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İlkin HÜSEYNL̇I

Signature



Dedicated to my family



ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my family. Without their

tremendous support and encouragement, it would be impossible for me to complete

my thesis. I am incredibly grateful to my supervisor, Prof. Dr. Songül VARLI, for her

directives and academic advice, which kept me on the track of completion. Finally,

I’m thankful to my close friends Redzhep M. REDZHEBOV for his precious help on

technical subjects and Ayten AHMADLI for motivating me at challenging times.
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ABSTRACT

STUDYING DEEP LEARNING MODELS FOR
MANIPULATED FACE DETECTION

İlkin HÜSEYNL̇I

Department of Computer Engineering

Master of Science Thesis

Supervisor: Prof. Dr. Songül VARLI

Deepfakes allow users to manipulate the identity of a person in a video or an image.

Previously, special hardware and skill were required to create such fake videos/images.

But together with improvements on GAN-based techniques, generating more realistic

and hard to detect manipulated faces became easier. This threatens individuals and

decreases trust in social media platforms. In this work, our goal is to report eight

different models’ learning ability on, by far, the largest fake face dataset - DFDC and

test the generalization ability of these models with Celeb-DF-v2. Because the training

dataset consists of high-quality videos, we started detecting and extracting faces from

them. Next, we sampled data to have balanced classes and a feasible amount of

data to train with limited resources. We started training with no extra augmentation

because the dataset was big enough, and faces were already modified. Next, we added

our default augmentation chain, inspired by other works and increased strength with

Coarse-Dropout and Grid Mask augmentations.

A separate test set from the DFDC dataset, which has unseen augmentations and

distractors and a completely different Celeb-DF-v2 dataset, was used to evaluate

results. As distinct from the train set, we followed different face extraction flow for

the test sets. We issued face tracking by using simple Intersection over the Union

and sampled faces that only tracked over a certain number of consecutive faces. For

each video in the test set, the confidence of the sampled faces averaged, and a single

confidence value was generated. To calculate video-based log loss values, we used

this confidence values. For the Celeb-DF-v2 dataset, we also calculated Sensitivity

and Specificity values. For these metrics, the optimal threshold was decided by

xi



using Equal Error Rate. We concluded that despite the relatively smaller size input

EfficientNet-B4 model has the best learning and generalization ability. Training models

with half-precision may speed up training time up to 2 times with very few losses.

Finally, Coarse Dropout helped models to generalize better.

Keywords: digital video forensics, face manipulation, deepfake, face swap

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

xii



ÖZET

SAHTE YÜZ TESPİTİ İÇİN DERİN ÖĞRENME
MODELLERİNİN ARAŞTIRILMASI

İlkin HÜSEYNL̇I

Bilgisayar Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Danı̧sman: Prof. Dr. Songül VARLI

Deepfakes, kullanıcıların bir video veya görüntüdeki bir ki̧sinin kimliğini

deği̧stirmesine olanak tanır. Önceden, bu tür sahte videolar/görüntüler oluşturmak

için özel donanım ve beceri gerekiyordu. Ancak GAN tabanlı tekniklerdeki

iyileştirmelerle birlikte, daha gerçekçi ve algılaması zor manipüle edilmi̧s yüzler

oluşturmak daha kolay hale geldi. Bu da bireyleri tehdit etmekte ve sosyal medya

platformlarına olan güveni azaltmaktadır. Bu çalı̧smada amacımız, bugüne kadarki

en büyük sahte yüz veri seti olan DFDC üzerinde sekiz farklı modelin öğrenme

kabiliyetini rapor etmek ve bu modellerin genelleme kabiliyetini Celeb-DF-v2 veri

kümesi ile test etmektir. Eğitim veri seti yüksek kaliteli videolardan oluştuğu için

ilk olarak yüzleri tespit etmeye ve çıkarmaya başladık. Daha sonra, dengeli sınıflara

sahip olmak, sınırlı kaynaklarla makul sürede eğitmek için verileri örnekledik. Veri

kümesi yeterince büyük olduğundan ve yüzler zaten deği̧stirilmi̧s olduğundan, ekstra

yapay artırmak olmadan eğitime başladık. Ardından, diğer çalı̧smalardan ilham

alan varsayılan büyütme zincirimizi ekledik ve "Coarse Dropout" ve "Grid Mask"

güçlendirmeleriyle gücü artırdık.

Sonuçları değerlendirmek için DFDC veri setinden, görünmeyen yapay artırmak

ve çeldiricilere sahip ayrı bir test seti ve tamamen farklı bir Celeb-DF-v2 veri seti

kullanıldı. Eğitim veri setinden farklı olarak, test setleri için farklı yüz çıkarma akı̧sları

izledik. Videodakı yüzleri basit Birleşimlerin Kesi̧simi (Intersection over Union)

yöntemi ile takip ederek, belirli miktardakı ardı̧sık sahnelerde yer alan yüzlerden

örnekleme yaptık. Test setindeki her video için örneklenen yüzlerin güvenirliğinin

xiii



ortalaması alındı ve tek bir güven değeri üretildi. Video tabanlı log kaybı değerlerini

hesaplamak için bu güven değerlerini kullandık. Celeb-DF-v2 veri setindeki sınıflar

dengesiz olduğu için Duyarlılık ve Özgüllük değerlerini de hesapladık. Bu metrikler

için, Eşit Hata Oranı kullanılarak optimal eşiğe karar verildi. Nispeten daha küçük

boyutlu girdiye rağmen EfficientNet-B4 modelinin en iyi öğrenme ve genelleme

yeteneğine sahip olduğu sonucuna vardık. Yarı hassas (half-precision) eğitim

modelleri, çok az kayıpla eğitim süresini 2 kata kadar hızlandırabilir. Son olarak,

Coarse Dropout, modellerin daha iyi genelleştirilmesine yardımcı oldu.

