REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

STUDYING DEEP LEARNING MODELS FOR
MANIPULATED FACE DETECTION

Ilkin HUSEYNLI

MASTER OF SCIENCE THESIS
Department of Computer Engineering

Program of Computer Engineering

Supervisor
Prof. Dr. Songiil VARLI

June, 2021

REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

STUDYING DEEP LEARNING MODELS FOR MANIPULATED FACE
DETECTION

A thesis submitted by Ilkin HUSEYNLI in partial fulfillment of the requirements for
the degree of MASTER OF SCIENCE is approved by the committee on 30.06.2021 in

Department of Computer Engineering, Program of Computer Engineering.

Prof. Dr. Songiil VARLI
Yildiz Technical University
Supervisor

Approved By the Examining Committee

Prof. Dr. Songiil VARLI, Supervisor
Yildiz Technical University

Assist. Dr. OGUZ ALTUN, Member
Yildiz Technical University

Assoc. DR. TAMER DAG, Member
Kadir Has University

I hereby declare that I have obtained the required legal permissions during data
collection and exploitation procedures, that I have made the in-text citations and cited
the references properly, that I haven’t falsified and/or fabricated research data and
results of the study and that I have abided by the principles of the scientific research
and ethics during my Thesis Study under the title of STUDYING DEEP LEARNING
MODELS FOR MANIPULATED FACE DETECTION supervised by my supervisor, Prof.
Dr. Songiil VARLI. In the case of a discovery of false statement, I am to acknowledge

any legal consequence.

[lkin HUSEYNLI

Signature

Dedicated to my family

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my family. Without their
tremendous support and encouragement, it would be impossible for me to complete
my thesis. I am incredibly grateful to my supervisor, Prof. Dr. Songiil VARLI, for her
directives and academic advice, which kept me on the track of completion. Finally,
I'm thankful to my close friends Redzhep M. REDZHEBOV for his precious help on
technical subjects and Ayten AHMADLI for motivating me at challenging times.

ilkin HUSEYNLI

iv

TABLE OF CONTENTS

OF ABBREVIATION vii
[LIST OF FIGURES| viii
LIST OF TABLES X
xi
OZET xiii
1 INTRODUCTION 1

1.1 Literatur VIEWI « v v v e 1
(1.2 Objective of thethesis| 3
(1.3 Hypothesis| e 3
2 METHODOLOGY AND FAKE FACE DATASETS 4
.. 4
2.I.T ResNetl 4
2.1.2 MobileNet-V3| e S5
2.1.3 DenseNetlt 6
[2.1.4 Xception| e 7
[2.1.5 Inceptionmodels|. 8
2.1.6 EfficientNetmodels 8
227 Datasell . . - ot i e e e e 11
221 DFEDCl. e 11

2.2.2 eleD-DEV2| oL 13

[2.3 Augmentations|. 13
[2.4 Data preparation|ttt 15
[2.4.1 Train data extraction pipeline| 15
[2.4.2 Test data extraction pipeline|. 15

2.5 Training| e e e e e e 16
[2.5.1 Half-precision|. 17

3 RESULIS AND DISCUSSION; 18

[3.1.1 Distractor and augmenter analysis|

3.2 Celeb-DE-v2 results| v i it e e e

PUBLICATIONS FROM THE THESISI

vi

33

36
36
36

37

LIST OF ABBREVIATIONS

CNN

DFDC

FP16

FP32

GAN

IoU

Convolutional Neural Network

DeepFake Detection Challenge
Floating-point 16 (a.k.a. Half Precision)
Floating-point 32 (a.k.a. Single Precision)
Generative Adversiral Network

Intersection over Union

vii

LIST OF FIGURES

[Figure 2.1 Main building block of the ResNet model [13[] 5
[Figure 2.2 Architecture of the MobileNet-V3-Large model [14] (SE: |
| Squeeze-And-Excite; NL type of non-linearity: HS - h-swish, |
[RE - ReLU; NBN - no batch normalization)| 5
[Figure 2.3 Sample Densenet block [15] 6
[Figure 2.4 Modified depthwise separable convolutions [[15] 7
[Figure 2.5 Overall architecture of Xception model [16]] 8
[Figure 2.6 Architecture of Inception-v4 [18] 9
[Figure 2.7 Architecture of Inception-Resnet-v2 [18]] 9
[Figure 2.8 EfficientNets parameter and ImageNet Top-1 Accuracry comparison |
[with othermodels| 10
[Figure 2.9 EfficientNet-BO architecture] 10
[Figure 2.10 Examples of the augmenters and distractors applied to the DFDC |
| test set. Left top is the original image.[23] 12
[Figure 2.11 Examples from the Celeb-DF-v2 dataset [24]. Left (green) column |
| is real face and other columns (red) are different DeepFake of the |
| real person with various source subjects.| 13
[Figure 2.12 Augmentations: From top left: Source image, compression, |
| Gauss noise, blur, sharpening, horizontal flip, brightness, hue |
| and saturation value adjustment, gray, shift+scale+rotate, Coarse |
| dropout (size=64 pixels), Grid dropout. All images resized to |
| 224 by preserving aspect ratio and padded with O value before an |
| augmentation was applied.|. o e 14
[Figure 2.13 Train loss over epochs of the models trained with fixed Learning |
| rate and default augmentation setup.| 16
[Figure 2.14 Validation loss over epochs of the models trained with fixed |
| Learning rate and default augmentation setup. (Note, because the |
| EfficientNet-B4 model overfitted so quickly, validation loss became |
| NaN; thus, it was excluded from this graphicl. 16
[Figure 2.15 Training time per epoch of EfficientNet-B4 with FP16 and FP32] . . 17

viii

[Figure 3.1

Equal Error Rate for the EfficientNet-B4 model trained with Default

| augmentation.] e e e e e 19
[Figure 3.2 Calculated threshold values for the best model/augmentation |
[COMDINALIONS.] « « « v v v v e e e et et e e e e e e e 19
[Figure 3.3 Video based log loss of the trained models without any |
| augmentation (loweris better).|. 20
[Figure 3.4 Video based log loss of the trained models with default |
| augmentation chain (lower is better).| 21
[Figure 3.5 Video based log loss of the trained models with default |
| augmentation chain and grid dropout (lower is better).| 21
[Figure 3.6 Video based log loss of the trained models with default |
| augmentation chain and coarse dropout (lower is better).. 22
[Figure 3.7 RoC-AuC curves for the best configuration of each model]. 23
[Figure 3.8 Fake face examples from DFDC test set classified asreal 28
[Figure 3.9 Real face examples from DFDC test set classified as fake]. 28
[Figure 3.10 Fl-score for the best configuration for each model. Except for |
| the Xception model, all models have the best score with default |
| + Coarse augmentation. Xception model has the best result with |
| only default augmentation.|. 30
[Figure 3.11 Examples of misclassified fake faces from Celeb-DF-v2 dataset] . . . 30
[Figure 3.12 Examples of misclassified real faces from Celeb-DF-v2 dataset] . .. 31

ix

LIST OF TABLES

[Table 2.1 Number of trainable parameters| 4

[Table 2.2 Order and occurrence probability of the applied augmentations.| . . 14

[Table 2.3 Training EfficientNet-B4 model with half-precision and single precision| 17

[Table 3.1 Log loss results of the DFDC dataset (lower is better). Italic values |

| are the best result for the augmentation and bold values are the best |

[Table 3.2 Percentage of misclassified fake videos per distractor for each |

| model’s best setup. Bold values are the worst results for each model.| 24

[Table 3.3 Percentage of misclassified real videos per distractor for each model’s |

| best setup. Bold values are the worst results for each model.| 24

[Table 3.4 Percentage of the misclassified fake videos for each model’s best |

| configuration per augmenter. Bold values are the worst result for |

[Table 3.5 Percentage of the misclassified real videos for each model’s best |

| configuration per augmenter. Bold values are the worst result for |

[Table 3.6 Sensitivity and Specificity results of Celeb-DF-v2 dataset for each |

| model and augmentation (higher is better).| 27
bl F1-score of the models tested with Celeb-DF-v2. Bold val re th

| best results for the given model and italic values are the best results |

| for an augmentation.|o 29

ABSTRACT

STUDYING DEEP LEARNING MODELS FOR
MANIPULATED FACE DETECTION

Ilkin HUSEYNLI

Department of Computer Engineering

Master of Science Thesis

Supervisor: Prof. Dr. Songiil VARLI

Deepfakes allow users to manipulate the identity of a person in a video or an image.
Previously, special hardware and skill were required to create such fake videos/images.
But together with improvements on GAN-based techniques, generating more realistic
and hard to detect manipulated faces became easier. This threatens individuals and
decreases trust in social media platforms. In this work, our goal is to report eight
different models’ learning ability on, by far, the largest fake face dataset - DFDC and
test the generalization ability of these models with Celeb-DF-v2. Because the training
dataset consists of high-quality videos, we started detecting and extracting faces from
them. Next, we sampled data to have balanced classes and a feasible amount of
data to train with limited resources. We started training with no extra augmentation
because the dataset was big enough, and faces were already modified. Next, we added
our default augmentation chain, inspired by other works and increased strength with

Coarse-Dropout and Grid Mask augmentations.

