
 
 

REPUBLIC OF TURKEY 

YILDIZ TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

 

 

 

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND 

SEMI-SUPERVISED TEXT CLASSIFICATION 

 

 

 

 

 

 

BERNA ALTINEL 

 

 

 

 

PhD. THESIS 

DEPARTMENT OF COMPUTER ENGINEERING 

PROGRAM OF COMPUTER ENGINEERING 

 

 

 

ADVISER 

ASSOC. PROF. DR. BANU DİRİ 

 

CO-ADVISER 

ASSIST. PROF. DR. MURAT CAN GANİZ 

 

İSTANBUL, 2015 



 
 

 

REPUBLIC OF TURKEY 

YILDIZ TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND 

SEMI-SUPERVISED TEXT CLASSIFICATION 

 

A thesis submitted byBerna ALTINELin partial fulfillment of the requirements for the 

degree of DOCTOR OF PHILOSOPHYis approved by the committee on 30.12.2015 

in Department of Computer Engineering, Computer Engineering Program. 

 

Thesis Adviser 

Assoc. Prof. Dr. Banu DİRİ       

Yıldız Technical University 

 

Co- Adviser  

Assist. Prof. Dr. Murat Can GANİZ      

Marmara University 

 

Approved By the Examining Committee  

Assoc. Prof. Dr. Banu DİRİ  

Yıldız Technical University_____________________ 

Assist. Prof. Dr. Murat Can GANİZ 

Marmara University                                                                   _____________________ 

Assist. Prof. Dr. M. Fatih AMASYALI, Member  

Yıldız Technical University                                                       _____________________ 

Assist. Prof. Dr. Zeynep ORHAN, Member       

Fatih University                                                                 _____________________ 

Prof. Dr. Zehra ÇATALTEPE, Member  

İstanbul Technical University                                                    _____________________ 

Assoc. Prof. Dr.  Elif KARSLIGİL, Member  

Yıldız Technical University                                                       _____________________ 

Assist. Prof. Dr. Arzucan ÖZGÜR, Member  

Boğaziçi University       _____________________ 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study was supported by the Scientific and Technological Research Council of 

Turkey (TUBITAK) Grant No: 111E239.



 
 

 

ACKNOWLEDGEMENTS 

I am deeply thankful to my co-adviser,Assist. Prof. Dr. Murat Can Ganiz, forhis 

valuable support and mentorship during my thesis journey. With the help of his 

knowledge and guidance, I was able to look at my research from different viewpoints. It 

would have been very difficult to complete this study without hissupport. I am very 

grateful him for the big effort in teaching and directing me in this research. I really owe 

him a lot for the enormous amount of time spent with me discussing different problems 

ranging from theoretical issues down to technical details. I also would like to thank to 

my adviser, Assoc. Prof. Dr. Banu Diri, for her support and mentorship during this 

study. She did not only help me during my research but encouraged me to make it 

better. She also gives me precious advice as well as the moral to overcome difficulties. 

 

I would like to thank my committee members; Assist. Prof. Dr. M.Fatih Amasyalı and 

Assist. Prof. Dr. Zeynep Orhan, for their support and contribution to my thesis. They 

were always available to answer my questions and encourage me during this tough 

work.  

 

I also would like to thank to my previous advisers Prof. Dr. Zehra Çataltepe who is the 

adviser of my MSc thesis and Assoc. Prof. Dr. Ender Özcan who is the adviser of my 

BSc thesis. I am very grateful to them for directing and motivating me for the next step 

in academic life and always support me even after my graduation. 

 

I also would like to Prof. Dr. A. Coşkun Sönmez whowas one of the most wonderful 

and helpful professors that I have ever seen. He was always positive and used to be at 

student side and support his students. Even after his death, I am sure that our love for 

him will not be less; because love and respect are actually immortal in life. 

 

I thank very much all of my colleagues at Marmara University for their patient 

understating of my overwhelming schedule. 

 

I would like to thank all of my dearest friends who always support me and keep joy in 

my life for the last fifteen years.  

 

I also owe Ali a lot;because hehas been much safer, better and meaningful side of my 

life for about eight years.  



 
 

 

 

Finally, I would like to thank my family. All members of my family; my father 

Nurettin, my mother Metine and my brother Baran are separately very important for me. 

I am grateful them for the big support in my life. It would have been very hard to 

complete this and my all previous studies without their unconditional and endless help 

and support. They are always nearby me. I really need to thank to them for their support 

for encouraging me and giving their full support with my every decision. I am very 

lucky to have such a wonderful family. 

 

This thesis is dedicated to my family, who has taken care of me without expecting any 

return.  

 

December, 2015 

 

BernaALTINEL



 
 

vii 

 

TABLE OF CONTENTS 

Page 

LIST OF SYMBOLS ....................................................................................................... ix 

LIST OF ABBREVIATIONS .......................................................................................... xi 

LIST OF FIGURES ....................................................................................................... xiii 

LIST OF TABLES ......................................................................................................... xiv 

ABSTRACT ................................................................................................................... xvi 

ÖZET ........................................................................................................................... xviii 

CHAPTER 1 

INTRODUCTION ............................................................................................................ 1 

1.1Literature Review ............................................................................................... 1 

1.2Aims of the Dissertation ..................................................................................... 3 

1.3Hypothesis .......................................................................................................... 3 

CHAPTER 2 

BACKGROUND AND RELATED WORK .................................................................... 6 

2.1Traditional Classification Approaches ................................................................. 6 

2.1.1Supervised Learning ........................................................................................ 7 

2.1.1.1 Support Vector Machines ......................................................................... 7 

2.1.1.2 Semantic Supervised Approaches for Text Classification ...................... 10 

2.1.2 Semi-Supervised Learning ........................................................................... 14 

2.1.2.1 Semi-Supervised Learning Approaches .................................................. 16 

2.2 Higher-Order Co-Occurrence Paths ................................................................ 19 

2.3Term Weighting Methods ................................................................................ 20 

2.4Helmholtz Principle from Gestalt Theory and Meaning Calculation............... 23 

 

CHAPTER 3 

EXPERIMENTAL SETUP ............................................................................................. 29 



 
 

viii 

 

CHAPTER 4 

HIGHER-ORDER SEMANTIC KERNELS .................................................................. 33 

4.1 Higher-Order Semantic Kernel (HOSK) ......................................................... 33 

4.1.1 Methodology ................................................................................................ 34 

4.1.2 Experimental Results and Discussion .......................................................... 37 

4.2 Iterative-Higher-Orders Semantic Kernel (IHOSK) ....................................... 39 

4.2.1 Methodology ................................................................................................ 39 

4.2.2 Experimental Results and Discussion .......................................................... 41 

4.3 Higher-Order Term Kernel (HOTK) ............................................................... 44 

4.3.1 Methodology ................................................................................................ 44 

4.3.2 Experimental Results and Discussion .......................................................... 45 

CHAPTER 5 

5.1 Class Meanings Kernel (CMK) ....................................................................... 48 

5.1.1 Methodology ................................................................................................ 48 

5.1.2 Experimental Results and Discussion .......................................................... 52 

5.2 Class Weighting Kernel (CWK) ...................................................................... 60 

5.2.1 Methodology ................................................................................................ 60 

5.2.2 Experimental Results and Discussion .......................................................... 65 

CHAPTER 6 

INSTANCE LABELING IN SEMI-SUPERVISED LEARNING USING MEANING 

VALUES OF TERMS .................................................................................................... 72 

6.1 Instance Labeling Based on Meaning (ILBOM) ............................................. 73 

6.1.1 Methodology ................................................................................................ 73 

6.1.1.1Meaning Calculation ................................................................................ 73 

6.1.1.2 Labeling .................................................................................................. 74 

6.1.1.3 Kernel Evaluation ................................................................................... 74 

6.1.1.4 Classification .......................................................................................... 75 

6.1.2 Experimental Results and Discussion .......................................................... 75 

CHAPTER 7 

RESULTS AND DISCUSSION ..................................................................................... 80 

REFERENCES ............................................................................................................... 85 

CURRICULUM VITAE ................................................................................................. 93 

 

  

 

 

 



 
 

ix 

 

 

 

LIST OF SYMBOLS 

 

a   Number of documents in the positive category which containterm w 

b   Bias  

B   Length of a section (paragraph, class, etc.) in words 

c   Number of documents in the negative category which contain term w 

C    Regularization parameter (misclassification cost parameter) 

|C|   Number of classes  

cfw   Number of classes which contains term w 

Cm   Counts m-tuple of the elements of Sw appears in the same document 

|di|   The length of the document 

dp  Term vector of document p which shows terms with their frequency  

dfw   Number of documents which contains term w 

D    Term by document matrix of the corpus 

D
T
   Transpose of D matrix 

E (x)   Expectation value 

F    First-order path matrix  

FN   Normalized first-order paths matrix 

G    Generator that displays the initial semantic similarities between words  

Gp,q   Gram matrix shows the kernel value between documents dp  and dq 

hi   Initial learner 

Lo  Original labeled instances 

Lp   Previously unlabeled instances with their current predicted labels  

L  Total of Loand Lp 

Llabeled Labeled training examples  

Ld   Length of a document  

Mlabeled Matrix shows the meaningfulness of the terms in the labeled set for 

each class 

mij Occurrence frequency of the j
th

word in the ith document;  

mi   Row vector representing the document i  

mj     Column vector corresponding to word j 

N   Total number of documents in the corpus  

Nw   Total number of documents contain term w 

N    Total number of documents in the training set  

NR   Row normalization matrices 

NC   Column normalization matrices 

P   Probability  



 
 

x 

 

ptd Equals the number of times that t occurs in d divided by the total 

number of times that t occurs 

S    Second-order path matrix 

Si,j Semantic smoothing matrix shows the relatedness between words i 

and j  

SN  Normalized second-order paths matrix  

SR    Row (document) similarity matrix 

SC  Column (word) similarity matrix 

Sw   The set of all words in N documents  

ti   Term 

tfw   Term frequency of word w 

tfc w,c   Total term frequency of word w in the documents of class c 

tf w,d Total term frequency of word w in the document d 

U    Unlabeled examples  

W   Weight Matrix for each word w and class k 

w  Weight vector 

)( 1d  Transformation of document 

αi  Langlier’s multiplier 

α   Significance level in student’s t-test 


 Mapping from an input space into a feature space.  

    Vector of slack variables  

    Decay factor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xi 

 

 

LIST OF ABBREVIATIONS 

 

1A1   One-Against-One 

1AA   One-Against-All 

1D   One Dimensional 

BOW  Bag-of-Words 

CBT   Corpus-Based Thesaurus  

CMK    Class Meaning Kernel 

CWK    Class Weighting Kernel 

EM   Expectation–maximization 

HONB   Higher-Order Naive Bayes 

HOSK           Higher-Order Semantic Kernel 

HOTK    Higher-Order Term Kernel 

IG    Information Gain 

IHOSK    Iterative Higher-Order Semantic Kernel 

ILBOM    Instance Labeling Based on Meaning 

IPL    Inverted Path Length 

IR    Information Retrieval 

k-NN       K-Nearest Neighbor 

LSA     Latent Semantics Analysis  

LSO    Lowest Super Ordinate 

NB   Naive Bayes 

NFA   Number of False Alarms 

RBF      Radial Basis Function 

QP         Quadratic Programming 

SMO             Sequential Minimal Optimization  

SO-CMK   Second-Order Class Meaning Kernel  

SO-CWK   Second-Order Class Weighting Kernel 

SSL  Semi-supervised Learning 

SSTK    Semantic Syntactic Tree Kernel 

SVM  Support Vector Machine 

TF   Term Frequency 

TF-ICF    Term Frequency-Inverse Class Frequency  

TF – IDF        Term Frequency Inverse Document Frequency 

TF-RF     Term Frequency-Relative Frequency 

TS   Training set percentages 

TSVM           Transductive Support Vector Machine 

UMK    Unsupervised Meaning Kernel  



 
 

xii 

 

VS                 Vector Space 

VSM   Vector Space Model 

WKNN          Weighted K-Nearest Neighbor Method  

WSD             Word Sense Disambiguation  

WWW           World Wide Web  

 

 

 

 

 



 
 

xiii 

 

 

LIST OF FIGURES 

Page 

Figure 2.1 A block diagram of an inductive reasoning system. ..................................... 15 

Figure 2.2 A block diagram of a transductive inference system. ................................... 15 

Figure 2.3 Graphical demonstration of first-order, second-order and third-order paths 

between terms through documents [93]..................................................... 21 

Figure 2.4 The Helmholtz Principle in human perception (adopted from [100]) ........... 24 

Figure 2.5 The Helmholtz Principle in human perception (adopted from [99]) ............. 24 

Figure 5.1 The architecture of CMK System .................................................................. 50 

Figure 5.2 The total kernel computation time units of IHOSK, SO-CMK, CMK and 

HOTK on SCIENCE dataset at 30% training set percentage .................... 56 

Figure 5.3 The Comparison of the accuracies of TF-ICF, UMK and CMK at different 

training set percentages on SCIENCE dataset ........................................... 57 

Figure 5.4 The training phase for CWK ......................................................................... 67 

Figure 5.5 The total kernel computation time units of IHOSK, SO-CWK, HOTK and 

CWK on SCIENCE dataset at 30% training set percentage ...................... 68 

Figure 6.1 The architecture of ILBOM system ............................................................... 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xiv 

 

 

LIST OF TABLES 

Page 

Table 2.1 Comparison of the weights of four features in Category 00_acq and 03_earn 

([79]) .......................................................................................................... 23 

Table 3.1 Comparison of properties of datasets before attribute selection ..................... 30 

Table 3.2 Optimized C values for IHOSK on different datasets .................................... 31 

Table 3.3 Optimized C values for HOTK on different datasets ..................................... 31 

Table 3.4 Optimized C values for CMK on different datasets ....................................... 31 

Table 3.5 Optimized C values for linear kernel on different datasets ............................ 32 

Table 4.1 A document by term matrix representation of three documents ..................... 34 

Table 4.2 Accuracy of HOSK and linear kernel on 1150 Haber dataset with varying 

training set size .......................................................................................... 37 

Table 4.3 Accuracy of HOSK and linearkernel on WEBKB5 dataset with varying 

training set size .......................................................................................... 38 

Table 4.4 Accuracy of HOSK and linearkernel on 20 Newsgroups-Comp dataset with 

varying training set size ............................................................................. 38 

Table 4.5 Accuracy of HOSK and linearkernel on 20 Newsgroups-Science dataset with 

varying training set size ............................................................................. 38 

Table 4.6 Accuracy of N-IHOSK and linear kernel on 20 Newsgroups-Science dataset 

with varying training set size ..................................................................... 42 

Table 4.7Accuracy of N-IHOSK and linearkernel 20 Newsgroups-Politics dataset with 

varying training set size ............................................................................. 42 

Table 4.8 Accuracy of N-IHOSK and other kernels WEBKB5 dataset with varying 

training set size .......................................................................................... 42 

Table 4.9 Accuracy of N-IHOSK and linearkernel on Mini-newsgroups dataset with 

varying training set size ............................................................................. 43 

Table 4.10Accuracy of HOTK and linearkernel on 20 Newsgroups-Science dataset with 

varying training set size ............................................................................. 46 

Table 4.11 Accuracy of HOTK and linearkernel on 20NewsPolitics dataset with varying 

training set size .......................................................................................... 47 

Table 4.12 Accuracy of HOTK and linearkernel on 20 Newsgroups-Comp dataset with 

varying training set size ............................................................................. 47 

Table 4.13 Accuracy of HOTK and linearkernel on Mini-newsgroups dataset with 

varying training set size ............................................................................. 47 

Table 5.1 Term frequencies in different classes ............................................................. 52 

Table 5.2 Accuracy of CMK and otherkernels on 1150Haber dataset with varying 

training set size .......................................................................................... 53 



 
 

xv 

 

 

Table 5.3Accuracy of CMK and otherkernels on 20 Newsgroups-Science dataset with 

varying training set size ............................................................................. 54 

Table 5.4Accuracy of CMK and otherkernels on IMDB dataset with varying training set 

size ............................................................................................................. 54 

Table 5.5Accuracy of CMK and otherkernels on 20 Newsgroups-Politics dataset with 

varying training set size ............................................................................. 59 

Table 5.6Accuracy of CMK and otherkernels on 20 Newsgroups-Comp dataset with 

varying training set size ............................................................................. 59 

Table 5.7Accuracy of CMK and otherkernels on 20 Newsgroups-Religion dataset with 

varying training set size ............................................................................. 59 

Table 5.8Accuracy of CMK and otherkernels on Mini-newsgroups dataset with varying 

training set size .......................................................................................... 60 

Table 5.9Term frequencies on different classes [94] ...................................................... 63 

Table 5.10Accuracy of CWK and otherkernels on 20 Newsgroups-Science dataset with 

varying training set size ............................................................................. 67 

Table 5.11Accuracy of CWK and otherkernels on IMDB dataset with varying training 

set size ....................................................................................................... 68 

Table 5.12Accuracy of CWK and otherkernels on 20 Newsgroups-Politics dataset with 

varying training set size ............................................................................. 69 

Table 5.13Accuracy of CWK and otherkernels on 20 Newsgroups-Comp dataset with 

varying training set size ............................................................................. 69 

Table 5.14Accuracy of CWK and otherkernels on 20 Newsgroups-Religion dataset with 

varying training set size ............................................................................. 70 

Table 5.15Accuracy of CWK and otherkernels on Mini-newsgroups dataset with 

varying training set size ............................................................................. 71 

Table 6.1 Accuracy of ILBOM and otherkernels on 20 Newsgroups-Science dataset 

with varying training set size ..................................................................... 78 

Table 6.2 Accuracy of ILBOM and otherkernels on 20 Newsgroups- Politics dataset 

with varying training set size ..................................................................... 78 

Table 6.3 Accuracy of ILBOM and otherkernels on IMDB dataset with varying training 

set size ....................................................................................................... 79 

Table 6.4 Accuracy of ILBOM and otherkernels on Mini-Newsgroups dataset with 

varying training set size ............................................................................. 79 

Table 7.1     Accuracy of our semantic kernels and linear kernel on 20 Newsgroups-

Science dataset with varying training set size……………………………82 

Table 7.2    Accuracy of our semi-supervised semantic kernel and the other kernels on 

20 Newsgroups-Science dataset with varying training set size…………..83 

 

 

 

 

 

 

 

 

 



 
 

xvi 

 

 

 

ABSTRACT 

 

CORPUS-BASED SEMANTIC KERNELS FOR SUPERVISED AND 

SEMI-SUPERVISED TEXT CLASSIFICATION 

 

Berna ALTINEL 

 

Computer Engineering Department 

Ph.D. Thesis 

 

Adviser: Assoc. Prof. Dr. Banu DİRİ 

Co-Adviser: Assist. Prof. Dr. Murat Can GANİZ 

 

Text categorization plays a crucial role in both academic and commercial platforms due 

to the growing demand for automatic organization of documents. Kernel-based 

classification algorithms such as Support Vector Machines (SVM) have become highly 

popular in the task of text mining. This is mainly due to their relatively high 

classification accuracy on several application domains as well as their ability to handle 

high dimensional and sparse data which is the prohibitive characteristics of textual data 

representations. Recently, there is an increased interest in the exploitation of 

background knowledge such as ontologies and corpus-based statistical knowledge in 

text categorization. It has been shown that, by replacing the standard kernel functions 

such as linear kernel with customized kernel functions which take advantage of this 

background knowledge, it is possible to increase the performance of SVM in the text 

classification domain. Based on this, we developed a variety of semantic kernel 

methods in order to explore the capabilities of higher-order paths, class-based meaning 

values and class-based weighting of terms in both supervised learning and SSL setting 

for SVM.  

We propose several corpus-based semantic kernels which implicitly extract and make 

use of semantic relations such as Higher-Order Semantic Kernel (HOSK), Iterative 

Higher-Order Semantic Kernel (IHOSK) and Higher-Order Term Kernel (HOTK) for 

SVM. HOSK makes use of higher-order co-occurrence paths of terms between 
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documents. In HOSK, the simple dot-product between feature vectors of the documents 

consist of term frequencies yields a first-order document relation matrix (F). Second–

order document matrix (S) is formed by multiplying F with itself. S is used as kernel 

matrix in HOSK’s transformation from input space into feature space. The experimental 

results show that HOSKshows an improvement on accuracy over linear kernel.A more 

advanced model is IHOSK which uses higher-order paths between documents and terms 

together in an iterative form. The document similarity matrix is produced iteratively 

using SR (a similarity matrix between documents) and SC (a similarity matrix between 

terms). Experiment results show that the classification performance increases relative to 

the linear kernel. In our following study, we consider less complex higher-order kernel, 

HOTK that is based on higher-order paths between terms only. HOTK is much simpler 

than IHOSK and also requires less computational resources.  

We also propose a novel approach for building a semantic kernel for SVM, which we 

name CMK. We applied CMK in a Semi-supervised Learning (SSL) setting with an 

addition of a new approach to initial labeling of unlabeled data, called ILBOM. The 

suggested approaches smooth the term weights of a document in BOW representation 

by class-based meaning values of terms. These approaches reduce the disadvantages of 

BOW by increasing the importance of class specific concepts which can be synonymous 

or closely related in a class. The meaning values of terms are calculated according to the 

Helmholtz principle from Gestalt theory in the context of classes. Our experimental 

results show that both CMK and ILBOM widely outperform the classification accuracy 

of the linear kernel. 

Additionally we also propose another approach which is called Class Weighting Kernel 

(CWK). This approach is similar to CMK however it provides an improvement over 

CMK in terms of mainly the calculation time. This class-based weighting basically 

groups terms based on their importance for each class. Therefore it smooths the 

representation of documents which changes the orthogonality of the vector space model 

by introducing class-based dependencies between terms.  

The main contribution of this dissertation is building novel semantic kernels those are 

applied to supervised and semi-supervised text classification.We show that kernels 

performing much better than standard kernels in terms of classification accuracy. The 

proposed approaches have independency of the outside semantic sources such as 

WordNet, so that they can be applied to any language domain. They also form a 

foundation that can easily be combined with other term-based semantic similarity 

methods such as unsupervised semantic similarity measures. To the best of our 

knowledge, higher-order paths and class-based values of terms are used in the 

transformation phase of SVM for the first time in the literature and give significant 

benefits on the semantic smoothing of terms in a kernel for text classification. 

Key Words:Support Vector Machines, text classification, semantic smoothing kernel, 

supervisedkernel, higher-order co-occurrence, higher-order paths, Helmholtz principle, 

class-based term weighting. 
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ÖZET 

 

EĞİTİCİLİ VE YARI-EĞİTİCİLİ METİN SINIFLANDIRMASI 

İÇİN DERLEM TABANLI ANLAMBİLİMSEL ÇEKİRDEKLER 

 

Berna ALTINEL 

 

Bilgisayar Mühendisliği Bölümü 

Doktora Tezi 

 

Tez Danışmanı: Doç. Dr. Banu DİRİ 

Tez Eş-Danışmanı :  Yrd. Doç. Dr. Murat Can GANİZ 

 

Metin sınıflandırma, belgelerin otomatik organizasyonu için artan talepten ötürü hem 

akademik hem de ticari platformlarda önemli bir rol oynamaktadır.Destek Vektör 

Makineleri (SVM) gibi çekirdek temellisınıflandırma algoritmaları metin madenciliği 

görevinde son derece popüler hale gelmişlerdir. Bu durum esas olarak SVM’in çeşitli 

uygulama alanları üzerindeki nispeten yüksek sınıflandırma doğruluğunun yanı sıra 

yüksek boyutlu ve seyrek veriyi işlemeyebilme yeteneklerindende 

kaynaklanmaktadır.Son zamanlarda, metin sınıflandırmasındaontolojiler ve derlem 

temelli istatistiki bilgi gibi arka plan bilgi birikiminden yararlanmaya yönelik artan bir 

ilgi söz konusudur.Doğrusal çekirdek gibi standart çekirdek fonksiyonları yerine bu 

arka plan bilgisinin avantajlarından faydalanan özelleştirilmiş çekirdek 

fonksiyonlarınıkullanarak SVM’in metin sınıflandırma alanındaki performansını 

arttırmanın mümkün olduğu gösterilmiştir.Buna dayanarak,SVM için eğiticili ve yarı-

eğiticili anlambilimsel düzeltme çekirdeklerinde, daha yüksek mertebeden yolların, 

terimlerin sınıf temelli anlamsal değerlerinin ve sınıf temelli ağırlık değerlerinin 

yeteneklerini keşfetmek amacıyla çeşitli yöntemler geliştirilmiştir. 

Bu çalışamda Yüksek MertebedenAnlambilimsel Çekirdek (HOSK), Özyineli Yüksek 

Mertebeden Anlambilimsel Çekirdek (IHOSK) ve Yüksek Dereceden Terim Çekirdeği 

(HOTK) gibi dolaylı anlambilimsel ilişkileri çıkartan ve kullanan derlemtemelli çeşitli 

anlambilimsel çekirdekler önerilmiştir.HOSKterimlerin belgeler arasındaki yüksek 
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mertebeden yolları kullanır. HOSK’ta belgelerin özellik vektörleri arasındaki basit iç 

çarpım sonucunda birinci dereceden bir matris (F) elde edilir.HOSK belgeler, bu özellik 

vektörleri arasında basit nokta ürünün birinci dereceden bir matris (F) elde edilir. İkinci 

dereceden eş-oluşum matrisi (S), F’nin kendisi ile çarpılması sonucu oluşturulur. S, 

HOSK’un giriş uzayından özellik uzayına dönüşümündeki çekirdek matrisi olarak 

kullanılmaktadır. Deneysel sonuçlar HOSK’un doğrusal çekirdek üzerindedoğruluk 

açısından bir iyileştirme sağladığını göstermektedir. HOSK’un daha gelişmiş bir modeli 

debelgeler ve terimler arasındaki yüksek dereceli yolları yinelemeli bir şekilde kullanan 

IHOSK’tur.Belgeler ve terimler arasındakianlambilimsel ilişki;belgeler arasındaki 

benzerlik matrisini terimler arasındaki benzerlik matrisini kullanarak ve terimler 

arasındaki benzerlik matrisini de belgeler arasındaki benzerlik matrisini kullanarak 

hesaplayan ve χ-Sim olarak adlandırılan özyineli bir tekniktenuyarlanmıştır. Belge 

benzerlik matrisi, SR (belgeler arası benzerlik matrisi) ve SC (terimler arası benzerlik 

matrisi) kullanılarak özyineli bir şekilde üretilir. Deney sonuçları sınıflandırma 

performansının doğrusal çekirdeğe kıyasla daha da arttığını göstermektedir. Bir sonraki 

çalışmamızda, daha az karmaşıklıkta yüksek-mertebeli çekirdekler düşünülmüştür; 

HOTK sadece terimler arasındaki yüksek-mertebeli yollara bağlıdır.HOTK’deki 

anlambilimsel çekirdek dönüşümü sadece eğitim kümesindeki terimler arası yüksek-

mertebeli eş-oluşumlar kullanılarak yapılır. HOTK, IHOSK’dan daha basittir ve aynı 

zamanda daha az hesaplama kaynakları gerektirir. 