Anahtar Kelimeler: video adli bili̧sim, yüz manipülasyonu, deepfake, yüz deği̧stirme

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Literature Review

Tolosana R. et al. [1] did a comprehensive review of fake face generation methods

and methods to detect them. They divided manipulations into 4 categories: i) entire

face synthesis, ii) identity swap, iii) attribute manipulation and iv) expression swap.

The DFDC dataset lays in the identity swap category. Thus we are mainly focused on

the methods for identity swapping. They grouped identity swap datasets under two

categories according to the visual quality of the data.

Bonettini, N. et al. [2] trained four different models and evaluated them on 2 different

datasets: Face Forensics++ [3] and the preview version of DFDC dataset. Considering

the model size, run time, and classification performance, they decided to choose the

EfficientNetB4 model as a baseline. Alongside with original network, they also created

another version with an Attention block. They trained both models in different ways:

end-to-end classical training and Siamese training. Finally, all these four variations

were ensembled in different combinations. Ensemble of all four models had the best

result and submitted to the DFDC Kaggle challenge [4] by authors which finished in

41st place.

Wang et al. [5] propose a universal detector for CNN-generated fake images. They

first generated fake images by using ProGAN [6] model and trained a binary classifier

on this set. For evaluation purposes, they created a new dataset - ForenSynths which

consists of images generated from 11 different models. One major difference of this

study is, they were not just focused on faces but included various objects and scenes

in their dataset. Unfortunately, internal structure of the classifier was not specified.

Neves, J.C. et al.[7] proposes that fake images generated with GAN’s have unique GAN

“fingerprints,” and this makes detection easy. In the study, together with a survey

of manipulated face detection works, they also introduced an auto-encoder-based

strategy (GANprintR) to remove GAN “fingerprints” and a novel dataset named
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iFakFaceDB with fingerprints deleted without affecting the quality of the resulting

images in this work. They applied their technique to two real face image datasets

and three synthetic face images: CASIA-WebFace, VGGFace2, TPDNE, 100K-Faces, and

PGGAN. There were three methods: XceptionNet based binary detector, Steganalysis,

and Local Artifacts applied before and after fingerprint was removed. They showed

that models trained and tested on the same dataset learn the “fingerprints” of the

generator network, and by removing it, the models can be spoofed.

Nguyen, T.T. et al. [8] did a survey on deepfake creation and detection methods.

They studied detection methods for fakes under two headlines: Detection in images

and detection in videos. They divided detection in videos section into 2 more sections

: Temporal Features across Video Frames and Visual Artifacts within Video Frame.Works

examined under the first section mainly focused on detection changes across frames

such as eye blink times. These works mainly used Recurrent Neural Networks, CNN,

LSTM, or a combination of them. Methods under Visual Artifacts within Video Frame

section mainly focused on frame-based detection. These methods that try to detect

images generally have artifacts and inconsistencies around the face, eyes, teeth, false

shadowing, and missing reflections. One studied method in the survey paper focuses

on detecting PRNU - Photo Response Non-Uniformity, which were considered the

fingerprints of digital images by using statistical methods.

Tolosana et al. [9] also did an analysis of facial regions on deepfake images. They

trained Xception and Capsule Network models with different 1st and 2nd generation

datasets on the entire face, only eyes, nose, mouth, and rest of face (excluding

eyes, nose, and mouth). Their models achieved 20-32% equal error rate on DFDC

Preview Dataset [10]. Considering various conditions and extreme poses, finding

face landmarks and extracting parts introduces its own challenges and errors into the

system.

StyleGAN [11] is a Generative Adversarial Network for image generation proposed

by NVIDIA inspired by style transfer literature. They focused on re-designing the

generator, added noise directly into the network to separate and control high-level

details such as pose and illumination from low-level details such as hair and freckles.

FSGAN [12] can generate successful fake faces despite occlusions in front of the face,

skin color, and gender difference of source and target videos and even from a target

image. To achieve this, they first generate landmarks of guiding face with small pose

changes, then used four different, dedicated generator models: the first model learns

creating face reenactment from the source image, second one segments face from

target image, third generator model is used to overcome occlusions and fulfill missing

2



parts and last generator used to combine images seamlessly.

1.2 Objective of the thesis

Modern deep learning algorithms have a wide range of use. One of the

most interesting and popular applications is face manipulation. Together with

improvements in hardware technologies, bigger, more powerful, and sophisticated

fake generation methods emerged. These new techniques are capable of creating

high-quality fake images, including human faces. Alongside powerful deepfake

methods, techniques to detect them also improve, and more diverse and challenging

datasets are released. One of the most recent and most extensive deepfake datasets

was released by Facebook AI called DeepFake Detection Challenge Dataset. In this

work, by using this dataset, we compared several models learning ability under

different augmentations. We first trained and tested the models on the DFDC train

and test set. Next, we compared their generalization ability on an entirely different

and unseen dataset - Celeb-DF-v2.

1.3 Hypothesis

Fake face generation has several good applications, such as creating videos of someone

who is not alive, re-filming scenes without a real actor, or generating a wide variety of

characters for the animations. However, unfortunately, deep fakes are more popular

with their improper use: creating fake videos and images for harmful purposes.

Popular examples are: making politicians/celebrities "say" things they have never

said and swapped one’s face on inappropriate videos. Later, these videos can be used

to either blackmail target or damage his/her public reputation by spreading it. It is

crucial to detect and prevent this kind of thread before they are spread. In this work,

we compared models and their generalization ability to prepare a baseline for such a

prevention system. An automatic fake video control mechanism can build on top of

this work’s output to check if uploaded video/image contains any fake faces before

they are released.

