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ABSTRACT

Audio fingerprinting using wavelet transform

Evren KANALICI

Department of Computer Engineering

Master of Science Thesis

Advisor: Assoc. Prof. Dr. Gökhan BİLGİN

Audio fingerprinting systems have many real-world use-cases such as digital

rights management/copyright detection, duplicated audio detection, untagged audio

labelling or identify/query-by-example recognition systems. Nowadays, there are

popular online platforms that offer identify/query-by-example music recognition

services where users can query by snippets of recorded audio to retrieve the matched

song metadata.

The compact, robust and fast retrieving fingerprint design is the cornerstone of these

systems. Although short-term Fourier transform and Mel-spectral representations

are common tools that come to mind, these feature extraction methods suffer from

being unstable and having somehow limited resolution. In order to overcome these

challenges, scattering wavelet transform (SWT) provides an alternative solution to

these limitations by recovering information loss, while ensuring translation invariance

and stability.

In this study, a two-stage audio fingerprint characteristic/feature extraction

framework is introduced using SWT integrated with Siamese neural network hashing

model for musical audio identification. Similarity-preserving hashes provided by

the Siamese neural network model correspond to sound fingerprints and can be

defined by a similarity distance metric in the embedded hashing space. The Siamese

neural network hashing model was trained by two-layer scattering wavelet transform

coefficients using relatively aligned segments of the same music files and segments

of different music files. The proposed system achieves successful performance scores

under environmental noise, modeling the challenges of detecting music and audio

xii



data that may be encountered in everyday life. Using very compact storage, it has

been shown to achieve high ROC-AUC scores both by one-to-one comparison and by

using locality-sensitive hashing (LSH) for content storage.

Keywords: Audio fingerprinting, music information retrieval, wavelet transform,

scattering wavelet transform, Siamese neural networks, triplet loss function,

convolutional neural networks, embedding hash models.

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

Dalgacık dönüşümleri ile ses parmak izi kontrolü

Evren KANALICI

Bilgisayar Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Danı̧sman: Doç. Dr. Gökhan BİLGİN

Ses parmak izi tespit sistemlerinin günlük hayatta dijital hak yönetimi/telif hakkı

tespiti, kopya ses verisi tespiti, ses verisi etiketleme, örnek ile tespit/sorgu gibi

birçok kullanım alanı mevcuttur. Günümüzde de kullanıcıların canlı ses kayıtları ile

sorgulayıp dönüş alabildikleri müzik tespit ve sorgu servisi sunan çevrimiçi popüler

platformlar faaliyettedir.

Kompakt, gürbüz ve hızlı eri̧simi hedefleyen ses parmak izi tasarımı bu sistemlerin

temel taşını oluşturur. Kısa-süreli Fourier dönüşümleri ve Mel-spektral gösterimleri

ilk akla gelen araçlar olmakla birlikte bu çıkarım yöntemleri kararsızlık gösterir ve

bir baǧlamda düşük çözünürlüǧe sahiptirler. Saçılım dalgacık dönüşümü (SDD)

bu kısıtlamaların üstesinden gelebilmek maksadıyla, sinyal dönüşümleri sırasında

kaybolan enformasyonu telafi ederek ve öteleme-deǧi̧smezliǧi ve kararlılık saǧlayarak

alternatif bir çözüm sunar.

Bu çalı̧smada, müzik ses verisi tanıması için, siyam sinir aǧları karım modeli ile

tümleşik bir şekilde saçılım dalgacık dönüşümü kullanılarak iki aşamalı bir ses parmak

izi karakteristik/özellik çıkarım sistemi sunulmaktadır. Siyam sinir aǧı modelinin

saǧladıǧı benzerlik muhafaza eden karımlar ses parmak izlerine denk gelmekte ve bu

gömülü karım uzayında benzerlik mesafe ölçütü ile tanımlanmaktadır. Siyam sinir

aǧları karım modeli, aynı müzik dosyalarının belirli bir komşuluk sınırı içerisinde

görece hizalı bölütleri ve farklı müzik dosyalarının bölütleri kullanılarak, iki-katmanlı

saçılım dalgacık dönüşümü katsayıları ile eǧitilmi̧stir. Önerilen sistem, günlük hayatta

karşılaşılabilecek müzik ses verisi tespit & sorgu zorluklarını modelleyen çevresel

gürültü altında, başarılı performans skorları elde etmektedir. Oldukça kompakt
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depolama alanı kullanarak, hem bire bir karşılaştırma yapılarak hem de depolama

için yerellik-duyarlı karım (YDK) kullanılarak yüksek ROC AUC skorları elde ettiǧi

gösterilmektedir.

Anahtar Kelimeler: Ses parmak izi tespiti, müzik bilgi çıkarımı, dalgacık dönüşümü,

saçılım dalgacık dönüşümü, siyam sinirsel aǧları, üçüz zarar fonksiyonu, evri̧simsel

sinirsel aǧları, gömülü karım modelleri.

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
Introduction

This thesis presents the results of our study on musical audio identification system

via a two-stage fingerprinting framework, and reports detailed evaluations and

experiments. Audio identification involves the retrieval of metadata as associated

with an unidentified audio extract. Our attempts are based on generating compact

fingerprint for relatively long durations of audio segments, and provide robustness for

audio signal query execution under additional environmental noise which can model

real-world obstacles of music identification problem.

Nowadays fingerprinting systems used in various aspects consumable multi-media of

audio streams including monitoring applications, copyright detection, recommenders

systems and labelling applications. The increasing large amounts of audio data, attract

rousing interest in the ability to identify audio content. This can be done via audio fin-

gerprinting which is a representative or discriminative method that aims at operating

with precision and certainty.

1.1 Literature Review

Audio fingerprinting systems are well researched Music Information Retrieval (MIR)

topic and various efficient fingerprinting methods have been introduced. Many

audio-fingerprinting methods prefer to use low-level features that aims to characterize

the audio signal (i.e. content-based approach) without any other high-level semantic

meanings. Also it’s very common to approach to the fingerprinting as a computer

vision problem after change of domain executed that enables working on spectral data,

thanks to the insights of previous studies. The maintain robustness to shifting (i.e.

the query is not perfectly aligned with the candidate feature from the content score)

overlapping feature extraction is a common practice. Another common preference is

to combine all sequentially retrieved candidate matches by some means of constraints

to provide a final match (e.g. temporal alignments of the probe candidate matches).

1



Table 1.1 Literature by years published

Literature Year
Allamanche et al. [2] 2001
Haitsma, Kalker, and Oostveen [3] 2001
Haitsma and Kalker [4] 2002
Herre, Hellmuth, and Cremer [5] 2002
Wang [6] 2003
Ke, Hoiem, and Sukthankar [7] 2005
Baluja and Covell [8] 2006
Bellettini and Mazzini [9] 2008
Wang et al. [10] 2009
Zhu et al. [11] 2010
Ellis, Whitman, and Porter [12] 2011
Fenet, Richard, and Grenier [13] 2011
Ramona and Peeters [14] 2013
Ouali, Dumouchel, and Gupta [15] 2014
Coover, and Han [16] 2014
Malekesmaeili and Ward [17] 2014
Six and Leman [18] 2014
Sonnleitner, Arzt, and Widmer [19] 2016
Gfeller et al. [20] 2017

Noted, it is argued that many MIR publications are hard to verity due to the fact that

often only a textual descriptions made available code remains unpublished leaving

many implementation issues uncovered [1]. Also copyright issues of publicly available

datasets and the MIR research involving complex systems prevents reproducibility of

the works published. Even though most notable works should be overviewed to have

a detailed or leastways coarse understanding what foregoing studies propose and give

insights, including the widely referenced ones. Table 1.1 shows the notable works in

literature by the years they are published.

Allamanche et al. [2] evaluate a content based audio identification system using

MPEG-7 features, namely "AudioSpectrumFlatness" and similar low-level descriptors,

relating signal’s power spectrums and tone-like characteristics to form feature vectors

for each windowed segments. Each feature vector from subsequent time steps then

combined to form a composite vector. These feature vectors are used at trained stage

for clustering using Nearest Neighbour and Vector Quantisation to generate minimal

codebooks. In this scheme, identification task for a query signal becomes aggregating

the distance of query segments to available codebooks and proposing a candidate with

minimum distance.

Haitsma, Kalker and Oostveen [3] propose robust hashes extracted from 0.4-second

long windowed time frames with 31/32 overlap factor (i.e. slowly varying time

2



segments). 33 non-overlapping frequency bands selected in each frame in 300Hz −
2000Hz range using logarithmic scale (Bark-scale). Bandwidth is spaced in ratio of

one musical tone (2(1/12) per band). Sign of energy difference over frequency-bands

and frames is suggested to build robust hashes.

Later, in their work, Haitsma, and Kalker [4] build their fingerprints using

Bark Frequency Cepstrum Coefficients (BFCC). While extracting fingerprints from

mono-audio signals, overlapping frames with a small step size are used to ensure

precision and maintain shift-invariance for queries with arbitrary time offsets. The

spectral representation of the audio is constructed using BFCC of 33 log-frequency

bands in range (300Hz − 2000Hz). The overlapping windows are 372ms. long

and windows are stridden with 11.6ms. step size giving ∼ 100 fingerprints per

each second. The short step size provides robustness to arbitrary alignment

problem. Window and striding scheme is depicted in Fig. 1.1. Each extracted

sub-fingerprints are 32-bits which indicates the difference between successive BFCC

bands in consecutive frames. It’s claimed these sub-fingerprints are insensitive to

small changes or distortions in the audio signal by being sparse, since only quantized

binary values of consecutive frames are kept instead of actual differences and they are

compact and fast to compute. Fingerprints are then the concatenated sub-fingerprints,

and Hamming distance is used for comparison.

Figure 1.1 Haitsma, and Kalker audio signal timing scheme

Herre, Hellmuth and Cremer [5] follow up the scheme in [2]which uses characteristics

from MPEG-7 content descriptors, and evaluate various trade-offs between fingerprint

compactness, temporal coverage and robustness of recognition.

Wang [6] [21] describe a system that creates geometric hashes from local spectrogram

maxima. While individual hashes are localized with low specificity, sequences of

matches over time show high specificity. The proposed method of searching for

sequences of matched hashes constitutes a very efficient algorithm. This has become

a classic and influential method, generally known as "Shazam". The hashing model,

however, does not exhibit robustness to any type of scale modifications. The system is

considered to be highly robust to additive noise. It is prosed a robust scheme using only

spectrogram peaks. Wang’s method is somehow not dense like other methods, since it

3



works by extracting spectrograms over long durations of time and examines power

peaks of time-frequency representation. It is argued selecting spectrogram peaks

provide: (1) robustness to noise, surviving from additional noise, (2) property of linear

superposition, that is both components of acoustic audio and noise would provide

same peaks. Their sub-fingerprinting scheme illustrated in Fig. 1.2. For possible pairs

of peaks (t1, f1), (t2, f2) in a neighborhood distance, triplets of values ( f1,∆t,∆ f )
is calculated, quantized and concatenated vector values are used as fingerprints.

Quantized values use 8,6, 6 bits for triplets ( f1,∆t,∆ f ) respectively resulting 20-bits

for each fingerprint.

Figure 1.2 Wang et al. frequency-delta triplet selection scheme

Wang also proposes a simple and fast approach for temporal alignment and it works

like this: (1) for all fingerprint matches a time-vs-time plane is plotted for query

fingerprints against matched metadata, (2) diagonals are examined on time-vs-time

plot, the strong diagonal indicates a valid match.

Ke, Hoiem, and Sukthankar [7] show that audio fingerprinting can be approached via

computer vision techniques. The system can identify query pieces that are severely

distorted by noise. It is proposed a method which improves the performance of

[4]. They use the similar scheme but design their novel fingerprints using AdaBoost

method, parlaying from computer vision field practiced in applications like face

recognition tasks [22]. The important insight is audio signals can be processed

efficiently when transformed into time-frequency representation. AdaBoost, being a

learning method, customized to learn energy concentration of selected frequencies

and the discriminative power of its features similar to boxlets in [22] enables

differentiating two spectrogram sub-rectangles given. The training data also includes

degraded versions of original signals. The output of each classifiers yields a binary

value based on the differences between two consecutive sub-rectangles. Out of 25000

candidate filters 32 classifiers are selected generating 32-bit features. For querying,

same timing scheme is used as [4] and the learned model is used for feature extraction.

Two fingerprints are considered to be a match by Hamming distance threshold equal
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to 2.

Beluja and Covell [8] also benefit from the insights of computer vision approach

combining with wavelet transform. In their work, first, the audio signal is transformed

to time-frequency representation. They use multi-resolution haar-wavelets and

convert overlapping segments of spectrograms to wavelet coefficients. Wavelets are

chosen due to their efficiency in the image retrieval work presented in [23]. Wavelet

transform coefficients are equal to number pixels in spectrogram image and authors

notice the sparsity of coefficients so they select top-t values. Then similar to the

scheme as in [23] coefficients quantized to only sign information and the Min-Hash

method used to generate a set of p bytes that as final fingerprints. The fingerprints are

compared directly by byte-wise Hamming distance. Since for a large values of p-bytes

(e.g. 100) the neighborhood search would be infeasible, authors use Locality Sensitive

Hashing (LSH) to execute approximate nearest neighborhood search in fingerprints

space. Their systems’s pipeline is shown in Fig. 1.3.

Figure 1.3 Beluja et al. Waveprint pipeline

The window duration of overlapping spectrograms are 372ms and they use step size

of 0.09ms. which makes about ∼ 10 fingerprints per second. Top 200 wavelets are

selected for each fingerprint and p is chosen to be 100 (i.e. each fingerprints are

100-bytes). For approximate nearest neighborhood search each fingerprint is divided

to twenty five 4-bytes sub-hashes for LSH, and voting mechanism is used for retrieval

from LSH for each candidate sub-hashes.