Bu çalışmada, SVM için anlambilimsel çekirdek inşa eden CMK olarak 

adlandırılanyeni bir yaklaşım önerilmektedir. CMK’yı başlangıçtaki etiketsiz veriyi 

etiketlendiren yeni bir yöntem eklentisi ile yarı-eğiticili öğrenmeye uyguladık ve bunu 

ILBOM olarak adlandırdık. Önerilen yaklaşımlar bir belge içindeki BOW ile temsil 

edilen terimlerin ağırlıklarını,terimlerin sınıf temelli anlamsal değerlerini kullanarak 

düzeltmektedir. Bu da sınıflar üzerinde ayırt ediciliği olmayan genel amaçlı kullanılan 

terimlerin önemini azaltırken,önemli ya da başka bir deyişle anlamlı terimlerin önemini 

artırmaktadır. Bu yaklaşımlar, eşanlamlı terimler ya da sınıfla yakından ilgili terimler 

gibi sınıfa özgü kavramların önemini arttırarak BOW’un dezavantajlarını azaltmaktadır. 

Terimlerin sınıflar bağlamındaki anlamsal değerleri Gestalt teoriden Helmholtz esasına 

göre hesaplanmaktadır. Deneysel sonuçlarımız CMK ve ILBOM’un doğrusal 

çekirdekten daha üstün bir sınıflandırma keskinliğisağladığını göstermektedir. 

Ayrıca Sınıf Ağırlıklı Çekirdek (CWK) olarak adlandırılan başka bir yaklaşım da bu 

çalışmada önerilmiştir. Bu yöntem CMK’ya benzemektedir ancak; CWK özellikle 

hesaplama zamanı konusunda bir gelişme sağlamaktadır.  Temelde bu sınıf temelli 

ağırlıklandırma her sınıf için terimleri önemlilik durumlarına göregruplandırır. Bu 

nedenle bu sınıf temelli ağırlıklandırmabelgelerin gösterimini düzeltir ki, bu da terimler 

arasına sınıf temelli bağımlılıklar getirerek vektör uzayı modelinin dikliğini değiştirir. 

Sonuç olarak, istisnai durumlarda, hiç ortak terim içermedikleri halde eğer belirli bir 

sınıf için benzer şekilde ağırlıklandırılmış iki belge benzer görülebilir. 

Bu tezin temel katkısı standart çekirdeklerden çok daha iyi sınıflandırma doğruluğu 

sergileyebilen çözümler geliştirilmesi olarak düşünülebilir. Önerilen yaklaşımların 

ikinci katkısıbu modellerin WordNet gibi dış anlambilimsel kaynaklardan bağımsız 

olmaları ve bu sebepten ötürü herhangi bir dile uygulanabilir olmalarıdır. Bizim 

yöntemlerimizin diğer bir katkısı da eğiticisiz anlambilimsel benzerlik ölçümleri gibi 

diğer terim temelli anlambilimsel benzerlik yöntemleri ile kolayca kombine edilebilir 

bir yapıya temel oluşturmalarıdır. 

Yöntemlerimizin özellikle sınıf bazlı yöntemlerimizi başka bir avantajı da, bunların 

yürütüm süresi ile ilgilidir. Bizim bilgimize göre, yüksek dereceli yollar ve terimlerin 
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sınıf temelli değerleri SVM’in dönüşüm aşamasında ilk kez kullanılmaktadırve metin 

sınıflandırma için bir çekirdekte terimlerin anlambilimsel olarakdüzeltilmesi üzerine 

önemli bir bakış açısı kazandırabilir. 

Anahtar Kelimeler:Destek Vektör Makineleri, metin sınıflandırma, anlambilimsel 

düzeltmeli çekirdek, eğiticili çekirdek, yüksek-mertebeli eş-oluşum, yüksek-mertebeli 

yollar, Helmholtz presibi, sınıf-temelli terim ağırlıklandırma. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Literature Review 

In recent years, with the ever accumulating online information on the Internet and social 

media, text categorization has become one of the key techniques for organizing and 

handling textual data. Automatically processing these huge amounts of textual data is an 

essential problem. Text classification can be defined as the utilization of a supervised 

learning methodology to assign predefined class labels to documents using a model 

learned from labels of the documents in the training set. An important requirement of 

efficient and accurate text classification systems is to organize documents into pre-

determined categories that contain similar documents. In order to achieve this goal, 

several classification algorithms depend on similarity or distance measures that compare 

pairs of text documents similarity. It is also known that vector space representation of 

textual documents yields high dimensionality and related to this; sparsity. This is 

especially a problem when there are a large number of category labels but limited 

amount of training data. It is thus crucial that a good text classification algorithm should 

scale well with the increasing number of features and classes. Most importantly, words 

in textual data carry semantic information, i.e., the sense carried by the terms of the 

documents. Consequently, an ideal text classification algorithm should be able to make 

use of this semantic information.  

Bag-of-words (BOW) feature representation is well accepted as the fundamental 

approach in the domain of text classification. In BOW approach documents are 

characterized by the frequencies of individual words or terms that occur in the 
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document and each term represents a dimension in a vector space independent of other 

terms in the same document[1]. It basically focuses on the frequency of words. The 

BOW approachover simplifies the representation of terms in documents by ignoring the 

several different syntactic or semantic relations between terms in natural language, e.g. 

it treats polysemous words (words with multiple meanings) as a single entity. For 

instance the term “bank” may have different meanings like financial institution or a 

river side based on the context it appears. Additionally, the BOW feature representation 

maps synonymous words into different components [1]. In principle, as Steinbach et al. 

[3] investigate, each class of documents has two kinds of vocabulary: one is “core” 

vocabulary which are intimately associated to the topic of that class, the other type is 

“general” vocabulary (e.g. stop words) those may have similar distributions on different 

classes. Therefore, two different documents from different classes may share many 

general words and will have high similarity based on their BOW representations. 

In order to address these problems several methods have been proposed which use a 

measure of relatedness between term on Word Sense Disambiguation (WSD), Text 

Classification and Information Retrieval (IR) domains. Semantic relatedness 

computations fundamentally can be categorized into three such as knowledge-based 

systems, statistical approaches and hybrid methods which combine both ontology-based 

and statistical information[4]. Knowledge-based systems use a thesaurus or ontology to 

enhance the representation of terms by taking advantage of semantic relatedness among 

terms, for examples see[5], [6], [7],  [8],[9], [10],[11] and [2].  For instance in [5]and 

[11] the distance between words in WordNet [12] is used to capture semantic similarity 

between English words. The study in [5] uses super-concept declaration with different 

distance measures between words from WordNet such as Inverted Path Length (IPL), 

Wu-Palmer Measure, Resnik Measure and Lin Measure. A recent study of this kind can 

be found in [13], which uses HowNet as a Chinese semantic knowledge-base. The 

second type of semantic relatedness computations between terms are corpus-based 

systems in which some statistical analysis based on the relations of terms in the set of 

training documents is performed in order to reveal latent similarities between them [44]. 

One of the famous corpus-based systems is Latent Semantics Analysis (LSA) [45] that 

partially solves the synonymy problem. Finally, approaches of the last category are 

called hybrid since they combine the information acquired both from the ontology and 
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the statistical analysis of the corpus [9] and[92]. There is a recent survey in [44] about 

these studies. 

1.2 Aims of the Dissertation 

The aim of this work is to develop semantic kernels which make use of implicit 

semantic relations to improve the accuracy of kernel based classifier such as SVM. The 

proposed approaches explore the capabilities of higher-order paths and class-based 

meaning and class-based term weights in both supervised learning and SSL settings for 

SVM. The suggested approaches smooth the terms of a document in BOW 

representation (document vector represented by term frequencies) by higher-order paths 

between both documents and terms, class-based meaning values of terms and class-

based term weights. Our target is to capture latent semantic information between the 

terms and between the documents. It is important to note that SVM with linear kernel is 

one the state of the art algorithms for text classification [19], [20]. This traditional 

kernel can be considered as a first-order method since its context is a single document 

and it model just the first-order co-occurrences of the terms. However, higher-order 

kernels make use of the higher-order paths that include several different terms and 

documents in the context of the whole dataset. Furthermore, class-based kernels 

increase the importance of significant or in other words meaningful terms for each class 

while reducing the importance of general terms which are not useful for discriminating 

the classes. Theseproposed approaches reduce the above mentioned disadvantages of 

BOW and improves the prediction abilities in comparison with standard linear kernels 

by exploiting latent semantics between terms and documents also by increasing the 

importance of class specific concepts which can be synonymous or closely related in the 

context of a class.  

1.3 Hypothesis 

It has been shown that [2], [4], [5],[11], [12], [13]; by replacing the standard kernel 

functions such as linear kernel with customized kernel functions which take advantage 

of some background knowledge such as Wikipedia, WordNet it is possible to increase 

the performance of SVM in the text classification domain. Based on this, we design 

broad variety of methods in order to explore the capabilities of higher-order paths, 

class-based meaning values and class-based weighting of terms in both supervised 
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learning and SSLsettings for SVM. Some of the suggested kernels are based on higher-

order paths and motivated by the studies of higher-order Naïve Bayes [14], [15] and 

Higher-Order Smoothing [16], [17] which make use of the higher-order paths between 

terms, and the work of [18]which focuses on the higher-order paths between both terms 

and documents. We applied this methodology in a SSL setting with an addition of a new 

approach to initial labeling of unlabeled data. The other suggested approaches are based 

on class-based term values. One of them is based on a meaning measure, which 

calculates the meaningfulness of the terms in the context of classes. The documents 

vectors are smoothed based on these meaning values of the terms in the context of 

classes. The other class-based approach is based on the abstract term weights. In these 

class-based methods, since we efficiently make use of the class information in the 

smoothing process, they can be considered supervised smoothing kernels.  

In our context semantic kernel refers to an approach which extracts or implicitly makes 

use of semantic relations between terms that seem to be unrelated in Bag-of-words 

(BOW) model. These semantic relations can be language-wise general relations such as 

synonyms as explicitly encoded in WordNet or they can be precise to a specific domain 

such as a particular class of documents. 

The first advantage of our suggested solutions is the capability of them to perform much 

better than standard kernels in terms of classification accuracy. To demonstrate 

performance improvements, we conduct several experiments on varied benchmark 

datasets with several different test environments. According to our experimental results 

our models exceed the performance of linear kernel which is one the state of the art 

kernels for text classification. In linear kernel, the inner product between two document 

vectors is used as kernel function, which utilizes the information about shared terms in 

these two documents. However, our models can take advantage of higher-order paths 

and class-based values of terms; therefore they extend the boundaries of being a single 

document as the context.  

The second advantage of the proposed approaches is about their simplicity and 

independency of the outside semantic sources such as WordNet.  As a result they can be 

applied to any language domain without adjustments or parameter optimizations. To 

show this wide applicability of our kernels we present results with different 

experimental settings, such as: (i) several datasets from different domains such as 

newsgroups postings and movie reviews classified into sentiments, (ii) several datasets 
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with different languages such as English and Turkish, (iii) different training portions of 

the dataset in order to observe the effect of sparsity, and (iv) varying values of 

misclassification cost (C) parameter of the SVM. 

The other benefit of our methods is that they also form a foundation that can easily be 

combined with other term-based semantic similarity methods such as unsupervised 

semantic similarity measures. It is also possible to combine with similarities between 

terms derived from a semantic source like WordNet or Wikipedia.   

Another advantage of our methods, in particular of our class-based methods is about 

their execution time. We evaluate this by conducting several experiments. Our class-

based methods outperform other corpus-based semantic kernels in many cases in terms 

of accuracy with less execution time.  

Additionally, to the best of our knowledge, all of our kernels are the first studies to use 

higher-order paths, meaning measure and abstract term weights in a semantic kernel for 

SVM. We evaluated all of the proposed approaches by conducting a large number of 

experiments on well-known textual datasets and present results with respect to different 

experimental conditions. We compare our results with linear kernel which is the 

traditional kernel used in SVM. Please note that linear kernel is one the state of the art 

kernels for text classification [19], [20].  Our results show that proposed approaches 

outperform other kernels in most of the cases. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

Text classification can be defined as automatically classifying documents according to 

predefined category-labels, usually by using machine learning algorithms. There are 

large amounts of textual data accumulated both in organizations and especially on the 

World Wide Web (WWW) through social networks, blogs, news, forums…etc. This 

huge set of documents continues to increase by the contribution of millions of people 

every day. Automatically processing these increasing amounts of textual data is one of 

the critical problems for research and commercial entities. Text classification is the 

basis for several important applications such as document filtering and sentiment or 

opinion classification. 

2.1 Traditional Classification Approaches 

In machine learning applications there are two conventional strategies; supervised 

learning and unsupervised learning. Traditional supervised learning algorithms need a 

set of sufficient labeled data as training set to train the classifier, which will be used to 

predict the class memberships of the unlabeled instances. On the other hand, 

unsupervised learning, solely based on unlabeled samples, doesn’t need any labeled data 

to learn a model. So as to train a classifier, it attempts to discover the indirect structure 

of unlabeled data [21]. There has been massive amounts of accumulated data on the 

web, especially on social networks, blogs and forums and continue to increase day by 

day without any doubt. But unfortunately most of the available data does not have pre-

assigned labels which limit their use in several practical machine learning application 

fields such as text classification, sentiment recognition, speech recognition. Moreover, 

generally it can be time-consuming, tedious and expensive to assign labels to them 
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manually. Most importantly, learning a classifier using a small number of labeled 

training data may not generate sufficient performance. In situations where labeled data 

is inadequate, many algorithms have suggested exploiting and utilizing the unlabeled 

data to support to learning process for better classification. SSL approaches utilize not 

only labeled data but also unlabeled data to increase the classification accuracy. 

2.1.1 Supervised Learning 

Supervised Classification is a supervised task, where supervision is provided in the form 

of a set of labeled training data, each data point having a class label selected from a 

fixed set of classes [22]. The goal in supervised classification is to learn a model from 

the training data that gives the best prediction of the class label of unseen (test) data 

points.The learned model is represented in the form of classification rules, decision 

trees, or mathematical formulae. Then, the model is used for classification. First, the 

predictive accuracy of the model (or classifier) is estimated. A simple way is to use a 

test set of class-labeled samples, which are randomly selected and are independent of 

the training samples. The accuracy of a model on a given test set is the percentage of 

test set samples that are correctly classified by the model. If the accuracy of the model is 

considered acceptable, the model can be used to classify future data of which the class 

label is not known[22]. 

The popular classification techniques are listed below: 

 Decision Tree Induction  

 Bayesian Classification  

 Genetic Algorithms for Classification  

 kNearest Neighbor Classifier (k-NN) 

 Support Vector Machines (SVMs) 

2.1.1.1 Support Vector Machines 

Support Vector Machines (SVM) was first proposed by Vapnik, Guyon and Boser [23]. 

A more detailed analysis is given in [24]. In general, SVM is a linear classifier that aims 

to finds the optimal separating hyperplane between two classes. The common 

representation of linearly separable space is  
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0)(  bdwT             (2. 1) 

where w is a weight vector, b is a bias and d is the document vector to be classified. The 

problem of finding an optimal separating hyperplane can be solved by linearly 

constrained quadratic programming which is defined in the following equations: 

minimize: 



l

i
iCw

1

2

2

1
           (2.2) 

with the constraints  
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      (2.3) 

where T

l )...,( 21   is the vector of slack variables and C is the regularization 

parameter, which is used to make a balance between training error and generalization, 

and has a critical role: if it is chosen as too large, there will be a high penalty for non-

separable points, many support vectors will be stored, and the model will overfit; on the 

other hand if it is chosen too small, there will be underfitting [25]. 

The problem in Eq. (2.2) can be solved using the Lagrange method [25]. After 

thesolution the resultant decision function can be formulated as:  





l

i
jiii bddkyxf

1

)),(sgn()(            (2.4) 

where i is a Lagrange multiplier, k is a proper kernel function and samples id with 

0i  are called support vectors. An important property of a kernel function is that it 

has to satisfy Mercer’s condition which means being semi-positive[25]. We can 

consider a kernel function as a kind of similarity function, which calculates the 

similarity values of data points, documents in our case, in the transformed space. 

Therefore, defining an appropriate kernel has the direct effect on finding a better 

representation of these data points as mentioned in in [2], [11]. Popular kernel functions 

include linear kernel, polynomial kernel and RBF kernel: 

 Linear kernel: jiji ddddk ),(          (2.5) 

 Polynomial kernel: ....2,1,)1(),( etcqddddk q
jiji       (2.6) 

 RBF kernel: )exp(),(
2

jiji ddddk           (2.7) 
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For the problems of multiclass classification where there are more than two classes, a 

decomposition methodology is used to divide it into sub problems. There are basically 

two categories of multiclass methodology [26]:  the all-in-one approach considers the 

data in one optimization formula [27], whereas the second approach is based on 

decomposing the original problem into several smaller binary problems, solving them 

separately and combining their solutions. There are two widely used strategies for this 

category: “one-against-the-rest” and “one-against-one” approaches [20],[26].It is 

possible and common to use a kernel function in SVM which can map or transform the 

data into a higher dimensional feature space if it is impossible or difficult to find a 

separating hyperplane between classes in the original space; besides SVM can work 

very well on high dimensional and sparse data [19]. Because of these benefits of SVM, 

linear kernel is one of the best performing algorithms in text classification domain since 

textual data representation with BOW approach is indeed quite sparse and requires high 

dimensionality.  

Originally, SVMs were developed to perform binary classification. However,in real 

world classification problems involve more than twoclasses. A number of methods to 

generate multiclass SVMs from binary SVMs have beenproposed by researchers and is 

still a continuing research topic [28].There are two strategies[29]: 

The One-Against-All (1AA) approach represents the earliest and most common SVM 

multiclass approach [30]. This method is also called winner-take-all classification. It 

assumes that the dataset is tobe classified into M classes: Therefore, M binary SVM 

classifiers may be created whereeach classifier is trained to distinguish one class from 

the remaining M-1 classes. Forexample, class one binary classifier is designed to 

discriminate between class one datavectors and the data vectors of the remaining 

classes. Other SVM classifiers areconstructed in the same manner. During the testing or 

application phase, data vectors areclassified by finding margin from the linear 

separating hyperplane. The final output isthe class that corresponds to the SVM with the 

largest margin. 

The One-Against-One (1A1) approachis another methodology in whichSVM binary 

classifiers for all possible pairs of classes are created[31], [32]. The output from each 

classifier in the form of a class label is obtained. Theclass label with the highest 

frequency is assigned to that point in the data vector. In case of a tie,a tie-breaking 

strategy may be adopted. A common tie-breaking strategy is to randomlyselect one of 
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the class labels that are tied. The main disadvantage of this method is the increase in 

thenumber of classifiers as the number of class increases. For example, for 7 classes of 

interest, 21 classifiers will be created. 

SVM is powerful to approximate any training data and generalizes good results on 

given datasets. The complexity in terms of kernel affects the performance on new 

datasets [34].  SVM supports parameters for controlling the complexity and above all 

SVM does not tell how to set these parameters and one should be able to determine 

these parameters by Cross-Validation on the given datasets [22], [33]. The major 

strengths of SVM are the training is relatively easy. It scales relatively well to high 

dimensional data and the trade-off between classifier complexity and error can be 

controlled explicitly.  

Choosing the most appropriate kernel and its parameters highly depends on the problem 

at hand. The choice of a kernel depends on the problem at hand because it depends on 

what is trying to be modeled. For example, radial basis functions allowpicking out 

circles (or hyperspheres) - in contrast with the linear kernel, which allows only picking 

out lines (or hyperplanes).The motivation behind the choice of a particular kernel can be 

very intuitive and straightforward depending on what kind of information is being 

expected to extract about the data[37]. Automatic kernel selection is possible and is 

discussed in the works by Tom Howley and Michael Madden[36].So the weakness of 

SVM includes choosing the most appropriate kernel function [33], [34], [35], [38]. 

2.1.1.2 Semantic Supervised Approaches for Text Classification 

Linear kernel has a wide usage in the domain of text classification due to the high 

dimensionality of the representation. As shown in Eq. (2.5) the kernel function is based 

on the inner products of feature vectors of the documents. So a linear kernel captures 

similarity between two documents as much as the terms they share. This yields certain 

problems due to the nature of natural language such as synonymy and polysemy since it 

is not considering semantic relations between terms. This can be addressed by 

integrating semantic information between words using semantic kernels such as [2], [4], 

[8], [11], [27], [39], [40]. 

According to the definition given in [2], [8], [23], [25],[41] any function in the form 

given in Eq. (2.8) is a valid kernel function: 

http://en.wikipedia.org/wiki/Hyperplane
http://www2.it.nuigalway.ie/m_madden/profile/pubs/ai_review_05.pdf
http://www2.it.nuigalway.ie/m_madden/profile/pubs/ai_review_05.pdf
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 )(),(),( qpqp ddddk  (2.8)  

wheredp and dq are input space vectors and   is a suitable mapping from an input space 

into a feature space.  

As mentioned in Section 1, studies which enhance the representation of documents can 

be categorized according to their design principles follows: 

 Domain knowledge based systems: These systems use ontology or thesaurus to 

capture the concepts in the documents and incorporate the domain knowledge of 

separate terms into the words for representation in textual data. They enhance the 

representation of terms by taking advantages of semantic relatedness among terms. 

These include [2], [6], [7], [8], [9], [10], [11]. For instance in[11], WordNet [12]  is 

used to calculate semantic similarity between English words. The study in [41] uses 

super concept declaration with some distance measures between words from 

WordNet like Wu-Palmer Measure, Inverted Path Length (IPL), Lin Measure and 

Resnik Measure. A recent study of this kind uses HowNet as a Chinese semantic 

knowledge-base[13]. In[42], the authors present distinct types of approaches to 

combine the background knowledge in ontologies into the representation of textual 

data and show the improvement in the classification accuracy. Similar works also 

can be found in[10], [43].  

 Statistical approaches: These systems use statistical analysis depending on the 

relations of terms in the set of training documents to expose latent similarities 

between them[44]. One of the well-known corpus-based systems is Latent 

Semantics Analysis (LSA) [45]which partially solves the synonymy problem. 

 Hybrid methods: These approaches combine the information gathering from 

ontology and statistical analysis results from the corpus as in[9]. There is a recent 

survey in [7] about these methods. 

 Word sequence enhanced systems: These types of representations treat the words as 

string sequences. Typically the main idea is based on a word sequence taken out 

from documents by customary string matching technique. N-gram based 

representation [46] and similar works in[47], [48], [49]are conventional examples of 

these kinds of systems. 
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 Linguistic enriched methods: They make use of syntactic and lexical rules to extract 

the noun phrases, terminologies and entities from documents and improve the 

representation using these linguistic units. For instance in [50] multi-words are used 

to expand the effectiveness of text retrieval system. Also Lewis [51] compares the 

word-based indexing and phrase-base indexing for representation of documents. 

Siolas and d’Alché-Buc in [11] propose a semantic kernel that is intuitively generated 

from the semantic relations of English words in WordNet. The hierarchies and 

connections between terms in WordNet are used to calculate semantic relatedness 

between two words. They benefit from this information to enrich the Gaussian kernel. 

According to this study, using a semantic similarity metric as a smoothing technique 

increases the correct classifications.  

Bloehdorn et al.[41], uses a semantic kernel with super-concept declaration. Their 

purpose is to create a kernel function that captures the knowledge of topology that 

belongs to their super-concept expansion. This kernel function is given in Eq. (2.9), 

where Q is a semantic smoothing matrix. The Q is composed of P and P
T
 which 

contains super-concept information about the corpus. Their results show that they get 

remarkable improvement in performance, particularly in situations where the feature 

representations are highly sparse or little training data exists[41].  

T

q

T

pqp dPPdddk ),(         (2.9) 

Bloehdorn and Moschitti [5] designed a Semantic Syntactic Tree Kernel (SSTK) by 

combining syntactic dependencies like linguistic structures with semantic knowledge 

that is gathered from WordNet. Similarly, in[8], WordNet is used as a resource of 

semantic knowledge base. Nevertheless, they express that WordNet’s coverage is not 

sufficient and a more extensive background knowledge resource is required. This is also 

one of the key reasons that other studies aim to use resources with a wider coverage 

such as Wikipedia. 

One of those works is [1]. The similarity between two documents in the kernel function 

designed as in Eq. (2.9)and P is a semantic proximity matrix that is created from 

Wikipedia. The semantic proximity matrix is composed of three measures: 1) content-

based similarity measure which depends on Wikipedia articles’ BOW representation, 2) 

out-link category-based measure that brings an information related to the out-link 

categories of two associative articles in Wikipedia, 3) distance measure which is 
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calculated as the length of the shortest path connecting the two categories of two articles 

belong to, in the Wikipedia’s category taxonomy. The authors state that adding 

semantic knowledge that is extracted from Wikipedia into document representation 

overcomes some of the shortages of the BOW approach and improves the accuracy. 

The study in [4] also use WordNet to build a semantic proximity matrix based on 

Omiotis[40], which is a knowledge based measure for computing the relatedness 

between terms. Nasir et al. incorporated this measure into a (Term Frequency-Inverse 

Document Frequency) TF-IDF weighting approach. They show that their Omiotis 

embedded methodology is superior to standard BOW representation. Nasir et al. further 

broadened their work by taking just top-k semantically related terms and utilizing some 

evaluation metrics on larger text datasets [9]. 

Semantic Diffusion Kernel is presented and studied in[27], [39]. Such a kernel is 

obtained by an exponential transformation on a given kernel matrix as in  

)exp()( 00 KKK             (2.10) 

where 0K  is the gram (kernel) matrix of the corpus in BOW representation and  is the 

decay factor. As stated in [27] the kernel matrix 0K  is created by using Eq. (2.11) 

TDDG              (2.11) 

where D is the term by document matrix of the corpus. In [27], [39] it has been 

demonstrated that )(K relates to a semantic matrix )
2

exp(
G

 as in Eq. (2.12). 
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where G is a generator that displays the initial semantic similarities between words and 

Sis the semantic matrix of the exponential of the generator. According to the 

experiments in [27] the diffusion matrix exploits higher-order co-occurrences to gather 

latent semantic relationships between terms in the WSD tasks from SensEval. 