3



2
METHODOLOGY AND FAKE FACE DATASETS

2.1 Models

Table 2.1 Number of trainable parameters

Model
Params count

(Million)
ResNet50 23.5
MobileNet-v3 4.2
Xception 20.8
Inception-v4 41.1
Inception-ResNet-v2 54.3
DenseNet161 26.5
EfficientNet-B0 4.0
EfficientNet-B4 17.6

In this section, we briefly explained the architecture of the compared models. The

number of trainable parameters for each model was given at Table 2.1.

2.1.1 ResNet

ResNet [13] is one of the most popular neural network architectures. The previous

models were series of convolution kernels, poolings and fully connected layers. These

were good enough to train small models. However, as the number of layers increases,

the models suffer vanishing gradient problems and not learning. The authors showed

that adding simple skip connection, model depth can be increased several times. The

main building block of the ResNet was given in Figure 2.1. As seen from the figure,

one connection skipped, and the output of a layer was added to the output of the next

layer. So that, information from the earlier layers was carried to the further layers. In

this work, we used the ResNet50 model, which 48 Convolution layers, 1 MaxPool and

1 Average Pool layer - total of 50 layers.

4



Figure 2.1 Main building block of the ResNet model [13]

2.1.2 MobileNet-V3

MobileNet models were originally designed for mobile devices. The MobileNet-V3

[14] model is an improved version of the previous ones. The authors were used

hardware-aware network architecture search and NetAdapt algorithm to find optimal

architecture. Figure 2.2 shows the architecture of the MobileNet-V3-Large model,

which was used in this work. The authors added new squeeze and excitation

layers, did a block-wise and layer-wise search, introduced h-swish non-linearity, and

optimized general architecture by removing some layers in order to improve and

optimize the model.

Figure 2.2 Architecture of the MobileNet-V3-Large model [14] (SE:
Squeeze-And-Excite; NL type of non-linearity: HS - h-swish, RE - ReLU; NBN - no

batch normalization)

Adding swish (Formula 2.1) non-linearity increases accuracy but comes with a

5



computation cost. The authors introduced hard-swish (h-swish) (Formula 2.2)

non-linearity and used it only in the second half of the MobileNet model to overcome

this problem.

swishx = x ·σ(x) (2.1)

h− swish[x] = x
ReLU6(x + 3)

6
(2.2)

Platform aware NAS was applied to find optimal network blocks. An RNN controller

predicts an architecture with a probability. Then, a network was trained to converge

achieving given accuracy. Finally, architecture gradients scaled according to the

accuracy. This kind of search is generally used to optimize parts of a model. Because

MobileNet models were intended for mobile devices, both latency and accuracy were

included in the reward function to find smaller models during architecture search.

Output of the NAS was used as an input to the NetAdapt algorithm to optimize number

of filters in each layer. As a metric, maximizing ∆accurac y/∆latenc y was chosen

instead of just minimizing ∆accurac y as in the original paper.

2.1.3 DenseNet

Figure 2.3 Sample Densenet block [15]

The main idea of the Dense Convolutional Network or DenseNet[15] is connecting the

output of each layer to the other layers in front of it, thus having "dense" connections.

Figure 2.3 shows sample 5-layer dense block. These kinds of connections increase

feature reuse and strengthen their propagation, reduces the vanishing-gradient
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problem. At first glance, this architecture looks similar to ResNet, but there are few

different key points: ResNet has one skip connection while DenseNet connects every

subsequent layer; ResNet combines features by summing them; meanwhile, DenseNet

concatenates features. In this work, we decide to use the DenseNet-161 variation,

which has the lowest ImageNet top-1 error rate compared to other variations. This

model consists of 4 Dense Blocks consisting of 6, 12, 36, and 24 BN-ReLU-Conv(1x1)

and BN-ReLU-Conv(3x3) sequences. The authors define this sequence as Batch

Normalization, ReLU, 1x1, and 3x3 convolutions.

2.1.4 Xception

Figure 2.4 Modified depthwise separable convolutions [15]

Xception [16] is an interpretation of Inception models introduced by François Chollet.

It is an "extreme" version of the Inception-v3 [17] model with improved results. It

uses modified depthwise separable convolutions, which are depicted in Figure 2.4.

The modifications to the original method are:

1. The order of the operations - Pointwise Convolution was applied before

Depthwise Convolution

2. There is no intermediate non-linearity. Original depthwise separable

convolution has ReLU between operations

The purpose of the depthwise separable convolutions is to speed up the convolution

process. The overall architecture of the Xception model was given in Figure 2.5.
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The author defines Xception architecture as "a linear stack of depthwise separable

convolution layers with residual connections."

Figure 2.5 Overall architecture of Xception model [16]

2.1.5 Inception models

Inception-v4 [18] is an updated version of the Inception-v3 [17] model. In this work,

we compared two types of it: First pure Inception-v4 (denoted as inception_v4) which

is simplified version of the previous and uses more inception modules and combination

of Inception V3 and Residual networks [13] version (denoted as inception_resnet_v2).

According to the original paper, both models are computationally equal. Architecture

of the Inception-v4 model was given in Figure 2.6 and Inception-ResNet-v2 in Figure

2.7.

2.1.6 EfficientNet models

EfficinetNet[19] introduced by Google Research Team in late 2020. They proposed

that adjusting network width, depth, and resolution simultaneously with certain

formulas can increase performance. Also, proportional scaling significantly decreases

the number of trainable parameters in a model while preserving performance. Their

biggest model - EfficientNet-B7, achieved Imagenet Top-1 accuracy while having 8.4x

fewer parameters and running 6.1x faster than the best model at that time. Figure

2.8 represents comparison of the EfficientNet models’ parameters and accuracy with

other top models.