A separate test set from the DFDC dataset, which has unseen augmentations and
distractors and a completely different Celeb-DF-v2 dataset, was used to evaluate
results. As distinct from the train set, we followed different face extraction flow for
the test sets. We issued face tracking by using simple Intersection over the Union
and sampled faces that only tracked over a certain number of consecutive faces. For
each video in the test set, the confidence of the sampled faces averaged, and a single
confidence value was generated. To calculate video-based log loss values, we used
this confidence values. For the Celeb-DF-v2 dataset, we also calculated Sensitivity

and Specificity values. For these metrics, the optimal threshold was decided by

xi

using Equal Error Rate. We concluded that despite the relatively smaller size input
EfficientNet-B4 model has the best learning and generalization ability. Training models
with half-precision may speed up training time up to 2 times with very few losses.

Finally, Coarse Dropout helped models to generalize better.

Keywords: digital video forensics, face manipulation, deepfake, face swap

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

xii

OZET

SAHTE YUZ TESPITi iCIN DERIN OGRENME
MODELLERININ ARASTIRILMASI

[lkin HUSEYNLI

Bilgisayar Miihendisligi Anabilim Dali

Yiiksek Lisans Tezi

Danisman: Prof. Dr. Songiil VARLI

Deepfakes, kullanicilarin bir video veya goriintiideki bir kisinin kimligini
degistirmesine olanak tanmir. Onceden, bu tiir sahte videolar/gériintiiler olusturmak
icin 6zel donanim ve beceri gerekiyordu. Ancak GAN tabanli tekniklerdeki
iyilestirmelerle birlikte, daha gercek¢i ve algilamasi zor manipiile edilmis ytizler
olusturmak daha kolay hale geldi. Bu da bireyleri tehdit etmekte ve sosyal medya
platformlarina olan giiveni azaltmaktadir. Bu ¢alismada amacimiz, bugiine kadarki
en biiyliik sahte yiiz veri seti olan DFDC iizerinde sekiz farkli modelin 6grenme
kabiliyetini rapor etmek ve bu modellerin genelleme kabiliyetini Celeb-DF-v2 veri
kiimesi ile test etmektir. Egitim veri seti yliksek kaliteli videolardan olustugu igin
ilk olarak ytizleri tespit etmeye ve cikarmaya bagladik. Daha sonra, dengeli siniflara
sahip olmak, sinirli kaynaklarla makul siirede egitmek icin verileri 6rnekledik. Veri
kiimesi yeterince biiyiik oldugundan ve yiizler zaten degistirilmis oldugundan, ekstra
yapay artirmak olmadan egitime basladik. Ardindan, diger calismalardan ilham
alan varsayilan biiylitme zincirimizi ekledik ve "Coarse Dropout" ve "Grid Mask"

gliclendirmeleriyle giicti artirdik.

Sonuglar1 degerlendirmek i¢cin DFDC veri setinden, goriinmeyen yapay artirmak
ve celdiricilere sahip ayr1 bir test seti ve tamamen farkli bir Celeb-DF-v2 veri seti
kullanildi. Egitim veri setinden farkli olarak, test setleri i¢in farkli yiiz cikarma akislari
izledik. Videodaki yiizleri basit Birlesimlerin Kesisimi (Intersection over Union)
yontemi ile takip ederek, belirli miktardaki ardisik sahnelerde yer alan yiizlerden
ornekleme yaptik. Test setindeki her video icin 6rneklenen yiizlerin giivenirliginin

xiii

ortalamasi alindi ve tek bir giliven degeri tiretildi. Video tabanli log kayb: degerlerini
hesaplamak i¢in bu giiven degerlerini kullandik. Celeb-DF-v2 veri setindeki siniflar
dengesiz oldugu icin Duyarlilik ve Ozgiilliik degerlerini de hesapladik. Bu metrikler
icin, Esit Hata Orani kullanilarak optimal esige karar verildi. Nispeten daha kiiciik
boyutlu girdiye ragmen EfficientNet-B4 modelinin en iyi 6grenme ve genelleme
yetenegine sahip oldugu sonucuna vardik. Yar1 hassas (half-precision) egitim
modelleri, cok az kayipla egitim siiresini 2 kata kadar hizlandirabilir. Son olarak,

Coarse Dropout, modellerin daha iyi genellestirilmesine yardimci oldu.

Anahtar Kelimeler: video adli bilisim, yiiz manipiilasyonu, deepfake, yliz degistirme

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

Xiv

1

INTRODUCTION

1.1 Literature Review

Tolosana R. et al. [[1]] did a comprehensive review of fake face generation methods
and methods to detect them. They divided manipulations into 4 categories: i) entire
face synthesis, ii) identity swap, iii) attribute manipulation and iv) expression swap.
The DFDC dataset lays in the identity swap category. Thus we are mainly focused on
the methods for identity swapping. They grouped identity swap datasets under two
categories according to the visual quality of the data.

Bonettini, N. et al. [2] trained four different models and evaluated them on 2 different
datasets: Face Forensics++ [3]] and the preview version of DFDC dataset. Considering
the model size, run time, and classification performance, they decided to choose the
EfficientNetB4 model as a baseline. Alongside with original network, they also created
another version with an Attention block. They trained both models in different ways:
end-to-end classical training and Siamese training. Finally, all these four variations
were ensembled in different combinations. Ensemble of all four models had the best
result and submitted to the DFDC Kaggle challenge [4/] by authors which finished in
41° place.

Wang et al. [[5]] propose a universal detector for CNN-generated fake images. They
first generated fake images by using ProGAN [6]] model and trained a binary classifier
on this set. For evaluation purposes, they created a new dataset - ForenSynths which
consists of images generated from 11 different models. One major difference of this
study is, they were not just focused on faces but included various objects and scenes

in their dataset. Unfortunately, internal structure of the classifier was not specified.

Neves, J.C. et al.[[7]] proposes that fake images generated with GAN’s have unique GAN
“fingerprints,” and this makes detection easy. In the study, together with a survey
of manipulated face detection works, they also introduced an auto-encoder-based

strategy (GANprintR) to remove GAN “fingerprints” and a novel dataset named

iFakFaceDB with fingerprints deleted without affecting the quality of the resulting
images in this work. They applied their technique to two real face image datasets
and three synthetic face images: CASIA-WebFace, VGGFace2, TPDNE, 100K-Faces, and
PGGAN. There were three methods: XceptionNet based binary detector, Steganalysis,
and Local Artifacts applied before and after fingerprint was removed. They showed
that models trained and tested on the same dataset learn the “fingerprints” of the

generator network, and by removing it, the models can be spoofed.

Nguyen, T.T. et al. [8] did a survey on deepfake creation and detection methods.
They studied detection methods for fakes under two headlines: Detection in images
and detection in videos. They divided detection in videos section into 2 more sections
: Temporal Features across Video Frames and Visual Artifacts within Video Frame.Works
examined under the first section mainly focused on detection changes across frames
such as eye blink times. These works mainly used Recurrent Neural Networks, CNN,
LSTM, or a combination of them. Methods under Visual Artifacts within Video Frame
section mainly focused on frame-based detection. These methods that try to detect
images generally have artifacts and inconsistencies around the face, eyes, teeth, false
shadowing, and missing reflections. One studied method in the survey paper focuses
on detecting PRNU - Photo Response Non-Uniformity, which were considered the

fingerprints of digital images by using statistical methods.

Tolosana et al. [|9] also did an analysis of facial regions on deepfake images. They
trained Xception and Capsule Network models with different 1st and 2nd generation
datasets on the entire face, only eyes, nose, mouth, and rest of face (excluding
eyes, nose, and mouth). Their models achieved 20-32% equal error rate on DFDC
Preview Dataset [|[10]. Considering various conditions and extreme poses, finding
face landmarks and extracting parts introduces its own challenges and errors into the

system.

StyleGAN [|11] is a Generative Adversarial Network for image generation proposed
by NVIDIA inspired by style transfer literature. They focused on re-designing the
generator, added noise directly into the network to separate and control high-level

details such as pose and illumination from low-level details such as hair and freckles.

FSGAN [/12]] can generate successful fake faces despite occlusions in front of the face,
skin color, and gender difference of source and target videos and even from a target
image. To achieve this, they first generate landmarks of guiding face with small pose
changes, then used four different, dedicated generator models: the first model learns
creating face reenactment from the source image, second one segments face from

target image, third generator model is used to overcome occlusions and fulfill missing

parts and last generator used to combine images seamlessly.