Zhang et al. [52], [52], focuses on the usage of multi-word phrases for text 

representation in the task of text classification. In their work they extract multi-word 

phrases by using the syntactical structure of the noun phrases. They present two 

strategies which are called general concept representation and subtopic representation, 

to represent the documents using extracted multi-word phrases[52]. Their first strategy 
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is based on the usage of general concepts for the representation of documents. The 

second strategy uses the subtopics of the general concepts of representation. Following 

this they carry out a serious of experiments with SVM linear kernel and non-linear 

kernels in order to see the effects of using multi-word phrases in a kernel function. They 

express the benefits of using multi-word phrases with the following aspects[52]: Firstly, 

using multi-word phrases decreases the number of dimensions. Secondly, acquiring 

multi-word phrases is an easy task. Thirdly, multi-word phrases carry more semantics 

than individual words. According to their experimental results, their approach with 

multi-word linear kernel outperforms the standard linear kernel[52]. 

2.1.2 Semi-Supervised Learning 

There has been massive amounts of accumulated data on the web, especially on social 

networks, blogs and forums and continue to increase day by day without any doubt. But 

unfortunately most of the available data does not have pre-assigned labels which limit 

their use in several practical machine learning application fields such as text 

classification, sentiment recognition, speech recognition. Moreover, generally it can be 

time-consuming, tedious and expensive to assign labels to them manually. Most 

importantly, learning a classifier using a small number of labeled training data may not 

generate sufficient performance. In situations where labeled data is inadequate, many 

algorithms have suggested exploiting and utilizing the unlabeled data to support to 

learning process for better classification. Semi-supervised Learning (SSL) approaches 

utilize not only labeled data but also unlabeled data to increase the classification 

accuracy. Recently, SSL has become popular and gained increased attention of both 

academic and commercial platforms as a new machine learning strategy. SSL is 

different from two ordinary classification approaches by the usage of unlabeled data to 

mitigate the effect of insufficient labeled data on classifier accuracy. 

Many SSL algorithms have been offered in the past decades, like co-training [53], self-

training [54],[55] graph-based methods [56], semi-supervised support vector 

machines[21], Expectation-Maximization (EM) with generative mixture models [57], 

transductive support vector machines[58]. 

Semi-supervised learning can be either transductive or inductive. Most of the learning 

models and systems in artificial intelligence apply inductive inference where a model is 

derived from data and this model is further applied on new data. The model is created 
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without taking into account any information about a particular new data vector. The 

new data would fit into the model to certain degree (an error is estimated). The model is 

in most cases a global model, covering the whole problem space. Creating a global 

model that would be valid for the whole problem space is a difficult task and in most 

cases but; it is not necessary. The output for a new vector is calculated based on the 

activation of one or several neighboring local models (rules). The inductive learning and 

inference approach is useful when a global model of the problem is needed even in its 

very approximate form, when incremental, on-line learning is applied to adjust this 

model on new data and trace its evolution[59]. A block diagram of an inductive 

reasoning system is shown in Figure 2.1. 

 

 

 

 

 

Figure 2.1A block diagram of an inductive reasoning system. 

A simple transductive inference method is the k-nearest neighbor method (k-NN), 

where a new data vector xi is classified into one of the existing classes in the data 

samples from D based on the majority of classes among k nearest to the new vector 

samples that form the set Di. The distance is measured as Euclidean distance or as 

another type of distance. In terms of prediction systems, the output value yi for the new 

vector xi is calculated as the average value of the output values of the k-nearest samples 

from the data set Di[59]. A block diagram of a transductive reasoning system is shown 

in Figure 2.2 

 

 

 

 

 

Figure 2.2A block diagram of a transductive inference system. 
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2.1.2.1Semi-Supervised Learning Approaches 

Semi-Supervised Learning (SSL) methods make use of unlabeled examples to build 

better classifiers with higher accuracy when there are a few amounts of labeled training 

examples. In a typical SSL scenario there are labeled training examples (L) and 

unlabeled examples (U). Co-training and Self-training are two popular SSL algorithms. 

Self-training works as follows [54]; a classifier is constructed from L and used to 

estimate the labels for samples in U. Then m unlabeled samples that the classifier has 

high classification confidence in U are assigned labels and moved to extend L. After 

that, the classifier is re-trained using the enlarged data set L. Although it is a very 

simple algorithm; since it is not easy to guarantee the convergence of it, the latter three 

steps are commonly repeated for a pre-defined maximum iteration number of times or 

reaching up until some heuristic convergence standard (i.e., there is no remaining 

unlabeled instances in U).  

Co-training works like self-training except that it assumes that attributes can be divided 

into two different views. According to co-training algorithm input features are logically 

partitioned into two independent groups, and two separate classifiers are trained on 

these two subsets in labeled data set (L) [53]. Following this, each classifier is attempted 

to label the unlabeled samples in U; to put it in more detail; for each classifier, the 

instances in U with the highest classification confidence are selected and added to the 

labeled data set L. Consequently these two classifiers can assist for enlarging the data 

set L. Both classifiers are retrained on this expanded data set, and the steps are re-

performed a fixed number of times. Thus each classifier then categorizes the unlabeled 

data, and teaches the other classifier with some unlabeled instances (those have their 

newly estimated labels with high classification confidence). Each classifier will be 

trained again with the supplementary training examples specified by the other classifier, 

and the procedure is repeated for higher accuracy[21],[53],[60]. As it is discussed in 

[61] the main idea in co-training is that a classifier may give suitable labels to some 

samples whereas it may be challenging for the other classifier to do so. Therefore, each 

classifier can enlarge the training set with instances which are actually informative and 

important for the other classifier.  

Different kinds of self-training and co-training algorithms have offered by researchers 

over the years. One variant of them is to use entire unlabeled data in each iteration 
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therefore there will no need for the selection criterion. One example of this kind is 

presented in [62]. The labels of the all unlabeled examples are predicted and then used 

to extend the training set and update the classifier at all iterations. In [57], co-EM (co-

Expectation Maximization) is presented which uses all the unlabeled samples rather 

than a number of samples chosen from the data pool. Another kind of approaches is to 

use active learning technique to choose unlabeled examples and then ask some human 

experts to label them which yields no mislabeled examples will occur, in principle. In 

[63], a system with active learning is applied to choose unlabeled examples for the 

multi-view semi-supervised co-EM algorithm. In [64], in each iteration, uncertainty 

sampling is used to select unlabeled instances, then a cost-sensitive classifier is built on 

the expanded labeled data and all unlabeled instances with assigned labels. EM 

algorithm is used in an active learning framework in order to improve SSL in RBF and 

is applied to content-based image retrieval in [111]. A very similar method (with the 

addition of suitable preprocessing of the data) is described in [112] for text 

classification. Nevertheless active learning methods are difficult to apply since they 

cannot be accomplished without human experts. 

Confidence selection is a popular instance selection criterion, which selects unlabeled 

instances to add to the training set which are classified with high classification 

confidence [53],[54], [57], [65],[66]. Other selection methods have also been suggested 

by researchers. For instance, Wang et al., [66], offered an adapted value difference 

metric as the selection technique in self-training. Their approach is based on decision 

tree classifiers and used to classify sentences as subjective or objective. They use the 

Naive Bayes trees algorithm, in order to build a Naive Bayes Classifier at each leaf of 

the tree. Their approach works well on very small datasets. In [67], a new data editing 

approach, named SETRED, is presented. Their approach benefits from the information 

of the neighbors of each self-labeled instance to recognize and remove the mislabeled 

samples from the self-labeled data. In [68], ISBOLD selection strategy is used to 

roughly prevent possible performance degradation in self-training and co-training. 

Li et al. [69]presents a new methodology which uses three learners. According to [69]L 

denotes the labeled example set, h1, h2 and h3indicate initial learners and U show the 

unlabeled example set and x is an example in U. Firstly, three classifiers are trained 

from labeled examples. Then, any two of those classifiers are used to label the 

unlabeled sample x, if two of them predict the same label; then that example will be 
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utilized to teach the third classifier. It repeats this procedure until none of h1, h2 and h3 

changes. The final estimation is accomplished with a majority vote among all the 

learners. 

Ideally, the selected unlabeled examples (together with the assigned labels) can finally 

assist to learn a better classifier. However, Cozman (2003) [70]stated that unlabeled 

data may degrade classification accuracy in some extreme situations and when the 

model assumptions are not correct. For instance in [71], an extensive empirical study 

was conducted on several popular SSL algorithms (including co-training and self-

training) using different base Bayesian classifiers. According to their results on 26 UCI 

datasets, if the classifier has poor performance and incorrectly assigns labels to some 

self-labeled examples, there will be accumulated mislabeled data which yields the final 

performance will be jeopardized. McCallum and Nigam (1998) [62]mention that, they 

get better classification performance by combining a small set of labeled samples with a 

large set of unlabeled data with EM . Unfortunately, there are many studies show that 

unlabeled samples are quite often detrimental to the performance of classifier in many 

situations [70].  According to those studies the more unlabeled data are joined with a 

fixed number of labeled instances, the poorer is the classification performance of the 

corresponding classifier. Therefore, it is obvious that, the classifier should have a good 

classification performance on the original labeled data if it desires to have good 

prediction performance on future data. More accurately, utilizing the accuracy on the 

original labeled data to select more reliable unlabeled samples seems critical for the 

final classification performance of the SSL algorithm.  

In [72], a C4SVM algorithm is presented, which includes misclassification costs into 

the optimization function of a semi-supervised SVM. In some algorithms only one base 

learner is applied, which use the unlabeled samples iteratively based on its own 

knowledge. Some approaches include using EM algorithm to estimate posterior 

parameters of a generative model, Naive Bayes, by labeling each unlabeled sample, i.e. 

a probability for each class as it is done in [62]; using the unlabeled data to search for a 

better configuration of Bayesian Network [73]; using a transductive inference for SVM 

on a special test set [19]. The self-training algorithm[57] is of that kind, where all 

iterations the learner converts the most confidently classified unlabeled sample of each 

class into a labeled training example. These methods and their variants are also 
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described, analyzed and compared in[65]. Furthermore there is a comprehensive survey 

that includes almost all of well-known semi-supervised learning algorithms in [21]. 

Transductive Support Vector Machines (TSVMs) is an extension of traditional SVM 

with the contribution of unlabeled data. The aim is to predict the labels of the unlabeled 

data and use them in the training step; therefore a linear boundary has the maximum 

margin on the labeled data (the original labeled data with the addition of labeled 

unlabeled data this time). One of the recent studies is presented in [113] which is the 

implementation of semi-supervised support vector machines (S3VMs).  Li et al. name 

their approach as S4VMs and explain that S4VMs tries to exploit multiple candidate 

low-density separators in contrast to common S3VMs which typically focus on 

approaching one optimal low density separator. Their comprehensive experiments 

validate the effectiveness of S4VMs.Also there is a recent study [114]in which several 

semi-supervised methods and applications are described. 

2.2 Higher-Order Co-Occurrence Paths 

There are numerous systems with higher-order co-occurrences in text classification. One 

of the most widespread of them is the Latent Semantic Indexing (LSI) algorithm. The 

study in [74] verified arithmetically that performance of LSI has a direct relationship 

with the higher-order paths. LSI’s higher-order paths extract “latent semantics”[15], [74]. 

Based on these work, the authors in [14], [15] built a new Bayesian classification 

framework called Higher-Order Naive Bayes (HONB) which presents that words in 

documents are strongly connected by such higher-order paths and that they can be 

exploited in order to get better performance for classification. Both HONB [14] and HOS 

[16], [17] are based on Naïve Bayes.  

A higher-order path can also be represented as a chain of co-occurrences of entities 

(attribute values, words, terms, etc.) in different records (instances, documents, etc.). 

Actually they can extract co-occurrence relations from virtually any dataset as long as 

there is a meaningful context of entities[15]. Kontostathis et al.[74] proved 

mathematically and demonstrated empirically that LSI is based on the use of higher- 

order relations, in particular higher-order co-occurrences. The authors also 

demonstrated that the retrieval performance of LSI is correlated with higher-order 

relations. Higher-order relations in LSI capture “latent semantics” [15], [74]. 
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Ganiz et al. claimed that their results on several textual datasets show that when training 

data is scarce (i.e., a small number of labeled instances), HONB significantly reduces 

the generalization error by leveraging higher-order paths[15].  

Benefits of using on higher-order paths between documents between terms[14], [17] are 

demonstrated inFigure 2.3. There are three documents, d1, d2, and d3, which consist of a 

set of terms {t1, t2}, {t2, t3, t4},and {t4, t5}, respectively. Using a traditional similarity 

measure which is based on the common terms (e.g. dot product), the similarity value 

between documents d1 and d3 will be zero since they do share any terms. But this 

measure is misleading since these two documents have some connections in the context 

of the dataset over d2 as it can be perceived inFigure 2.3. This supports the idea that 

using higher-order paths between documents, it is possible to obtain a non-zero similarity 

value between d1 and d3 which is not possible in the BOW representation. This value 

turns out to be larger if there are many interconnecting documents like d2between d1 and 

d3. This is caused by the fact that the two documents are written on the same topic using 

different but semantically closer sets of terms.  

InFigure 2.3, there is also a higher-order path between t1 and t3. This is an illustration of 

a novel second-order relation since these two terms do not co-occur in any of these 

documents and can remain undetected in traditional BOW models. However, we know 

that t1 co-occurs with t2 in document d1, and t2 co-occurs with t3 in document d2. The 

same principle that is mentioned in the case of documents above applies in here. The 

similarity between t1 and t3 becomes more eminent if there are many interconnecting 

terms such as t2 or t4 and interconnecting documents like d2. The regularity of these 

second-order paths may reveal latent semantic relationships such as synonymy [17]. 

2.3 Term Weighting Methods 

There are different approaches to assign appropriate weights to the terms to improve the 

classification performance: For example; binary, TF, TF-IDF [75], [76] and its variants 

are the traditional methods borrowed from IR field and belong to the unsupervised term 

weighting methods. Also there are approaches which have proper place in the supervised 

term weighting category since term weights are calculated according to the category 

membership information of training documents. One type of them is to weight terms by 

using feature selection metrics, i.e. gain ratio, Information Gain (IG), odds ratio and so 
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Figure 2.3Graphical demonstration of first-order, second-order and third-order paths 

between terms through documents[93]. 

on, in[77], [78]. Another recent approach that improves the terms’ discriminating power 

for text categorization task is Term Frequency-Relative Frequency (TF-RF)[79]which 

considers only the frequency of relevant documents (i.e. those which contain this term). 

Furthermore [80], [81] is inspired from Term Frequency-Inverse Class Frequency (TF-

ICF)[82], [83] and extends the boundaries of traditional weighting method TF-IDF [75] 

by the contribution of category information of terms in the training set. 

TF-IDF [75] is the most popular term weighting method. Its formula is given in Eq. 

(2.14), where tfw represents the frequency of the term w in the document and IDF is the 

inverse of the document frequency of the term in the dataset. IDF’s formula is also given 

in Eq. (2.13) where |D| denotes the total number of documents and dfwrepresents the 

number of documents which contains term w. TF indicates the occurrence of word w in 

document di. The TF-IDF has proved extraordinarily robust and difficult to beat, even by 

much more carefully worked out models and theories [84].  
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A similar but supervised version of TF-IDF is called TF-ICF whose formula given in 

Eq. (16) as in[82], [83]. In Eq. (2.16), |C| represents number of classes and cfw indicates 

the number of classes which contains term w.  
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)(             (2.15)
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      (2.16)  

In [79]a new term weighting method is proposed with the idea of simplifying a multi-

label classification problem into multiple independent binary classification problems. In 

their methodology, a chosen category is tagged as the positive category and all the 

remaining categories in the same dataset are combined together as the negative 

category. According to their methodology; the more focused a high frequency term is in 

the positive category than in the negative category, the more contributions it makes in 

selecting the positive samples from the negative samples. Their term weightings 

formula is as follows: 
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2log
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tfRFTF w

      (2.17)           

where tfwis the term frequency of word w, a is the number of documents in the positive 

category which contain term w and c is the number of documents in the negative 

category which contain term w. Table 2.1 demonstrates the difference between the 

discriminative powers of both IDF and RF. Table 2.1 lists the IDF and RF values of 

four terms based on two categories, namely, 00_acq and 03_earn respectively. The first 

two terms, acquire and stake, are closely related to the theme discussed in category 

00_acq while the last two terms, payout and dividend, are closely related to the theme 

discussed in category 03_earn. However, the IDF disregards the category or label 

information of the training set. Thus, each of these four terms is weighted equally by the 

IDF even in terms of the two different categories. On the other hand, by using the RF 

scheme which pays attention to category information, each term is assigned more 

appropriate weights in terms of different categories[79]. 

By being inspired from the idea of both IDF and ICF, a new term weighting method 

which is designed as a part of a feature extraction algorithm is proposed in [80], [81]. 

According to their approach the effect of a term over a class is calculated as follows: 
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where tfc w,c is the total term frequency of word w in the documents of class c, N is the 

total number of documents in the corpus and Nw is the total number of documents those 

contain term w. By using this class-dependent term weighting scheme they develop a 

feature extraction method for text classification. They carry out experiments on 

benchmark datasets to compare the classification performance with well-known feature 

extraction algorithms. Their experimental results show that using this feature extraction 

with a class-dependent term weighting scheme enhances classification performance on 

the classifiers they use when compared with other feature extraction methods. 

Table 2.1Comparison of the weights of four features in Category 00_acq and 03_earn 

([79]) 

 Feature  Category:00_acq  Category:03_earn                    

 IDF  RF  IDF  RF 

acquire 3.553 4.368 3.553 1.074 

stake 4.201 2.975 4.201 1.082 

payout 4.999 1 4.999 7.820 

dividend 3.567 1.033 3.567 4.408 

 

2.4 Helmholtz Principle from Gestalt Theory and Meaning Calculation 

According to Helmholtz principle from Gestalt theory in image processing; “observed 

geometric structure is perceptually meaningful if it has a very low probability to appear 

in noise” [100]. This means that events that have a large deviation from randomness or 

noise can be noticed easily by humans. This can be illustrated inFigure 2.4. In the left 

hand side of Figure 2.4, there is a group of five aligned dots but it is not easy to notice it 

due to the high noise. Because of the high noise, i.e. large number of randomly placed 

dots, the alignment probability of five dots increases.On the other hand, if we remove 

the number of randomly placed dots considerably, we can immediately perceive the 

alignment pattern in the right hand side image since it is very unlikely to happen by 

chance. This phenomenon means that unusual and rapid changes will not happen by 

chance and they can be immediately perceived. 
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Figure 2.4The Helmholtz principle in human perception (adopted from [100]) 

As an example, assume you have unbiased coin and it is tossed 100 times. Any 100-

sequence of heads and tails can be generated with probability of (½)100 and Figure 

2.5is generated where 1 represents heads and 0 represents tails [99].  
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Figure 2.5The Helmholtz principle in human perception (adopted from [99]) 

First sequence, s1 is expectable for unbiased coin but second output, s2 is highly 

unexpected. This can be explained by using methods from statistical physics where we 

observe macro parameters but we don’t know the particular configuration. For instance 

expectation calculations can be used for this purpose[99]. 

A third example is known as birthday paradox in literature. There are 30 students in a 

class and we would like to calculate the probability of two students having the same 

birthday and how likely or interesting is this. Firstly, we assume that birthdays are 

independent and uniformly distributed over the 365 days of a year. Probability P1 of all 

students having different birthday in the class is calculated in Eq. (2.19)[109]. 

294.0
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336...364365
301 

xxx
P         (2.19) 

The probability P2 of at least two students born on same day is calculated in Eq. 

(2.20).This means that approximately 70% of the students can have the same birthday 

with another student in the class of 30 students.  

P2=1 - 0.294 = 0.706          (2.20) 

When probability calculations are not computable, we can compute expectations. The 

expectation of number of 2-tuples of students in a class of 30 is calculated as in Eq. 

(2.21). This means that on the average, 1.192 pairs of students have the same birthday in 

the class of 30 students and therefore it is not unexpected. However the expectation 
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values for 3 and 4 students having the same birthday, E(C3)0.03047 and E (C4) 

0.00056, which are much smaller than one, indicates that these events will be 

unexpected[109]. 
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In summary, the above principles indicate that meaningful features and interesting 

events appears in large deviations from randomness. Meaningfulness calculations 

basically correspond to calculations of expectations and they stem from the methods in 

statistical physics[100]. 

In the context of text mining, the textual data consist of natural structures in the form of 

sentences, paragraphs, documents, and topics. In[100], the authors attempt to define 

meaningfulness of these natural structures using the human perceptual model of 

Helmholtz principle from Gestalt Theory. Modelling the meaningfulness of these 

structures is established by assigning a meaning score to each word or term. Their new 

approach to meaningful keyword extraction is based on two principles. The first one 

states that these keywords which are representative of topics in a data stream or corpus 

of documents should be defined not only in the document context but also the context of 

other documents. This is similar to the TF-IDF approach. The second one states that 

topics are signaled by “unusual activity”, a new topic can be detected by a sharp rise in 

the frequencies of certain terms or words. They state that sharp increase in frequencies 

can be used in rapid change detection. In order to detect the change of a topic or 

occurrence of new topics in a stream of documents, we can look for bursts on the 

frequencies of words. A burst can be defined as a period of increased and unusual 

activities or rapid changes in an event. A formal approach to model “bursts” in 

document streams is presented in[110]. The main intuition in this work is that the 

appearance of a new topic in a document stream is signaled by a “burst of activity" with 

certain features rising sharply in frequency as the new topic appears.  

Based on the theories given above, new methods are developed for several related 

application areas including unusual behavior detection and information extraction from 

small documents [105], for text summarization[101], defining relations between 

sentences using social network analysis and properties of small world phenomenon 

[102] and rapid change detection in data streams and documents [99]and also for 
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keyword extraction and rapid change detection[100]. These approaches make use of the 

fact that meaningful features and interesting events come into view if their deviations 

from randomness are very large.  

The motivating question in these studies is “if the word w appears m times in some 

documents is this an expected or unexpected event?” [100]. Given that Sw is the set of 

all words in N documents and a particular word w appears K times in these documents. 

Then random variable Cm counts m-tuple of the elements of Sw appears in the same 

document. Following this the expected value of Cm is calculated under the assumption 

that the words are independently distributed among the documents. Cm is calculated 

using random variable Xi1,i2…im  which indicates if words wi1,…,wim co-occurs in the 

same document or not. Based on this the expected value E(Cm) can be calculated as in 

Eq. (2.23) by summing the expected values of all these random variables for all the 

words in the corpus. 
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The random variable Xi1,i2…imcan only take values one and zero. As a result the 

expectation of this random variable which shows if these m words co-occurs in the 

same document can be calculated in Eq. (2.24), where N is the total number of 

documents. “If in some documents the word w appears m times and E(Cm)<1 then it is 

an unexpected event” [100]. 

1,...,1

1
)(




mimi
N

XE           (2.24) 

As a result E(Cm) can simply be expressed as in Eq. (2.25) and this expectation actually 

corresponds to Number Of False Alarms (NFA) of m-tuple of word w which is given in 

Eq. (2.26). This corresponds to the number of times m-tuple of the word w occurs by 

chance[100]. Based on this, in order to calculate the meaning of a word w which occurs 

m times in a context (document, paragraph, sentence), we can look its NFA value. If the 

NFA (expected number) is less than one, then the occurrence of m times can be 

considered as a meaningful event because it is not expected by our calculations but it is 

already happened. Therefore, word w can be considered as a meaningful or important 

word in the given context. 
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Based on the NFA, the meaning score of words are calculated using Eq. (2.26) and Eq. 

(2.27) in[102]:  

1

1
),,(











mNm

K
DPwNFA                   (2.26) 

),,(log
1

),,( DPwNFA
m

DPwMeaning        (2.27)

      

where w represents a word, P represents a part of the document such as a sentence or a 

paragraph, and D represents the whole document. Additionally, m indicates the 

appearance number of word w in P and K shows the appearance number of word w in 

D.  N= L / B in which L is the length of D and B is the length of P in words[102]. To 

define Meaning function, the logarithmic value of NFA is used based on the observation 

that NFA values can be exponentially large or small [100]. 

As mentioned above, the meaning calculations are performed in a supervised setting. In 

other words, we use a class of documents as our basic unit or context in order to 

calculate meaning scores for words. In this approach meaning calculations basically 

show how high a particular words’ frequency is expected to be in a class of documents 

compare to the other classes of documents. If it is unexpected then meaning calculations 

result in a high meaning score. In this aspect it is similar to the Multinomial Naïve 

Bayes in which the all the documents in a class are merged into a single document and 

then the probabilities are estimated from this one large class document. It also bears 

similarities to TF-ICF approach in which the term frequencies are normalized using the 

class frequencies.  

In supervised meaning calculations, which are given in Eq. (2.31) and Eq. (2.32), 

parameter cjrepresents documents which belong to class j and S represents the complete 

training set. Assume that a feature w appears k times in the dataset S, and m times in the 

documents of class cj. The length of dataset (i.e. training set) S and class cj measured by 

the total term frequencies is L and Brespectively. N is the ratio of the length of the 

dataset and the class, which is calculated in Eq. (2.30). The NFAis defined in Eq. (2.31). 
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Based on NFA, the meaning score of the word w in a class cj is defined as: 

),,(log
1

),( ScwNFA
m

cwmeaning jj       (2.32)  

       

This formula can be re-written as: 

 Nm
m

k

m
cwmeaning j log)1(log

1
),( 








       (2.33)

        

The larger the meaning score of a word w in a class cj, the more meaningful, significant 

or informative that word is for that class.  
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CHAPTER 3 

EXPERIMENTAL SETUP 

We integrated our kernel functions into the implementation of the SVM algorithm in 

WEKA [85]. In other words, we built numerous kernel functions those can be directly 

used with Platt’s Sequential Minimal Optimization (SMO) classifier [86]. 

In order to see the performance of our proposed algorithms on text classification, we 

performed a series of experiments on several textual datasets which are shown inTable 

3.1. Our first dataset IMDB
1
 is a collection of movie reviews. It contains 2,000 reviews 

about several movies in IMDB. There are two types of labels; positive and negative. 

The labels are balanced in both training and test sets that we used in our experiments. 

1150 Haber is our second dataset. It contains 1150 news-articles within five categories 

under the titles of magazine, politics, sport, economy and health collected from Turkish 

online newspapers [87]. Our third dataset is five-class version of the WEBKB[88] 

dataset, namely WEBKB5, which contains web pages, gathered from different 

universities’ computer science departments. WEBKB5 dataset has highly skewed class 

distribution. Other datasets are variants of popular 20 Newsgroups
2
 dataset. This data 

set is a collection of approximately 20,000 newsgroup documents, partitioned evenly 

across 20 different newsgroups and commonly used in machine learning applications, 

especially for text classification and text clustering. We used four basic subgroups 

namely,“Politics”, “Comp”,”Science” and “Religion” from the 20 Newsgroups dataset. 

The documents are evenly distributed to the classes. 

 

1
http://www.imdb.com/interfaces 

2
http://www.cs.cmu.edu/~textlearning 

 

http://www.imdb.com/interfaces
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The sixth dataset we use isthe Mini-newsgroups
1
 dataset which has 20 classes and also 

has a balanced class distribution. This is a subset of the 20 Newsgroups dataset, too. 

