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ABSTRACT

Audio fingerprinting using wavelet transform
Evren KANALICI

Department of Computer Engineering

Master of Science Thesis

Advisor: Assoc. Prof. Dr. Gokhan BILGIN

Audio fingerprinting systems have many real-world use-cases such as digital
rights management/copyright detection, duplicated audio detection, untagged audio
labelling or identify/query-by-example recognition systems. Nowadays, there are
popular online platforms that offer identify/query-by-example music recognition
services where users can query by snippets of recorded audio to retrieve the matched

song metadata.

The compact, robust and fast retrieving fingerprint design is the cornerstone of these
systems. Although short-term Fourier transform and Mel-spectral representations
are common tools that come to mind, these feature extraction methods suffer from
being unstable and having somehow limited resolution. In order to overcome these
challenges, scattering wavelet transform (SWT) provides an alternative solution to
these limitations by recovering information loss, while ensuring translation invariance
and stability:.

In this study, a two-stage audio fingerprint characteristic/feature extraction
framework is introduced using SWT integrated with Siamese neural network hashing
model for musical audio identification. Similarity-preserving hashes provided by
the Siamese neural network model correspond to sound fingerprints and can be
defined by a similarity distance metric in the embedded hashing space. The Siamese
neural network hashing model was trained by two-layer scattering wavelet transform
coefficients using relatively aligned segments of the same music files and segments
of different music files. The proposed system achieves successful performance scores
under environmental noise, modeling the challenges of detecting music and audio

xii



data that may be encountered in everyday life. Using very compact storage, it has
been shown to achieve high ROC-AUC scores both by one-to-one comparison and by

using locality-sensitive hashing (LSH) for content storage.

Keywords: Audio fingerprinting, music information retrieval, wavelet transform,
scattering wavelet transform, Siamese neural networks, triplet loss function,

convolutional neural networks, embedding hash models.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

Dalgacik doniisiimleri ile ses parmak izi kontrolii
Evren KANALICI

Bilgisayar Miihendisligi Anabilim Dali
Yiiksek Lisans Tezi

Danigsman: Dog. Dr. Gékhan BILGIN

Ses parmak izi tespit sistemlerinin giinliik hayatta dijital hak yonetimi/telif hakki
tespiti, kopya ses verisi tespiti, ses verisi etiketleme, ornek ile tespit/sorgu gibi
bircok kullanim alani mevcuttur. Gilintimiizde de kullanicilarin canli ses kayitlar ile
sorgulayip doniis alabildikleri miizik tespit ve sorgu servisi sunan ¢evrimici popiiler

platformlar faaliyettedir.

Kompakt, giirbiiz ve hizli erisimi hedefleyen ses parmak izi tasarimi bu sistemlerin
temel tasini olusturur. Kisa-siireli Fourier doniisiimleri ve Mel-spektral gosterimleri
ilk akla gelen araclar olmakla birlikte bu cikarim yontemleri kararsizlik gosterir ve
bir baglamda diisiik ¢oziiniirliige sahiptirler. Sacilim dalgacik doniistimii (SDD)
bu kisitlamalarin istesinden gelebilmek maksadiyla, sinyal dontisiimleri sirasinda
kaybolan enformasyonu telafi ederek ve 6teleme-degismezligi ve kararlilik saglayarak

alternatif bir ¢6ziim sunar.

Bu calismada, miizik ses verisi tanimasi i¢in, siyam sinir aglar1 karim modeli ile
tiimlesik bir sekilde sagilim dalgacik doniisiimii kullanilarak iki asamali bir ses parmak
izi karakteristik/0zellik ¢ikarim sistemi sunulmaktadir. Siyam sinir agi modelinin
sagladig1 benzerlik muhafaza eden karimlar ses parmak izlerine denk gelmekte ve bu
gomili karim uzayinda benzerlik mesafe oOlciitii ile tanimlanmaktadir. Siyam sinir
aglar karim modeli, ayni miizik dosyalarinin belirli bir komsuluk sinir1 icerisinde
gorece hizali boliitleri ve farkli miizik dosyalarinin boliitleri kullanilarak, iki-katmanli
sacilim dalgacik doniisiimii katsayilari ile egitilmistir. Onerilen sistem, giinliik hayatta
karsilasilabilecek miizik ses verisi tespit & sorgu zorluklarini modelleyen cevresel

giiriiltii altinda, basarili performans skorlar1 elde etmektedir. Oldukca kompakt

Xiv



depolama alani kullanarak, hem bire bir karsilastirma yapilarak hem de depolama
icin yerellik-duyarli karim (YDK) kullanilarak yiiksek ROC AUC skorlar elde ettigi

gosterilmektedir.

Anahtar Kelimeler: Ses parmak izi tespiti, miizik bilgi cikarimi, dalgacik doniisiimii,
sacilim dalgacik doniisiimi, siyam sinirsel aglar, {i¢liz zarar fonksiyonu, evrisimsel

sinirsel aglari, gomiilii karim modelleri.

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

Introduction

This thesis presents the results of our study on musical audio identification system
via a two-stage fingerprinting framework, and reports detailed evaluations and
experiments. Audio identification involves the retrieval of metadata as associated
with an unidentified audio extract. Our attempts are based on generating compact
fingerprint for relatively long durations of audio segments, and provide robustness for
audio signal query execution under additional environmental noise which can model

real-world obstacles of music identification problem.

Nowadays fingerprinting systems used in various aspects consumable multi-media of
audio streams including monitoring applications, copyright detection, recommenders
systems and labelling applications. The increasing large amounts of audio data, attract
rousing interest in the ability to identify audio content. This can be done via audio fin-
gerprinting which is a representative or discriminative method that aims at operating

with precision and certainty.

1.1 Literature Review

Audio fingerprinting systems are well researched Music Information Retrieval (MIR)
topic and various efficient fingerprinting methods have been introduced. Many
audio-fingerprinting methods prefer to use low-level features that aims to characterize
the audio signal (i.e. content-based approach) without any other high-level semantic
meanings. Also it’s very common to approach to the fingerprinting as a computer
vision problem after change of domain executed that enables working on spectral data,
thanks to the insights of previous studies. The maintain robustness to shifting (i.e.
the query is not perfectly aligned with the candidate feature from the content score)
overlapping feature extraction is a common practice. Another common preference is
to combine all sequentially retrieved candidate matches by some means of constraints

to provide a final match (e.g. temporal alignments of the probe candidate matches).



Table 1.1 Literature by years published

Literature Year
Allamanche et al. [2]] 2001
Haitsma, Kalker, and Oostveen [|3] | 2001
Haitsma and Kalker [4]] 2002
Herre, Hellmuth, and Cremer [5]] 2002
Wang [6] 2003
Ke, Hoiem, and Sukthankar [|7]] 2005
Baluja and Covell [8] 2006
Bellettini and Mazzini [9] 2008
Wang et al. [[10]] 2009
Zhu et al. [11]] 2010
Ellis, Whitman, and Porter [[12] 2011
Fenet, Richard, and Grenier [|13]] 2011
Ramona and Peeters [|14]] 2013
Ouali, Dumouchel, and Gupta [[15]] | 2014
Coover, and Han [|16]] 2014
Malekesmaeili and Ward [[17]] 2014
Six and Leman [|18]] 2014
Sonnleitner, Arzt, and Widmer [[19] | 2016
Gfeller et al. [20] 2017

Noted, it is argued that many MIR publications are hard to verity due to the fact that
often only a textual descriptions made available code remains unpublished leaving
many implementation issues uncovered [|1]]. Also copyright issues of publicly available
datasets and the MIR research involving complex systems prevents reproducibility of
the works published. Even though most notable works should be overviewed to have
a detailed or leastways coarse understanding what foregoing studies propose and give
insights, including the widely referenced ones. Table shows the notable works in
literature by the years they are published.

Allamanche et al. [_2] evaluate a content based audio identification system using
MPEG-7 features, namely "AudioSpectrumFlatness" and similar low-level descriptors,
relating signal’s power spectrums and tone-like characteristics to form feature vectors
for each windowed segments. Each feature vector from subsequent time steps then
combined to form a composite vector. These feature vectors are used at trained stage
for clustering using Nearest Neighbour and Vector Quantisation to generate minimal
codebooks. In this scheme, identification task for a query signal becomes aggregating
the distance of query segments to available codebooks and proposing a candidate with

minimum distance.

Haitsma, Kalker and Oostveen [[3] propose robust hashes extracted from 0.4-second

long windowed time frames with 31/32 overlap factor (i.e. slowly varying time



segments). 33 non-overlapping frequency bands selected in each frame in 300Hz —
2000Hz range using logarithmic scale (Bark-scale). Bandwidth is spaced in ratio of
one musical tone (2(1/12) per band). Sign of energy difference over frequency-bands

and frames is suggested to build robust hashes.

Later, in their work, Haitsma, and Kalker [4]] build their fingerprints using
Bark Frequency Cepstrum Coefficients (BFCC). While extracting fingerprints from
mono-audio signals, overlapping frames with a small step size are used to ensure
precision and maintain shift-invariance for queries with arbitrary time offsets. The
spectral representation of the audio is constructed using BFCC of 33 log-frequency
bands in range (300Hz — 2000Hz). The overlapping windows are 372ms. long
and windows are stridden with 11.6ms. step size giving ~ 100 fingerprints per
each second. The short step size provides robustness to arbitrary alignment
problem. Window and striding scheme is depicted in Fig. Each extracted
sub-fingerprints are 32-bits which indicates the difference between successive BFCC
bands in consecutive frames. It’s claimed these sub-fingerprints are insensitive to
small changes or distortions in the audio signal by being sparse, since only quantized
binary values of consecutive frames are kept instead of actual differences and they are
compact and fast to compute. Fingerprints are then the concatenated sub-fingerprints,

and Hamming distance is used for comparison.

window-size
{372 ms.)

'
.-

step-size
(11.6 ms.)

Figure 1.1 Haitsma, and Kalker audio signal timing scheme

Herre, Hellmuth and Cremer [|5]] follow up the scheme in [[2]] which uses characteristics
from MPEG-7 content descriptors, and evaluate various trade-offs between fingerprint

compactness, temporal coverage and robustness of recognition.

Wang [|6] [21]] describe a system that creates geometric hashes from local spectrogram
maxima. While individual hashes are localized with low specificity, sequences of
matches over time show high specificity. The proposed method of searching for
sequences of matched hashes constitutes a very efficient algorithm. This has become
a classic and influential method, generally known as "Shazam". The hashing model,
however, does not exhibit robustness to any type of scale modifications. The system is
considered to be highly robust to additive noise. It is prosed a robust scheme using only

spectrogram peaks. Wang’s method is somehow not dense like other methods, since it



works by extracting spectrograms over long durations of time and examines power
peaks of time-frequency representation. It is argued selecting spectrogram peaks
provide: (1) robustness to noise, surviving from additional noise, (2) property of linear
superposition, that is both components of acoustic audio and noise would provide
same peaks. Their sub-fingerprinting scheme illustrated in Fig. For possible pairs
of peaks (tq,f;),(ts, f,) in a neighborhood distance, triplets of values (f;, At,Af)
is calculated, quantized and concatenated vector values are used as fingerprints.
Quantized values use 8, 6, 6 bits for triplets (f;, At, Af) respectively resulting 20-bits

for each fingerprint.

Frequency
*
oo
=
L
(=
-

At
Time

Figure 1.2 Wang et al. frequency-delta triplet selection scheme

Wang also proposes a simple and fast approach for temporal alignment and it works
like this: (1) for all fingerprint matches a time-vs-time plane is plotted for query
fingerprints against matched metadata, (2) diagonals are examined on time-vs-time

plot, the strong diagonal indicates a valid match.

Ke, Hoiem, and Sukthankar [|7]] show that audio fingerprinting can be approached via
computer vision techniques. The system can identify query pieces that are severely
distorted by noise. It is proposed a method which improves the performance of
[4]. They use the similar scheme but design their novel fingerprints using AdaBoost
method, parlaying from computer vision field practiced in applications like face
recognition tasks [22]. The important insight is audio signals can be processed
efficiently when transformed into time-frequency representation. AdaBoost, being a
learning method, customized to learn energy concentration of selected frequencies
and the discriminative power of its features similar to boxlets in [[22]] enables
differentiating two spectrogram sub-rectangles given. The training data also includes
degraded versions of original signals. The output of each classifiers yields a binary
value based on the differences between two consecutive sub-rectangles. Out of 25000
candidate filters 32 classifiers are selected generating 32-bit features. For querying,
same timing scheme is used as [4]] and the learned model is used for feature extraction.

Two fingerprints are considered to be a match by Hamming distance threshold equal

4



to 2.

Beluja and Covell [|8] also benefit from the insights of computer vision approach
combining with wavelet transform. In their work, first, the audio signal is transformed
to time-frequency representation. They use multi-resolution haar-wavelets and
convert overlapping segments of spectrograms to wavelet coefficients. Wavelets are
chosen due to their efficiency in the image retrieval work presented in [[23]. Wavelet
transform coefficients are equal to number pixels in spectrogram image and authors
notice the sparsity of coefficients so they select top-t values. Then similar to the
scheme as in [[23]] coefficients quantized to only sign information and the Min-Hash
method used to generate a set of p bytes that as final fingerprints. The fingerprints are
compared directly by byte-wise Hamming distance. Since for a large values of p-bytes
(e.g. 100) the neighborhood search would be infeasible, authors use Locality Sensitive
Hashing (LSH) to execute approximate nearest neighborhood search in fingerprints
space. Their systems’s pipeline is shown in Fig.

Retain
"|H||""““' Compute Compute top-t wavelet
spectrograms wavelet transform coeflicients

probe signal ¢,

Sl_:r?saitlli?e Compute Triplet
Hashing Min-hash quantization

insert reference
content

query/ retrieval

Figure 1.3 Beluja et al. Waveprint pipeline

The window duration of overlapping spectrograms are 372ms and they use step size
of 0.09ms. which makes about ~ 10 fingerprints per second. Top 200 wavelets are
selected for each fingerprint and p is chosen to be 100 (i.e. each fingerprints are
100-bytes). For approximate nearest neighborhood search each fingerprint is divided
to twenty five 4-bytes sub-hashes for LSH, and voting mechanism is used for retrieval

from LSH for each candidate sub-hashes.

Bellettini and Mazzini [9]] propose a framework, tracking down commercial radio
or TV broadcast transmission with robustness to pitch-shifted audio. They use
energy difference among subsequent spectral sub-bands of audio using STFT with
372ms. long windows and highly overlapped frames. It is argued sequence of bit
vectors provides robustness both for alignment problem and pitch modifications. 16
sub-bands are used, resulting 16-bit vectors for each time frame and compared with
normalized Hamming distance along with a threshold-ed match algorithm. To ensure
robustness to pitch distortion, a limited bit-shift operation is applied with a predefined

range after feature extraction step. A further observation is made on altering energy

5



difference on audio excepts and a mrl pre-processing (i.e. Minimum Run Length for
alterations) is opted with a value of 3, in to provide more robustness (see Fig|1.4).
The proposed framework is tested both by exhaustively brute-force comparison and

with a improved search method.

