students.

P2=1 - 0.294 = 0.706 (2.20)

When probability calculations are not computable, we can compute expectations. The

expectation of number of 2-tuples of students in a class of 30 is calculated as in Eq.

(2.21). This means that on the average, 1.192 pairs of students have the same birthday in

the class of 30 students and therefore it is not unexpected. However the expectation

25

values for 3 and 4 students having the same birthday, E(C3)0.03047 and E (C4)

0.00056, which are much smaller than one, indicates that these events will be

unexpected[109].

192.1
3652

2930

!2)!230(

!30

365

1

2

30

365

1
)(

122 

















 x

x
CE (2.21)

In summary, the above principles indicate that meaningful features and interesting

events appears in large deviations from randomness. Meaningfulness calculations

basically correspond to calculations of expectations and they stem from the methods in

statistical physics[100].

In the context of text mining, the textual data consist of natural structures in the form of

sentences, paragraphs, documents, and topics. In[100], the authors attempt to define

meaningfulness of these natural structures using the human perceptual model of

Helmholtz principle from Gestalt Theory. Modelling the meaningfulness of these

structures is established by assigning a meaning score to each word or term. Their new

approach to meaningful keyword extraction is based on two principles. The first one

states that these keywords which are representative of topics in a data stream or corpus

of documents should be defined not only in the document context but also the context of

other documents. This is similar to the TF-IDF approach. The second one states that

topics are signaled by “unusual activity”, a new topic can be detected by a sharp rise in

the frequencies of certain terms or words. They state that sharp increase in frequencies

can be used in rapid change detection. In order to detect the change of a topic or

occurrence of new topics in a stream of documents, we can look for bursts on the

frequencies of words. A burst can be defined as a period of increased and unusual

activities or rapid changes in an event. A formal approach to model “bursts” in

document streams is presented in[110]. The main intuition in this work is that the

appearance of a new topic in a document stream is signaled by a “burst of activity" with

certain features rising sharply in frequency as the new topic appears.

Based on the theories given above, new methods are developed for several related

application areas including unusual behavior detection and information extraction from

small documents [105], for text summarization[101], defining relations between

sentences using social network analysis and properties of small world phenomenon

[102] and rapid change detection in data streams and documents [99]and also for

26

keyword extraction and rapid change detection[100]. These approaches make use of the

fact that meaningful features and interesting events come into view if their deviations

from randomness are very large.

The motivating question in these studies is “if the word w appears m times in some

documents is this an expected or unexpected event?” [100]. Given that Sw is the set of

all words in N documents and a particular word w appears K times in these documents.

Then random variable Cm counts m-tuple of the elements of Sw appears in the same

document. Following this the expected value of Cm is calculated under the assumption

that the words are independently distributed among the documents. Cm is calculated

using random variable Xi1,i2…im which indicates if words wi1,…,wim co-occurs in the

same document or not. Based on this the expected value E(Cm) can be calculated as in

Eq. (2.23) by summing the expected values of all these random variables for all the

words in the corpus.





Kimi

imim XC
...11

,...,1 (2.22)





Kimi

imim XECE
...11

,...,1)()((2.23)

The random variable Xi1,i2…imcan only take values one and zero. As a result the

expectation of this random variable which shows if these m words co-occurs in the

same document can be calculated in Eq. (2.24), where N is the total number of

documents. “If in some documents the word w appears m times and E(Cm)<1 then it is

an unexpected event” [100].

1,...,1

1
)(




mimi
N

XE (2.24)

As a result E(Cm) can simply be expressed as in Eq. (2.25) and this expectation actually

corresponds to Number Of False Alarms (NFA) of m-tuple of word w which is given in

Eq. (2.26). This corresponds to the number of times m-tuple of the word w occurs by

chance[100]. Based on this, in order to calculate the meaning of a word w which occurs

m times in a context (document, paragraph, sentence), we can look its NFA value. If the

NFA (expected number) is less than one, then the occurrence of m times can be

considered as a meaningful event because it is not expected by our calculations but it is

already happened. Therefore, word w can be considered as a meaningful or important

word in the given context.

27

1

1
)(











mm
Nm

K
CE (2.25)

Based on the NFA, the meaning score of words are calculated using Eq. (2.26) and Eq.

(2.27) in[102]:

1

1
),,(











mNm

K
DPwNFA (2.26)

),,(log
1

),,(DPwNFA
m

DPwMeaning  (2.27)

where w represents a word, P represents a part of the document such as a sentence or a

paragraph, and D represents the whole document. Additionally, m indicates the

appearance number of word w in P and K shows the appearance number of word w in

D. N= L / B in which L is the length of D and B is the length of P in words[102]. To

define Meaning function, the logarithmic value of NFA is used based on the observation

that NFA values can be exponentially large or small [100].

As mentioned above, the meaning calculations are performed in a supervised setting. In

other words, we use a class of documents as our basic unit or context in order to

calculate meaning scores for words. In this approach meaning calculations basically

show how high a particular words’ frequency is expected to be in a class of documents

compare to the other classes of documents. If it is unexpected then meaning calculations

result in a high meaning score. In this aspect it is similar to the Multinomial Naïve

Bayes in which the all the documents in a class are merged into a single document and

then the probabilities are estimated from this one large class document. It also bears

similarities to TF-ICF approach in which the term frequencies are normalized using the

class frequencies.

In supervised meaning calculations, which are given in Eq. (2.31) and Eq. (2.32),

parameter cjrepresents documents which belong to class j and S represents the complete

training set. Assume that a feature w appears k times in the dataset S, and m times in the

documents of class cj. The length of dataset (i.e. training set) S and class cj measured by

the total term frequencies is L and Brespectively. N is the ratio of the length of the

dataset and the class, which is calculated in Eq. (2.30). The NFAis defined in Eq. (2.31).

28


 


Sd dw

wtfL (2.28)


 


jcd dw

wtfB (2.29)

B

L
N  (2.30)

1

1
),,(











mj
Nm

k
ScwNFA (2.31)

Based on NFA, the meaning score of the word w in a class cj is defined as:

),,(log
1

),(ScwNFA
m

cwmeaning jj  (2.32)

This formula can be re-written as:

 Nm
m

k

m
cwmeaning j log)1(log

1
),(








 (2.33)

The larger the meaning score of a word w in a class cj, the more meaningful, significant

or informative that word is for that class.

29

CHAPTER 3

EXPERIMENTAL SETUP

We integrated our kernel functions into the implementation of the SVM algorithm in

WEKA [85]. In other words, we built numerous kernel functions those can be directly

used with Platt’s Sequential Minimal Optimization (SMO) classifier [86].

In order to see the performance of our proposed algorithms on text classification, we

performed a series of experiments on several textual datasets which are shown inTable

3.1. Our first dataset IMDB
1
 is a collection of movie reviews. It contains 2,000 reviews

about several movies in IMDB. There are two types of labels; positive and negative.

The labels are balanced in both training and test sets that we used in our experiments.

1150 Haber is our second dataset. It contains 1150 news-articles within five categories

under the titles of magazine, politics, sport, economy and health collected from Turkish

online newspapers [87]. Our third dataset is five-class version of the WEBKB[88]

dataset, namely WEBKB5, which contains web pages, gathered from different

universities’ computer science departments. WEBKB5 dataset has highly skewed class

distribution. Other datasets are variants of popular 20 Newsgroups
2
 dataset. This data

set is a collection of approximately 20,000 newsgroup documents, partitioned evenly

across 20 different newsgroups and commonly used in machine learning applications,

especially for text classification and text clustering. We used four basic subgroups

namely,“Politics”, “Comp”,”Science” and “Religion” from the 20 Newsgroups dataset.

The documents are evenly distributed to the classes.

1
http://www.imdb.com/interfaces

2
http://www.cs.cmu.edu/~textlearning

http://www.imdb.com/interfaces

30

The sixth dataset we use isthe Mini-newsgroups
1
 dataset which has 20 classes and also

has a balanced class distribution. This is a subset of the 20 Newsgroups dataset, too.

Properties of these datasets are given inTable 3.1.

We apply stemming and stopword filtering to these datasets. Additionally, we filter rare

terms which occur in less than three documents. We also apply attribute selection and

select the most informative 2,000 terms using IG as described in [14], [15], [16], [17].

This preprocessing increase the performance of the classifier models by reducing the

noise. We perform this preprocessing equally in all experiments.

Table 3.1Comparison ofproperties of datasets before attribute selection

Dataset #classes #instances #features

IMDB 2 2,000 16,679

1150 Haber 5 1150 7,948

WEBKB5 5 4,336 12,841

20 Newsgroups-Politics 3 1,500 9,864

20 Newsgroups-Science 4 2,000 9,615

20 Newsgroups-Religion 4 1,500 7,790

20 Newsgroups-Comp 5 2,500 12,151

Mini-newsgroups 20 2,000 12,112

In order to observe the behavior of our semantic kernel under different training set size

conditions, we use the following percentage values for training set size: 5%, 10%, 30%,

50%, 70%, 80% and 90%. Remaining documents are used for testing. This is essential

since we expect that the advantage of using semantic kernels should be more observable

when there is inadequate labeled data.

One of the main parameters of SMO [89] algorithm is the misclassification cost (C)

parameter. We conducted a series of optimization experiments on all of our datasets

with the values of {10
-2

, 10
-1

, 1, 10
1
, 10

2
}. For all the training set percentages we

selected the best performing one. The optimized C values for the corresponding

methods on each dataset at different training levels are given in Table 3.2, Table 3.3,

Table 3.4 and Table 3.5. This is interesting because the values vary a lot among datasets

and training set percentages (TS).

1
http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/

31

Table 3.2Optimized C values for IHOSKon differentdatasets

TS

%

20 Newsgroups-

Science

20 Newsgroups-

Politics

WEBKB5 Mini-

Newsgroups

5 1 10
-1

 1 1

10 1 10
-1

 1 1

30 1 10
-1

 1 10
2

50 1 10
-1

 1 10
2

70 1 1 1 10
2

80 1 1 1 10
2

90 1 10
-1

 1 10
1

Table 3.3Optimized C values for HOTK on different datasets

TS

%

20 Newsgroups-

Science

20 Newsgroups-

Politics

20 Newsgroups-

Comp

Mini-

Newsgroups

5 1 10
-1

 1 1

10 1 10
-1

 1 1

30 1 10
-1

 1 10
2

50 1 10
-1

 1 10
2

70 1 1 1 10
2

80 1 1 1 10
2

90 1 10
-1

 1 10
1

Table 3.4Optimized C values for CMK on different datasets

TS% IMDB 20

Newsgroups-

Science

20

Newsgroups-

Politics

20

Newsgroups-

Religion

20

Newsgroups-

Comp

Mini-

newsgroups

5 10
-2

 10
-2

 10
-2

 10
-2

 10
-1

 10
1

10 10
-2

 10
-2

 10
-2

 10
-2

 10
-1

 10
2

30 10
-1

 10
-2

 10
-2

 10
-2

 1 10
1

50 10
-2

 10
-1

 10
-2

 10
-1

 10
2
 1

70 10
1
 10

-1
 10

-1
 10

-2
 10

-1
 1

80 10
-2

 10
-2

 10
-2

 10
-1

 10
-1

 1

90 10
-2

 10
-2

 10
-2

 10
-2

 10
2
 1

32

Table 3.5Optimized C values for linear kernel on different datasets

TS% IMDB 20

Newsgroups-

Science

20

Newsgroups-

Politics

20

Newsgroups-

Religion

20

Newsgroups-

Comp

Mini-

newsgroups

5 10
-1

 10
-1

 10
-1

 10
-1

 10
-1

 1

10 10
1
 1 10

-1
 10

-1
 10

-1
 1

30 10
-1 1 10

-1 10
-1 10

-1 1

50 10
-1 1 10

-1 1 10
-1 10

1

70 10
-1

 1 10
-1

 10
-1

 1 10
1

80 10
-1

 1 10
-1

 10
-1

 1 10
1

90 10
-1 1 1 10

-1 1 10
1

The main evaluation metric in our experiments is accuracy result and in the results

tables they are written with their standard deviations. Also Student’s t-Tests for

statistical significance tests are provided. We use α = 0.05 significance level which is a

commonly used level. In addition for the accuracy we used the following performance

gain equation;

Gain y = (Py - Px) / Px (3.1)

where Py is the accuracy of SMO with our semantic kernel and Px stands for the

accuracy result of the linear kernel. The experimental results tables include training set

percentage (TS), the accuracy results of Linear Kernel, and our other semantic kernels.

Also the last columns demonstrate the (%) gain of our proposed kernel over linear

kernel calculated as in Eq. (3.1). We run our experiments using our experiment

framework called Turkuaz, which closely uses WEKA library.

33

CHAPTER 4

HIGHER-ORDER SEMANTIC KERNELS

4.1 Higher-Order Semantic Kernel (HOSK)

We propose a novel semantic kernel called HOSK[97] for SVM applied to document

categorization that takes advantages of latent semantics in higher-order paths between

documents. Although the previous works on higher-order relations focus on the higher-

order paths between terms [15], [16]we focus on the higher-order paths between

documents. We can create a graph structure where the nodes represents documents and

the edges are represents the similarity between documents. One of the most

straightforward ways of defining the similarity between two documents is using

statistics of shared words. As a result edges between documents in our graph structure

are weighted according to the frequencies of the shared words.

The advantage of using shared terms between documents as edges in this graph

structure is that it is easier to grasp semantics of similarity between documents. On the

other hand, when we go second-order and higher-order paths between documents, it is

more difficult to grasp semantic relations compared to the first-order and higher-order

paths between terms. These second-order paths may reveal latent similarity caused by

synonymous or highly related terms. With the help of higher-order paths, in particular

second-order paths, HOSK takes the advantage of getting latent semantics between

documents. In this study[97] we extract and use first-order and second-order paths.

Especially the second-order paths reveal latent semantics. Let’s consider the following

example; in Table 4.1 there are no common terms shared by documents d1 and d2; this

means that by using a classical similarity measure such as the Cosine measure or the

Euclidean distance, these documents’ similarity is calculated to zero. However, we can

34

see that both d1 and d2 share terms with d3 meaning that words t2 and t3 have some

similarities in the document space. With a higher-order-path approach, it is possible to

get a similarity between d1 and d2which is bigger than zero. We can explain this

situation with the possibility that two documents are written on the same topic using

two different but semantically closer sets of terms. In this case terms belonging to each

set frequently co-occur in other documents relating to this topic, forming a connection

pattern which can be revealed by using second-order paths.

Table 4.1A document by term matrix representation of three documents

M t1 t2 t3 t4

d1 1 1 0 0

d2 0 0 1 1

d3 0 1 1 0

4.1.1Methodology

In our system, matrix D is built from the whole corpus as a classical document by term

frequency matrix. Let Dbe the data matrix having r rows (documents) and ccolumns

(words) based on the whole corpus; mij shows occurrence frequency of the j
th

word in

thei
th

document;

mi= [mi1 .. mic] is the row vector representing the document i and m
j
= [m1j ..mrj] the

column vector corresponding to wordj.

Since we deal with textual datasets with high dimensionality and sparsity, a proper

normalization on this initial data matrix is beneficial. We tried many matrix

normalization techniques including row-level normalization (dividing each value in a

row by the maximum value in that row), column-level normalization (dividing each

value in a column by the maximum value in that column), document-length

normalization (dividing each term frequency in a row with the corresponding

document’s length) and other techniques from the literature which are detailed in [90]

such as z-score normalization, min-max normalization, etc. We obtain best accuracy

results with row-level normalization which is defined below:

)max(
...1

i

i
ii

m

m
Dr  (4.1)

35

where r is the number of documents in the corpus,m is the row vector representing the

document and Di is the normalized form of the row vector of m.

We then calculate first-order paths matrix namely F between documents like in the Eq.

(4.2):

F = D D
T

 (4.2)

In other words, F matrix is calculated by multiplying document by term matrix with its

transpose. Each value in the matrix of F shows the similarity between corresponding

documents. For instance the similarity between documenti(mi) and documentj (mj) is

calculated as follows:

F(i , j)=mi1 x mj1 + mi2 x mj2 + mi3 x mj3 + ...+ mic x mjc (4.3)

where c is the number of terms in the corpus.

F is a (document by document) square matrix whose dimension is the same as the

number of documents in the corpus. We observe that F has many zero values. Two

documents have a non-zero similarity value in F only if these two documents share

same words. In order to capture the latent semantic information between documents we

calculated the second-order paths matrix namely S between documents as in the Eq.

(4.4):

S = F F (4.4)

By multiplying F by itself S matrix is formed. Again S is a document by document

square matrix whose dimension is the same as the number of documents in the corpus.

This matrix shows the second-order paths between documents.

Each value in the matrix of S shows the similarity between corresponding documents.

For instance the similarity between documenti (mi) and documentj (mj) is calculated as

in Eq. (4.5):

S(i , j) = (4.5)

 F(mi , m1) x F(mj , m1) + F(mi , m2) x F(mj , m2) +

 F(mi , m3) x F(mj , m3) + F(mi , m4) x F(mj , m4)+...+ F(mi , mr) x F(mj , mr)

36

So, both F and S have similarity information between documents. We observed that the

values in S are extremely larger than the ones in F. This could be explained with the fact

that S has values not only based on only common terms between documents but also

some indirectly latent semantics. So, we normalize the two matrix separately using Eq.