Properties of these datasets are given inTable 3.1. 

We apply stemming and stopword filtering to these datasets. Additionally, we filter rare 

terms which occur in less than three documents. We also apply attribute selection and 

select the most informative 2,000 terms using IG as described in [14], [15], [16], [17]. 

This preprocessing increase the performance of the classifier models by reducing the 

noise. We perform this preprocessing equally in all experiments. 

Table 3.1Comparison ofproperties of datasets before attribute selection 

Dataset #classes #instances #features 

IMDB 2 2,000 16,679 

1150 Haber 5 1150 7,948 

WEBKB5 5 4,336 12,841 

20 Newsgroups-Politics 3 1,500 9,864 

20 Newsgroups-Science 4 2,000 9,615 

20 Newsgroups-Religion 4 1,500 7,790 

20 Newsgroups-Comp 5 2,500 12,151 

Mini-newsgroups 20 2,000 12,112 
 

In order to observe the behavior of our semantic kernel under different training set size 

conditions, we use the following percentage values for training set size: 5%, 10%, 30%, 

50%, 70%, 80% and 90%. Remaining documents are used for testing. This is essential 

since we expect that the advantage of using semantic kernels should be more observable 

when there is inadequate labeled data. 

One of the main parameters of SMO [89] algorithm is the misclassification cost (C) 

parameter. We conducted a series of optimization experiments on all of our datasets 

with the values of {10
-2

, 10
-1

, 1, 10
1
, 10

2
}. For all the training set percentages we 

selected the best performing one. The optimized C values for the corresponding 

methods on each dataset at different training levels are given in Table 3.2, Table 3.3, 

Table 3.4 and Table 3.5. This is interesting because the values vary a lot among datasets 

and training set percentages (TS). 

1
http://archive.ics.uci.edu/ml/ 

http://archive.ics.uci.edu/ml/
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Table 3.2Optimized C values for IHOSKon differentdatasets 

TS  

% 

20 Newsgroups- 

Science 

20 Newsgroups- 

Politics 

WEBKB5 Mini- 

Newsgroups 

5 1 10
-1

 1 1 

10 1 10
-1

 1 1 

30 1 10
-1

 1 10
2
 

50 1 10
-1

 1 10
2
 

70 1 1 1 10
2
 

80 1 1 1 10
2
 

90 1 10
-1

 1 10
1
 

Table 3.3Optimized C values for HOTK on different datasets 

TS 

% 

20 Newsgroups- 

Science 

20 Newsgroups- 

Politics 

20 Newsgroups- 

Comp 

Mini- 

Newsgroups 

5 1 10
-1

 1 1 

10 1 10
-1

 1 1 

30 1 10
-1

 1 10
2
 

50 1 10
-1

 1 10
2
 

70 1 1 1 10
2
 

80 1 1 1 10
2
 

90 1 10
-1

 1 10
1
 

 

Table 3.4Optimized C values for CMK on different datasets 

TS% IMDB 20 

Newsgroups-

Science 

20 

Newsgroups-

Politics 

20 

Newsgroups-

Religion 

20 

Newsgroups-

Comp 

Mini-

newsgroups 

5 10
-2

 10
-2

 10
-2

 10
-2

 10
-1

 10
1
 

10 10
-2

 10
-2

 10
-2

 10
-2

 10
-1

 10
2
 

30 10
-1

 10
-2

 10
-2

 10
-2

 1 10
1
 

50 10
-2

 10
-1

 10
-2

 10
-1

 10
2
 1 

70 10
1
 10

-1
 10

-1
 10

-2
 10

-1
 1 

80 10
-2

 10
-2

 10
-2

 10
-1

 10
-1

 1 

90 10
-2

 10
-2

 10
-2

 10
-2

 10
2
 1 
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Table 3.5Optimized C values for linear kernel on different datasets 

TS% IMDB 20 

Newsgroups-

Science 

20 

Newsgroups-

Politics 

20 

Newsgroups-

Religion 

20 

Newsgroups-

Comp 

Mini-

newsgroups 

5 10
-1

 10
-1

 10
-1

 10
-1

 10
-1

 1 

10 10
1
 1 10

-1
 10

-1
 10

-1
 1 

30 10
-1 1 10

-1 10
-1 10

-1 1 

50 10
-1 1 10

-1 1 10
-1 10

1 

70 10
-1

 1 10
-1

 10
-1

 1 10
1
 

80 10
-1

 1 10
-1

 10
-1

 1 10
1
 

90 10
-1 1 1 10

-1 1 10
1 

 

The main evaluation metric in our experiments is accuracy result and in the results 

tables they are written with their standard deviations. Also Student’s t-Tests for 

statistical significance tests are provided. We use α = 0.05 significance level which is a 

commonly used level. In addition for the accuracy we used the following performance 

gain equation; 

Gain y = (Py  - Px) / Px                                                   (3.1) 

 

where Py is the accuracy of SMO with our semantic kernel and Px stands for the 

accuracy result of the linear kernel. The experimental results tables include training set 

percentage (TS), the accuracy results of Linear Kernel, and our other semantic kernels. 

Also the last columns demonstrate the (%) gain of our proposed kernel over linear 

kernel calculated as in Eq. (3.1). We run our experiments using our experiment 

framework called Turkuaz, which closely uses WEKA library. 
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CHAPTER 4 

HIGHER-ORDER SEMANTIC KERNELS 

4.1 Higher-Order Semantic Kernel (HOSK) 

We propose a novel semantic kernel called HOSK[97] for SVM applied to document 

categorization that takes advantages of latent semantics in higher-order paths between 

documents. Although the previous works on higher-order relations focus on the higher-

order paths between terms [15], [16]we focus on the higher-order paths between 

documents. We can create a graph structure where the nodes represents documents and 

the edges are represents the similarity between documents. One of the most 

straightforward ways of defining the similarity between two documents is using 

statistics of shared words. As a result edges between documents in our graph structure 

are weighted according to the frequencies of the shared words.  

The advantage of using shared terms between documents as edges in this graph 

structure is that it is easier to grasp semantics of similarity between documents. On the 

other hand, when we go second-order and higher-order paths between documents, it is 

more difficult to grasp semantic relations compared to the first-order and higher-order 

paths between terms. These second-order paths may reveal latent similarity caused by 

synonymous or highly related terms. With the help of higher-order paths, in particular 

second-order paths, HOSK takes the advantage of getting latent semantics between 

documents. In this study[97] we extract and use first-order and second-order paths.  

Especially the second-order paths reveal latent semantics. Let’s consider the following 

example; in Table 4.1 there are no common terms shared by documents d1 and d2; this 

means that by using a classical similarity measure such as the Cosine measure or the 

Euclidean distance, these documents’ similarity is calculated to zero. However, we can 
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see that both d1 and d2 share terms with d3 meaning that words t2 and t3 have some 

similarities in the document space. With a higher-order-path approach, it is possible to 

get a similarity between d1 and d2which is bigger than zero. We can explain this 

situation with the possibility that two documents are written on the same topic using 

two different but semantically closer sets of terms. In this case terms belonging to each 

set frequently co-occur in other documents relating to this topic, forming a connection 

pattern which can be revealed by using second-order paths. 

Table 4.1A document by term matrix representation of three documents 

M t1 t2 t3 t4 

d1 1 1 0 0 

d2 0 0 1 1 

d3 0 1 1 0 

4.1.1Methodology 

In our system, matrix D is built from the whole corpus as a classical document by term 

frequency matrix. Let Dbe the data matrix having r rows (documents) and ccolumns 

(words) based on the whole corpus; mij shows occurrence frequency of the j
th

word in 

thei
th

document;  

mi= [mi1 .. mic] is the row vector representing the document i and m
j
= [m1j ..mrj] the 

column vector corresponding to wordj. 

Since we deal with textual datasets with high dimensionality and sparsity, a proper 

normalization on this initial data matrix is beneficial. We tried many matrix 

normalization techniques including row-level normalization (dividing each value in a 

row by the maximum value in that row), column-level normalization (dividing each 

value in a column by the maximum value in that column), document-length 

normalization (dividing each term frequency in a row with the corresponding 

document’s length) and other techniques from the literature which are detailed in [90] 

such as z-score normalization, min-max normalization, etc. We obtain best accuracy 

results with row-level normalization which is defined below: 

)max(
...1

i

i
ii

m

m
Dr        (4.1)               
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where r is the number of documents in the corpus,m is the row vector representing the 

document and Di is the normalized form of the row vector of m. 

We then calculate first-order paths matrix namely F between documents like in the Eq. 

(4.2): 

 

F = D D
T 

    (4.2) 

 

In other words, F matrix is calculated by multiplying document by term matrix with its 

transpose. Each value in the matrix of F shows the similarity between corresponding 

documents. For instance the similarity between documenti(mi) and documentj (mj) is 

calculated as follows: 

 

F( i , j )=mi1 x mj1 +  mi2 x mj2 +  mi3 x mj3 + ...+ mic x mjc       (4.3) 

 

where c is the number of terms in the corpus. 

F is a (document by document) square matrix whose dimension is the same as the 

number of documents in the corpus. We observe that F has many zero values. Two 

documents have a non-zero similarity value in F only if these two documents share 

same words. In order to capture the latent semantic information between documents we 

calculated the second-order paths matrix namely S between documents as in the Eq. 

(4.4): 

S = F F    (4.4) 

 

By multiplying F by itself S matrix is formed. Again S is a document by document 

square matrix whose dimension is the same as the number of documents in the corpus. 

This matrix shows the second-order paths between documents.  

Each value in the matrix of S shows the similarity between corresponding documents. 

For instance the similarity between documenti (mi) and documentj (mj) is calculated as 

in Eq. (4.5): 

S( i , j) =                                                                                     (4.5) 

 F(mi , m1) x F(mj , m1)  + F(mi , m2 ) x F(mj , m2 )  + 

               F(mi , m3) x F(mj , m3) + F(mi , m4 ) x F(mj , m4)+...+  F(mi , mr ) x F(mj , mr ) 
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So, both F and S have similarity information between documents. We observed that the 

values in S are extremely larger than the ones in F. This could be explained with the fact 

that S has values not only based on only common terms between documents but also 

some indirectly latent semantics. So, we normalize the two matrix separately using Eq. 

(4.6) and Eq. (4.7): 

)max(
...1,

F

F
FNrji

ij

ij          (4.6) 

 

)max(
...1,

S

S
SNrji

ij

ij          (4.7) 

 

where r is the number of documents in our corpus, F is the matrix shows the number of 

first-order paths between documents, FN is normalized first-order paths matrix, S is 

second-order paths matrix, and SN is normalized second-order paths matrix, 

respectively. After this normalization we combine these two matrices with a weight 

value λ in order to see the effect of FN and SN matrices to the accuracy in our 

experiments. In order to optimize λ, the following values are taken into consideration: 0, 

0.25, 0.5, 0.75, 0.8, 0.85, 0.9, 0.95, and 1. Combination of FN and SN matrices yields 

final similarity matrix which is shown in Eq. (4.8): 

 

Sim(di,dj)  =   ( λ  × SNij ) + ( (1 - λ) × FNij )             (4.8) 

 

Based on the results we tune the λ parameter to the value of 0.95.This is a satisfactory 

result for us from the aspect of the more contribution of higher-order paths means the 

more accurate results. 

After that, we use this similarity matrix as a kernel (gram) matrix in SVM by plugging 

in the SMO WEKA’s implementation[85]. In other words we built such a kernel matrix 

that is directly applicable in Platt’s SMO learner. One of the most important parameters 

of SMO algorithm is misclassification-cost (C) parameter. After a set of optimization 

experiments we did not observe a significant difference and that’s why we tuned it to its 

default value of 1.In all of the experiments including not only HOSK but also linear 

kernel we used this same value. 
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4.1.2 Experimental Results and Discussion 

According to our experiments HOSK demonstrates a notable performance on 1150 

Haber dataset, which can be seen in Table 4.2. HOSK outperforms our baseline kernel 

(Linear Kernel, which is one of the state-of-the-art kernels in text classification) by 

extensive boundaries in all training set percentages. The performance gain is 

specifically obvious at low training set levels. For instance at training levels 1%, 5%, 

and 10% HOSK statistically significantly outperforms Linear Kernel with the gains of 

20.39% ,15.82%, 8.81%  on Linear Kernel ,respectively. 

Table 4.2Accuracy of HOSK and linear kernel on 1150 Haber dataset with varying 

training set size 

TS % Linear HOSK Gain 

1 46.99±4.54 56.57±12.22 20.39 

5 72.82±4.68 84.34±2.33 15.82 

10 80.51±2.68 87.60±1.26 8.81 

30 88.55±1.34 90.78±0.58 2.52 

50 89.72±1.13 90.90±0.82 1.32 

70 91.59±1.06 92.41±0.54 0.90 

80 92.30±2.89 92.43±3.15 0.14 

90 91.83±3.18 92.17±2.21 0.37 

 

According to Table 4.3, on WEBKB5 dataset, at training levels 1%, 5%, and 10% 

HOSK gives statistically significant results over Linear Kernel besides the results that 

HOSK outperforms than Linear Kernel in all of the training levels.  

The same is valid for 20 Newsgroups-Comp and 20 Newsgroups-Science datasets, 

where HOSK outperforms Linear Kernel in all training levels. This can be seen from 

Table 4.4 and Table 4.5. The performance improvement is most visible in small training 

set levels for instance in train split 1%, HOSK can achieve an accuracy of 72.59% 

where the Linear Kernel accuracy is only 52.16% for 20 Newsgroups-Science dataset, 

which can be clearly seen from Table 4.5. 

At small training data levels first-order methods give zero as the similarity of two 

instances those do not contain common words. But by the use of higher-order paths the 

similarity between those two instances can be larger than zero. 
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Table 4.3Accuracy of HOSK and linear kernel on WEBKB5 dataset with varying 

training set size 

TS % Linear HOSK Gain 

1 59.74±3.48 75.1±2.82 25.71 

5 72.77±1.43 84.20±0.87 15.71 

10 78.46±1.60 86.79±0.62 10.62 

30 84.88±0.97 88.45±0.46 4.21 

50 86.40±0.96 89.11±0.48 3.14 

70 88.05±1.05 89.61±0.65 1.77 

80 87.77±1.61 89.68±1.01 2.18 

90 88.28±1.18 89.15±1.56 0.99 

Table 4.4Accuracy of HOSK and linear kernel on 20 Newsgroups-Compdataset with 

varying training set size 

TS % Linear HOSK Gain 

1 34.93±4.31 49.43±2.80 41.51 

5 53.73±4.47 65.48±2.56 21.87 

10 62.28±2.57 70.66±1.07 13.46 

30 73.97±1.62 74.69±1.09 0.97 

50 77.87±1.60 78.54±1.15 0.86 

70 79.57±1.74 81.11±1.66 1.94 

80 78.88±2.31 80.92±1.98 2.59 

90 80.88±2.60 83.04±2.48 2.67 

Table 4.5Accuracy of HOSK and linear kernel on 20 Newsgroups-Science dataset with 

varying training set size 

TS % Linear HOSK Gain 

1 52.16±5.25 72.59±5.84 39.17 

5 70.93±3.89 85.69±1.80 20.81 

10 77.74±3.52 87.87±1.34 13.03 

30 86.73±1.32 93.11±0.77 7.36 

50 88.94±1.16 94.18±0.48 5.89 

70 90.37±0.93 95.07±0.86 4.84 

80 91.25±1.56 95.4±0.87 4.55 

90 91.15±1.73 96±1.80 5.32 
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4.2 Iterative-Higher-Orders Semantic Kernel (IHOSK) 

We propose a semantic kernel for Support Vector Machines (SVM) that takes 

advantage of higher-order relations between the words and between the documents. 

Conventional approach in text categorization systems is to represent documents as a 

“Bag of Words” (BOW) in which the relations between the words and their positions 

are lost. Additionally, traditional machine learning algorithms assume that instances, in 

our case documents, are independent and identically distributed. This approach 

simplifies the underlying models, but nevertheless it ignores the semantic connections 

between words as well as the semantic relations between documents that stem from the 

words. In this study [92], we improve the semantic knowledge capture capability of a 

previous work in [18], which is called χ-Sim algorithm and use this method in the SVM 

as a semantic kernel. The proposed approach is evaluated on different benchmark 

textual datasets. Experiment results show that classification performance improves over 

the linear kernel which is one of the state-of-the-art algorithms for text classification 

[92]. 

4.2.1 Methodology 

In our approach, Dt is the data matrix having r rows (documents) and c columns (words) 

formed from the training set. In this matrix dij shows the occurrence frequency of the j
th

 

word in the i
th

 document; di = [di1 .. dic] is the row vector representing the document i 

and dj = [d1j ..drj] is the column vector corresponding to word j. 

We also tried several term weighting methods. First of them is TF-IDF which is a 

statistical measure used to evaluate the importance of a word for a document in a corpus 

as mentioned in Chapter 2.Another term weighting approach we investigated is from 

Dumais’s research in [91]. In this approach, terms are represented in a document after 

multiplying by a value that is the global weight of the term in the whole corpus. The 

local weight of a term t in a document d is calculated as taking the log value of the total 

frequency of t in d. The global weight of a term is the entropy of that term in the corpus 

and according to [91] the entropy equals: 

)log(

)log(
1),(

1 N

pp
dtEntropy tdtd

N

i




       (4.9) 
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where N is the number of documents and ptd equals the number of times that t occurs in 

d divided by the total number of times that t occurs. 

However, since we get better accuracies for linear kernel with the only TF schema 

without any weighting, we use TF instead of TF-IDF or Entropy weighting approaches 

in our experiments for both linear kernel and our algorithm. 

We use the documents in our training corpus for χ-Sim’s SC and SR similarity matrix 

calculations. We calculate up to four iterations by using the following equations: 

NRDSCDSR T

tt  1  with 
ji

ji
dd

NR
1

,     (4.10)  

      

NCDSRDSC t
T

t  1  with 
ji

ji
dd

NC
1

,        (4.11) 

where D is the document by term matrix, D
T
 is the transpose of D matrix, SR is the row 

(document) similarity matrix, SC is the column (word) similarity matrix, NR and NC are 

row and column normalization matrices and   denotes Hadamard multiplication, 

respectively. In a Hadamard product A=BC, the elements ai,k of matrix A are defined 

as: ai,k= bi,k. ci,k . 

Similar to [18], we calculate SR0, SC0, SR1, SC1, SR2, SC2, SR3, SC3, SR4, SC4 matrices 

and after that we use these SC matrices, which contain iterative higher-order relations 

between terms, into our kernel by using Eq. (4.12): 

TT

IHOSK dSSdddk 2121 ),(                  (4.12) 

 

where kIHOSK (d1, d2) is the similarity value between documents d1 and d2,S is a semantic 

matrix which is gathered from the previously mentioned calculations of SC2and  d1 and 

d2 are term-frequency vectors of the documents. The S is a semantic matrix is based on 

iterative higher-order paths between documents and between terms. This kernel function 

means that the transformation of a document vector from input space to a feature space 

can be done by multiplying it with a semantic matrix as given in Eq. (4.13): 

Sdd 11)(  and TT dSd 22 )(       (4.13) 
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where )( 1d and )( 2d are the transformations of document vectors d1and d2 from their 

original input space into the feature space as required in the definition of kernel which is 

mentioned in Section 2. 

After performing experiments up to four iterations of SC matrices, we conclude that the 

best results are obtained with the second iteration matrices (SR2, SC2). The following 

experimental results reflect the results of our approach using these matrices. 

Since we work with textual datasets which are high dimensional and highly sparse, we 

think that it is possible to benefit from normalization methods which could be applied 

on the similarity matrices. We also experimented with different normalization methods 

as mentioned in Section 4.1. We obtained best accuracy results with length 

normalization which is defined in Eq. (4.14).  
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where r is the number of documents in our corpus, IHOSK is similarity value between 

documents di and dj, N-IHOSK is the normalized similarity value of these documents di 

and dj and |di| and |dj| are the lengths of these documents depending on the number of 

terms they have, respectively. Then, we use this kernel function in SVM by plugging in 

the SMO WEKA’s implementation[85]. In other words we built such a kernel function 

that is directly applicable in Platt’s SMO [86] learner.  

4.2.2 Experimental Results and Discussion 

According to Table 4.6, N-IHOSK outperforms our baseline kernel (linear kernel) by 

extensive boundaries in all training set percentages. For instance at training levels 30%, 

50% and 70% the accuracies of N-IHOSK are 94.31%, 94.97% and 95.35% while the 

accuracies of linear kernel are 86.73%, 88.94% and 90.37% ,respectively. The 

performance gain is obvious at all training set levels. It is important to note that high 

performance gains are especially visible at low training set levels. For instance at 

training levels 5%, and 10% N-IHOSK outperforms linear kernel with the gains of 

18.64% and 16.25%, respectively. As mentioned above, this performance is of great 

importance since usually it is difficult and expensive to obtain labeled data in real world 

applications. 

 



 
 

42 

 

Table 4.6Accuracy of N-IHOSK and linear kernel on 20 Newsgroups-Sciencedataset 

with varying training set size 

TS % linear  N-IHOSK Gain 

 5 70.93±3.89 84.15±2.87 18.64 

10 77.74±3.52 90.37±0.81 16.25 

30 86.73±1.32 94.31±1.09   8.74 

50 88.94±1.16 94.97±0.90   6.78 

70 90.37±0.93 95.35±0.88   5.51 

80 91.25±1.56 96.23±1.19   5.46 

90 91.15±1.73 96.85±1.70   6.25 

Table 4.7Accuracy of N-IHOSK and linear kernel on20 Newsgroups-Politics dataset 

with varying training set size 

TS % linear  N-IHOSK Gain 

 5 78.33±3.40 82.27±4.60 5.03 

10 84.66±2.09 88.61±2.1 4.67 

30 91.98±1.24 93.61±1.08 1.77 

50 91.21±0.89 93.55±3.58 2.57 

70 92.29±1.22 93.24±3.08 1.03 

80 93.7±0.79 95.3±1.82 1.71 

90 93.69±2.04 95.8±2.28 2.25 

 

Table 4.8Accuracy of N-IHOSK and linear kernel onWEBKB5dataset with varying 

training set size 

TS % linear  N-IHOSK Gain 

 5 72.77±1.43 76.12±1.39 4.60 

10 79.12±2.18 82.41±2.32 4.16 

30 86.10±1.52 88.27±1.62 2.52 

50 90.16±1.11 91.89±1.08 1.92 

70 90.60±1.93  92.31±1.41 1.89 

80 91.00±1.45 93.10±1.77 2.31 

90 91.93±2.52 93.13±1.54 1.31 
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On 20 Newsgroups-Politics dataset, N-IHOSKproduces better classification accuracies 

than linear kernel in all of the training levels which can be observable from Table 4.7.  

Same trend can be seen for WEBKB5 dataset which has a highly skewed class 

distribution. In this dataset our algorithm N-IHOSK outperforms linear kernel. This can 

be seen in Table 4.8. 

For us one of the best results is observed on Mini-newsgroups dataset.This dataset has 

the largest number of classes. Again in all training levels starting from 5% up until 90% 

N-IHOSK gives higher accuracies than other kernels. This can be seen from Table 4.9. 

This is especially obvious at 5% training level; the performance gain of N-IHOSKon 

linear kernel is 17.79%  

Table 4.9Accuracy of N-IHOSK and linear kernel on Mini-newsgroupsdataset with 

varying training set size 

TS % linear   N-IHOSK Gain 

  5 52.03±5.95 61.29±1.03 17.79   

10 59.31±4.58 64.15±0.54 8.16 

30 72.61±4.23 75.51±0.31   4.00 

50 76.02±4.24 79.24±0.31   4.24 

70 77.61±2.76 79.73±0.45   2.73 

80 80.70±2.20 83.05±0.58   2.91 

90 83.25±4.05 85.38±1.28   2.56 

 

The particularly high accuracies of the proposed method on 20 Newsgroups-Science 

dataset may be explained with the less average sparsity of the documents of this dataset 

compare to the other datasets. It is possible that having more terms in documents of this 

dataset give us the opportunity to generate more higher-order paths between documents.  

At small training data levels first-order methods give zero as the similarity of two 

documents that do not contain common words. But by the use of higher-order paths the 

similarity between those two instances can be larger than zero. We think that this is the 

main reason that the difference between N-IHOSK and linear kernel which is most 

visible at small training levels like 5% and 10%. Through the experiments we observed 

remarkable gains such as 18.64%, 16.25%, and 17.79% at only using 5% and 10% of 

the labeled data as training set. This has important implications on real world 
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applications where the labeled data is generally difficult to obtain. In many real world 

applications serious costs are associated with the labeling of the data. 

4.3 Higher-Order Term Kernel (HOTK) 

In this study [93], we present a simple semantic kernel for SVM algorithm. This kernel 

uses higher-order relations between terms in order to incorporate semantic information 

into the SVM. This is an easy to implement algorithm which forms a basis for future 

improvements. We perform a serious of experiments on different well known textual 

datasets. Experiment results show that classification performance improves over the 

traditional kernels used in SVM such as linear kernel which is commonly used in text 

classification[93]. 

4.3.1 Methodology 

In our proposed method, Dtrain is the data matrix having r rows (documents) and t 

columns (words) formed using the training set. In this matrix dij represents the 

occurrence frequency of the j
th

 word in the i
th

 document; di = [di1,…,dit] is the row vector 

showing the document iand dj = [d1j,…,drj] is the column vector belongs to word j. 

It is important to note that binary term occurrences are used in the premier studies which 

use higher-order paths between terms since it simplifies the definition and counting of 

the higher-order paths. However, in this study [93], we experiment with term frequencies 

(TF). This is similar to the initial attempt to use term frequencies in[17]. 

We use the training set to extract higher-order paths between terms. The S matrix which 

shows the amount or weight of higher-order (second-order in this case) relations between 

terms is obtained by using the formula in Eq. (4.15). This approach is motivated by 

algorithm which is explained in[17]. However, in this study [93], we are using term 

frequencies instead of binary term occurrences and we are not filtering any paths.  

train
T
train DDS                      (4.15) 

whereDtrain is document by term matrix of the training set S is a symmetric square matrix 

whose dimensions are the number of the terms in the training set. The S matrix displays 

the first-order relations, in other words just co-occurrences of the terms. In order to get 

higher co-occurrence relations or in other words higher-order paths we multiply the S by 

itself. For instance, the square of S reveals the second-order relations between the terms. 
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Since the second-orderpaths reveal latent semantic relations [15] we use the following 

Eq. (4.16) as a simple semantic kernel. 

TT
KHOT dSSdddk 2121 ),(       (4.16) 

The proposed kernel function in Eq. (4.16) means that the transformation of a document 

vector from input space to a semantic feature space can be accomplished by multiplying 

it with a semantic matrix as shown in Eq. (4.17). 