1.2 Objective of the thesis

Modern deep learning algorithms have a wide range of use. One of the
most interesting and popular applications is face manipulation. Together with
improvements in hardware technologies, bigger, more powerful, and sophisticated
fake generation methods emerged. These new techniques are capable of creating
high-quality fake images, including human faces. Alongside powerful deepfake
methods, techniques to detect them also improve, and more diverse and challenging
datasets are released. One of the most recent and most extensive deepfake datasets
was released by Facebook Al called DeepFake Detection Challenge Dataset. In this
work, by using this dataset, we compared several models learning ability under
different augmentations. We first trained and tested the models on the DFDC train
and test set. Next, we compared their generalization ability on an entirely different

and unseen dataset - Celeb-DF-v2.

1.3 Hypothesis

Fake face generation has several good applications, such as creating videos of someone
who is not alive, re-filming scenes without a real actor, or generating a wide variety of
characters for the animations. However, unfortunately, deep fakes are more popular
with their improper use: creating fake videos and images for harmful purposes.
Popular examples are: making politicians/celebrities "say" things they have never
said and swapped one’s face on inappropriate videos. Later, these videos can be used
to either blackmail target or damage his/her public reputation by spreading it. It is
crucial to detect and prevent this kind of thread before they are spread. In this work,
we compared models and their generalization ability to prepare a baseline for such a
prevention system. An automatic fake video control mechanism can build on top of
this work’s output to check if uploaded video/image contains any fake faces before

they are released.

2

METHODOLOGY AND FAKE FACE DATASETS

2.1 Models

Table 2.1 Number of trainable parameters

Params count
Model (Million)
ResNet50 23.5
MobileNet-v3 4.2
Xception 20.8
Inception-v4 41.1
Inception-ResNet-v2 54.3
DenseNet161 26.5
EfficientNet-BO 4.0
EfficientNet-B4 17.6

In this section, we briefly explained the architecture of the compared models. The
number of trainable parameters for each model was given at Table

2.1.1 ResNet

ResNet [|13] is one of the most popular neural network architectures. The previous
models were series of convolution kernels, poolings and fully connected layers. These
were good enough to train small models. However, as the number of layers increases,
the models suffer vanishing gradient problems and not learning. The authors showed
that adding simple skip connection, model depth can be increased several times. The
main building block of the ResNet was given in Figure As seen from the figure,
one connection skipped, and the output of a layer was added to the output of the next
layer. So that, information from the earlier layers was carried to the further layers. In
this work, we used the ResNet50 model, which 48 Convolution layers, 1 MaxPool and
1 Average Pool layer - total of 50 layers.

Y

weight layer
F(x) l relu x
weight layer identity

Figure 2.1 Main building block of the ResNet model [[13]]

2.1.2 MobileNet-V3

MobileNet models were originally designed for mobile devices. The MobileNet-V3
[14] model is an improved version of the previous ones. The authors were used
hardware-aware network architecture search and NetAdapt algorithm to find optimal
architecture. Figure shows the architecture of the MobileNet-V3-Large model,
which was used in this work. The authors added new squeeze and excitation
layers, did a block-wise and layer-wise search, introduced h-swish non-linearity, and
optimized general architecture by removing some layers in order to improve and

optimize the model.

Input Operator | exp size | #out | SE ‘ NL | 5
2242 x 3 conv2d - 16 - |HS |2
1122 x 16 bneck, 3x3 16 16 - |RE |1
1122 x 16 bneck, 3x3 64 24 - |RE |2
562 x 24 bneck, 3x3 72 24 - |RE |1
562 x 24 bneck, 5x5 72 40 v | RE |2
282 x 40 bneck, 5x5 120 40 v | RE |1
282 x 40 bneck, 5x5 120 40 v | RE |1
282 x 40 bneck, 3x3 240 80 - |HS |2
142 x 80 bneck, 3x3 200 80 - |HS |1
142 x 80 bneck, 3x3 184 80 - |HS |1
142 x 80 bneck, 3x3 184 80 - |HS |1
142 x 80 bneck, 3x3 480 112 | v | HS | 1
142 x 112 bneck, 3x3 672 112 | v | HS | 1
142 x 112 bneck, 5x5 672 160 | v | HS | 2
7% % 160 bneck, 5x5 960 160 | v | HS | 1
72 % 160 bneck, 5x5 960 160 | v | HS | 1
72 % 160 conv2d, 1x1 - 960 - HS | 1
72 % 960 pool, 7x7 - - - - 1
12 x 960 | conv2d 1x1, NBN - 1280 | - | HS |1
12 x 1280 | conv2d 1x1, NBN - k - - 1

Figure 2.2 Architecture of the MobileNet-V3-Large model [|14] (SE:
Squeeze-And-Excite; NL type of non-linearity: HS - h-swish, RE - ReLU; NBN - no
batch normalization)

Adding swish (Formula [2.1) non-linearity increases accuracy but comes with a

computation cost. The authors introduced hard-swish (h-swish) (Formula [2.2)
non-linearity and used it only in the second half of the MobileNet model to overcome
this problem.

swishx = x - o(x) 2.1)
h—swish[x] = xw (2.2)

Platform aware NAS was applied to find optimal network blocks. An RNN controller
predicts an architecture with a probability. Then, a network was trained to converge
achieving given accuracy. Finally, architecture gradients scaled according to the
accuracy. This kind of search is generally used to optimize parts of a model. Because
MobileNet models were intended for mobile devices, both latency and accuracy were
included in the reward function to find smaller models during architecture search.
Output of the NAS was used as an input to the NetAdapt algorithm to optimize number
of filters in each layer. As a metric, maximizing Aaccuracy/Alatency was chosen

instead of just minimizing Aaccuracy as in the original paper.

2.1.3 DenseNet

Figure 2.3 Sample Densenet block [[15]]

The main idea of the Dense Convolutional Network or DenseNet[|15] is connecting the
output of each layer to the other layers in front of it, thus having "dense" connections.
Figure shows sample 5-layer dense block. These kinds of connections increase

feature reuse and strengthen their propagation, reduces the vanishing-gradient

6

problem. At first glance, this architecture looks similar to ResNet, but there are few
different key points: ResNet has one skip connection while DenseNet connects every
subsequent layer; ResNet combines features by summing them; meanwhile, DenseNet
concatenates features. In this work, we decide to use the DenseNet-161 variation,
which has the lowest ImageNet top-1 error rate compared to other variations. This
model consists of 4 Dense Blocks consisting of 6, 12, 36, and 24 BN-ReLU-Conv(1x1)
and BN-ReLU-Conv(3x3) sequences. The authors define this sequence as Batch
Normalization, ReLU, 1x1, and 3x3 convolutions.

2.1.4 Xception

Depthwise Convolution

X Ny

N

I=

Pointwise Convolution

_ nxn conv _
1x1 conv

(Vi)

> -

ﬁ@

\ \ .,._.«'I .f!

-

Figure 2.4 Modified depthwise separable convolutions [|15]]

Xception [[16] is an interpretation of Inception models introduced by Francois Chollet.
It is an "extreme" version of the Inception-v3 [[17]] model with improved results. It
uses modified depthwise separable convolutions, which are depicted in Figure |2.4
The modifications to the original method are:

1. The order of the operations - Pointwise Convolution was applied before
Depthwise Convolution

2. There is no intermediate non-linearity. Original depthwise separable
convolution has ReLU between operations

The purpose of the depthwise separable convolutions is to speed up the convolution

process. The overall architecture of the Xception model was given in Figure 2.5

7

The author defines Xception architecture as "a linear stack of depthwise separable

convolution layers with residual connections."

Entry flow Middle flow Exit flow

299x299x3 images 19x19x728 feature maps 19x19x728 feature maps

1
[Conv 32, 3x3, stride=2x2
[ReLU ReLU [ReLU

|
i J
|Conv 64, Ix3 | |SeparabLeCcnv 728, 3x3
s
J

I
[ReLU ReLU Conv 1x1 [ReLU
SeparableConv 728, 3x3 stride=2x2| |separableConv 1034, 3x3

ReLU

[Rebt]
SeparableConv 728, 3x3

I
|SeparableC0nY 128, 3x3 [MaxPooling 3x3, stride=2x2

Conv 1x1
stride=2x2

|SeparabLeCanv 128, 3x3

[SeparableConv 1536, 3x3
| ReLu

|

| |
[SeparableConv 2648, 3x3 |
|

]

|
[ReLu I
|

I
[MaxPooling 3x3, stride=2x2

19x19x728 feature maps

[ReLU [ReLU

[SeparableConv 256, 3x3

Repeated 8 times

T
[GlobalAveragePooling

Conv 1x1
stride=2x2

|
J
[
[ReLU |
[SeparableConv 256, 3x3 |

T 2048-dimensional vectors
[MaxPooling 3x3, stride=2x2 |

Optional fully-connected
layer(s)

[ReLU |
[SeparableConv 728, 3x3 |
|
]