As a backbone, the authors were used mobile inverted bottleneck - MBConv [20]. Figure
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Figure 2.6 Architecture of Inception-v4 [18]

Figure 2.7 Architecture of Inception-Resnet-v2 [18]
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Figure 2.8 EfficientNets parameter and ImageNet Top-1 Accuracry comparison with
other models

Figure 2.9 EfficientNet-B0 architecture
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2.9 was borrowed from the Google AI Blog post[21] and represents architecture of

EfficientNet-B0. From here, the authors applied their compound scaling method to

get bigger models by resizing the depth, width, and input resolution of the network.

In this work, we used pre-trained weights of the Imagenet dataset with the Noisy

Student [22] approach. Noisy Student is a semi-supervised learning approach

proposed by Google’s Brain Team. They trained the teacher-student model using

labeled and unlabeled data: First, the labeled data was used to train a teacher model.

Pseudo labels for the unlabelled data were generated by using the teacher model.

These labels can be soft (continues) or hard (one-hot encoding). Then, a student

model was trained by using both labeled and pseudo labeled data. They also trained

another student model by using the previous student model as a teacher model. The

authors call their method as knowledge expansion rather than knowledge distillation

because they i) added noise and ii) the student model is not smaller than the teacher.

According to the original paper, Noisy Student Training reaches 88.4% top-1 accuracy,

which was calculated on popular ImageNet dataset. Figure 2.8 also shows the effect

of the Noisy Student training on EfficientNets.

2.2 Dataset

2.2.1 DFDC

We used The DeepFake Detection Challenge (DFDC) Dataset [23] by Facebook AI.

The released part of this dataset was collected by filming 960 paid actors under

various conditions, environments, and angles. The age, gender, and ethnicity of

actors vary. Train dataset consists of more than 120,000 videos; validation set has

4,000, and test set has 5,000 videos. While the train set is highly unbalanced, test

and validation sets are balanced. The majority of fake faces were generated by using

Deepfake Autoencoder (DFAE). They used one shared encoded and two decoders for

each identity. Unfortunately, all details of the DFAE architecture are not available.

Other methods are the frame-based morphable-mask (MM/NN) model, which uses

facial landmarks and matches source face to the target face; fine-tuned version of

neural talking heads of people (NTH); FSGAN and modified version of StyleGAN.

After fake faces were generated, some of them went through a sharpening filter to

increase the quality of the result. Audio manipulation was also applied to some of the

videos, but we only focused on image manipulations in this work. Various distractors

and augmenters were applied to the test and validation sets to make it even more

challenging. Applied augmenters were: Gaussian blurring, brightness change, adding

contrast, frame rate change, gray-scale, horizontal flip, audio removal, adding noise,

changing encoding quality, altering the resolution, and rotating. Distractors were
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random shapes, text, or dots on each frame, randomly moving or appearing images or

texts. Examples of these augmenters were given in Figure 2.10. All augmenters and

distractors were applied randomly applied to 79% of all test datasets.

Figure 2.10 Examples of the augmenters and distractors applied to the DFDC test
set. Left top is the original image.[23]

However, this dataset is not perfect and has some problems:

1. Videos with multiple actors - it is not clear if both actors got face manipulation or

not. From our observation, only one of them got manipulated. Only video-based

labels are present. We assumed that if there is at least one fake face in the video,

then the video is fake.

2. The face detection method for the dataset is unknown. There are some cases

where manipulation is not applied. This can either be because the face is not

detected, or the fake generation method was failed.

3. Test and train sets vary a lot. Distractors and augmenters applied to the test are

not present in the train set.

4. Extreme head poses - some faces were turned more than 90 degrees.

5. Too noisy and dark videos.

The last two points cause problems with face detection. It is also hard to understand

the person’s identity with the naked eye, even if it is a real video. We believe that

these cases are against the nature of DeepFakes; thus, we ignored them.
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2.2.2 Celeb-DF-V2

Celeb-DF-V2 [24] contains 590 real videos of the celebrities obtained from YouTube.

The real videos consist of 59 celebrities’ interviews. From these videos, 5639 fake

videos were generated. This work uses the extended version of the Celeb-DF-v2

dataset, which contains additional 300 real celebrity videos from YouTube. Figure

2.11 shows some real and fake examples from the Celeb-DF-v2 dataset.

Figure 2.11 Examples from the Celeb-DF-v2 dataset [24]. Left (green) column is real
face and other columns (red) are different DeepFake of the real person with various

source subjects.

The authors were used an encoder-decoder model with several layers (the exact

architecture of the deepfake model was not explained in the paper) to synthesize faces

with the size of 256x256. During the face generation time, color augmentation was

added to fix the color mismatch between source and target faces. We used all of this

dataset as a test set to measure the generalization ability of the models trained by

using the DFDC dataset.

2.3 Augmentations

All models were trained with 4 different augmentations: no augmentation, default

augmentation, default + CoarseDropout, default + Gridmask [25] augmentation.

Augmentations were used to increase diversity in the dataset instead of increase the

size of the dataset. In order to satisfy the input size of the model, images were resized

by preserving the aspect ratio. First, the longest side of an image resized to the desired
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Table 2.2 Order and occurrence probability of the applied augmentations.

Order Augmentation Probability
1 ImageCompression 0.5
2 GaussNoise 0.1
3 GaussianBlur or Sharpening 0.5
4 HorizontalFlip 0.5
5 BrightnessContrast 0.5
6 To gray-scale 0.2
7 ShiftScaleRotate 0.5

size, and then the shortest side resized to such a size that has the same aspect ratio

as the original image. The remaining part of the image was padded by using zero

values. All images were also normalized by using the mean and standard deviation

of the Imagenet dataset. As a default augmentation, we chained and applied several

augmentations with different occurrence probability by using Albumentations [26]
library. Order and the details of the augmentations were given at table 2.2.