(4.6) and Eq. (4.7):

)max(
...1,

F

F
FNrji

ij

ij  (4.6)

)max(
...1,

S

S
SNrji

ij

ij  (4.7)

where r is the number of documents in our corpus, F is the matrix shows the number of

first-order paths between documents, FN is normalized first-order paths matrix, S is

second-order paths matrix, and SN is normalized second-order paths matrix,

respectively. After this normalization we combine these two matrices with a weight

value λ in order to see the effect of FN and SN matrices to the accuracy in our

experiments. In order to optimize λ, the following values are taken into consideration: 0,

0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, and 1. Combination of FN and SN matrices yields

final similarity matrix which is shown in Eq. (4.8):

Sim(di,dj) = (λ × SNij) + ((1 - λ) × FNij) (4.8)

Based on the results we tune the λ parameter to the value of 0.95.This is a satisfactory

result for us from the aspect of the more contribution of higher-order paths means the

more accurate results.

After that, we use this similarity matrix as a kernel (gram) matrix in SVM by plugging

in the SMO WEKA’s implementation[85]. In other words we built such a kernel matrix

that is directly applicable in Platt’s SMO learner. One of the most important parameters

of SMO algorithm is misclassification-cost (C) parameter. After a set of optimization

experiments we did not observe a significant difference and that’s why we tuned it to its

default value of 1.In all of the experiments including not only HOSK but also linear

kernel we used this same value.

37

4.1.2 Experimental Results and Discussion

According to our experiments HOSK demonstrates a notable performance on 1150

Haber dataset, which can be seen in Table 4.2. HOSK outperforms our baseline kernel

(Linear Kernel, which is one of the state-of-the-art kernels in text classification) by

extensive boundaries in all training set percentages. The performance gain is

specifically obvious at low training set levels. For instance at training levels 1%, 5%,

and 10% HOSK statistically significantly outperforms Linear Kernel with the gains of

20.39% ,15.82%, 8.81% on Linear Kernel ,respectively.

Table 4.2Accuracy of HOSK and linear kernel on 1150 Haber dataset with varying

training set size

TS % Linear HOSK Gain

1 46.99±4.54 56.57±12.22 20.39

5 72.82±4.68 84.34±2.33 15.82

10 80.51±2.68 87.60±1.26 8.81

30 88.55±1.34 90.78±0.58 2.52

50 89.72±1.13 90.90±0.82 1.32

70 91.59±1.06 92.41±0.54 0.90

80 92.30±2.89 92.43±3.15 0.14

90 91.83±3.18 92.17±2.21 0.37

According to Table 4.3, on WEBKB5 dataset, at training levels 1%, 5%, and 10%

HOSK gives statistically significant results over Linear Kernel besides the results that

HOSK outperforms than Linear Kernel in all of the training levels.

The same is valid for 20 Newsgroups-Comp and 20 Newsgroups-Science datasets,

where HOSK outperforms Linear Kernel in all training levels. This can be seen from

Table 4.4 and Table 4.5. The performance improvement is most visible in small training

set levels for instance in train split 1%, HOSK can achieve an accuracy of 72.59%

where the Linear Kernel accuracy is only 52.16% for 20 Newsgroups-Science dataset,

which can be clearly seen from Table 4.5.

At small training data levels first-order methods give zero as the similarity of two

instances those do not contain common words. But by the use of higher-order paths the

similarity between those two instances can be larger than zero.

38

Table 4.3Accuracy of HOSK and linear kernel on WEBKB5 dataset with varying

training set size

TS % Linear HOSK Gain

1 59.74±3.48 75.1±2.82 25.71

5 72.77±1.43 84.20±0.87 15.71

10 78.46±1.60 86.79±0.62 10.62

30 84.88±0.97 88.45±0.46 4.21

50 86.40±0.96 89.11±0.48 3.14

70 88.05±1.05 89.61±0.65 1.77

80 87.77±1.61 89.68±1.01 2.18

90 88.28±1.18 89.15±1.56 0.99

Table 4.4Accuracy of HOSK and linear kernel on 20 Newsgroups-Compdataset with

varying training set size

TS % Linear HOSK Gain

1 34.93±4.31 49.43±2.80 41.51

5 53.73±4.47 65.48±2.56 21.87

10 62.28±2.57 70.66±1.07 13.46

30 73.97±1.62 74.69±1.09 0.97

50 77.87±1.60 78.54±1.15 0.86

70 79.57±1.74 81.11±1.66 1.94

80 78.88±2.31 80.92±1.98 2.59

90 80.88±2.60 83.04±2.48 2.67

Table 4.5Accuracy of HOSK and linear kernel on 20 Newsgroups-Science dataset with

varying training set size

TS % Linear HOSK Gain

1 52.16±5.25 72.59±5.84 39.17

5 70.93±3.89 85.69±1.80 20.81

10 77.74±3.52 87.87±1.34 13.03

30 86.73±1.32 93.11±0.77 7.36

50 88.94±1.16 94.18±0.48 5.89

70 90.37±0.93 95.07±0.86 4.84

80 91.25±1.56 95.4±0.87 4.55

90 91.15±1.73 96±1.80 5.32

39

4.2 Iterative-Higher-Orders Semantic Kernel (IHOSK)

We propose a semantic kernel for Support Vector Machines (SVM) that takes

advantage of higher-order relations between the words and between the documents.

Conventional approach in text categorization systems is to represent documents as a

“Bag of Words” (BOW) in which the relations between the words and their positions

are lost. Additionally, traditional machine learning algorithms assume that instances, in

our case documents, are independent and identically distributed. This approach

simplifies the underlying models, but nevertheless it ignores the semantic connections

between words as well as the semantic relations between documents that stem from the

words. In this study [92], we improve the semantic knowledge capture capability of a

previous work in [18], which is called χ-Sim algorithm and use this method in the SVM

as a semantic kernel. The proposed approach is evaluated on different benchmark

textual datasets. Experiment results show that classification performance improves over

the linear kernel which is one of the state-of-the-art algorithms for text classification

[92].

4.2.1 Methodology

In our approach, Dt is the data matrix having r rows (documents) and c columns (words)

formed from the training set. In this matrix dij shows the occurrence frequency of the j
th

word in the i
th

 document; di = [di1 .. dic] is the row vector representing the document i

and dj = [d1j ..drj] is the column vector corresponding to word j.

We also tried several term weighting methods. First of them is TF-IDF which is a

statistical measure used to evaluate the importance of a word for a document in a corpus

as mentioned in Chapter 2.Another term weighting approach we investigated is from

Dumais’s research in [91]. In this approach, terms are represented in a document after

multiplying by a value that is the global weight of the term in the whole corpus. The

local weight of a term t in a document d is calculated as taking the log value of the total

frequency of t in d. The global weight of a term is the entropy of that term in the corpus

and according to [91] the entropy equals:

)log(

)log(
1),(

1 N

pp
dtEntropy tdtd

N

i




 (4.9)

40

where N is the number of documents and ptd equals the number of times that t occurs in

d divided by the total number of times that t occurs.

However, since we get better accuracies for linear kernel with the only TF schema

without any weighting, we use TF instead of TF-IDF or Entropy weighting approaches

in our experiments for both linear kernel and our algorithm.

We use the documents in our training corpus for χ-Sim’s SC and SR similarity matrix

calculations. We calculate up to four iterations by using the following equations:

NRDSCDSR T

tt  1 with
ji

ji
dd

NR
1

,  (4.10)

NCDSRDSC t
T

t  1 with
ji

ji
dd

NC
1

,  (4.11)

where D is the document by term matrix, D
T
 is the transpose of D matrix, SR is the row

(document) similarity matrix, SC is the column (word) similarity matrix, NR and NC are

row and column normalization matrices and  denotes Hadamard multiplication,

respectively. In a Hadamard product A=BC, the elements ai,k of matrix A are defined

as: ai,k= bi,k. ci,k .

Similar to [18], we calculate SR0, SC0, SR1, SC1, SR2, SC2, SR3, SC3, SR4, SC4 matrices

and after that we use these SC matrices, which contain iterative higher-order relations

between terms, into our kernel by using Eq. (4.12):

TT

IHOSK dSSdddk 2121),( (4.12)

where kIHOSK (d1, d2) is the similarity value between documents d1 and d2,S is a semantic

matrix which is gathered from the previously mentioned calculations of SC2and d1 and

d2 are term-frequency vectors of the documents. The S is a semantic matrix is based on

iterative higher-order paths between documents and between terms. This kernel function

means that the transformation of a document vector from input space to a feature space

can be done by multiplying it with a semantic matrix as given in Eq. (4.13):

Sdd 11)( and TT dSd 22)( (4.13)

41

where)(1d and)(2d are the transformations of document vectors d1and d2 from their

original input space into the feature space as required in the definition of kernel which is

mentioned in Section 2.

After performing experiments up to four iterations of SC matrices, we conclude that the

best results are obtained with the second iteration matrices (SR2, SC2). The following

experimental results reflect the results of our approach using these matrices.

Since we work with textual datasets which are high dimensional and highly sparse, we

think that it is possible to benefit from normalization methods which could be applied

on the similarity matrices. We also experimented with different normalization methods

as mentioned in Section 4.1. We obtained best accuracy results with length

normalization which is defined in Eq. (4.14).

||.||

),(IHOSK
),(IHOSK -...1,

ji

ji

ji
dd

dd
ddNrji  (4.14)

where r is the number of documents in our corpus, IHOSK is similarity value between

documents di and dj, N-IHOSK is the normalized similarity value of these documents di

and dj and |di| and |dj| are the lengths of these documents depending on the number of

terms they have, respectively. Then, we use this kernel function in SVM by plugging in

the SMO WEKA’s implementation[85]. In other words we built such a kernel function

that is directly applicable in Platt’s SMO [86] learner.

4.2.2 Experimental Results and Discussion

According to Table 4.6, N-IHOSK outperforms our baseline kernel (linear kernel) by

extensive boundaries in all training set percentages. For instance at training levels 30%,

50% and 70% the accuracies of N-IHOSK are 94.31%, 94.97% and 95.35% while the

accuracies of linear kernel are 86.73%, 88.94% and 90.37% ,respectively. The

performance gain is obvious at all training set levels. It is important to note that high

performance gains are especially visible at low training set levels. For instance at

training levels 5%, and 10% N-IHOSK outperforms linear kernel with the gains of

18.64% and 16.25%, respectively. As mentioned above, this performance is of great

importance since usually it is difficult and expensive to obtain labeled data in real world

applications.

42

Table 4.6Accuracy of N-IHOSK and linear kernel on 20 Newsgroups-Sciencedataset

with varying training set size

TS % linear N-IHOSK Gain

 5 70.93±3.89 84.15±2.87 18.64

10 77.74±3.52 90.37±0.81 16.25

30 86.73±1.32 94.31±1.09 8.74

50 88.94±1.16 94.97±0.90 6.78

70 90.37±0.93 95.35±0.88 5.51

80 91.25±1.56 96.23±1.19 5.46

90 91.15±1.73 96.85±1.70 6.25

Table 4.7Accuracy of N-IHOSK and linear kernel on20 Newsgroups-Politics dataset

with varying training set size

TS % linear N-IHOSK Gain

 5 78.33±3.40 82.27±4.60 5.03

10 84.66±2.09 88.61±2.1 4.67

30 91.98±1.24 93.61±1.08 1.77

50 91.21±0.89 93.55±3.58 2.57

70 92.29±1.22 93.24±3.08 1.03

80 93.7±0.79 95.3±1.82 1.71

90 93.69±2.04 95.8±2.28 2.25

Table 4.8Accuracy of N-IHOSK and linear kernel onWEBKB5dataset with varying

training set size

TS % linear N-IHOSK Gain

 5 72.77±1.43 76.12±1.39 4.60

10 79.12±2.18 82.41±2.32 4.16

30 86.10±1.52 88.27±1.62 2.52

50 90.16±1.11 91.89±1.08 1.92

70 90.60±1.93 92.31±1.41 1.89

80 91.00±1.45 93.10±1.77 2.31

90 91.93±2.52 93.13±1.54 1.31

43

On 20 Newsgroups-Politics dataset, N-IHOSKproduces better classification accuracies

than linear kernel in all of the training levels which can be observable from Table 4.7.

Same trend can be seen for WEBKB5 dataset which has a highly skewed class

distribution. In this dataset our algorithm N-IHOSK outperforms linear kernel. This can

be seen in Table 4.8.

For us one of the best results is observed on Mini-newsgroups dataset.This dataset has

the largest number of classes. Again in all training levels starting from 5% up until 90%

N-IHOSK gives higher accuracies than other kernels. This can be seen from Table 4.9.

This is especially obvious at 5% training level; the performance gain of N-IHOSKon

linear kernel is 17.79%

Table 4.9Accuracy of N-IHOSK and linear kernel on Mini-newsgroupsdataset with

varying training set size

TS % linear N-IHOSK Gain

 5 52.03±5.95 61.29±1.03 17.79

10 59.31±4.58 64.15±0.54 8.16

30 72.61±4.23 75.51±0.31 4.00

50 76.02±4.24 79.24±0.31 4.24

70 77.61±2.76 79.73±0.45 2.73

80 80.70±2.20 83.05±0.58 2.91

90 83.25±4.05 85.38±1.28 2.56

The particularly high accuracies of the proposed method on 20 Newsgroups-Science

dataset may be explained with the less average sparsity of the documents of this dataset

compare to the other datasets. It is possible that having more terms in documents of this

dataset give us the opportunity to generate more higher-order paths between documents.

At small training data levels first-order methods give zero as the similarity of two

documents that do not contain common words. But by the use of higher-order paths the

similarity between those two instances can be larger than zero. We think that this is the

main reason that the difference between N-IHOSK and linear kernel which is most

visible at small training levels like 5% and 10%. Through the experiments we observed

remarkable gains such as 18.64%, 16.25%, and 17.79% at only using 5% and 10% of

the labeled data as training set. This has important implications on real world

44

applications where the labeled data is generally difficult to obtain. In many real world

applications serious costs are associated with the labeling of the data.

4.3 Higher-Order Term Kernel (HOTK)

In this study [93], we present a simple semantic kernel for SVM algorithm. This kernel

uses higher-order relations between terms in order to incorporate semantic information

into the SVM. This is an easy to implement algorithm which forms a basis for future

improvements. We perform a serious of experiments on different well known textual

datasets. Experiment results show that classification performance improves over the

traditional kernels used in SVM such as linear kernel which is commonly used in text

classification[93].

4.3.1 Methodology

In our proposed method, Dtrain is the data matrix having r rows (documents) and t

columns (words) formed using the training set. In this matrix dij represents the

occurrence frequency of the j
th

 word in the i
th

 document; di = [di1,…,dit] is the row vector

showing the document iand dj = [d1j,…,drj] is the column vector belongs to word j.

It is important to note that binary term occurrences are used in the premier studies which

use higher-order paths between terms since it simplifies the definition and counting of

the higher-order paths. However, in this study [93], we experiment with term frequencies

(TF). This is similar to the initial attempt to use term frequencies in[17].

We use the training set to extract higher-order paths between terms. The S matrix which

shows the amount or weight of higher-order (second-order in this case) relations between

terms is obtained by using the formula in Eq. (4.15). This approach is motivated by

algorithm which is explained in[17]. However, in this study [93], we are using term

frequencies instead of binary term occurrences and we are not filtering any paths.

train
T
train DDS  (4.15)

whereDtrain is document by term matrix of the training set S is a symmetric square matrix

whose dimensions are the number of the terms in the training set. The S matrix displays

the first-order relations, in other words just co-occurrences of the terms. In order to get

higher co-occurrence relations or in other words higher-order paths we multiply the S by

itself. For instance, the square of S reveals the second-order relations between the terms.

45

Since the second-orderpaths reveal latent semantic relations [15] we use the following

Eq. (4.16) as a simple semantic kernel.

TT
KHOT dSSdddk 2121),( (4.16)

The proposed kernel function in Eq. (4.16) means that the transformation of a document

vector from input space to a semantic feature space can be accomplished by multiplying

it with a semantic matrix as shown in Eq. (4.17).

Sdd 11)( and
TT dSd 22)( (4.17)

where)(1d and)(2d vectors are the transformations of documents d1 and d2 vectors

from their original input space into the feature space as required in the definition of

kernel which is mentioned in Section 2.

We also experimented with different normalization methods as mentioned in Section 4.1.

We obtained best accuracy results with length normalization which is defined in Eq.

(4.18):

||.||

),(
),(...1,

ji

ji

jinorm
dd

ddk
ddkrji  (4.18)

where|di| and |dj| are the lengths of these documents measured by the sum of the term

occurrences.