I P :
Conv 1x1 | [RelU Logistic regression
stride=2x2 [SeparableConv 728, 3x3

T
[MaxPooling 3x3, stride=2x2 |

19x19x728 feature maps

Figure 2.5 Overall architecture of Xception model [|16]

2.1.5 Inception models

Inception-v4 [[18]] is an updated version of the Inception-v3 [[17]] model. In this work,
we compared two types of it: First pure Inception-v4 (denoted as inception_v4) which
is simplified version of the previous and uses more inception modules and combination
of Inception V3 and Residual networks [[13] version (denoted as inception_resnet v2).
According to the original paper, both models are computationally equal. Architecture
of the Inception-v4 model was given in Figure and Inception-ResNet-v2 in Figure
2.7

2.1.6 EfficientNet models
EfficinetNet[|19] introduced by Google Research Team in late 2020. They proposed

that adjusting network width, depth, and resolution simultaneously with certain
formulas can increase performance. Also, proportional scaling significantly decreases
the number of trainable parameters in a model while preserving performance. Their
biggest model - EfficientNet-B7, achieved Imagenet Top-1 accuracy while having 8.4x
fewer parameters and running 6.1x faster than the best model at that time. Figure
represents comparison of the EfficientNet models’ parameters and accuracy with

other top models.
As a backbone, the authors were used mobile inverted bottleneck - MBConv [20]. Figure

8

Fier concat ‘ ‘ Filter concat
Softmax Output 1000
3x1 Conv. 1x3 Conv 3x3 Conv
1X(12§;"V (256) (256) 3x3 Conv (320 stride 2 V)
3Conv | 31 Conv (192 stride 2 V) - é -~
(256) 256) 3x1 Conv
Dropout (keep 0.8) = ouput 1536 1 Gony (512) 3x3 MaxPool (320)
(256) (stride 2 V) 1
1x7 Conv
1x1 Conv 1X(§44C§',"V ‘ 1x'11;:;;nv (256)
(384)
Avg Pooling T
Avarage Pooling | output 153 1x1 Conv 1x1 Conv.
(384) (256)
Filter concat ‘ Filter concat
3 x Inception-C Output: BxEx1536 I
- . et Filter concat Filter concat
Reduction-B Output 8xBx1536 P e
" o 3x3 Conv 343 Conv.
I pet e 17 Conv (mstride 2V) (96)
e = s 1
{ - 1x1 Conv 3x3 Conv. 3x3 Conv.
. o T 1 Comy 3x3 MaxPool 3x3 Conv 3x3 Conv e oo oc:
7 x Inception-B Ppp—— ¢ oy ‘ : (stide 2V) (@stide2)) : ; ;
1 Conv "ien 1x1 C: 1x1 Ce 1x1 Ce
AvgPociing ! ('1?«"»" e 1x1(;:)nnv Avg piohl x“"i Eoe jﬁ;nv
= 1 Gow \\\\\[/
Reduction-A | Joutput: 17x17x1024 — Filter concat T,
4 x Inception-A Output: 35x35x384 e - N N
3 X 25 =33
i 2g—8¢ g
Q; —1 = s3 2 | -l /152 \ [2
3 Bel| o | of2=l\2 g g
g5 28 g8 8 g 4 3
Stem B2 89758 8¢ g(|2 g
Output: 35x35x384 2 <2 2 2 = ,S_ B . 8
— 8o = 2 . \25/
I P i \Egl 1 122188 LI
i ios2 i E(FE ioice
Input (299x299x3) = 2eexzeexs
Figure 2.6 Architecture of Inception-v4
Rebu activation Relu activabon
Filter concat 1
Qutput: 1000
Softmax ! (e - @
I . /\ 343 Conv ~_
1 Comy (320 stride 2 V) 11
2048 Linear) (1154 Lir
Dropout (keep 0.8) o e fas e / (a:ﬁnﬁn;v) ug;(zg";va ! [..:,,_ e
| (256 3x3 MaxPool 3x3 Conv ‘ | e
i | : (stide 2 V) | (288) :
| 11 Con 13 Conv \ 1x1 Conv 11 Gonv 1 cE O
Average Pooling Output 1702 | L L] 258) 1258) 1x1 Conv (152) (160)
p i
/ . 256 I
I 1x1 Conv \Lﬁ 4_(_(4) / 1x1 Conv
- (128)
Previous —
5 x Inception-resnet-C _L"'“' ez Layer

I

f

Output: Bxgx1702

Reduction-B

1

|

Cutput. 17x17x886

10x
Inception-resnet-B

I

Fitter cancat ”"';‘f:’"“
— (*)
— S

313 Canv —

/ {m stride 2 V)
.
3x3 MaxPoal 313 Conv 3 Canv
(stride 2 V) (v atde 2V)

Fiter concat

0
-~ ; 5
1x1 Conv
\ 1K) /
. — /

(184 Linewr)
) 303 Com
)
| 1
macon | | macom
a2 sy
1 1
wiCom || tx1Com
) a

Reducﬂon‘A Output: 17x17x886
5 x Inceplion-resnet-A —— M-
Stem DU TE 25
B
Input (299x299x3) s > §
]
i

oy

W0 H0

Figure 2.7 Architecture of Inception-Resnet-v2

Noisy Student Training (EfficientNet-B7)

86
B5 EfficientNet-B7

"

84 1 AmoebaNet-C
AmoebaNet-A _____---"""
~NASNet-A e SENet
82 A7 e
7 o e
-7 e _
R ResNeXt-101

80 1

we®
.

ImageNet Top-1 Accuracy (%)

784 % ’ . Model Top-1 Acc.
é ’ b ResNet-152 EfficientNet-BO 77.3%
I DenseNet-201 Noisy Student Training (B0) | 78.1%
_, EfficientNet-B2 80.0%
761 | ResNet-50 Noisy Student Training (B2) 81.1%
[EfficientNet-B5 84.0%
: .Inception—VZ Noisy Student Training (B5) 85.1%
74 - ASNet-A Efﬁ.cientNet-B7 - 85.0%
ResNet-34 Noisy Student Training (B7) 86.4%

0 20 40 60 80 100 120 140 160

Number of Parameters (Millions)

Figure 2.8 EfficientNets parameter and ImageNet Top-1 Accuracry comparison with
other models

]] e o~ o~ o~
x X X =+ < o o (=} (=] (=] - - -
J al N X N X P R R R] * X S S S S I
cle|z| e) 7 w) @ ® 0 e 7 e w 2] v 0w (2| o
N Slox % x (B x[Q] x |8 x |8 x [3 [%[x| x|T| x[T| 2 [%|x|%|x[%|x[%|x|%
Tl | Jd|@|J|[@[R]|o|R|B (X6 |R[@O[X|@|X[@ X |0 |R[6[|6 |6 |[R]6 |6 (L6 |X]e|L
Nx‘—-\— - | © || L[| .| || || .| - | L] e e X e X e X e X .| X
SR R R R A S S S S U W R R A SR R R
2 € c £ € € c c € € 5 c £ € c £ c
5 4] o 5}]] 5} 5} 3] 3] 5} G 5]] 53 o o
o O (8] Q [&] O [$] Q O O (] [&] [&] (&) (] (&) Q
1] [+7] m [41] 1]] m 1] o [+1] m m 1] [+4] 1] [+1]
= = = = = = = = = = = = = = = =

Figure 2.9 EfficientNet-BO architecture

10

was borrowed from the Google Al Blog post[21] and represents architecture of
EfficientNet-BO. From here, the authors applied their compound scaling method to

get bigger models by resizing the depth, width, and input resolution of the network.

In this work, we used pre-trained weights of the Imagenet dataset with the Noisy
Student [22] approach. Noisy Student is a semi-supervised learning approach
proposed by Google’s Brain Team. They trained the teacher-student model using
labeled and unlabeled data: First, the labeled data was used to train a teacher model.
Pseudo labels for the unlabelled data were generated by using the teacher model.
These labels can be soft (continues) or hard (one-hot encoding). Then, a student
model was trained by using both labeled and pseudo labeled data. They also trained
another student model by using the previous student model as a teacher model. The
authors call their method as knowledge expansion rather than knowledge distillation
because they i) added noise and ii) the student model is not smaller than the teacher.
According to the original paper, Noisy Student Training reaches 88.4% top-1 accuracy,
which was calculated on popular ImageNet dataset. Figure also shows the effect
of the Noisy Student training on EfficientNets.