Sdd 11)(    and 
TT dSd 22 )(       (4.17) 

where )( 1d and )( 2d vectors are the transformations of documents d1 and d2 vectors 

from their original input space into the feature space as required in the definition of 

kernel which is mentioned in Section 2. 

We also experimented with different normalization methods as mentioned in Section 4.1. 

We obtained best accuracy results with length normalization which is defined in Eq. 

(4.18): 
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where|di| and |dj| are the lengths of these documents measured by the sum of the term 

occurrences. 

4.3.2 Experimental Results and Discussion 

According to our experiments HOTKdemonstrates a notable performance on 20 

Newsgroups-Science dataset, which can be seen in Table 4.10. HOTKoutperforms our 

baseline kernel (linear kernel) in all training set percentages. The performance gain is 

specifically obvious at low training set levels. For instance, at training levels 5% and 

10% HOTKoutperforms linear kernel with the gains of 7.26% and 5.77% on linear 

kernel respectively. 20 Newsgroups-Science dataset is also used in our previous 

studies[92], [97]. Therefore we use this dataset to compare the results of HOSK [97] 

and IHOSK [92] with HOTK[93]. Although the HOTK be able to outperform the 

baseline (linear kernel), the performance of IHOSK is superior to the HOSK and 

HOTK. However, the complexity of IHOSK is much higher than the previous works 

such as HOSK, and the proposed work of the HOTK. This prevents the IHOSK to be 
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applied on large datasets. HOSK also performs slightly better than HOTK but it is based 

on the higher-order paths between documents. The semantic relations between the 

documents are not as clear as the relations between the terms. HOTK is our first attempt 

to use the higher-order paths between terms as a semantic kernel for SVM. Using 

higher-order paths between terms instead of between documents (as in HOSK) or both 

the documents and terms (as in IHOSK) forms a foundation that is open to several 

improvements. For instance HOTK can easily be combined with other term based 

semantic kernels such as the ones using WordNet or Wikipedia. Furthermore, it will be 

much easier to apply different path filters and normalizations based on the role of terms 

in different classes and observe their affects.  

Table 4.10 Accuracy of HOTK and other kernels on 20 Newsgroups-Science dataset 

with varying training set size 

TS % Linear   HOSK  IHOSK HOTK    Gain 

5 71.44±4.30  85.69±1.80  90.37±0.81 76.63±2.67 7.26 

10 77.97±3.73  87.87±1.34  94.31±1.09 82.47±2.02 5.77 

30 86.73±1.32  93.11±0.77  94.97±0.90 89.24±0.74 2.89 

50 88.94±1.16  94.18±0.48  95.35±0.88 90.84±1.12 2.14 

70 90.58±0.93  95.07±0.86  96.23±1.19 92.06±1.28 1.63 

80 91.33±1.41  95.40±0.87  96.85±1.70 93.38±1.43 2.24 

90 91.40±1.56  96.00±1.80  94.31±1.09 94.2±1.36 3.06 

 

For the remaining datasets we report the results of HOTK compared to the baseline 

kernel. 20 Newsgroups-Politics is an exceptional dataset in terms of the performance of 

HOTK. We only see improvements at very low training set percentages. This may due to 

the size of the dataset. 20 Newsgroups-Politics is our smallest dataset with 3 classes and 

1500 documents. We observe that the discussions are centered on a smaller number of 

topics compare to the other datasets. In our opinion in this dataset, the classes are easier 

to discriminate, giving more advantage to the document based methods. 

For 20 Newsgroups-Comp dataset, HOTK outperforms linear kernel in all training 

levels. This can be seen from Table 4.12. 20 Newsgroups-Comp is a larger dataset than 

the 20 Newsgroups-Politics. It has five classes.  As expected, the performance 

improvement is most visible in small training set levels which can be seen from Table 
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4.12. For Mini-newsgroups dataset, HOTK outperforms linear kernel in almost all of the 

training levels. This can be seen from Table 4.13. 

Table 4.11 Accuracy of HOTK and linear kernel on 20NewsPolitics dataset with 

varying training set size 

TS % Linear  HOTK      Gain 

5 79.01±2.65 80.72±1.56 2.16 

10 84.69±1.24 84.89±2.15 0.24 

30 92.04±1.06 88.31±1.22 -4.05 

50 93.73±0.57 90.29±0.79 -3.67 

70 94.55±1.21 90.15±1.15 -4.65 

80 94.03±0.91 92.50±1.60 -1.63 

90 94.86±1.26 92.46±2.01 -2.53 

 

Table 4.12Accuracy of HOTK and linear kernel on 20 Newsgroups-Comp dataset with 

varying training set size 

TS % Linear  HOTK Gain 

5 56.75±4.72 60.22±3.00 6.11 

10 65.45±2.77 66.70±1.14 1.91 

30 75.38±2.12 75.97±1.04 0.78 

50 77.89±1.60 78.68±0.71 1.01 

70 79.63±1.59 79.97±1.18 0.43 

80 79.00±2.25 80.38±1.85 1.75 

90 81.40±2.47 81.52±1.46 0.15 

 

Table 4.13Accuracy of HOTK and linear kernel on Mini-newsgroups dataset with 

varying training set size 
TS % Linear  HOTK      Gain 

5 56.75±4.72 49.69±5.64 -12,44 

10 65.45±2.77 66.24±3.81 1,21 

30 75.38±2.12 81.82±2.04 8,54 

50 77.89±1.60 85.54±1.20 9,82 

70 79.63±1.59 87.28±1.13 9,61 

80 79.00±2.25 88.15±1.58 11,58 

90 84.65±2.48 88.10±2.80 4,08 
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CHAPTER 5 

CORPUS-BASED SEMANTIC KERNELS BY USING CLASS-

BASED MEANING AND WEIGHT VALUES OF TERMS 

5.1 Class Meanings Kernel (CMK) 

In this study[94], we propose a novel approach for building a semantic kernel for SVM, 

which we name Class Meaning Kernel (CMK). The suggested approach smoothes the 

terms of a document in BOW representation (document vector represented by term 

frequencies) by class-based meaning values of terms. This in turn, increases the 

importance of significant or in other words meaningful terms for each class while 

reducing the importance of general terms which are not useful for discriminating the 

classes. This approach reduces the disadvantages of BOW and improves the prediction 

abilities in comparison with standard linear kernels by increasing the importance of 

class specific concepts which can be synonymous or closely related in the context of a 

class. The main novelty of this approach is the use of this class specific information in 

the smoothing process of the semantic kernel. The meaning values of terms are 

calculated according to the Helmholtz principle from Gestalt theory [99], [100], [101], 

[102] in the context of classes as mentioned in Section 2.4. 

5.1.1 Methodology 

In our study, we use the general form of kernel function which is given in Eq. (2.8). The 

simplest form of kernel function, namely linear kernel is formulated in Eq. (2.5). But as 

it is criticized in Section 2 linear kernel is a simple dot product between the features of 

text documents. It produces a similarity value of two documents only proportional to the 

number of shared terms. Combined with the highly sparse representation of the textual 
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data, this may yield a significant problem especially when two documents are written 

about the same topic using two different sets of terms which are actually semantically 

very close as it is mentioned in the Section 2.2. Also, in cases where training data is 

scarce there will be serious problems to detect reliable patterns between documents. This 

means that using only simple dot product to measure similarity between documents will 

not always give sufficiently accurate similarity values between documents. Additionally, 

for a better classification performance it is inevitably required to discount general words 

and emphasize more importance on core words (which are closely related to the subject 

of that class) as it is analyzed in [3]. In order to overcome these mentioned drawbacks, 

semantic smoothing kernels encode semantic dependencies between terms [11], [41], 

[103],[104]. We also incorporated additional information of terms other than their simple 

frequencies as in our previous studies [92], [93], [97]in which we take advantage of 

higher-order paths between words and/or documents. In those studies we showed that the 

performance difference between first-order and higher-order representation of features. 

In this approach we investigate the use of a new type of semantic smoothing kernel for 

text. 

Figure 5.1 demonstrates the architecture of the suggested semantic kernel. This system 

mainly consists of four independent modules: preprocessing, meaning calculation, 

building semantic kernel, and classification. Preprocessing is the step that involves the 

conversion of input documents into formatted information. This step includes stemming 

and stopword filtering. In meaning calculation step, the meaning values of the terms 

according to the classes are calculated based on Eq. (2.32). Then we construct our 

proposed kernel, namely CMK, in the step for building semantic kernel. Finally, in the 

classification step SVM classifier builds a model in the training phase and this model is 

then applied to the test examples in the test phase.  

Clearly, the main feature of this system is that it takes advantages of the meaning 

calculation in kernel building process, in order to reveal semantic similarities between 

terms and documents by smoothing the similarity and the representation of the text 

documents. Meaning calculation is based on Helmholtz principle from Gestalt theory. 

As mentioned in Section 2.4, this meaning calculations have been applied to many 

domains in previous works (for example information extraction [105], text 

summarization [101], rapid change detection in data streams [99], and keyword  
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Figure 5.1The architecture of CMK System 

extraction). In these studies a text document is modelled by a set of meaningful words 

together with their meaning scores. A word is considered meaningful or important if the 

term frequency of a word in a document is unexpected if we consider the term 

frequencies of this word in all the documents in our corpus. The method can be applied 

on a single document or on a collection of documents to find meaningful words inside 

each part or context (paragraphs, pages, sections or sentences) of a document or a 

document inside of a collection of documents[102]. Although meaning calculation has 

been used in several domains, to the best of our knowledge, our work is the first to apply 

this technique to kernel function. 

In our methodology Dtrain is the data matrix of training set having r rows (documents) 

and t columns (terms). In this matrix dijstands for the occurrence frequency of the j
th

 

word in the i
th

 document; di = [di1,…,dit] is the document vector showing the document i 

and dj = [d1j,…,drj] is the term vector belonging to word j, respectively. To enrich Dtrain, 

with semantic information, we build the class-based term meaning matrix M using 

meaning calculations given in Eq. (2.32). The M matrix shows the meaningfulness of the 

terms in each class. Based on M we calculate S matrix in order to reveal class based 

semantic relations between terms. Specifically, the ij
th

 element of S quantifies the 

semantic relatedness between terms tiand tj.  

TMMS              (5.1) 
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In our system S is a semantic smoothing matrix to transform documents from input space 

to feature space. Thus, S is a symmetric term-by-term matrix. Mathematically, the kernel 

value between two documents is given as 

TT

CMK
dSSdddk 2121 ),(            (5.2) 

where kCMK (d1, d2) is the similarity value between documents d1 and d2, S is the semantic 

smoothing matrix. In other words, here S is a semantic proximity matrix which derives 

from the meaning calculations of terms and classes. 

If a word occurs only once in a class then its meaning value for that class is zero 

according to Eq. (2.32). If a word does not occur at all in a class, it gets minus infinity 

based on Eq. (2.32) as a meaning value for that class. In order to make calculations more 

practical we assign the next smallest value to that word according to the range of 

meaning values we get for all the words in our corpus. After all calculations we get M as 

a term-by-class matrix which includes the meaning values of terms in all classes of the 

corpus. We observe that these meaning values are high for those words that allow us to 

distinguish between classes. Indeed terms semantically close to the theme discussed in 

the documents of that class gain the highest meaning values in the range. In other words 

semantically related terms of that class, i.e. “core” words like it is mentioned in[3], gain 

importance while semantically isolated terms, i.e. “general” words lose their importance. 

So terms are ranked based on their importance. For instance, if the word “data” is highly 

present while the words “information” and “knowledge” are less, the application of 

semantic smoothing will increase the values of the last two terms because “data”, 

“information” and “knowledge” are strongly related concepts. The new encoding of the 

documents is richer than the standard TF-IDF encoding since; additional statistical 

information that is directly calculated from our training corpus is embedded into the 

kernel. In other words transformations in Eq. (5.2) smooth the basic term vector 

representation using semantic ranking while passing from the original input space to a 

feature space through kernel transformation functions )( 1d  and )( 1d  for the 

documents d1 and d2respectively: 

Sdd 11)(  and
TT dSd 22 )(         (5.3)  
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As mentioned in[106], the presence of S in Eq. (5.3) changes the orthogonality of the 

vector space model, as this mapping introduces term dependence. Documents can be 

seen as similar even if they do not share any terms by eliminating orthogonality. 

Also as it is mentioned in [99], meaning calculation automatically filters stop words by 

assigning them very small amounts of meaning values. Let us consider the following 

two cases, which are represented in Table 5.1. According toTable 5.1, it is understood 

that t1and t2 occurred in one or more documents of c1, not in remaining classes; c2, c3and 

c4, respectively. In other words t1 and t2are critical words of the topic discussed in c1; 

getting high meaning values according to Eq. (2.32); since the frequency of a term in a 

class,m is inversely proportional to the NFA. According to Eq. (2.32), in such a case the 

number of times that word occurred in the whole corpus (k) is larger when the times of 

that word’s occurrence in a class (m) is smaller NFA calculation directly gives a larger 

negative value which will yield a larger positive value. In other words, according to the 

spirit of meaning value calculation, the more a word occurred in only a specific class 

the higher meaning value it gets, and conversely the more a word occurred in all classes 

the less meaning value it gets. This statement can also be represented withTable 5.1, 

since t1 and t2 occurred in only c1 while t3andt4occurred in every classes of the corpus. It 

is highly possible that these two words, t3 andt4, are in the type of “general” words since 

they are seen in every class of the corpus.  

Table 5.1Term frequencies in different classes 

 
 

 

 

5.1.2 Experimental Results and Discussion 

CMK outperforms our baseline kernel clearly in almost all training set percentages on 

1150Haber dataset. This can be observed from Table 5.2. CMK demonstrates much 

better performance than linear kernel on this dataset, in all training set percentages 

except 5% and 10%. The performance gain is specifically obvious starting from 30% 

training set percentage. For instance at training set percentages  30%, 50% , 70% , 80%  

and 90% the accuracies of  CMK are 91.49%, 93.81%, 93.94%, 93.09% and 93.74% 

while the accuracies of linear kernel are 88.55%, 89.72%, 91.59, 92.30% and 91.83%; 

 c1 c2 c3 c4 

t1 1 0 0 0 

t2 1 0 0 0 

t3 1 1 1 1 

t4 1 1 1 1 



 
 

53 

 

respectively. CMK also has better performance than our previous semantic kernels 

IHOSK, and HOTK at training set percentages between 30% and 90% as shown in Table 

5.2. The highest gain of CMK over linear kernel on this dataset is at 50% training set 

percentage which is 4.56%.  Additionally, according to Table 5.2 we can conclude that 

the performance differences of CMK while passing from one training set percentage to 

another are compatible with the term coverage ratios at those training set percentages. 

For instance at training set percentage 30%, term coverage jumps to 71.56% from its 

previous value at 10% that is 54.60%. Similar behavior can be observed at performance 

of CMK while going through 10% training set percentage to 30% training set 

percentage; where it generates the accuracies 72.07% and 91.49%; respectively. This 

means an accuracy change of 19.42% between 10% and 30% training set percentages. 

Furthermore we also performed our experiments for linear kernel and CMK on 

1150Haber dataset without IG. According to Table 5.2 both linear kernel and CMK 

generate better classification accuracies on 1150Haber dataset when IG (selection of 

2000 attributes with IG) is used in compare to the case of without IG. This experimental 

result shows us the necessity of doing preprocessing (e.g. attribute selection and filtering 

stop words and rare words). 

Table 5.2 Accuracy of CMK and other kernels on 1150Haber dataset with varying 

training set size 

TS  

% 

Linear 

 

Linear 

(without  

IG) 

IHOSK HOTK CMK CMK 

(without  

IG) 

Gain 

5 72.82±4.68 66.51±4.58 74.54±1.75 73.34±1.71 55.15±8.63 37.76±7.49 -24.27 

10 80.51±2.68 76.93±1.68 80.74±1.17 79.97±1.24 72.07±4.48 42±4.99 -10.48 

30 88.55±1.34 85.84±1.56 90.12±1.69 89.47±1.76 91.49±2.12 80.82±9.45 3.32 

50 89.72±1.13 88.54±1.23 92.73±1.11 90.83±0.12 93.81±1.31 87.84±3.27 4.56 

70 91.59±1.06 89.51±1.79 93.14±0.87 91.76±1.86 93.94±1.08 90.9±1.23 2.57 

80 92.30±2.89 90.13±1.94 93.75±1.98 92.15±0.36 93.89±2.91 91.38±1.10 0.86 

90 91.83±3.18 91.13±2.31 94.25±1.72 92.70±1.65 94.54±1.82 92.78±2.81 2.08 
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Table 5.3 Accuracy of CMK and other kernels on 20 Newsgroups-Science dataset with 

varying training set size 

TS % Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 71.44±4.3 84.15±2.87 76.63±2.67 64.51±4.86 -9.70 63.99 

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 5.41* 82.28 

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 9.62* 98.01 

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 8.74* 99.90 

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 7.22* 99.99 

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 6.87* 100.00 

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 6.95* 100.00 

 

 

Table 5.4Accuracy of CMK and other kernels on IMDB dataset with varying training 

set size 
TS % Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 
76.85±1.31 76.98±1.14 74.21±0.24 77.84±2.99 1.29 48.00 

10 
82.99±1.76 82.55±2.32 82.23±0.42 84.51±1.45 1.83 61.51 

30 
85.57±1.65 87.16±1.64 85.63±1.69 90.54±0.65 5.81* 86.35 

50 
88.46±1.89 89.40±1.91 87.20±0.33 92.30±0.59 4.34 95.91 

70 
89.93±1.18 91.31±0.87 90.41±0.55 93.23±0.70 3.67 99.17 

80 
90.65±1.09 92.38±1.43 91.37±0.98 93.43±0.94 3.07 99.71 

90 
91.75±1.14 92.63±1.19 91.59±0.27 93.65±0.37 2.07 99.98 

 

CMK outperforms our baseline kernel clearly in almost all training set percentages on 20 

Newsgroups-Science dataset. This can be observed from Table 5.3. CMK demonstrates 

much better performance than linear kernel on this dataset, in all training set percentages 

except 5%. The performance gain is specifically obvious starting from 10% training set 

percentage. For instance at training set percentages  30%, 50% , 70% , 80%  and 90% the 

accuracies of  CMK are 95.07%, 96.71%, 97.12%, 97.6% and 97.75% while the 

accuracies of linear kernel are 86.73%, 88.94%, 90.58, 91.33% and 91.4%%; 

respectively. CMK also has better performance than our previous semantic kernels 

IHOSK, and HOTK at training set percentages between 30% and 90% as shown in Table 

5.3. The highest gain of CMK over linear kernel on this dataset is at 30% training set 

percentage which is 9.62%.  Also it should be noted that, there is a performance gain of 
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CMK over linear kernel 5.41% at training set percentage 10%, which is of great 

importance since usually it is difficult and expensive to obtain labeled data in real world 

applications. Additionally, according to Table 5.3we can conclude that the performance 

differences of CMK while passing from one training set percentage to another are 

compatible with the term coverage ratios at those training set percentages. For instance at 

training set percentage 30%, term coverage jumps to 98.01% from its previous value at 

10% that is 82.28%. Similar behavior can be observed at performance of CMK while 

going through 10% training set percentage to 30% training set percentage; where it 

generates the accuracies 82.19% and 95.07%; respectively. This means an accuracy 

change of 12.88% between 10% and 30% training set percentages.  

Additional to CMK, that is calculated with Eq. (5.4) and Eq. (5.5) we also built a 

second-order version of CMK with the name Second-Order Class Meaning Kernel (SO-

CMK) with the following equation: 

T

CMKSO dSSdddk 2

22

121 ),(    (5.4) 

where S is our term-by-term meaning matrix that is also used for CMK. 

Transformations are done with; 

2

11)( Sdd   and 
TdSd 2

2

2)(           (5.5) 

where  )( 1d  and )( 1d  are transformation functions of kernel from input space into 

feature space for the documents d1 and d2, respectively. In other words, here M is 

asemantic proximity matrix of terms and classes which shows semantic relations 

between terms. In this case semantic relation between two terms is composed of 

corresponding class based meaning values of these terms for all classes. So if these two 

terms are important terms in the same class then the resulting semantic relatedness value 

will be higher. In contrast to the other semantic kernels that makes use of WordNet or 

Wikipedia in an unsupervised fashion, CMK directly incorporates class information to 

the semantic kernel. Therefore, it can be considered as a supervised semantic kernel. 

We also recorded and compared the total kernel computation time of our previous 

semantic kernels IHOSK and HOTK and CMK. All the experiments presented here are 

carried on our experiment framework, Turkuaz, which directly uses WEKA[85] on a 

computer with two Intel(R) Xeon(R) CPUs at 2.66 GHz with 64 GB of memory. Our 
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semantic kernel’s computation time on each dataset is recorded in terms of seconds and 

they are proportionally converted into percentages by making the longest run time 

100.According to this conversion, for instance on 20 Newsgroups-Science dataset; 

IHOSK[92], SO-CMK, CMK and HOTK [93] estimates the following time units in 

order; 100, 55, 32, and 27, respectively, which is shown inFigure 5.2. 

 

 

Figure 5.2The total kernel computation time units of IHOSK, SO-CMK, CMK and 

HOTK on 20 Newsgroups-Science dataset at 30% training set size 

These values are not surprising since the complexity and running time analysis supports 

them. In IHOSK [92]there is an iterative similarity calculation between documents and 

terms, which completes totally in four steps including corresponding matrix calculations 

as in shown in Eq. (4.10) and Eq. (4.11). As it is discussed in [18] producing the 

similarity matrix (SCt) has overall complexity O(tn
3
) where t is the number of iterations 

and n is the number of training instances. Since in our experiments we fixed t=2 we 

obtain O(2n
3
) complexity. On the other hand HOTK[93]has complexity O(n

3
) as it can 

be noted from Eq. (4.16). CMK also has a complexity of O(n
3
) like HOTK, but 

additional to the calculations made for HOTK, CMK has a phase of calculating meaning 

values which makes CMK run slightly longer than HOTK as shown in Figure 5.2. 

Moreover, SO-CMK includes additional matrix multiplications as a result it runs longer 

than CMK. Since the IHOSK involves much more matrix multiplications than both 

HOTK and the proposed work of the CMK, it runs almost three times longer than the 

proposed approach on a relatively small dataset with 2,000 documents and 2,000 

attributes.  

We also compare CMK with a kernel based on a similar method of TF-ICF which is 

explained in Section 2.3. We compare the results of TF-ICF to CMK with Eq. (2.16) 

which indeed a supervised approach as mentioned in Section 2.4. Additionally we also 

created an unsupervised version of Meaning kernel, Unsupervised Meaning Kernel 

(UMK), by using a single document as our context (the P value in Eq. (2.32)) instead of 
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using a class of documents. This introduces an unsupervised behavior into CMK since 

our basic unit is not class but instead a single document. The results are shown inFigure 

5.3. The CMK has much better performance than both UMK and TF-ICF in almost all 

training set percentages except 10%. Starting from training set percentage 10% the 

difference between the performance of CMK and the other two algorithms start to 

increase. 

 

Figure 5.3The Comparison of the accuracies of TF-ICF, UMK and CMK at different 

training set percentages on 20 Newsgroups-Science dataset 

According to our experiments, the CMKdemonstrates a notable performance gain on the 

IMDB dataset, which can be seen inTable 5.4. The CMKoutperforms our baseline, linear 

kernel, in all training set percentages also making a significant difference at training set 

percentage 30% based on Students t-Tests results. In training set percentage 30% the 

performance of the CMK is 90.54% while the performance of linear kernel is only 

85.57%. It is also very promising to see that the CMK is superior to both linear kernel 

and our previous algorithms IHOSK [92] and HOTK [93] throughout all training set 

percentages.  

Table 5.5presents the experiment results on the 20 Newsgroups-Politics dataset. In this 

dataset, the CMK’s performance is higher than linear kernel’s in all training set 

percentages except 5% and 10%. Furthermore, the CMK is performs better than both 

IHOSK and HOTK in almost all training set percentages except 5% and 10%. Only in 

training set percentages 5% and 10%, the IHOSK gives better accuracy than the CMK. 
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For 20 Newsgroups-Compdataset, the CMKoutperforms linear kernel in all training set 

percentages except 5% as shown in Table 5.6. The CMK yields higher accuracies 

compared to linear kernel, IHOSK and HOTK. The differences between CMK and 

linear kernel are statistically significant according to Student’s t-test at training levels 

10%, 30%, 50%, 70%, 80%, and 90%. 

Experiment results on 20 Newsgroups-Religiondataset are presented in Table 5.7. These 

results show that the CMK has superiority starting from 30% training set percentage 

among all of the other kernels. For instance at training set percentage 30% CMK’s gain 

over linear kernel is 8.58%. Also, in training set percentages 30% and 50%, the CMK 

shows a significant improvement over linear kernel. 

Table 5.8presents the experiment results on Mini-newsgroups dataset. According to 

these results the CMK outputs better accuracy than linear kernel at training set 

percentages 30%, 50%, 70%, 80% and 90%. But in overall the CMK is not as good as 

HOTK on this dataset, which can be explained by the capability of HOTK for capturing 

latent semantics  between documents by using higher-order term co-occurrences  as 

explained in Section 2.2. These latent relations may play an important role since the 

number of classes is relatively high and the number of documents per class is much 

smaller yielding a higher sparsity that can be observed from the term coverage statistics.  