CoarseDropout was inspired from cutout [27] augmentation. It cuts out random parts

of an image with fixed size and number. In this work, we chose to use two random

patches with the size of 64x64 pixels. These patches may overlap. GridMask [25]
augmentation cuts out a fixed number of parts with a certain pattern. We used a 5x5

pattern, size of patches was calculated according to the input size. The purpose of both

augmentations was to hide some parts of an image and force models to learn other

parts of the image. These augmentations are assumed as harder augmentations and

applied separately at the end of the default chain with the probability of 0.5. Examples

of all augmentations were given in Figure 2.12.

Figure 2.12 Augmentations: From top left: Source image, compression, Gauss noise,
blur, sharpening, horizontal flip, brightness, hue and saturation value adjustment,

gray, shift+scale+rotate, Coarse dropout (size=64 pixels), Grid dropout. All images
resized to 224 by preserving aspect ratio and padded with 0 value before an

augmentation was applied.
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2.4 Data preparation

Original datasets consist of high-resolution, high-frame videos. Processing all frames

at high resolution is not feasible. Also, a high frame rate means many similar images.

Instead, we issued sampling and detected faces. Train and test sets were followed

different pipelines.

2.4.1 Train data extraction pipeline

The DFDC train dataset consists of 120,000+ videos. Almost 80% of all videos are

fake videos. Since all fake videos were created from real videos, in order to speed

up processing, we first detected faces at real videos and, by using the coordinates,

extracted faces from fake videos. For face detection we used Pytorch implementation

of FaceNet [28] model. From each video, up to 10 frames were sampled and passed

through face detection. Faces with the size of 70x70 pixels and higher were kept.

Faces were extracted with 30 pixels margin around them. A video was discarded if no

face was detected. This generally happened when image quality is too bad or the face

is barely visible. Next, we manually cleaned the face-only dataset. Here, our target

was non-face, false positives. By using the bounding box coordinates of the real faces,

we extracted faces from fake videos. Finally, fake images were down-sampled by 5 to

keep the train set balanced. DFDC dataset only contains video labels. We propagated

video labels to the detected faces from the video. As a result, 202,951 images with

real labels and 212,454 images with fake labels left in the train set.

2.4.2 Test data extraction pipeline

For test and validation sets, a different flow was followed. First, we detected faces in

each frame of a video frame and tracked them using IoU of face bounding boxes. Faces

with more than 0.75 IoU in 2 consecutive frames were assumed to be the same person.

A person who tracked over 50 frames in the video was included in the sampling set.

Next, approximately 50 faces were sampled from each video. Sampling was done

proportional to the number of frames tracked per face. This means if person-A tracked

for 100 frames and face of person-B tracked for 200 frames in the same video, 17 faces

of person-A and 32 faces of person-B were sampled. The same test procedure was

applied to the Celeb-DF-v2 dataset. We decided to use this pipeline for the test dataset

to avoid distractors and focus only on the main subject of the video. Resizing with

preserving the aspect ratio, padding with zero value, and normalization was applied

to the test sets.
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2.5 Training

Due to the size of the dataset, models tend to overfit at early epochs; thus, we

trained all models at most ten epochs. Figure 2.13 and 2.14 shows how quickly

models converge. The last layer of the backbone models was replaced with a single

Dropout layer and a Linear layer with two classes (fake and real). We used pre-trained

Imagenet weights and fine-tuned all layers of the model with cross-entropy loss. All

models were trained by using Adam optimizer, and the fixed learning rate equals

0.0001.

Figure 2.13 Train loss over epochs of the models trained with fixed Learning rate
and default augmentation setup.

Figure 2.14 Validation loss over epochs of the models trained with fixed Learning
rate and default augmentation setup. (Note, because the EfficientNet-B4 model

overfitted so quickly, validation loss became NaN; thus, it was excluded from this
graphic
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Table 2.3 Training EfficientNet-B4 model with half-precision and single precision

Batch size Training duration Log loss
FP16 64 9 hours 48 mins 0.2191
FP32 32 5 hours 55 mins 0.2128

2.5.1 Half-precision

Nvidia researches showed that training models with half-precision instead of

single-precision could achieve similar results while using fewer resources and with

shorter training time [29]. The main difference between the two is the number of bits

to represent a number. While single-precision uses 8 bits to store the exponent and

23 bits for the precision, half-precision uses 5 bits for the exponent and 10 bits for the

fraction. Due to this difference, half-precision has a small representable range and is

less precise but enough to train most deep learning models. Considering millions of

trainable parameters, this difference leads to several times faster and memory-efficient

models. In this work, we also compared FP-16 and FP-32 performance on the

Efficient-B4 model.

Figure 2.15 Training time per epoch of EfficientNet-B4 with FP16 and FP32

The training time of single-precision is significantly high, while an improvement on

log loss is less than 0.01. Results and difference of the setups can be found at Table

2.3. Time spent for each epoch during training was given in Figure 2.15. Because of

these reasons, we decided to train all models with half-precision.
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3
RESULTS AND DISCUSSION

In this work, we trained and compared several performance of models explained at

Section 2.1 on popular deepfake dataset - DeepFake Detection Challenge Dataset by

Facebook AI. Because the dataset only has video based results, we chose video based

log loss as a main metric. Log loss formula was given at 3.1. The purpose of using log

loss is to "punish" model more if a video is classified false with higher confidence.

Log Loss = −
1
n

n
∑

i=1

[yi log (byi) + (1− yi)log(1− byi)] (3.1)

Sampled frames from each video were passed through a model, and confidence for real

and fake classes was predicted. Confidence of the fake class averaged, and a single

confidence value was created for the input video. This value was used as by to the

formula. For the log loss calculation, 1 was used for the fake and 0 for the real class.

If averaged confidence is higher than a certain threshold, the video was considered

fake and vice versa.