2.2 Dataset

2.2.1 DFDC

We used The DeepFake Detection Challenge (DFDC) Dataset [[23] by Facebook Al
The released part of this dataset was collected by filming 960 paid actors under
various conditions, environments, and angles. The age, gender, and ethnicity of
actors vary. Train dataset consists of more than 120,000 videos; validation set has
4,000, and test set has 5,000 videos. While the train set is highly unbalanced, test
and validation sets are balanced. The majority of fake faces were generated by using
Deepfake Autoencoder (DFAE). They used one shared encoded and two decoders for
each identity. Unfortunately, all details of the DFAE architecture are not available.
Other methods are the frame-based morphable-mask (MM/NN) model, which uses
facial landmarks and matches source face to the target face; fine-tuned version of
neural talking heads of people (NTH); FSGAN and modified version of StyleGAN.
After fake faces were generated, some of them went through a sharpening filter to
increase the quality of the result. Audio manipulation was also applied to some of the
videos, but we only focused on image manipulations in this work. Various distractors
and augmenters were applied to the test and validation sets to make it even more
challenging. Applied augmenters were: Gaussian blurring, brightness change, adding
contrast, frame rate change, gray-scale, horizontal flip, audio removal, adding noise,

changing encoding quality, altering the resolution, and rotating. Distractors were

11

random shapes, text, or dots on each frame, randomly moving or appearing images or
texts. Examples of these augmenters were given in Figure All augmenters and
distractors were applied randomly applied to 79% of all test datasets.

- -

DeepFake.abrc

-

Figure 2.10 Examples of the augmenters and distractors applied to the DFDC test
set. Left top is the original image.[23]

However, this dataset is not perfect and has some problems:

1. Videos with multiple actors - it is not clear if both actors got face manipulation or
not. From our observation, only one of them got manipulated. Only video-based
labels are present. We assumed that if there is at least one fake face in the video,

then the video is fake.

2. The face detection method for the dataset is unknown. There are some cases
where manipulation is not applied. This can either be because the face is not

detected, or the fake generation method was failed.

3. Test and train sets vary a lot. Distractors and augmenters applied to the test are

not present in the train set.
4. Extreme head poses - some faces were turned more than 90 degrees.
5. Too noisy and dark videos.
The last two points cause problems with face detection. It is also hard to understand

the person’s identity with the naked eye, even if it is a real video. We believe that

these cases are against the nature of DeepFakes; thus, we ignored them.

12

2.2.2 Celeb-DF-V2
Celeb-DF-V2 [24]] contains 590 real videos of the celebrities obtained from YouTube.

The real videos consist of 59 celebrities’ interviews. From these videos, 5639 fake
videos were generated. This work uses the extended version of the Celeb-DF-v2
dataset, which contains additional 300 real celebrity videos from YouTube. Figure

[2.11] shows some real and fake examples from the Celeb-DF-v2 dataset.

Figure 2.11 Examples from the Celeb-DF-v2 dataset]. Left (green) column is real
face and other columns (red) are different DeepFake of the real person with various
source subjects.

The authors were used an encoder-decoder model with several layers (the exact
architecture of the deepfake model was not explained in the paper) to synthesize faces
with the size of 256x256. During the face generation time, color augmentation was
added to fix the color mismatch between source and target faces. We used all of this
dataset as a test set to measure the generalization ability of the models trained by
using the DFDC dataset.

2.3 Augmentations

All models were trained with 4 different augmentations: no augmentation, default
augmentation, default + CoarseDropout, default + Gridmask augmentation.
Augmentations were used to increase diversity in the dataset instead of increase the
size of the dataset. In order to satisfy the input size of the model, images were resized
by preserving the aspect ratio. First, the longest side of an image resized to the desired

13

Table 2.2 Order and occurrence probability of the applied augmentations.

Order | Augmentation Probability
1 ImageCompression 0.5
2 GaussNoise 0.1
3 GaussianBlur or Sharpening 0.5
4 HorizontalFlip 0.5
5 BrightnessContrast 0.5
6 To gray-scale 0.2
7 ShiftScaleRotate 0.5

size, and then the shortest side resized to such a size that has the same aspect ratio
as the original image. The remaining part of the image was padded by using zero
values. All images were also normalized by using the mean and standard deviation
of the Imagenet dataset. As a default augmentation, we chained and applied several
augmentations with different occurrence probability by using Albumentations [26]
library. Order and the details of the augmentations were given at table

CoarseDropout was inspired from cutout [[27]] augmentation. It cuts out random parts
of an image with fixed size and number. In this work, we chose to use two random
patches with the size of 64x64 pixels. These patches may overlap. GridMask [25]]
augmentation cuts out a fixed number of parts with a certain pattern. We used a 5x5
pattern, size of patches was calculated according to the input size. The purpose of both
augmentations was to hide some parts of an image and force models to learn other
parts of the image. These augmentations are assumed as harder augmentations and
applied separately at the end of the default chain with the probability of 0.5. Examples
of all augmentations were given in Figure [2.12

Figure 2.12 Augmentations: From top left: Source image, compression, Gauss noise,
blur, sharpening, horizontal flip, brightness, hue and saturation value adjustment,
gray, shift+scale+rotate, Coarse dropout (size=64 pixels), Grid dropout. All images
resized to 224 by preserving aspect ratio and padded with 0 value before an
augmentation was applied.

14

2.4 Data preparation

Original datasets consist of high-resolution, high-frame videos. Processing all frames
at high resolution is not feasible. Also, a high frame rate means many similar images.
Instead, we issued sampling and detected faces. Train and test sets were followed

different pipelines.

2.4.1 Train data extraction pipeline

The DFDC train dataset consists of 120,000+ videos. Almost 80% of all videos are
fake videos. Since all fake videos were created from real videos, in order to speed
up processing, we first detected faces at real videos and, by using the coordinates,
extracted faces from fake videos. For face detection we used Pytorch implementation
of FaceNet [28] model. From each video, up to 10 frames were sampled and passed
through face detection. Faces with the size of 70x70 pixels and higher were kept.
Faces were extracted with 30 pixels margin around them. A video was discarded if no
face was detected. This generally happened when image quality is too bad or the face
is barely visible. Next, we manually cleaned the face-only dataset. Here, our target
was non-face, false positives. By using the bounding box coordinates of the real faces,
we extracted faces from fake videos. Finally, fake images were down-sampled by 5 to
keep the train set balanced. DFDC dataset only contains video labels. We propagated
video labels to the detected faces from the video. As a result, 202,951 images with
real labels and 212,454 images with fake labels left in the train set.

2.4.2 Test data extraction pipeline

For test and validation sets, a different flow was followed. First, we detected faces in
each frame of a video frame and tracked them using IoU of face bounding boxes. Faces
with more than 0.75 IoU in 2 consecutive frames were assumed to be the same person.
A person who tracked over 50 frames in the video was included in the sampling set.
Next, approximately 50 faces were sampled from each video. Sampling was done
proportional to the number of frames tracked per face. This means if person-A tracked
for 100 frames and face of person-B tracked for 200 frames in the same video, 17 faces
of person-A and 32 faces of person-B were sampled. The same test procedure was
applied to the Celeb-DF-v2 dataset. We decided to use this pipeline for the test dataset
to avoid distractors and focus only on the main subject of the video. Resizing with
preserving the aspect ratio, padding with zero value, and normalization was applied

to the test sets.

15

2.5 Training

Due to the size of the dataset, models tend to overfit at early epochs; thus, we
trained all models at most ten epochs. Figure [2.13] and [2.14] shows how quickly
models converge. The last layer of the backbone models was replaced with a single

Dropout layer and a Linear layer with two classes (fake and real). We used pre-trained
Imagenet weights and fine-tuned all layers of the model with cross-entropy loss. All
models were trained by using Adam optimizer, and the fixed learning rate equals
0.0001.

train_loss
— inception_resnet_v2 — tf_efficientnet_b4 ns == mobilenetv3_large 100 — tf_efficientnet_b0_ns
— inception_v4 — Xxception — densenet161 — resnet50

0.6

0.4

0.2

Figure 2.13 Train loss over epochs of the models trained with fixed Learning rate
and default augmentation setup.

val_loss
— inception_resnet_v2 == mobilenetv3_large_100 — {f_efficientnet_b0_ns — inception_v4 — Xxception
— densenet161 — resnet50
0.7
0.6
0.5
0.4
0.3

epoch

0 2 4 6 8

Figure 2.14 Validation loss over epochs of the models trained with fixed Learning
rate and default augmentation setup. (Note, because the EfficientNet-B4 model
overfitted so quickly, validation loss became NaN; thus, it was excluded from this
graphic

16

Table 2.3 Training EfficientNet-B4 model with half-precision and single precision

Batch size | Training duration | Log loss
FP16 64 9 hours 48 mins 0.2191
FP32 32 5 hours 55 mins 0.2128

2.5.1 Half-precision

Nvidia researches showed that training models with half-precision instead of
single-precision could achieve similar results while using fewer resources and with
shorter training time [[29]]. The main difference between the two is the number of bits
to represent a number. While single-precision uses 8 bits to store the exponent and
23 bits for the precision, half-precision uses 5 bits for the exponent and 10 bits for the
fraction. Due to this difference, half-precision has a small representable range and is
less precise but enough to train most deep learning models. Considering millions of
trainable parameters, this difference leads to several times faster and memory-efficient
models. In this work, we also compared FP-16 and FP-32 performance on the
Efficient-B4 model.

epoch
— FP32 — FP16

| |

2
0 ' ; Time (minutes)

100 200 300 400 500

Figure 2.15 Training time per epoch of EfficientNet-B4 with FP16 and FP32

The training time of single-precision is significantly high, while an improvement on
log loss is less than 0.01. Results and difference of the setups can be found at Table
Time spent for each epoch during training was given in Figure Because of
these reasons, we decided to train all models with half-precision.