Frequency — requency -

« Time
IIIII
« Time

4

)

(a) No mrl (b) With mrl =3
pre-processing pre-processing

Figure 1.4 Minimum Run Length for sub-band energy alterations on 256 x 16-bit
vector - Bellettini et al. [9]

Zhu et al. [[11]] approach to both time-scale modification and pitch-shifting as stretch
and translation of the audio signals 2D representation, and build their framework
using compute vision techniques to extract robust local descriptors. Audio signals
are converted to images by STFT over 2048-sampled windows with %50 overlapping.
Spectrograms contain 97 log-scale frequency bands. It’s claimed a local descriptor,
namely Scale Invariant Feature Transform (SIFT) is utilized in their work, which is to
robust to affine transforms also provides robustness in audio domain. 128-dimensional
descriptors are used for comparison using Euclidian distance. For a given local
descriptor a from audio signal A, also b and b’ from audio signal B being first
and second closest descriptors to a measured by distance function D respectively;
D(a,b) < T x D(a, b") should hold to consider a and b to be a match, where T is the
threshold value (used as equal to 0.6 in the their work). The study does not suggest
a way to construct a complete scheme for the SIFT characteristics and focuses on
testing the applicability of the feature. The efficiency of identification is assessed on
a database consisting of approximately 20.7 hours of audio material, each produced
from 1241 extracts of 1 minute duration. The work is reported to obtain outcomes
in the ranges of 64% to 150% and 50% to + 100% respectively for speed and pitch



changes.

Ellis, Whitman, and Porter [[12] present a music identification systems providing
robustness to spectral modifications and noise encountered in the audio signal. Their
method depends on relative timing between successive percussive onsets in the audio.
Onset detection is performed independently in 8 frequency bands, corresponding to
the lowest 8 bands in the MPEG-Audio 32 band filter-bank (spanning O to 5512.5
Hz). The magnitude of the complex band-pass signal in each band is compared to
an exponentially-decaying threshold, and an onset recorded when the signal exceeds
and adaptive threshold. Pairs of successive inter-inset-intervals (IOIs) in each band,
quantized into units of 23.2 ms, are combined to make a hash. To provide robustness
against spurious or missed onsets, each onset is considered along with its four
successors. Six different hashes (IOI pairs) are created by choosing all possible pairs
of succeeding onsets from the four resulting overall hash rate 8 (bands) x 1 (onset

per second) x 6 (hashes per onset) ~ 48 hashes/sec.

Fenet, Richard, and Grenier [|13] first remark on that most fingerprinting techniques
provide robustness to transmission distortions and focus pitch alterations by
expanding Wang’s [|6]] hashing model. Their technique, based on a hashing coupled
with a CQT-based fingerprint, claimed as a solution to capture representation of
quantized pitch offsets. CQT transform provides geometrically spaced frequency bins
capturing the characteristics of western scale, thus pitch-shifting corresponds to a
translation in the CQT domain. In their study, 3 frequency bins per note is used for
each 10 ms. apart overlapping frames. Moreover, for more compact representation,
spectrogram peak-picking is used inspired by [[6]. Evaluated data reflects a broadcast
monitoring use case where audio excepts may be shortened for time limitations
resulting as pitch modification, including 7 hours long stream of a radio station
recording. For experiments, both small and large reference content are used for
comparison and scalability purposes respectively. Comparative setup is executed with
small reference database which includes approximately 122 hours of audio consisting
1 min. long excerpts from 7309 songs. Compared against the baseline of Wang’s [6]]
framework (which is not robust to pitch alterations), which detects with score of 83%,
the proposed technique outperforms with 97.4% detection score (achieving to detect

447 out of 459 occurrences).

Ramona and Peeters et al. [14]] propose an cosine-filter based extension to IRCAM
audio fingerprint system that considers the evolution of the audio characteristics over
time instead of instantaneous fingerprints. IRCAM audio fingerprint system labor
large temporal scope with few seconds duration to compute each fingerprint using

what called "Double-nested Fourier Transform" resulting spectral band energies, where



the second STFT is performed over time for each set of short-term spectral bands.
It’s argued in the work that, using sums of squared amplitudes for spectral energy
provide a weak robustness to scale modifications, since it’s equivalent to applying
rectangular filters where a pitch alteration ends up messing with both spectral energy
peaks. Instead, a cosine-filter based approach (having a smooth shape that enables
continuous change of spectral energy as shown in Fig. is proposed to compute

short-term band energies, making rather robust to moderate frequency distortions.
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Figure 1.5 Cosine vs. rectangular filter profiles[/14]

The evaluation is made 240 hours long corpus of radio broadcast encoded with
low bit-rate with reference content of 1000 items. Stream includes about 2000
occurrences of reference items with 30 seconds long excerpts. Combined with a
proposed frame synchronization scheme which detects frame positions that are robust
to audio alterations, their method outperforms the re-implementations of Philips
system by Haitsma and Kalker [4]] and Shazam system by Wang [6] by %8.5 and
%13.4 points respectively.

Malekesmaeili and Ward [17]] propose an audio copy detection system providing
strong robustness tempo changes and pitch shifts which is based on local audio
fingerprints of the signal that are extracted from two-dimensional "time-chroma"
image of spectrogram patches. "Time-chroma" representations are stressed as having
advantages as: the pitch shift in the audio signal appears as a circular shift along
the chroma axis of the image and any change of tempo in the audio signal appears
as a change of scale along this image’s time axis. Feature vectors are calculated
based on a set candidate feature points which are local maxima (i.e. are robust to
noise, quantisation and filtering attacks). These candidate local maxima points are
then compared with up to 30 two-dimensional image patches of different width (i.e.
along time-axis between 1s to 4s), centered around the particular local maxima. A
candidate point is selected as feature point if most of the patches manifest a similarity
criterion. The similarity between two patches of different scales are quantified by a
dictionary of arbitrary number of (c) representative patterns. For a pair of patches to

be said are similar, they are both mapped to the same pattern in the dictionary, and



the similarity metric is correlation of low-frequency discrete cosine transform (DCT).
Later the fingerprint vectors are scaled and translated into zero-mean unit-variance

vectors. Thereby, the tempo and pitch invariance is archived as argued in [|17]]:

If the tempo of an audio signal is changed, the time-chroma image is
stretched or squeezed along the time axis. This accordingly affects the
scales assigned to the feature points, but has no effect on the contents
of the patches around them, thus providing tempo invariance. Also, if a
song is pitch-shifted, the time-chroma image circularly shifts along the
chroma axis. This moves the feature points vertically (along with the
whole image), thus has no effect on the content of the patches around

them and provides pitch invariance.

The proposed method carries out feature extraction for an average of 20 candidate
points per second of audio signal, and about 40% of which were selected as feature
points by similarity constraints. For performance evaluation, query probe signals are
prepared by mash-up versions of the original signal (i.e. modifying speed, pitch,
tempo, etc) up 100 song snippets that were randomly extracted from the songs in the
reference content database (about 250 songs). Te distance between two fingerprints
is measured by the angle between them, and fingerprint matching is performed by
nearest-neighbour search. Results are compared with re-implemented "AudioSIFT"
and "Shazam" frameworks. Their proposed algorithm delivers out-performing results
for various audio degradations, including tempo and pitch modification attacks,

though considering on a rather small content database.

Six and Leman [|18] present a scalable audio identification system named "Panako",
where their fingerprints use condensed representation of audio signals. Proposed
method is inspired by three previous works namely: Wang [6]] (for finding local
maxima in spectral domain which provide robustness to noise, compression and
quantization effects), Artz et al. [24]] (to benefit a method to align performances and
scores of key time points) and Fenet et al. [|13]] (by using Constant-Q Transform for
fingerprint extraction where fingerprints remain constant when a pitch-shift occurs).
Combining these key concepts they provide granular acoustic finger-printer that is
robust to noise, time-scale modification and pitch-shifting. Time-scale modification
robustness is provided by storing the quantized values of the spectral peak triplets’
time differences. In their evaluation a database of 30000 songs is used for reference
data with about 10 million seconds of audio. From this dataset random fragments
with modifications (i.e. pitch-shifting, time-stretching, time-scale modification echo,

flanger, chorus and filtering) are selected, with a duration between 20, 40 and 60
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seconds, and then compared with a baseline system. The findings indicate that
the efficiency of the system reduces by more than eight percent with a time-scale
alteration. The scheme is shown to handle pitch-shifting, time-stretching, serious

compression, and other changes as echo, flanger, and filtering.

Sonnleitner and Widmer [|19] propose an efficient audio fingerprinting method that
meets the multiple robustness requirements including noise, audio quality degradation
and also to large amounts of speed, tempo or frequency and pitch scaling. A simple and
fast geometric hashing technique is adapted to achieve representations of fingerprints
that are invariant to translation and scaling, and thereby overcome the inherent
robustness limitations. The algorithm uses a compact four-dimensional continuous
hash representation of quadruples of points which referred to as "quads" that are
build by extracting spectral peaks (as in [6]]) from the two-dimensional time-frequency
representation of reference audio material, then group quadruples of peaks into quads,
and create a compact hashes. Quads are constructed for possible spectral points
A,B, C, D by the following constraints: (1) A, < C,,D, < B, and (2) A; < C;,D; < By
; where t and f corresponds to time and frequency axis respectively. This scheme is
reported to have high accuracy of more than 95% and an precision of 99% on queries
that are modified in pitch and/or time scale by up to 30% with an average query run

time of under two seconds for query snippets of 20 seconds.

Gfeller et al. [20] present a continuous music recognition system named "Now
Playing", combined with background deep modelled music detector focused on energy
consumption to awake when a musical audio signal is present. Their neural network
finger-printer is generate compact and discriminative fingerprints at a rate of one 96
dimensional embedding per second. Their system is able to detect, recognise and
inform users which song is playing without and client-server architecture and any need
to network access. A deep modelled neural network fingerprinter is used in their work,
which is trained over the audio signal’s STFT patches with triplet loss function. The
model training involves a dataset of noisy music sections aligned in their reference
song with the respective segment. The optimized fingerprint hash model analyzes
audio for a few seconds and generates a single fingerprint embedding at a rate of one

per second.

The work of Gfeller et al. [20] is highly influencial in this study, as we later explain
in following Chapter using similar methods of training with noisy aligned
dataset and triplet network training for audio patches under different transformations

and generating final embeddings.

Before continuing to following section, where the objectives of this study is given, in
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Table 1.2 Literature by robustness types

Degraded audio quality

Herre, Hellmuth, and Cremer [|5]]
Wang [6]

Haitsma and Kalker[4]

Ellis, Whitman, and Porter [|12]]
Allamanche et al. [2]

Coover, and Han [|16]

Gfeller et al. [20]

Pitch-shifts

Fenet, Richard, and Grenier [[13]]
Bellettini and Mazzini [9]

Ramona and Peeters [|14]

Ouali, Dumouchel, and Gupta [[15]]
Both pitch and time-scale modification
Zhu et al. [11]]

Malekesmaeili and Ward [|17]]
Wang et al. [[10]

Six and Leman [|18]]

Sonnleitner, Arzt, and Widmer [|19]

brief the following Table overviews the notable works in literature against various
robustness settings.

1.2 Objective of the Thesis

The problem at the heart of audio fingerprinting systems can be summarised with two
components that are fingerprint design and matching search methods. In practice the
audio signal data may under many kinds of degradations arising as challenges of the
study of the research.

In this study, we labor an open research problem based on the problem definition and
try to tackle to common challenges and obstacles that encountered while carrying out

methods proposed for the actual problem on musical audio domain.

1.2.1 Challenges

Audio identification systems usually operate on large data scale and are expected to
meet several robustness requirements depending on the use cases, and the approach
to these systems basically consist of two major steps: (1) fingerprint design and (2)
matching search:
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o fingerprint step: aims to generating of robust and compact audio features.

e search step: requires database access and fast search algorithms.

In real-world, the challenges to meet these requirements are varied base on the context
of application to be designed and some could be abandoned for other requirements
tradeoffs. That been said, some specific challenges that considering the input signal
may undergo could be:

Additional background noise

e Acoustic reverberations

Quantization errors

Audio compression artifacts (i.e. GSM or MP3)

Inference in the transmission

Pitching (playing faster of slower)

Equalization

Quantization errors and D/A and A/D conversion artifacts

And since it is aimed the fingerprints to be compact and robust, while converting an
audio signal into a sequence of characteristic features as an input to the fingerprint

model, the design choices should include:

e Discrimination power (over large number of other fingerprints)
e Dimensionality reduction (i.e. by/or change of domain)

e Perceptually meaningful parameters (e.g. regarding to the human auditory

system)

e Strong robustness (to distortions, additional noise, transmission artefacts etc.)

and/or invariance.

e Temporal correlation (being able to capture spectral dynamics).
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1.2.2 Audio Fingerprinting

An audio fingerprint is a content-based compact signature of audio data that
characterise audio signal data, which be compared or matched reliably to or against
large set of fingerprints from a reference content store. Each fingerprints that extracted
from a query audio data and afterwards compared to indexed reference content. As a
result a match is found (with an additional match score) or it is reported it not present
in reference content (by using thresholding techniques). Audio fingerprint features
should have discriminative properties rather than being representative in nature of

the requirements of verification/recognition tasks.

The requirements for an audio fingerprinting system described by [25] includes
being granular, robust, reliable and economic in terms of storage footprint and

computational complexity while responding to a query.

Also as it stated in [[1]:

Robustness is determined by various degradations a real-world query
can be subjected to while remaining recognisable. @ Degradations
include additional noise, low-quality encoding, compression, equalisation,
pitch-shifting and time-stretching. To allow scaling to large reference
items, an economy in terms of storage is needed.

Considering retrieval process, economy means computational load. The tradeoff
between each requirements can adjust depending on the context of the application. A
typical finger-printer scheme is depicted in Fig.

Reference
fingerprints

Feature Fingerprint .
MOdc“ing

Figure 1.6 A general finger-printer scheme

Features Fingerprinis

Identiification
meta

Query
audio

1.2.3 Audio Retrieval and Identification

Such audio fingerprinting system have many use-cases including digital right
management/copyright detection, identifying duplicates [[26], labelling untagged
audio with metadata or query-by-example recognition. For instance Shazam [21]] and
SoundHound [27]] are popular query-by-example music recognition services where

users make a query by snippets of recorded audio to back-end services to retrieve
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matched song metadata. A common pipeline steps of general architecture can be

summarised as below [28]]:

1. Fingerprints of the reference content audio collection and its corresponding
metadata (e.g., audio-file ID, name, time frame data, etc.) are systematically

stored in a database.