The threshold was calculated for each model and configuration separately instead of

using a fixed one. In order to do this, we first calculated false positive rates and false

negative rates at different thresholds. The intersection of this rates was called Equal

Error Rate, where both rates are low. The threshold at this point was picked and used.

Example graphic was given in Figure 3.1. Figure 3.2 shows the chosen threshold

values for each model.

Later, we compared models’ generalization ability by testing them on the Celeb-DF-v2

dataset. Because this dataset is very unbalanced, we reported recall for each class

separately.
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Figure 3.1 Equal Error Rate for the EfficientNet-B4 model trained with Default
augmentation.

Figure 3.2 Calculated threshold values for the best model/augmentation
combinations.
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3.1 DFDC results

Because deepfake models were already modified faces, we started experiments by

training our baseline models with no extra augmentation except resizing with aspect

ratio, zero-padding and normalizing. Video-based log loss results on DFDC test dataset

were given at Figure 3.3. As seen from the figure, the results are not good. Despite

the no augmentation, the EfficientNet-B4 model had a considerably lower loss.

Figure 3.3 Video based log loss of the trained models without any augmentation
(lower is better).

Next, after evaluating Kaggle solutions and studying the test set, we decided to add

several augmentations during training time. The details of the default augmentation

were discussed at Section 2.3. The main purpose was to create diversity in the

dataset and overcome distractors of the test set. Thus, instead of increasing the

size of the dataset by adding new augmented images, we augmented only existing

images. As seen from Figure 3.4, augmentations helped to improve results drastically.

EfficientNet-B4 is the best model here.

Next, we tried hard augmentations together with the default chain. We added a 5x5

grid mask with zero values on the input images. The purpose was forcing models to

learn less significant but still important parts of the data. Log-loss results for each

model trained with this setup was given at Figure 3.5. While results were much

better than no augmentation results, improvement was not much from only the default

augmentation setup. Adding GridMask improved the results of the ResNet50 model.

Just adding it decreased video-based log loss 25%.

Another hard augmentation we tried was Coarse dropout: 2 patches, each size of

64x64 randomly cropped out from an input image with an occurrence probability

of 50%. As seen from the results 3.6 most of the models had improvements here.
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Figure 3.4 Video based log loss of the trained models with default augmentation
chain (lower is better).

Figure 3.5 Video based log loss of the trained models with default augmentation
chain and grid dropout (lower is better).
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Figure 3.6 Video based log loss of the trained models with default augmentation
chain and coarse dropout (lower is better).

Table 3.1 Log loss results of the DFDC dataset (lower is better). Italic values are the
best result for the augmentation and bold values are the best result of the model

Models/Augmentations
No

Augm. Default
Coarse

Dropout
Grid
Mask

EFB4_NS 0.3078 0.2191 0.2206 0.2265
Xception 0.3784 0.2460 0.2549 0.2635
Inception_4 0.3371 0.2538 0.2399 0.2534
Inception_resnet_v2 0.3638 0.2663 0.2403 0.2516
EFB0_NS 0.3486 0.2676 0.2371 0.2431
densenet161 0.4003 0.3005 0.2355 0.2793
resnet50 0.3842 0.3282 0.2543 0.2460
MobilenetV3_large 0.3729 0.3293 0.2469 0.2911

Overall, the EfficientNet-B4 model pretrained with Noisy Student and used default

augmentation chain had the best result. Comparison of the video-based log-loss values

for each model and augmentation setup were given at Table 3.1 and RoC-AuC curve

of the best model and augmentation combinations were given in Figure 3.7.

3.1.1 Distractor and augmenter analysis

The test set of the DFDC dataset has distractors and augmenters, which were not

applied to the train set. Augmenters were considered as color and geometric

transformations, frame rate changes, etc. Distractors were objects such as dots,

random shapes, figures, texts, random face images overlayed on top of the video

frame. Two popular social media filters: dog filter and flower crown filter, were also

used as an augmenter. We analyzed the effect of the distractors and the augmenters

separately for fake videos and real videos. Only the best configuration of each model
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Figure 3.7 RoC-AuC curves for the best configuration of each model.

(highlighted as bold in Table 3.1) were analyzed. Table 3.2 shows percentage of the

misclassified fake videos per filter and model. As seen from the values, fake videos with

dog filters were misclassified as real videos. Interestingly, the dog filter does not have

a bad effect on real videos. From Table 3.3, we can see that other random objects and

shapes have a higher impact than the dog filter. This may indicate that models tend to

classify images with this filter as real. There is one extra distractor that is only applied

to the real videos called df_tricks. Unfortunately, the original paper does not give any

information about this distractor. The amount and strength of each augmenter vary.

When we look at the augmenters - Table 3.4 - we can see that noise has the

highest impact on all models, especially for fake videos. All models had a hard time

distinguishing fake videos with noise from real videos. We applied Gaussian Noisy

augmentation with very low probability. Increasing the occurrence probability of the

noisy augmentation may solve this problem. For real videos, there is not any significant

augmenter that affected all models. Some of the videos in the DFDC test set has neither

augmenters nor distractor. Percentage of the misclassified videos with no artifact was

given at the last row of the Table 3.4 and Table 3.5.
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Table 3.2 Percentage of misclassified fake videos per distractor for each model’s best setup. Bold values are the worst results for each model.

EFB4 EFB0 Xception InceptionV4 IncpResV2 Resnet50 Densenet161 MobileNetV3
dog_filter 22.1 22.1 51.2 41.9 50.0 37.2 40.7 25.6
dots 14.9 10.7 10.7 13.2 14.0 13.2 14.0 12.4
faces 8.0 9.6 6.4 12.8 8.8 9.6 10.4 12.8
flower_filter 10.0 8.3 10.0 10.8 10.0 8.3 10.0 8.3
random images 13.5 13.5 13.5 12.6 10.8 13.5 13.5 14.4
shapes 6.4 8.3 2.8 7.3 6.4 6.4 8.3 10.1
text 8.9 11.1 8.9 6.7 13.3 10.0 12.2 14.4

Table 3.3 Percentage of misclassified real videos per distractor for each model’s best setup. Bold values are the worst results for each model.