4.3.2 Experimental Results and Discussion

According to our experiments HOTKdemonstrates a notable performance on 20

Newsgroups-Science dataset, which can be seen in Table 4.10. HOTKoutperforms our

baseline kernel (linear kernel) in all training set percentages. The performance gain is

specifically obvious at low training set levels. For instance, at training levels 5% and

10% HOTKoutperforms linear kernel with the gains of 7.26% and 5.77% on linear

kernel respectively. 20 Newsgroups-Science dataset is also used in our previous

studies[92], [97]. Therefore we use this dataset to compare the results of HOSK [97]

and IHOSK [92] with HOTK[93]. Although the HOTK be able to outperform the

baseline (linear kernel), the performance of IHOSK is superior to the HOSK and

HOTK. However, the complexity of IHOSK is much higher than the previous works

such as HOSK, and the proposed work of the HOTK. This prevents the IHOSK to be

46

applied on large datasets. HOSK also performs slightly better than HOTK but it is based

on the higher-order paths between documents. The semantic relations between the

documents are not as clear as the relations between the terms. HOTK is our first attempt

to use the higher-order paths between terms as a semantic kernel for SVM. Using

higher-order paths between terms instead of between documents (as in HOSK) or both

the documents and terms (as in IHOSK) forms a foundation that is open to several

improvements. For instance HOTK can easily be combined with other term based

semantic kernels such as the ones using WordNet or Wikipedia. Furthermore, it will be

much easier to apply different path filters and normalizations based on the role of terms

in different classes and observe their affects.

Table 4.10 Accuracy of HOTK and other kernels on 20 Newsgroups-Science dataset

with varying training set size

TS % Linear HOSK IHOSK HOTK Gain

5 71.44±4.30 85.69±1.80 90.37±0.81 76.63±2.67 7.26

10 77.97±3.73 87.87±1.34 94.31±1.09 82.47±2.02 5.77

30 86.73±1.32 93.11±0.77 94.97±0.90 89.24±0.74 2.89

50 88.94±1.16 94.18±0.48 95.35±0.88 90.84±1.12 2.14

70 90.58±0.93 95.07±0.86 96.23±1.19 92.06±1.28 1.63

80 91.33±1.41 95.40±0.87 96.85±1.70 93.38±1.43 2.24

90 91.40±1.56 96.00±1.80 94.31±1.09 94.2±1.36 3.06

For the remaining datasets we report the results of HOTK compared to the baseline

kernel. 20 Newsgroups-Politics is an exceptional dataset in terms of the performance of

HOTK. We only see improvements at very low training set percentages. This may due to

the size of the dataset. 20 Newsgroups-Politics is our smallest dataset with 3 classes and

1500 documents. We observe that the discussions are centered on a smaller number of

topics compare to the other datasets. In our opinion in this dataset, the classes are easier

to discriminate, giving more advantage to the document based methods.

For 20 Newsgroups-Comp dataset, HOTK outperforms linear kernel in all training

levels. This can be seen from Table 4.12. 20 Newsgroups-Comp is a larger dataset than

the 20 Newsgroups-Politics. It has five classes. As expected, the performance

improvement is most visible in small training set levels which can be seen from Table

47

4.12. For Mini-newsgroups dataset, HOTK outperforms linear kernel in almost all of the

training levels. This can be seen from Table 4.13.

Table 4.11 Accuracy of HOTK and linear kernel on 20NewsPolitics dataset with

varying training set size

TS % Linear HOTK Gain

5 79.01±2.65 80.72±1.56 2.16

10 84.69±1.24 84.89±2.15 0.24

30 92.04±1.06 88.31±1.22 -4.05

50 93.73±0.57 90.29±0.79 -3.67

70 94.55±1.21 90.15±1.15 -4.65

80 94.03±0.91 92.50±1.60 -1.63

90 94.86±1.26 92.46±2.01 -2.53

Table 4.12Accuracy of HOTK and linear kernel on 20 Newsgroups-Comp dataset with

varying training set size

TS % Linear HOTK Gain

5 56.75±4.72 60.22±3.00 6.11

10 65.45±2.77 66.70±1.14 1.91

30 75.38±2.12 75.97±1.04 0.78

50 77.89±1.60 78.68±0.71 1.01

70 79.63±1.59 79.97±1.18 0.43

80 79.00±2.25 80.38±1.85 1.75

90 81.40±2.47 81.52±1.46 0.15

Table 4.13Accuracy of HOTK and linear kernel on Mini-newsgroups dataset with

varying training set size
TS % Linear HOTK Gain

5 56.75±4.72 49.69±5.64 -12,44

10 65.45±2.77 66.24±3.81 1,21

30 75.38±2.12 81.82±2.04 8,54

50 77.89±1.60 85.54±1.20 9,82

70 79.63±1.59 87.28±1.13 9,61

80 79.00±2.25 88.15±1.58 11,58

90 84.65±2.48 88.10±2.80 4,08

48

CHAPTER 5

CORPUS-BASED SEMANTIC KERNELS BY USING CLASS-

BASED MEANING AND WEIGHT VALUES OF TERMS

5.1 Class Meanings Kernel (CMK)

In this study[94], we propose a novel approach for building a semantic kernel for SVM,

which we name Class Meaning Kernel (CMK). The suggested approach smoothes the

terms of a document in BOW representation (document vector represented by term

frequencies) by class-based meaning values of terms. This in turn, increases the

importance of significant or in other words meaningful terms for each class while

reducing the importance of general terms which are not useful for discriminating the

classes. This approach reduces the disadvantages of BOW and improves the prediction

abilities in comparison with standard linear kernels by increasing the importance of

class specific concepts which can be synonymous or closely related in the context of a

class. The main novelty of this approach is the use of this class specific information in

the smoothing process of the semantic kernel. The meaning values of terms are

calculated according to the Helmholtz principle from Gestalt theory [99], [100], [101],

[102] in the context of classes as mentioned in Section 2.4.

5.1.1 Methodology

In our study, we use the general form of kernel function which is given in Eq. (2.8). The

simplest form of kernel function, namely linear kernel is formulated in Eq. (2.5). But as

it is criticized in Section 2 linear kernel is a simple dot product between the features of

text documents. It produces a similarity value of two documents only proportional to the

number of shared terms. Combined with the highly sparse representation of the textual

49

data, this may yield a significant problem especially when two documents are written

about the same topic using two different sets of terms which are actually semantically

very close as it is mentioned in the Section 2.2. Also, in cases where training data is

scarce there will be serious problems to detect reliable patterns between documents. This

means that using only simple dot product to measure similarity between documents will

not always give sufficiently accurate similarity values between documents. Additionally,

for a better classification performance it is inevitably required to discount general words

and emphasize more importance on core words (which are closely related to the subject

of that class) as it is analyzed in [3]. In order to overcome these mentioned drawbacks,

semantic smoothing kernels encode semantic dependencies between terms [11], [41],

[103],[104]. We also incorporated additional information of terms other than their simple

frequencies as in our previous studies [92], [93], [97]in which we take advantage of

higher-order paths between words and/or documents. In those studies we showed that the

performance difference between first-order and higher-order representation of features.

In this approach we investigate the use of a new type of semantic smoothing kernel for

text.

Figure 5.1 demonstrates the architecture of the suggested semantic kernel. This system

mainly consists of four independent modules: preprocessing, meaning calculation,

building semantic kernel, and classification. Preprocessing is the step that involves the

conversion of input documents into formatted information. This step includes stemming

and stopword filtering. In meaning calculation step, the meaning values of the terms

according to the classes are calculated based on Eq. (2.32). Then we construct our

proposed kernel, namely CMK, in the step for building semantic kernel. Finally, in the

classification step SVM classifier builds a model in the training phase and this model is

then applied to the test examples in the test phase.

Clearly, the main feature of this system is that it takes advantages of the meaning

calculation in kernel building process, in order to reveal semantic similarities between

terms and documents by smoothing the similarity and the representation of the text

documents. Meaning calculation is based on Helmholtz principle from Gestalt theory.

As mentioned in Section 2.4, this meaning calculations have been applied to many

domains in previous works (for example information extraction [105], text

summarization [101], rapid change detection in data streams [99], and keyword

50

…

Figure 5.1The architecture of CMK System

extraction). In these studies a text document is modelled by a set of meaningful words

together with their meaning scores. A word is considered meaningful or important if the

term frequency of a word in a document is unexpected if we consider the term

frequencies of this word in all the documents in our corpus. The method can be applied

on a single document or on a collection of documents to find meaningful words inside

each part or context (paragraphs, pages, sections or sentences) of a document or a

document inside of a collection of documents[102]. Although meaning calculation has

been used in several domains, to the best of our knowledge, our work is the first to apply

this technique to kernel function.

In our methodology Dtrain is the data matrix of training set having r rows (documents)

and t columns (terms). In this matrix dijstands for the occurrence frequency of the j
th

word in the i
th

 document; di = [di1,…,dit] is the document vector showing the document i

and dj = [d1j,…,drj] is the term vector belonging to word j, respectively. To enrich Dtrain,

with semantic information, we build the class-based term meaning matrix M using

meaning calculations given in Eq. (2.32). The M matrix shows the meaningfulness of the

terms in each class. Based on M we calculate S matrix in order to reveal class based

semantic relations between terms. Specifically, the ij
th

 element of S quantifies the

semantic relatedness between terms tiand tj.

TMMS  (5.1)

Text Document

Text Document

Text Document

Preprocessing Meaning Calculation Building Semantic Kernel Classification

CMK

t1 t2 t3 … tm

C1

C2

…

Ck

51

In our system S is a semantic smoothing matrix to transform documents from input space

to feature space. Thus, S is a symmetric term-by-term matrix. Mathematically, the kernel

value between two documents is given as

TT

CMK
dSSdddk 2121),( (5.2)

where kCMK (d1, d2) is the similarity value between documents d1 and d2, S is the semantic

smoothing matrix. In other words, here S is a semantic proximity matrix which derives

from the meaning calculations of terms and classes.

If a word occurs only once in a class then its meaning value for that class is zero

according to Eq. (2.32). If a word does not occur at all in a class, it gets minus infinity

based on Eq. (2.32) as a meaning value for that class. In order to make calculations more

practical we assign the next smallest value to that word according to the range of

meaning values we get for all the words in our corpus. After all calculations we get M as

a term-by-class matrix which includes the meaning values of terms in all classes of the

corpus. We observe that these meaning values are high for those words that allow us to

distinguish between classes. Indeed terms semantically close to the theme discussed in

the documents of that class gain the highest meaning values in the range. In other words

semantically related terms of that class, i.e. “core” words like it is mentioned in[3], gain

importance while semantically isolated terms, i.e. “general” words lose their importance.

So terms are ranked based on their importance. For instance, if the word “data” is highly

present while the words “information” and “knowledge” are less, the application of

semantic smoothing will increase the values of the last two terms because “data”,

“information” and “knowledge” are strongly related concepts. The new encoding of the

documents is richer than the standard TF-IDF encoding since; additional statistical

information that is directly calculated from our training corpus is embedded into the

kernel. In other words transformations in Eq. (5.2) smooth the basic term vector

representation using semantic ranking while passing from the original input space to a

feature space through kernel transformation functions)(1d and)(1d for the

documents d1 and d2respectively:

Sdd 11)( and
TT dSd 22)( (5.3)

52

As mentioned in[106], the presence of S in Eq. (5.3) changes the orthogonality of the

vector space model, as this mapping introduces term dependence. Documents can be

seen as similar even if they do not share any terms by eliminating orthogonality.

Also as it is mentioned in [99], meaning calculation automatically filters stop words by

assigning them very small amounts of meaning values. Let us consider the following

two cases, which are represented in Table 5.1. According toTable 5.1, it is understood

that t1and t2 occurred in one or more documents of c1, not in remaining classes; c2, c3and

c4, respectively. In other words t1 and t2are critical words of the topic discussed in c1;

getting high meaning values according to Eq. (2.32); since the frequency of a term in a

class,m is inversely proportional to the NFA. According to Eq. (2.32), in such a case the

number of times that word occurred in the whole corpus (k) is larger when the times of

that word’s occurrence in a class (m) is smaller NFA calculation directly gives a larger

negative value which will yield a larger positive value. In other words, according to the

spirit of meaning value calculation, the more a word occurred in only a specific class

the higher meaning value it gets, and conversely the more a word occurred in all classes

the less meaning value it gets. This statement can also be represented withTable 5.1,

since t1 and t2 occurred in only c1 while t3andt4occurred in every classes of the corpus. It

is highly possible that these two words, t3 andt4, are in the type of “general” words since

they are seen in every class of the corpus.

Table 5.1Term frequencies in different classes

5.1.2 Experimental Results and Discussion

CMK outperforms our baseline kernel clearly in almost all training set percentages on

1150Haber dataset. This can be observed from Table 5.2. CMK demonstrates much

better performance than linear kernel on this dataset, in all training set percentages

except 5% and 10%. The performance gain is specifically obvious starting from 30%

training set percentage. For instance at training set percentages 30%, 50% , 70% , 80%

and 90% the accuracies of CMK are 91.49%, 93.81%, 93.94%, 93.09% and 93.74%

while the accuracies of linear kernel are 88.55%, 89.72%, 91.59, 92.30% and 91.83%;

 c1 c2 c3 c4

t1 1 0 0 0

t2 1 0 0 0

t3 1 1 1 1

t4 1 1 1 1

53

respectively. CMK also has better performance than our previous semantic kernels

IHOSK, and HOTK at training set percentages between 30% and 90% as shown in Table

5.2. The highest gain of CMK over linear kernel on this dataset is at 50% training set

percentage which is 4.56%. Additionally, according to Table 5.2 we can conclude that

the performance differences of CMK while passing from one training set percentage to

another are compatible with the term coverage ratios at those training set percentages.

For instance at training set percentage 30%, term coverage jumps to 71.56% from its

previous value at 10% that is 54.60%. Similar behavior can be observed at performance

of CMK while going through 10% training set percentage to 30% training set

percentage; where it generates the accuracies 72.07% and 91.49%; respectively. This

means an accuracy change of 19.42% between 10% and 30% training set percentages.

Furthermore we also performed our experiments for linear kernel and CMK on

1150Haber dataset without IG. According to Table 5.2 both linear kernel and CMK

generate better classification accuracies on 1150Haber dataset when IG (selection of

2000 attributes with IG) is used in compare to the case of without IG. This experimental

result shows us the necessity of doing preprocessing (e.g. attribute selection and filtering

stop words and rare words).

Table 5.2 Accuracy of CMK and other kernels on 1150Haber dataset with varying

training set size

TS

%

Linear

Linear

(without

IG)

IHOSK HOTK CMK CMK

(without

IG)

Gain

5 72.82±4.68 66.51±4.58 74.54±1.75 73.34±1.71 55.15±8.63 37.76±7.49 -24.27

10 80.51±2.68 76.93±1.68 80.74±1.17 79.97±1.24 72.07±4.48 42±4.99 -10.48

30 88.55±1.34 85.84±1.56 90.12±1.69 89.47±1.76 91.49±2.12 80.82±9.45 3.32

50 89.72±1.13 88.54±1.23 92.73±1.11 90.83±0.12 93.81±1.31 87.84±3.27 4.56

70 91.59±1.06 89.51±1.79 93.14±0.87 91.76±1.86 93.94±1.08 90.9±1.23 2.57

80 92.30±2.89 90.13±1.94 93.75±1.98 92.15±0.36 93.89±2.91 91.38±1.10 0.86

90 91.83±3.18 91.13±2.31 94.25±1.72 92.70±1.65 94.54±1.82 92.78±2.81 2.08

54

Table 5.3 Accuracy of CMK and other kernels on 20 Newsgroups-Science dataset with

varying training set size

TS % Linear

IHOSK HOTK CMK Gain Term

Coverage

5 71.44±4.3 84.15±2.87 76.63±2.67 64.51±4.86 -9.70 63.99

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 5.41* 82.28

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 9.62* 98.01

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 8.74* 99.90

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 7.22* 99.99

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 6.87* 100.00

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 6.95* 100.00

Table 5.4Accuracy of CMK and other kernels on IMDB dataset with varying training

set size
TS % Linear

IHOSK HOTK CMK Gain Term

Coverage

5
76.85±1.31 76.98±1.14 74.21±0.24 77.84±2.99 1.29 48.00

10
82.99±1.76 82.55±2.32 82.23±0.42 84.51±1.45 1.83 61.51

30
85.57±1.65 87.16±1.64 85.63±1.69 90.54±0.65 5.81* 86.35

50
88.46±1.89 89.40±1.91 87.20±0.33 92.30±0.59 4.34 95.91

70
89.93±1.18 91.31±0.87 90.41±0.55 93.23±0.70 3.67 99.17

80
90.65±1.09 92.38±1.43 91.37±0.98 93.43±0.94 3.07 99.71

90
91.75±1.14 92.63±1.19 91.59±0.27 93.65±0.37 2.07 99.98

CMK outperforms our baseline kernel clearly in almost all training set percentages on 20

Newsgroups-Science dataset. This can be observed from Table 5.3. CMK demonstrates

much better performance than linear kernel on this dataset, in all training set percentages

except 5%. The performance gain is specifically obvious starting from 10% training set

percentage. For instance at training set percentages 30%, 50% , 70% , 80% and 90% the

accuracies of CMK are 95.07%, 96.71%, 97.12%, 97.6% and 97.75% while the

accuracies of linear kernel are 86.73%, 88.94%, 90.58, 91.33% and 91.4%%;

respectively. CMK also has better performance than our previous semantic kernels

IHOSK, and HOTK at training set percentages between 30% and 90% as shown in Table

5.3. The highest gain of CMK over linear kernel on this dataset is at 30% training set

percentage which is 9.62%. Also it should be noted that, there is a performance gain of

55

CMK over linear kernel 5.41% at training set percentage 10%, which is of great

importance since usually it is difficult and expensive to obtain labeled data in real world

applications. Additionally, according to Table 5.3we can conclude that the performance

differences of CMK while passing from one training set percentage to another are

compatible with the term coverage ratios at those training set percentages. For instance at

training set percentage 30%, term coverage jumps to 98.01% from its previous value at

10% that is 82.28%. Similar behavior can be observed at performance of CMK while

going through 10% training set percentage to 30% training set percentage; where it

generates the accuracies 82.19% and 95.07%; respectively. This means an accuracy

change of 12.88% between 10% and 30% training set percentages.