17

3

RESULTS AND DISCUSSION

In this work, we trained and compared several performance of models explained at
Section on popular deepfake dataset - DeepFake Detection Challenge Dataset by
Facebook Al. Because the dataset only has video based results, we chose video based
log loss as a main metric. Log loss formula was given at[3.1] The purpose of using log

loss is to "punish" model more if a video is classified false with higher confidence.

1< - -
LogLoss =—— > [y;log(7,) + (1~ y)log(1~7)] (3.1
n

i=1

Sampled frames from each video were passed through a model, and confidence for real
and fake classes was predicted. Confidence of the fake class averaged, and a single
confidence value was created for the input video. This value was used as y to the
formula. For the log loss calculation, 1 was used for the fake and O for the real class.
If averaged confidence is higher than a certain threshold, the video was considered

fake and vice versa.

The threshold was calculated for each model and configuration separately instead of
using a fixed one. In order to do this, we first calculated false positive rates and false
negative rates at different thresholds. The intersection of this rates was called Equal
Error Rate, where both rates are low. The threshold at this point was picked and used.
Example graphic was given in Figure Figure shows the chosen threshold
values for each model.

Later, we compared models’ generalization ability by testing them on the Celeb-DF-v2
dataset. Because this dataset is very unbalanced, we reported recall for each class

separately.

18

1.0 —— False Positive Rate
—— False Negative Rate
0.8
3
Eo6
£
w
T 0.4
(=2
w
0.2
0.0
0.0 01 02 03 0.4 0.5 0.6 07 08 0.9
threshold

Figure 3.1 Equal Error Rate for the EfficientNet-B4 model trained with Default
augmentation.

Model

Inception_resnet_v2_Coarse
Mobilenetv3_large_Coarse
resnetal_Grid
Heeption_Default
Inception_4_Coarse
densenet161_Coarse

EFBO_MS_Coarse 0.569
EFB4_NS_Default 0.582

0.000 0.200 0.400

Thresheld

Figure 3.2 Calculated threshold values for the best model/augmentation
combinations.

19

3.1 DFDC results

Because deepfake models were already modified faces, we started experiments by
training our baseline models with no extra augmentation except resizing with aspect
ratio, zero-padding and normalizing. Video-based log loss results on DFDC test dataset
were given at Figure As seen from the figure, the results are not good. Despite
the no augmentation, the EfficientNet-B4 model had a considerably lower loss.

EFB4_NS 0.3078
Inception_4 0.2371
EFBO_MS 0.3486
Inception_resnet_v2 0.3638
Maobilenetv3_large 0.3729
Keeption 0.3784
resnetsl 0.3842
densenet! 61 0.4003

0.0 0.1 0.2 0.3 0.4 0.5

Figure 3.3 Video based log loss of the trained models without any augmentation
(lower is better).

Next, after evaluating Kaggle solutions and studying the test set, we decided to add
several augmentations during training time. The details of the default augmentation
were discussed at Section The main purpose was to create diversity in the
dataset and overcome distractors of the test set. Thus, instead of increasing the
size of the dataset by adding new augmented images, we augmented only existing
images. As seen from Figure 3.4, augmentations helped to improve results drastically.
EfficientNet-B4 is the best model here.

Next, we tried hard augmentations together with the default chain. We added a 5x5
grid mask with zero values on the input images. The purpose was forcing models to
learn less significant but still important parts of the data. Log-loss results for each
model trained with this setup was given at Figure While results were much
better than no augmentation results, improvement was not much from only the default
augmentation setup. Adding GridMask improved the results of the ResNet50 model.
Just adding it decreased video-based log loss 25%.

Another hard augmentation we tried was Coarse dropout: 2 patches, each size of
64x64 randomly cropped out from an input image with an occurrence probability
of 50%. As seen from the results most of the models had improvements here.

20

EFB4_MNS 0.2191
Heeption 0.246
Inception_4 0.2538
Inception_resnet_v2 0.2663
EFBO_NS 0.2676
densenet! 61 0.3005
resnetsl 0.3282
Mobilenetv3_large 0.3293

0.0 0.1 0.2 0.3 0.4

Figure 3.4 Video based log loss of the trained models with default augmentation
chain (lower is better).

EFB4_MNS 0.2265

EFBO_MNS 0.2431

resnetal 0.246
Inception_resnet_v2 0.2516

Inception_4 0.2534
Heeption 0.2635
densenet1 1 0.2793
Mohilenetv3_large 0.2911

0.0 0.1 0.2 0.3

Figure 3.5 Video based log loss of the trained models with default augmentation
chain and grid dropout (lower is better).

21

EFB4_NS 0.2206
densenet1&1 0.2355
EFBO_NS 0.2371
Inception_4 0.2399
Inception_resnet_v2 0.2403
Mobilenetv3_large 0.2469
resnets 0.2543
Kception 0.2549

0.0 01 0.2 0.3

Figure 3.6 Video based log loss of the trained models with default augmentation
chain and coarse dropout (lower is better).

Table 3.1 Log loss results of the DFDC dataset (lower is better). Italic values are the
best result for the augmentation and bold values are the best result of the model

Models/Augmentations All:lg(:n. Default D(i‘ ?)?)1:3 ¢ 1\(/{%;18(}(
EFB4_NS 0.3078 | 0.2191 | 0.2206 | 0.2265
Xception 0.3784 | 0.2460 | 0.2549 | 0.2635
Inception_4 0.3371 | 0.2538 | 0.2399 | 0.2534
Inception_resnet_v2 0.3638 | 0.2663 | 0.2403 | 0.2516
EFBO_NS 0.3486 | 0.2676 | 0.2371 | 0.2431
densenet161 0.4003 | 0.3005 | 0.2355 | 0.2793
resnet50 0.3842 | 0.3282 | 0.2543 | 0.2460
MobilenetV3_large 0.3729 | 0.3293 | 0.2469 | 0.2911

Overall, the EfficientNet-B4 model pretrained with Noisy Student and used default
augmentation chain had the best result. Comparison of the video-based log-loss values
for each model and augmentation setup were given at Table and RoC-AuC curve
of the best model and augmentation combinations were given in Figure

3.1.1 Distractor and augmenter analysis

The test set of the DFDC dataset has distractors and augmenters, which were not
applied to the train set. Augmenters were considered as color and geometric
transformations, frame rate changes, etc. Distractors were objects such as dots,
random shapes, figures, texts, random face images overlayed on top of the video
frame. Two popular social media filters: dog filter and flower crown filter, were also
used as an augmenter. We analyzed the effect of the distractors and the augmenters

separately for fake videos and real videos. Only the best configuration of each model

22

0.8

True Positive Rate

—— EFB4_NS_Default : 0.9763
Xception_Default : 0.9654

0.2 Inception_4_Coarse : 0.9655

—— Inception_resnet_v2_Coarse : 0.9659
EFBO_NS_Coarse : 0.9713

—— densenet161_Coarse : 0.9697
resnet50_Grid : 0.9635
MobilenetV3_large_Coarse : 0.9645

0.0 0.2 0.6 0.8 1.0

0'L‘False Positive Rate
Figure 3.7 RoC-AuC curves for the best configuration of each model.

(highlighted as bold in Table were analyzed. Table shows percentage of the
misclassified fake videos per filter and model. As seen from the values, fake videos with
dog filters were misclassified as real videos. Interestingly, the dog filter does not have
a bad effect on real videos. From Table we can see that other random objects and
shapes have a higher impact than the dog filter. This may indicate that models tend to
classify images with this filter as real. There is one extra distractor that is only applied
to the real videos called df tricks. Unfortunately, the original paper does not give any

information about this distractor. The amount and strength of each augmenter vary.

When we look at the augmenters - Table - we can see that noise has the
highest impact on all models, especially for fake videos. All models had a hard time
distinguishing fake videos with noise from real videos. We applied Gaussian Noisy
augmentation with very low probability. Increasing the occurrence probability of the
noisy augmentation may solve this problem. For real videos, there is not any significant
augmenter that affected all models. Some of the videos in the DFDC test set has neither

augmenters nor distractor. Percentage of the misclassified videos with no artifact was
given at the last row of the Table [3.4]and Table

23

144

Table 3.2 Percentage of misclassified fake videos per distractor for each model’s best setup. Bold values are the worst results for each model.