Bellettini and Mazzini [9] propose a framework, tracking down commercial radio

or TV broadcast transmission with robustness to pitch-shifted audio. They use

energy difference among subsequent spectral sub-bands of audio using STFT with

372ms. long windows and highly overlapped frames. It is argued sequence of bit

vectors provides robustness both for alignment problem and pitch modifications. 16

sub-bands are used, resulting 16-bit vectors for each time frame and compared with

normalized Hamming distance along with a threshold-ed match algorithm. To ensure

robustness to pitch distortion, a limited bit-shift operation is applied with a predefined

range after feature extraction step. A further observation is made on altering energy
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difference on audio excepts and a mrl pre-processing (i.e. Minimum Run Length for

alterations) is opted with a value of 3, in to provide more robustness (see Fig.1.4).

The proposed framework is tested both by exhaustively brute-force comparison and

with a improved search method.

(a) No mrl
pre-processing

(b) With mrl = 3
pre-processing

Figure 1.4 Minimum Run Length for sub-band energy alterations on 256× 16-bit
vector - Bellettini et al. [9]

Zhu et al. [11] approach to both time-scale modification and pitch-shifting as stretch

and translation of the audio signals 2D representation, and build their framework

using compute vision techniques to extract robust local descriptors. Audio signals

are converted to images by STFT over 2048-sampled windows with %50 overlapping.

Spectrograms contain 97 log-scale frequency bands. It’s claimed a local descriptor,

namely Scale Invariant Feature Transform (SIFT) is utilized in their work, which is to

robust to affine transforms also provides robustness in audio domain. 128-dimensional

descriptors are used for comparison using Euclidian distance. For a given local

descriptor a from audio signal A, also b and b′ from audio signal B being first

and second closest descriptors to a measured by distance function D respectively;

D(a, b) < T ∗ D(a, b′) should hold to consider a and b to be a match, where T is the

threshold value (used as equal to 0.6 in the their work). The study does not suggest

a way to construct a complete scheme for the SIFT characteristics and focuses on

testing the applicability of the feature. The efficiency of identification is assessed on

a database consisting of approximately 20.7 hours of audio material, each produced

from 1241 extracts of 1 minute duration. The work is reported to obtain outcomes

in the ranges of 64% to 150% and 50% to + 100% respectively for speed and pitch
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changes.

Ellis, Whitman, and Porter [12] present a music identification systems providing

robustness to spectral modifications and noise encountered in the audio signal. Their

method depends on relative timing between successive percussive onsets in the audio.

Onset detection is performed independently in 8 frequency bands, corresponding to

the lowest 8 bands in the MPEG-Audio 32 band filter-bank (spanning 0 to 5512.5

Hz). The magnitude of the complex band-pass signal in each band is compared to

an exponentially-decaying threshold, and an onset recorded when the signal exceeds

and adaptive threshold. Pairs of successive inter-inset-intervals (IOIs) in each band,

quantized into units of 23.2 ms, are combined to make a hash. To provide robustness

against spurious or missed onsets, each onset is considered along with its four

successors. Six different hashes (IOI pairs) are created by choosing all possible pairs

of succeeding onsets from the four resulting overall hash rate 8 (bands) × 1 (onset

per second) × 6 (hashes per onset) ≈ 48 hashes/sec.

Fenet, Richard, and Grenier [13] first remark on that most fingerprinting techniques

provide robustness to transmission distortions and focus pitch alterations by

expanding Wang’s [6] hashing model. Their technique, based on a hashing coupled

with a CQT-based fingerprint, claimed as a solution to capture representation of

quantized pitch offsets. CQT transform provides geometrically spaced frequency bins

capturing the characteristics of western scale, thus pitch-shifting corresponds to a

translation in the CQT domain. In their study, 3 frequency bins per note is used for

each 10 ms. apart overlapping frames. Moreover, for more compact representation,

spectrogram peak-picking is used inspired by [6]. Evaluated data reflects a broadcast

monitoring use case where audio excepts may be shortened for time limitations

resulting as pitch modification, including 7 hours long stream of a radio station

recording. For experiments, both small and large reference content are used for

comparison and scalability purposes respectively. Comparative setup is executed with

small reference database which includes approximately 122 hours of audio consisting

1 min. long excerpts from 7309 songs. Compared against the baseline of Wang’s [6]
framework (which is not robust to pitch alterations), which detects with score of 83%,

the proposed technique outperforms with 97.4% detection score (achieving to detect

447 out of 459 occurrences).

Ramona and Peeters et al. [14] propose an cosine-filter based extension to IRCAM

audio fingerprint system that considers the evolution of the audio characteristics over

time instead of instantaneous fingerprints. IRCAM audio fingerprint system labor

large temporal scope with few seconds duration to compute each fingerprint using

what called "Double-nested Fourier Transform" resulting spectral band energies, where
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the second STFT is performed over time for each set of short-term spectral bands.

It’s argued in the work that, using sums of squared amplitudes for spectral energy

provide a weak robustness to scale modifications, since it’s equivalent to applying

rectangular filters where a pitch alteration ends up messing with both spectral energy

peaks. Instead, a cosine-filter based approach (having a smooth shape that enables

continuous change of spectral energy as shown in Fig. 1.5) is proposed to compute

short-term band energies, making rather robust to moderate frequency distortions.

Figure 1.5 Cosine vs. rectangular filter profiles[14]

The evaluation is made 240 hours long corpus of radio broadcast encoded with

low bit-rate with reference content of 1000 items. Stream includes about 2000

occurrences of reference items with 30 seconds long excerpts. Combined with a

proposed frame synchronization scheme which detects frame positions that are robust

to audio alterations, their method outperforms the re-implementations of Philips

system by Haitsma and Kalker [4] and Shazam system by Wang [6] by %8.5 and

%13.4 points respectively.

Malekesmaeili and Ward [17] propose an audio copy detection system providing

strong robustness tempo changes and pitch shifts which is based on local audio

fingerprints of the signal that are extracted from two-dimensional "time-chroma"

image of spectrogram patches. "Time-chroma" representations are stressed as having

advantages as: the pitch shift in the audio signal appears as a circular shift along

the chroma axis of the image and any change of tempo in the audio signal appears

as a change of scale along this image’s time axis. Feature vectors are calculated

based on a set candidate feature points which are local maxima (i.e. are robust to

noise, quantisation and filtering attacks). These candidate local maxima points are

then compared with up to 30 two-dimensional image patches of different width (i.e.

along time-axis between 1s to 4s), centered around the particular local maxima. A

candidate point is selected as feature point if most of the patches manifest a similarity

criterion. The similarity between two patches of different scales are quantified by a

dictionary of arbitrary number of (c) representative patterns. For a pair of patches to

be said are similar, they are both mapped to the same pattern in the dictionary, and
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the similarity metric is correlation of low-frequency discrete cosine transform (DCT).

Later the fingerprint vectors are scaled and translated into zero-mean unit-variance

vectors. Thereby, the tempo and pitch invariance is archived as argued in [17]:

If the tempo of an audio signal is changed, the time-chroma image is

stretched or squeezed along the time axis. This accordingly affects the

scales assigned to the feature points, but has no effect on the contents

of the patches around them, thus providing tempo invariance. Also, if a

song is pitch-shifted, the time-chroma image circularly shifts along the

chroma axis. This moves the feature points vertically (along with the

whole image), thus has no effect on the content of the patches around

them and provides pitch invariance.

The proposed method carries out feature extraction for an average of 20 candidate

points per second of audio signal, and about 40% of which were selected as feature

points by similarity constraints. For performance evaluation, query probe signals are

prepared by mash-up versions of the original signal (i.e. modifying speed, pitch,

tempo, etc) up 100 song snippets that were randomly extracted from the songs in the

reference content database (about 250 songs). Te distance between two fingerprints

is measured by the angle between them, and fingerprint matching is performed by

nearest-neighbour search. Results are compared with re-implemented "AudioSIFT"

and "Shazam" frameworks. Their proposed algorithm delivers out-performing results

for various audio degradations, including tempo and pitch modification attacks,

though considering on a rather small content database.

Six and Leman [18] present a scalable audio identification system named "Panako",

where their fingerprints use condensed representation of audio signals. Proposed

method is inspired by three previous works namely: Wang [6] (for finding local

maxima in spectral domain which provide robustness to noise, compression and

quantization effects), Artz et al. [24] (to benefit a method to align performances and

scores of key time points) and Fenet et al. [13] (by using Constant-Q Transform for

fingerprint extraction where fingerprints remain constant when a pitch-shift occurs).

Combining these key concepts they provide granular acoustic finger-printer that is

robust to noise, time-scale modification and pitch-shifting. Time-scale modification

robustness is provided by storing the quantized values of the spectral peak triplets’

time differences. In their evaluation a database of 30000 songs is used for reference

data with about 10 million seconds of audio. From this dataset random fragments

with modifications (i.e. pitch-shifting, time-stretching, time-scale modification echo,

flanger, chorus and filtering) are selected, with a duration between 20, 40 and 60
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seconds, and then compared with a baseline system. The findings indicate that

the efficiency of the system reduces by more than eight percent with a time-scale

alteration. The scheme is shown to handle pitch-shifting, time-stretching, serious

compression, and other changes as echo, flanger, and filtering.

Sonnleitner and Widmer [19] propose an efficient audio fingerprinting method that

meets the multiple robustness requirements including noise, audio quality degradation

and also to large amounts of speed, tempo or frequency and pitch scaling. A simple and

fast geometric hashing technique is adapted to achieve representations of fingerprints

that are invariant to translation and scaling, and thereby overcome the inherent

robustness limitations. The algorithm uses a compact four-dimensional continuous

hash representation of quadruples of points which referred to as "quads" that are

build by extracting spectral peaks (as in [6]) from the two-dimensional time-frequency

representation of reference audio material, then group quadruples of peaks into quads,

and create a compact hashes. Quads are constructed for possible spectral points

A, B, C , D by the following constraints: (1) At < Ct , Dt ≤ Bt and (2) A f < C f , Df ≤ B f

; where t and f corresponds to time and frequency axis respectively. This scheme is

reported to have high accuracy of more than 95% and an precision of 99% on queries

that are modified in pitch and/or time scale by up to 30% with an average query run

time of under two seconds for query snippets of 20 seconds.

Gfeller et al. [20] present a continuous music recognition system named "Now

Playing", combined with background deep modelled music detector focused on energy

consumption to awake when a musical audio signal is present. Their neural network

finger-printer is generate compact and discriminative fingerprints at a rate of one 96

dimensional embedding per second. Their system is able to detect, recognise and

inform users which song is playing without and client-server architecture and any need

to network access. A deep modelled neural network fingerprinter is used in their work,

which is trained over the audio signal’s STFT patches with triplet loss function. The

model training involves a dataset of noisy music sections aligned in their reference

song with the respective segment. The optimized fingerprint hash model analyzes

audio for a few seconds and generates a single fingerprint embedding at a rate of one

per second.

The work of Gfeller et al. [20] is highly influencial in this study, as we later explain

in following Chapter Concepts using similar methods of training with noisy aligned

dataset and triplet network training for audio patches under different transformations

and generating final embeddings.

Before continuing to following section, where the objectives of this study is given, in
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Table 1.2 Literature by robustness types

Degraded audio quality
Herre, Hellmuth, and Cremer [5]
Wang [6]
Haitsma and Kalker[4]
Ellis, Whitman, and Porter [12]
Allamanche et al. [2]
Coover, and Han [16]
Gfeller et al. [20]
Pitch-shifts
Fenet, Richard, and Grenier [13]
Bellettini and Mazzini [9]
Ramona and Peeters [14]
Ouali, Dumouchel, and Gupta [15]
Both pitch and time-scale modification
Zhu et al. [11]
Malekesmaeili and Ward [17]
Wang et al. [10]
Six and Leman [18]
Sonnleitner, Arzt, and Widmer [19]

brief the following Table 1.2 overviews the notable works in literature against various

robustness settings.

1.2 Objective of the Thesis

The problem at the heart of audio fingerprinting systems can be summarised with two

components that are fingerprint design and matching search methods. In practice the

audio signal data may under many kinds of degradations arising as challenges of the

study of the research.

In this study, we labor an open research problem based on the problem definition and

try to tackle to common challenges and obstacles that encountered while carrying out

methods proposed for the actual problem on musical audio domain.

1.2.1 Challenges

Audio identification systems usually operate on large data scale and are expected to

meet several robustness requirements depending on the use cases, and the approach

to these systems basically consist of two major steps: (1) fingerprint design and (2)

matching search:
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• fingerprint step: aims to generating of robust and compact audio features.

• search step: requires database access and fast search algorithms.

In real-world, the challenges to meet these requirements are varied base on the context

of application to be designed and some could be abandoned for other requirements

tradeoffs. That been said, some specific challenges that considering the input signal

may undergo could be:

• Additional background noise

• Acoustic reverberations

• Quantization errors

• Audio compression artifacts (i.e. GSM or MP3)

• Inference in the transmission

• Pitching (playing faster of slower)

• Equalization

• Quantization errors and D/A and A/D conversion artifacts

And since it is aimed the fingerprints to be compact and robust, while converting an

audio signal into a sequence of characteristic features as an input to the fingerprint

model, the design choices should include:

• Discrimination power (over large number of other fingerprints)

• Dimensionality reduction (i.e. by/or change of domain)

• Perceptually meaningful parameters (e.g. regarding to the human auditory

system)

• Strong robustness (to distortions, additional noise, transmission artefacts etc.)

and/or invariance.

• Temporal correlation (being able to capture spectral dynamics).
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1.2.2 Audio Fingerprinting

An audio fingerprint is a content-based compact signature of audio data that

characterise audio signal data, which be compared or matched reliably to or against

large set of fingerprints from a reference content store. Each fingerprints that extracted

from a query audio data and afterwards compared to indexed reference content. As a

result a match is found (with an additional match score) or it is reported it not present

in reference content (by using thresholding techniques). Audio fingerprint features

should have discriminative properties rather than being representative in nature of

the requirements of verification/recognition tasks.