EFB4 EFB0 Xception InceptionV4 IncpResV2 Resnet50 Densenet161 MobileNetV3
df_tricks 7.9 10.1 9.0 6.7 11.2 9.0 7.9 6.7
dog_filter 6.3 10.1 7.6 8.9 15.2 10.1 7.6 10.1
dots 8.9 12.9 13.9 13.9 15.8 12.9 12.9 13.9
faces 9.5 8.3 10.7 10.7 10.7 9.5 8.3 11.9
flower_filter 2.4 4.7 8.2 3.5 5.9 7.1 8.2 4.7
random images 8.6 8.6 16.1 11.8 14.0 10.8 14.0 11.8
shapes 7.8 13.0 13.0 14.3 14.3 13.0 13.0 14.3
text 8.9 11.1 8.9 6.7 13.3 10.0 12.2 14.4
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Table 3.4 Percentage of the misclassified fake videos for each model’s best configuration per augmenter. Bold values are the worst result for
each model.

EFB4 EFB0 Xception InceptionV4 IncpResV2 Resnet50 Densenet161 MobileNetV3
blur 4.1 4.1 2.4 3.6 0.0 1.2 3.0 1.8
brightness 7.2 10.8 7.2 7.8 5.4 8.4 8.4 9.6
contrast 13.2 16.9 14.7 16.9 21.3 17.6 18.4 16.9
framerate change 3.6 6.0 7.8 3.6 6.6 4.8 9.0 4.2
greyscale 10.6 7.0 12.0 5.6 8.5 12.0 16.2 10.6
horizontal flip 7.7 6.5 7.7 7.1 5.2 7.1 7.7 6.5
no_audio 5.4 5.4 9.4 6.7 8.1 4.7 6.0 5.4
noise 30.3 35.9 22.8 53.8 37.9 49.7 22.8 50.3
quality level change 12.5 14.5 9.9 11.8 10.5 9.2 15.8 7.2
resolution change 7.0 3.2 3.2 4.4 2.5 2.5 3.2 1.3
rotate 4.0 5.3 6.0 3.3 4.0 6.6 4.0 3.3
no distractor/augmenter 6.2 7.4 8.1 4.8 5.6 5.6 6.2 6.6
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Table 3.5 Percentage of the misclassified real videos for each model’s best configuration per augmenter. Bold values are the worst result for
each model.

EFB4 EFB0 Xception InceptionV4 IncpResV2 Resnet50 Densenet161 MobileNetV3
blur 7.5 6.2 8.9 10.3 11.0 8.9 10.3 13.0
brightness 7.0 8.3 14.0 10.8 13.4 9.6 8.9 8.3
contrast 5.6 3.5 4.9 7.7 14.0 5.6 9.1 8.4
framerate change 9.6 12.2 11.5 9.6 14.1 11.5 10.3 14.1
greyscale 7.1 7.1 9.6 8.3 10.3 12.8 12.2 7.1
horizontal flip 9.3 8.6 9.9 10.6 14.6 9.3 7.9 9.3
no_audio 5.9 4.6 7.9 7.2 11.2 7.9 3.3 8.6
noise 5.6 8.3 13.2 11.1 15.3 10.4 11.8 11.1
quality level change 5.2 6.4 11.0 8.7 9.3 8.1 8.7 9.3
resolution change 8.6 9.6 14.4 13.4 12.8 13.4 10.7 11.2
rotate 6.4 7.6 8.8 7.0 11.1 7.6 7.0 10.5
no distractor/augmenter 6.4 9.2 11.3 12.2 12.0 11.3 9.8 10.3
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Table 3.6 Sensitivity and Specificity results of Celeb-DF-v2 dataset for each model and augmentation (higher is better).

No Augmentation Default setup Default + Coarse Default + GridDropout
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

densenet161 0.793 0.795 0.831 0.832 0.854 0.856 0.836 0.841
EfficientNet-B0 0.781 0.783 0.865 0.87 0.885 0.886 0.877 0.88
EfficientNet-B4 0.875 0.876 0.92 0.921 0.924 0.925 0.921 0.922
Inception_4 0.785 0.786 0.873 0.875 0.874 0.874 0.867 0.873
Inception_resnet_v2 0.783 0.791 0.867 0.872 0.872 0.873 0.845 0.848
MobilenetV3_large 0.77 0.773 0.842 0.846 0.874 0.876 0.866 0.868
resnet50 0.753 0.756 0.812 0.814 0.852 0.858 0.853 0.855
Xception 0.777 0.782 0.865 0.868 0.864 0.866 0.858 0.862

27



Figure 3.8 Fake face examples from DFDC test set classified as real

Figure 3.9 Real face examples from DFDC test set classified as fake

Examples of the fake faces classified as real were given in Figure 3.8. The test sets were

not manually cleaned to match real-life scenarios as much as possible. Because of this,

it is possible to see false face detection examples. Also, some faces were covered by

hand, which probably prevented deepfake from being applied properly. Out of all

problems, extreme head poses are the most significant and hard ones. Figure 3.9

shows misclassified real face examples.
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Table 3.7 F1-score of the models tested with Celeb-DF-v2. Bold values are the best
results for the given model and italic values are the best results for an augmentation.