2. The fingerprint extraction generates a set of relevant features combined with an

optional post-processing and feature modelling.

3. For a given a short recording of audio as query, its feature vectors (i.e
fingerprints) are computed in the same way as reference content database

generated.

4. Afterwards, a searching algorithm will find the candidate matches for the given

query from the fingerprints those were stored in the reference database.

5. Additionally, adaptive scoring techniques will be applied to derive final match or
response to query as it is not available in content store based on the candidate

matches derived in step (4).

At the query stage, the fingerprints could be extracted at uniform rate with an arbitrary
time window, or they will be extracted with random offsets (within an increasing time
frame) to avoid unlucky alignments while querying the content database. Another
approach would be to extract fingerprints from a range with points of interest based on
the application requirements (e.g. ranges where RMS power or some other attribute

is higher than a given threshold).

Having the features are extracted for the query, then it is compared with a database of
reference content to evaluate candidate matches. Since a naive pairwise comparison
on a large dataset is not feasible, the database can be partition with hashing enabling
the retrieval process to correspond a reverse lookup. Techniques for approximate
nearest neighbour search like locality sensitive hashing (LSH) or vector quantisation
may be used on very large-scale datasets since direct hashing may not scaleable for
millions or billions of entries. The retrieved metadata by reverse lookup includes IDs
song and the time offsets within the song. The set of fingerprints for the query probe

from the reverse lookup are the potential shortlist of candidates.

Storing the time offsets as metadata in the content store is crucial since candidate
matches of queried fingerprints may fed to another pipeline to promise a final

candidate for a whole sequential query. Based on the candidate shortlist, various
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constraints may be applied to propose final candidate match namely temporal align-
ment for linear correspondence. Temporal alignment method is used to avoid
false positives and increasing precision of retrieval. Techniques like Expectation
Maximization [29]][7] or Dynamic Time Warning [|8] may be used for temporal
alignment in the nature of tempo constraint, that is the tempo between query and

match should be same or close enough.

1.3 Hypothesis

The scope of this study aims implementing full-fledged musical audio identification
system. We explored a two-stage feature extraction method combining Scattering
Wavelet Transform (SWT) and deep embedding hash model to generate final
fingerprints. Combined with concept of neural network finger-printer, embedding
hash model is highly influenced by the work of Gfeller et al. [20], using convolutions
and divide-any-encode layer of segmented transformed signal data. Our contribution
also compasses investigations and evaluations of concepts SWT, divide-encode block,
piece-wide threshold quantisation, adaptive scoring schemes and LSH content storage

for audio identification problem.

In this research, we have attempted to address the most prevalent obstacle to
audio identification from the end-user view, which is musical audio tampered
with environmental noise, not concentrating on pitch and tempo change kinds of
robustness. The identification system is first experimented with naive comparative
technique not to be affected by artefacts of database accuracy and later also with
LSH methods to be possible to use large-dimensional audio fingerprint information
to collect and identify a real-world application situation using our compact and
discriminative audio fingerprints.

1.4 Organisation

In this chapter we started by giving the problem definition for audio fingerprinting
recognition systems. We explained the details of fingerprint design and methodology
for retrieval and identification tasks. Also we enlisted and various challenges that can

be encountered for a real-world applications and coarsely explained design decisions.

In following Chapter we delve into technical concepts and the terminology
used in entire study in a detailed way. Namely it is explained how our
two-stage fingerprinting framework works based on its technical foundations.

Next, Chapter [Evaluation and Musical Audio Identification Application| presents
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our findings of evaluations and various experiments of the framework proposed

in Chapter Finally, the study is summed up in Chapter |Conclusion and|
[Recommendationsl
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2

Concepts

Given the problem definition in Chapter and various approaches to the
specific task in the literature, what follows the theoretical background should be given
which our technique and implementation are build upon. This chapter introduces
coarse overview of concepts as building blocks of our method presented in this study,
and provides materials for the subsequent chapters for completeness. Readers can

investigate the given references for a comprehensive follow up.

The following pages in this chapter explain the concepts practiced while developing
our framework in detail, and the content is organized as follows: Section gives a
brief overview of the key points of our proposed method. In Section we explain
scattering wavelet transform (SWT), the preliminary stage of our feature extraction
pipeline, executing change of domain on audio signals to 2D representation, and
before in Section[2.2] we delve into wavelet theory to have an integral understanding.
Section provides necessary information for convolutional neural networks, a deep
neural network block used in our embedding hash model. In Section[2.5|we present a
deep neural network model coupled with SWT coefficients as input to generate final
audio fingerprints as embeddings, and in Section the mentality how the model is
trained examined.

2.1 Introduction

Followings sections explain various concepts used in this study to have grasp
understanding the contextual background information used. Namely, first we start
with wavelet theory in Section and continue to explain Scattering Wavelet
Transform in Section to construct our first stage of fingerprinting scheme. In
Section [2.4 and Section [2.5] we build our deep fingerprint hash model as the second
stage based on scattering-wavelet-transform output coefficients. Section explains
the final embedding hash model and strategies how it is trained. Methodology sections

(if available) describe how the concrete implementation is applied based on the
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technical background explained in detail. The overall scheme of audio fingerprinting
is depicted in following Fig. stroked with the dashed rectangular area:

———————————————————————————————————————————————

: . Embedding |
’ Decoding Model |
' S
i '1' 'l' "
! Wavelet i
T I|||""' i i Scattering Hashing " Reference
! Features ) DB
Query i i
\rJv
Results
Verification Matching
file-1D
score
start offset

Match sequence
estimation

Figure 2.1 Concepts - system scheme overview

Scattering Wavelet Transform have a significant importance in this study, thus to
evaluate definitive characteristics of the transform on musical audio data, it is first
studied on musical genre classification task and the results are reported with following

publication:

e E. Kanalici and G. Bilgin, "Music Genre Classification via Sequential Wavelet
Scattering Feature Learning." In International Conference on Knowledge

Science, Engineering and Management, pp. 365-372. Springer, Cham, 2019.

where wavelet scattering coefficients are used as features providing both
translation-invariant representation and transient characterisations of audio signal to
predict musical genre. Extracted features are fed to sequential architectures to model

temporal dependencies of musical piece more efficiently.

Later, the main subject of this study evaluated with limited configuration, that is
only using one-to-one comparison against content storage for audio labelling task to
avoid hash storage artefacts. Similarly as in Fig. a two-stage feature extraction
framework using SWT coupled with deep Siamese hashing model for musical audio
labelling is proposed. Similarity-preserving hashes are the final fingerprints and in
the projected embedding space, similarity is defined by a distance metric. Hashing
model is trained by roughly aligned and non-matching audio snippets to model musical
audio data via two-layer scattering spectrum. The results reported in the following

publication:
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e E. Kanalici and G. Bilgin, "Scattering Wavelet Hash Fingerprints for Musical
Audio Recognition", In International Journal of Innovative Technology and
Exploring Engineering, pp. 1011-1015. BEIESE 2019.

2.2 Wavelet Theory

Wavelet theory as an independently developed framework is a signal
analysis/synthesis tool which can represent non-stationary signals with dynamically

scaling window size and translations.

[30] Wavelet theory provides a unified framework, some foundations
developed independently, for various signal processing applications.
Including multi-resolution signal processing for computer vision, sub-band
coding in speech and image compression, and wavelet series expansions
developed in applied mathematics . The Wavelet Transform (WT) interests
with the analysis of non-stationary signals and it provides an alternative
approach to Short-Time Fourier Transform (STFT) or Gabor transform.
In contrast to the STFM which uses a single analysis window, the
WT uses short windows at high frequencies and long windows at low
frequencies[31]].

WT can be considered as a signal decomposition into a set of basis functions, which
are called as wavelets. Wavelets are generated from a single prototype wavelet
(mother wavelet) by scaling (i.e. dilations and contractions) and shifts. The prototype
wavelet is analogous to a bandpass filter, and since the obtained wavelets are dilated
and contracted versions of the prototype, they satisfy "constant-Q" property, having
multiple of frequency bandwidths consecutively. WT presents the notion of time-scale
plane instead of time-frequency as in the case of STFT, which the signal interested in

mapped into.

2.2.1 Fourier Transform

The signal analysis interests extracting relevant information from a signal by a means
of some transformation. Some analysis techniques are based on a priori assumptions
on the signal like being stationary (i.e. not evolving over coarse of time). Fourier
transform, given in Eq. (3.1), is such a stationary transform, the analysis coefficients
X(f) define the notion of trend of frequency f in whole time-dependent signal.

It transforms the signal to frequency domain and the energy concentrations in the
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frequency spectrum imply the most dominant frequencies in the analyzed signal

without any time information.

As a result Fourier analysis works well if x(t) is composed of a time-dependent
stationary components without any abrupt change over the coarse of time. Most
signals posses non-stationary characteristics in their nature especially musical audio,
thus some notion of time-frequency localization should be defined to well describe

these signals of interest that have a dynamic nature.

X(f)ZJ x(t)e 2™ tdt (2.1)

—0Q0

Eq. (3.1) can be interpreted as the similarity detection between frequency components
and a given signal since the dot product of the signal x(t) with the complex sinusoids
amounts for. Certain frequencies will overlap more with the signal x(t) that results
large amplitude for the Fourier transform for specific frequency values. Thus although
Fourier transform has well defined frequency resolution, it lacks of time resolution as
demonstrated in following figure. In Fig. (a) a stationary signal with immanent
four different frequencies and its frequency spectrum is shown. Fig. (b) shows
another signal with four different frequencies but changing over course of the time.
The frequency spectrum of the second signal is present. As it can be seen both
spectrum plots have similar characteristics with amplitude peaks at the same frequency

instances. Also frequency spectrums have no information about time.
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Figure 2.2 Frequency spectrums of stationary and non-stationary signals

Time-frequency localization can be introduced by looking the whole signal by only
through segmented windows. The Windowed Fourier transform (WFT) is an analysis
tool specialized for extracting local-frequency information from a signal. Since for
non-stationary signals Fourier transform fails to represent localized information, WFT

provides localization using segmented time frames. WFT is applied with sliding frames
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of length T from a time series of time step 6t and with total length equals N&t, thus
extracting frequency in range [T, (25t)™!] at each time step. The frames can be

windowed with an arbitrary window functions such as a a Gaussian window [32]].

As discussed in [[32]], the WFT time-frequency localization is inaccurate and inefficient.
The inaccuracy comes from having limited frequency range, gives result to the aliasing
frequency components that do not fall within the range. The inefficiency comes from
the T/(26t) frequencies which must be analyzed at each time step. Thus, wavelet
transform, being a scale independent analysis method may be employed for signals

that are non-stationary and have wide range of frequency characteristics.

2.2.2 Short-time Fourier Transform

Describing a signal on time-frequency domain requires a 2D representation retrieved
from a defined transformation. Since this instantaneous frequency concept can not be
defined over infinitely small time ranges, averaged frequency may be the solution to
describe spectral characteristics over time domain. Thus the transformation maps a

signal of interest to a time-frequency plane using time windows for spectral averaging.

To introduce frequency dependence on time, the Fourier transform was adapted by
Gabor [31]] defining instantaneous frequency coefficients S(t, f) by using a finite

support window function g(t) centered at 7:

STFT(z, f) = J x(t)g (t —1)e @™ tdt (2.2)

STFT maps windowed signals x(t)g*(t — 7) into two-dimensional function in a time-
frequency plane (7, f). In Eq.(3.2) the Fourier analysis is applied to windowed signals
and the analysis depends critically on the choice of window function g(-). Fig.
shows time series analysis with vertical lines on time-frequency plane which amounts
to time localization (a), and the Fourier transform corresponds to horizontal regions
on the plane for stationary signals that amounts to frequency localization (b). Using
a sliding windowed analysis enables localized view for both time and frequency for
STFT as depicted in (c).

STFT can be thought of an either windowed time analysis or modulated filter-bank
since it divides time-frequency plane in both axis. But an arbitrary resolution for both
domain has limitations. For given window function g(t) and its Fourier transform
g(f), the square of frequency resolution (frequency bandwidth) Af and the square

of time resolution (spread in time) At are given:
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where |g(f)|?df and |g(t)|*dt are the energy of the signal.

Two spectral signals (e.g. sinusoids) can be discriminated if they are Af apart and
two pulses can be discriminated if they are At apart on frequency and time domains
respectively. The resolution in time and frequency cannot be arbitrarily small since
their product is lower bounded by Eq.(3.5), resulting a trade-off between time and

frequency resolution by namely uncertainty principle (or Heisenberg inequality).

1
AtAf > 4_7'C (2.5)

Wavelet transform provides a different approach which enables more fine grained
time-frequency resolution by introducing the concept of scale. By analyzing the signal
with different varying scales a better tradeoff for frequency component extraction
(i.e. high resolution for small frequencies and low resolution for large frequencies) is
achieved which is coarsely depicted in Fig. (d).
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2.2.3 Wavelet Transform

Fourier transform were linear combinations of the signal with complex sinusoids
e~2™f whereas in the wavelet transform case it is a combinations of functions called
as wavelets. Generated from a prototype wavelet (namely mother wavelet), wavelet
functions are localized in time with a limited support while a sinusoid is spread in
time infinitely (see Fig.[2.4). Also prototyping a wavelet provides scale changes (i.e.
dilations and contractions) and since its localized in time it can be time shifted,
thus localization in both frequency and time domain can be achieved by applied
convolutions on the signal with scaled and translated wavelets. Resulting time-scale

representation of the signal is a 2D representation and called Scaleogram.

To tackle resolution limitation of STFT, multi-resolution analysis can be applied by
varying Af and At whose bounded by Eq.(3.5). In multi-resolution approach
time resolution increases subject to central frequency of the filter-bank analysis
filters. Thus, proportionally the frequency resolution (Af) is subject to central
frequency and the relation can be imposed as: Af = cf, for a constant value
c. Having analysis filter-bank satisfying this relation is called constant-Q analysis.
Thus each analysis filters have constant relative bandwidth which are regularly
spread in logarithmic scale rather than a uniform spread as in STFT case (Fig. [2.5).
While Af changes with spread, satisfying the bounded relationship of uncertainty
principle, At also changes and time-resolution improves high-frequencies while the

frequency-resolution improves at low frequencies.

Wavelet transform maps a given signal to time-scale plane. Relating concept of scale
to a pseudo-frequency can be given by f = a™'f, where f, is the central frequency
of the prototype wavelet and a is the scaling factor. Following the relation, the
scaling factor a has an inverse relation with pseudo-frequency values. Noted that,
the term pseudo-frequency (f) has a narrow relation to frequency modulation as in
STFT case, which depends only prototype wavelet time-scalings. Thus, the term "scale"

is preferred to "frequency" for wavelet transform.
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Figure 2.5 STFT and Wavelet transform bandwidths on frequency spectrum

There are different families of wavelets developed in literature, each have their own
characteristics which fits best with the designed features for different purposes. These

characteristics include the shape, smoothness and compactness of wavelet functions.