The requirements for an audio fingerprinting system described by [25] includes

being granular, robust, reliable and economic in terms of storage footprint and

computational complexity while responding to a query.

Also as it stated in [1]:

Robustness is determined by various degradations a real-world query

can be subjected to while remaining recognisable. Degradations

include additional noise, low-quality encoding, compression, equalisation,

pitch-shifting and time-stretching. To allow scaling to large reference

items, an economy in terms of storage is needed.

Considering retrieval process, economy means computational load. The tradeoff

between each requirements can adjust depending on the context of the application. A

typical finger-printer scheme is depicted in Fig. 1.6.

Figure 1.6 A general finger-printer scheme

1.2.3 Audio Retrieval and Identification

Such audio fingerprinting system have many use-cases including digital right

management/copyright detection, identifying duplicates [26], labelling untagged

audio with metadata or query-by-example recognition. For instance Shazam [21] and

SoundHound [27] are popular query-by-example music recognition services where

users make a query by snippets of recorded audio to back-end services to retrieve
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matched song metadata. A common pipeline steps of general architecture can be

summarised as below [28]:

1. Fingerprints of the reference content audio collection and its corresponding

metadata (e.g., audio-file ID, name, time frame data, etc.) are systematically

stored in a database.

2. The fingerprint extraction generates a set of relevant features combined with an

optional post-processing and feature modelling.

3. For a given a short recording of audio as query, its feature vectors (i.e

fingerprints) are computed in the same way as reference content database

generated.

4. Afterwards, a searching algorithm will find the candidate matches for the given

query from the fingerprints those were stored in the reference database.

5. Additionally, adaptive scoring techniques will be applied to derive final match or

response to query as it is not available in content store based on the candidate

matches derived in step (4).

At the query stage, the fingerprints could be extracted at uniform rate with an arbitrary

time window, or they will be extracted with random offsets (within an increasing time

frame) to avoid unlucky alignments while querying the content database. Another

approach would be to extract fingerprints from a range with points of interest based on

the application requirements (e.g. ranges where RMS power or some other attribute

is higher than a given threshold).

Having the features are extracted for the query, then it is compared with a database of

reference content to evaluate candidate matches. Since a naive pairwise comparison

on a large dataset is not feasible, the database can be partition with hashing enabling

the retrieval process to correspond a reverse lookup. Techniques for approximate

nearest neighbour search like locality sensitive hashing (LSH) or vector quantisation

may be used on very large-scale datasets since direct hashing may not scaleable for

millions or billions of entries. The retrieved metadata by reverse lookup includes IDs

song and the time offsets within the song. The set of fingerprints for the query probe

from the reverse lookup are the potential shortlist of candidates.

Storing the time offsets as metadata in the content store is crucial since candidate

matches of queried fingerprints may fed to another pipeline to promise a final

candidate for a whole sequential query. Based on the candidate shortlist, various
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constraints may be applied to propose final candidate match namely temporal align-

ment for linear correspondence. Temporal alignment method is used to avoid

false positives and increasing precision of retrieval. Techniques like Expectation

Maximization [29][7] or Dynamic Time Warning [8] may be used for temporal

alignment in the nature of tempo constraint, that is the tempo between query and

match should be same or close enough.

1.3 Hypothesis

The scope of this study aims implementing full-fledged musical audio identification

system. We explored a two-stage feature extraction method combining Scattering

Wavelet Transform (SWT) and deep embedding hash model to generate final

fingerprints. Combined with concept of neural network finger-printer, embedding

hash model is highly influenced by the work of Gfeller et al. [20], using convolutions

and divide-any-encode layer of segmented transformed signal data. Our contribution

also compasses investigations and evaluations of concepts SWT, divide-encode block,

piece-wide threshold quantisation, adaptive scoring schemes and LSH content storage

for audio identification problem.

In this research, we have attempted to address the most prevalent obstacle to

audio identification from the end-user view, which is musical audio tampered

with environmental noise, not concentrating on pitch and tempo change kinds of

robustness. The identification system is first experimented with naive comparative

technique not to be affected by artefacts of database accuracy and later also with

LSH methods to be possible to use large-dimensional audio fingerprint information

to collect and identify a real-world application situation using our compact and

discriminative audio fingerprints.

1.4 Organisation

In this chapter we started by giving the problem definition for audio fingerprinting

recognition systems. We explained the details of fingerprint design and methodology

for retrieval and identification tasks. Also we enlisted and various challenges that can

be encountered for a real-world applications and coarsely explained design decisions.

In following Chapter Concepts we delve into technical concepts and the terminology

used in entire study in a detailed way. Namely it is explained how our

two-stage fingerprinting framework works based on its technical foundations.

Next, Chapter Evaluation and Musical Audio Identification Application presents
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our findings of evaluations and various experiments of the framework proposed

in Chapter Concepts. Finally, the study is summed up in Chapter Conclusion and

Recommendations.
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2
Concepts

Given the problem definition in Chapter Introduction and various approaches to the

specific task in the literature, what follows the theoretical background should be given

which our technique and implementation are build upon. This chapter introduces

coarse overview of concepts as building blocks of our method presented in this study,

and provides materials for the subsequent chapters for completeness. Readers can

investigate the given references for a comprehensive follow up.

The following pages in this chapter explain the concepts practiced while developing

our framework in detail, and the content is organized as follows: Section 2.1 gives a

brief overview of the key points of our proposed method. In Section 2.3 we explain

scattering wavelet transform (SWT), the preliminary stage of our feature extraction

pipeline, executing change of domain on audio signals to 2D representation, and

before in Section 2.2 we delve into wavelet theory to have an integral understanding.

Section 2.4 provides necessary information for convolutional neural networks, a deep

neural network block used in our embedding hash model. In Section 2.5 we present a

deep neural network model coupled with SWT coefficients as input to generate final

audio fingerprints as embeddings, and in Section 2.6 the mentality how the model is

trained examined.

2.1 Introduction

Followings sections explain various concepts used in this study to have grasp

understanding the contextual background information used. Namely, first we start

with wavelet theory in Section 2.2 and continue to explain Scattering Wavelet

Transform in Section 2.3 to construct our first stage of fingerprinting scheme. In

Section 2.4 and Section 2.5 we build our deep fingerprint hash model as the second

stage based on scattering-wavelet-transform output coefficients. Section 2.6 explains

the final embedding hash model and strategies how it is trained. Methodology sections

(if available) describe how the concrete implementation is applied based on the
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technical background explained in detail. The overall scheme of audio fingerprinting

is depicted in following Fig. 2.1 stroked with the dashed rectangular area:

Figure 2.1 Concepts - system scheme overview

Scattering Wavelet Transform have a significant importance in this study, thus to

evaluate definitive characteristics of the transform on musical audio data, it is first

studied on musical genre classification task and the results are reported with following

publication:

• E. Kanalici and G. Bilgin, "Music Genre Classification via Sequential Wavelet

Scattering Feature Learning." In International Conference on Knowledge

Science, Engineering and Management, pp. 365-372. Springer, Cham, 2019.

where wavelet scattering coefficients are used as features providing both

translation-invariant representation and transient characterisations of audio signal to

predict musical genre. Extracted features are fed to sequential architectures to model

temporal dependencies of musical piece more efficiently.

Later, the main subject of this study evaluated with limited configuration, that is

only using one-to-one comparison against content storage for audio labelling task to

avoid hash storage artefacts. Similarly as in Fig. 2.1, a two-stage feature extraction

framework using SWT coupled with deep Siamese hashing model for musical audio

labelling is proposed. Similarity-preserving hashes are the final fingerprints and in

the projected embedding space, similarity is defined by a distance metric. Hashing

model is trained by roughly aligned and non-matching audio snippets to model musical

audio data via two-layer scattering spectrum. The results reported in the following

publication:
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• E. Kanalici and G. Bilgin, "Scattering Wavelet Hash Fingerprints for Musical

Audio Recognition", In International Journal of Innovative Technology and

Exploring Engineering, pp. 1011-1015. BEIESP, 2019.

2.2 Wavelet Theory

Wavelet theory as an independently developed framework is a signal

analysis/synthesis tool which can represent non-stationary signals with dynamically

scaling window size and translations.

[30] Wavelet theory provides a unified framework, some foundations

developed independently, for various signal processing applications.

Including multi-resolution signal processing for computer vision, sub-band

coding in speech and image compression, and wavelet series expansions

developed in applied mathematics . The Wavelet Transform (WT) interests

with the analysis of non-stationary signals and it provides an alternative

approach to Short-Time Fourier Transform (STFT) or Gabor transform.

In contrast to the STFM which uses a single analysis window, the

WT uses short windows at high frequencies and long windows at low

frequencies[31].

WT can be considered as a signal decomposition into a set of basis functions, which

are called as wavelets. Wavelets are generated from a single prototype wavelet

(mother wavelet) by scaling (i.e. dilations and contractions) and shifts. The prototype

wavelet is analogous to a bandpass filter, and since the obtained wavelets are dilated

and contracted versions of the prototype, they satisfy "constant-Q" property, having

multiple of frequency bandwidths consecutively. WT presents the notion of time-scale

plane instead of time-frequency as in the case of STFT, which the signal interested in

mapped into.

2.2.1 Fourier Transform

The signal analysis interests extracting relevant information from a signal by a means

of some transformation. Some analysis techniques are based on a priori assumptions

on the signal like being stationary (i.e. not evolving over coarse of time). Fourier

transform, given in Eq. (3.1), is such a stationary transform, the analysis coefficients

X ( f ) define the notion of trend of frequency f in whole time-dependent signal.

It transforms the signal to frequency domain and the energy concentrations in the
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frequency spectrum imply the most dominant frequencies in the analyzed signal

without any time information.

As a result Fourier analysis works well if x(t) is composed of a time-dependent

stationary components without any abrupt change over the coarse of time. Most

signals posses non-stationary characteristics in their nature especially musical audio,

thus some notion of time-frequency localization should be defined to well describe

these signals of interest that have a dynamic nature.

X ( f ) =

∫ +∞

−∞
x(t)e−2 jπ f t d t (2.1)

Eq. (3.1) can be interpreted as the similarity detection between frequency components

and a given signal since the dot product of the signal x(t) with the complex sinusoids

amounts for. Certain frequencies will overlap more with the signal x(t) that results

large amplitude for the Fourier transform for specific frequency values. Thus although

Fourier transform has well defined frequency resolution, it lacks of time resolution as

demonstrated in following figure. In Fig. 2.2 (a) a stationary signal with immanent

four different frequencies and its frequency spectrum is shown. Fig. 2.2 (b) shows

another signal with four different frequencies but changing over course of the time.

The frequency spectrum of the second signal is present. As it can be seen both

spectrum plots have similar characteristics with amplitude peaks at the same frequency

instances. Also frequency spectrums have no information about time.

Figure 2.2 Frequency spectrums of stationary and non-stationary signals

Time-frequency localization can be introduced by looking the whole signal by only

through segmented windows. The Windowed Fourier transform (WFT) is an analysis

tool specialized for extracting local-frequency information from a signal. Since for

non-stationary signals Fourier transform fails to represent localized information, WFT

provides localization using segmented time frames. WFT is applied with sliding frames
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of length T from a time series of time step δt and with total length equals Nδt, thus

extracting frequency in range [T−1, (2δt)−1] at each time step. The frames can be

windowed with an arbitrary window functions such as a a Gaussian window [32].

As discussed in [32], the WFT time-frequency localization is inaccurate and inefficient.

The inaccuracy comes from having limited frequency range, gives result to the aliasing

frequency components that do not fall within the range. The inefficiency comes from

the T/(2δt) frequencies which must be analyzed at each time step. Thus, wavelet

transform, being a scale independent analysis method may be employed for signals

that are non-stationary and have wide range of frequency characteristics.

2.2.2 Short-time Fourier Transform

Describing a signal on time-frequency domain requires a 2D representation retrieved

from a defined transformation. Since this instantaneous frequency concept can not be

defined over infinitely small time ranges, averaged frequency may be the solution to

describe spectral characteristics over time domain. Thus the transformation maps a

signal of interest to a time-frequency plane using time windows for spectral averaging.

To introduce frequency dependence on time, the Fourier transform was adapted by

Gabor [31] defining instantaneous frequency coefficients S(t, f ) by using a finite

support window function g(t) centered at τ:

STFT(τ, f ) =

∫

x(t)g∗(t −τ)e−2 jπ f t d t (2.2)

STFT maps windowed signals x(t)g∗(t − τ) into two-dimensional function in a time-

frequency plane (τ, f ). In Eq.(3.2) the Fourier analysis is applied to windowed signals

and the analysis depends critically on the choice of window function g(·). Fig. 2.3

shows time series analysis with vertical lines on time-frequency plane which amounts

to time localization (a), and the Fourier transform corresponds to horizontal regions

on the plane for stationary signals that amounts to frequency localization (b). Using

a sliding windowed analysis enables localized view for both time and frequency for

STFT as depicted in (c).

STFT can be thought of an either windowed time analysis or modulated filter-bank

since it divides time-frequency plane in both axis. But an arbitrary resolution for both

domain has limitations. For given window function g(t) and its Fourier transform

bg( f ), the square of frequency resolution (frequency bandwidth) ∆ f and the square

of time resolution (spread in time) ∆t are given:
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Figure 2.3 Wavelet transform time-scale resolution vs. STFT time-frequency
resolution

∆ f 2 =

∫

f 2|bg( f )|2d f

|bg( f )|2d f
(2.3)

∆t2 =

∫

t2|g(t)|2d f

|g(t)|2d t
(2.4)

where |bg( f )|2d f and |g(t)|2d t are the energy of the signal.