EFB4 | EFBO | Xception | InceptionV4 | IncpResV2 | Resnet50 | Densenet161 | MobileNetV3
dog filter 22.1 | 22.1 51.2 41.9 50.0 37.2 40.7 25.6
dots 149 | 10.7 10.7 13.2 14.0 13.2 14.0 12.4
faces 8.0 9.6 6.4 12.8 8.8 9.6 10.4 12.8
flower _filter 10.0 | 8.3 10.0 10.8 10.0 8.3 10.0 8.3
random images | 13.5 | 13.5 13.5 12.6 10.8 13.5 13.5 14.4
shapes 6.4 8.3 2.8 7.3 6.4 6.4 8.3 10.1
text 8.9 | 11.1 8.9 6.7 13.3 10.0 12.2 14.4

Table 3.3 Percentage of misclassified real videos per distractor for each model’s best setup. Bold values are the worst results for each model.

EFB4 | EFBO | Xception | InceptionV4 | IncpResV2 | Resnet50 | Densenet161 | MobileNetV3
df tricks 7.9 | 10.1 9.0 6.7 11.2 9.0 7.9 6.7
dog_filter 6.3 | 10.1 7.6 8.9 15.2 10.1 7.6 10.1
dots 8.9 | 129 13.9 13.9 15.8 12.9 12.9 13.9
faces 9.5 8.3 10.7 10.7 10.7 9.5 8.3 11.9
flower _filter 2.4 4.7 8.2 3.5 5.9 7.1 8.2 4.7
random images | 8.6 8.6 16.1 11.8 14.0 10.8 14.0 11.8
shapes 7.8 | 13.0 13.0 14.3 14.3 13.0 13.0 14.3
text 8.9 | 11.1 8.9 6.7 13.3 10.0 12.2 14.4

S¢

Table 3.4 Percentage of the misclassified fake videos for each model’s best configuration per augmenter. Bold values are the worst result for

each model.
EFB4 | EFBO | Xception | InceptionV4 | IncpResV2 | Resnet50 | Densenet161 | MobileNetV3
blur 4.1 4.1 2.4 3.6 0.0 1.2 3.0 1.8
brightness 7.2 | 10.8 7.2 7.8 5.4 8.4 8.4 9.6
contrast 13.2 | 16.9 14.7 16.9 21.3 17.6 18.4 16.9
framerate change 3.6 6.0 7.8 3.6 6.6 4.8 9.0 4.2
greyscale 106 | 7.0 12.0 5.6 8.5 12.0 16.2 10.6
horizontal flip 7.7 6.5 7.7 7.1 5.2 7.1 7.7 6.5
no_audio 5.4 5.4 9.4 6.7 8.1 4.7 6.0 5.4
noise 30.3 | 35.9 22.8 53.8 37.9 49.7 22.8 50.3
quality level change 12,5 | 14.5 9.9 11.8 10.5 9.2 15.8 7.2
resolution change 7.0 3.2 3.2 4.4 2.5 2.5 3.2 1.3
rotate 4.0 5.3 6.0 3.3 4.0 6.6 4.0 3.3
no distractor/augmenter | 6.2 7.4 8.1 4.8 5.6 5.6 6.2 6.6

9¢

Table 3.5 Percentage of the misclassified real videos for each model’s best configuration per augmenter. Bold values are the worst result for

each model.
EFB4 | EFBO | Xception | InceptionV4 | IncpResV2 | Resnet50 | Densenet161 | MobileNetV3
blur 7.5 6.2 8.9 10.3 11.0 8.9 10.3 13.0
brightness 7.0 8.3 14.0 10.8 13.4 9.6 8.9 8.3
contrast 5.6 3.5 4.9 7.7 14.0 5.6 9.1 8.4
framerate change 9.6 | 12.2 11.5 9.6 14.1 11.5 10.3 14.1
greyscale 7.1 7.1 9.6 8.3 10.3 12.8 12.2 7.1
horizontal flip 9.3 8.6 9.9 10.6 14.6 9.3 7.9 9.3
no_audio 5.9 4.6 7.9 7.2 11.2 7.9 3.3 8.6
noise 5.6 8.3 13.2 11.1 15.3 10.4 11.8 11.1
quality level change 5.2 6.4 11.0 8.7 9.3 8.1 8.7 9.3
resolution change 8.6 9.6 14.4 13.4 12.8 13.4 10.7 11.2
rotate 6.4 7.6 8.8 7.0 11.1 7.6 7.0 10.5
no distractor/augmenter | 6.4 9.2 11.3 12.2 12.0 11.3 9.8 10.3

LT

Table 3.6 Sensitivity and Specificity results of Celeb-DF-v2 dataset for each model and augmentation (higher is better).

No Augmentation

Default setup

Default + Coarse

Default + GridDropout

Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity
densenet161 0.793 0.795 0.831 0.832 0.854 0.856 0.836 0.841
EfficientNet-BO 0.781 0.783 0.865 0.87 0.885 0.886 0.877 0.88
EfficientNet-B4 0.875 0.876 0.92 0.921 0.924 0.925 0.921 0.922
Inception_4 0.785 0.786 0.873 0.875 0.874 0.874 0.867 0.873
Inception_resnet_v2 0.783 0.791 0.867 0.872 0.872 0.873 0.845 0.848
MobilenetV3 large 0.77 0.773 0.842 0.846 0.874 0.876 0.866 0.868
resnet50 0.753 0.756 0.812 0.814 0.852 0.858 0.853 0.855
Xception 0.777 0.782 0.865 0.868 0.864 0.866 0.858 0.862

T4
rl

Figure 3.9 Real face examples from DFDC test set classified as fake

Examples of the fake faces classified as real were given in Figure[3.8] The test sets were
not manually cleaned to match real-life scenarios as much as possible. Because of this,
it is possible to see false face detection examples. Also, some faces were covered by
hand, which probably prevented deepfake from being applied properly. Out of all
problems, extreme head poses are the most significant and hard ones. Figure (3.9

shows misclassified real face examples.

28

Table 3.7 F1-score of the models tested with Celeb-DF-v2. Bold values are the best
results for the given model and italic values are the best results for an augmentation.

Model/Augmentation No . Default | Coarse | Grid
Augmentation
densenet161 0.869 0.895 0.91 | 0.898
EFBO_NS 0.86 0.917 0.93 | 0.925
EFB4 NS 0.924 0.952 | 0.954 | 0.953
Inception_4 0.863 0.922 | 0.923 | 0.919
Inception_resnet v2 0.862 0.919 | 0.922 | 0.904
MobilenetV3 large 0.853 0.902 | 0.923 | 0.918
resnet50 0.841 0.882 | 0.909 | 0.909
Xception 0.858 0.918 | 0.917 | 0.913

3.2 Celeb-DF-v2 results

We also tested the generalization ability of the models by testing them with the
Celeb-DF-v2 dataset. Since this dataset was only used for the testing purpose instead
of the default train/test split, we used the whole dataset as a test set. Because of
this, the dataset is very unbalanced. Thus, separately looking at results for each
class will be more healthy. At Table we compared 2 values for each model and
configuration: Sensitivity - represents the amount of correctly classified fake videos
in other words, coverage of actual positives formula Specificity - is the amount
of correctly classified real videos dataset or coverage of actual negatives formula and
When we analyze results, we can see a similar pattern with DFDC test results:
No augmentation has the worst results; adding augmentation and enforcing it with
harder augmentations increased results. One interesting detail is that Coarse Dropout
has the best results overall for most of the models. This indicates that adding this
augmentation helps models to generalize better. This is mostly because it forces

models to learn less significant parts, too, and does not follow any pattern.

L True Positives
Sensitivity = — - (3.2)
True Positives + False Negatives

True Negative

Specificity = (3.3)

True Negative + False Positive

Fl-score for each model-augmentation combination was reported at Table and
F1-score comparision of the each model’s best augmentation configuration was given
in Figure Fake class was assumed as the true class since our main target is
detecting fake videos. Examples of misclassified fake and real faces were given in

Figure and

29

resnetsl

densenet1 &l

Xception

Inception_resnat_v2

Inception_4

models

MokilenetV3_large

EFBO_NS

EFBE4_NS 0.954

0.00 0.25 0.50 075 1.00

F1-score

Figure 3.10 F1-score for the best configuration for each model. Except for the
Xception model, all models have the best score with default + Coarse augmentation.
Xception model has the best result with only default augmentation.

Figure 3.11 Examples of misclassified fake faces from Celeb-DF-v2 dataset

30

Figure 3.12 Examples of misclassified real faces from Celeb-DF-v2 dataset

3.3 Discussion

As Al technologies improve, misuse of them increases as well. One of these
threats to society is DeepFakes. As more challenging and sophisticated fake face
generators emerge every day, detecting them becomes harder and harder. In this
work, we trained eight different models - Xception, Inception-v4, Inception-ResNet-v2,
ResNet50, DenseNet161, MobilenetV3, EfficientNet-BO and EfficientNet-B4 - with
various augmentation setups on the recent DFDC dataset and compared their
generalization ability by testing on the Celeb-DF-v2 dataset. Due to hardware
limitations, we could not train bigger EfficientNet models and emerging Vision
Transformers as well as other bigger models. We concluded that, despite the smaller
size, the Efficient-B4 model has the best learning ability among all trained models.
The use of the augmentations, not to increase the size of the dataset but to increase
diversity in the dataset, can still be helpful. Finally, adding dropout augmentations
can help models focus less significant but important parts of the face and generalize
better.