Additional to CMK, that is calculated with Eq. (5.4) and Eq. (5.5) we also built a

second-order version of CMK with the name Second-Order Class Meaning Kernel (SO-

CMK) with the following equation:

T

CMKSO dSSdddk 2

22

121),( (5.4)

where S is our term-by-term meaning matrix that is also used for CMK.

Transformations are done with;

2

11)(Sdd  and
TdSd 2

2

2)( (5.5)

where)(1d and)(1d are transformation functions of kernel from input space into

feature space for the documents d1 and d2, respectively. In other words, here M is

asemantic proximity matrix of terms and classes which shows semantic relations

between terms. In this case semantic relation between two terms is composed of

corresponding class based meaning values of these terms for all classes. So if these two

terms are important terms in the same class then the resulting semantic relatedness value

will be higher. In contrast to the other semantic kernels that makes use of WordNet or

Wikipedia in an unsupervised fashion, CMK directly incorporates class information to

the semantic kernel. Therefore, it can be considered as a supervised semantic kernel.

We also recorded and compared the total kernel computation time of our previous

semantic kernels IHOSK and HOTK and CMK. All the experiments presented here are

carried on our experiment framework, Turkuaz, which directly uses WEKA[85] on a

computer with two Intel(R) Xeon(R) CPUs at 2.66 GHz with 64 GB of memory. Our

56

semantic kernel’s computation time on each dataset is recorded in terms of seconds and

they are proportionally converted into percentages by making the longest run time

100.According to this conversion, for instance on 20 Newsgroups-Science dataset;

IHOSK[92], SO-CMK, CMK and HOTK [93] estimates the following time units in

order; 100, 55, 32, and 27, respectively, which is shown inFigure 5.2.

Figure 5.2The total kernel computation time units of IHOSK, SO-CMK, CMK and

HOTK on 20 Newsgroups-Science dataset at 30% training set size

These values are not surprising since the complexity and running time analysis supports

them. In IHOSK [92]there is an iterative similarity calculation between documents and

terms, which completes totally in four steps including corresponding matrix calculations

as in shown in Eq. (4.10) and Eq. (4.11). As it is discussed in [18] producing the

similarity matrix (SCt) has overall complexity O(tn
3
) where t is the number of iterations

and n is the number of training instances. Since in our experiments we fixed t=2 we

obtain O(2n
3
) complexity. On the other hand HOTK[93]has complexity O(n

3
) as it can

be noted from Eq. (4.16). CMK also has a complexity of O(n
3
) like HOTK, but

additional to the calculations made for HOTK, CMK has a phase of calculating meaning

values which makes CMK run slightly longer than HOTK as shown in Figure 5.2.

Moreover, SO-CMK includes additional matrix multiplications as a result it runs longer

than CMK. Since the IHOSK involves much more matrix multiplications than both

HOTK and the proposed work of the CMK, it runs almost three times longer than the

proposed approach on a relatively small dataset with 2,000 documents and 2,000

attributes.

We also compare CMK with a kernel based on a similar method of TF-ICF which is

explained in Section 2.3. We compare the results of TF-ICF to CMK with Eq. (2.16)

which indeed a supervised approach as mentioned in Section 2.4. Additionally we also

created an unsupervised version of Meaning kernel, Unsupervised Meaning Kernel

(UMK), by using a single document as our context (the P value in Eq. (2.32)) instead of

IHOSK

SO-CMK

CMK HOTK

0

50

100

Time Units of Algorithms

57

using a class of documents. This introduces an unsupervised behavior into CMK since

our basic unit is not class but instead a single document. The results are shown inFigure

5.3. The CMK has much better performance than both UMK and TF-ICF in almost all

training set percentages except 10%. Starting from training set percentage 10% the

difference between the performance of CMK and the other two algorithms start to

increase.

Figure 5.3The Comparison of the accuracies of TF-ICF, UMK and CMK at different

training set percentages on 20 Newsgroups-Science dataset

According to our experiments, the CMKdemonstrates a notable performance gain on the

IMDB dataset, which can be seen inTable 5.4. The CMKoutperforms our baseline, linear

kernel, in all training set percentages also making a significant difference at training set

percentage 30% based on Students t-Tests results. In training set percentage 30% the

performance of the CMK is 90.54% while the performance of linear kernel is only

85.57%. It is also very promising to see that the CMK is superior to both linear kernel

and our previous algorithms IHOSK [92] and HOTK [93] throughout all training set

percentages.

Table 5.5presents the experiment results on the 20 Newsgroups-Politics dataset. In this

dataset, the CMK’s performance is higher than linear kernel’s in all training set

percentages except 5% and 10%. Furthermore, the CMK is performs better than both

IHOSK and HOTK in almost all training set percentages except 5% and 10%. Only in

training set percentages 5% and 10%, the IHOSK gives better accuracy than the CMK.

0 10 20 30 40 50 60 70 80 90
60

65

70

75

80

85

90

95

100

Training Set Level (%)

A
cc

u
ra

c
y
 (

%
)

Comparison of Accuracies at Different Training Set Levels

TF-ICF

UMK

CMK

58

For 20 Newsgroups-Compdataset, the CMKoutperforms linear kernel in all training set

percentages except 5% as shown in Table 5.6. The CMK yields higher accuracies

compared to linear kernel, IHOSK and HOTK. The differences between CMK and

linear kernel are statistically significant according to Student’s t-test at training levels

10%, 30%, 50%, 70%, 80%, and 90%.

Experiment results on 20 Newsgroups-Religiondataset are presented in Table 5.7. These

results show that the CMK has superiority starting from 30% training set percentage

among all of the other kernels. For instance at training set percentage 30% CMK’s gain

over linear kernel is 8.58%. Also, in training set percentages 30% and 50%, the CMK

shows a significant improvement over linear kernel.

Table 5.8presents the experiment results on Mini-newsgroups dataset. According to

these results the CMK outputs better accuracy than linear kernel at training set

percentages 30%, 50%, 70%, 80% and 90%. But in overall the CMK is not as good as

HOTK on this dataset, which can be explained by the capability of HOTK for capturing

latent semantics between documents by using higher-order term co-occurrences as

explained in Section 2.2. These latent relations may play an important role since the

number of classes is relatively high and the number of documents per class is much

smaller yielding a higher sparsity that can be observed from the term coverage statistics.

Since some of the datasets used in this study [94] are also used in [14], we have the

opportunity to compare our results with HOSVM. For instance at training level 30%, on

20 Newsgroups-Compdataset; 75.38%, 78.71%, 75.97%, and 84.31% accuracies are

gathered by linear kernel, IHSOK, HOTK and CMK as mentioned in above tables and

paragraphs. On the same training level HOSVM achieves 78% accuracy according to

the Fig. 2(d) in [14]. This comparison shows CMK outperforms HOSVM by

approximately 8.28% gain. Actually CMK’s superiority on HOSVM is still valid on

other datasets such as 20 Newsgroups-Religion, 20 Newsgroups-Science and 20

Newsgroups-Politics, too. For instance on 20 Newsgroups-Politics dataset while

HOSVM’ performance is about 91%, CMK reaches 96.53% accuracy, which produces a

gain of 8.95%. Very similar comparison results can be seen at a higher training level

such as 50%.For example the experiment results of 88.94, 92, 94.97, 90.84, 96.71 are

achieved by linear kernel, HOSVM, IHSOK, HOTK and CMK at 20 Newsgroups-

Science dataset at training level 50%; respectively.

59

Table 5.5Accuracy of CMK and other kernels on 20 Newsgroups-Politics dataset with

varying training set size

TS% Linear

IHOSK HOTK CMK Gain Term

Coverage

5
79.01±2.65 82.27±4.60 80.72±1.56 65.80±3.99 -16.72 58.60

10
84.69±1.24 88.61±2.10 84.89±2.15 78.50±6.05 -7.31 75.02

30
92.04±1.06 93.61±1.08 88.31±1.22 95.03±0.70 3.25 96.37

50
93.73±0.57 93.55±3.58 90.29±0.79 96.43±0.58 2.88 99.43

70
94.55±1.21 93.24±3.08 90.15±1.15 95.82±0.62 1.34 99.97

80
94.03±0.91 95.30±1.82 92.50±1.60 96.73±0.87 2.87 100.00

90
94.86±1.26 95.80±2.28 92.46±2.01 96.53±1.57 1.76 100.00

Table 5.6Accuracy of CMK and other kernels on 20 Newsgroups-Compdataset with

varying training set size

TS% Linear

IHOSK HOTK CMK Gain Term

Coverage

5 56.75±4.72 68.12±1.04 60.22±3.00 55.97±5.01 -1.37 48.26

10 65.45±2.77 72.71±0.43 66.70±1.14 70.21±3.88 7.27* 65.19

30 75.38±2.12 78.71±0.04 75.97±1.04 84.31±0.91 11.85* 91.51

50 77.89±1.60 82.18±1.13 78.68±0.71 85.02±0.72 9.15* 98.92

70 79.63±1.59 84.67±2.83 80.97±1.18 85.60±1.16 7.50* 99.83

80 79.00±2.25 85.81±0.54 81.58±1.85 85.78±1.42 8.58* 99.98

90 81.40±2.47 85.96±0.69 81.32±1.46 86.00±2.32 5.65* 100.00

Table 5.7Accuracy of CMK and other kernels on 20 Newsgroups-Religiondataset with

varying training set size

TS% Linear

IHOSK HOTK CMK Gain Term

Coverage

5 74.73±2.47 77.73±2.47 65.33±1.70 58.98±7.21 -21.08 41.80

10 80.98±2.69 81.19±1.92 72.10±1.95 71.39±7.57 -11.84 59.03

30 83.87±0.78 84.85±1.84 83.50±1.58 91.07±1.39 8.58* 88.18

50 88.39±0.93 88.96±2.30 86.19±1.35 93.04±0.64 5.26* 96.16

70 89.68±1.41 90.62±1.18 87.26±0.31 93.47±1.23 4.23 99.37

80 90.70±1.12 91.00±0.20 88.90±0.24 93.37±1.68 2.94 99.8

90 91.65±1.63 91.70±1.73 89.00±2.37 93.80±2.18 2.35 99.99

60

Table 5.8Accuracy of CMK and other kernels on Mini-newsgroups dataset with varying

training set size

TS% Linear

IHOSK HOTK CMK Gain Term

Coverage

5 52.38±5.53 61.29±1.03 49.69±5.64 48.89±2.62 -6.66 34.90

10 59.85±3.88 64.15±0.54 66.24±3.81 59.53±2.49 -0.53 50.08

30 72.84±3.56 75.51±0.31 81.82±2.04 74.24±1.71 1.92 76.16

50 78.87±2.94 79.24±0.31 85.54±1.20 79.65±1.64 0.99 87.65

70 80.05±1.96 79.73±0.45 87.28±1.13 80.23±1.58 0.22 94.27

80 82.63±1.36 83.05±0.58 88.15±1.58 83.53±1.72 1.09 96.22

90 84.65±2.48 85.38±1.28 88.10±2.80 85.64±2.87 1.17 98.55

5.2 Class Weighting Kernel (CWK)

In this study[95], we propose a novel approach for building a semantic smoothing

kernel which makes use of the class-based term weights to improve the performance of

SVM especially for text classification. The proposed approach is called Class

Weighting Kernel (CWK). This class-based weighting basically groups terms based on

their importance for each class. Consequently it smooths the representation of

documents which changes the orthogonality of the vector space model by introducing

class-based dependencies between terms. As a result, on the extreme case, two

documents can be seen as similar even if they do not share any terms but their terms are

similarly weighted for a particular class [95].

5.2.1 Methodology

In our previous studies [92], [93], [94],[97]we take advantage of higher-order paths and

meaning calculations. In those studies we show that the performance improvements

between first-order and higher-order representation of features [92], [93], [97]and the

power of meaning calculations[94]. In this approach we investigate the use of a new

type of semantic smoothing kernel for text classification. The main idea behind Class

Weighting Kernel (CWK) is to take advantage of the class-based term weighting of

terms in the semantic kernel building process by establishing the semantic relations

between terms based on their relative weights for classes. This basically gives more

importance to core words of each class during the transformation phase of SVM from

input space to feature space. Term weighting calculation used in this study[95] is taken

61

from [81] and is motivated by TF-RF [79] and TF-ICF [82][83] as mentioned in Section

2.3. This term-weighting calculation has been applied to feature extraction in previous

works [80][81]. In these studies, a text document is represented by terms and their class-

based weights. A term has a more discriminative power on a class if it has higher weight

for that class. In other words, the more a word occurred in only a specific class the

higher its weight gets and conversely the more a word occurred in all the classes it

weight gets lower. Although, this class-based weighting calculation has been used in

feature extraction domain, to the best of our knowledge, our work is the first to apply this

technique to a kernel function.

The VSM represents a document collection by a term-by-document matrix. In the initial

step of our methodology a document d is represented in the VSM with the following

BOW approach:

 d = [tf(t1,d), tf(t2,d), tf(t3,d), tf(t4,d), tf(t5,d), …, tf(tD,d)] (5.6)

where tf(ti,d) is the frequency of term ti in document d, and D is the size of the dictionary

of the corpus. In above expression  d represents the document d as a TF vector,

respectively. This function however, can be any other mapping from a document to its

VSM representation (e.g., TF-IDF).

To enrich the BOW representation with semantic information, we build the semantic

relatedness matrix S using the class-based term weighting approach. Specifically, the i, j

element of S quantifies the semantic relatedness between terms tiand tj. The class-based

weighting calculations and formulas have been described in detail in the previous

section. We take benefits of calculated weights of terms in the mapping schema of our

kernel function as

TWWS  (5.7)

where W is a class-based term weighting matrix that is mentioned in Section 2.3 and

calculated with Eq. (2.18). W is a term-by-class matrix. In our system S is a semantic

smoothing matrix to transform documents from input space to feature space. Thus, S is a

symmetric term-by-term matrix. Mapping of document d to new feature space is done in

Eq. (5.8).

Sdd)()(  (5.8)

62

Although the feature space defined above can be directly used in many classification

methods; in a text classification case where we have high dimensionality with sparsity, it

will be helpful to define the feature space implicitly via the kernel function. As it is

mentioned in Section 2.1 and Eq. (2.5), the kernel function computes the inner product

between documents p and q in the feature space. For our case, this can be written as:

    T
q

T
p

T

qpqpCWK dSSddddd)()(,),(  (5.9)

where  (dp, dq) is the similarity value between documents dp and dq, S is the class-based

semantic term relation matrix which makes use of the weights of terms according to Eq.

(2.18). In other words, here S is a semantic proximity matrix of terms.

As in [27], for SVM and other kernel-based approaches the information is stored in

Gram matrix or kernel matrix which is given by:

Gp,q=),(qpCWK ddk (5.10)

The Gram matrix or kernel matrix are essentially equivalent. By operating on one of

these matrixes, it is easy to encode the data in a more appropriate way for mining and

learning [27]. Additionally, as it is mentioned in Section 2.1, to be a valid kernel

function, the Gram matrix that is formed from the kernel function must satisfy the

Mercer’s conditions[25]. These conditions are satisfied when the Gram matrix is positive

semi-definite. It has been shown in [107] that the matrix G formed by the kernel function

Eq. (5.9) with the outer matrix product
TSS is indeed a positive semi-definite matrix.

After all calculations we obtainW as a term-by-class matrix which includes weights of

terms in all classes. We observe that these weights reflect the importance of those words

in order to distinguish the classes. Indeed after calculations, terms semantically close to

the theme discussed in the documents of that class, gain the highest weight in the range.

In other words semantically related terms of that class, i.e. “core” words[3], gain

importance while semantically isolated terms, i.e. “general” words, lose their importance.

So terms are ranked based on their importance.

Consequently we argue that S which is based on W performs a similar kind of semantic

smoothing as in Eq. (5.9). The new representation of the documents is richer than the

standard representation with TF-IDF since; supplementary statistical information is

directly calculated from our training corpus and embedded into the kernel function. In

63

other words transformations in Eq. (5.9) smooth the simple term vector representation

using semantic ranking while moving from the original input space to a feature space

through kernel transformation functions)(pd and)(qd for the documents dp and

dq,respectively as in. As it is explicitly mentioned in[106], the presence of S in Eq. (5.9),

changes the orthogonality of the document vectors, as this mapping introduces term

dependencies. Documents can be seen similar even if they do not have any common

terms by eliminating orthogonality.