Two spectral signals (e.g. sinusoids) can be discriminated if they are ∆ f apart and

two pulses can be discriminated if they are ∆t apart on frequency and time domains

respectively. The resolution in time and frequency cannot be arbitrarily small since

their product is lower bounded by Eq.(3.5), resulting a trade-off between time and

frequency resolution by namely uncertainty principle (or Heisenberg inequality).

∆t∆ f ≥
1

4π
(2.5)

Wavelet transform provides a different approach which enables more fine grained

time-frequency resolution by introducing the concept of scale. By analyzing the signal

with different varying scales a better tradeoff for frequency component extraction

(i.e. high resolution for small frequencies and low resolution for large frequencies) is

achieved which is coarsely depicted in Fig. 2.3 (d).
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Figure 2.4 Sinusoid vs. wavelet

2.2.3 Wavelet Transform

Fourier transform were linear combinations of the signal with complex sinusoids

e−2 jπ f , whereas in the wavelet transform case it is a combinations of functions called

as wavelets. Generated from a prototype wavelet (namely mother wavelet), wavelet

functions are localized in time with a limited support while a sinusoid is spread in

time infinitely (see Fig. 2.4). Also prototyping a wavelet provides scale changes (i.e.

dilations and contractions) and since its localized in time it can be time shifted,

thus localization in both frequency and time domain can be achieved by applied

convolutions on the signal with scaled and translated wavelets. Resulting time-scale

representation of the signal is a 2D representation and called Scaleogram.

To tackle resolution limitation of STFT, multi-resolution analysis can be applied by

varying ∆ f and ∆t whose bounded by Eq.(3.5). In multi-resolution approach

time resolution increases subject to central frequency of the filter-bank analysis

filters. Thus, proportionally the frequency resolution (∆ f ) is subject to central

frequency and the relation can be imposed as: ∆ f = c f0 for a constant value

c. Having analysis filter-bank satisfying this relation is called constant-Q analysis.

Thus each analysis filters have constant relative bandwidth which are regularly

spread in logarithmic scale rather than a uniform spread as in STFT case (Fig. 2.5).

While ∆ f changes with spread, satisfying the bounded relationship of uncertainty

principle, ∆t also changes and time-resolution improves high-frequencies while the

frequency-resolution improves at low frequencies.

Wavelet transform maps a given signal to time-scale plane. Relating concept of scale

to a pseudo-frequency can be given by f = a−1 f0 where f0 is the central frequency

of the prototype wavelet and a is the scaling factor. Following the relation, the

scaling factor a has an inverse relation with pseudo-frequency values. Noted that,

the term pseudo-frequency ( f ) has a narrow relation to frequency modulation as in

STFT case, which depends only prototype wavelet time-scalings. Thus, the term "scale"

is preferred to "frequency" for wavelet transform.
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(a) STFT frequency bandwidth

(b) Wavelet transform frequency bandwidth

Figure 2.5 STFT and Wavelet transform bandwidths on frequency spectrum

There are different families of wavelets developed in literature, each have their own

characteristics which fits best with the designed features for different purposes. These

characteristics include the shape, smoothness and compactness of wavelet functions.

To be admissible as a wavelet function, it must have have zero-mean and be localized in

both frequency and time. Localization in both time and frequency provided by having

a finite energy, that it a wavelet function should be integrable and the inner product

with any signal should exists. Some describing characteristics of wavelets are:

• Orthogonality: orthogonal, non-orthogonal or bi-orthogonal.

• Symmetry: symmetric or non-symmetric.

• Wavelets can be real or complex values. In complex case, the real part amounts

to the amplitude and the imaginary part amounts to the phase.

• Wavelets are generally used with normalization factor, providing a unit energy.

Also noted, wavelet function and wavelet basis have conceptually different meanings.

The term wavelet function is used generally to refer to either orthogonal or

non-orthogonal wavelets. Whereas the term wavelet basis refers only to an orthogonal

set of functions. The use of an orthogonal basis implies the use of the discrete wavelet

transform, while a nonorthogonal wavelet function can be used with either the discrete

or the continuous wavelet transform [33].
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Based on characteristics, various families of wavelets are developed in the literature.

In Fig. 2.6 some of the several different families of wavelets are plotted.

Figure 2.6 Several families of wavelets

Also for the wavelet families there can be different subcategories distinguished by

order (vanishing moments) and decomposition level.

The scaling function of a wavelet with p vanishing moments can approximate

polynomials up to a degree of p − 1. The "vanishing" term refers to that wavelet

coefficients goes zero for approximated polynomials of degree at most p− 1, thus the

scaling function alone is enough to represent such functions. More vanishing moments

amounts to that the wavelets can approximate more complex polynomials.

Some instances of the "Daubechies" family wavelets are plotted in Fig. 2.7. In the

figure columns enumerates the order of Daubechies wavelets and rows corresponds

to the level of decompositions. Vanishing moments determines the smoothness and

approximation order of wavelets. As it can be seen as the number of vanishing

moments goes up along a row, the wavelet becomes smoother since its polynomial

degree increases. And while the decomposition level increases along a column, the

number of wavelet samples increases.

An example of complex wavelet function is the complex Morlet wavelet, which is a

Gaussian modulated wave:

ψ0(n) = φ
−1/4eiw0ne−n2/2 (2.6)

where w0 is the non-dimensional frequency.

Complex Morlet wavelet filter function and its frequency response are plotted in

Fig 2.8.
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Figure 2.7 Daubechies family wavelets

Figure 2.8 Complex Morlet wavelet filter and its frequency response
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Wavelet transform has two different and theoretical approaches, namely the

continuous wavelet transform and the discrete wavelet transform.

The continuous wavelet transform (CWT) follows the resolution limitation with an

additional scheme: all impulse responses of the filter-bank are defined as the scaled

(dilated or contracted) versions of the prototype function h(t):

ha(t) =
1

p

|a|
h(t/a) (2.7)

where a is a scale-factor and the constant 1/
p

|a| is normalization factor.

The definition of CWT is given as:

CW Tx(τ, a) =
1

p

|a|

∫

x(t)h∗(
t −τ

a
)d t (2.8)

By varying the wavelet scale-factor a and translating along the time variable τ,

time-scale localization is achieved. In Eq. (3.8) the scale-factor and translation time

variable are continuous, thus the number of wavelets is not finite.

Noted that, the modulated window used in STFT can be defined in form of the basic

wavelet h(t):

h(t) = g(t)e−2 jπ f0 t (2.9)

Then the frequency responses of the analysis filters satisfy "constant-Q" relation ( f =
f0/a). But more generally, h(t) can be chosen to be any band-pass function.

Discrete wavelet transform (DWT), as distinct from CWT, the scale-factor and

translation time values are not continuous but discretely sampled. The scale-factor

is two-powered integer values (a ∈ 2 j), and the translation is discrete integer values

(τ ∈ Z). The DWT is only discrete for the scale and translation values, but not in

the time-domain. To be able to make analysis of signals which are discrete in the

time-domain the wavelet transforms should also be discretized in the time-domain.

These wavelet transform formations are referred to namely the discrete-time wavelet

transform and the discrete-time continuous wavelet transform.
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2.2.4 Discrete Wavelet Transform

To make discrete-time analysis of wavelet transforms possible, sub-band coding

[34] and multi-resolutional analysis [35] were developed independently as backing

foundation of discrete wavelet transform. These coding methods introduce critical

sampling (acquiring minimum samples for information). In coding scheme of discrete

wavelet transform, scale corresponds to up- down-sampling for small and large values

respectively.

In multi-resolutional analysis, given a sequence x(n), n ∈ Z, lower resolutional signal

is derived by lowpass filtering by a half-band low-pass filter having impulse response

g(n). following the Nyquist’s rule subsampling by two corresponds to doubling the

scale in analysis:

y(n) =
k=+∞
∑

k=−∞

g(k)x(2n− k) (2.10)

In Eq.(3.10) lowpass filtering corresponds to resolution change and sub-sampling by

two corresponds to scale change. Retrieving lowpass and downsampled version of the

signal, the approximation is obtained by upsampling y(n) by two and interpolation:

y ′(2n) = y(n)

y ′(2n+ 1) = 0
(2.11)

a(n) =
k=+∞
∑

k=−∞

g ′(k)y ′(n− k) (2.12)

If g(n) and g ′(n) are perfect half-band filters (having a frequency passband equal to

one in frequency range (−π/2,+π/2) and zero elsewhere), the the Fourier transform

of approximation a(n) would be equal to Fourier transform of original signal x(n)
over the frequency range (−π/2,+π/2) and zero elsewhere, that is a(n) would be a

perfect half-band lowpass approximation of x(n). But in general case for non-perfect

approximations, the error term given:

d(n) = x(n)− a(n) (2.13)

x(n) can be reconstructed by sum of approximation and error term (a(n) + d(n)) as

shown in Fig. 2.9, but there exists some redundancy since original signal x(n) with
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sampling rate fs is disjoint into two composed signals d(n) and y(n) with sampling

rates fs and fs/2 accordingly. In case of perfect half-band low-pass filter, error term

d(n) contains frequencies above π/2 of x(n), thus shows d(n) can be subsampled by

two without information loss thus namely via critically sampling.

In the nature, the coding scheme of separating the signal x(n) into coarse

approximation a(n) and additional detail d(n) involves halving the resolution and

doubling the scale (lowpass filtering followed subsampling by two), and this scheme

can be iterated on y(n) creating tree of lower resolution signals at lower scales.

Figure 2.9 Multiresolution scheme

Multi-resolutional analysis creates redundant set of components, that is one stage of

decomposition leads half rate approximation and full rate difference, resulting 50%

increase in number of samples. It’s shown this oversampling may be avoided if lowpass

filters meet certain conditions [36].

Sub-band coding (or filter-bank) scheme provides no redundancy where the lowpass

subsampled approximation is obtained same, but instead of calculating difference

error term, the additional detail term is calculated by high-pass filter h(n) and

subsampling on by two on original signal x(n) as shown in Fig. 2.10. Assuming that

lowpass filter g(n) is perfect half-band, a perfect half-band high-pass filter h(n) would

lead to perfect reconstruction.

This scheme corresponds to one step of wavelet decomposition using sinc (i.e.

sin(x)/x) filters decomposing the signal to lowpass and high-pass components at

double scale. In particular these ideal filters are used, the discrete version is identical

to continuous wavelet transform [30]. It’s shown that without using ideal filters,

yet it is possible to recover original signal x(n) from its two filtered and subsampled

components y0(n) and y1(n). To reconstruct both upsampled and filter by g ′(n) and

h′(n) respectively and superimposed (see. Fig 2.10). The reconstructed signal bx(n) is

not identical to original signal x(n) unless the filters meet specific constraints. Filter

that meet these specific constraints are called having perfect reconstruction property,
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and practically have techniques for filter design [37].

Figure 2.10 Subband coding scheme

Assuming that the analysis and synthesis filters are identical (provided they are

time-reversed versions of one another) and perfect reconstruction is satisfied (i.e.

x(n) = bx(n)), it is shown that this sub-band analysis/synthesis filter pair corresponds

to an orthonormal basis and the reconstruction achieved by summing up orthogonal

projections. Using FIR filters, the relation between analysis and filters are given:

h(L − 1− n) = (−1)n g(n) (2.14)

where L is the length of the signal and the modulation (−1)n transforms lowpass filter

f to high-pass filter g.

In Fig.2.10 the first stage of convolutions followed by subsampling of two evaluates

the inner product of signal x(n) and the sequences g(−n + 2k), h(−n + 2l) where

time-reverse come from convolution:

y0(k) =
∑

n

x(n)g(−n+ 2k)

y1(k) =
∑

n

x(n)h(−n+ 2k)
(2.15)

Since the set of filter impulse responses is orthonormal, it is then reconstruction of

x(n) is given by sum of weighted impulse responses:

bx(n) =
k=+∞
∑

k=−∞

[y0(k)g(−n+ 2k) + y1(k)h(−n+ 2k)] (2.16)

The weights are inner products of signal with the impulse responses. Also from

Eq.(3.14) and Eq.(3.16) it is clear that the synthesis filters are also the analysis filters
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with time-reversal [30].

Fig. 2.10 show only one step of sub-band coding scheme, which may be iterated

for multiple levels to achieve decomposition of a signal. Each iteration extracts the

approximation coefficients and detail coefficients by low-pass filter g(n) and high-pass

filter h(n) respectively. To retrieve wavelet transform coefficients iteratively, sub-band

coding scheme is applied on the approximation coefficients from the previous levels.

At each subsequent level, signal approximation is first down sampled by factor of two

as in Fig. 2.10, then the sub-band filters (i.e. g(n) and h(n)) separates new coarse

low-pass and detailed high-pass components.

Fig. 2.11 depicts the sub-band coding decomposition of chirp signal. A chirp signal

has time-dependent frequency spectrum that is increasing or decreasing linearly. The

plotted signal is a up-chirp signal with an increasing frequency along the time axis. In

Fig. 2.11 6-level of decomposition is applied. As the level of decomposition increases,

detailed coefficients have decreasing frequency bands at each level as expected since

DWT is applied from previous subsequent approximations.

Figure 2.11 Discrete wavelet transform - subband coding of chirp signal

2.3 Scattering Wavelet Transform

Wavelet Scattering Transform (SWT), presented by Mallat [38], is a signal

decomposition based on arguments of translation-invariance and stability under

dilation and transposition. SWT is implemented as similar to convolution networks
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whose filters are not learned, but fixed being wavelet filters, and computed through a

cascade of wavelet decompositions iteratively.

Definition 2.1. Translation invariance Discrete equivalent of time-invariance, that

is for a given translation-dependent input function x(t) and translation-dependent

output function y(t); the system will be considered translation-invariant if y(n− k)
is the system response to input x(n− k) [39].