This project can be split into three main phases: Data preparation, model training,

and combining results.

* Data preparation is the key of all modern Deep Learning projects. In our case,

processing raw videos are resource-intensive and unnecessary since most frames

31

look similar (except video-based and 3D convolutional models where multiple
consecutive frames have to pass through a model). Also, looking at the whole
frame is not very useful since the modification is only applied to the face(s).
Thus, a region of interest should be defined. We defined this as face and 30-pixel
margin around the detected face and sampled faces every 30 frames for the
training set. An extensive analysis can be done in future works to find out
optimal sampling rate, face detection model, and other input parameters such
as input and margin size.

* Model training is the biggest part of the whole flow. Deciding learning rate
scheduler, optimizer, augmentations applied to the input, and model backbone
are crucial parts of training a successful model. For example, the test set of the
DFDC dataset contains augmenters and distractors that were not applied to the
train set. Using various filters to overcome this feature can be one improvement.
In addition, neural architecture search techniques and hyper-parameter tuning
methods can be applied to find an optimal model.

* Combining results is the final part of the deep fake detection flow. Because
sampling is required at the first step, results should be brought together for a
single output. In this work, we averaged the confidence of the fake class for
each frame and used Equal Error Rate to find an optimal threshold for each
model. Different fixed threshold values could also be tested. Also, several frames
with higher confidence can be used to create more sophisticated averaging
techniques. Ensembling several deep learning models gains popularity as
computers get more powerful and handle several of them. a) Several different
model architectures, b) Same model with different input sizes and slight
changes, c) Models from the same family, for example, EfficientNets, DenseNets,
ResNets, etc. can be ensembled. The easiest way of ensembling is training
and inferencing each model separately and joining only their output. Training
several models simultaneously may also be possible but requires more powerful

hardware and complex model design.

Finally, all models and setup configurations can be tested with more test sets to further
check generalization ability. It would be interesting to see the performance of the

models trained with different datasets.

32

REFERENCES

[10]

[11]

[12]

R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, J. Ortega-Garcia,
“Deepfakes and beyond: A survey of face manipulation and fake detection,”
arXiv preprint arXiv:2001.00179, 2020.

N. Bonettini, E. D. Cannas, S. Mandelli, L. Bondi, P Bestagini, S. Tubaro,
“Video face manipulation detection through ensemble of cnns,” arXiv preprint
arXiv:2004.07676, 2020.

A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, M. Niel3ner,
“Faceforensics++: Learning to detect manipulated facial images,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2019, pp. 1-11.

Deepfake detection challenge. [Online]. Available: https : //www . kaggle .
com / c / deepfake - detection - challenge / overview (visited on
12/15/2020).

S.-Y. Wang, O. Wang, R. Zhang, A. Owens, A. A. Efros, “Cnn-generated images
are surprisingly easy to spot... for now,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 7, 2020.

T. Karras, T. Aila, S. Laine, J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196,
2017.

J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proenca, J. Fierrez,
“Ganprintr: Improved fakes and evaluation of the state of the art in face
manipulation detection,” arXiv preprint arXiv:1911.05351, 2019.

T. T. Nguyen, C. M. Nguyen, D. T. Nguyen, D. T. Nguyen, S. Nahavandi,
“Deep learning for deepfakes creation and detection,” arXiv preprint
arXiv:1909.11573, vol. 1, 2019.

R. Tolosana, S. Romero-Tapiador, J. Fierrez, R. Vera-Rodriguez, “Deepfakes
evolution: Analysis of facial regions and fake detection performance,” arXiv
preprint arXiv:2004.07532, 2020.

B. Dolhansky, R. Howes, B. Pflaum, N. Baram, C. C. Ferrer, “The deepfake
detection challenge (dfdc) preview dataset,” arXiv preprint arXiv:1910.08854,
2019.

T. Karras, S. Laine, T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE /CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4401-4410.

Y. Nirkin, Y. Keller, T. Hassner, “Fsgan: Subject agnostic face swapping and
reenactment,” in Proceedings of the IEEE /CVF International Conference on Com-
puter Vision, 2019, pp. 7184-7193.

33

https://www.kaggle.com/c/deepfake-detection-challenge/overview
https://www.kaggle.com/c/deepfake-detection-challenge/overview

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770-778.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE /CVF International Conference on Computer Vision, 2019, pp. 1314-1324.

G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2017, pp. 4700-4708.

E Chollet, “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251-1258.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, “Rethinking the
inception architecture for computer vision,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp. 2818-2826.

C. Szegedy, S. loffe, V. Vanhoucke, A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31, 2017.

M. Tan, Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning, PMLR, 2019,
pp. 6105-6114.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 4510-4520.

M. Tan, Q. V. Le, Efficientnet: Improving accuracy and efficiency through automl
and model scaling, 2021. [Online]. Available: https://ai. googleblog .
com/2019/05/efficientnet-improving-accuracy-and.html.

Q. Xie, M.-T. Luong, E. Hovy, Q. V. Le, “Self-training with noisy student improves
imagenet classification,” in Proceedings of the IEEE /CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 10 687-10 698.

B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, C. C. Ferrer, “The
deepfake detection challenge dataset,” arXiv preprint arXiv:2006.07397, 2020.

Y. Li, X. Yang, P Sun, H. Qi, S. Lyu, “Celeb-df: A large-scale challenging dataset
for deepfake forensics,” in Proceedings of the IEEE /CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 3207-3216.

P Chen, S. Liu, H. Zhao, J. Jia, “Gridmask data augmentation,” arXiv preprint
arXiv:2001.04086, 2020.

A. Buslaev, V. 1. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, A. A.
Kalinin, “Albumentations: Fast and flexible image augmentations,” Informa-
tion, vol. 11, no. 2, 2020, 1SSN: 2078-2489. po1: 10.3390/1inf011020125.
[Online]. Available: https://www.mdpi.com/2078-2489/11/2/125.

T. DeVries, G. W. Taylor, “Improved regularization of convolutional neural
networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

34

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125

[28]

[29]

[30]

[31]

E Schroff, D. Kalenichenko, J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 815-823.

P Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,
M. Houston, O. Kuchaiev, G. Venkatesh, et al., “Mixed precision training,” arXiv
preprint arXiv:1710.03740, 2017.

R. Wightman, Pytorch image models, https://github.com/rwightman/
pytorch-image-models, 2019. po1: 10.5281/zenodo.4414861.

L. Biewald, Experiment tracking with weights and biases, Software available from
wandb.com, 2020. [Online]. Available: https://www.wandb. com/.

35

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://www.wandb.com/

A

Environment setup

A.1 Hardware
e RAM: 64 GB

e CPU: Intel i7-8700K @ 3.7GHz x 12

* GPU: Nvidia Titan V with 12 GB VRAM

A.2 Software
* Operating System: Ubuntu 16.04 LTS

* Programming language: Python 3.7

* CUDA Version: 9.0.176

* CuDNN version: 7.3.1

 Libraries and Frameworks with versions

— pytorch-lightning == 1.2.6

- facenet-pytorch == 2.5.1

— albumentations == 0.5.2 [[26]
- timm == 0.4.9 [30]

- wandb == 0.10.23 [31]]

- opencv-python == 4.5.1

— numpy == 1.20.1

- pandas == 1.2.3

- scikit-learn == 0.24.1

- matplotlib == 3.3.4

36

PUBLICATIONS FROM THE THESIS

Conference Papers

1. I. Hiiseynli, S. Varli, "Analyzing Deep Learning Models’ Generalization Ability
under Different Augmentations on Deepfake Datasets" in Proceedings of the In-
ternational Conference on Artificial Intelligence and Soft Computing, pp. 1-5, Jun
2021

37

	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ÖZET
	INTRODUCTION
	Literature Review
	Objective of the thesis
	Hypothesis

	METHODOLOGY AND FAKE FACE DATASETS
	Models
	ResNet
	MobileNet-V3
	DenseNet
	Xception
	Inception models
	EfficientNet models

	Dataset
	DFDC
	Celeb-DF-V2

	Augmentations
	Data preparation
	Train data extraction pipeline
	Test data extraction pipeline

	Training
	Half-precision

	RESULTS AND DISCUSSION
	DFDC results
	Distractor and augmenter analysis

	Celeb-DF-v2 results
	Discussion

	REFERENCES
	Environment setup
	Hardware
	Software

	PUBLICATIONS FROM THE THESIS