We also observe that the class-based weighting calculation degrades stop words by

assigning them very small weights similar to the[94]. Let us consider the following two

cases, which are represented in Table 5.9similar to[94]. According to Table 5.9, t1and t2

are occurred in one or more documents of c1, not in remaining classes; c2, c3 and c4 while

t3 and t4are occurred in one or more documents of c3, not in remaining classes; c1, c2 and

c4, respectively. In other words t1and t2 are significant words of the theme discussed in

c1, while t3 and t4 are significant terms of the topic discussed in c3; getting high weight

according to Eq. (2.18); since the number of documents that term w occurs in the entire

corpus that is Nw is inversely proportional to the weight. Also the total frequencies of

t1and t2 in the documents c1 and the frequencies of t3 and t4 in the documents c3 are

directly proportional to the weights of those terms. According to Eq. (2.18), the more a

word occurred in only a specific class the higher it gets a weight and conversely the more

a word occurred in all classes the less it gets a weight. This statement can also be

represented with Table 5.9, since t1and t2 occurred in only c1 and t3 and t4 occurred in

only c3 while t5andt6are occurred in every classes of the corpus. It is highly possible that

these two words, t5 andt6, are in the type of “general” words since they are seen in every

class of the corpus.

Table 5.9Term frequencies on different classes [94]

 c1 c2 c3 c4

t1 1 0 0 0

t2 1 0 0 0

t3 0 0 1 0

t4 0 0 1 0

t5 1 1 1 1

t6 1 1 1 1

64

The algorithm of CWK is as follows:

Module Calculating Class-Based Weights of Words

Input

 Training set

Output

 Weight Matrix W for each word w and class k

Local variables

tfc w,k : total term frequency of word w in the documents of class k

tf w,d : total term frequency of word w in the document d

N : total number of documents in the training set

wN : vector shows the total number of documents in the training set those contain word

w

begin

 for each word w

for each document dicontains word win the training set

 wN = wN + 1//Increment the number of documents contain word w

end for

end for

 for each word w

for each document diin class k

 tfc w,k = tfc w,k + tf w,d //Increment the class frequency of word w

end for

//Calculate the weight of the word w in class k

kwW , = (log(tfc w,k) +1)x(log (N/ wN))

end for

end

Module Training //Building semantic smoothing kernel

Input

 Training set, kwW ,

Output

 qpG , : Gram matrix shows the kernel value between documents dpand dq

65

Local variables

jiS , : Semantic smoothing matrix shows the relatedness between words i and j

begin

jiS , = kwW , (kwW ,)
T

//Building semantic smoothing matrix

for each document dp in the training set

 for each document dqin the training set

//Calculating kernel value between documents dp and dq

qpG , =dp S S
T
 dq

end for

end for

end

5.2.2 Experimental Results and Discussion

CWK outperforms our baseline kernel at all training set percentages also producing a

statistically significant difference based on Students t-Test results on 20 Newsgroups-

Science dataset. This can be observed from Table 5.10. The performance gain is

specifically obvious at training set percentages 5%, 10% and 30%. For instance at

training set percentages 5%, 10% and 30% the accuracies of CWK are 84.31%, 90.94%

and 95.89% while the accuracies of linear kernel are 71.44%, 77.97% and 86.73;

respectively. CWK also has better performance than our previous semantic kernels

IHOSK, and HOTK at all training set percentages as shown in Table 5.10. Also it should

be noted that, CWK is superior to our recent study CMK at training set percentages 5%,

10%, 30%, 50% and 70%. There is another point which deserves attention is that by

using only 5% of the training set the performance gain of CWK over linear kernel is

18.02%, which is of great importance since usually it is difficult and expensive to obtain

labeled data in real world applications. Additionally according to Table 5.10we can

conclude that the performance differences of CWK while passing from one training set

percentage to another are compatible with the term coverage ratios at those training set

percentages. For instance at training set percentage 10%, term coverage jumps to 82.28%

from its previous value at 5% that is 63.99%. Similar behavior can be observed at

performance of CWK while going through 5% training set percentage to 10% training

set percentage; where it generates the accuracies 84.31% and 90.94%; respectively. This

means an accuracy change of 6.63% between 5% and 10% training set percentages.

66

Additional to CWK, we also built a second-order version of CWK with the name

Second-Order Class Weighting Kernel (SO-CWK) with the following equation:

SSdd)()(  (5.11)

        T
q

T

p

T

qpqpCWKSO dSSSSddddd)()(,   (5.12)

where)(pd and)(qd are transformation functions of kernel from input space into

feature space for the documents dpand dq,respectively.

We also recorded and compared the total kernel computation time of our previous

semantic kernels IHOSK and HOTK and CWK. All the experiments presented here are

carried on our experiment framework, Turkuaz, which directly uses WEKA [85], [89] on

a computer with two Intel(R) Xeon(R) CPUs at 2.66 GHz with 64 GB of memory. Our

semantic kernel’s computation time on each dataset is recorded in terms of seconds and

they are proportionally converted into time units. According to this conversion, for

instance on 20 Newsgroups-Science dataset; IHOSK [92], SO-CWK, HOTK [93] and

CWK estimates the following time units in order; 100, 60, 56 and 40, respectively which

is shown in Figure 5.4.

In IHOSK [92] there is an iterative similarity calculation between documents and terms,

which completes totally in 4 steps including the matrix calculations shown in Eq. (4.10)

and (4.11). As discussed in [18], producing the similarity matrix of terms SCt (n×n) has

overall complexity O(tn
3
) where t is the number of iterations and n is the number of

training terms. Similarly, calculating the similarity matrix of documents SRt (m×m) has

O(tm
3
) where m is the number of training documents. Since both matrices need to be

computed iteratively the overall complexity is bounded by the matrix multiplications of

term and document similarity matrices. In our experiments only two iterations are

performed (t=2). On the other hand, HOTK[93]has O(n
3
) complexity where n is the

number of terms as noted in Eq. (4.16). Although both IHOSK and HOTK is bounded

by the complexity of matrix multiplications, the IHOSK involves much more matrix

multiplications due to the iterative computation of both term and document similarity

matrices and consequently runs much longer than HOTK in practice.

67

The CWK is also bounded by the complexity of matrix multiplication. However, the

matrix is much smaller; (n×c), where n is the number of term and c is the number of

classes. In addition, the generation of this term by class matrix is also very fast with

O(logn) complexity. These differences make CWK faster than HOTK as can be seen in

Figure 5.4. On the other hand the, SO-CWK includes an additional matrix

multiplication of a term by term matrix, therefore it runs slightly longer than HOTK as

shown in Figure 5.4. Since the complexity of IHOSK is higher than both HOTK and the

proposed work of the CWK, it is not practical to apply IHOSK on large datasets.

Figure 5.4The total kernel computation time units of IHOSK, SO-CWK, HOTK and

CWK on 20 Newsgroups-Science dataset at 30% training set percentage

We also compare CWK with TF-ICF on 20 Newsgroups-Science dataset. The

formulation of TF-ICF is given in Eq. (2.16). TF-ICF is a supervised approach as

mentioned in Section 2.3. The results are shown in Figure 5.5. According to Figure 5.5,

CWK has much better performance than TF-ICF in all training set percentages.

Table 5.10 Accuracy of CWK and other kernels on 20 Newsgroups-Science dataset with

varying training set size

TS

%

Linear

IHOSK HOTK CMK CWK Gain Term

Coverage

5 71.44±4.30 84.15±2.87 76.63±2.67 64.51±4.86 84.31±2.77 18.02* 63.99

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 90.94±1.72 16.63* 82.28

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 95.89±0.51 10.56* 98.01

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 96.82±0.3 8.86* 99.90

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 97.08±0.68 7.18* 99.99

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 97.35±0.56 6.59* 100.00

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 98.20±0.71 7.44* 100.00

IHOSK

SO-CWK HOTK

CWK

0

20

40

60

80

100

68

Table 5.11Accuracy of CWK and other kernels on IMDB dataset with varying training

set size

TS% Linear

IHOSK

HOTK CWK Gain Term

Coverage

5 76.85±1.31 76.98±1.14 74.21±0.24 77.62±2.45 1.00 48.00

10 82.99±1.76 82.55±2.32 82.23±0.42 84.32±1.19 1.60 61.51

30 85.57±1.65 87.16±1.64 85.63±1.69 89.66±0.53 4.78 86.35

50 88.46±1.89 89.40±1.91 87.20±0.33 91.48±0.69 3.41 95.91

70 89.93±1.18 91.31±0.87 90.41±0.55 92.75±1.05 3.14 99.17

80 90.65±1.09 92.38±1.43 91.37±0.98 92.73±1.09 2.29 99.71

90 91.75±1.14 92.63±1.19 91.59±0.27 93.60±1.52 2.02 99.98

Figure 5.5The Comparison of the accuracies of TF-ICF and CWK at different training

set percentages on 20 Newsgroups-Science dataset

According to our experiments, CWK demonstrates a notable performance gain on IMDB

dataset, which can be seen in Table 5.11. At 30% training set level, the performance of

CWK is 89.66% while the performance of linear kernel is only 85.57%. It is also very

promising to see that CWK is superior to both linear kernel and our previous algorithms

IHOSK [92] and HOTK [93] throughout all training set percentages.

Table 5.12denotes experiment results on 20 Newsgroups-Politics dataset. In this dataset,

again CWK’s performance is better than linear kernel’s at all training set percentages.

Similarly, CWK performs better than both IHOSK and HOTK at all training set

percentages. Additionally, CWK statistically significantly outperforms our baseline

kernel at 5% training set level based on Students t-Tests.

69

Table 5.12Accuracy of CWK and other kernels on 20 Newsgroups-Politics dataset with

varying training set size

TS% Linear IHOSK HOTK CWK Gain Term

Coverage

5 79.01±2.65 82.27±4.60 80.72±1.56 83.49±4.16 5.67* 58.60

10 84.69±1.24 88.61±2.10 84.89±2.15 88.73±2.29 4.77 75.02

30 92.04±1.06 93.61±1.08 88.31±1.22 94.90±0.97 3.11 96.37

50 93.73±0.57 93.55±3.58 90.29±0.79 96.15±0.80 2.58 99.43

70 94.55±1.21 93.24±3.08 90.15±1.15 95.87±0.90 1.40 99.97

80 94.03±0.91 95.30±1.82 92.50±1.60 96.80±1.09 2.95 100.00

90 94.86±1.26 95.80±2.28 92.46±2.01 96.27±1.97 1.49 100.00

For 20 Newsgroups-Compdataset, CWK significantly outperforms linear kernel at all

training set percentages similar to the situation in 20 Newsgroups-Science dataset as

shown in Table 5.13. The highest gain of CWK over linear kernel on this dataset is at

5% training set level with 18.52% gain. Overall, the gains of CWK over linear kernel

are usually much larger in 20 Newsgroups-Compdataset compare to the 20

Newsgroups-Politics. This may due to the larger number of classes in 20 Newsgroups-

Compdataset.

Experiment results on 20 Newsgroups-Religiondataset are presented in Table 5.14.

These results show that CWK has superiority over other kernels starting from 10%

training set level. For instance at training set percentage 30% CWK’s gain over linear

kernel is 7.55%. Also in training set percentage 30% CWK shows a significant

improvement over linear kernel.

Table 5.13Accuracy of CWK and other kernels on 20 Newsgroups-Compdataset with

varying training set size

TS% Linear IHOSK HOTK CWK Gain Term

Coverage

5 56.75±4.72 68.12±1.04 60.22±3.00 67.26±2.53 18.52* 48.26

10 65.45±2.77 72.71±0.43 66.70±1.14 76.60±1.53 17.04* 65.19

30 75.38±2.12 78.71±0.04 75.97±1.04 84.67±0.58 12.32* 91.51

50 77.89±1.60 82.18±1.13 78.68±0.71 87.09±0.77 11.81* 98.92

70 79.63±1.59 84.67±2.83 80.97±1.18 87.63±1.53 10.05* 99.83

80 79.00±2.25 85.81±0.54 81.58±1.85 88.10±0.96 11.52* 99.98

90 81.40±2.47 85.96±0.69 81.32±1.46 87.88±2.56 7.96* 100.00

70

Table 5.15presents the experiment results on Mini-newsgroups dataset. According to

these results CWK outputs better accuracy results than linear kernel at all training set

percentages. Furthermore, it should be noted that at 5% training set level, the gain of

CWK over linear kernel is 21.55% which is a very important advantage on the

classification accuracy given the very limited labeled information. On the other hand, at

training percentages 50%, 70%, 80% and 90% HOTK generates higher accuracy than

CWK. This can be explained with the capability of HOTK to capture latent relations

between terms with its higher-order approach[93].

Table 5.14Accuracy of CWK and other kernels on 20 Newsgroups-Religiondataset with

varying training set size

TS% Linear IHOSK HOTK CWK Gain Term

Coverage

5 74.73±2.47 77.73±2.47 65.33±1.70 75.32±2.87 0.7

9

41.80

10 80.98±2.69 81.19±1.92 72.10±1.95 82.63±1.97 2.0

4

59.03

30 83.87±0.78 84.85±1.84 83.50±1.58 90.20±1.08 7.55* 88.18

50 88.39±0.93 88.96±2.30 86.19±1.35 92.41±0.44 4.5

5

96.16

70 89.68±1.41 90.62±1.18 87.26±0.31 92.62±0.99 3.2

8

99.37

80 90.70±1.12 91.00±0.20 88.90±0.24 93.17±1.21 2.7

2

99.80

90 91.65±1.63 91.70±1.73 89.00±2.37 93.20±1.66 1.6

9

99.99

Since some of the datasets used in this study [95] are also used in other studies such

as[14], [108] we have the opportunity to compare our results with them. The first

algorithm we compare our results is Higher-Order SVM (HOSVM)[14]. For instance at

30% training set level of 20 Newsgroups-Compdataset; 75.38%, 78.71%, 75.97% and

84.67% accuracies are obtained by linear kernel, IHSOK, HOTK and CWK respectively

as mentioned above. On the same training set level, HOSVM achieves 78% accuracy

according to the Figure. 2(d) in[14].This comparison shows CWK outperforms

HOSVM by approximately 8.55% gain. Actually CWK’s superiority on HOSVM can

also be seen on other datasets such as 20 Newsgroups-Religion, 20 Newsgroups-

Science and 20 Newsgroups-Politics. For instance at 30% training set level on 20

Newsgroups-Politics dataset while HOSVM’s performance is about 91%, where CWK

71

reaches 94.9% accuracy, which corresponds to 4.29% gain. Very similar picture can be

seen at a higher training set level such as 50%. For example, the accuracy values of

88.94%, 92%, 94.97%, 90.84%, 96.82% are achieved by linear kernel, HOSVM,

IHSOK, HOTK and CWK respectively on 20 Newsgroups-Science dataset at this level.

Moreover, we also have the chance to compare our results with the study in [108].

Harish et al. proposes a text classification algorithm in [108] which uses B-Tree and

preserves the term sequence with a data structure called Status Matrix. One of the

datasets they use is Mini-newsgroups dataset. They do not apply any attribute selection

technique such as IG in their preprocessing phase. For instance at training setpercentage

50% on Mini-newsgroups dataset; 78.87%, 79.24%, 85.54% and 84.44% accuracies are

achieved by linear kernel, IHSOK, HOTK and CWK respectively as

Table 5.15Accuracy of CWK and other kernels on Mini-newsgroups dataset with

varying training set size

TS% Linear IHOSK HOTK CWK Gain Term

Coverage

5 52.38±5.53 61.29±1.03 49.69±5.64 63.67±3.31 21.55* 34.90

10 59.85±3.88 64.15±0.54 66.24±3.81 71.66±1.22 19.73* 50.08

30 72.84±3.56 75.51±0.31 81.82±2.04 81.93±1.13 12.48* 76.16

50 78.87±2.94 79.24±0.31 85.54±1.20 84.44±1.14 7.06* 87.65

70 80.05±1.96 79.73±0.45 87.28±1.13 84.85±1.56 6.00* 94.27

80 82.63±1.36 83.05±0.58 88.15±1.58 86.43±1.16 4.60 96.22

90 84.65±2.48 85.38±1.28 88.10±2.80 85.05±3.93 0.47 98.55

shown in Table 5.15. On the same training set percentage, the maximum accuracy

gathered by the study in [108] is 68.95. According to this comparison we observe that

CWK outperforms the algorithm in [108] by 15.49%.

72

CHAPTER 6

INSTANCE LABELING IN SEMI-SUPERVISED LEARNING

USINGMEANING VALUES OF TERMS

In supervised learning systems, only labeled samples are used for building a

classification model which is then used to predict the class memberships of the

unlabeled samples. However, obtaining labeled data is very expensive, time consuming

and difficult in real-life practical situations as labeling a data set requires the efforts of

human experts. On the other side, unlabeled data are often plentiful which makes it

relatively inexpensive and easier to obtain. Semi-Supervised Learning (SSL) methods

strive to utilize this abundant source of unlabeled instances to improve the learning

capacity of the classifier especially when amount of labeled instances are limited. Since

SSL techniques reach higher accuracy and require less human effort, they attract a

substantial amount of attention both in practice applications and theoretical research.