To be admissible as a wavelet function, it must have have zero-mean and be localized in
both frequency and time. Localization in both time and frequency provided by having
a finite energy, that it a wavelet function should be integrable and the inner product

with any signal should exists. Some describing characteristics of wavelets are:

Orthogonality: orthogonal, non-orthogonal or bi-orthogonal.

Symmetry: symmetric or non-symmetric.

Wavelets can be real or complex values. In complex case, the real part amounts

to the amplitude and the imaginary part amounts to the phase.

Wavelets are generally used with normalization factor, providing a unit energy.

Also noted, wavelet function and wavelet basis have conceptually different meanings.
The term wavelet function is used generally to refer to either orthogonal or
non-orthogonal wavelets. Whereas the term wavelet basis refers only to an orthogonal
set of functions. The use of an orthogonal basis implies the use of the discrete wavelet
transform, while a nonorthogonal wavelet function can be used with either the discrete

or the continuous wavelet transform [|33]].
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Based on characteristics, various families of wavelets are developed in the literature.

In Fig. [2.6|some of the several different families of wavelets are plotted.

Daubechies Symlets Coiflets Biorthogonal

Discrete Wavelets

0 2 4 5 5 0 2 3 5 s 0 5 1 1B 2 25 3 0 2 3 6 s
Mexican hat wavelet Gaussian Complex Gaussian wavelets Morlet wavelet

Continuous Wavelets

-75 50 -25 00 25 50 715 -4 -2 0 2 4 -4 -2 o 2 4 -75 -50 -25 00 25 50 75

Figure 2.6 Several families of wavelets

Also for the wavelet families there can be different subcategories distinguished by

order (vanishing moments) and decomposition level.

The scaling function of a wavelet with p vanishing moments can approximate
polynomials up to a degree of p — 1. The "vanishing" term refers to that wavelet
coefficients goes zero for approximated polynomials of degree at most p — 1, thus the
scaling function alone is enough to represent such functions. More vanishing moments

amounts to that the wavelets can approximate more complex polynomials.

Some instances of the "Daubechies" family wavelets are plotted in Fig. In the
figure columns enumerates the order of Daubechies wavelets and rows corresponds
to the level of decompositions. Vanishing moments determines the smoothness and
approximation order of wavelets. As it can be seen as the number of vanishing
moments goes up along a row, the wavelet becomes smoother since its polynomial
degree increases. And while the decomposition level increases along a column, the

number of wavelet samples increases.

An example of complex wavelet function is the complex Morlet wavelet, which is a

Gaussian modulated wave:

Po(n) = ¢~ Aewone=m/2 (2.6)

where w is the non-dimensional frequency.

Complex Morlet wavelet filter function and its frequency response are plotted in

Fig
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Figure 2.8 Complex Morlet wavelet filter and its frequency response
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Wavelet transform has two different and theoretical approaches, namely the

continuous wavelet transform and the discrete wavelet transform.

The continuous wavelet transform (CWT) follows the resolution limitation with an
additional scheme: all impulse responses of the filter-bank are defined as the scaled

(dilated or contracted) versions of the prototype function h(t):

1
h,(t) = 2.7)
Vlal
where a is a scale-factor and the constant 1/4/|a| is normalization factor.
The definition of CWT is given as:
CWT,(7,a) = (O (S )de 2.8)

\/_

By varying the wavelet scale-factor a and translating along the time variable T,
time-scale localization is achieved. In Eq. (3.8) the scale-factor and translation time

variable are continuous, thus the number of wavelets is not finite.

Noted that, the modulated window used in STFT can be defined in form of the basic
wavelet h(t):

h(t) = g(t)e ™ot (2.9

Then the frequency responses of the analysis filters satisfy "constant-Q" relation (f =

fo/a). But more generally, h(t) can be chosen to be any band-pass function.

Discrete wavelet transform (DWT), as distinct from CWT, the scale-factor and
translation time values are not continuous but discretely sampled. The scale-factor
is two-powered integer values (a € 2/), and the translation is discrete integer values
(t € Z). The DWT is only discrete for the scale and translation values, but not in
the time-domain. To be able to make analysis of signals which are discrete in the
time-domain the wavelet transforms should also be discretized in the time-domain.
These wavelet transform formations are referred to namely the discrete-time wavelet

transform and the discrete-time continuous wavelet transform.
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2.2.4 Discrete Wavelet Transform

To make discrete-time analysis of wavelet transforms possible, sub-band coding
[34] and multi-resolutional analysis [35] were developed independently as backing
foundation of discrete wavelet transform. These coding methods introduce critical
sampling (acquiring minimum samples for information). In coding scheme of discrete
wavelet transform, scale corresponds to up- down-sampling for small and large values

respectively.

In multi-resolutional analysis, given a sequence x(n),n € Z, lower resolutional signal
is derived by lowpass filtering by a half-band low-pass filter having impulse response
g(n). following the Nyquist’s rule subsampling by two corresponds to doubling the

scale in analysis:

k=+00

ym= Y gx2n—k) (2.10)

k=—o00

In Eq.(3.10) lowpass filtering corresponds to resolution change and sub-sampling by
two corresponds to scale change. Retrieving lowpass and downsampled version of the

signal, the approximation is obtained by upsampling y(n) by two and interpolation:

y'@n) =y o
y'(2n+1)=0
k=+00
a(m= >, (k) (n—k (2.12)
k=—00

If g(n) and g’(n) are perfect half-band filters (having a frequency passband equal to
one in frequency range (—mn/2,+7/2) and zero elsewhere), the the Fourier transform
of approximation a(n) would be equal to Fourier transform of original signal x(n)
over the frequency range (—nt/2,+m/2) and zero elsewhere, that is a(n) would be a
perfect half-band lowpass approximation of x(n). But in general case for non-perfect

approximations, the error term given:

d(n) =x(n)—a(n) (2.13)

x(n) can be reconstructed by sum of approximation and error term (a(n) + d(n)) as

shown in Fig. but there exists some redundancy since original signal x(n) with
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sampling rate f, is disjoint into two composed signals d(n) and y(n) with sampling
rates f, and f,/2 accordingly. In case of perfect half-band low-pass filter, error term
d(n) contains frequencies above /2 of x(n), thus shows d(n) can be subsampled by

two without information loss thus namely via critically sampling.

In the nature, the coding scheme of separating the signal x(n) into coarse
approximation a(n) and additional detail d(n) involves halving the resolution and
doubling the scale (lowpass filtering followed subsampling by two), and this scheme

can be iterated on y(n) creating tree of lower resolution signals at lower scales.

yin) ! H) a(n)
gln) g'in)

h 4

x(n)

x[.ﬁ] — g’{ﬂ}

ain)
- d(n)

>+
+\J

Figure 2.9 Multiresolution scheme

Multi-resolutional analysis creates redundant set of components, that is one stage of
decomposition leads half rate approximation and full rate difference, resulting 50%
increase in number of samples. It’s shown this oversampling may be avoided if lowpass

filters meet certain conditions [36].

Sub-band coding (or filter-bank) scheme provides no redundancy where the lowpass
subsampled approximation is obtained same, but instead of calculating difference
error term, the additional detail term is calculated by high-pass filter h(n) and
subsampling on by two on original signal x(n) as shown in Fig. Assuming that
lowpass filter g(n) is perfect half-band, a perfect half-band high-pass filter h(n) would
lead to perfect reconstruction.

This scheme corresponds to one step of wavelet decomposition using sinc (i.e.
sin(x)/x) filters decomposing the signal to lowpass and high-pass components at
double scale. In particular these ideal filters are used, the discrete version is identical
to continuous wavelet transform [30]. It’s shown that without using ideal filters,
yet it is possible to recover original signal x(n) from its two filtered and subsampled
components y,(n) and y,(n). To reconstruct both upsampled and filter by g’(n) and
h’(n) respectively and superimposed (see. Fig[2.10). The reconstructed signal x(n) is
not identical to original signal x(n) unless the filters meet specific constraints. Filter

that meet these specific constraints are called having perfect reconstruction property,
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and practically have techniques for filter design [|37]].
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Figure 2.10 Subband coding scheme

Assuming that the analysis and synthesis filters are identical (provided they are
time-reversed versions of one another) and perfect reconstruction is satisfied (i.e.
x(n) = x(n)), it is shown that this sub-band analysis/synthesis filter pair corresponds
to an orthonormal basis and the reconstruction achieved by summing up orthogonal

projections. Using FIR filters, the relation between analysis and filters are given:

h(L—1—n)=(—1)"g(n) (2.19)

where L is the length of the signal and the modulation (—1)" transforms lowpass filter

f to high-pass filter g.

In Fig the first stage of convolutions followed by subsampling of two evaluates
the inner product of signal x(n) and the sequences g(—n + 2k), h(—n + 21) where
time-reverse come from convolution:

Yo(k) = x(n)g(—n +2k)

(2.15)
»(k) = x(mh(-n+2k)

Since the set of filter impulse responses is orthonormal, it is then reconstruction of

x(n) is given by sum of weighted impulse responses:

k=+o00

()= D, [yo(k)g(—n+2Kk) +y,(k)h(-—n +2K)] (2.16)

k=—oc0

The weights are inner products of signal with the impulse responses. Also from
Eq.(3.14) and Eq.(3.16) it is clear that the synthesis filters are also the analysis filters
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with time-reversal [30]].

Fig. show only one step of sub-band coding scheme, which may be iterated
for multiple levels to achieve decomposition of a signal. Each iteration extracts the
approximation coefficients and detail coefficients by low-pass filter g(n) and high-pass
filter h(n) respectively. To retrieve wavelet transform coefficients iteratively, sub-band
coding scheme is applied on the approximation coefficients from the previous levels.
At each subsequent level, signal approximation is first down sampled by factor of two
as in Fig. then the sub-band filters (i.e. g(n) and h(n)) separates new coarse

low-pass and detailed high-pass components.

Fig. depicts the sub-band coding decomposition of chirp signal. A chirp signal
has time-dependent frequency spectrum that is increasing or decreasing linearly. The
plotted signal is a up-chirp signal with an increasing frequency along the time axis. In
Fig. 6-level of decomposition is applied. As the level of decomposition increases,
detailed coefficients have decreasing frequency bands at each level as expected since

DWT is applied from previous subsequent approximations.
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Figure 2.11 Discrete wavelet transform - subband coding of chirp signal

2.3 Scattering Wavelet Transform

Wavelet Scattering Transform (SWT), presented by Mallat [38], is a signal
decomposition based on arguments of translation-invariance and stability under

dilation and transposition. SWT is implemented as similar to convolution networks
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whose filters are not learned, but fixed being wavelet filters, and computed through a

cascade of wavelet decompositions iteratively.

Definition 2.1. Translation invariance Discrete equivalent of time-invariance, that
is for a given translation-dependent input function x(t) and translation-dependent
output function y(t); the system will be considered translation-invariant if y(n — k)

is the system response to input x(n— k) [139]].

Definition 2.2. Lipschitz continuity A real-valued function f : R — R is Lipschitz
continuous if a positive constant K € R exists such that:

|f (1) = f Gea)l < Ky — xy (2.17)

Let X(w) be Fourier transform of x(t). The Fourier modulus is translation invariant

for given x,(t) = x(t —t;):

|3, | = [x] (2.18)

For a given deformation x.(t) = x(t — 7(t)) which satisfies Eq. (3.19), a mapping
function ®(x) is stable under deformation 7 if a small deformation implies as small
change in the mapping function that is Lipschitz continuity in Eq. (3.20) holds for all
x(t) and 7(t):

|[dz(t)/dt| <1 (2.19)

[[®x —@(x)l| < Csup[VT(t)].[lx]l (2.20)
t

Corollary 2.0.1. Modulus of short-time Fourier transform (spectrograms) are unstable.

Dilation defined as x . (t) = x(t—et) is a deformation function which satisfy Eq. (3.19):
sup,|dt(t)/dt| = e. Armed with the definition, log power spectrums of the original

and dilated version of a harmonic signal with two time instances is depicted in

Fig.

As it can be seen in Fig. [2.12] frequency shifts in high frequencies is greater than
the bandwidth, so short-time Fourier transform (STFT) modulus is not deformation
invariant under dilation:
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to t1

Figure 2.12 STFT of dilated harmonic signal [40]]

[Ix =X, || # Csupldz(t)/del.||x]] (2.21)
t

High-frequencies are more prune deformation instabilities, the major difficulty is to
main the Lipschitz continuity over high-frequency bands [|38]].

Corollary 2.0.2. Mel-frequency representations are stable.

With insights that short-time Fourier transform (STFT) is unstable, mel-frequency

representation provides stability by band-pass averaging:

1 r - 2
Mx(t,A) = %f I(w, 0] ‘«pl(w)‘ i (2.22)

where X is STFT and ﬂj\ 5 is a band-pass filter at mel-frequency A. Frequency bins of

mel-scale defined as:

f

A(f)=1127In(1 + =——
(F)=1127In(1 + ~

) (2.23)
The mel-scale logarithm prevent the progressive instability of harmonics (i.e.

multiples of base frequency) f = nf, since:

J
700 (2.24)
=1127(Inn + Inf, — In700)

A(f) ~1127In

And thus mel-frequency representation, thanks to band-pass averaging has stability

under deformations, including e dilations:
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IMx(A,t) = Mx (A, 0)l| < Csupldz(t)/del.||x||
t (2.25)
= Cellx]|

It can be seen in Fig (3.2), frequency peaks now overlap in high-frequencies.

w

to t1

Figure 2.13 Mel-frequency scale averaging with overlapping high-frequencies [40]

Corollary 2.0.3. Time averaging results information loss.

The deformation stability comes at the cost of information loss (1) in high frequencies
that are averaged and (2) in short-time windowed temporal structure. Mel-frequency

can be approximated by convolutions and time-averaging [40]:

Mx(A,t) & |x x| * [p]*(t) (2.26)

where the windowing function ¢ acts as a local time-averaging of the mel-frequency

response |x * 1, |.

Actually in Eq. (3.26) it is shown that frequency averaging is equivalent to a
time averaging of the filter bank output [40]. Keeping windows (i.e. support of
lowpass filter ¢) short prevents the mel-spectrogram from averaging away too much
information. Considering |¢|?(t) as a low-pass filter, the information loss is contained
in the high-frequency components of system response (i.e. amplitude modulations
of |x »v¢,|). In Fig. its apparent the loss of information when a lowpass
time-averaging filter applied with an arbitrary temporal window size.