Since some of the datasets used in this study [94] are also used in [14], we have the 

opportunity to compare our results with HOSVM. For instance at training level 30%, on 

20 Newsgroups-Compdataset; 75.38%, 78.71%, 75.97%, and 84.31% accuracies are 

gathered by linear kernel, IHSOK, HOTK and CMK as mentioned in above tables and 

paragraphs. On the same training level HOSVM achieves 78% accuracy according to 

the Fig. 2(d) in [14]. This comparison shows CMK outperforms HOSVM by 

approximately 8.28% gain. Actually CMK’s superiority on HOSVM is still valid on 

other datasets such as 20 Newsgroups-Religion, 20 Newsgroups-Science and 20 

Newsgroups-Politics, too. For instance on 20 Newsgroups-Politics dataset while 

HOSVM’ performance is about 91%, CMK reaches 96.53% accuracy, which produces a 

gain of 8.95%. Very similar comparison results can be seen at a higher training level 

such as 50%.For example the experiment results of  88.94, 92, 94.97, 90.84, 96.71 are 

achieved by linear kernel, HOSVM, IHSOK, HOTK and CMK at 20 Newsgroups-

Science dataset at training level 50%; respectively. 
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Table 5.5Accuracy of CMK and other kernels on 20 Newsgroups-Politics dataset with 

varying training set size 

TS% Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 
79.01±2.65 82.27±4.60 80.72±1.56 65.80±3.99 -16.72 58.60 

10 
84.69±1.24 88.61±2.10 84.89±2.15 78.50±6.05 -7.31 75.02 

30 
92.04±1.06 93.61±1.08 88.31±1.22 95.03±0.70 3.25 96.37 

50 
93.73±0.57 93.55±3.58 90.29±0.79 96.43±0.58 2.88 99.43 

70 
94.55±1.21 93.24±3.08 90.15±1.15 95.82±0.62 1.34 99.97 

80 
94.03±0.91 95.30±1.82 92.50±1.60 96.73±0.87 2.87 100.00 

90 
94.86±1.26 95.80±2.28 92.46±2.01 96.53±1.57 1.76 100.00 

 

Table 5.6Accuracy of CMK and other kernels on 20 Newsgroups-Compdataset with 

varying training set size 

TS% Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 56.75±4.72 68.12±1.04 60.22±3.00 55.97±5.01 -1.37 48.26 

10 65.45±2.77 72.71±0.43 66.70±1.14 70.21±3.88 7.27* 65.19 

30 75.38±2.12 78.71±0.04 75.97±1.04 84.31±0.91 11.85* 91.51 

50 77.89±1.60 82.18±1.13 78.68±0.71 85.02±0.72 9.15* 98.92 

70 79.63±1.59 84.67±2.83 80.97±1.18 85.60±1.16 7.50* 99.83 

80 79.00±2.25 85.81±0.54 81.58±1.85 85.78±1.42 8.58* 99.98 

90 81.40±2.47 85.96±0.69 81.32±1.46 86.00±2.32 5.65* 100.00 

Table 5.7Accuracy of CMK and other kernels on 20 Newsgroups-Religiondataset with 

varying training set size 

TS% Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 74.73±2.47 77.73±2.47 65.33±1.70 58.98±7.21 -21.08 41.80 

10 80.98±2.69 81.19±1.92 72.10±1.95 71.39±7.57 -11.84 59.03 

30 83.87±0.78 84.85±1.84 83.50±1.58 91.07±1.39 8.58* 88.18 

50 88.39±0.93 88.96±2.30 86.19±1.35 93.04±0.64 5.26* 96.16 

70 89.68±1.41 90.62±1.18 87.26±0.31 93.47±1.23 4.23 99.37 

80 90.70±1.12 91.00±0.20 88.90±0.24 93.37±1.68 2.94 99.8 

90 91.65±1.63 91.70±1.73 89.00±2.37 93.80±2.18 2.35 99.99 
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Table 5.8Accuracy of CMK and other kernels on Mini-newsgroups dataset with varying 

training set size 

TS% Linear 

 

IHOSK HOTK CMK Gain Term 

Coverage 

5 52.38±5.53 61.29±1.03 49.69±5.64 48.89±2.62 -6.66 34.90 

10 59.85±3.88 64.15±0.54 66.24±3.81 59.53±2.49 -0.53 50.08 

30 72.84±3.56 75.51±0.31 81.82±2.04 74.24±1.71 1.92 76.16 

50 78.87±2.94 79.24±0.31 85.54±1.20 79.65±1.64 0.99 87.65 

70 80.05±1.96 79.73±0.45 87.28±1.13 80.23±1.58 0.22 94.27 

80 82.63±1.36 83.05±0.58 88.15±1.58 83.53±1.72 1.09 96.22 

90 84.65±2.48 85.38±1.28 88.10±2.80 85.64±2.87 1.17 98.55 

5.2 Class Weighting Kernel (CWK) 

In this study[95], we propose a novel approach for building a semantic smoothing 

kernel which makes use of the class-based term weights to improve the performance of 

SVM especially for text classification. The proposed approach is called Class 

Weighting Kernel (CWK). This class-based weighting basically groups terms based on 

their importance for each class. Consequently it smooths the representation of 

documents which changes the orthogonality of the vector space model by introducing 

class-based dependencies between terms. As a result, on the extreme case, two 

documents can be seen as similar even if they do not share any terms but their terms are 

similarly weighted for a particular class [95]. 

5.2.1 Methodology 

In our previous studies [92], [93], [94],[97]we take advantage of higher-order paths and 

meaning calculations. In those studies we show that the performance improvements 

between first-order and higher-order representation of features [92], [93], [97]and the 

power of meaning calculations[94].  In this approach we investigate the use of a new 

type of semantic smoothing kernel for text classification. The main idea behind Class 

Weighting Kernel (CWK) is to take advantage of the class-based term weighting of 

terms in the semantic kernel building process by establishing the semantic relations 

between terms based on their relative weights for classes. This basically gives more 

importance to core words of each class during the transformation phase of SVM from 

input space to feature space. Term weighting calculation used in this study[95] is taken 
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from [81] and is motivated by TF-RF [79] and TF-ICF [82][83] as mentioned in Section 

2.3. This term-weighting calculation has been applied to feature extraction in previous 

works [80][81]. In these studies, a text document is represented by terms and their class-

based weights. A term has a more discriminative power on a class if it has higher weight 

for that class. In other words, the more a word occurred in only a specific class the 

higher its weight gets and conversely the more a word occurred in all the classes it 

weight gets lower. Although, this class-based weighting calculation has been used in 

feature extraction domain, to the best of our knowledge, our work is the first to apply this 

technique to a kernel function.  

The VSM represents a document collection by a term-by-document matrix. In the initial 

step of our methodology a document d is represented in the VSM with the following 

BOW approach: 

 

 d = [tf(t1,d), tf(t2,d), tf(t3,d), tf(t4,d), tf(t5,d), …, tf(tD,d)]    (5.6) 

 

where tf(ti,d) is the frequency of term ti in document d, and D is the size of the dictionary 

of the corpus. In above expression  d  represents the document d as a TF vector, 

respectively. This function however, can be any other mapping from a document to its 

VSM representation (e.g., TF-IDF). 

To enrich the BOW representation with semantic information, we build the semantic 

relatedness matrix S using the class-based term weighting approach. Specifically, the i, j 

element of S quantifies the semantic relatedness between terms tiand tj. The class-based 

weighting calculations and formulas have been described in detail in the previous 

section. We take benefits of calculated weights of terms in the mapping schema of our 

kernel function as  

TWWS              (5.7) 

where W is a class-based term weighting matrix that is mentioned in Section 2.3 and 

calculated with Eq. (2.18). W is a term-by-class matrix. In our system S is a semantic 

smoothing matrix to transform documents from input space to feature space. Thus, S is a 

symmetric term-by-term matrix. Mapping of document d to new feature space is done in 

Eq. (5.8). 

Sdd )()(              (5.8) 
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Although the feature space defined above can be directly used in many classification 

methods; in a text classification case where we have high dimensionality with sparsity, it 

will be helpful to define the feature space implicitly via the kernel function. As it is 

mentioned in Section 2.1 and Eq. (2.5), the kernel function computes the inner product 

between documents p and q in the feature space. For our case, this can be written as: 

    T
q

T
p

T

qpqpCWK dSSddddd )()(,),(         (5.9) 

where  (dp, dq) is the similarity value between documents dp and dq, S is the class-based 

semantic term relation matrix which makes use of the weights of terms according to Eq. 

(2.18). In other words, here S is a semantic proximity matrix of terms. 

As in [27], for SVM and other kernel-based approaches the information is stored in 

Gram matrix or kernel matrix which is given by: 

Gp,q= ),( qpCWK ddk           (5.10) 

The Gram matrix or kernel matrix are essentially equivalent. By operating on one of 

these matrixes, it is easy to encode the data in a more appropriate way for mining and 

learning [27]. Additionally, as it is mentioned in Section 2.1, to be a valid kernel 

function, the Gram matrix that is formed from the kernel function must satisfy the 

Mercer’s conditions[25]. These conditions are satisfied when the Gram matrix is positive 

semi-definite. It has been shown in [107] that the matrix G formed by the kernel function 

Eq. (5.9) with the outer matrix product 
TSS is indeed a positive semi-definite matrix.                                                                                

After all calculations we obtainW as a term-by-class matrix which includes weights of 

terms in all classes. We observe that these weights reflect the importance of those words 

in order to distinguish the classes. Indeed after calculations, terms semantically close to 

the theme discussed in the documents of that class, gain the highest weight in the range. 

In other words semantically related terms of that class, i.e. “core” words[3], gain 

importance while semantically isolated terms, i.e. “general” words, lose their importance. 

So terms are ranked based on their importance. 

Consequently we argue that S which is based on W performs a similar kind of semantic 

smoothing as in Eq. (5.9). The new representation of the documents is richer than the 

standard representation with TF-IDF since; supplementary statistical information is 

directly calculated from our training corpus and embedded into the kernel function. In 
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other words transformations in Eq. (5.9) smooth the simple term vector representation 

using semantic ranking while moving from the original input space to a feature space 

through kernel transformation functions )( pd  and )( qd  for the documents dp and 

dq,respectively as in. As it is explicitly mentioned in[106], the presence of S in Eq. (5.9), 

changes the orthogonality of the document vectors, as this mapping introduces term 

dependencies. Documents can be seen similar even if they do not have any common 

terms by eliminating orthogonality. 

We also observe that the class-based weighting calculation degrades stop words by 

assigning them very small weights similar to the[94]. Let us consider the following two 

cases, which are represented in Table 5.9similar to[94]. According to Table 5.9, t1and t2 

are occurred in one or more documents of c1, not in remaining classes; c2, c3 and c4 while 

t3 and t4are occurred in one or more documents of c3, not in remaining classes; c1, c2 and 

c4, respectively. In other words t1and t2 are significant words of the theme discussed in 

c1, while t3 and t4 are significant terms of the topic discussed in c3; getting high weight 

according to Eq. (2.18); since the number of documents that term w occurs in the entire 

corpus that is Nw is inversely proportional to the weight. Also the total frequencies of 

t1and t2 in the documents c1 and the frequencies of t3 and t4 in the documents c3 are 

directly proportional to the weights of those terms. According to Eq. (2.18), the more a 

word occurred in only a specific class the higher it gets a weight and conversely the more 

a word occurred in all classes the less it gets a weight. This statement can also be 

represented with Table 5.9, since t1and t2 occurred in only c1 and t3 and t4 occurred in 

only c3 while t5andt6are occurred in every classes of the corpus. It is highly possible that 

these two words, t5 andt6, are in the type of “general” words since they are seen in every 

class of the corpus. 

Table 5.9Term frequencies on different classes [94] 

 

 

 

 

 

 

 

 

 c1 c2 c3 c4 

t1 1 0 0 0 

t2 1 0 0 0 

t3 0 0 1 0 

t4 0 0 1 0 

t5 1 1 1 1 

t6 1 1 1 1 
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The algorithm of CWK is as follows: 

 

Module Calculating Class-Based Weights of Words 

Input 

 Training set 

Output 

 Weight Matrix W for each word w and class k 

Local variables 

tfc w,k    : total term frequency of word w in the documents of class k 

tf w,d       : total term frequency of word w in the document d 

N         : total number of documents in the training set  

wN : vector shows the total number of documents in the training set those contain word 

w 

begin 

 for each word w 

for each document dicontains word win the training set 

 wN = wN   + 1//Increment the number of documents contain word w 

end for 

end for 

 for each word w 

for each document diin class k 

 tfc w,k  = tfc w,k  + tf w,d    //Increment the class frequency of word w 

end for 

//Calculate the weight of the word w in class k 

kwW , = (log(tfc w,k  ) +1)x(log (N/ wN ))  

end for 

end 

 

Module Training    //Building semantic smoothing kernel 

Input 

 Training set, kwW ,  

Output 

 qpG ,  : Gram matrix shows the kernel value between documents dpand dq 
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Local variables 

jiS ,   : Semantic smoothing matrix shows the relatedness between words i and j 

begin 

jiS , = kwW , ( kwW , )
T            

//Building semantic smoothing matrix 

for each document dp in the training set 

 for each document dqin the training set 

//Calculating kernel value between documents dp and dq 

qpG , =dp S S
T
 dq  

end for 

end for 

end 

5.2.2 Experimental Results and Discussion 

CWK outperforms our baseline kernel at all training set percentages also producing a 

statistically significant difference based on Students t-Test results on 20 Newsgroups-

Science dataset. This can be observed from Table 5.10. The performance gain is 

specifically obvious at training set percentages 5%, 10% and 30%. For instance at 

training set percentages  5%, 10% and 30% the accuracies of  CWK are 84.31%, 90.94% 

and 95.89% while the accuracies of linear kernel are 71.44%, 77.97% and 86.73; 

respectively. CWK also has better performance than our previous semantic kernels 

IHOSK, and HOTK at all training set percentages as shown in Table 5.10. Also it should 

be noted that, CWK is superior to our recent study CMK at training set percentages 5%, 

10%, 30%, 50% and 70%. There is another point which deserves attention is that by 

using only 5% of the training set the performance gain of CWK over linear kernel is 

18.02%, which is of great importance since usually it is difficult and expensive to obtain 

labeled data in real world applications. Additionally according to Table 5.10we can 

conclude that the performance differences of CWK while passing from one training set 

percentage to another are compatible with the term coverage ratios at those training set 

percentages. For instance at training set percentage 10%, term coverage jumps to 82.28% 

from its previous value at 5% that is 63.99%. Similar behavior can be observed at 

performance of CWK while going through 5% training set percentage to 10% training 

set percentage; where it generates the accuracies 84.31% and 90.94%; respectively. This 

means an accuracy change of 6.63% between 5% and 10% training set percentages.  
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Additional to CWK, we also built a second-order version of CWK with the name 

Second-Order Class Weighting Kernel (SO-CWK) with the following equation: 

SSdd )()(             (5.11) 

 

        T
q

T

p

T

qpqpCWKSO dSSSSddddd )()(,       (5.12) 

 

where )( pd  and )( qd  are transformation functions of kernel from input space into 

feature space for the documents dpand dq,respectively. 

We also recorded and compared the total kernel computation time of our previous 

semantic kernels IHOSK and HOTK and CWK. All the experiments presented here are 

carried on our experiment framework, Turkuaz, which directly uses WEKA [85], [89] on 

a computer with two Intel(R) Xeon(R) CPUs at 2.66 GHz with 64 GB of memory. Our 

semantic kernel’s computation time on each dataset is recorded in terms of seconds and 

they are proportionally converted into time units. According to this conversion, for 

instance on 20 Newsgroups-Science dataset; IHOSK [92], SO-CWK, HOTK [93] and 

CWK estimates the following time units in order; 100, 60, 56 and 40, respectively which 

is shown in Figure 5.4. 

In IHOSK [92] there is an iterative similarity calculation between documents and terms, 

which completes totally in 4 steps including the matrix calculations shown in Eq. (4.10) 

and (4.11). As discussed in [18], producing the similarity matrix of terms SCt (n×n) has 

overall complexity O(tn
3
) where t is the number of iterations and n is the number of 

training terms. Similarly, calculating the similarity matrix of documents SRt (m×m) has 

O(tm
3
) where m is the number of training documents.  Since both matrices need to be 

computed iteratively the overall complexity is bounded by the matrix multiplications of 

term and document similarity matrices. In our experiments only two iterations are 

performed (t=2). On the other hand, HOTK[93]has O(n
3
) complexity where n is the 

number of terms as noted in Eq. (4.16). Although both IHOSK and HOTK is bounded 

by the complexity of matrix multiplications, the IHOSK involves much more matrix 

multiplications due to the iterative computation of both term and document similarity 

matrices and consequently runs much longer than HOTK in practice. 
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The CWK is also bounded by the complexity of matrix multiplication. However, the 

matrix is much smaller; (n×c), where n is the number of term and c is the number of 

classes. In addition, the generation of this term by class matrix is also very fast with 

O(logn) complexity. These differences make CWK faster than HOTK as can be seen in 

Figure 5.4.  On the other hand the, SO-CWK includes an additional matrix 

multiplication of a term by term matrix, therefore it runs slightly longer than HOTK as 

shown in Figure 5.4. Since the complexity of IHOSK is higher than both HOTK and the 

proposed work of the CWK, it is not practical to apply IHOSK on large datasets. 

 

Figure 5.4The total kernel computation time units of IHOSK, SO-CWK, HOTK and 

CWK on 20 Newsgroups-Science dataset at 30% training set percentage 

We also compare CWK with TF-ICF on 20 Newsgroups-Science dataset. The 

formulation of TF-ICF is given in Eq. (2.16). TF-ICF is a supervised approach as 

mentioned in Section 2.3. The results are shown in Figure 5.5. According to Figure 5.5, 

CWK has much better performance than TF-ICF in all training set percentages. 

Table 5.10 Accuracy of CWK and other kernels on 20 Newsgroups-Science dataset with 

varying training set size 

TS 

% 

Linear 

 

IHOSK HOTK CMK CWK Gain Term  

Coverage 

5 71.44±4.30 84.15±2.87      76.63±2.67 64.51±4.86 84.31±2.77 18.02* 63.99 

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 90.94±1.72 16.63* 82.28 

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 95.89±0.51 10.56* 98.01 

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 96.82±0.3 8.86* 99.90 

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 97.08±0.68 7.18* 99.99 

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 97.35±0.56 6.59* 100.00 

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 98.20±0.71 7.44* 100.00 
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Table 5.11Accuracy of CWK and other kernels on IMDB dataset with varying training 

set size 

TS% Linear 

 

IHOSK 

 

HOTK      CWK  Gain Term  

Coverage 

5 76.85±1.31 76.98±1.14 74.21±0.24 77.62±2.45 1.00 48.00 

10 82.99±1.76 82.55±2.32 82.23±0.42 84.32±1.19 1.60 61.51 

30 85.57±1.65 87.16±1.64 85.63±1.69 89.66±0.53 4.78 86.35 

50 88.46±1.89 89.40±1.91 87.20±0.33 91.48±0.69 3.41 95.91 

70 89.93±1.18 91.31±0.87 90.41±0.55 92.75±1.05 3.14 99.17 

80 90.65±1.09 92.38±1.43 91.37±0.98 92.73±1.09 2.29 99.71 

90 91.75±1.14 92.63±1.19 91.59±0.27 93.60±1.52 2.02 99.98 

 

 

Figure 5.5The Comparison of the accuracies of TF-ICF and CWK at different training 

set percentages on 20 Newsgroups-Science dataset 

According to our experiments, CWK demonstrates a notable performance gain on IMDB 

dataset, which can be seen in Table 5.11. At 30% training set level, the performance of 

CWK is 89.66% while the performance of linear kernel is only 85.57%. It is also very 

promising to see that CWK is superior to both linear kernel and our previous algorithms 

IHOSK [92] and HOTK [93] throughout all training set percentages.  

Table 5.12denotes experiment results on 20 Newsgroups-Politics dataset. In this dataset, 

again CWK’s performance is better than linear kernel’s at all training set percentages. 

Similarly, CWK performs better than both IHOSK and HOTK at all training set 

percentages. Additionally, CWK statistically significantly outperforms our baseline 

kernel at 5% training set level based on Students t-Tests.  



 
 

69 

 

Table 5.12Accuracy of CWK and other kernels on 20 Newsgroups-Politics dataset with 

varying training set size 

TS% Linear IHOSK HOTK      CWK  Gain Term 

Coverage 

5 79.01±2.65 82.27±4.60                                     80.72±1.56 83.49±4.16 5.67* 58.60 

10 84.69±1.24 88.61±2.10 84.89±2.15 88.73±2.29 4.77 75.02 

30 92.04±1.06 93.61±1.08 88.31±1.22 94.90±0.97 3.11 96.37 

50 93.73±0.57 93.55±3.58 90.29±0.79 96.15±0.80 2.58 99.43 

70 94.55±1.21 93.24±3.08 90.15±1.15 95.87±0.90 1.40 99.97 

80 94.03±0.91 95.30±1.82 92.50±1.60 96.80±1.09 2.95 100.00 

90 94.86±1.26 95.80±2.28 92.46±2.01 96.27±1.97 1.49 100.00 

For 20 Newsgroups-Compdataset, CWK significantly outperforms linear kernel at all 

training set percentages similar to the situation in 20 Newsgroups-Science dataset as 

shown in Table 5.13. The highest gain of CWK over linear kernel on this dataset is at 

5% training set level with 18.52% gain.  Overall, the gains of CWK over linear kernel 

are usually much larger in 20 Newsgroups-Compdataset compare to the 20 

Newsgroups-Politics. This may due to the larger number of classes in 20 Newsgroups-

Compdataset. 

Experiment results on 20 Newsgroups-Religiondataset are presented in Table 5.14. 

These results show that CWK has superiority over other kernels starting from 10% 

training set level. For instance at training set percentage 30% CWK’s gain over linear 

kernel is 7.55%. Also in training set percentage 30% CWK shows a significant 

improvement over linear kernel. 

Table 5.13Accuracy of CWK and other kernels on 20 Newsgroups-Compdataset with 

varying training set size 

TS% Linear IHOSK HOTK      CWK  Gain Term 

Coverage 

5 56.75±4.72 68.12±1.04 60.22±3.00 67.26±2.53 18.52* 48.26 

10 65.45±2.77 72.71±0.43 66.70±1.14 76.60±1.53 17.04* 65.19 

30 75.38±2.12 78.71±0.04 75.97±1.04 84.67±0.58 12.32* 91.51 

50 77.89±1.60 82.18±1.13 78.68±0.71 87.09±0.77 11.81* 98.92 

70 79.63±1.59 84.67±2.83 80.97±1.18 87.63±1.53 10.05* 99.83 

80 79.00±2.25 85.81±0.54 81.58±1.85 88.10±0.96 11.52* 99.98 

90 81.40±2.47 85.96±0.69 81.32±1.46 87.88±2.56 7.96* 100.00 
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Table 5.15presents the experiment results on Mini-newsgroups dataset. According to 

these results CWK outputs better accuracy results than linear kernel at all training set 

percentages. Furthermore, it should be noted that at 5% training set level, the gain of 

CWK over linear kernel is 21.55% which is a very important advantage on the 

classification accuracy given the very limited labeled information. On the other hand, at 

training percentages 50%, 70%, 80% and 90% HOTK generates higher accuracy than 

CWK. This can be explained with the capability of HOTK to capture latent relations 

between terms with its higher-order approach[93]. 

Table 5.14Accuracy of CWK and other kernels on 20 Newsgroups-Religiondataset with 

varying training set size 

TS% Linear IHOSK HOTK           CWK  Gain Term  

Coverage  

5 74.73±2.47 77.73±2.47 65.33±1.70 75.32±2.87 0.7

9 

41.80 

10 80.98±2.69 81.19±1.92 72.10±1.95 82.63±1.97 2.0

4 

59.03 

30 83.87±0.78 84.85±1.84 83.50±1.58 90.20±1.08 7.55* 88.18 

50 88.39±0.93 88.96±2.30 86.19±1.35 92.41±0.44 4.5

5 

96.16 

70 89.68±1.41 90.62±1.18 87.26±0.31 92.62±0.99 3.2

8 

99.37 

80 90.70±1.12 91.00±0.20 88.90±0.24 93.17±1.21 2.7

2 

99.80 

90 91.65±1.63 91.70±1.73 89.00±2.37 93.20±1.66 1.6

9 

99.99 

  

Since some of the datasets used in this study [95] are also used in other studies such 

as[14], [108] we have the opportunity to compare our results with them. The first 

algorithm we compare our results is Higher-Order SVM (HOSVM)[14]. For instance at 

30% training set level of 20 Newsgroups-Compdataset; 75.38%, 78.71%, 75.97% and 

84.67% accuracies are obtained by linear kernel, IHSOK, HOTK and CWK respectively 

as mentioned above. On the same training set level, HOSVM achieves 78% accuracy 

according to the Figure. 2(d) in[14].This comparison shows CWK outperforms 

HOSVM by approximately 8.55% gain. Actually CWK’s superiority on HOSVM can 

also be seen on other datasets such as 20 Newsgroups-Religion, 20 Newsgroups-

Science and 20 Newsgroups-Politics. For instance at 30% training set level on 20 

Newsgroups-Politics dataset while HOSVM’s performance is about 91%, where CWK 
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reaches 94.9% accuracy, which corresponds to 4.29% gain. Very similar picture can be 

seen at a higher training set level such as 50%. For example, the accuracy values of 

88.94%, 92%, 94.97%, 90.84%, 96.82% are achieved by linear kernel, HOSVM, 

IHSOK, HOTK and CWK respectively on 20 Newsgroups-Science dataset at this level. 

Moreover, we also have the chance to compare our results with the study in [108]. 

Harish et al. proposes a text classification algorithm in [108] which uses B-Tree and 

preserves the term sequence with a data structure called Status Matrix. One of the 

datasets they use is Mini-newsgroups dataset. They do not apply any attribute selection 

technique such as IG in their preprocessing phase. For instance at training setpercentage 

50% on Mini-newsgroups dataset; 78.87%, 79.24%, 85.54% and 84.44% accuracies are 

achieved by linear kernel, IHSOK, HOTK and CWK respectively as 

Table 5.15Accuracy of CWK and other kernels on Mini-newsgroups dataset with 

varying training set size 

TS% Linear IHOSK HOTK      CWK  Gain Term  

Coverage 

5 52.38±5.53 61.29±1.03 49.69±5.64 63.67±3.31 21.55* 34.90 

10 59.85±3.88 64.15±0.54 66.24±3.81 71.66±1.22 19.73* 50.08 

30 72.84±3.56 75.51±0.31 81.82±2.04 81.93±1.13 12.48* 76.16 

50 78.87±2.94 79.24±0.31 85.54±1.20 84.44±1.14 7.06*  87.65 

70 80.05±1.96 79.73±0.45 87.28±1.13 84.85±1.56 6.00* 94.27 

80 82.63±1.36 83.05±0.58 88.15±1.58 86.43±1.16 4.60 96.22 

90 84.65±2.48 85.38±1.28 88.10±2.80 85.05±3.93 0.47 98.55 

 

shown in Table 5.15. On the same training set percentage, the maximum accuracy 

gathered by the study in [108] is 68.95. According to this comparison we observe that 

CWK outperforms the algorithm in [108] by 15.49%. 
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CHAPTER 6 

INSTANCE LABELING IN SEMI-SUPERVISED LEARNING 

USINGMEANING VALUES OF TERMS 

In supervised learning systems, only labeled samples are used for building a 

classification model which is then used to predict the class memberships of the 

unlabeled samples. However, obtaining labeled data is very expensive, time consuming 

and difficult in real-life practical situations as labeling a data set requires the efforts of 

human experts. On the other side, unlabeled data are often plentiful which makes it 

relatively inexpensive and easier to obtain. Semi-Supervised Learning (SSL) methods 

strive to utilize this abundant source of unlabeled instances to improve the learning 

capacity of the classifier especially when amount of labeled instances are limited. Since 

SSL techniques reach higher accuracy and require less human effort, they attract a 

substantial amount of attention both in practice applications and theoretical research. 