Although the use of unlabeled data compromises a new opportunity to have a better

classification, how to use them to improve prediction is still an open research issue. In

this approach, we offer a new semi-supervised algorithm, which utilizes a new method

to predict the class labels of unlabeled examples in a corpus and incorporate them into

the training set to build a better classifier. The approach presented here depends on a

73

meaning measure, which calculates the meaningfulness of the terms in the context of

classes. The meaning measure is based on the Helmholtz principle from Gestalt theory

and applied to several text-mining applications such as document summarization and

feature extraction. However, to the best of our knowledge, ours is the first study to use

meaning measure in a semi-supervised setting to build a semantic kernel for Support

Vector Machines (SVM). We evaluated the proposed approach by conducting a large

number of experiments on well-known textual datasets and present results with respect

to different experimental conditions. We compare our results with standard linear kernel

which is the traditional state of the art algorithm in SVM for text classification, semi-

supervised form of linear kernel and a supervised classification algorithm which also

uses meaning measure, from our previous study. Our results show that labeling

unlabeled instances based on meaning values of terms is valuable, and increase the

classification accuracy significantly.

6.1Instance Labeling Based on Meaning (ILBOM)

6.1.1 Methodology

ILBOM is mainly composed of five independent modules including preprocessing,

meaning calculation, labeling, kernel evaluation and classification. The architecture of

ILBOM System is shown in Figure 6.1.

6.1.1.1Meaning Calculation

We use Eq. (8) in order to calculate the meaning values of the terms in this labeled set

which produces Mtrain class-based term meaning matrix is made up of t rows (terms) and

j columns (classes). The Mlabeled matrix shows the meaningfulness of the terms in the

labeled set for each class. If a word occurs only once in a class then its meaning value

for that class is zero according to Eq. (2.32). If a word does not occur at all in a class, it

gets minus infinity based on Eq. (2.32) as a meaning value for that class. In order to

make calculations more practical we assign the next smallest value to that word

according to the range of meaning values we get for all the words in our labeled

documents. After all calculations we get Mlabeled as a term-by-class matrix which

includes the meaning values of terms in all classes of the labeled documents. We

observe that these meaning values are high for those words that allow us to distinguish

74

between classes. Indeed terms semantically close to the theme discussed in the class

gain the highest meaning values. In other words semantically related terms of that class,

i.e. “core” words as mentioned in [3], gain importance while semantically isolated

terms, i.e. “general” words lose their importance. Also as it is mentioned in [99] and

utilized in [94], meaning calculation automatically filters stop words by assigning them

very small amounts of meaning values.

75

Our approach, ILBOM, utilizes both labeled and unlabeled data. In order to incorporate

unlabeled examples into the classifier model in SVM, we calculate the total meaning

value of an unlabeled document using Eq. (6.1):





t

n
dnnjlabeledji i

tfwwMcdTM
1

,)(),((6.1)

where)(njlabeled wM is the meaning value of the termwn for the class cjas mentionedabove,

idntfw , is the number of occurrence of the term wn in the document di and),(ji cdTM is the

total meaning value of the document difor the class cj.

6.1.1.2 Labeling

In),(ji cdTM matrix, dik = [di1,…,dik] is the document vector showing the document di’s

total meaning values from the aspects of all the classes, respectively. We simply select

the column (class number) with the greatest value in dik = [di1,…,dik] document vector

and label this document with this class number. After completing this labeling-step, all

the unlabeled instances are assigned labels and the updated version of the labeled

instances are found as follows:

L=Lo+Lp (6.2)

where Lois the original labeled instances, Lp is the previously unlabeled instances with

their current predicted labels and L is the total of Loand Lp; respectively.

6.1.1.3 Kernel Evaluation

In this step we simply run the CMK which is proposed in our previous study [94] on L.

In CMK, we build the class-based term meaning matrix M using meaning calculations

given in Eq. (2.32). The M matrix shows the meaningfulness of the terms in each class.

Based on M we calculate S matrix in order to reveal class based semantic relations

between terms. Specifically, the i, j element of S quantifies the semantic relatedness

between terms ti and tj.

TMMS  (6.3)

The S is a semantic smoothing matrix to transform documents from input space to

feature space. Thus, S is a symmetric term-by-term matrix. Mathematically, the kernel

value between two documents is given as

76

TT
ILBOM dSSdddk 2121),( (6.4)

where kILBOM (d1, d2) is the similarity value between documents d1 and d2, S is the

semantic smoothing matrix.

As mentioned in[106], the presence of S in Eq. (6.4) changes the orthogonality of the

vector space model, as this mapping introduces term dependence. Documents can be

seen as similar even if they do not share any terms by eliminating orthogonality.

6.1.1.4 Classification

We integrated our kernel function into the implementation of the SVM algorithm in

WEKA[85]. In other words, we built a kernel function that can be directly used with

Platt’s Sequential Minimal Optimization (SMO) classifier [86]. In the classification-step

all the test instances’ labels are predicted and the classification error rate is calculated.

6.1.2Experimental Results and Discussion

In order to compare the results of ILBOM we use two baseline algorithms. First of them

is called SSL-Linear. Please note that linear kernel is the traditional state of the art

algorithm in SVM for text classification [19], [20]. SSL-Linear first classifies unlabeled

examples by using linear kernel that is trained by only the labeled examples. Then, like

ILBOM it merges the labeled examples and unlabeled examples with their pre-labels

and builds the trainer by using standard linear kernel. After that it again attempts to

classify unlabeled examples via the last built model and compares the labels of an

instance. If an instance is classified into a different class by the second classifier then its

label is updated since the final model is more comprehensive than the first model and is

expected to produce predictions with higher classification confidence. The self-training

process ends when either there is no change in the predictions or it reached 100

iterations. We also compare the results of ILBOM to those of CMK, which is the second

baseline.

77

 …

 Test Examples

Figure6.1 The architecture of ILBOM system

ILBOM outperforms all of the baseline kernels we used (i.e., SSL-Linear and CMK)

which can be observed from Table 6.1, Table 6.2, Table 6.3 and Table 6.4. The

performance gain is specifically obvious at smaller labeled set percentages between 1%

labeled and 15% labeled set percentage. For instance at labeled set percentages 1%, 2%

, 4% , 5% and 7% the accuracies of ILBOM are 59.7%, 64.15%, 79.78%, 86.03%

and89.6% while the accuracies of SSL-Linear are 50.03%, 57.1%, 66.45, 67.95% and

71.7%; respectively. ILBOM also has better performance than our previous supervised

semantic kernel CMK at most of the labeled set percentages expect labeled set

percentages 30% and 50% as shown in Table 6.1, Table 6.2, Table 6.3 and Table 6.4.

The highest gain of ILBOM over SSL-Linear kernel on this dataset is at 5% labeled set

percentage which is 26.61% that is of great importance since usually it is difficult and

expensive to obtain labeled data in real world applications. Also it should be noted that,

there are performance gains of ILBOM over linear kernel except labeled set percentage

3%.

Lp:Predicted

Labels

Lp:Predicted

Labels

Assign Label to

Documents

L=Lo+Lp

ILBOM

Classifier

Text Document

Text Document

Preprocessing Calculating Meaning

Values

Labeling Kernel

Evaluation

Classification

Build ILBOM

on L

Lo:Labeled Data

LU:Unlabeled Data

Calculate Weighted

Meaning Value for

each Class

78

Table 6.1, Table 6.2, Table 6.3 and Table 6.4also contain the experiment results on the

20 Newsgroups-Politics dataset. In this dataset, ILBOM’s performance is higher than

the baseline kernel’s in all labeled set percentages except 1% and 50%. Furthermore,

ILBOM performs better than both CMK and linear kernel in almost all labeled set

percentages except 50%. Only in labeled set percentages 50%, CMK gives better

accuracy than ILBOM, but ILBOM still remains better than linear at this labeled set

percentage. According to our experiments, ILBOM demonstrates a notable

performance gain on the IMDB dataset, which can be seen in Table 6.1, Table 6.2,

Table 6.3 and Table 6.4. ILBOM outperforms our baseline, SSL-Linear kernel, in all

labeled set percentages also making a significant difference based on Students t-Tests.

Table 6.1, Table 6.2, Table 6.3 and Table 6.4 also present the experiment results on

Mini-newsgroups dataset. According to these results ILBOM outputs better accuracy

than SSL-Linear kernel at all labeled setpercentages except 2% and 50%. But in overall,

ILBOM is not as good as supervised kernels (linear kernel and CMK) on this dataset

especially between the labeled set percentages 1% and 5%. In other words,

interestingly, SSL algorithms (i.e. ILBOM and SSL-Linear) do not benefit from the

unlabeled examples on Mini-newsgroups dataset at labeled set percentages under 10%.

Because the performance of semi-supervised algorithms (ILBOM and SSL-Linear) at

those labeled percentages is less than the performance of linear kernel, which is a

supervised algorithm and do not utilize the unlabeled instances. One possible

explanation is that ILBOM suffers from capturing enough latent semantics between

documents and terms in meaning calculations at low labeled percentages. This may due

to the relatively smaller amount of labeled instances per class in this dataset. For

instance there are 500 instances per class in 20-newsgroups datasets such as 20

Newsgroups-Science and 1000 instances per class in IMDB but there are only 100

instances per class in Mini-newsgroups. Therefore this yields more misclassified

unlabeled examples before building the model and those mislabeled examples degrade

the classification performance. Those latent relations may play an important role since

the number of classes is relatively high and the number of documents per class is much

smaller yielding a higher sparsity.

79

Table 6.1Accuracy of ILBOM and other kernels on 20 Newsgroups-Science dataset

with varying training set size

Labeled

%

Unlabeled

%

Test

%

Linear Baseline-1:

SSL-

Linear

Baseline-2:

CMK

ILBOM Gain

1 79 20 51.80±5.33 50.03±5.29 39.42±6.78 59.70±21.63 19.33*

2 78 20 59.10±5.49 57.10±6.01 50.30±6.00 64.15±15.2 12.35*

3 77 20 66.03±3.61 64.83±3.64 53.40±7.78 63.93±12.25 -1.39

4 76 20 69.05±3.70 66.45±3.59 60.50±7.17 79.78±5.62 20.06*

5 75 20 70.10±4.34 67.95±4.64 70.03±5.07 86.03±3.77 26.61*

7 73 20 72.72±4.47 71.70±3.59 78.53±5.07 89.60±3.01 24.97*

10 70 20 76.68±2.07 74.58±3.30 87.48±4.81 92.55±1.23 24.09*

15 65 20 83.53±2.68 80.53±2.79 89.95±1.71 94.38±0.91 17.20*

30 50 20 86.28±2.27 83.70±1.97 95.28±0.95 94.98±0.78 13.48*

Table 6.2Accuracy of ILBOM and other kernels on 20 Newsgroups- Politics dataset

with varying training set size

Labeled

%

Unlabeled

%

Test

%

Linear Baseline-1:

SSL-

Linear

Baseline-2:

CMK

ILBOM Gain

1 79 20 52.60±5.69 51.33±6.18 38.60±2.26 52.63±7.76 2.53

2 78 20 64.60±6.34 62.20±5.80 47.97±4.64 82.30±7.78 32.32*

3 77 20 69.60±5.28 68.97±5.89 64.60±10.43 86.37±5.43 25.23*

4 76 20 69.97±5.68 69.07±7.29 68.57±12.7 88.37±5.05 27.94*

5 75 20 73.23±3.92 72.23±3.29 78.03±4.46 88.70±2.8 22.80*

7 73 20 78.33±5.30 76.87±4.85 80.03±5.24 92.23±2.26 19.98*

10 70 20 82.00±2.38 80.77±1.60 87.13±2.13 93.40±1.28 15.64*

15 65 20 84.67±4.92 83.93±4.88 91.50±1.69 94.63±1.62 12.75*

30 50 20 90.07±1.91 87.50±2.64 94.43±1.05 95.33±0.82 8.95*

80

Table 6.3Accuracy of ILBOM and other kernels on IMDB dataset with varying training

set size

Labeled

%

Unlabeled

%

Test

%

Linear Baseline-1:

SSL-

Linear

Baseline-2:

CMK

ILBOM Gain

1 79 20 65.75±7.79 65.60±8.37 61.33±6.4 70.43±15.32 7.36*

2 78 20 69.30±3.28 70.13±2.82 67.97±6.57 82.88±6.52 18.18*

3 77 20 72.80±3.28 71.15±3.83 74.25±3.91 79.25±6.78 11.38*

4 76 20 76.28±2.27 75.70±2.92 77.03±3.57 80.08±6.56 5.79*

5 75 20 77.03±2.55 75.88±2.78 80.33±3.79 82.68±4.99 8.96*

7 73 20 79.45±1.76 78.53±2.49 82.38±1.88 86.33±1.84 9.93*

10 70 20 79.70±2.86 78.83±3.28 84.65±1.94 87.08±1.99 10.47*

15 65 20 81.72±2.47 80.35±1.42 86.98±1.57 88.70±2.18 10.39*

30 50 20 85.80±1.37 84.78±1.29 90.88±1.28 91.40±0.76 7.81*

Table 6.4Accuracy of ILBOM and other kernels on Mini-Newsgroupsdataset with

varying training set size

Labeled

%

Unlabeled

%

Test

%

Linear Baseline-1:

SSL-

Linear

Baseline-2:

CMK

ILBOM Gain

1 79 20 36.70±4.24 29.85±4.04 19.23±2.59 32.45±8.83 8.71*

2 78 20 38.42±5.47 30.58±4.61 18.43±2.48 29.23±5.45 -4.41

3 77 20 46.33±4.32 38.23±4.71 26.63±3.43 41.90±4.89 9.60*

4 76 20 46.70±8.34 38.78±7.55 33.48±4.19 45.63±3.51 17.66*

5 75 20 50.00±5.49 40.85±5.63 35.78±3.15 49.75±4.17 21.79*

7 73 20 55.15±4.72 47.70±5.62 47.23±3.18 59.75±3.88 25.26*

10 70 20 57.03±2.79 47.98±3.37 53.65±3.27 64.03±2.16 33.45*

15 65 20 62.48±4.28 55.48±3.48 61.83±3.24 67.65±2.85 21.94*

30 50 20 69.55±4.50 63.60±4.30 70.68±3.38 72.88±2.4
14.59*

81

CHAPTER 7

RESULTS AND DISCUSSION

It has been shown that higher-order co-occurrence relations between documents and

terms catch “latent semantics” and result higher accuracies in text classification area

[14], [15], [18] and [74]. Motivated by these studies, we propose several corpus-based

semantic kernels such as Higher-Order Semantic Kernel (HOSK), Iterative Higher-

Order Semantic Kernel (IHOSK) and Higher-Order Term Kernel (HOTK) for SVM. In

these studies, we extend the traditional linear kernel (i.e. a dot product between

document vectors) for text classification by embedding higher-order relations between

terms and documents into the kernel. We show significant improvements on

classification performance over linear kernelby taking advantage of higher-order

relations between terms and documents. For instance, the HOSK is based on higher-

order relations between the documents. The IHOSK is similar to the HOSK since they

both propose a semantic kernel for SVM by using higher-order relations. However,

IHOSK makes use of the higher-order paths between both the documents and the terms

iteratively. Therefore, although, the performance of IHOSK is superior, its complexity

is significantly higher than other higher-order kernels. A simplified model, the HOTK,

uses higher-order paths between terms.Experiment results show that our higher-order

kernels outperform the linear kernel in most of the test cases we tried on several datasets

under different training set size conditions. Our results show the usefulness of HOSK,

IHOSK and HOTK as semantic kernels for SVM in text classification. As future work,

we want to analyze the improved performance of HOSK, IHOSK and HOTK.

Especially, we would like to shed light into if and how our approaches implicitly

capture semantic information such as synonyms and word sense

82

disambiguation when calculating similarity between documents. Additionally, we plan

to get more observations about under what type of conditions HOSK, IHOSK and

HOTK perform better than other algorithms.

The other suggested approaches are based on class-based term values. One of them is

based on a meaning measure, which we name CMK that calculates the meaningfulness

of the terms in the context of classes. Inspiredby the advantages of CMK, we build a

semi-supervised algorithm, called ILBOM. The suggested approaches smooth the terms

of a document in BOW representation by class-based meaning values of terms. This

actually, increases the significance of important or in other words meaningful terms for

each class while reducing the importance of general terms which are not useful for

discriminating the classes. The meaning values of terms are calculated according to the

Helmholtz principle from Gestalt theory in the context of classes.Gestalt theory points

out that meaningful features and interesting events appears in large deviations from

randomness. The meaning calculations attempt to define meaningfulness of terms in

text by using the human perceptual model of the Helmholtz principle from Gestalt

Theory. In the context of text mining, the textual data consist of natural structures in the

form of sentences, paragraphs, documents, topics and in our case classes of documents.

In our semantic kernel setting, we compute meaning values of terms, obtained using the

Helmholtz principle in the context of classes where these terms appear. We use these

meaning values to smoothen document term vectors. As a result our approach can be

considered as a supervised semantic smoothing kernel which makes use of the class

information. This is one of the important novelties of our approach since the previous

studies of semantic smoothing kernels does not incorporate class specific information.