Model/Augmentation
No

Augmentation Default Coarse Grid

densenet161 0.869 0.895 0.91 0.898
EFB0_NS 0.86 0.917 0.93 0.925
EFB4_NS 0.924 0.952 0.954 0.953
Inception_4 0.863 0.922 0.923 0.919
Inception_resnet_v2 0.862 0.919 0.922 0.904
MobilenetV3_large 0.853 0.902 0.923 0.918
resnet50 0.841 0.882 0.909 0.909
Xception 0.858 0.918 0.917 0.913

3.2 Celeb-DF-v2 results

We also tested the generalization ability of the models by testing them with the

Celeb-DF-v2 dataset. Since this dataset was only used for the testing purpose instead

of the default train/test split, we used the whole dataset as a test set. Because of

this, the dataset is very unbalanced. Thus, separately looking at results for each

class will be more healthy. At Table 3.6 we compared 2 values for each model and

configuration: Sensitivity - represents the amount of correctly classified fake videos

in other words, coverage of actual positives formula 3.2. Specificity - is the amount

of correctly classified real videos dataset or coverage of actual negatives formula and

3.3. When we analyze results, we can see a similar pattern with DFDC test results:

No augmentation has the worst results; adding augmentation and enforcing it with

harder augmentations increased results. One interesting detail is that Coarse Dropout

has the best results overall for most of the models. This indicates that adding this

augmentation helps models to generalize better. This is mostly because it forces

models to learn less significant parts, too, and does not follow any pattern.

Sensi t ivi t y =
True Posi t ives

True Posi t ives+ False Negatives
(3.2)

Speci f ici t y =
True Negative

True Negative+ False Posi t ive
(3.3)

F1-score for each model-augmentation combination was reported at Table 3.7 and

F1-score comparision of the each model’s best augmentation configuration was given

in Figure 3.10. Fake class was assumed as the true class since our main target is

detecting fake videos. Examples of misclassified fake and real faces were given in

Figure 3.11 and 3.12.
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Figure 3.10 F1-score for the best configuration for each model. Except for the
Xception model, all models have the best score with default + Coarse augmentation.

Xception model has the best result with only default augmentation.

Figure 3.11 Examples of misclassified fake faces from Celeb-DF-v2 dataset
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Figure 3.12 Examples of misclassified real faces from Celeb-DF-v2 dataset

3.3 Discussion

As AI technologies improve, misuse of them increases as well. One of these

threats to society is DeepFakes. As more challenging and sophisticated fake face

generators emerge every day, detecting them becomes harder and harder. In this

work, we trained eight different models - Xception, Inception-v4, Inception-ResNet-v2,

ResNet50, DenseNet161, MobilenetV3, EfficientNet-B0 and EfficientNet-B4 - with

various augmentation setups on the recent DFDC dataset and compared their

generalization ability by testing on the Celeb-DF-v2 dataset. Due to hardware

limitations, we could not train bigger EfficientNet models and emerging Vision

Transformers as well as other bigger models. We concluded that, despite the smaller

size, the Efficient-B4 model has the best learning ability among all trained models.

The use of the augmentations, not to increase the size of the dataset but to increase

diversity in the dataset, can still be helpful. Finally, adding dropout augmentations

can help models focus less significant but important parts of the face and generalize

better.

This project can be split into three main phases: Data preparation, model training,

and combining results.

• Data preparation is the key of all modern Deep Learning projects. In our case,

processing raw videos are resource-intensive and unnecessary since most frames
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look similar (except video-based and 3D convolutional models where multiple

consecutive frames have to pass through a model). Also, looking at the whole

frame is not very useful since the modification is only applied to the face(s).

Thus, a region of interest should be defined. We defined this as face and 30-pixel

margin around the detected face and sampled faces every 30 frames for the

training set. An extensive analysis can be done in future works to find out

optimal sampling rate, face detection model, and other input parameters such

as input and margin size.

• Model training is the biggest part of the whole flow. Deciding learning rate

scheduler, optimizer, augmentations applied to the input, and model backbone

are crucial parts of training a successful model. For example, the test set of the

DFDC dataset contains augmenters and distractors that were not applied to the

train set. Using various filters to overcome this feature can be one improvement.

In addition, neural architecture search techniques and hyper-parameter tuning

methods can be applied to find an optimal model.

• Combining results is the final part of the deep fake detection flow. Because

sampling is required at the first step, results should be brought together for a

single output. In this work, we averaged the confidence of the fake class for

each frame and used Equal Error Rate to find an optimal threshold for each

model. Different fixed threshold values could also be tested. Also, several frames

with higher confidence can be used to create more sophisticated averaging

techniques. Ensembling several deep learning models gains popularity as

computers get more powerful and handle several of them. a) Several different

model architectures, b) Same model with different input sizes and slight

changes, c)Models from the same family, for example, EfficientNets, DenseNets,

ResNets, etc. can be ensembled. The easiest way of ensembling is training

and inferencing each model separately and joining only their output. Training

several models simultaneously may also be possible but requires more powerful

hardware and complex model design.

Finally, all models and setup configurations can be tested with more test sets to further

check generalization ability. It would be interesting to see the performance of the

models trained with different datasets.
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A
Environment setup

A.1 Hardware
• RAM: 64 GB

• CPU: Intel i7-8700K @ 3.7GHz x 12

• GPU: Nvidia Titan V with 12 GB VRAM

A.2 Software
• Operating System: Ubuntu 16.04 LTS

• Programming language: Python 3.7

• CUDA Version: 9.0.176

• CuDNN version: 7.3.1

• Libraries and Frameworks with versions

– pytorch-lightning == 1.2.6

– facenet-pytorch == 2.5.1

– albumentations == 0.5.2 [26]

– timm == 0.4.9 [30]

– wandb == 0.10.23 [31]

– opencv-python == 4.5.1

– numpy == 1.20.1

– pandas == 1.2.3

– scikit-learn == 0.24.1

– matplotlib == 3.3.4
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