Definition 2.2. Lipschitz continuity A real-valued function f : R → R is Lipschitz

continuous if a positive constant K ∈ R exists such that:

| f (x1)− f (x2)| ≤ K |x1 − x2| (2.17)

Let bx(w) be Fourier transform of x(t). The Fourier modulus is translation invariant

for given x1(t) = x(t − t1):

|bx1|= |bx | (2.18)

For a given deformation xτ(t) = x(t − τ(t)) which satisfies Eq. (3.19), a mapping

function Φ(x) is stable under deformation τ if a small deformation implies as small

change in the mapping function that is Lipschitz continuity in Eq. (3.20) holds for all

x(t) and τ(t):

|dτ(t)/d t|< 1 (2.19)

‖Φx −Φ(xτ)‖< Csup
t
|∇τ(t)|.‖x‖ (2.20)

Corollary 2.0.1. Modulus of short-time Fourier transform (spectrograms) are unstable.

Dilation defined as xτ(t) = x(t−εt) is a deformation function which satisfy Eq. (3.19):

supt |dτ(t)/d t| = ε. Armed with the definition, log power spectrums of the original

and dilated version of a harmonic signal with two time instances is depicted in

Fig. 2.12.

As it can be seen in Fig. 2.12, frequency shifts in high frequencies is greater than

the bandwidth, so short-time Fourier transform (STFT) modulus is not deformation

invariant under dilation:
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Figure 2.12 STFT of dilated harmonic signal [40]

‖bx − bxτ‖≮ Csup
t
|dτ(t)/d t|.‖x‖ (2.21)

High-frequencies are more prune deformation instabilities, the major difficulty is to

main the Lipschitz continuity over high-frequency bands [38].

Corollary 2.0.2. Mel-frequency representations are stable.

With insights that short-time Fourier transform (STFT) is unstable, mel-frequency

representation provides stability by band-pass averaging:

M x(t,λ) =
1

2π

∫

|bx(w, t)|
�

�

�

Òψλ(w)
�

�

�

2
dw (2.22)

where bx is STFT and Òψλ is a band-pass filter at mel-frequency λ. Frequency bins of

mel-scale defined as:

λ( f ) = 1127ln(1+
f

700
) (2.23)

The mel-scale logarithm prevent the progressive instability of harmonics (i.e.

multiples of base frequency) f = nf0 since:

λ( f )≈1127ln
f

700
=1127(lnn+ ln f0 − ln700)

(2.24)

And thus mel-frequency representation, thanks to band-pass averaging has stability

under deformations, including ε dilations:
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‖M x(λ, t)−M xτ(λ, t)‖< Csup
t
|dτ(t)/d t|.‖x‖

= Cε‖x‖
(2.25)

It can be seen in Fig (3.2), frequency peaks now overlap in high-frequencies.

Figure 2.13 Mel-frequency scale averaging with overlapping high-frequencies [40]

Corollary 2.0.3. Time averaging results information loss.

The deformation stability comes at the cost of information loss (1) in high frequencies

that are averaged and (2) in short-time windowed temporal structure. Mel-frequency

can be approximated by convolutions and time-averaging [40]:

M x(λ, t)≈ |x ?ψλ|2 ? |φ|2(t) (2.26)

where the windowing function φ acts as a local time-averaging of the mel-frequency

response |x ?ψλ|.

Actually in Eq. (3.26) it is shown that frequency averaging is equivalent to a

time averaging of the filter bank output [40]. Keeping windows (i.e. support of

lowpass filter φ) short prevents the mel-spectrogram from averaging away too much

information. Considering |φ|2(t) as a low-pass filter, the information loss is contained

in the high-frequency components of system response (i.e. amplitude modulations

of |x ? ψλ|). In Fig. 2.13 its apparent the loss of information when a lowpass

time-averaging filter applied with an arbitrary temporal window size.

Fig. 2.14 (a) and Fig. 2.14 (b) shows original (|x ? ψλ|2) and time-averaged (|x ?
ψλ|2 ? |φ|2) scaleograms of a musical recording respectively. The window duration

for averaging filter ψ is T = 190ms. This time averaging discards detailed transient

information of the signal such as attacks and tremolo. Mel-frequency spectrogram is

often computed over arbitrary small time windows of and thus it is unable to capture

large-scale structures.
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(a) Scaleogram log |x ?ψλ|2 (b) Averaged scaleogram with lowpass filter φ of
duration T = 190ms.

Figure 2.14 Scaleograms of musical signal - time averaging information loss [40]

Most of the transient characteristics (e.g. attacks, modulations and tremolo) of

the signal is lost by this time-averaging (Fig. 2.14). As a result, one should be

able to increase T without losing too much information and capture the transient

characteristics of |x ? ψλ| at scales smaller than T . Multi-layer scattering transform,

as a solution, provides both mel-frequency and modulation features by recovering the

mentioned averaged lost information.

For a given signal x , the wavelet transform W x was defined as convolutions with a

averaging operator (low-pass filter) φ and higher frequency wavelets ψλ:

W x(t,λ) =
�

x ?φ(t), x ?ψλ(t)
�

t∈R,λ∈Λ

ψλ(t) = 2− jQψ(2− jQ t); λ= 2− jQ t
(2.27)

In Eq.(3.27):

• Waveletsψλ are high-order (λ > 0), and low-pass filterφ corresponds to zeroth-

order (λ= 0).

• ψλ are dilated band-pass filters with constant mel-scale bandwidth.

• Q is the quality-factor of Q-constant band-pass filters Òψλ, that is number of

wavelets per octave.

• The representation oversampled and redundant.

• Wavelet transform preserves energy.
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To have an informative invariant which is not zero (as opposed to being zero-sum

as
∫

x ? ψ(t)d t = 0), it has to have non-linearity (sigmoid, arc-tangent, rectification

etc.). The non-linear requirements are:

• Diffeomorphism (i.e. deformation) stability: Φ commutes with diffeomorphism.

• L2 stability (contractive): should be stable to additive perturbations (the norm

should not explode).

Coarsely, the basic intuition of SWT is based on applying a non-linear map Φ

to time-averaged signal (Eq. (3.28)), which is translation-invariant and commutes

with diffeomorphism and L2 stable to additive perturbation since its contractive

and preserves the norm. Modulus operator |•|, is the only choice having these

particular properties i.e. being a non-linear map, translation-invariant and stable to

deformations as argued in [40] (Eq. (3.29)).

∫

Φ(x ?ψλ)(t)d t (2.28)

‖Φ(h)‖=‖h‖

‖Φ(g)−Φ(h)‖ ≤‖g − h‖

⇒ Φ(h)(t) = |h(t)|=
Æ

|h(t r)|2 + |h(t i)|2
(2.29)

A modulus computes a smooth lower frequency envelop for complex waveforms. The

integral of modulus is L1 norm which is non-zero and stable invariant (Eq. (3.30)):

∫

|x ?ψλ(t)|d t = ‖x ?ψλ‖1 (2.30)

The wavelet power spectrum extracts time-windowed envelopes at different

resolutions (Eq. (3.31)). Modulus discards phase information but retains sufficient

information in the nature of wavelet transform being redundant.

|W | x =
�

x ?φ(t),
�

�x ?ψλ1
(t)
�

�

�

t∈R,λ1∈Λ1

(2.31)

Whereas zeroth-order coefficients S0 = x ?φ(t) is locally translation-invariant thanks

to modulus operator, the high-frequency information is lost by time-averaging φ.
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Although lost information is obtained with modulus of wavelet coefficients
�

�x ?ψλ1

�

�,

yet these coefficients are not time-shift invariant. Provided that local time-shift

invariance is obtained by time averaging as in S0, applying averaging again gives

first-order of scattering coefficients:

S1 x(t,λ1) =
�

�x ?ψλ1

�

� ∗φ(t) (2.32)

If the frequency resolution of wavelets ψλ1
are the same as the standard mel-scale

i.e. λ( f ) ≈ 1127 ln( f /700), the first-order coefficients S1 x approximate the

mel-spectrogram as it is shown in [40]. What’s more, scattering transform enables

to recover lost information in higher-order components by feeding the modulus

of coefficients
�

�x ?ψλ1

�

� to a bank of next-order wavelets ψλ2
(Eq. (3.33)), and

then applying time-averaging operator gives second-order coefficients in a time-shift

invariant manner (Eq. (3.34)):

|W2|
�

�x ?ψλ1

�

�=
�

�

�x ?ψλ1

�

� ?φ,
�

�

�

�x ?ψλ1

�

� ?ψλ2

�

�

�

λ2∈Λ2

(2.33)

S2 x(t,λ1,λ2) =
�

�

�

�x ?ψλ1

�

� ?ψλ2

�

� ?φ(t) (2.34)

Repeatedly applying modulus for stability to deformations (diffeomorphism)

and time-averaging for translation invariance in layer-wise fashion develops the

scattering spectrum as depicted in Fig. 2.15.

Figure 2.15 Scattering wavelet spectrum

By using Eq. (3.34) in a cascaded fashion, windowed scattering for any path of scales

p = (λ1, ...,λm) of order m is given in Eq. (3.35). All the output coefficients at each

layer will be averaged by the scaling function φ (similar to pooling operation as in

convolution neural networks). Noted, the interval nodes of the scattering tree are
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used as coefficients instead of leaves, since averaging is not applied to leaves, contrary

to convolution neural networks. Also, the energy of the decomposition goes to zero

as the depth m increases.

S[p]x(t) = ||x ?ψλ1
| ?ψλ2

|...| ?ψλm
| ?φ(t)

{S[p]x}p∈P

(2.35)

An example of 5-seconds long audio clip shown in Fig. 2.16. Also zeroth-order

SWT decomposition coefficients are plotted. Note that, the scaling function φ

(behaving as the averaging operator), the large values of coefficients reflects the

energy concentration of audio signal.

Figure 2.16 Zeroth-order scattering coefficients

Fig. 2.17 shows wavelet scattering framework with 2 filter banks. Wavelets are in form

of modulated Gaussian by sine and cosine wave as a complex waveform. It can be seen

that the scaling filter is localized in invariance-scale (0.5 seconds) by design. Also the

time support of the coarsest-scale wavelet is bounded by the invariance-scale of the

wavelet scattering. Whereas second order filter bank wavelets are more localized in

time with shorter support.

Fig. 2.18 shows frequency response of two wavelet filter-banks.

Comparing to mel-frequency cepstral coefficients (MFCC), which is well-known for

music and speech related information retrieval tasks, being lossless is beneficial

for various aspects (inverse property). Substantially, 1st layer outputs of SWT

decomposition S[λ1]x approximates MFCC values and Scale-invariant feature
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(a) 1st-order filter bank (b) 2nd-order filter bank

Figure 2.17 Scattering Wavelets with 2 filter banks

Figure 2.18 Wavelets frequency response
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transform (SIFT, an algorithm in computer vision to detect and describe local features

in images) [41] values for 2D transform in particular. In [40] it’s also explored the

similarities between SWT and convolutional neural networks.

Although 2-layered scattering is successful enough for most of audio signal

applications capturing mel-spectrogram and modulation features, noted also

coefficients goes to zero as higher layer transforms are applied. In practical level

i.e. for feature extraction, parameters for support of averaging low-pass filter φ(t)
(invariance-scale) and filter-bank quality per each order (Λi) may be considered.

2.3.1 Scattering Transfer Normalization

To increase the invariance, the scattering coefficients should be normalized.

First-order scattering normalization is given in Eq. (3.36) where ε is silence detection

threshold of case x = 0:

eS1 x(t,λ1) =
S1 x(t,λ1)
|x | ?φ(t) + ε

(2.36)

Also first-order coefficients may be normalized by the average of |x |, creating

invariance only to the amplitude change over an infinite window of φ.

For coefficient values of any order m ≥ 2 , normalization applied considering the

delegation (scattering transfer) from the previous layer, that is dividing with the

coefficients of previous order:

eSm x(t,λ1, . . . ,λm) =
Sm x(t,λ1, . . . ,λm)

Sm−1 x(t,λ1, . . . ,λm−1) + ε
(2.37)

2.3.2 Amplitude Modulation

First-layer of scattering coefficients basically contain wavelet coefficients which extract

information in different frequency (i.e. scale) bands. All the inner structure of

modulations appear in the second-layer of the scattering network.

Audio signal (i.e. voiced signal; musical or speech signal) is simply modeled as vocal

chord with vibrations in a sense of serious of impulses e, which is filtered by the

throat of musical instrument h and with additional possible successions or amplitude

modulation a. If the audio signal is coarsely modeled as:
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x(t) = (h ? e)(t) · a(t) (2.38)

where:

• e(t) =
∑

nδ(t − n/ξ1) is pulse-train excitation with pitch ξ1.

• h(t) is resonance cavity impulse response; where bh(w) amounts to the formant.

• a(t) is amplitude modulation.

Audio signals usually involve amplitude modulations by their nature, whose variations

may correspond to transient characteristics in time domain of the signal. It is

shown that these modulations can be characterized by normalized second-order

scattering coefficients for voiced and unvoiced sounds [40]. Then the first two order

of normalized scattering coefficients approximates (eS1 and eS2 indicate normalized

first-order coefficients and normalized second-order coefficients respectively):

eS1 x(t,λ1)≈ |Òψλ1
(nξ1)|

|bh(λ1)|
‖h‖1

(2.39)

where ‖h‖1(t) =
∫

|h(t)|d t and n is such integer satisfies |nξ1 −λ1|< ξ1/2.

eS2 x(t,λ1,λ2)≈
|a ?ψλ2

| ?φ(t)
a ?φ(t)

(2.40)

Thus, given λ1 ≈ nξ is close to harmonics, the first-order coefficients are proportional

to the spectral envelope |bh(λ1)| and extract the formant in a sense of global structure

of the signal. While second-order coefficients eS2 are not depended on h and ξ1 but

extracts the modulation a(t) (see Fig. 2.19 (c)).