Fig. (a) and Fig. (b) shows original (|x x v;|*) and time-averaged (|x *
P, |* * |$|*) scaleograms of a musical recording respectively. The window duration
for averaging filter 1) is T = 190ms. This time averaging discards detailed transient
information of the signal such as attacks and tremolo. Mel-frequency spectrogram is
often computed over arbitrary small time windows of and thus it is unable to capture

large-scale structures.
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(a) Scaleogram log |x ), |? (b) Averaged scaleogram with lowpass filter ¢ of
duration T = 190ms.

Figure 2.14 Scaleograms of musical signal - time averaging information loss [

Most of the transient characteristics (e.g. attacks, modulations and tremolo) of
the signal is lost by this time-averaging (Fig. [2.14). As a result, one should be
able to increase T without losing too much information and capture the transient
characteristics of |x x ¢, | at scales smaller than T. Multi-layer scattering transform,
as a solution, provides both mel-frequency and modulation features by recovering the

mentioned averaged lost information.

For a given signal x, the wavelet transform Wx was defined as convolutions with a

averaging operator (low-pass filter) ¢ and higher frequency wavelets ¢ ,:

Wx(t,k):(x*qb(t)’x*V)A(t)) R,AEA (2.27)

Pa(t) =279 (27%); A =27
In Eq.(3.27):

e Wavelets 1), are high-order (A > 0), and low-pass filter ¢p corresponds to zeroth-
order (A = 0).

e 1), are dilated band-pass filters with constant mel-scale bandwidth.

e Q is the quality-factor of Q-constant band-pass filters 17)\ 5, that is number of

wavelets per octave.
e The representation oversampled and redundant.

e Wavelet transform preserves energy.
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To have an informative invariant which is not zero (as opposed to being zero-sum
as f x x(t)dt = 0), it has to have non-linearity (sigmoid, arc-tangent, rectification

etc.). The non-linear requirements are:

e Diffeomorphism (i.e. deformation) stability: ® commutes with diffeomorphism.

e 12 stability (contractive): should be stable to additive perturbations (the norm

should not explode).

Coarsely, the basic intuition of SWT is based on applying a non-linear map ¢
to time-averaged signal (Eq. (3.28)), which is translation-invariant and commutes
with diffeomorphism and L? stable to additive perturbation since its contractive
and preserves the norm. Modulus operator |e|, is the only choice having these
particular properties i.e. being a non-linear map, translation-invariant and stable to
deformations as argued in [40]] (Eq. (3.29)).

J@(x*lpk)(t)dt (2.28)
|2(h)[| =||hll
|®(g)—@(h)|l <llg —Al| (2.29)

= &(h)(t) = |h(t)| =+/|n(t,)12 + |h(t)I?

A modulus computes a smooth lower frequency envelop for complex waveforms. The

integral of modulus is L' norm which is non-zero and stable invariant (Eq. (3.30)):

JIX*%(OIdt: [l x4l (2.30)

The wavelet power spectrum extracts time-windowed envelopes at different
resolutions (Eq. (3.31)). Modulus discards phase information but retains sufficient

information in the nature of wavelet transform being redundant.

Wix=(x= ¢ [x -9, (0] ) (2.31)

teER,A €A

Whereas zeroth-order coefficients S, = x x ¢(t) is locally translation-invariant thanks

to modulus operator, the high-frequency information is lost by time-averaging ¢.
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Although lost information is obtained with modulus of wavelet coefficients
yet these coefficients are not time-shift invariant. Provided that local time-shift
invariance is obtained by time averaging as in S,, applying averaging again gives

first-order of scattering coefficients:

Six(t,20) = |x x4 | x (1) (2.32)

If the frequency resolution of wavelets v, are the same as the standard mel-scale
i.e. A(f) ~ 1127 In(f/700), the first-order coefficients S;x approximate the
mel-spectrogram as it is shown in [40]]. What’s more, scattering transform enables
to recover lost information in higher-order components by feeding the modulus
of coefficients |x*1/)11| to a bank of next-order wavelets vy, (Eq. (3.33)), and
then applying time-averaging operator gives second-order coefficients in a time-shift

invariant manner (Eq. (3.34)):

| *¢A2|) (2.33)
A

2€Ay

AR SN

Sox(t, A Ag) = || x4y | x4y, | * B(2) (2.34)

Repeatedly applying modulus for stability to deformations (diffeomorphism)
and time-averaging for translation invariance in layer-wise fashion develops the
scattering spectrum as depicted in Fig.

|x # yry, |

|S,x(r,,1]j= Ix*w,;,ltdll ."/O .‘./O .,./O

| ey, | % e, |

Sax(t, A1, m-||xw,.|*w,|*¢|."o."o."o."o."o."oo"oo"oo"o

el % wesy | % | * vl OOOOOOOOO0O000O000OO00000000

Figure 2.15 Scattering wavelet spectrum

By using Eq. (3.34) in a cascaded fashion, windowed scattering for any path of scales
= (A4,...,A,,) of order m is given in Eq. (3.35). All the output coefficients at each
layer will be averaged by the scaling function ¢ (similar to pooling operation as in

convolution neural networks). Noted, the interval nodes of the scattering tree are
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used as coefficients instead of leaves, since averaging is not applied to leaves, contrary
to convolution neural networks. Also, the energy of the decomposition goes to zero

as the depth m increases.

SIp1x(t) = [lx xapy [Py [l 2y [x P (t)
(2.35)

{Slplx}per

An example of 5-seconds long audio clip shown in Fig. Also zeroth-order
SWT decomposition coefficients are plotted. Note that, the scaling function ¢
(behaving as the averaging operator), the large values of coefficients reflects the

energy concentration of audio signal.
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Figure 2.16 Zeroth-order scattering coefficients

Fig. shows wavelet scattering framework with 2 filter banks. Wavelets are in form
of modulated Gaussian by sine and cosine wave as a complex waveform. It can be seen
that the scaling filter is localized in invariance-scale (0.5 seconds) by design. Also the
time support of the coarsest-scale wavelet is bounded by the invariance-scale of the
wavelet scattering. Whereas second order filter bank wavelets are more localized in

time with shorter support.
Fig. shows frequency response of two wavelet filter-banks.

Comparing to mel-frequency cepstral coefficients (MFCC), which is well-known for
music and speech related information retrieval tasks, being lossless is beneficial
for various aspects (inverse property). Substantially, 1st layer outputs of SWT

decomposition S[A,]x approximates MFCC values and Scale-invariant feature
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Figure 2.17 Scattering Wavelets with 2 filter banks
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Figure 2.18 Wavelets frequency response
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transform (SIFT, an algorithm in computer vision to detect and describe local features
in images) [[41] values for 2D transform in particular. In [40] it’s also explored the

similarities between SWT and convolutional neural networks.

Although 2-layered scattering is successful enough for most of audio signal
applications capturing mel-spectrogram and modulation features, noted also
coefficients goes to zero as higher layer transforms are applied. In practical level
i.e. for feature extraction, parameters for support of averaging low-pass filter ¢(t)

(invariance-scale) and filter-bank quality per each order (A;) may be considered.

2.3.1 Scattering Transfer Normalization

To increase the invariance, the scattering coefficients should be normalized.
First-order scattering normalization is given in Eq. (3.36) where € is silence detection

threshold of case x = 0:

Slx(t) A'1)

R IO

(2.36)

Also first-order coefficients may be normalized by the average of |x|, creating

invariance only to the amplitude change over an infinite window of ¢.

For coefficient values of any order m > 2 , normalization applied considering the

delegation (scattering transfer) from the previous layer, that is dividing with the

coefficients of previous order:

Spx(t, A, .., A,)
SmoaX(t, A, A1)+ €

Sx(t, Ay, .. A,) = (2.37)

2.3.2 Amplitude Modulation

First-layer of scattering coefficients basically contain wavelet coefficients which extract
information in different frequency (i.e. scale) bands. All the inner structure of

modulations appear in the second-layer of the scattering network.

Audio signal (i.e. voiced signal; musical or speech signal) is simply modeled as vocal
chord with vibrations in a sense of serious of impulses e, which is filtered by the
throat of musical instrument h and with additional possible successions or amplitude

modulation a. If the audio signal is coarsely modeled as:
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x(t)=(hxe)(t)-a(t) (2.38)

where:

o e(t)=D, 6(t—n/&,) is pulse-train excitation with pitch &.
e h(t) is resonance cavity impulse response; where ﬁ(w) amounts to the formant.

e a(t) is amplitude modulation.

Audio signals usually involve amplitude modulations by their nature, whose variations
may correspond to transient characteristics in time domain of the signal. It is
shown that these modulations can be characterized by normalized second-order
scattering coefficients for voiced and unvoiced sounds [[40]]. Then the first two order
of normalized scattering coefficients approximates (§1 and §2 indicate normalized

first-order coefficients and normalized second-order coefficients respectively):

4 - h(A
§ix(t,A) ~ wzh(n&m% (2.39)
1

where ||h]|;(t) = f |h(t)|dt and n is such integer satisfies |[n&; — A;| < &,/2.

|lax;, [+ (L)

§2x(t9A’132'2)% a*¢(t)

(2.40)

Thus, given A, ~ n¢ is close to harmonics, the first-order coefficients are proportional
to the spectral envelope ITl(Al)I and extract the formant in a sense of global structure
of the signal. While second-order coefficients S, are not depended on h and &, but
extracts the modulation a(t) (see Fig. ©)).

Fig. (a) shows scaleograms of log |x x ¢, | for three voiced and three unvoiced
signals. First three voiced signals generated by same pitch of £ = 600Hz and by same

impulse response h(t) with following amplitude modulations a(t):

e a smooth attack
e a sharp attack

e a tremolo of frequency n: a(t) =1+ e cos(nt)
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Following three unvoiced signals are generated with the same impulse h(t) and same
amplitude modulations a(t) as the first three voiced sounds.

Fig. (b) shows first-order scattering log S,x(t,A,) with T = 128ms. of the
signals in (a). Since they are the wavelet coefficients averaged (|x x1,_ |* ¢(t)), they
have similar harmonic structure depending on formant |ﬂ(7tl)|, but attack and tremolo

information is lost by averaging ¢ and normalization and they are not differentiable.

Fig. (c) shows second-order scattering log §2x(t, A1, A,) displayed only for partial
A, = 4& (the vertical band indicated in (a)), as a function of t and A,. The frequency
1 of tremolo and both soft and sharp attacks are obvious as concentrations of the
energy in the scaleogram, thus the transient inner structure is apparent. Also it can be
seen that the oscillation frequency of the tremolo which is inherent in the third sound

creates large amplitude coefficients for A, = 7.

log A1

Figure 2.19 Scattering wavelet coefficients and modulation [40]

2.3.3 Computation Complexity

For given signal of size N the scale varies for the set of 2/, thus resulting an order
of O(logN) complexity for wavelet transform. For an arbitrary order of scattering,
window of size N yields O(Q™log™N) coefficients of order m for a given quality-factor

value Q.
Wavelet scattering have more indices than spectrograms, but being sparse not all
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combinations are of relevant. Scatterings where A, > KA, yield:

||X*1/Jxl|*‘/)/12| ~0 (2.41)

Since support of filter frequency responses do not overlap. This limits the number of

coefficients to compute. Total computational complexity is given by O(NlogN ).

2.3.4 Relation with Human Auditory System

The scattering transform has similarities with auditory processing models that
integrate cascade of constant-Q filter banks combined by non-linearities [40[]. Thus, it
is shown the wavelet scattering transform is relatively analogous to human auditory
physiological system based on processing model of [|42]]. Especially the first two orders
of wavelet scattering is modeled similarly in auditory perception process as depicted

in Fig.

basilar membrane filtering
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. [x * wi |
adaptation
(log N channels
ey
| L_nose | N
VYYYYY LYY wowy
[ % wi, | %y, |
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Figure 2.20 Scattering wavelet spectrum - human auditory system relation

The first filter bank with Q; = 8 models the cochlear filtration, while the second filter

bank corresponds to later processing in auditory pathway incorporating filters with

Q,=1.
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2.3.5 Methodology

Given an audio signal either in training stage and DB indexing or for query stage
it follows the same pipeline. First the signal is decoded and resampled to target
sampling rate f, = 16kHz. Then SWT coefficients are extracted from signal data.
For scattering transform we chose the support of averaging filter ¢ to be 2° samples,
giving an invariance-scale of ~ 32ms (2°/f,), and the number of first-order wavelets
per octave to be 8 as suggested in [[40]]. Feature vectors consist of one-second long
scattering coefficients resulting 299 x 31 dimensional sub-rectangles (i.e. 1/(2°/f,) =
31). Sub-rectangular feature coefficients are depicted in Fig. containing both
first-order and second-order scattering for a 1-second long audio segment.
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Figure 2.21 Scattering coefficients sub rectangles including both first and second
orders

Regarding to quality-factor values (i.e. octave frequency resolutions) for scattering,
for a given audio signal x, it has been shown that Q, = 8 wavelets per octave at the
first-order transform provide sparse depiction of a mixture of sounded (i.e. speech,
music and ambient) signals [[43]]. This scheme almost corresponds to of mel-scale
frequency resolution. At the second order, selecting Q, = 1 enables wavelets with

more narrow time support, that are better suited to characterize transients and attacks
inherent in the signal [40].

The first-order scattering features are mean and variance normalized. As of the

second-order scattering features, they are mean and scatter transfer normalized using
following defined equation:
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SZX(t’ Al) AZ)

§2x(t:A’17AZ): S X(t A )+€
1 s V1

(2.42)

The overview of the scheme for audio signal scattering wavelet features used in this
study is depicted in Fig.
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Figure 2.22 Scattering wavelet transform - methodology overview

2.4 Joint Learning and Convolutional Neural Networks

Definition 2.3. Metric is a function that calculates distance which is defined for every
element in a given arbitrary set (X). Metric semantically can be thought as a measure
of similarity. Given x,, x;, X, € X, a metric function D(x,, x;) must satisfy following
constraints:

e Non-negativity: D(x,,x;) =0

e Identity of discernible: D(x,, x;) =0 < x, = x;

e Symmetry: D(xo,x;) = D(x,X,)

e Triangle inequality: D(x,x,) < D(xy, x;) + D(x1, X5)

Metrics can be an instance from two broad categories: (1) pre-defined metrics (e.g.

Euclidian Distance) and (2) learned/data-driven metrics (e.g. Mahalanobis Distance).

Definition 2.4. Euclidian Distance
D(xy,x;) = (XO_Xl)T(XO_Xl) (2.43)
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Definition 2.5. Mahalanobis Distance weighted variant of the Euclidian distance. The
distance between two points is modified by a weight matrix M. Weights are estimated
from a given arbitrary data.

D(xg,x1) = (Xo_x1)TM(xo_X1) (2.44)

The standard deviation of the data may be used as weight matrix [[44].

D(x, x1) = (xg—x1)" 27 (g — x;) (2.45)

Euclidian distance
,_-—f""'?