Our experimental results show the promise of the CMK as a semantic smoothing kernel

for SVM in the text classification domain. The CMK performs better than linear kernel

in most of our experiments. The CMK also outperforms other corpus-based semantic

kernels such as IHOSK [92] and HOTK [93], in most of the datasets. Furthermore, the

CMK forms a foundation that is open to several improvements. For instance, the CMK

can easily be combined with other semantic kernels which smooth the document term

vectors using term to term semantic relations, such as the ones using WordNet or

Wikipedia.

In our semantic semi-supervised approach, ILBOM, we use these meaning values to

smoothen the document term vectors. The main novelty of our approach is to propose a

83

non-iterative yet effective way of assigning labels to unlabeled instances and augment

the training set with these in order to build a better performing model using the CMK

which is recently proposed in our previous study. It can be considered as a semi-

supervised algorithm which is inspired by CMK. Our experimental results show the

promise of the ILBOM as a semi-supervised method for SVM in the text classification

domain. ILBOM performs better than linear kernel which is commonly used state-of-the

art kernel in the literature. We also usetwo baseline algorithms, namely SSL-Linear and

CMK, in order to compare the results of ILBOM. According to our experimental results

ILBOM outperforms semi-supervised form of linear kernel (SSL-Linear) in most of our

experiments. The ILBOM also outperforms the supervised CMK, in most of the

datasets. In other words, ILBOM achieves higher classification accuracy by adding

unlabeled data into the same amount of labeled data CMK uses. This exciting and

convincing result shows that we succeed in building a semi-supervised approach that

can benefit from unlabeled data. As future work, we plan to build the self-trained form

of our model and analyze the performance differences especially at lower labeled set

percentages.

Table 7.1 Accuracy of our semantic kernels and linear kernel on 20 Newsgroups-

Science dataset with varying training set size

TS% Linear

IHOSK HOTK CMK CWK Term

Coverage

5 71.44±4.30 84.15±2.87 76.63±2.67 64.51±4.86 84.31±2.77 63.99

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 90.94±1.72 82.28

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 95.89±0.51 98.01

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 96.82±0.3 99.90

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 97.08±0.68 99.99

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 97.35±0.56 100.00

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 98.20±0.71 100.00

We also introduce a new semantic kernel for SVM called Class Weighting Kernel

(CWK). CWK is based on weighting the values of terms in the context of classes

according to [80] and [81]. CWK smooths the terms of a document in bag-of-words

(BOW) representation by making use of the terms’ discriminating power for each class

in the training set. This in turn increases the importance of significant or in other words,

84

Table 7.2 Accuracy of our semi-supervised semantic kernel and the other kernels on 20

Newsgroups-Science dataset with varying training set size

Labeled

%

Unlabeled

%

Test

%

Linear Baseline-

1:

SSL-

Linear

Baseline-

2:

CMK

ILBOM Gain

1 79 20 51.80±5.33 50.03±5.29 39.42±6.78 59.70±21.63 19.33*

2 78 20 59.10±5.49 57.10±6.01 50.30±6.00 64.15±15.2 12.35*

3 77 20 66.03±3.61 64.83±3.64 53.40±7.78 63.93±12.25 -1.39

4 76 20 69.05±3.70 66.45±3.59 60.50±7.17 79.78±5.62 20.06*

5 75 20 70.10±4.34 67.95±4.64 70.03±5.07 86.03±3.77 26.61*

7 73 20 72.72±4.47 71.70±3.59 78.53±5.07 89.60±3.01 24.97*

10 70 20 76.68±2.07 74.58±3.30 87.48±4.81 92.55±1.23 24.09*

15 65 20 83.53±2.68 80.53±2.79 89.95±1.71 94.38±0.91 17.20*

30 50 20 86.28±2.27 83.70±1.97 95.28±0.95 94.98±0.78 13.48*

core terms for each class while reducing the importance of general terms that exist in all

classes. Since this method is used in the transformation phase of a kernel function (from

input space into a feature space), it reduces the effects of the several disadvantages of

the BOW representation which is discussed in Section 1. We demonstrate that CWK

considerably increase the accuracy of SVM compare to the linear kernel by assigning

more weight to class specific terms which can be synonymous or very closely related in

the context of a class. In other words, CWK uses a class-weighting based semantic

smoothing matrix during the transformation from the original space into the feature

space of the kernel function. This semantic smoothing mechanism map the similar

documents to nearby positions in the feature space of SVM even if they are written

using different but semantically closer sets of terms in the context of classes. In our

semantic kernel setting, the document term vectors are smoothed based on weights of

terms in the context of classes. As a result it can be considered as a supervised semantic

kernel which directly makes use of class information. Our experimental results show the

promise of CWK as a semantic kernel for SVM in the text classification domain. CWK

performs better than linear kernel. The CWK also demonstrates better accuracies than

other corpus-based semantic kernels such as IHOSK [92] and HOTK [93], in most of

the datasets we used. According to our experimental results, CWK outperforms our

85

baseline kernel at all training set percentages also making a significant difference based

on Students t-Tests results on both 20 Newsgroups-Science and 20 Newsgroups-

Compdatasets. Furthermore CWK gives higher accuracies than our baseline linear

kernel at all of the training set percentages for all of the datasets we used in our

experiments. Additionally, on 20 Newsgroups-Science dataset by using only 5% of the

training set, the performance gain of CWK over linear kernel is 18.02%, which is of

great importance since usually it is difficult and expensive to obtain labeled data in real

world applications. A very similar situation is occurred for Mini-newsgroups dataset at

again 5% training set level, the performance gain of CWK over linear kernel is 21.55%.

Moreover it should be noted that CWK has the capability of reaching more accurate

classification performance in compare to both linear kernel and our previous semantic

kernels with less execution time than both IHOSK and HOTK. We also believe that

CWK forms a foundation that is open to several improvements. The experimental

results of these algorithms on 20 Newsgroups-Science dataset are shown in Table 7.1

and Table 7.2. According to experimental results higher-order algorithms have more

gain on linear kernel at low training set percentages while corpus-based kernels have

more gain on linear kernel at high training set percentages. All the proposed approaches

including CWK have independency of the outside semantic sources such as WordNet, so

that they can be applied to any language domain. They also form a foundation that can

easily be combined with other term-based semantic similarity methods such as

unsupervised semantic similarity measures. For instance, the CWK can easily be

combined with other semantic kernels which smooth the document term vectors using

term to term semantic relations such as the ones using WordNet or Wikipedia. These

semantic kernels can also be applied on different domains in TC such as IR, sentimental

classification, syntactic-semantic analysis of documents, measuring similarities of short

texts such as microblogs, tweets and also can be applied on other domains on otside of

TC such as image retrieval, biomedical applications, recommendation systems etc... As

future work, we plan to implement different class-based document or term similarities

in supervised classification and compare their results to the results of the CWK.

86

REFERENCES

[1] Salton, G., Yang, C.S., (1973). “On the Specification of Term Values in

Automatic Indexing”, Journal of Documentation, 29(4):11-21.

[2] Wang, P., Domeniconi, C., (2008). “Building Semantic Kernels for Text

Classification Using Wikipedia”, Proceeding of the 14th ACM International

Conference on Knowledge Discovery and Data Mining (SIGKDD), 713-721.

[3] Steinbach, M. Karypis, G., Kumar, V., (2000). “A Comparison of Document

Clustering Techniques”, Proceedings of the KDD Workshop on Text Mining.

[4] Nasir, J. A., Karim, A., Tsatsaronis, G. Varlamis, I., (2011). “A Knowledge-

Based Semantic Kernel for Text Classification”, String Processing and

Information Retrieval, 261-266, Springer.

[5] Bloehdorn, S., Moschitti, A., (2007). “Combined Syntactic and Semantic

Kernels for Text Classification”, Springer, 307-318.

[6] Budanitsky, A., Hirst, G., (2006). “Evaluating WordNet-Based Measures of

Lexical Semantic Relatedness”, Journal Comput. Ling. 32(1):13-47.

[7] Lee, J. Ho, Kim, M. H., Lee, Y. J., (1993). “Information Retrieval Based on

Conceptual Distance in IS-A Hierarchies”, Journal of Documentation,

49(2):188-207.,

[8] Luo, Q., Chen, E., Xiong, H., (2011). “A Semantic Term Weighting Scheme

for Text Categorization”, Journal of Expert Systems with Applications,

38(1):12708-12716.

[9] Nasir, J. A., Varlamis, I., Karim, A., Tsatsaronis, G., (2013). “Semantic

Smoothing For Text Clustering”, Knowledge-Based Systems, 54(1): 216-229.

[10] Scott, S., Matwin, S., (1998). “Text Classification Using WordNet

Hypernyms”,Proceedings of the ACL Workshop on Usage of WordNet in

Natural Language Processing Systems, 45-52.

[11] Siolas, G., d'Alché-Buc, F., (2000). “Support Vector Machines Based On a

Semantic Kernel for Text Categorization”, Proceedings of the International

Joint Conference on Neural Networks (IJCNN), IEEE,5(1):205-209.

[12] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller K., (1993). “Five

Papers on WordNet”, Technical report, Stanford University.

87

[13] Zhang, P. Y., (2013). “A HowNet-Based Semantic Relatedness Kernel for Text

Classification”, Indonesian Journal of Electrical Engineering

(TELKOMNIKA) 11(4):1909-1915.

[14] Ganiz, M. C., Lytkin, N. I., & Pottenger, W. M., (2009). “Leveraging Higher-

Order Dependencies between Features for Text Classification”, Proceedings of

the Conference Machine Learning and Knowledge Discovery in Databases

(ECML/PKDD), 375-390.

[15] Ganiz, M.C., George, C., Pottenger, W.M., (2011). “Higher-Order Naive

Bayes: A Novel Non-IID Approach to Text Classification”, IEEE Transactions

on Knowledge and Data Engineering,23(7):1022-1034.

[16] Poyraz, M., Kilimci, Z.H., Ganiz, M.C., (2012). “A Novel Semantic

Smoothing Method Based on Higher-Order Paths for Text Classification”,

IEEE International Conference on Data Mining (ICDM), 615-624.

[17] Poyraz, M., Kilimci, Z.H., Ganiz, M.C., (2014). “Higher-Order Smoothing: A

Novel Semantic Smoothing Method for Text Classification”, Journal of

Computer Science and Technology, 29(3):376-391.

[18] Bisson, G and Hussain, F., (2008). “Chi-Sim: A New Similarity Measure for

the Co-Clustering Task,” Proceedings of the Seventh International Conference

on Machine Learning and Applications, 211-217.

[19] Joachims, T., (1998). “Text Categorization with Many Relevant Features”,

Proceedings of European Conference on Machine Learning, Springer Verlag,

137-142.

[20] Dumais, S., Platt, J., Heckerman, D. and Sahami, M., (1998).“Inductive

Learning Algorithms and Representations for Text Categorization”,

Proceedings of the Seventh International Conference on Information Retrieval

and Knowledge Management (ACM-CIKM-98),148-155.

[21] Zhu, X. J., (2005). “Semi-supervised Learning Literature Survey, Technical

Report”,Department of Computer Sciences, University of Wisconsin at

Madison, Madison, WI.

[22] Mitchell, T., (1997). “Machine Learning”, McGraw-Hill Computer Science

series.

[23] Boser, B. E., Guyon, I. M., Vapnik, V. N., (1992). “A Training Algorithm for

Optimal Margin Classifier”, Proceedings of the 5th ACM Workshop, Comput.

Learning Theory, 144-152.

[24] Vapnik, V.N., (1995). “The Nature of Statistical Learning Theory”, Springer,

New York.

[25] Alpaydın, E.,(2004). “Introduction to Machine Learning”, MIT press.

[26] Hsu, C.W., Lin, C.J., (2002). “A Comparison of Methods for Multiclass

Support Vector Machines”, IEEE Transactions on Neural Networks 13(2): 415-

425.

[27] Wang, T., Rao, J., Hu, Q., (2014). “Supervised Word Sense Disambiguation

Using Semantic Diffusion Kernel”, Engineering Applications of Artificial

Intelligence, Elsevier, 27(1):167-174.

88

[28] Anthony, G., Gregg, H. and Tshilidzi, M., (2007). “Image Classification Using

SVMs: one-against-one vs. one-against-all,” In Proceedings of the 28th Asian

Conference on Remote Sensing.

[29] Pal, M., (2008). “Multiclass Approaches for Support Vector Machine Based

Land Cover Classification”, Proceedings of the 8th Annual International

Conference, Map India.

[30] Melgani, F., and Bruzzone, L., (2004). “Classification of Hyperspectral

Remote Sensing Images with Support Vector Machines”, IEEE Transactions

on Geoscience and Remote Sensing, 42(1):1778-1790.

[31] Hastie, T. J. and Tibshirani, R. J., (1998). “Classification by Pairwise

Coupling”, Advances in Neural Information Processing Systems, The MIT

Press, 26(2):451-471.

[32] Knerr, S., Personnaz, L., and Dreyfus, G., (1990). “Single-Layer Learning

Revisited: A Stepwise Procedure for Building and Training Neural Network”,

Neurocomputing: Algorithms, Architectures and Applications, NATO ASI,

Berlin: Springer-Verlag, 41-50.

[33] Moore, A., (2003). “Support Vector Machines”, Tutorial slides,

http://www.cs.cmu.edu/~awm.

[34] Cristianini, N. and Shawe-Taylor, J., (2000). “An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods”, Cambridge

University Press.

[35] Burges C., (1998). “A Tutorial on Support Vector Machines for Pattern

Recognition”, In “Data Mining and Knowledge Discovery”, Kluwer Academic

Publishers, Boston, 2(2):121-167.

[36] Howley, T. and Madden, M. G., (2005). “The Genetic Kernel Support Vector

Machine: Description and Evaluation,” Artif. Intell. Rev., 24(3):379-395.

[37] Reborto de Souza, C., (2012).“Kernel Functions for Machine Learning

Applications”, http://crsouza.com.

[38] Lewis, J.P., (2004).“Tutorial on SVM”, CGIT Lab, USC.

[39] Kandola, J., Shawe-Taylor, J., Cristianini, N., (2004). “Learning Semantic

Similarity”, Advances in Neural Information Processing Systems 15(1):657–

664.

[40] Tsatsaronis, G., Varlamis, I. Vazirgiannis, M., (2010). “Text Relatedness

Based on a Word Thesaurus”, Journal of Artificial Intelligence Research

37(1):1-39.

[41] Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A., (2006). “Semantic

Kernels for Text Classification Based on Topological Measures of Feature

Similarity”, Proceedings of The Sixth International Conference on Data Mining

(ICDM), 808–812.

[42] Hotho, A. et al., (2003). “Ontologies Improve Text Document Clustering”,

Proceedings of the 3rd IEEE International Conference on Data Mining, 541-

544.

http://www.cs.cmu.edu/~awm
http://www.blogger.com/profile/17553196159647542225
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.com/

89

[43] Rodriguez, M.B. et al., (2000). “Using WordNet to Complement Training

Information in Text Categorization”, Proceedings of 2nd International

Conference on Recent Advances in Natural Language Processing II: Selected

Papers from RANLP’97, 189 of Current Issues in Linguistic Theory (CILT),

353-364.

[44] Zhang, Z., Gentile, A. L., Ciravegna, F., (2012). “Recent Advances in Methods

of Lexical Semantic Relatedness–A Survey”, Natural Language Engineering,

1(1), 1-69.

[45] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K.., Harshman, R.,

(1990). “Indexing by Latent Semantic Analysis. J. of the American Society for

Information Science”, 41(6): 391-407.

[46] Cavnar, W.B., Trenkle, J.M., (1994). “N-Gram Based Text Categorization”,

Proceedings of 3rd Annual Symposium on Document Analysis and

Information Retrieval, 161-169.

[47] Fung, B.C.M. et al., (2003). “Hierarchical Document Clustering Using

Frequent Itemsets”, Proceedings of SIAM International Conference on Data

Mining, 59-70.

[48] Ho, T.B., Funakoshi, K., (1998). “Information Retrieval Using Rough Sets”,

Journal of the Japanese Society for Artificial Intelligence 13(3):424-433.

[49] Ho, T.B., Nguyen, N.B., (2000). “Non-hierarchical Document Clustering

Based on a Tolerance Rough Set Model”, International Journal of Intelligent

Systems 17(1):199-212.

[50] Papka, R., Allan, J., (1998). “Document Classification Using Multiword

Features”, Proceedings of the Seventh International Conference on Information

and Knowledge Management Table of Contents, Bethesda, Maryland, United

States, 124–131.

[51] Lewis, D.D., (1992). “An Evaluation of Phrasal and Clustered Representation

on a Text Categorization Task”,SIGIR’92: Proceedings of the 15th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, 37-50.

[52] Zhang, W., Yoshida, T., Tang, X., (2008). “Text Classification Based on

Multi-Word with Support Vector Machine”, Knowledge-Based Systems,

21(8):879-886.

[53] Blum, A. and Mitchell, T., (1998). “Combining Labeled and Unlabeled Data

with Co-Training”, Proceedingsof Conference on Computational Learning

Theory, 92-100.

[54] Yarowsky, D., (1995). “Unsupervised Word Sense Disambiguation Rivaling

Supervised Methods”, Proceedings of the 33rd Annual Meeting of the

Association for Computational Linguistics, 189-196.