Although the use of unlabeled data compromises a new opportunity to have a better 

classification, how to use them to improve prediction is still an open research issue. In 

this approach, we offer a new semi-supervised algorithm, which utilizes a new method 

to predict the class labels of unlabeled examples in a corpus and incorporate them into 

the training set to build a better classifier. The approach presented here depends on a 
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meaning measure, which calculates the meaningfulness of the terms in the context of 

classes. The meaning measure is based on the Helmholtz principle from Gestalt theory 

and applied to several text-mining applications such as document summarization and 

feature extraction. However, to the best of our knowledge, ours is the first study to use 

meaning measure in a semi-supervised setting to build a semantic kernel for Support 

Vector Machines (SVM). We evaluated the proposed approach by conducting a large 

number of experiments on well-known textual datasets and present results with respect 

to different experimental conditions. We compare our results with standard linear kernel 

which is the traditional state of the art algorithm in SVM for text classification, semi-

supervised form of linear kernel and a supervised classification algorithm which also 

uses meaning measure, from our previous study. Our results show that labeling 

unlabeled instances based on meaning values of terms is valuable, and increase the 

classification accuracy significantly. 

6.1Instance Labeling Based on Meaning (ILBOM) 

6.1.1 Methodology 

ILBOM is mainly composed of five independent modules including preprocessing, 

meaning calculation, labeling, kernel evaluation and classification. The architecture of 

ILBOM System is shown in Figure 6.1. 

6.1.1.1Meaning Calculation 

We use Eq. (8) in order to calculate the meaning values of the terms in this labeled set 

which produces Mtrain class-based term meaning matrix is made up of t rows (terms) and 

j columns (classes). The Mlabeled matrix shows the meaningfulness of the terms in the 

labeled set for each class. If a word occurs only once in a class then its meaning value 

for that class is zero according to Eq. (2.32). If a word does not occur at all in a class, it 

gets minus infinity based on Eq. (2.32) as a meaning value for that class. In order to 

make calculations more practical we assign the next smallest value to that word 

according to the range of meaning values we get for all the words in our labeled 

documents. After all calculations we get Mlabeled as a term-by-class matrix which 

includes the meaning values of terms in all classes of the labeled documents. We 

observe that these meaning values are high for those words that allow us to distinguish 



 
 

74 

 

between classes. Indeed terms semantically close to the theme discussed in the class 

gain the highest meaning values. In other words semantically related terms of that class, 

i.e. “core” words as mentioned in [3], gain importance while semantically isolated 

terms, i.e. “general” words lose their importance. Also as it is mentioned in [99] and 

utilized in [94], meaning calculation automatically filters stop words by assigning them 

very small amounts of meaning values.
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Our approach, ILBOM, utilizes both labeled and unlabeled data. In order to incorporate 

unlabeled examples into the classifier model in SVM, we calculate the total meaning 

value of an unlabeled document using Eq. (6.1): 





t

n
dnnjlabeledji i

tfwwMcdTM
1

,)(),(         (6.1) 

where )( njlabeled wM  is the meaning value of the termwn for the class cjas mentionedabove, 

idntfw , is the number of occurrence of the term wn in the document di and ),( ji cdTM is the 

total meaning value of the document difor the class cj. 

6.1.1.2 Labeling 

In ),( ji cdTM  matrix, dik = [di1,…,dik] is the document vector showing the document di’s 

total meaning values from the aspects of all the classes, respectively. We simply select 

the column (class number) with the greatest value in dik = [di1,…,dik] document vector 

and label this document with this class number. After completing this labeling-step, all 

the unlabeled instances are assigned labels and the updated version of the labeled 

instances are found as follows: 

L=Lo+Lp            (6.2) 

 

where Lois the original labeled instances, Lp is the previously unlabeled instances with 

their current predicted labels and L is the total of Loand Lp; respectively. 

6.1.1.3 Kernel Evaluation 

In this step we simply run the CMK which is proposed in our previous study [94] on L. 

In CMK, we build the class-based term meaning matrix M using meaning calculations 

given in Eq. (2.32). The M matrix shows the meaningfulness of the terms in each class. 

Based on M we calculate S matrix in order to reveal class based semantic relations 

between terms. Specifically, the i, j element of S quantifies the semantic relatedness 

between terms ti and tj.  

TMMS              (6.3) 

The S is a semantic smoothing matrix to transform documents from input space to 

feature space. Thus, S is a symmetric term-by-term matrix. Mathematically, the kernel 

value between two documents is given as 
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TT
ILBOM dSSdddk 2121 ),(           (6.4) 

where kILBOM (d1, d2) is the similarity value between documents d1 and d2, S is the 

semantic smoothing matrix. 

As mentioned in[106], the presence of S in Eq. (6.4) changes the orthogonality of the 

vector space model, as this mapping introduces term dependence. Documents can be 

seen as similar even if they do not share any terms by eliminating orthogonality. 

6.1.1.4 Classification 

We integrated our kernel function into the implementation of the SVM algorithm in 

WEKA[85]. In other words, we built a kernel function that can be directly used with 

Platt’s Sequential Minimal Optimization (SMO) classifier [86]. In the classification-step 

all the test instances’ labels are predicted and the classification error rate is calculated. 

6.1.2Experimental Results and Discussion 

In order to compare the results of ILBOM we use two baseline algorithms. First of them 

is called SSL-Linear. Please note that linear kernel is the traditional state of the art 

algorithm in SVM for text classification [19], [20]. SSL-Linear first classifies unlabeled 

examples by using linear kernel that is trained by only the labeled examples. Then, like 

ILBOM it merges the labeled examples and unlabeled examples with their pre-labels 

and builds the trainer by using standard linear kernel. After that it again attempts to 

classify unlabeled examples via the last built model and compares the labels of an 

instance. If an instance is classified into a different class by the second classifier then its 

label is updated since the final model is more comprehensive than the first model and is 

expected to produce predictions with higher classification confidence. The self-training 

process ends when either there is no change in the predictions or it reached 100 

iterations. We also compare the results of ILBOM to those of CMK, which is the second 

baseline. 
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Figure6.1 The architecture of ILBOM system 

 

ILBOM outperforms all of the baseline kernels we used (i.e., SSL-Linear and CMK) 

which can be observed from Table 6.1, Table 6.2, Table 6.3 and Table 6.4. The 

performance gain is specifically obvious at smaller labeled set percentages between 1% 

labeled and 15% labeled set percentage. For instance at labeled set percentages  1%, 2% 

, 4% , 5%  and 7% the accuracies of  ILBOM are 59.7%, 64.15%, 79.78%, 86.03% 

and89.6% while the accuracies of SSL-Linear are 50.03%, 57.1%, 66.45, 67.95% and 

71.7%; respectively. ILBOM also has better performance than our previous supervised 

semantic kernel CMK at most of the labeled set percentages expect labeled set 

percentages 30% and 50% as shown in Table 6.1, Table 6.2, Table 6.3 and Table 6.4. 

The highest gain of ILBOM over SSL-Linear kernel on this dataset is at 5% labeled set 

percentage which is 26.61% that is of great importance since usually it is difficult and 

expensive to obtain labeled data in real world applications. Also it should be noted that, 

there are performance gains of ILBOM over linear kernel except labeled set percentage 

3%.  
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Table 6.1, Table 6.2, Table 6.3 and Table 6.4also contain the experiment results on the 

20 Newsgroups-Politics dataset. In this dataset, ILBOM’s performance is higher than 

the baseline kernel’s in all labeled set percentages except 1% and 50%. Furthermore, 

ILBOM performs better than both CMK and linear kernel in almost all labeled set 

percentages except 50%. Only in labeled set percentages 50%, CMK gives better 

accuracy than ILBOM, but ILBOM still remains better than linear at this labeled set 

percentage.  According to our experiments, ILBOM demonstrates a notable 

performance gain on the IMDB dataset, which can be seen in Table 6.1, Table 6.2, 

Table 6.3 and Table 6.4. ILBOM outperforms our baseline, SSL-Linear kernel, in all 

labeled set percentages also making a significant difference based on Students t-Tests. 

Table 6.1, Table 6.2, Table 6.3 and Table 6.4 also present the experiment results on 

Mini-newsgroups dataset. According to these results ILBOM outputs better accuracy 

than SSL-Linear kernel at all labeled setpercentages except 2% and 50%. But in overall, 

ILBOM is not as good as supervised kernels (linear kernel and CMK) on this dataset 

especially between the labeled set percentages 1% and 5%. In other words, 

interestingly, SSL algorithms (i.e. ILBOM and SSL-Linear) do not benefit from the 

unlabeled examples on Mini-newsgroups dataset at labeled set percentages under 10%. 

Because the performance of semi-supervised algorithms (ILBOM and SSL-Linear) at 

those labeled percentages is less than the performance of linear kernel, which is a 

supervised algorithm and do not utilize the unlabeled instances. One possible 

explanation is that ILBOM suffers from capturing enough latent semantics between 

documents and terms in meaning calculations at low labeled percentages. This may due 

to the relatively smaller amount of labeled instances per class in this dataset. For 

instance there are 500 instances per class in 20-newsgroups datasets such as 20 

Newsgroups-Science and 1000 instances per class in IMDB but there are only 100 

instances per class in Mini-newsgroups. Therefore this yields more misclassified 

unlabeled examples before building the model and those mislabeled examples degrade 

the classification performance. Those latent relations may play an important role since 

the number of classes is relatively high and the number of documents per class is much 

smaller yielding a higher sparsity. 
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Table 6.1Accuracy of ILBOM and other kernels on 20 Newsgroups-Science dataset 

with varying training set size 

Labeled 

% 

Unlabeled 

% 

Test 

% 

Linear  Baseline-1: 

SSL-

Linear 

Baseline-2: 

CMK 

ILBOM Gain 

1 79 20 51.80±5.33 50.03±5.29 39.42±6.78 59.70±21.63 19.33* 

2 78 20 59.10±5.49 57.10±6.01 50.30±6.00 64.15±15.2 12.35* 

3 77 20 66.03±3.61 64.83±3.64 53.40±7.78 63.93±12.25 -1.39 

4 76 20 69.05±3.70 66.45±3.59 60.50±7.17 79.78±5.62 20.06* 

5 75 20 70.10±4.34 67.95±4.64 70.03±5.07 86.03±3.77 26.61* 

7 73 20 72.72±4.47 71.70±3.59 78.53±5.07 89.60±3.01 24.97* 

10 70 20 76.68±2.07 74.58±3.30 87.48±4.81 92.55±1.23 24.09* 

15 65 20 83.53±2.68 80.53±2.79 89.95±1.71 94.38±0.91 17.20* 

30 50 20 86.28±2.27 83.70±1.97 95.28±0.95 94.98±0.78 13.48* 

 

Table 6.2Accuracy of ILBOM and other kernels on 20 Newsgroups- Politics dataset 

with varying training set size 

Labeled 

% 

Unlabeled 

% 

Test 

% 

Linear  Baseline-1: 

SSL-

Linear 

Baseline-2: 

CMK 

ILBOM Gain 

1 79 20 52.60±5.69 51.33±6.18 38.60±2.26 52.63±7.76 2.53 

2 78 20 64.60±6.34 62.20±5.80 47.97±4.64 82.30±7.78 32.32* 

3 77 20 69.60±5.28 68.97±5.89 64.60±10.43 86.37±5.43 25.23* 

4 76 20 69.97±5.68 69.07±7.29 68.57±12.7 88.37±5.05 27.94* 

5 75 20 73.23±3.92 72.23±3.29 78.03±4.46 88.70±2.8 22.80* 

7 73 20 78.33±5.30 76.87±4.85 80.03±5.24 92.23±2.26 19.98* 

10 70 20 82.00±2.38 80.77±1.60 87.13±2.13 93.40±1.28 15.64* 

15 65 20 84.67±4.92 83.93±4.88 91.50±1.69 94.63±1.62 12.75* 

30 50 20 90.07±1.91 87.50±2.64 94.43±1.05 95.33±0.82 8.95* 
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Table 6.3Accuracy of ILBOM and other kernels on IMDB dataset with varying training 

set size 

Labeled 

% 

Unlabeled 

% 

Test 

% 

Linear  Baseline-1: 

SSL-

Linear 

Baseline-2: 

CMK 

ILBOM Gain 

1 79 20 65.75±7.79 65.60±8.37 61.33±6.4 70.43±15.32 7.36* 

2 78 20 69.30±3.28 70.13±2.82 67.97±6.57 82.88±6.52 18.18* 

3 77 20 72.80±3.28 71.15±3.83 74.25±3.91 79.25±6.78 11.38* 

4 76 20 76.28±2.27 75.70±2.92 77.03±3.57 80.08±6.56 5.79* 

5 75 20 77.03±2.55 75.88±2.78 80.33±3.79 82.68±4.99 8.96* 

7 73 20 79.45±1.76 78.53±2.49 82.38±1.88 86.33±1.84 9.93* 

10 70 20 79.70±2.86 78.83±3.28 84.65±1.94 87.08±1.99 10.47* 

15 65 20 81.72±2.47 80.35±1.42 86.98±1.57 88.70±2.18 10.39* 

30 50 20 85.80±1.37 84.78±1.29 90.88±1.28 91.40±0.76 7.81* 

Table 6.4Accuracy of ILBOM and other kernels on Mini-Newsgroupsdataset with 

varying training set size 

Labeled 

% 

Unlabeled 

% 

Test 

% 

Linear  Baseline-1: 

SSL-

Linear 

Baseline-2: 

CMK 

ILBOM Gain 

1 79 20 36.70±4.24 29.85±4.04 19.23±2.59 32.45±8.83 8.71* 

2 78 20 38.42±5.47 30.58±4.61 18.43±2.48 29.23±5.45 -4.41 

3 77 20 46.33±4.32 38.23±4.71 26.63±3.43 41.90±4.89 9.60* 

4 76 20 46.70±8.34 38.78±7.55 33.48±4.19 45.63±3.51 17.66* 

5 75 20 50.00±5.49 40.85±5.63 35.78±3.15 49.75±4.17 21.79* 

7 73 20 55.15±4.72 47.70±5.62 47.23±3.18 59.75±3.88 25.26* 

10 70 20 57.03±2.79 47.98±3.37 53.65±3.27 64.03±2.16 33.45* 

15 65 20 62.48±4.28 55.48±3.48 61.83±3.24 67.65±2.85 21.94* 

30 50 20 69.55±4.50 63.60±4.30 70.68±3.38 72.88±2.4 
14.59* 
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CHAPTER 7 

RESULTS AND DISCUSSION  

 

It has been shown that higher-order co-occurrence relations between documents and 

terms catch “latent semantics” and result higher accuracies in text classification area 

[14], [15], [18] and [74]. Motivated by these studies, we propose several corpus-based 

semantic kernels such as Higher-Order Semantic Kernel (HOSK), Iterative Higher-

Order Semantic Kernel (IHOSK) and Higher-Order Term Kernel (HOTK) for SVM. In 

these studies, we extend the traditional linear kernel (i.e. a dot product between 

document vectors) for text classification by embedding higher-order relations between 

terms and documents into the kernel. We show significant improvements on 

classification performance over linear kernelby taking advantage of higher-order 

relations between terms and documents. For instance, the HOSK is based on higher-

order relations between the documents. The IHOSK is similar to the HOSK since they 

both propose a semantic kernel for SVM by using higher-order relations. However, 

IHOSK makes use of the higher-order paths between both the documents and the terms 

iteratively. Therefore, although, the performance of IHOSK is superior, its complexity 

is significantly higher than other higher-order kernels. A simplified model, the HOTK, 

uses higher-order paths between terms.Experiment results show that our higher-order 

kernels outperform the linear kernel in most of the test cases we tried on several datasets 

under different training set size conditions. Our results show the usefulness of HOSK, 

IHOSK and HOTK as semantic kernels for SVM in text classification. As future work, 

we want to analyze the improved performance of HOSK, IHOSK and HOTK. 

Especially, we would like to shed light into if and how our approaches implicitly 

capture semantic information such as synonyms and word sense  
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disambiguation when calculating similarity between documents. Additionally, we plan 

to get more observations about under what type of conditions HOSK, IHOSK and 

HOTK perform better than other algorithms.  

The other suggested approaches are based on class-based term values. One of them is 

based on a meaning measure, which we name CMK that calculates the meaningfulness 

of the terms in the context of classes. Inspiredby the advantages of CMK, we build a 

semi-supervised algorithm, called ILBOM. The suggested approaches smooth the terms 

of a document in BOW representation by class-based meaning values of terms. This 

actually, increases the significance of important or in other words meaningful terms for 

each class while reducing the importance of general terms which are not useful for 

discriminating the classes. The meaning values of terms are calculated according to the 

Helmholtz principle from Gestalt theory in the context of classes.Gestalt theory points 

out that meaningful features and interesting events appears in large deviations from 

randomness. The meaning calculations attempt to define meaningfulness of terms in 

text by using the human perceptual model of the Helmholtz principle from Gestalt 

Theory. In the context of text mining, the textual data consist of natural structures in the 

form of sentences, paragraphs, documents, topics and in our case classes of documents. 

In our semantic kernel setting, we compute meaning values of terms, obtained using the 

Helmholtz principle in the context of classes where these terms appear. We use these 

meaning values to smoothen document term vectors. As a result our approach can be 

considered as a supervised semantic smoothing kernel which makes use of the class 

information. This is one of the important novelties of our approach since the previous 

studies of semantic smoothing kernels does not incorporate class specific information. 

Our experimental results show the promise of the CMK as a semantic smoothing kernel 

for SVM in the text classification domain. The CMK performs better than linear kernel 

in most of our experiments. The CMK also outperforms other corpus-based semantic 

kernels such as IHOSK [92] and HOTK [93], in most of the datasets. Furthermore, the 

CMK forms a foundation that is open to several improvements. For instance, the CMK 

can easily be combined with other semantic kernels which smooth the document term 

vectors using term to term semantic relations, such as the ones using WordNet or 

Wikipedia.  

In our semantic semi-supervised approach, ILBOM, we use these meaning values to 

smoothen the document term vectors. The main novelty of our approach is to propose a 
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non-iterative yet effective way of assigning labels to unlabeled instances and augment 

the training set with these in order to build a better performing model using the CMK 

which is recently proposed in our previous study. It can be considered as a semi-

supervised algorithm which is inspired by CMK. Our experimental results show the 

promise of the ILBOM as a semi-supervised method for SVM in the text classification 

domain. ILBOM performs better than linear kernel which is commonly used state-of-the 

art kernel in the literature.  We also usetwo baseline algorithms, namely SSL-Linear and 

CMK, in order to compare the results of ILBOM. According to our experimental results 

ILBOM outperforms semi-supervised form of linear kernel (SSL-Linear) in most of our 

experiments. The ILBOM also outperforms the supervised CMK, in most of the 

datasets. In other words, ILBOM achieves higher classification accuracy by adding 

unlabeled data into the same amount of labeled data CMK uses. This exciting and 

convincing result shows that we succeed in building a semi-supervised approach that 

can benefit from unlabeled data. As future work, we plan to build the self-trained form 

of our model and analyze the performance differences especially at lower labeled set 

percentages. 

Table 7.1 Accuracy of our semantic kernels and linear kernel on 20 Newsgroups-

Science dataset with varying training set size 

TS% Linear 

 

IHOSK HOTK CMK CWK Term  

Coverage 

5 71.44±4.30 84.15±2.87      76.63±2.67 64.51±4.86 84.31±2.77 63.99 

10 77.97±3.73 90.37±0.81 82.47±2.02 82.19±3.58 90.94±1.72 82.28 

30 86.73±1.32 94.31±1.09 89.24±0.74 95.07±0.87 95.89±0.51 98.01 

50 88.94±1.16 94.97±0.90 90.84±1.12 96.71±0.61 96.82±0.3 99.90 

70 90.58±0.93 95.35±0.88 92.06±1.28 97.12±0.59 97.08±0.68 99.99 

80 91.33±1.41 96.23±1.19 93.38±1.43 97.60±0.66 97.35±0.56 100.00 

90 91.40±1.56 96.85±1.70 94.20±1.36 97.75±0.89 98.20±0.71 100.00 

 

We also introduce a new semantic kernel for SVM called Class Weighting Kernel 

(CWK). CWK is based on weighting the values of terms in the context of classes 

according to [80] and [81]. CWK smooths the terms of a document in bag-of-words 

(BOW) representation by making use of the terms’ discriminating power for each class 

in the training set. This in turn increases the importance of significant or in other words,  
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Table 7.2 Accuracy of our semi-supervised semantic kernel and the other kernels on 20 

Newsgroups-Science dataset with varying training set size 

Labeled 

% 

Unlabeled 

% 

Test 

% 

Linear  Baseline-

1: 

SSL-

Linear 

Baseline-

2: 

CMK 

ILBOM Gain 

1 79 20 51.80±5.33 50.03±5.29 39.42±6.78 59.70±21.63 19.33* 

2 78 20 59.10±5.49 57.10±6.01 50.30±6.00 64.15±15.2 12.35* 

3 77 20 66.03±3.61 64.83±3.64 53.40±7.78 63.93±12.25 -1.39 

4 76 20 69.05±3.70 66.45±3.59 60.50±7.17 79.78±5.62 20.06* 

5 75 20 70.10±4.34 67.95±4.64 70.03±5.07 86.03±3.77 26.61* 

7 73 20 72.72±4.47 71.70±3.59 78.53±5.07 89.60±3.01 24.97* 

10 70 20 76.68±2.07 74.58±3.30 87.48±4.81 92.55±1.23 24.09* 

15 65 20 83.53±2.68 80.53±2.79 89.95±1.71 94.38±0.91 17.20* 

30 50 20 86.28±2.27 83.70±1.97 95.28±0.95 94.98±0.78 13.48* 

 

core terms for each class while reducing the importance of general terms that exist in all 

classes. Since this method is used in the transformation phase of a kernel function (from 

input space into a feature space), it reduces the effects of the several disadvantages of 

the BOW representation which is discussed in Section 1. We demonstrate that CWK 

considerably increase the accuracy of SVM compare to the linear kernel by assigning 

more weight to class specific terms which can be synonymous or very closely related in 

the context of a class. In other words, CWK uses a class-weighting based semantic 

smoothing matrix during the transformation from the original space into the feature 

space of the kernel function. This semantic smoothing mechanism map the similar 

documents to nearby positions in the feature space of SVM even if they are written 

using different but semantically closer sets of terms in the context of classes. In our 

semantic kernel setting, the document term vectors are smoothed based on weights of 

terms in the context of classes. As a result it can be considered as a supervised semantic 

kernel which directly makes use of class information. Our experimental results show the 

promise of CWK as a semantic kernel for SVM in the text classification domain. CWK 

performs better than linear kernel. The CWK also demonstrates better accuracies than 

other corpus-based semantic kernels such as IHOSK [92] and HOTK [93], in most of 

the datasets we used. According to our experimental results, CWK outperforms our 
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baseline kernel at all training set percentages also making a significant difference based 

on Students t-Tests results on both 20 Newsgroups-Science and 20 Newsgroups-

Compdatasets. Furthermore CWK gives higher accuracies than our baseline linear 

kernel at all of the training set percentages for all of the datasets we used in our 

experiments. Additionally, on 20 Newsgroups-Science dataset by using only 5% of the 

training set, the performance gain of CWK over linear kernel is 18.02%, which is of 

great importance since usually it is difficult and expensive to obtain labeled data in real 

world applications. A very similar situation is occurred for Mini-newsgroups dataset at 

again 5% training set level, the performance gain of CWK over linear kernel is 21.55%. 

Moreover it should be noted that CWK has the capability of reaching more accurate 

classification performance in compare to both linear kernel and our previous semantic 

kernels with less execution time than both IHOSK and HOTK. We also believe that 

CWK forms a foundation that is open to several improvements. The experimental 

results of these algorithms on 20 Newsgroups-Science dataset are shown in Table 7.1 

and Table 7.2. According to experimental results higher-order algorithms have more 

gain on linear kernel at low training set percentages while corpus-based kernels have 

more gain on linear kernel at high training set percentages. All the proposed approaches 

including CWK have independency of the outside semantic sources such as WordNet, so 

that they can be applied to any language domain. They also form a foundation that can 

easily be combined with other term-based semantic similarity methods such as 

unsupervised semantic similarity measures. For instance, the CWK can easily be 

combined with other semantic kernels which smooth the document term vectors using 

term to term semantic relations such as the ones using WordNet or Wikipedia. These 

semantic kernels can also be applied on different domains in TC such as IR, sentimental 

classification, syntactic-semantic analysis of documents, measuring similarities of short 

texts such as microblogs, tweets and also can be applied on other domains on otside of 

TC such as image retrieval, biomedical applications, recommendation systems etc... As 

future work, we plan to implement different class-based document or term similarities 

in supervised classification and compare their results to the results of the CWK. 

 

 

 

 



 
 

86 

 

 

REFERENCES 

[1] Salton, G., Yang, C.S., (1973). “On the Specification of Term Values in 

Automatic Indexing”, Journal of Documentation, 29(4):11-21. 

[2] Wang, P., Domeniconi, C., (2008). “Building Semantic Kernels for Text 

Classification Using Wikipedia”, Proceeding of the 14th ACM International 

Conference on Knowledge Discovery and Data Mining (SIGKDD), 713-721. 

[3] Steinbach, M. Karypis, G., Kumar, V., (2000). “A Comparison of Document 

Clustering Techniques”, Proceedings of the KDD Workshop on Text Mining. 

[4] Nasir, J. A., Karim, A., Tsatsaronis, G. Varlamis, I., (2011). “A Knowledge-

Based Semantic Kernel for Text Classification”, String Processing and 

Information Retrieval, 261-266, Springer. 

[5] Bloehdorn, S., Moschitti, A., (2007). “Combined Syntactic and Semantic 

Kernels for Text Classification”, Springer, 307-318. 

[6] Budanitsky, A., Hirst, G., (2006). “Evaluating WordNet-Based Measures of 

Lexical Semantic Relatedness”, Journal Comput. Ling. 32(1):13-47. 

[7] Lee, J. Ho, Kim, M. H., Lee, Y. J., (1993). “Information Retrieval Based on 

Conceptual Distance in IS-A Hierarchies”, Journal of Documentation, 

49(2):188-207., 

[8] Luo, Q., Chen, E., Xiong, H., (2011). “A Semantic Term Weighting Scheme 

for Text Categorization”, Journal of Expert Systems with Applications, 

38(1):12708-12716. 

[9] Nasir, J. A., Varlamis, I., Karim, A., Tsatsaronis, G., (2013). “Semantic 

Smoothing For Text Clustering”, Knowledge-Based Systems, 54(1): 216-229. 

[10] Scott, S., Matwin, S., (1998). “Text Classification Using WordNet 

Hypernyms”,Proceedings of the ACL Workshop on Usage of WordNet in 

Natural Language Processing Systems, 45-52. 

[11] Siolas, G., d'Alché-Buc, F., (2000). “Support Vector Machines Based On a 

Semantic Kernel for Text Categorization”, Proceedings of the International 

Joint Conference on Neural Networks (IJCNN), IEEE,5(1):205-209. 

[12] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller K., (1993). “Five 

Papers on WordNet”, Technical report, Stanford University. 