Mahalanobis distance

L
f

Figure 2.23 Euclidian and Mahalanobis distances

Data-driven metrics can be learned in supervised or unsupervised fashion. For a

supervised scenario a typical approach can be summarized in a 2-step procedure [45]

(see Fig.|2.24):

1. Apply a supervised domain transform (e.g. Linear Discriminant Analysis).

2. Perform mapping by an unsupervised metric projection.
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Figure 2.24 A Metric learning scheme

46



For instance the Linear Discriminant Analysis (LDA) [46], tries to find a projection
where class separation is maximized while keeping the in-class variance small (see
Fig.[2.25)). It is formulated by the ratio of between-class covariance and within-class

covariance to achieve maximizing component axes for class separation:

Jipa(w) = mV:C}X(WT zyw)/ (WT 2, W) (2.46)

where 2, and ¥, are between-class and within-class covariance matrices respectively.

Worst 1D-subspace

| target-0
target-1
target-2

Best 1D-subspace

Figure 2.25 Linear Discriminant Analysis (LDA) learning scheme

Or the pipeline of a somehow opposite approach for similarity matching tasks can be

summarized as follows:

1. Extract features in static (not learned) way: STFT coefficients, color histograms

etc.

2. Learn the similarity: by using a metric over the features

Whereas these briefly mentioned traditional approaches have the same shortcoming,
that is the feature representation of the data and the similarity metric are es-
timated/learned separately. On the other hand Convolutional Neural Networks
(CNNs) can jointly optimize the representation of the input data conditioned on the
selected arbitrary distance metric namely similarity measure being used, by what’s
called end-to-end learning. That is CNNs by nature are able to reduce spectral

variations while modeling the spectral correlations [47]].

A "Deep Neural Network" fundamental model consists of neurons arranged in various

layers. Each neural network has an input and output layer, and depending on the
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complexity of the problem, many hidden layer augmented to the network. The
neurons learn and recognize patterns while the information is passed through layers.
Once the model is optimized through training (i.e. trained), precise projections can
then be made by the network. CNNSs, proposed by Yann LeCun et al. [48]], is a
particular sort of neural network that operates on 2D representations exceptionally
well, equipped with the usage of the concept called local connectivity. By means that
each neuron is only linked to a local area of the quantity of the input. This minimizes
the amount of parameters by enabling various sections of the network to be specialized

in high-level characteristics such as patterns and textures.

Initially, such a neural network should understand all the raw components in a 2D
representation, such as edges and other somehow low-level characteristics. These
are then identified and paved the way for complex functions later on, by obtaining
the low-level characteristics first, followed by higher-level ones. Filters (or kernels)
provide a means of extracting the information required in parallelized fashion, rather
than just transmitting the data, which would prevent the network from understanding
the intrinsic structures. At early layers of the network, specific filters would extract
the low-level characteristics based on their weights. The filters can be understood
as the layers of logical units in the compound network which are connected to by
their weights. Extractions are executed by convolutions. Filters (or kernels) are
convolved with the input data to reach at the intermediate images, corresponding to
the partial knowledge of the image by the network. For a deep network, these
retrieved by-products, in turn convolved with more filters of followings layers, to
model the inherent structure of the prior intermediate representations. The overview
CNN architecture with its operators is depicted in Fig.

Input image Convolutions Pooling Fully Connected

Figure 2.26 CNN operators overview

In Fig. the convolution layer uses the number of filters performing convolution
operations as it scans the input I, and scanning is based on hyperparameters, namely
filter (i.e. kernel) size F and stride S. The resulting output is called by term fea-
ture map or activation map (see Fig. [2.27). After a convolution layer, the pooling
layer execute a downsampling operation by means of spatial invariance (regarding to
local connectivity). Maximum or average pooling are mostly used pooling operations
(see Fig. [2.28). To optimize arbitrary objectives, CNN architectures mostly use
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fully-connected layers as hindmost layers. The fully-connected layer works on a
flattened intermediate layer that connects each input to all neurons (see Fig.[2.29).

v

Figure 2.27 CNN convolution operator ||

| max | avg

(a) Max pooling (b) Avg. pooling

Figure 2.28 CNN pooling operator [

Figure 2.29 CNN fully-connected layers [

Kernel operations involve hyper-parameters of filter dimensions and stride value. A
filter of size (F,x F;) applied to a C-channel input is a (F, x F; xC) volume that performs
convolutions on an input of size (I, x I; x C) and the product is an output feature map
of size (O, x O, x 1). For a convolution or a pooling operation, the stride S denotes
the number of pixels by which the filter window slides following each operation [49].

2.4.1 Methodology

Methods exists in the literature which encourage integration of CNNs for hash learning
models. These models utilize joint learning property CNNs. Training input scheme can
be varied based on optimization requirements and more importantly attributes of the
input data available. Given properties may propose discrete class labels, similarity
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decisions etc. of the input data. Acquainted with input attributes, these models could

instrument pair-wise input [|50] or point-wise input [[51]] schemes using deep CNNs.

In this study, we leverage CNNs for hash learning in an endeavor to build our similarity-
preversing model. Although SWT coefficients may distinguish the characteristics of
audio signals, such transform can not be only used to understand the dynamical
behavior of musical data perfectly,. We will introduce a simple deep CNN module
in our embedding hash model to capture variations of SWT coefficients. But since
the second-order SWT coefficients are sparse, we adapt the CNN module only for
first-order coefficients with small kernel windows. The overview of the CNN model
used in this study is depicted in Fig.

Embedding

Six(r, A —

Embeddings
Sax(t, A, Adz) —

Figure 2.30 CNN - methodology overview

CNN layers also use Parametric ReLU activation function and batch normalization.

2.5 Embedding Network Model

Similarity-preserving embedding hash modeling is a widely-used method for nearest
neighbor search in a large-scale context. In most common existing embedding hash
methods, the input is first encoded as a representative vector by means of a possible
domain change, followed by another separate projection or quantization step that
generates final hashes. However intermediate feature vectors may not be suitable

with the coding process resulting in non-optimal hash codes. A carefully designed
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end-to-end deep neural network models can optimize both feature generation hashing

process [[52]].

Learning-based hashing methods aiming to encode input data while preserving
similarity is an emerging open search topic since requirements of various real-world
application include nearest neighbor search on large-scale. = Compact bit-wise
representations are beneficial regarding efficiency of both storage and search/retrieval

speed and complexity especially for large-scale applications.

Data-driven proposed embedding models may work in unsupervised fashion on data
like iterative quantization [53]] or kernelised locality-sensitive hashing [54]]. Or, if
available, supervised methods are optimized with labeled information (e.g. categories,
similarity/dissimilarity of samples), combined with deep architectures tailored for

learning-based hashing.

Most existing methods of hashing model based on two-stage process where input data
first represented by traditional hand-engineer features of vector descriptors followed
by a separated projection and quantization steps to encode these descriptors as final
hashes. However the mentality of separate process of data representation can fail
to generate optimal hashes since such descriptors may not be optimally suitable
with the hashing process. Such as, for similarity-preserving needs, intermediate
representation may small or large values for a defined metric for similar and dissimilar
pairs accordingly and thus, such intermediate bottleneck layer as representation may
not be able to generalize other data. Ideally, the two stage can be combined and learnt

joint by overall hash learning process.

An supervised embeddings hash model pipeline can designed with following
components: (1) a sub-network to produce robust intermediate representation, (2)
hash-generating block to convert intermediate representation to final hashes and (3)
suitable loss function selection as depicted in Fig. Supervised learning-based
hashing models are used for compact representation of domain specific data for

various tasks including classification, recognition and verification.

divide-and-encode

module embedding

sub-network

input

o>

e O s m O -

Figure 2.31 Embedding hash model
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The trained model provides a mapping from input space to an embedding space.
Embeddings learned in such way can be used as features vectors. After a non-linear
projection of embedding space is modeled, a distance metric (also the training loss of
the model) may be defined. For instance in if Euclidian embeddings are learnt then
the similarity is defined by L? distance. Provided with a distance metric various tasks

can be defined as:

e Verification: thresholding of distance between two embeddings.

e Recognition: can be approached as a simple k-nearest-neighbor (k-NN)

clustering task

e Clustering: can be achieved using k-means or other clustering techniques on

embedding space.

2.5.1 Divide and Encode layer

Having the intermediate features obtained from the sub-network a hash-generating
block to convert intermediate representation is used weather is a simple
fully-connected layer or a more complex block. Traditional approach for hash
generation can be applied by a simple fully-connected layer. Whereas Divide-and-
encode module enables splitting intermediate representation into multiple branches

then concatenate each into the designed order of hash components as shown in
Fig.

fully-connected

I fully-connected

activation
{e.0. sigmoid)

activation
{e.0. sigmoid)

Figure 2.32 Divide-and-encode module

The main idea of using divide-and-encode block instead of a fully-connected layer
is to reduce the redundancy among the intermediate representation branches which
go through to generate final hash bits. For g-bit hash codes, first divide-and-encode

module splits intermediate representation to g-slices, then each slice is fed to internal
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fully-connected layers to generate final values using a arbitrary activation function
(e.g. sigmoid for a unit interval output € [0,1]). The activation function may be
preferred according to designed model, generating real values or unit interval range

output (which later may quantized to binary).

Since each hash component is generated from a separated slice of features (i.e.
containing information from split path of intermediate features), the generated hash
bits would be less redundant to each other which can be advantageous considering
the entropy of the input data.

2.5.2 Quantization

For binary hash embedding model, the activation outputs should be quantized to
encourage binary values. For any input I, a binary hash embedding model can defined
as g-bit hash generator F as: F : I — {0, 1}9. If sigmoid activation is used in final layer,
using piece-wise threshold function would deduce quantized binary outputs by forcing
the model to binary values to at training stage [52]]. Given the fully-connected output
fcl-(x(i)) = Wix(i) for each slice-i and sigmoid activation in Eq.(3.47), Eq.(3.48) shows
piece-wise threshold function for sigmoid activation as its input 2z, where € is a model
hyper-parameter. The piece-wise threshold function is plotted in Fig.

1
igmoid(y) = ——— 2.47
sigmoid(y) T oy (2.47)

0; 2<05—¢€
f(z)=12 05—e<z2<05+¢ (2.48)

1; s>05+¢€

05—

05€ 05 05+ 1
Figure 2.33 Piece-wise threshold function plot
Using a piece-wide threshold layer will force the model to output binary values, where
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the values that are not in range of [0.5—¢, 0.5+ ¢ ] will be truncated to be 0 or 1. Noted
that, in the training stage, the proposed model with piece-wise threshold function will
only generate real-valued hash codes that most of them forced to binary for input data.
To generate binary hash bits, later the output of the optimized model is quantized by
Eq. (3.49):

b =sign(F(I)—0.5)) (2.49)

where sign(v;) = 1 if v; > 0, or otherwise sign(v;) = 0.

On the other hand, quantization for real-valued hashes only can be implemented for

bit reduction that is for reducing code size.

2.5.3 Methodology

Provided with SWT the extracted coefficients of are fed to embedding network for the
next stage of the pipeline as depicted in Fig. The model is trained with some
portion of the reference content, but the training data is not indexed in reference
database for querying (action (1) in Fig. [2.34). The optimized model after training will
be used for both database indexing (action (2) in Fig. and querying. However
the embedding model is not final and can be improved with arbitrary data and/or can
be adapted using harmonic embeddings [|55]] in a transfer learning fashion. Harmonic
embeddings is a technique of adapting newly designed models to be able to improve
verification accuracy while maintaining compatibility to less accurate embeddings of

initial model.

3
Embedding
Model

T

Hashing

—

Figure 2.34 Embedding hash model - methodology overview
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We build our fingerprint hashing model by the combination of stack of convolutional
layers (CNNs), fully-connected layers and divide-and-encode block [52[] on top. CNNs
can model spectral correlations of our first-order scattering coefficients S;(t,A;).
While second-order scattering S,x(t, A,, A,) which is the decomposition of modulation
features in each sub-band of the first-order filter-bank (|x *; |) preserves the local
information for given sub-band A,, being sparse with few non-zero coefficients, are
fed to fully-connected layer. Designed model is shown in Fig.

embeddings

encode

device-and-encode

divide

A

Six(t, A1)

Sax(t, A1, A2)

]
[0

Figure 2.35 Overview of embedding hash model with scattering wavelet coefficients

Two-level of divide-and-encode block splits the intermediate representation before
combining into the final embeddings. The idea of choosing divide-and-encode block
is to reduce the redundancy among intermediate hashes as suggested in [[52]. Final
embeddings may be retrieved as real values or quantization can be opt in using a
piece-wise threshold function at the learning stage. Except final divide-and-encode

layer all layers use Parametric ReLU activation function and batch normalization.

2.6 Siamese and Triplet Networks

For a similarity-preserving network model, input can be any representation and the
model is responsible to provide an output either binary value (i.e. identical /imposter
or similar/dissimilar) or a real value indicating how similar a pair of inputs are.
This similarity-preserving network model is called Siamese network. Siamese network
is a type neural network that use shared weight while working in tandem on pair

of inputs to compute comparable output vectors [56]]. Output vectors then can be
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used similarity score armed with a distance metric. Area of utilization of siamese
networks include generating invariant and robust descriptors [|57], face-recognition

[58]], objects re-identification tasks [59|] and imposter detections.

A variant of siamese network is triplet network combining both similarity-preserving
and marginalization of dissimilarity that is discriminating dissimilar pairs. Triplet
networks are trained with triplet of exemplars including an anchor sample (baseline
sample), a positive sample and a negative sample, making two pairs for each triplet:

anchor against positive and anchor against negative.

Not all the models of Siamese networks share the same architecture, the design of
architecture should be evaluated empirically by what performs well on the specific
task. A typical architecture of Siamese network with shared model weights is
depicted in Fig. (a). Another architecture with unshared block of layers is shown

in Fig. [2.36{(b) [60].
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Figure 2.36 Siamese network models with sub-network blocks ((a) A typical
Siamese network model with shared weights, (b) A Siamese network model with
unshared block of layers)

Siamese networks with shared weights can be generalized by following equation:
min{S[f (x;), f(x))1}; (i, ) — similar

JSiamese(w) = (2.50)
mvz\ellx{é[f(xi),f(xj)]}; (i, j) — dissimilar

where i, j are indices of of input samples, f(-) is embedding model implemented by

siamese network and 6 is network layer joining outputs from the siamese network.
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2.6.1 Loss Functions

Siamese networks should be trained with both positive pairs and negative pairs (i.e.
similar and non-similar pairs respectively) as depicted in Fig. since learning with
using only similar pairs would force the model to embed every input to a same point in
embedding space. That will result the model to output a constant and categorize every
input pair as similar [[61]]. As a result the loss function should include both positive

loss (L™) and negative loss (L*) optimizations.

min{ Dy) max(Dy)
||fw{xa]_fw(x_|j” ||fw{xa)_fw{x.|j”
* t 4 t
fw[xjj fw{x_,'} fwt-’:J.J fw(x_.')