Fig. 2.19 (a) shows scaleograms of log |x ? ψλ1
| for three voiced and three unvoiced

signals. First three voiced signals generated by same pitch of ξ= 600Hz and by same

impulse response h(t) with following amplitude modulations a(t):

• a smooth attack

• a sharp attack

• a tremolo of frequency η: a(t) = 1+ ε cos(ηt)
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Following three unvoiced signals are generated with the same impulse h(t) and same

amplitude modulations a(t) as the first three voiced sounds.

Fig. 2.19 (b) shows first-order scattering log eS1 x(t,λ1) with T = 128ms. of the

signals in (a). Since they are the wavelet coefficients averaged (|x ?ψλ1
|?φ(t)), they

have similar harmonic structure depending on formant |bh(λ1)|, but attack and tremolo

information is lost by averaging φ and normalization and they are not differentiable.

Fig. 2.19 (c) shows second-order scattering log eS2 x(t,λ1,λ2) displayed only for partial

λ1 = 4ξ (the vertical band indicated in (a)), as a function of t and λ2. The frequency

η of tremolo and both soft and sharp attacks are obvious as concentrations of the

energy in the scaleogram, thus the transient inner structure is apparent. Also it can be

seen that the oscillation frequency of the tremolo which is inherent in the third sound

creates large amplitude coefficients for λ2 = η.

Figure 2.19 Scattering wavelet coefficients and modulation [40]

2.3.3 Computation Complexity

For given signal of size N the scale varies for the set of 2 j, thus resulting an order

of O(logN) complexity for wavelet transform. For an arbitrary order of scattering,

window of size N yields O(QmlogmN) coefficients of order m for a given quality-factor

value Q.

Wavelet scattering have more indices than spectrograms, but being sparse not all
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combinations are of relevant. Scatterings where λ2 > Kλ1 yield:

�

�

�

�x ?ψλ1

�

� ?ψλ2

�

�≈ 0 (2.41)

Since support of filter frequency responses do not overlap. This limits the number of

coefficients to compute. Total computational complexity is given by O(N logN).

2.3.4 Relation with Human Auditory System

The scattering transform has similarities with auditory processing models that

integrate cascade of constant-Q filter banks combined by non-linearities [40]. Thus, it

is shown the wavelet scattering transform is relatively analogous to human auditory

physiological system based on processing model of [42]. Especially the first two orders

of wavelet scattering is modeled similarly in auditory perception process as depicted

in Fig. 2.20.

Figure 2.20 Scattering wavelet spectrum - human auditory system relation

The first filter bank with Q1 = 8 models the cochlear filtration, while the second filter

bank corresponds to later processing in auditory pathway incorporating filters with

Q2 = 1.
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2.3.5 Methodology

Given an audio signal either in training stage and DB indexing or for query stage

it follows the same pipeline. First the signal is decoded and resampled to target

sampling rate fs = 16kHz. Then SWT coefficients are extracted from signal data.

For scattering transform we chose the support of averaging filter φ to be 29 samples,

giving an invariance-scale of ∼ 32ms (29/ fs), and the number of first-order wavelets

per octave to be 8 as suggested in [40]. Feature vectors consist of one-second long

scattering coefficients resulting 299×31 dimensional sub-rectangles (i.e. 1/(29/ fs) =
31). Sub-rectangular feature coefficients are depicted in Fig. 2.21 containing both

first-order and second-order scattering for a 1-second long audio segment.

Figure 2.21 Scattering coefficients sub rectangles including both first and second
orders

Regarding to quality-factor values (i.e. octave frequency resolutions) for scattering,

for a given audio signal x , it has been shown that Q1 = 8 wavelets per octave at the

first-order transform provide sparse depiction of a mixture of sounded (i.e. speech,

music and ambient) signals [43]. This scheme almost corresponds to of mel-scale

frequency resolution. At the second order, selecting Q2 = 1 enables wavelets with

more narrow time support, that are better suited to characterize transients and attacks

inherent in the signal [40].

The first-order scattering features are mean and variance normalized. As of the

second-order scattering features, they are mean and scatter transfer normalized using

following defined equation:
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eS2 x(t,λ1,λ2) =
S2 x(t,λ1,λ2)
S1 x(t,λ1) + ε

(2.42)

The overview of the scheme for audio signal scattering wavelet features used in this

study is depicted in Fig. 2.22

Figure 2.22 Scattering wavelet transform - methodology overview

2.4 Joint Learning and Convolutional Neural Networks

Definition 2.3. Metric is a function that calculates distance which is defined for every

element in a given arbitrary set (X). Metric semantically can be thought as a measure

of similarity. Given x0, x1, x2 ∈ X, a metric function D(x0, x1) must satisfy following

constraints:

• Non-negativity: D(x0, x1)≥ 0

• Identity of discernible: D(x0, x1) = 0⇔ x0 = x1

• Symmetry: D(x0, x1) = D(x0, x1)

• Triangle inequality: D(x , x2)≤ D(x0, x1) + D(x1, x2)

Metrics can be an instance from two broad categories: (1) pre-defined metrics (e.g.

Euclidian Distance) and (2) learned/data-driven metrics (e.g. Mahalanobis Distance).

Definition 2.4. Euclidian Distance

D(x0, x1) = (x0 − x1)
T (x0 − x1) (2.43)
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Definition 2.5. Mahalanobis Distance weighted variant of the Euclidian distance. The

distance between two points is modified by a weight matrix M . Weights are estimated

from a given arbitrary data.

D(x0, x1) = (x0 − x1)
T M(x0 − x1) (2.44)

The standard deviation of the data may be used as weight matrix [44].

D(x0, x1) = (x0 − x1)
TΣ−1(x0 − x1) (2.45)

Figure 2.23 Euclidian and Mahalanobis distances

Data-driven metrics can be learned in supervised or unsupervised fashion. For a

supervised scenario a typical approach can be summarized in a 2-step procedure [45]
(see Fig. 2.24):

1. Apply a supervised domain transform (e.g. Linear Discriminant Analysis).

2. Perform mapping by an unsupervised metric projection.

Figure 2.24 A Metric learning scheme
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For instance the Linear Discriminant Analysis (LDA) [46], tries to find a projection

where class separation is maximized while keeping the in-class variance small (see

Fig. 2.25). It is formulated by the ratio of between-class covariance and within-class

covariance to achieve maximizing component axes for class separation:

JLDA(w) =max
w
(wTΣbw)/(w

TΣww) (2.46)

where Σb and Σw are between-class and within-class covariance matrices respectively.

Figure 2.25 Linear Discriminant Analysis (LDA) learning scheme

Or the pipeline of a somehow opposite approach for similarity matching tasks can be

summarized as follows:

1. Extract features in static (not learned) way: STFT coefficients, color histograms

etc.

2. Learn the similarity: by using a metric over the features

Whereas these briefly mentioned traditional approaches have the same shortcoming,

that is the feature representation of the data and the similarity metric are es-

timated/learned separately. On the other hand Convolutional Neural Networks

(CNNs) can jointly optimize the representation of the input data conditioned on the

selected arbitrary distance metric namely similarity measure being used, by what’s

called end-to-end learning. That is CNNs by nature are able to reduce spectral

variations while modeling the spectral correlations [47].

A "Deep Neural Network" fundamental model consists of neurons arranged in various

layers. Each neural network has an input and output layer, and depending on the
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complexity of the problem, many hidden layer augmented to the network. The

neurons learn and recognize patterns while the information is passed through layers.

Once the model is optimized through training (i.e. trained), precise projections can

then be made by the network. CNNs, proposed by Yann LeCun et al. [48], is a

particular sort of neural network that operates on 2D representations exceptionally

well, equipped with the usage of the concept called local connectivity. By means that

each neuron is only linked to a local area of the quantity of the input. This minimizes

the amount of parameters by enabling various sections of the network to be specialized

in high-level characteristics such as patterns and textures.

Initially, such a neural network should understand all the raw components in a 2D

representation, such as edges and other somehow low-level characteristics. These

are then identified and paved the way for complex functions later on, by obtaining

the low-level characteristics first, followed by higher-level ones. Filters (or kernels)

provide a means of extracting the information required in parallelized fashion, rather

than just transmitting the data, which would prevent the network from understanding

the intrinsic structures. At early layers of the network, specific filters would extract

the low-level characteristics based on their weights. The filters can be understood

as the layers of logical units in the compound network which are connected to by

their weights. Extractions are executed by convolutions. Filters (or kernels) are

convolved with the input data to reach at the intermediate images, corresponding to

the partial knowledge of the image by the network. For a deep network, these

retrieved by-products, in turn convolved with more filters of followings layers, to

model the inherent structure of the prior intermediate representations. The overview

CNN architecture with its operators is depicted in Fig. 2.26.

Figure 2.26 CNN operators overview

In Fig. 2.26 the convolution layer uses the number of filters performing convolution

operations as it scans the input I , and scanning is based on hyperparameters, namely

filter (i.e. kernel) size F and stride S. The resulting output is called by term fea-

ture map or activation map (see Fig. 2.27). After a convolution layer, the pooling

layer execute a downsampling operation by means of spatial invariance (regarding to

local connectivity). Maximum or average pooling are mostly used pooling operations

(see Fig. 2.28). To optimize arbitrary objectives, CNN architectures mostly use
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fully-connected layers as hindmost layers. The fully-connected layer works on a

flattened intermediate layer that connects each input to all neurons (see Fig. 2.29).

Figure 2.27 CNN convolution operator [49]

(a) Max pooling (b) Avg. pooling

Figure 2.28 CNN pooling operator [49]

Figure 2.29 CNN fully-connected layers [49]

Kernel operations involve hyper-parameters of filter dimensions and stride value. A

filter of size (F0×F1) applied to a C-channel input is a (F0×F1×C) volume that performs

convolutions on an input of size (I0× I1×C) and the product is an output feature map

of size (O0 × O1 × 1). For a convolution or a pooling operation, the stride S denotes

the number of pixels by which the filter window slides following each operation [49].

2.4.1 Methodology

Methods exists in the literature which encourage integration of CNNs for hash learning

models. These models utilize joint learning property CNNs. Training input scheme can

be varied based on optimization requirements and more importantly attributes of the

input data available. Given properties may propose discrete class labels, similarity

49



decisions etc. of the input data. Acquainted with input attributes, these models could

instrument pair-wise input [50] or point-wise input [51] schemes using deep CNNs.

In this study, we leverage CNNs for hash learning in an endeavor to build our similarity-

preversing model. Although SWT coefficients may distinguish the characteristics of

audio signals, such transform can not be only used to understand the dynamical

behavior of musical data perfectly. We will introduce a simple deep CNN module

in our embedding hash model to capture variations of SWT coefficients. But since

the second-order SWT coefficients are sparse, we adapt the CNN module only for

first-order coefficients with small kernel windows. The overview of the CNN model

used in this study is depicted in Fig. 2.30.

Figure 2.30 CNN - methodology overview

CNN layers also use Parametric ReLU activation function and batch normalization.

2.5 Embedding Network Model

Similarity-preserving embedding hash modeling is a widely-used method for nearest

neighbor search in a large-scale context. In most common existing embedding hash

methods, the input is first encoded as a representative vector by means of a possible

domain change, followed by another separate projection or quantization step that

generates final hashes. However intermediate feature vectors may not be suitable

with the coding process resulting in non-optimal hash codes. A carefully designed
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end-to-end deep neural network models can optimize both feature generation hashing

process [52].

Learning-based hashing methods aiming to encode input data while preserving

similarity is an emerging open search topic since requirements of various real-world

application include nearest neighbor search on large-scale. Compact bit-wise

representations are beneficial regarding efficiency of both storage and search/retrieval

speed and complexity especially for large-scale applications.

Data-driven proposed embedding models may work in unsupervised fashion on data

like iterative quantization [53] or kernelised locality-sensitive hashing [54]. Or, if

available, supervised methods are optimized with labeled information (e.g. categories,

similarity/dissimilarity of samples), combined with deep architectures tailored for

learning-based hashing.

Most existing methods of hashing model based on two-stage process where input data

first represented by traditional hand-engineer features of vector descriptors followed

by a separated projection and quantization steps to encode these descriptors as final

hashes. However the mentality of separate process of data representation can fail

to generate optimal hashes since such descriptors may not be optimally suitable

with the hashing process. Such as, for similarity-preserving needs, intermediate

representation may small or large values for a defined metric for similar and dissimilar

pairs accordingly and thus, such intermediate bottleneck layer as representation may

not be able to generalize other data. Ideally, the two stage can be combined and learnt

joint by overall hash learning process.

An supervised embeddings hash model pipeline can designed with following

components: (1) a sub-network to produce robust intermediate representation, (2)

hash-generating block to convert intermediate representation to final hashes and (3)

suitable loss function selection as depicted in Fig. 2.31. Supervised learning-based

hashing models are used for compact representation of domain specific data for

various tasks including classification, recognition and verification.

Figure 2.31 Embedding hash model
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The trained model provides a mapping from input space to an embedding space.

Embeddings learned in such way can be used as features vectors. After a non-linear

projection of embedding space is modeled, a distance metric (also the training loss of

the model) may be defined. For instance in if Euclidian embeddings are learnt then

the similarity is defined by L2 distance. Provided with a distance metric various tasks

can be defined as:

• Verification: thresholding of distance between two embeddings.

• Recognition: can be approached as a simple k-nearest-neighbor (k-NN)

clustering task

• Clustering: can be achieved using k-means or other clustering techniques on

embedding space.

2.5.1 Divide and Encode layer

Having the intermediate features obtained from the sub-network a hash-generating

block to convert intermediate representation is used weather is a simple

fully-connected layer or a more complex block. Traditional approach for hash

generation can be applied by a simple fully-connected layer. Whereas Divide-and-

encode module enables splitting intermediate representation into multiple branches

then concatenate each into the designed order of hash components as shown in

Fig. 2.32.