[55] Rosenberg, C. et al., (2005). “Semi-Supervised Self-Training of Object

Detection Models”, Seventh IEEE Workshop on Applications of Computer

Vision.

[56] Zhou, D. et al., (2004). “Semi-Supervised Learning on Directed Graphs”,

Advances in Neural Information Processing Systems, 1633-1640.

90

[57] Nigam, K. and R. Ghani, (2000). “Analyzing the Effectiveness and

Applicability of Co-Training”, Proceedings of the 9th ACM International

Conference on Information and Knowledge Management, Washington, DC,

86-93.

[58] Chapelle, O. and Zien, A., (2005). “Semi-Supervised Classification by Low

Density Separation”, Proceedings of the Tenth International Workshop on

Artificial Intelligence and Statistics, 57-64.

[59] Kasabov, N. and Pang, S., (2004). “Transductive Support Vector Machines and

Applications in Bioinformatics for Promoter Recognition”, Neural Information

Processing-Letters and Reviews, 3(2):31-38.

[60] Goldman, S. and Zhou, Y., (2000). “Enhancing Supervised Learning with

Unlabeled Sata”, Proceedings of the 17th ICML, San Francisco, CA, Morgan

Kaufmann, 327-334.

[61] Jin, Y., Huang, C., & Zhao, L., (2011). “A Semi-Supervised Learning

Algorithm Based on Modified Self-training SVM”, Journal of Computers,

6(7):1438-1443.

[62] Nigam, K. et al., (2000). “Text Classification from Labeled and Unlabeled

Documents Using EM”, Machine Learning, 39(2):103-134.

[63] Muslea, I., Minton, S., Knoblock, C.A., (2002). “Active Semi-Supervised

Learning in Robust Multi-view Learning”, Proceedings of the Nineteenth

International Conference on Machine Learning, 435-442.

[64] Liu, A., Jun, G., Ghosh, J., (2009). “A Self-Training Approach to Cost

Sensitive Uncertainty Sampling”, Machine Learning 76:257-270.

[65] Chapelle, O., Scholkopf, B., Zien, A. (2006). “Semi-Supervised Learning”,

MIT Press, Cambridge.

[66] Wang, B., Spencer, B., Ling, C.X., Zhang, H., (2008). “Semi-Supervised Self-

Training for Sentence Subjectivity Classification”, The 21st Canadian

Conference on Artificial Intelligence, 344–355.

[67] Li, M., & Zhou, Z. H., (2005). “SETRED: Self-Training with Editing”,

Advances in Knowledge Discovery and Data Mining, Springer Berlin

Heidelberg, 611-621.

[68] Guo, Y., Zhang, H., Liu, X., (2011). “Instance Selection in Semi-Supervised

Learning”,Proceedings of 24th Canadian Conference on Artificial Intelligence,

158-169.

[69] Li, K., Zhang, W., Ma, X., Cao, Z., & Zhang, C.,(2008), “A Novel Semi-

Supervised SVM Based on Tri-training”, Intelligent Information Technology

Application, IITA'08. Second International Symposium on 3(1):47-51.

[70] Cozman, F.G. et al., (2003). “Semi-Supervised Learning of Mixture Models”,

Proceedings of the Twentieth International Conference on Machine Learning

(ICML-2003), 99-106.

[71] Guo, Y., Niu, X., Zhang, H., (2010). “An Extensive Empirical Study on Semi-

supervised Learning”, the 10th IEEE International Conference on Data Mining,

186-195.

91

[72] Li, Y.F., Kwok, J.T., Zhou, Z.H., (2010). “Cost-Sensitive Semi-Supervised

Support Vector Machine” Proceedings of 24th AAAI Conference on Artificial

Intelligence, 500-505.

[73] Cohen, I., Cozman, F.G., Sebe, N., Cirelo, M.C., Huang, T.S., (2004). “Semi

Supervised Learning of Classier: Theory, Algorithms, and Their Application to

Human-Computer Interaction”, IEEE Transactions on Pattern Analysis and

Machine Intelligence 26(1):1553-1567.

[74] Kontostathis, A., Pottenger, W.M., (2006). “A Framework for Understanding

LSI Performance”, Journal of Information Processing & Management,

12(1):56-73.

[75] Jones, K. S., (1972). “A Statistical Interpretation of Term Specificity and Its

Application in Retrieval”, Journal of documentation 28(1): 11-21.

[76] Salton, G., and Buckley, C., (1988). “Term-Weighting Approaches in

Automatic Text Retrieval”, Inf. Process. Manage, 24(5):513-523.

[77] Debole, F., Sebastiani, F., (2003). “Supervised Term Weighting for Automated

Text Categorization”, SAC ’03, Proceedings of the 2003 ACM Symposium on

Applied Computing, New York, NY, USA, ACM Press, 784-788.

[78] Deng, Z.-H., Tang, S.-W., Yang, D.-Q., Zhang, M., Li, L.-Y., Xie, K. Q.,

(2004). “A Comparative Study on Feature Weight in Text Categorization”,

APWeb, 3007. Springer-Verlag Heidelberg, 588-597.

[79] Lan, M., Tan, C. L., Su, J., & Lu, Y., (2009). “Supervised and Traditional

Term Weighting Methods for Automatic Text Categorization”, Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 31(4):721-735.

[80] Biricik, G., Diri, B., Sonmez, A. C., (2009). “A New Method for Attribute

Extraction with Application on Text Classification”, Soft Computing,

Computing with Words and Perceptions in System Analysis, Decision and

Control (ICSCCW), Fifth International Conference on IEEE, 1-4.

[81] Biricik, G., Diri, B., Sonmez, A. C., (2012). “Abstract Feature Extraction for

Text Classification”, Turkish Journal of Electrical Engineering & Computer

Sciences, 20(1):1137-1159.

[82] Ko, Y., Seo, J., (2000). “Automatic Text Categorization by Unsupervised

Learning”, Proceedings of the 18th conference on Computational Linguistics,

Association for Computational Linguistics, 453-59.

[83] Lertnattee, V., Theeramunkong, T., (2004). “Analysis of Inverse Class

Frequency in Centroid-Based Text Classification”, IEEE International

Symposium on Communications and Information Technology, (ISCIT), 2.

[84] Robertson, S. E. (2004). “Understanding Inverse Document Frequency: On

Theoretical Arguments for IDF”, Journal of Document. 60(5):503-520.

[85] Hall, M, Frank, E. Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.,

(2009). “The WEKA Data Mining Software: An Update”; SIGKDD

Explorations, 11(1).

[86] Platt, J. C., (1998). “Sequential Minimal Optimization: A Fast Algorithm for

Training Support Vector Machines”, In Advances in Kernel Method: Support

Vector Learning, MIT Press, 185–208.

92

[87] Amasyali, M.F. and Beken, A., (2009). “Türkçe Kelimelerin Anlamsal

Benzerliklerinin Ölçülmesi ve Metin Sınıflandırmada Kullanılması”,IEEE

Sinyal İşleme ve İletişim Uygulamaları Kurultayı (SIU), IEEE Press.

[88] Two Text Learning Datasets Website,http://www.cs.cmu.edu/~textlearning,

2013.

[89] Kamber, I.H., Frank, E., (2005). “Data Mining: Practical Machine Learning

Tools and Techniques”, 2nd Edition, Morgan Kaufmann, San Francisco.

[90] Han, J., Kamber, M., Pei, J., (2012). “Data Mining: Concepts and Techniques”,

Morgan Kaufmann, Third Edition.

[91] Dumais, S, (1993). “LSI meets TREC: A status report”, In Hartman, D., ed.,

the first Text Retrieval Conference: NIST special publication 105–116.

[92] Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Semantic Kernel for Text

Classification Based on Iterative Higher–Order Relations between Words and

Documents”, Proceedings of the 13th International Conference on Artificial

Intelligence and Soft Computing (ICAISC) , Lecture Notes in Artificial

Intelligence(LNAI),8467:505-517.

[93] Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Simple Semantic Kernel

Approach for SVM Using Higher-Order Paths”, Proceedings of IEEE

International Symposium on INnovations in Intelligent SysTems and

Applications (INISTA), 431-435.

[94] Altınel, B., Ganiz, M.C., Diri, B.,(2015). “A Corpus-Based Semantic Kernel

for Text Classification by Using Meaning Values of Terms”,Elsevier,

Engineering Applications of Artificial Intelligence, August 2015, 43(1): 54–66.

[95] Altınel, B., Diri, B., Ganiz, M.C., (2015). “A Novel Semantic Smoothing

Kernel for Text Classification with Class-based Weighting”, Knowledge-Based

Systems, August 2015, 89(1):54–66.

[96] Altınel, B., Ganiz, M.C., Diri, B., (2015). “Instance Labeling in Semi-

Supervised Learning Using Meaning Values of Terms”,Pattern Recognition

Letters ,(Submitted).

[97] Altınel, B., Ganiz, M.C., Diri, B., (2013). “A Novel Higher-Order Semantic

Kernel”, ICECCO 2013 (The 10
th

 International Conference on Electronics

Computer and Computation), November 7-9, Ankara, Turkey.

[98] Rennie, J. D. M., Shih, L., Teevan, J. and Karger, D. R., (2003).“Tackling the

Poor Assumptions of Naive Bayes Classifiers”, Proceedings of International

Conference on Machine Learning, 616–623.

[99] Balinsky, A., Balinsky, H., Simske, S., (2010). “On the Helmholtz Principle for

Documents Processing”, Proceedings of the 10th ACM Document Engineering

(DocEng), 283-286.

[100] Balinsky, A., Balinsky, H., Simske, S., (2011). “On the Helmholtz Principle for

Data Mining”, Proceedings of Conference on Knowledge Discovery, Chengdu,

China.

[101] Balinsky, A., Balinsky, H., Simske, S., (2011). “Rapid change Detection and

Text Mining”, Proceedings of 2nd Conference on Mathematics in Defence

(IMA), Defence Academy, UK.

http://www.cs.cmu.edu/~textlearning
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976/43/supp/C
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/
http://www.journals.elsevier.com/knowledge-based-systems/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/

93

[102] Balinsky, H., Balinsky, A., Simske, S., (2011). “Document Sentences As A

Small World”, Proceedings of IEEE International Conference on Systems, Man

and Cybernetics (SMC), 2583-2588.

[103] Basili, R., Cammisa, M., Moschitti, A., (2005). “A Semantic Kernel to Classify

Texts with Very Few Training Examples”, Proceedings of Workshop Learning

in Web Search, 22nd International Conference on Machine Learning (ICML).

[104] Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., & Weikum,

G., (2005). “Word Sense Disambiguation for Exploiting Hierarchical Thesauri

in Text Classification”, Knowledge Discovery in Databases: PKDD, 181-192,

Springer Berlin Heidelberg.

[105] Dadachev, B., Balinsky, A. Balinsky, H.; Simske, S. (2012). “On the

Helmholtz Principle for Data Mining”,International Conference on Emerging

Security Technologies (EST), 99-102.

[106] Wittek P., Tan, C., (2009). “A Kernel-Based Feature Weighting for Text

Classification”, Proceedings of IJCNN-09, IEEE International Joint

Conference on Neural Networks, 3373–3379.

[107] Cristianini, N., Shawe-Taylor, J., & Lodhi, H., (2002). “Latent Semantic

Kernels”, Journal of Intelligent Information Systems, 18(2):127-152.

[108] Harish, B. S., S. Manjunath, D. S. Guru, (2012).“Text Document

Classification: An Approach Based On Indexing”, International Journal of Data

Mining & Knowledge Management Process (IJDKP) 2(1): 43-62.

[109] Desolneux, A., Moisan, L., Morel, J.-M., (2008). “From Gestalt Theory to

Image Analysis: A Probabilistic Approach”, Interdisciplinary Applied

Mathematics, 34, Springer.

[110] Kleinberg, J.,(2002). “Bursty and Hierarchical Structure in Streams”,

Proceedings of the 8th ACM International Conference on Knowledge

Discovery and Data Mining (SIGKDD), 7(4):373-397.

[111] Luo, Z.P., Zhang, X.-M., (2008). “A Semi-Supervised Learning Based

Relevance Feedback Algorithm in Content-Based Image Retrieval”, Chinese

Conference on Pattern Recognition (CCPR ’08),1-4.

[112] Jiang, E.P., (2009). “Semi-Supervised Text Classification Using RBF

Networks”, Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (Eds.),

IDA, Springer, 5772, 95-106.

[113] Li, Y. F. and Zhou, Z. H., (2011). “Towards Making Unlabeled Data Never

Hurt”, Pattern Analysis and Machine Intelligence, IEEE Transactions on,

37(1):175-188.

[114] Schwenker, F. and Trentin, E., (2014). “Partially Supervised Learning for

Pattern Recognition”, Pattern Recognition Letters, 37(1):1-3.

94

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname :Berna ALTINEL

Foreign Languages : English

Date of birth and place : 01.01.1981 / İstanbul

E-mail :berna.altinel@marmara.edu.tr

EDUCATION

Degree Field School/University Year of

Graduation

Master Computer Istanbul Technical 2007

Engineering University

Undergraduate Computer

Engineering

Yeditepe University

(with %100 Scholarship)

2004

High

School

Science and Maths Haydarpaşa Anatolia High

School,Istanbul

1999

WORKING EXPERIENCES

Year Firm/Company Role

2009-2012 TÜBİTAK Test Engineer

2006-2009 SoftTech Software Company

(Participant of İşBank)

Software Engineer

95

2005-2006 Argela Software Company Software Engineer

2004-2005 Troysis Software Company Software& Test Engineer

PUBLICATIONS

Journal Papers

1. Altınel, B., Ganiz, M.C., Diri, B., (2015). “Instance Labeling in Semi-Supervised

Learning using Meaning Values of Terms”, Pattern Recognition

Letters,(Submitted).

2. Altınel, B., Ganiz, M.C., Diri, B., (2015). “A Corpus-Based Semantic Kernel for

Text Classification by using Meaning Values of Terms”, Elsevier, Engineering

Applications of Artificial Intelligence, August 2015, 43(1):54–66.

3. Altınel, B., Diri, B., Ganiz, M.C., (2015). “A Novel Semantic Smoothing Kernel for

Text Classification with Class-Based Weighting”,Knowledge-Based Systems,

89(1):265-177.

Conference Papers

1. Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Semantic Kernel for Text

Classification Based on Iterative Higher–Order Relations between Words and

Documents”, Proceedings of the 13th International Conference on Artificial

Intelligence and Soft Computing (ICAISC) , Lecture Notes in Artificial

Intelligence(LNAI),8467,505–517.

2. Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Simple Semantic Kernel Approach for

SVM Using Higher-Order Paths”, Proceedings of International Symposium on

INnovations in Intelligent SysTems and Applications (INISTA), 431-435.

3. Altınel, B., Ganiz, M.C., Diri, B., (2013). “A Novel Higher-order Semantic Kernel”,

ICECCO 2013 (The 10th International Conference on Electronics Computer and

Computation), November 7-9, Ankara, Turkey.

4. Çataltepe, Z. and Altınel, B., (2009). "Music Recommendation by Modeling User’s

Preferred Perspectives of Content, Singer/Genre and Popularity" in "Collaborative

and Social Information Retrieval and Access: Techniques for Improved User

Modeling" edited by M. Chevalier, C. Julien and C. Soulé-Dupuy, IGI Global, pp.

203-221, ISBN: 978-1-60566-306-7.

5. Çataltepe, Z. and Altınel, B., (2007). "Hybrid Music Recommendation Based on

Different Dimensions of Audio Content and Entropy Measure", Eusipco (European

Signal Processing Conference), 3-7 September, Poland.

6. Çataltepe, Z. and Altınel, B., (2007). "Music Recommendation Based on Adaptive

Feature and User Grouping", ISCIS, Ankara, Turkey.

Research Projects

1. TÜBİTAK-3501, Metinsel Veri Madenciliği için Anlamsal Yarı-eğitimli

Algoritmaların Geliştirilmesi,111E239 (2012-2015, Position: Research Assistant).

http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/

96

AWARDS

1. Publication Award from TÜBİTAK-ULAKBİM for: Altınel, B., Ganiz, M.C., Diri,

B., (2015). “A Corpus-Based Semantic Kernel for Text Classification by using

Meaning Values of Terms”, Elsevier, Engineering Applications of Artificial

Intelligence, August 2015, 43(1):54–66.

2. Publication Award from TÜBİTAK-ULAKBİM for: Altınel, B., Diri, B., Ganiz,

M.C., (2015). “A Novel Semantic Smoothing Kernel for Text Classification with

Class-Based Weighting”, Knowledge-Based Systems, 89(1):265-177.

3. Best Paper of Machine Learning Track at ICECCO 2013 (The 10th International

Conference on Electronics Computer and Computation), November 7-9, Ankara,

Turkey (2013).

4. Graduation with Honor degree from Department of Computer Engineering, Istanbul

Technical University (2007).

5. Graduation with High-Honor degree from Department of Computer Engineering,

Yeditepe University (2004).

6. Full scholarship from Yeditepe University, Istanbul, Turkey (1999-2004).

7. Scholarship from Vehbi Koç Foundation (1999-2004).

8. First of the schoolin graduation of Göztepe Secondary School (1995).

http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/