 
 

87 

 

[13] Zhang, P. Y., (2013). “A HowNet-Based Semantic Relatedness Kernel for Text 

Classification”, Indonesian Journal of Electrical Engineering 

(TELKOMNIKA) 11(4):1909-1915. 

[14] Ganiz, M. C., Lytkin, N. I., & Pottenger, W. M., (2009). “Leveraging Higher- 

Order Dependencies between Features for Text Classification”, Proceedings of 

the Conference Machine Learning and Knowledge Discovery in Databases 

(ECML/PKDD), 375-390. 

[15] Ganiz, M.C., George, C., Pottenger, W.M., (2011). “Higher-Order Naive 

Bayes: A Novel Non-IID Approach to Text Classification”, IEEE Transactions 

on Knowledge and Data Engineering,23(7):1022-1034. 

[16] Poyraz, M., Kilimci, Z.H., Ganiz, M.C., (2012). “A Novel Semantic 

Smoothing Method Based on Higher-Order Paths for Text Classification”, 

IEEE International Conference on Data Mining (ICDM), 615-624. 

[17] Poyraz, M., Kilimci, Z.H., Ganiz, M.C., (2014). “Higher-Order Smoothing: A 

Novel Semantic Smoothing Method for Text Classification”, Journal of 

Computer Science and Technology, 29(3):376-391. 

[18] Bisson, G and Hussain, F., (2008). “Chi-Sim: A New Similarity Measure for 

the Co-Clustering Task,” Proceedings of the Seventh International Conference 

on Machine Learning and Applications, 211-217. 

[19] Joachims, T., (1998). “Text Categorization with Many Relevant Features”, 

Proceedings of European Conference on Machine Learning, Springer Verlag, 

137-142. 

[20] Dumais, S., Platt, J., Heckerman, D. and Sahami, M., (1998).“Inductive 

Learning Algorithms and Representations for Text Categorization”, 

Proceedings of the Seventh International Conference on Information Retrieval 

and Knowledge Management (ACM-CIKM-98),148-155. 

[21] Zhu, X. J., (2005). “Semi-supervised Learning Literature Survey, Technical 

Report”,Department of Computer Sciences, University of Wisconsin at 

Madison, Madison, WI. 

[22] Mitchell, T., (1997). “Machine Learning”, McGraw-Hill Computer Science 

series. 

[23] Boser, B. E., Guyon, I. M., Vapnik, V. N., (1992). “A Training Algorithm for 

Optimal Margin Classifier”, Proceedings of the 5th ACM Workshop, Comput. 

Learning Theory, 144-152. 

[24] Vapnik, V.N., (1995). “The Nature of Statistical Learning Theory”, Springer, 

New York. 

[25] Alpaydın, E.,(2004). “Introduction to Machine Learning”, MIT press. 

[26] Hsu, C.W., Lin, C.J., (2002). “A Comparison of Methods for Multiclass 

Support Vector Machines”, IEEE Transactions on Neural Networks 13(2): 415-

425. 

[27] Wang, T., Rao, J., Hu, Q., (2014). “Supervised Word Sense Disambiguation 

Using Semantic Diffusion Kernel”, Engineering Applications of Artificial 

Intelligence, Elsevier, 27(1):167-174. 



 
 

88 

 

[28] Anthony, G., Gregg, H. and Tshilidzi, M., (2007). “Image Classification Using 

SVMs: one-against-one vs. one-against-all,” In Proceedings of the 28th Asian 

Conference on Remote Sensing. 

[29] Pal, M., (2008). “Multiclass Approaches for Support Vector Machine Based 

Land Cover Classification”, Proceedings of the 8th Annual International 

Conference, Map India. 

[30] Melgani, F., and Bruzzone, L., (2004). “Classification of Hyperspectral 

Remote Sensing Images with Support Vector Machines”, IEEE Transactions 

on Geoscience and Remote Sensing, 42(1):1778-1790. 

[31] Hastie, T. J. and Tibshirani, R. J., (1998). “Classification by Pairwise 

Coupling”, Advances in Neural Information Processing Systems, The MIT 

Press, 26(2):451-471. 

[32] Knerr, S., Personnaz, L., and Dreyfus, G., (1990). “Single-Layer Learning 

Revisited: A Stepwise Procedure for Building and Training Neural Network”, 

Neurocomputing: Algorithms, Architectures and Applications, NATO ASI, 

Berlin: Springer-Verlag, 41-50. 

[33] Moore, A., (2003). “Support Vector Machines”, Tutorial slides, 

http://www.cs.cmu.edu/~awm. 

[34] Cristianini, N. and Shawe-Taylor, J., (2000). “An Introduction to Support 

Vector Machines and Other Kernel-based Learning Methods”, Cambridge 

University Press. 

[35] Burges C., (1998). “A Tutorial on Support Vector Machines for Pattern 

Recognition”, In “Data Mining and Knowledge Discovery”, Kluwer Academic 

Publishers, Boston, 2(2):121-167. 

[36] Howley, T. and Madden, M. G., (2005). “The Genetic Kernel Support Vector 

Machine: Description and Evaluation,” Artif. Intell. Rev., 24(3):379-395. 

[37] Reborto de Souza, C., (2012).“Kernel Functions for Machine Learning 

Applications”, http://crsouza.com. 

[38] Lewis, J.P., (2004).“Tutorial on SVM”, CGIT Lab, USC. 

[39] Kandola, J., Shawe-Taylor, J., Cristianini, N., (2004). “Learning Semantic 

Similarity”, Advances in Neural Information Processing Systems 15(1):657–

664. 

[40] Tsatsaronis, G., Varlamis, I. Vazirgiannis, M., (2010). “Text Relatedness 

Based on a Word Thesaurus”, Journal of Artificial Intelligence Research 

37(1):1-39. 

[41] Bloehdorn, S., Basili, R., Cammisa, M., Moschitti, A., (2006). “Semantic 

Kernels for Text Classification Based on Topological Measures of Feature 

Similarity”, Proceedings of The Sixth International Conference on Data Mining 

(ICDM), 808–812. 

[42] Hotho, A. et al., (2003). “Ontologies Improve Text Document Clustering”, 

Proceedings of the 3rd IEEE International Conference on Data Mining, 541-

544. 

http://www.cs.cmu.edu/~awm
http://www.blogger.com/profile/17553196159647542225
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
http://crsouza.com/


 
 

89 

 

[43] Rodriguez, M.B. et al., (2000). “Using WordNet to Complement Training 

Information in Text Categorization”, Proceedings of 2nd International 

Conference on Recent Advances in Natural Language Processing II: Selected 

Papers from RANLP’97, 189 of Current Issues in Linguistic Theory (CILT), 

353-364. 

[44] Zhang, Z., Gentile, A. L., Ciravegna, F., (2012). “Recent Advances in Methods 

of Lexical Semantic Relatedness–A Survey”, Natural Language Engineering, 

1(1), 1-69. 

[45] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K.., Harshman, R., 

(1990). “Indexing by Latent Semantic Analysis. J. of the American Society for 

Information Science”, 41(6): 391-407. 

[46] Cavnar, W.B., Trenkle, J.M., (1994). “N-Gram Based Text Categorization”, 

Proceedings of 3rd Annual Symposium on Document Analysis and 

Information Retrieval, 161-169. 

[47] Fung, B.C.M.  et al., (2003). “Hierarchical Document Clustering Using 

Frequent Itemsets”, Proceedings of SIAM International Conference on Data 

Mining, 59-70. 

[48] Ho, T.B., Funakoshi, K., (1998). “Information Retrieval Using Rough Sets”, 

Journal of the Japanese Society for Artificial Intelligence 13(3):424-433. 

[49] Ho, T.B., Nguyen, N.B., (2000). “Non-hierarchical Document Clustering 

Based on a Tolerance Rough Set Model”, International Journal of Intelligent 

Systems 17(1):199-212. 

[50] Papka, R., Allan, J., (1998). “Document Classification Using Multiword 

Features”, Proceedings of the Seventh International Conference on Information 

and Knowledge Management Table of Contents, Bethesda, Maryland, United 

States, 124–131. 

[51] Lewis, D.D., (1992). “An Evaluation of Phrasal and Clustered Representation 

on a Text Categorization Task”,SIGIR’92: Proceedings of the 15th Annual 

International ACM SIGIR Conference on Research and Development in 

Information Retrieval, 37-50. 

[52] Zhang, W., Yoshida, T., Tang, X., (2008). “Text Classification Based on 

Multi-Word with Support Vector Machine”, Knowledge-Based Systems, 

21(8):879-886. 

[53] Blum, A. and Mitchell, T., (1998). “Combining Labeled and Unlabeled Data 

with Co-Training”, Proceedingsof Conference on Computational Learning 

Theory, 92-100. 

[54] Yarowsky, D., (1995). “Unsupervised Word Sense Disambiguation Rivaling 

Supervised Methods”, Proceedings of the 33rd Annual Meeting of the 

Association for Computational Linguistics, 189-196. 

[55] Rosenberg, C. et al., (2005). “Semi-Supervised Self-Training of Object 

Detection Models”, Seventh IEEE Workshop on Applications of Computer 

Vision. 

[56] Zhou, D. et al., (2004). “Semi-Supervised Learning on Directed Graphs”, 

Advances in Neural Information Processing Systems, 1633-1640. 



 
 

90 

 

[57] Nigam, K. and R. Ghani, (2000). “Analyzing the Effectiveness and 

Applicability of Co-Training”, Proceedings of the 9th ACM International 

Conference on Information and Knowledge Management, Washington, DC, 

86-93. 

[58] Chapelle, O. and Zien, A., (2005). “Semi-Supervised Classification by Low 

Density Separation”, Proceedings of the Tenth International Workshop on 

Artificial Intelligence and Statistics, 57-64. 

[59] Kasabov, N. and Pang, S., (2004). “Transductive Support Vector Machines and 

Applications in Bioinformatics for Promoter Recognition”, Neural Information 

Processing-Letters and Reviews, 3(2):31-38. 

[60] Goldman, S. and Zhou, Y., (2000). “Enhancing Supervised Learning with 

Unlabeled Sata”, Proceedings of the 17th ICML, San Francisco, CA, Morgan 

Kaufmann, 327-334. 

[61] Jin, Y., Huang, C., & Zhao, L., (2011). “A Semi-Supervised Learning 

Algorithm Based on Modified Self-training SVM”, Journal of Computers, 

6(7):1438-1443. 

[62] Nigam, K. et al., (2000). “Text Classification from Labeled and Unlabeled 

Documents Using EM”, Machine Learning, 39(2):103-134. 

[63] Muslea, I., Minton, S., Knoblock, C.A., (2002). “Active Semi-Supervised 

Learning in Robust Multi-view Learning”, Proceedings of the Nineteenth 

International Conference on Machine Learning, 435-442. 

[64] Liu, A., Jun, G., Ghosh, J., (2009). “A Self-Training Approach to Cost 

Sensitive Uncertainty Sampling”, Machine Learning 76:257-270. 

[65] Chapelle, O., Scholkopf, B., Zien, A. (2006). “Semi-Supervised Learning”, 

MIT Press, Cambridge. 

[66] Wang, B., Spencer, B., Ling, C.X., Zhang, H., (2008). “Semi-Supervised Self-

Training for Sentence Subjectivity Classification”, The 21st Canadian 

Conference on Artificial Intelligence, 344–355. 

[67] Li, M., & Zhou, Z. H., (2005). “SETRED: Self-Training with Editing”, 

Advances in Knowledge Discovery and Data Mining, Springer Berlin 

Heidelberg, 611-621. 

[68] Guo, Y., Zhang, H., Liu, X., (2011). “Instance Selection in Semi-Supervised 

Learning”,Proceedings of 24th Canadian Conference on Artificial Intelligence, 

158-169. 

[69] Li, K., Zhang, W., Ma, X., Cao, Z., & Zhang, C.,(2008), “A Novel Semi-

Supervised SVM Based on Tri-training”, Intelligent Information Technology 

Application, IITA'08. Second International Symposium on 3(1):47-51. 

[70] Cozman, F.G. et al., (2003). “Semi-Supervised Learning of Mixture Models”, 

Proceedings of the Twentieth International Conference on Machine Learning 

(ICML-2003), 99-106. 

[71] Guo, Y., Niu, X., Zhang, H., (2010). “An Extensive Empirical Study on Semi-

supervised Learning”, the 10th IEEE International Conference on Data Mining, 

186-195. 



 
 

91 

 

[72] Li, Y.F., Kwok, J.T., Zhou, Z.H., (2010). “Cost-Sensitive Semi-Supervised 

Support Vector Machine” Proceedings of 24th AAAI Conference on Artificial 

Intelligence, 500-505. 

[73] Cohen, I., Cozman, F.G., Sebe, N., Cirelo, M.C., Huang, T.S., (2004). “Semi 

Supervised Learning of Classier: Theory, Algorithms, and Their Application to 

Human-Computer Interaction”, IEEE Transactions on Pattern Analysis and 

Machine Intelligence 26(1):1553-1567. 

[74] Kontostathis, A., Pottenger, W.M., (2006). “A Framework for Understanding 

LSI Performance”, Journal of Information Processing & Management, 

12(1):56-73. 

[75] Jones, K. S., (1972). “A Statistical Interpretation of Term Specificity and Its 

Application in Retrieval”, Journal of documentation 28(1): 11-21. 

[76] Salton, G., and Buckley, C., (1988). “Term-Weighting Approaches in 

Automatic Text Retrieval”, Inf. Process. Manage, 24(5):513-523. 

[77] Debole, F., Sebastiani, F., (2003). “Supervised Term Weighting for Automated 

Text Categorization”, SAC ’03, Proceedings of the 2003 ACM Symposium on 

Applied Computing, New York, NY, USA, ACM Press, 784-788. 

[78] Deng, Z.-H., Tang, S.-W., Yang, D.-Q., Zhang, M., Li, L.-Y., Xie, K. Q., 

(2004). “A Comparative Study on Feature Weight in Text Categorization”, 

APWeb, 3007. Springer-Verlag Heidelberg, 588-597. 

[79] Lan, M., Tan, C. L., Su, J., & Lu, Y., (2009). “Supervised and Traditional 

Term Weighting Methods for Automatic Text Categorization”, Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 31(4):721-735. 

[80] Biricik, G., Diri, B., Sonmez, A. C., (2009). “A New Method for Attribute 

Extraction with Application on Text Classification”, Soft Computing, 

Computing with Words and Perceptions in System Analysis, Decision and 

Control (ICSCCW), Fifth International Conference on IEEE, 1-4. 

[81] Biricik, G., Diri, B., Sonmez, A. C., (2012). “Abstract Feature Extraction for 

Text Classification”, Turkish Journal of Electrical Engineering & Computer 

Sciences, 20(1):1137-1159. 

[82] Ko, Y., Seo, J., (2000). “Automatic Text Categorization by Unsupervised 

Learning”, Proceedings of the 18th conference on Computational Linguistics, 

Association for Computational Linguistics, 453-59. 

[83] Lertnattee, V., Theeramunkong, T., (2004). “Analysis of Inverse Class 

Frequency in Centroid-Based Text Classification”, IEEE International 

Symposium on Communications and Information Technology, (ISCIT), 2. 

[84] Robertson, S. E. (2004). “Understanding Inverse Document Frequency: On 

Theoretical Arguments for IDF”, Journal of Document. 60(5):503-520. 

[85] Hall, M, Frank, E. Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H., 

(2009). “The WEKA Data Mining Software: An Update”; SIGKDD 

Explorations, 11(1). 

[86] Platt, J. C., (1998). “Sequential Minimal Optimization: A Fast Algorithm for 

Training   Support Vector Machines”, In Advances in Kernel Method: Support   

Vector Learning, MIT Press, 185–208. 



 
 

92 

 

[87] Amasyali, M.F. and Beken, A., (2009). “Türkçe Kelimelerin Anlamsal 

Benzerliklerinin Ölçülmesi ve Metin Sınıflandırmada Kullanılması”,IEEE 

Sinyal İşleme ve İletişim Uygulamaları Kurultayı (SIU), IEEE Press. 

[88] Two Text Learning Datasets Website,http://www.cs.cmu.edu/~textlearning, 

2013. 

[89] Kamber, I.H., Frank, E., (2005). “Data Mining: Practical Machine Learning 

Tools and Techniques”, 2nd Edition, Morgan Kaufmann, San Francisco. 

[90] Han, J., Kamber, M., Pei, J., (2012). “Data Mining: Concepts and Techniques”, 

Morgan Kaufmann, Third Edition. 

[91] Dumais, S, (1993). “LSI meets TREC: A status report”, In Hartman, D., ed., 

the first Text Retrieval Conference: NIST special publication 105–116. 

[92] Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Semantic Kernel for Text 

Classification Based on Iterative Higher–Order Relations between Words and 

Documents”, Proceedings of  the 13th International Conference on Artificial 

Intelligence and Soft Computing (ICAISC) , Lecture Notes in Artificial 

Intelligence(LNAI),8467:505-517. 

[93] Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Simple Semantic Kernel 

Approach for SVM Using Higher-Order Paths”, Proceedings of IEEE 

International Symposium on INnovations in Intelligent SysTems and 

Applications (INISTA), 431-435. 

[94] Altınel, B., Ganiz, M.C., Diri, B.,(2015). “A Corpus-Based Semantic Kernel 

for Text Classification by Using Meaning Values of Terms”,Elsevier, 

Engineering Applications of Artificial Intelligence, August 2015, 43(1): 54–66. 

[95] Altınel, B., Diri, B., Ganiz, M.C., (2015). “A Novel Semantic Smoothing 

Kernel for Text Classification with Class-based Weighting”, Knowledge-Based 

Systems, August 2015, 89(1):54–66. 

[96] Altınel, B., Ganiz, M.C., Diri, B., (2015). “Instance Labeling in Semi-

Supervised Learning Using Meaning Values of Terms”,Pattern Recognition 

Letters ,(Submitted). 

[97] Altınel, B., Ganiz, M.C., Diri, B., (2013). “A Novel Higher-Order Semantic 

Kernel”, ICECCO 2013 (The 10
th

 International Conference on Electronics 

Computer and Computation), November 7-9, Ankara, Turkey. 

[98] Rennie, J. D. M., Shih, L., Teevan, J. and Karger, D. R., (2003).“Tackling the 

Poor Assumptions of Naive Bayes Classifiers”, Proceedings of International 

Conference on Machine Learning, 616–623. 

[99] Balinsky, A., Balinsky, H., Simske, S., (2010). “On the Helmholtz Principle for 

Documents Processing”, Proceedings of the 10th ACM Document Engineering 

(DocEng), 283-286. 

[100] Balinsky, A., Balinsky, H., Simske, S., (2011). “On the Helmholtz Principle for 

Data Mining”, Proceedings of Conference on Knowledge Discovery, Chengdu, 

China. 

[101] Balinsky, A., Balinsky, H., Simske, S., (2011). “Rapid change Detection and 

Text Mining”, Proceedings of 2nd Conference on Mathematics in Defence 

(IMA), Defence Academy, UK. 

http://www.cs.cmu.edu/~textlearning
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976/43/supp/C
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/
http://www.journals.elsevier.com/knowledge-based-systems/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/


 
 

93 

 

[102] Balinsky, H., Balinsky, A., Simske, S., (2011). “Document Sentences As A 

Small World”, Proceedings of IEEE International Conference on Systems, Man 

and Cybernetics (SMC), 2583-2588. 

[103] Basili, R., Cammisa, M., Moschitti, A., (2005). “A Semantic Kernel to Classify 

Texts with Very Few Training Examples”, Proceedings of Workshop Learning 

in Web Search, 22nd International Conference on Machine Learning (ICML). 

[104] Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., & Weikum, 

G., (2005). “Word Sense Disambiguation for Exploiting Hierarchical Thesauri 

in Text Classification”, Knowledge Discovery in Databases: PKDD, 181-192, 

Springer Berlin Heidelberg. 

[105] Dadachev, B., Balinsky, A. Balinsky, H.; Simske, S. (2012). “On the 

Helmholtz Principle for Data Mining”,International Conference on Emerging 

Security Technologies (EST), 99-102. 

[106] Wittek P., Tan, C., (2009). “A Kernel-Based Feature Weighting for Text 

Classification”, Proceedings of IJCNN-09, IEEE International Joint 

Conference on Neural Networks, 3373–3379. 

[107] Cristianini, N., Shawe-Taylor, J., & Lodhi, H., (2002). “Latent Semantic 

Kernels”, Journal of Intelligent Information Systems, 18(2):127-152. 

[108] Harish, B. S., S. Manjunath, D. S. Guru, (2012).“Text Document 

Classification: An Approach Based On Indexing”, International Journal of Data 

Mining & Knowledge Management Process (IJDKP) 2(1): 43-62. 

[109] Desolneux, A., Moisan, L., Morel, J.-M., (2008). “From Gestalt Theory to 

Image Analysis: A Probabilistic Approach”, Interdisciplinary Applied 

Mathematics, 34, Springer. 

[110] Kleinberg, J.,(2002). “Bursty and Hierarchical Structure in Streams”, 

Proceedings of the 8th ACM International Conference on Knowledge 

Discovery and Data Mining (SIGKDD), 7(4):373-397. 

[111] Luo, Z.P., Zhang, X.-M., (2008). “A Semi-Supervised Learning Based 

Relevance Feedback Algorithm in Content-Based Image Retrieval”, Chinese 

Conference on Pattern Recognition (CCPR ’08),1-4. 

[112] Jiang, E.P., (2009). “Semi-Supervised Text Classification Using RBF 

Networks”, Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (Eds.), 

IDA, Springer, 5772, 95-106. 

[113] Li, Y. F. and Zhou, Z. H., (2011). “Towards Making Unlabeled Data Never 

Hurt”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 

37(1):175-188. 

[114] Schwenker, F. and Trentin, E., (2014). “Partially Supervised Learning for 

Pattern Recognition”, Pattern Recognition Letters, 37(1):1-3. 

 

 

 

  



 
 

94 

 

 

CURRICULUM VITAE 

PERSONAL INFORMATION 

Name Surname :Berna ALTINEL 

Foreign Languages : English 

Date of birth and place : 01.01.1981 / İstanbul 

E-mail :berna.altinel@marmara.edu.tr 

 

EDUCATION 

Degree Field School/University Year of 

Graduation 

Master Computer Istanbul Technical                      2007  

Engineering                     University    

Undergraduate Computer 

Engineering 

Yeditepe University 

(with %100 Scholarship) 

2004 

High  

School 

Science and Maths Haydarpaşa Anatolia High 

School,Istanbul 

1999 

WORKING EXPERIENCES 

Year Firm/Company Role 

2009-2012 TÜBİTAK Test Engineer 

2006-2009 SoftTech Software Company 

(Participant of İşBank) 

Software Engineer 



 
 

95 

 

2005-2006 Argela Software Company Software Engineer 

2004-2005 Troysis Software Company Software& Test Engineer 

PUBLICATIONS 

Journal Papers 

1. Altınel, B., Ganiz, M.C., Diri, B., (2015). “Instance Labeling in Semi-Supervised 

Learning using Meaning Values of Terms”, Pattern Recognition 

Letters,(Submitted). 

2. Altınel, B., Ganiz, M.C., Diri, B., (2015). “A Corpus-Based Semantic Kernel for 

Text Classification by using Meaning Values of Terms”, Elsevier, Engineering 

Applications of Artificial Intelligence, August 2015, 43(1):54–66. 

3. Altınel, B., Diri, B., Ganiz, M.C., (2015). “A Novel Semantic Smoothing Kernel for 

Text Classification with Class-Based Weighting”,Knowledge-Based Systems, 

89(1):265-177.  

 

Conference Papers 

1. Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Semantic Kernel for Text 

Classification Based on Iterative Higher–Order Relations between Words and 

Documents”, Proceedings of  the 13th International Conference on Artificial 

Intelligence and Soft Computing (ICAISC) , Lecture Notes in Artificial 

Intelligence(LNAI),8467,505–517. 

2. Altınel, B., Ganiz, M.C., Diri, B., (2014). “A Simple Semantic Kernel Approach for 

SVM Using Higher-Order Paths”, Proceedings of International Symposium on 

INnovations in Intelligent SysTems and Applications (INISTA), 431-435. 

3. Altınel, B., Ganiz, M.C., Diri, B., (2013). “A Novel Higher-order Semantic Kernel”, 

ICECCO 2013 (The 10th International Conference on Electronics Computer and 

Computation), November 7-9, Ankara, Turkey. 

4. Çataltepe, Z. and Altınel, B., (2009). "Music Recommendation by Modeling User’s 

Preferred Perspectives of Content, Singer/Genre and Popularity" in "Collaborative 

and Social Information Retrieval and Access: Techniques for Improved User 

Modeling" edited by M. Chevalier, C. Julien and C. Soulé-Dupuy, IGI Global, pp. 

203-221, ISBN: 978-1-60566-306-7. 

5. Çataltepe, Z. and Altınel, B., (2007). "Hybrid Music Recommendation Based on 

Different Dimensions of Audio Content and Entropy Measure", Eusipco (European 

Signal Processing Conference), 3-7 September, Poland.  

6. Çataltepe, Z. and Altınel, B., (2007). "Music Recommendation Based on Adaptive 

Feature and User Grouping", ISCIS, Ankara, Turkey. 

 

Research Projects 

1. TÜBİTAK-3501, Metinsel Veri Madenciliği için Anlamsal Yarı-eğitimli 

Algoritmaların Geliştirilmesi,111E239 (2012-2015, Position: Research Assistant). 

http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.journals.elsevier.com/pattern-recognition-letters/
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/


 
 

96 

 

 

AWARDS 

1. Publication Award from TÜBİTAK-ULAKBİM for: Altınel, B., Ganiz, M.C., Diri, 

B., (2015). “A Corpus-Based Semantic Kernel for Text Classification by using 

Meaning Values of Terms”, Elsevier, Engineering Applications of Artificial 

Intelligence, August 2015, 43(1):54–66. 

2. Publication Award from TÜBİTAK-ULAKBİM for: Altınel, B., Diri, B., Ganiz, 

M.C., (2015). “A Novel Semantic Smoothing Kernel for Text Classification with 

Class-Based Weighting”, Knowledge-Based Systems, 89(1):265-177. 

3. Best Paper of Machine Learning Track at ICECCO 2013 (The 10th International 

Conference on Electronics Computer and Computation), November 7-9, Ankara, 

Turkey (2013). 

4. Graduation with Honor degree from Department of Computer Engineering, Istanbul 

Technical University (2007). 

5. Graduation with High-Honor degree from Department of Computer Engineering, 

Yeditepe University (2004). 

6. Full scholarship from Yeditepe University, Istanbul, Turkey (1999-2004).  

7. Scholarship from Vehbi Koç Foundation (1999-2004). 

8. First of the schoolin graduation of Göztepe Secondary School (1995). 

 

http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.sciencedirect.com/science/article/pii/S0950705115002609
http://www.journals.elsevier.com/knowledge-based-systems/