Figure 2.32 Divide-and-encode module

The main idea of using divide-and-encode block instead of a fully-connected layer

is to reduce the redundancy among the intermediate representation branches which

go through to generate final hash bits. For q-bit hash codes, first divide-and-encode

module splits intermediate representation to q-slices, then each slice is fed to internal
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fully-connected layers to generate final values using a arbitrary activation function

(e.g. sigmoid for a unit interval output ∈ [0, 1]). The activation function may be

preferred according to designed model, generating real values or unit interval range

output (which later may quantized to binary).

Since each hash component is generated from a separated slice of features (i.e.

containing information from split path of intermediate features), the generated hash

bits would be less redundant to each other which can be advantageous considering

the entropy of the input data.

2.5.2 Quantization

For binary hash embedding model, the activation outputs should be quantized to

encourage binary values. For any input I, a binary hash embedding model can defined

as q-bit hash generator F as: F : I→ {0,1}q. If sigmoid activation is used in final layer,

using piece-wise threshold function would deduce quantized binary outputs by forcing

the model to binary values to at training stage [52]. Given the fully-connected output

fci(x (i)) =Wi x
(i) for each slice-i and sigmoid activation in Eq.(3.47), Eq.(3.48) shows

piece-wise threshold function for sigmoid activation as its input z, where ε is a model

hyper-parameter. The piece-wise threshold function is plotted in Fig. 2.33.

sigmoid(y) =
1

1+ e−β y
(2.47)

f (z) =















0; z < 0.5− ε

z; 0.5− ε≤ z ≤ 0.5+ ε

1; s > 0.5+ ε

(2.48)

Figure 2.33 Piece-wise threshold function plot

Using a piece-wide threshold layer will force the model to output binary values, where
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the values that are not in range of [0.5−ε, 0.5+ε]will be truncated to be 0 or 1. Noted

that, in the training stage, the proposed model with piece-wise threshold function will

only generate real-valued hash codes that most of them forced to binary for input data.

To generate binary hash bits, later the output of the optimized model is quantized by

Eq. (3.49):

b = sign(F(I)− 0.5)) (2.49)

where sign(vi) = 1 if vi > 0, or otherwise sign(vi) = 0.

On the other hand, quantization for real-valued hashes only can be implemented for

bit reduction that is for reducing code size.

2.5.3 Methodology

Provided with SWT the extracted coefficients of are fed to embedding network for the

next stage of the pipeline as depicted in Fig. 2.34. The model is trained with some

portion of the reference content, but the training data is not indexed in reference

database for querying (action 1© in Fig. 2.34). The optimized model after training will

be used for both database indexing (action 2© in Fig. 2.34) and querying. However

the embedding model is not final and can be improved with arbitrary data and/or can

be adapted using harmonic embeddings [55] in a transfer learning fashion. Harmonic

embeddings is a technique of adapting newly designed models to be able to improve

verification accuracy while maintaining compatibility to less accurate embeddings of

initial model.

Figure 2.34 Embedding hash model - methodology overview
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We build our fingerprint hashing model by the combination of stack of convolutional

layers (CNNs), fully-connected layers and divide-and-encode block [52] on top. CNNs

can model spectral correlations of our first-order scattering coefficients S1(t,λ1).
While second-order scattering S2 x(t,λ1,λ2)which is the decomposition of modulation

features in each sub-band of the first-order filter-bank (
�

�x ?ψλ1

�

�) preserves the local

information for given sub-band λ1, being sparse with few non-zero coefficients, are

fed to fully-connected layer. Designed model is shown in Fig. 2.35.

Figure 2.35 Overview of embedding hash model with scattering wavelet coefficients

Two-level of divide-and-encode block splits the intermediate representation before

combining into the final embeddings. The idea of choosing divide-and-encode block

is to reduce the redundancy among intermediate hashes as suggested in [52]. Final

embeddings may be retrieved as real values or quantization can be opt in using a

piece-wise threshold function at the learning stage. Except final divide-and-encode

layer all layers use Parametric ReLU activation function and batch normalization.

2.6 Siamese and Triplet Networks

For a similarity-preserving network model, input can be any representation and the

model is responsible to provide an output either binary value (i.e. identical/imposter

or similar/dissimilar) or a real value indicating how similar a pair of inputs are.

This similarity-preserving network model is called Siamese network. Siamese network

is a type neural network that use shared weight while working in tandem on pair

of inputs to compute comparable output vectors [56]. Output vectors then can be
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used similarity score armed with a distance metric. Area of utilization of siamese

networks include generating invariant and robust descriptors [57], face-recognition

[58], objects re-identification tasks [59] and imposter detections.

A variant of siamese network is triplet network combining both similarity-preserving

and marginalization of dissimilarity that is discriminating dissimilar pairs. Triplet

networks are trained with triplet of exemplars including an anchor sample (baseline

sample), a positive sample and a negative sample, making two pairs for each triplet:

anchor against positive and anchor against negative.

Not all the models of Siamese networks share the same architecture, the design of

architecture should be evaluated empirically by what performs well on the specific

task. A typical architecture of Siamese network with shared model weights is

depicted in Fig. 2.36(a). Another architecture with unshared block of layers is shown

in Fig. 2.36(b) [60].

(a) (b)

Figure 2.36 Siamese network models with sub-network blocks ((a) A typical
Siamese network model with shared weights, (b) A Siamese network model with

unshared block of layers)

Siamese networks with shared weights can be generalized by following equation:

JSiamese(W) =















min
W
{δ[ f (x i), f (x j)]}; (i, j)→ similar

max
W
{δ[ f (x i), f (x j)]}; (i, j)→ dissimilar

(2.50)

where i, j are indices of of input samples, f (·) is embedding model implemented by

siamese network and δ is network layer joining outputs from the siamese network.
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2.6.1 Loss Functions

Siamese networks should be trained with both positive pairs and negative pairs (i.e.

similar and non-similar pairs respectively) as depicted in Fig. 2.37, since learning with

using only similar pairs would force the model to embed every input to a same point in

embedding space. That will result the model to output a constant and categorize every

input pair as similar [61]. As a result the loss function should include both positive

loss (L+) and negative loss (L+) optimizations.

Figure 2.37 Dissimilar pair learning

Possible selection of functions could be Euclidian loss and Hinge loss functions for

positive loss and negative loss respectively.

Definition 2.6. Hinge loss is a loss function used for maximum-margin classification

most notably in support vector machines (SVMs). For an intended target value t ∈
−1,+1 and prediction y , Hinge loss is defined as:

L(y) =max(0,1− t.y) (2.51)

Euclidian loss and an extended version of Hinge loss functions for input pair learning

is given in Eq. (3.52) (see Fig. 2.38):

L+(xq, xp) =




xq − xp







2

L−(xq, xn) =max(0, m2 −




xq − xn







2
)

(2.52)

where m is margin, (xq, xp, xn) are query, positive and negative samples accordingly.

Definition 2.7. Contractive loss function combines both Euclidian loss and Hinge loss

and is able to learn a margin of separation for negative pairs. Contractive loss is

suitable for both Siamese and triplet networks [62]. For an embedding mapping f ,

contractive loss function is given in Eq. (3.53):
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L+ = ‖ f (x0)− f (x0)‖
2

L− =max(0, m− ‖ f (x0)− f (x1)‖)2

Lcont ract ive(x0, x1, y) =
1
2

t L+ +
1
2
(1− t)L−

(2.53)

where t is binary target value t ∈ 0, 1, m is distance margin and (x0, x1) are sample

pairs that can be positive or negative.

(a) positive pair learning (b) negative pair learning

Figure 2.38 Positive and negative pair losses

Definition 2.8. Triplet ranking hinge loss tries to enforce a margin between each

dissimilarities, while closing the distance between similarities. This allows the similar

embeddings to place on a manifold, while still ensuring the distance and thus

discriminability of others. For an embedding mapping f , triplet loss function is given

in Eq. (3.54):

L+ =




 f (xa)− f (xp)






2

L− = ‖ f (xa)− f (xn)‖
2

Lt r iplet(xa, xp, xn) =max(0, m+ L+ − L−)

(2.54)

where m is distance margin and (xa, xp, xn) are anchor, positive and negative samples

accordingly.

In triplet loss function in Eq. (3.54), the negative value L− will force learning in

the network, while the positive value L+ will act as a regularizer. Similarly for the

learning optimization by the contrastive loss in Eq. (3.53), there must a regularization

applied to the learned weights like a weight decay, or some similar operation like a

normalization.

The embedding space represented by f (x) ∈ Rd is a mapping from x to d-dimensional

Euclidean space. Triplet ranking loss function will ensure that an anchor sample is

closer to its similar items than the dissimilar ones as visualized in Fig. 2.39.
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Figure 2.39 Triplet loss learning

2.6.2 Data Mining

While training the network not all triplets will have significant impact on optimization,

only the possible triplets whose violate triplet loss constraint (i.e. having a non-zero

loss) will optimize the the model. In Eq.(3.55) constraint for triplet loss is given.

Generating all the possible triplets on a large training data would result many triplets

satisfying the triplet constraint. These triplets would not contribute to the training

and result in slower convergence, while they are being fed through the network. Thus

it reveals the necessity of selecting hard triplets, whose have loss values bigger than

zero and can therefore contribute to improve the model [55].





 f (xa)− f (xp)






2
+m< ‖ f (xa)− f (xn)‖

2 (2.55)

Therefore, selecting the contributing triplets in the learning stage is crucial. Selection

decisions should consider triplets that violates the triplet constraint in order to ensure

optimal model and fast convergence. Sampling strategies for indices of samples (i)
that provides possible violation of the triplet loss constraint is given below:

• hard positive: argmax
xp








 f (x (i)a )− f (x (i)p )









2

2

• hard negative: argmin
xn





 f (x (i)a )− f (x (i)n )






2

2

• semi-hard negative: ‖ f (x (i)a )− f (x (i)p )‖
2
2 < ‖ f (x (i)a )− f (x (i)n )‖

2
2

For a given anchor sample, semi-hard negative strategy selects negatives that are

further away from the anchor than the positive sample but still hard because the

squared distance is within the margin value. For semi-hard negative strategy, number

of exemplar can be sampled in sorted way by decreasing distance or picked up by

randomly.

Also as it is argued that it is infeasible to compute argmax and argmin on the whole

training set. Additionally, it might lead to poor training for outlier or mislabelled data

[55]. To avoid these to happen, two possible options are:
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• Offline data mining: selecting argmax and argmin on the subset of data by using

the most recent network checkpoint.

• Online data mining: selecting hard positive/negative exemplar from with a

mini-batch.

Online data mining method instruments mini-batch usage, thus the mini-batch size

should be adjusted accordingly. Since to have a meaningful representation of any

anchor sample, the mini-batch should also be ensured to include enough number of

exemplars for anchor positives.

2.6.3 Methodology

The embedding hash model in our systems is the module that is responsible for

generating audio fingerprints, and the module is trained in triplet network fashion.

Training split of reference content is used to train the embedding model (action 1© in

Fig. 2.40). The overview of the scheme of triplet learning used in this study is depicted

in Fig. 2.40.

Figure 2.40 Siamese networks - methodology overview

Triplet loss is more suitable for the systems of fingerprint identification, motivated

by the triplet loss enforces the discrimination of arbitrary musical signal data more

than representativity. That is, we require discriminative power over being able to be

descriptive. Triplet learning corresponds forcing embeddings f (x) from input audio

signal x into a feature space Rd such that square distance of semantically similar

signals are small, whereas the squared distance between a pair different signals of are

large. Thus a semantic similarity of signals should be described, and we define it by
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a neighborhood distance. And we select the anchor-positives within the neighborhood

distance of an anchor audio segment shifted by a step size equal to invariance-scale

of SWT as depicted in Fig. 2.41.

Considering the online mining of samples, all possible anchor-positive pairs within

a neighborhood distance of anchor are included in each mini-batch instead of just

selecting hardest positives. Additionally mini-batches contain randomly sampled

negative samples. A sampling strategy is applied to the random negative sample set

as a selection filtering. As stated in [55], selecting the hardest negatives may have

consequences such as leading to stuck optimizations of the model at local minima

in the training or may result as a collapsed model (i.e. for embedding function f ;

f (x) = 0), thus the semi-hard strategy is preferred in order to avoid these observed

issues.

Also, the overall mini-batch size should be ensured allowing enough all-possible

positives and subset of negative exemplars. And on the other hand we would like

to use small mini-batches as these tend to improve convergence speed.

Figure 2.41 Similarity and online mining scheme
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3
Evaluation and Musical Audio Identification

Application

In previous Chapter Concepts detailed technical concepts are given with their

methodological approaches for a concrete implementation of fingerprinting scheme

and the musical audio identification system investigated in this study. In this Chapter,

provided with the design decisions, we will overlay the evaluation of the overall system

and presented experimental results. Later analyzing the result of the experiments

conducted we propose the audio musical audio identification application.

As indicated Chapter Concepts, we trained our model as siamese network of audio

snippet similarities using triplet loss function. The constraints for audio snippets to be

considered as same were that they should be from same audio file and their starting

position should differ only couple of hundred milliseconds of neighborhood distance.

Siamese networks with L2 loss functions are useful to learn mappings from input data

to a compact Euclidean space where distances correspond to a measure of similarity

[55].

We used GTZAN dataset [63] [64] for our experiments. In training stage of

our embedding hash model, various additional noise applied to audio signals to

preserve similarity for degradations. In evaluation step, selected environmental and

artificial noises are applied with adjusted SNR values as explain in next section. For

implementation, to build our embedding hash model PyTorch framework [65], and

for scattering transform of audio signals Kymatio framework [66] are used.