Figure 2.37 Dissimilar pair learning

Possible selection of functions could be Euclidian loss and Hinge loss functions for

positive loss and negative loss respectively.

Definition 2.6. Hinge loss is a loss function used for maximum-margin classification
most notably in support vector machines (SVMs). For an intended target value t €

—1,+1 and prediction y, Hinge loss is defined as:

L(y) =max(0,1—t.y) (2.51)

Euclidian loss and an extended version of Hinge loss functions for input pair learning
is given in Eq. (3.52) (see Fig.[2.38):

L*(xg,x,) = ||xq —xp||2 (2.52)

L™(x,, x,) = max(0,m* — ||xq —xn”z)

where m is margin, (x,, x,, X,) are query, positive and negative samples accordingly.

Definition 2.7. Contractive loss function combines both Euclidian loss and Hinge loss
and is able to learn a margin of separation for negative pairs. Contractive loss is
suitable for both Siamese and triplet networks [62]. For an embedding mapping f,

contractive loss function is given in Eq. (3.53):
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L* =If (xo) = f (xo)lI”
L™ =max(0,m— || (xo) — f (x1)I1)? (2.53)

1 1
Lcontractive(xO: X1, .)’) = 5tL+ + 5(1 — t)L_

where t is binary target value t € 0,1, m is distance margin and (x,, x;) are sample

pairs that can be positive or negative.

Margin (m)
*—- Model - *
i — ¥ Model
query (x,) ' shared ? Yo *
H query (x,) v shared
| parameters | Loss (L* Kl ;
WF oss (L7) | parameters
e B Yy : ¥
—*  Model [~ ﬁ—- Model
positive (xp) negative (x,)
Embedding space Embedding space
(a) positive pair learning (b) negative pair learning

Figure 2.38 Positive and negative pair losses

Definition 2.8. Triplet ranking hinge loss tries to enforce a margin between each
dissimilarities, while closing the distance between similarities. This allows the similar
embeddings to place on a manifold, while still ensuring the distance and thus
discriminability of others. For an embedding mapping f, triplet loss function is given
in Eq. (3.54):

L = | f(x)—F)|
L™= |If (x0) — f Ce )l (2.54)

Ltriplet(xa: xp: Xn) = maX(O, m+ Lt — L_)

where m is distance margin and (x,, x,, x,,) are anchor, positive and negative samples

accordingly.

In triplet loss function in Eq. (3.54), the negative value L~ will force learning in
the network, while the positive value L* will act as a regularizer. Similarly for the
learning optimization by the contrastive loss in Eq. (3.53), there must a regularization
applied to the learned weights like a weight decay, or some similar operation like a

normalization.

The embedding space represented by f (x) € R? is a mapping from x to d-dimensional
Euclidean space. Triplet ranking loss function will ensure that an anchor sample is
closer to its similar items than the dissimilar ones as visualized in Fig.
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Figure 2.39 Triplet loss learning

2.6.2 Data Mining

While training the network not all triplets will have significant impact on optimization,
only the possible triplets whose violate triplet loss constraint (i.e. having a non-zero
loss) will optimize the the model. In Eq.(3.55) constraint for triplet loss is given.
Generating all the possible triplets on a large training data would result many triplets
satisfying the triplet constraint. These triplets would not contribute to the training
and result in slower convergence, while they are being fed through the network. Thus
it reveals the necessity of selecting hard triplets, whose have loss values bigger than

zero and can therefore contribute to improve the model [[55].

1 (x) = FCe)||* +m < I Ge) — £ Ge)IP (2.55)

Therefore, selecting the contributing triplets in the learning stage is crucial. Selection
decisions should consider triplets that violates the triplet constraint in order to ensure
optimal model and fast convergence. Sampling strategies for indices of samples (i)

that provides possible violation of the triplet loss constraint is given below:

, 12

e hard positive: argmax H fx@D)—f (xg))H
Xp 2
e hard negative: argmin ||f(xc(li)) —f(xr(li))”Z

e semi-hard negative: ||f(x") —f(xl(f))H% <[If (D)= £ (D)2

For a given anchor sample, semi-hard negative strategy selects negatives that are
further away from the anchor than the positive sample but still hard because the
squared distance is within the margin value. For semi-hard negative strategy, number
of exemplar can be sampled in sorted way by decreasing distance or picked up by

randomly.

Also as it is argued that it is infeasible to compute argmax and argmin on the whole
training set. Additionally, it might lead to poor training for outlier or mislabelled data

[55]]. To avoid these to happen, two possible options are:
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e Offline data mining: selecting argmax and argmin on the subset of data by using

the most recent network checkpoint.

e Online data mining: selecting hard positive/negative exemplar from with a
mini-batch.

Online data mining method instruments mini-batch usage, thus the mini-batch size
should be adjusted accordingly. Since to have a meaningful representation of any
anchor sample, the mini-batch should also be ensured to include enough number of

exemplars for anchor positives.

2.6.3 Methodology

The embedding hash model in our systems is the module that is responsible for
generating audio fingerprints, and the module is trained in triplet network fashion.
Training split of reference content is used to train the embedding model (action (1) in
Fig.[2.40). The overview of the scheme of triplet learning used in this study is depicted

in Fig.
Model

Reference content

Figure 2.40 Siamese networks - methodology overview

Triplet loss is more suitable for the systems of fingerprint identification, motivated
by the triplet loss enforces the discrimination of arbitrary musical signal data more
than representativity. That is, we require discriminative power over being able to be
descriptive. Triplet learning corresponds forcing embeddings f (x) from input audio
signal x into a feature space R? such that square distance of semantically similar
signals are small, whereas the squared distance between a pair different signals of are

large. Thus a semantic similarity of signals should be described, and we define it by
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a neighborhood distance. And we select the anchor-positives within the neighborhood
distance of an anchor audio segment shifted by a step size equal to invariance-scale
of SWT as depicted in Fig.

Considering the online mining of samples, all possible anchor-positive pairs within
a neighborhood distance of anchor are included in each mini-batch instead of just
selecting hardest positives. Additionally mini-batches contain randomly sampled
negative samples. A sampling strategy is applied to the random negative sample set
as a selection filtering. As stated in [[55]], selecting the hardest negatives may have
consequences such as leading to stuck optimizations of the model at local minima
in the training or may result as a collapsed model (i.e. for embedding function f;
f(x) = 0), thus the semi-hard strategy is preferred in order to avoid these observed

issues.

Also, the overall mini-batch size should be ensured allowing enough all-possible
positives and subset of negative exemplars. And on the other hand we would like

to use small mini-batches as these tend to improve convergence speed.

neighborhood-distance

window-size X,

X

P

1

FilelD{x) | | | [
1 aldin
1

=

invariance-scale
'

xii

EilelD (y).

Figure 2.41 Similarity and online mining scheme
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3

Evaluation and Musical Audio Identification

Application

In previous Chapter detailed technical concepts are given with their
methodological approaches for a concrete implementation of fingerprinting scheme
and the musical audio identification system investigated in this study. In this Chapter,
provided with the design decisions, we will overlay the evaluation of the overall system
and presented experimental results. Later analyzing the result of the experiments

conducted we propose the audio musical audio identification application.

As indicated Chapter we trained our model as siamese network of audio
snippet similarities using triplet loss function. The constraints for audio snippets to be
considered as same were that they should be from same audio file and their starting
position should differ only couple of hundred milliseconds of neighborhood distance.
Siamese networks with L? loss functions are useful to learn mappings from input data
to a compact Euclidean space where distances correspond to a measure of similarity
[55]].

We used GTZAN dataset [|63] [|64] for our experiments. In training stage of
our embedding hash model, various additional noise applied to audio signals to
preserve similarity for degradations. In evaluation step, selected environmental and
artificial noises are applied with adjusted SNR values as explain in next section. For
implementation, to build our embedding hash model PyTorch framework [[65], and

for scattering transform of audio signals Kymatio framework [66]] are used.

GTZAN dataset includes 1000 audio files from 10 musical genres each 30-seconds long
and with sampling rate f, = 22050Hz. We prepared 10-seconds longs audio snippets
downsampled to f, = 16kH Z, having total number of 3K snippets, then randomly split
at ratio of (0.8,0.2) for training and test accordingly. For scattering transform, after
our experiments we chose the support of averaging filter ¢ to be 2° samples, giving an

invariance-scale of ~ 32ms (2°/f,), and the number of first-order wavelets per octave

62



to be 8. Feature vectors consist of one-second long scattering coefficients resulting
299 x 31 dimensional sub-rectangles (i.e. 1/(2°/f,) = 31).

We define a neighbor distance that equals to 370ms, to label audio segments
considered as same or not by their starting position while training. While we are
training our model, we use strides equal to invariance-scale duration for each audio
snippets, whereas database indexing stage use features per every one-second without

overlapping. General overview of audio signal fingerprint scheme is depicted in
Fig. 3.1}

Training Set

mini-batch
Triplets (xa, Xp. Xu)

Embedding

Model hash
[ p— }
- DB -

4

Reference Content

Figure 3.1 Audio signal fingerprinting scheme. Embedding model training (top),
Database indexing (bottom)

To prevent biased learning, first-order S;x(t,A;) scattering coefficients were mean
and variance normalized, whereas for second-order S,x(t,A;, A,) coefficient values,
first scattering transfer normalization [40], later mean-normalization were applied.
While training, for each mini-batch online triplet selection strategies are executed
to prevent poor training of the network [55]] [67]]. Each mini-batch contains all
possible positive triplets in the neighborhood distance while negatives are selected
using semi-hard exemplars, that are further away from the anchor than positive
exemplar, but within the radius of margin. We prepared a noisy variant (superimposed
with various environmental noise) of the dataset with same alignment, and in our
scenario, anchor and positive samples regard to clean and noisy audio segments within
the defined neighborhood accordingly.
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Table 3.1 Embedding net. architecture for SWT coefficients

CNN module

Input shape: | first-order coefficients (62 x 31)

Layer (type) | Output shape (#Channel x Height x Width) | Kernel | Stride
Conv2d [32, 60, 29] 3x3 1
PReLU [32, 60, 29] - -
MaxPool2d [32, 30, 14] 2x2 2
Conv2d [32, 28, 12] 3x3 |1
BatchNorm2d [32, 28, 12] - -
PReLU [32, 28, 12] ; ;

MaxPool2d [32, 14, 6] 2x2

Fully-connected module
Input shape: | second-order coefficients (237 x 31) = 7347

Layer (type) Output shape
Linear [1024]

BatchNorm1d [1024]
PReLU [1024]

3.1 Coefficients and Hash Dimensions

Extracted (299 x31) dimensional sub-rectangles by scattering transform over 1-second
long audio segments, the coefficients then fed to embedding model to generate
audio fingerprints. The embedding model contains two sub-modules for first and
second order of scattering transform which are trained on their respective separate
path of input output pipeline as well as in divide-and-encode layer to remove the
redundancy among the intermediate representation branches of scattering coefficients
and encoded them separately. For fully-connected module constant 1024 units is used.
The CNN and fully-connected module parameters of embedding model are given in
Table

Fig.[3.2]and Fig. [3.3| shows CNN kernels of trained model and top layer heatmaps for
random #3 audio segments against various models dimensions respectively. From the
heatmap figure kernel specialization can be seen coarsely.

model dim-32 model dim-64 model dim-96

Figure 3.2 CNN kernels for various model dimensions
Table shows hindmost layer of embedding model device-and-encode block
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model dim-32

audio segment #1 audio segment #1 audio segment #1

(a) 32-dim. model

model dim-64

audio segment #1 audio segment #1 audio segment #1

(b) 64-dim. model

model dim-26

audio segment #1 audio segment #1 audio segment #1

(c) 96-dim. model

Figure 3.3 CNN heatmaps for audio segments’ first-order SWT coefficients
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Table 3.2 Hash dimensions agains two-layer SWT coefficients

Divide-and-encode block

first-order input size (32 x 14 x 6) = 2688
second-order input size 1024

Output dim. | Output dim./orders | 1st-order encode size | 2nd-order encode size
8 [7,1] 384 1024

16 [14, 2] 192 512

32 [57, 7] 96 256

96 [85, 11] 32 93

128 [114, 14] 24 7

256 [228, 28] 12 36

configurations for various output dimensions. The output dimensions are adjusted
with about (9, 1) ratio between first and second order of scattering coefficients. In
the table, encoded sizes are given for inputs (i.e. 2688 and 1024 for first order and
second-order scattering intermediate paths respectively) according to desired output

dimension.

3.2 Similarity and Online Mining

Similarity for audio segments were defined by a neighborhood distance of their
starting offset. Audio segments that are within the neighborhood distance were
considered similar and the pair in the mini-batch were evaluated as anchor-positive
pairs. For negative exemplars semi-hard segments were preferred and they were

contained in the mini-batch for each triplets.

3.3 Database Indexing and Query Matching

Equipped with the final finger-printer which includes the trained and optimized
embedding hash model, takes and input of audio signal with a determined length
(e.g. 1sec. x f,) and generates hashes. The reference content is indexed on the
database after passed through the finger-printer pipeline. Each song file in the
content has its own file-ID and audio file data is segmented with a window length of
1sec. without overlapping for indexing on the database. Inserted key-value pairs are
fingerprint-metadata information and each metadata will contain file-ID and starting
offset of the audio file segment (see Fig. [3.4).

At query stage, up to a number of candidate matches (top-t) is proposed by the
system for each segment of the query probe signal. In the common scenario where
the query is longer than the window length (1sec.) and top-t is bigger than one, the
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match sequence is two-dimensional. Fig. shows a query execution and the system
response of candidate matches for 8 segment probe signal with top-t equals to 5. In
the lower table candidate matches are represented in a form of "file-ID : start-offset"
symbolically. Only the longest sequence is shown with an almost perfect offset match
for the query. Such perfect alignments are unrealistic and hard to achieve in real-world
examples, thus in general adaptive scoring techniques is used for matches sequence

estimations.

Matching

Figure 3.4 Database indexing and query probe matching

0 1 2 3 4 5 6 7

top-k=5
P 4:933

4:928 4:935

4:931 4:932

4:929

»
»

sequential match

Figure 3.5 Match sequence for query probe signal

3.4 Adaptive Scoring

The matches from database includes time-offset metadata, so we define an adaptive
scoring method for sequential match estimation of an audio signal using following
temporal constraints as a basis of dynamic-programming (similar to constraints in

[68]) to decide whether proposed candidates are a match or not:
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1. Define an anchor(initial) match for all of top-t candidates (i.e. column values

in Fig.[3.5).
2. For the tail of the anchor match, we define following temporal constraints:

e Do not allow temporal backtracking of matched features.

e Allow only matches the within the defined temporal cone for anchor match.

3. Promote the longest match sequence as the candidate.

Before retrieving the final results for the query probe, optional verification against final
candidate match can be opt in as a separate module as depicted in system pipeline
Fig. Verification may include sub-thresholding for sequential match estimation or

limiting sub-matches per query.

Match sequence
estimation

Figure 3.6 Adaptive scoring for match sequence estimation

3.5 Experiments

After training the embedding hash model, the content database is built from clean
test samples using the embedding model as the feature extractor. Content database
consist of test split of GTZAN having #600 10-seconds long snippets. Each snippet
is represented by features per every one-second without overlapping. Retrieval
is first experimented by one-by-one naive comparison not to be influenced by
database precision artifacts. One-second long segments are randomly sampled from
query snippets with arbitrary alignments and features are extracted using the same

embedding model. For each compared features agains database, L? distances are
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Table 3.3 Mean top-t=1 positive retrieval probability

Hash Dim. || margin=0.2 | margin=1.0 | margin=2.0
8 0.8622 0.8731 0.8589
16 0.9266 0.9185 0.9011
32 0.9310 0.9343 0.9297
64 0.9404 0.9358 0.9263
96 0.9354 0.9411 0.9297

calculated and the features which regards top-t smallest distance values are selected

as candidates.

First we query the database with existing clean samples and calculate the top-t=1
mean score for multiple models. For each 10-seconds long snippets #10 randomly
sampled segments are selected and their features are compared against the database.
If the first result is a match (i.e. same song within the neighborhood offset) we
increment the score. The reason of this experiments is to evaluate how margin value
and hash dimension affect the retrieval probability of alignment and shift-invariance
without any additional noise. Results are given in Table As it can be seen best
similarity preserving embeddings are obtained for 96-dimensional vectors and for
margin = 1.0, although after 32-dimensional hash model, having more dimension

doesn’t seem to have great impact.

By selecting best margin = 1.0 value from Table we calculate the same scores
for noisy samples with various signal-to-noise-ratio (SNR) values. Experimented
additional noise include (1) chatting people, in down-town streets, (2) noisy wind
sound effect, (3) sound recorded inside a window of rainy day and (4) artificial

synthetic glitchy noise, all retrieved from freesound.org [69]] website. Results are
given in Table

We can see the dimensionality factor of the embeddings on discrimination in Table
clearly, for hash dimension equal to 96 we can retrieve positive samples with about
%93 recall from a sparse database having features per only every one-second of audio
signals with a very compact representation (96 x 4 = 384 bytes/sec.). Also noted, the
positive retrieval score for noise type (3) is poor having less than %50 for SNR below
6.

Lastly, a concrete recognition search is done against our indexed DB with top-t=20, i.e.
each fingerprint can propose up to twenty potential matches. Query set includes both
positive and negative samples and query snippets are superimposed with randomly
selected noise type with SNR values varying from O to 3 (i.e. between half and same

energy of noise applied). We execute the retrieval process with a sequence of snippets
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Table 3.4 Mean top-t=1 positive retrieval probability for noisy samples

Hash Dim. || SNR=9 | SNR=6 | SNR=3 | SNR=0
(1) group-people-chatting-city
16 0.8468 | 0.7710 | 0.6327 | 0.4100
32 0.8685 | 0.8264 | 0.7252 | 0.5281
64 0.8958 | 0.8608 | 0.7737 | 0.6206
96 0.9064 | 0.8770 | 0.8020 | 0.6625
(2) wind-on-microphone
16 0.8581 | 0.7947 | 0.6618 | 0.4522
32 0.9025 | 0.8854 | 0.8341 | 0.7166
64 0.9245 | 0.9010 | 0.8833 | 0.8168
96 0.9312 | 0.9197 | 0.8884 | 0.8333
(3) raindrops-on-the-windows
16 0.6497 | 0.4625 | 0.2975 | 0.1412
32 0.7479 | 0.5954 | 0.3816 | 0.2006
64 0.8052 | 0.6697 | 0.4779 | 0.2737
96 0.8397 | 0.7279 | 0.5722 | 0.3677
(4) artificial-synthetic-noise
16 0.8120 | 0.6897 | 0.5008 | 0.2768
32 0.8658 | 0.8102 | 0.6737 | 0.4710
64 0.8966 | 0.8502 | 0.7845 | 0.6416
96 0.9056 | 0.8816 | 0.8166 | 0.6912

of audio with random alignments but with increasing starting offsets. Randomly
selecting the stride amount is important to avoid problems of unlucky alignments;
if the sampling of the probe is kept constant, it may be possible to repeatedly find
samples that have uniformly large offsets from the sampling used to create the content
storage [8]]. Finally match sequence estimation is applied with adaptive scoring

technique.

Fig. shows Receiver operating characteristic (ROC) curve of the retrieval

performance for various dimensional embeddings.

3.6 Application

In practice of applicability, having fingerprint with p-dimensions,

effectively searching near-neighbor in a p dimension space is not a trivial job
(particularly if p is large); thus naive comparisons are inconvenient. For looking up
for items similar to a query as a retrieval, it is not feasible to make comparisons over
the entire data set. Rather, mostly methods of Approximated Nearest Neighbor (ANN)
are preferred. For application considerations, in this study an ANN technique is used,

termed locality-sensitive hashing (LSH). LSH techniques both efficient by the amount
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1.0 1 =
-~
’
”
”
PR
0.8 ”
s
”
e
[+F)
o g
= 0.6 /l
2 e
= s
3 g
a 0.4 4 JRe
=i e
= R
-~
’f
0.2 ’I
e dim-64 (AUC=0.982)
’,’ —— dim-32 (AUC=0.969)
004 P —— dim-16 (AUC=0.965)
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Figure 3.7 Retrieval performance with adaptive query and naive one-by-one
comparison against real-valued hash dimensions

comparisons needed (a tiny percentage of the dataset will be examined) and also

provides noise-robustness properties through localization [70].

3.6.1 Locality-sensitive Hashing

Unlike more conventional hashing method, LSH conducts a sequence of hashes, each

of which examines input vector portions or projections.

The overview of Locality-Sensitive Hashing technique is depicted in Fig.

Storage Candidates Candidates with distances Neighbors with distances

Bucket

T
8
-

- Bucket

input vector ‘;l Di Filterin,
npu | 9

Bucket

T
8
-

Figure 3.8 Locality-Sensitive Hashing pipeline overview

LSH also promotes flexible limitations to further examine applicants from the
individual hash tables as part of the final list of match candidates (by means of
the sub-thresholding) shown as "Filtering" in the figure. This additional constraint
corresponds "Verification" step depicted in Fig. After optionally applying the
filtering, the vector data with minimum distance is the best match for the probe data.
For more than one candidate, LSH techniques support retrieving top-t candidates

sorted by the distance values.
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In Fig. given a query probe vector as input, each hash functions generate one
(or more bucket) key(s) for content indexing. The vector is then stored for each
key in a particular bucket during indexing. Later in search step, the near-neighbour
candidates are gathered from the buckets in storage. The LSH application requires that
the hashes generated should be locality-sensitive in general, thus to some extent pre-
serving the spatial structure. Close vectors required to be placed into same buckets.
After collecting from all the corresponding matching buckets in storage, the distance
to the query vector is calculated using a distance measure (e.g. cosine distance) for all
candidates. Lastly in the pipeline, an optional filtering is applied as a sub-thresholding

step.

To preserve the spatial structure of vectors by means of locality, hash generating is
executed as follows: the input vector is projected onto N-random vectors and for each
projection a binary/discrete value is assigned based on the vector’s location to the
random vector. The projection value for the specific vector is string of binary/discrete
values in the feature space as the hyperspace of N-random normalized vectors span.
The projection is defined as the product of random normals N and input vector v
(p =N xv) is given in Eq. (4.1);

ny; ... Mp V1 D1
x| : =1 : (3.1)

n a v
Pl BD #proj.xdim. Dl dim.x1 pr #proj.x1
where #proj. is number of random projection and dim. is input vector dimension.

The random projection application of LSH is intended to approximate the cosine dis-
tance between vectors. Each hyperplane defined by the normal unit vector r is used
to hash input vectors [[71]].

For given vectors u, v € RY, the distance is settled as angle between two vectors, 6(u, v)
= arccos(m). Based on angle as the distance between vectors, for a hyperplane
defined by r € R?, the hash is defined as h(v) = sing(v-r), that is h(v) = £1 depending
on which side of the v lies on partitioned hyperplane. Each possible choice of r defines

a single hash function.

The probability of the hashes being equal (i.e. collusion) is given [|72]];

Pr[h(u)=h(v)]=1-— @ (3.2)
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Table 3.5 LSH bucket-key examples

Binary bucket-key | Discrete bucket-key
"1111010010" "-3,0,0,0,0,-2,-1,-2,-2,-1"
"1011101010" "-4.2.-2.0,0,0,-4,-5,-3,-1"
"0110000100" "0,-1,-1,-5,0,-3,-1,-1,3,2"
"1100111100" "-2,2,-2,-1,-2,-1,-1,3,0,1"
"0111010001" "1,-1,0,-1,1,0,-2,-1,1,0"
"0010100100" "5,-2,1,-3,-1,0,3,1,-2,0"
"0000110110" "2,-2,2.-1,-3,-3,-2,1,-3,0"
"0101110011" "-3,-1,0,-3,0,-1,0,0,0,0"
#projection=10, LSH bin-width=4

O(u,v)/m is closely related to cos(6(u,v)) for small angles as can be seen in Fig.
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Figure 3.9 1 — 0 /m approximation to cos(6)

Hashing generates just a single bit (i.e. binary) in this setting. The probability of hash
bits of two vectors match is proportional to the cosine of the angle between them.

In binary setting, n-th hash bit is calculated based on input vector v whether lies on the
positive or negative side of the hyperplane defined by n-th normal vector (Eq. (4.3)).
The permutation of the hash bits define the bucket-key, and for the possible buckets
where the input vector belongs. If a bin-width value is used, the projection value is
not quantized to a binary, but instead divided by the bin-width value (Eq. (4.4)), and
using the bin index in each random projection as part of the bucket-key. Examples
of generated bucket-key scheme for both binary and discrete values are given in

Table.

L pi>0
hash(P), = (3.3)
0; otherwise
hash(P); = | p;/bin-width | (3.4)
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Table 3.6 ROC AUC scores using LSH

Real-valued hashes
LSH bin-width | dim=96 | dim=64 | dim=32 | dim=16 | dim=8
LSH top-t=20
25 0.966 0.945 0.967 0.940 | 0.929
20 0.965 0.939 0.959 0.944 | 0.946
10 0.936 0.916 0.927 0.940 | 0.913
LSH top-t=10
25 0.974 0.958 0.966 0.952 | 0.941
20 0.973 0.958 0.966 0.952 0.941
10 0.949 0.935 0.932 0.946 0.928
Binary-valued hashes (piece-wise thresholding)
LSH bin-width | dim=256 | dim=128 | dim=64 | dim=32 | dim=16
LSH top-t=20
25 0.886 0916 | 0.907 | 0.914 | 0.906
20 0.851 0.892 | 0.917 | 0914 | 0.905
10 0.606 0.699 0.792 0.874 0.913
LSH top-t=10
25 0.919 0.923 0.932 0.931 0.917
20 0.867 0.914 0.913 0.935 0.921
10 0.687 0.722 0.845 0.903 0.922

Retrieval results using LSH technique and querying 10-second long probe signals
with additional noise superimposed with a range of SNR values between [0,3] are
shown in followings table and figures. Results are conducted for various fingerprint
dimensions for both real and binary (using piece-wise threshold embedding model)
hashes. Table shows ROC AUC scores for real-valued and binary-valued hashes.
Fig. and Fig. show ROC curves for real-valued and binary-valued hashes

with various output dimensions respectively.
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4

Conclusion and Recommendations

An audio fingerprint is a content-based compact signature that represents audio signal.
Fingerprinting/hashing is an engineering task which includes fingerprint design,
similarity metric and matching search for verification and recognition/identification of
data in the interested domain. Real-world applications for audio fingerprinting varies
from query-by-example music recognition, audio labeling, content-based integrity
verification to copyright detection systems. For instance popular online music labeling
systems are available including Shazam [|6]] [21]], SoundHound [[27]] and Google Sound
Search [|73]] with client-server architecture. A general architecture for a fingerprinting
& recognition systems is depicted in Fig.

Original signals DB indexing stage
(content store)

Fingerprint
Extraction

Fingerprints
+

metadata

I [

( ). Fingerprint Query Meladata.
Extraction Matching
Captured
Signal
Query stage

Figure 4.1 General architecture of an audio fingerprinting system

Considering the tradeoff of system resources of real-world scenarios, precision/recall
and response time requirements, what the academic research is mainly focused on
is design of fingerprints that are essential i.e. being robust to various degradations,
alignment problems in matching step, feature extraction/calculation complexity and
compactness for fast retrieval. An audio signal may undergo many kind of distortions
like additional background noise, reverberations, pitch shifting, interference in
transmission, quantization and/or compression artifacts (i.e. GSM or MP3). The
designed system should tackle with these obstacles.
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In this study we explored a two-stage feature extraction method combining scattering
wavelet transform (SWT) and deep embedding hash model to generate final
fingerprints. SWT generates contractive representation of signals and provides
Lipschitz continuity to deformations [[74]. That is the distance between the transforms
of the degraded and the original signals are bounded for a group of deformations
satisfying necessary conditions. Then we build our deep hashing network based on
combination of first-order and second-order scattering coefficients to model musical
data efficiently,. We first experimented with naive comparison method not to be
influenced by database precision artifacts and later also with LSH techniques to
be feasible working with large dimensional audio fingerprint data for retrieval and

identification.

With an adaptive scoring scheme we can retrieve 0.982 ROC score for 96-dimensional
hash fingerprints using naive comparisons. Our database is sparse, indexing only 96
floating-values (i.e 96 x 4 = 384bytes) per second for indexed audio signals without
overlapping. Also limiting the hash dimension doesn’t seem to have great impact as
we suspect that because the database size is limited. For 16-dimensional hashes (64
bytes/sec.) the ROC score is above %95. Also in a feasible application settings, by

using LSH method %97 ROC score is retrieved for 96-dimensional model.

In this study we tried to tackle most common obstacle for audio identification from
the end-user perspective that is musical audio tampered with environmental noise.
Noted that, this study does not focus on robustness of types pitch and tempo changes,
which makes the application not suitable for scenarios like copyright detection where
same content can be played back with different pitch and time-scale modifications.
To be more comprehensive other group of degradation should be considered, such as
how sampling rate changes effect the output our framework or could using features
of long durations (i.e. one second) compensate linear-speed modification of audio
signal should be answered. If the latter is not, keeping minimal duration of features
vs. storage footprint trade-off should be adjusted carefully. Also other and/or
larger datasets should be experimented with, and GTZAN dataset’s faults should be
considered (e.g. mostly repetitions in the song structures) [|75]] while extending this

study.
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