GTZAN dataset includes 1000 audio files from 10 musical genres each 30-seconds long

and with sampling rate fs = 22050Hz. We prepared 10-seconds longs audio snippets

downsampled to fs = 16kHZ , having total number of 3K snippets, then randomly split

at ratio of (0.8, 0.2) for training and test accordingly. For scattering transform, after

our experiments we chose the support of averaging filter φ to be 29 samples, giving an

invariance-scale of ∼ 32ms (29/ fs), and the number of first-order wavelets per octave
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to be 8. Feature vectors consist of one-second long scattering coefficients resulting

299× 31 dimensional sub-rectangles (i.e. 1/(29/ fs) = 31).

We define a neighbor distance that equals to 370ms, to label audio segments

considered as same or not by their starting position while training. While we are

training our model, we use strides equal to invariance-scale duration for each audio

snippets, whereas database indexing stage use features per every one-second without

overlapping. General overview of audio signal fingerprint scheme is depicted in

Fig. 3.1.

Figure 3.1 Audio signal fingerprinting scheme. Embedding model training (top),
Database indexing (bottom)

To prevent biased learning, first-order S1 x(t,λ1) scattering coefficients were mean

and variance normalized, whereas for second-order S2 x(t,λ1,λ2) coefficient values,

first scattering transfer normalization [40], later mean-normalization were applied.

While training, for each mini-batch online triplet selection strategies are executed

to prevent poor training of the network [55] [67]. Each mini-batch contains all

possible positive triplets in the neighborhood distance while negatives are selected

using semi-hard exemplars, that are further away from the anchor than positive

exemplar, but within the radius of margin. We prepared a noisy variant (superimposed

with various environmental noise) of the dataset with same alignment, and in our

scenario, anchor and positive samples regard to clean and noisy audio segments within

the defined neighborhood accordingly.
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Table 3.1 Embedding net. architecture for SWT coefficients

CNN module
Input shape: first-order coefficients (62× 31)
Layer (type) Output shape (#Channel x Height x Width) Kernel Stride

Conv2d [32, 60, 29] 3x3 1
PReLU [32, 60, 29] - -

MaxPool2d [32, 30, 14] 2x2 2
Conv2d [32, 28, 12] 3x3 1

BatchNorm2d [32, 28, 12] - -
PReLU [32, 28, 12] - -

MaxPool2d [32, 14, 6] 2x2 2
Fully-connected module

Input shape: second-order coefficients (237× 31) = 7347
Layer (type) Output shape

Linear [1024]
BatchNorm1d [1024]

PReLU [1024]

3.1 Coefficients and Hash Dimensions

Extracted (299×31) dimensional sub-rectangles by scattering transform over 1-second

long audio segments, the coefficients then fed to embedding model to generate

audio fingerprints. The embedding model contains two sub-modules for first and

second order of scattering transform which are trained on their respective separate

path of input output pipeline as well as in divide-and-encode layer to remove the

redundancy among the intermediate representation branches of scattering coefficients

and encoded them separately. For fully-connected module constant 1024 units is used.

The CNN and fully-connected module parameters of embedding model are given in

Table 3.1.

Fig. 3.2 and Fig. 3.3 shows CNN kernels of trained model and top layer heatmaps for

random #3 audio segments against various models dimensions respectively. From the

heatmap figure kernel specialization can be seen coarsely.

Figure 3.2 CNN kernels for various model dimensions

Table 3.2 shows hindmost layer of embedding model device-and-encode block
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(a) 32-dim. model

(b) 64-dim. model

(c) 96-dim. model

Figure 3.3 CNN heatmaps for audio segments’ first-order SWT coefficients
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Table 3.2 Hash dimensions agains two-layer SWT coefficients

Divide-and-encode block
first-order input size (32× 14× 6) = 2688

second-order input size 1024
Output dim. Output dim./orders 1st-order encode size 2nd-order encode size
8 [7, 1] 384 1024
16 [14, 2] 192 512
32 [57, 7] 96 256
96 [85, 11] 32 93
128 [114, 14] 24 7
256 [228, 28] 12 36

configurations for various output dimensions. The output dimensions are adjusted

with about (9, 1) ratio between first and second order of scattering coefficients. In

the table, encoded sizes are given for inputs (i.e. 2688 and 1024 for first order and

second-order scattering intermediate paths respectively) according to desired output

dimension.

3.2 Similarity and Online Mining

Similarity for audio segments were defined by a neighborhood distance of their

starting offset. Audio segments that are within the neighborhood distance were

considered similar and the pair in the mini-batch were evaluated as anchor-positive

pairs. For negative exemplars semi-hard segments were preferred and they were

contained in the mini-batch for each triplets.

3.3 Database Indexing and Query Matching

Equipped with the final finger-printer which includes the trained and optimized

embedding hash model, takes and input of audio signal with a determined length

(e.g. 1sec. × fs) and generates hashes. The reference content is indexed on the

database after passed through the finger-printer pipeline. Each song file in the

content has its own file-ID and audio file data is segmented with a window length of

1sec. without overlapping for indexing on the database. Inserted key-value pairs are

fingerprint-metadata information and each metadata will contain file-ID and starting

offset of the audio file segment (see Fig. 3.4).

At query stage, up to a number of candidate matches (top-t) is proposed by the

system for each segment of the query probe signal. In the common scenario where

the query is longer than the window length (1sec.) and top-t is bigger than one, the
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match sequence is two-dimensional. Fig. 3.5 shows a query execution and the system

response of candidate matches for 8 segment probe signal with top-t equals to 5. In

the lower table candidate matches are represented in a form of "file-ID : start-offset"

symbolically. Only the longest sequence is shown with an almost perfect offset match

for the query. Such perfect alignments are unrealistic and hard to achieve in real-world

examples, thus in general adaptive scoring techniques is used for matches sequence

estimations.

Figure 3.4 Database indexing and query probe matching

Figure 3.5 Match sequence for query probe signal

3.4 Adaptive Scoring

The matches from database includes time-offset metadata, so we define an adaptive

scoring method for sequential match estimation of an audio signal using following

temporal constraints as a basis of dynamic-programming (similar to constraints in

[68]) to decide whether proposed candidates are a match or not:
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1. Define an anchor(initial) match for all of top-t candidates (i.e. column values

in Fig. 3.5).

2. For the tail of the anchor match, we define following temporal constraints:

• Do not allow temporal backtracking of matched features.

• Allow only matches the within the defined temporal cone for anchor match.

3. Promote the longest match sequence as the candidate.

Before retrieving the final results for the query probe, optional verification against final

candidate match can be opt in as a separate module as depicted in system pipeline

Fig. 3.6. Verification may include sub-thresholding for sequential match estimation or

limiting sub-matches per query.

Figure 3.6 Adaptive scoring for match sequence estimation

3.5 Experiments

After training the embedding hash model, the content database is built from clean

test samples using the embedding model as the feature extractor. Content database

consist of test split of GTZAN having #600 10-seconds long snippets. Each snippet

is represented by features per every one-second without overlapping. Retrieval

is first experimented by one-by-one naive comparison not to be influenced by

database precision artifacts. One-second long segments are randomly sampled from

query snippets with arbitrary alignments and features are extracted using the same

embedding model. For each compared features agains database, L2 distances are
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Table 3.3 Mean top-t=1 positive retrieval probability

Hash Dim. margin=0.2 margin=1.0 margin=2.0
8 0.8622 0.8731 0.8589
16 0.9266 0.9185 0.9011
32 0.9310 0.9343 0.9297
64 0.9404 0.9358 0.9263
96 0.9354 0.9411 0.9297

calculated and the features which regards top-t smallest distance values are selected

as candidates.

First we query the database with existing clean samples and calculate the top-t=1

mean score for multiple models. For each 10-seconds long snippets #10 randomly

sampled segments are selected and their features are compared against the database.

If the first result is a match (i.e. same song within the neighborhood offset) we

increment the score. The reason of this experiments is to evaluate how margin value

and hash dimension affect the retrieval probability of alignment and shift-invariance

without any additional noise. Results are given in Table 3.3. As it can be seen best

similarity preserving embeddings are obtained for 96-dimensional vectors and for

mar gin = 1.0, although after 32-dimensional hash model, having more dimension

doesn’t seem to have great impact.

By selecting best mar gin = 1.0 value from Table 3.3, we calculate the same scores

for noisy samples with various signal-to-noise-ratio (SNR) values. Experimented

additional noise include (1) chatting people, in down-town streets, (2) noisy wind

sound effect, (3) sound recorded inside a window of rainy day and (4) artificial

synthetic glitchy noise, all retrieved from freesound.org [69] website. Results are

given in Table 3.4.

We can see the dimensionality factor of the embeddings on discrimination in Table 3.4

clearly, for hash dimension equal to 96 we can retrieve positive samples with about

%93 recall from a sparse database having features per only every one-second of audio

signals with a very compact representation (96×4= 384 bytes/sec.). Also noted, the

positive retrieval score for noise type (3) is poor having less than %50 for SNR below

6.

Lastly, a concrete recognition search is done against our indexed DB with top-t=20, i.e.

each fingerprint can propose up to twenty potential matches. Query set includes both

positive and negative samples and query snippets are superimposed with randomly

selected noise type with SNR values varying from 0 to 3 (i.e. between half and same

energy of noise applied). We execute the retrieval process with a sequence of snippets
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Table 3.4 Mean top-t=1 positive retrieval probability for noisy samples

Hash Dim. SNR=9 SNR=6 SNR=3 SNR=0
(1) group-people-chatting-city

16 0.8468 0.7710 0.6327 0.4100
32 0.8685 0.8264 0.7252 0.5281
64 0.8958 0.8608 0.7737 0.6206
96 0.9064 0.8770 0.8020 0.6625

(2) wind-on-microphone
16 0.8581 0.7947 0.6618 0.4522
32 0.9025 0.8854 0.8341 0.7166
64 0.9245 0.9010 0.8833 0.8168
96 0.9312 0.9197 0.8884 0.8333

(3) raindrops-on-the-windows
16 0.6497 0.4625 0.2975 0.1412
32 0.7479 0.5954 0.3816 0.2006
64 0.8052 0.6697 0.4779 0.2737
96 0.8397 0.7279 0.5722 0.3677

(4) artificial-synthetic-noise
16 0.8120 0.6897 0.5008 0.2768
32 0.8658 0.8102 0.6737 0.4710
64 0.8966 0.8502 0.7845 0.6416
96 0.9056 0.8816 0.8166 0.6912

of audio with random alignments but with increasing starting offsets. Randomly

selecting the stride amount is important to avoid problems of unlucky alignments;

if the sampling of the probe is kept constant, it may be possible to repeatedly find

samples that have uniformly large offsets from the sampling used to create the content

storage [8]. Finally match sequence estimation is applied with adaptive scoring

technique.

Fig. 3.7 shows Receiver operating characteristic (ROC) curve of the retrieval

performance for various dimensional embeddings.

3.6 Application

In practice of applicability, having fingerprint with p-dimensions,

effectively searching near-neighbor in a p dimension space is not a trivial job

(particularly if p is large); thus naive comparisons are inconvenient. For looking up

for items similar to a query as a retrieval, it is not feasible to make comparisons over

the entire data set. Rather, mostly methods of Approximated Nearest Neighbor (ANN)

are preferred. For application considerations, in this study an ANN technique is used,

termed locality-sensitive hashing (LSH). LSH techniques both efficient by the amount
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Figure 3.7 Retrieval performance with adaptive query and naive one-by-one
comparison against real-valued hash dimensions

comparisons needed (a tiny percentage of the dataset will be examined) and also

provides noise-robustness properties through localization [70].

3.6.1 Locality-sensitive Hashing

Unlike more conventional hashing method, LSH conducts a sequence of hashes, each

of which examines input vector portions or projections.

The overview of Locality-Sensitive Hashing technique is depicted in Fig. 3.8.

Figure 3.8 Locality-Sensitive Hashing pipeline overview

LSH also promotes flexible limitations to further examine applicants from the

individual hash tables as part of the final list of match candidates (by means of

the sub-thresholding) shown as "Filtering" in the figure. This additional constraint

corresponds "Verification" step depicted in Fig. 3.6. After optionally applying the

filtering, the vector data with minimum distance is the best match for the probe data.

For more than one candidate, LSH techniques support retrieving top-t candidates

sorted by the distance values.
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In Fig. 3.8 given a query probe vector as input, each hash functions generate one

(or more bucket) key(s) for content indexing. The vector is then stored for each

key in a particular bucket during indexing. Later in search step, the near-neighbour

candidates are gathered from the buckets in storage. The LSH application requires that

the hashes generated should be locality-sensitive in general, thus to some extent pre-

serving the spatial structure. Close vectors required to be placed into same buckets.

After collecting from all the corresponding matching buckets in storage, the distance

to the query vector is calculated using a distance measure (e.g. cosine distance) for all

candidates. Lastly in the pipeline, an optional filtering is applied as a sub-thresholding

step.

To preserve the spatial structure of vectors by means of locality, hash generating is

executed as follows: the input vector is projected onto N -random vectors and for each

projection a binary/discrete value is assigned based on the vector’s location to the

random vector. The projection value for the specific vector is string of binary/discrete

values in the feature space as the hyperspace of N -random normalized vectors span.

The projection is defined as the product of random normals N and input vector v

(p= N× v) is given in Eq. (4.1);







n1,1 . . . n1,D
...

. . .

nP,1 aP,D







#pro j.×dim.

×







v1
...

vD







dim.×1

=







p1
...

pP







#pro j.×1

(3.1)

where #pro j. is number of random projection and dim. is input vector dimension.

The random projection application of LSH is intended to approximate the cosine dis-

tance between vectors. Each hyperplane defined by the normal unit vector r is used

to hash input vectors [71].

For given vectors u,v ∈ Rd , the distance is settled as angle between two vectors, θ (u,v)
= arccos( u·v

||u||·||v||). Based on angle as the distance between vectors, for a hyperplane

defined by r ∈ Rd , the hash is defined as h(v) = sing(v·r), that is h(v) = ±1 depending

on which side of the v lies on partitioned hyperplane. Each possible choice of r defines

a single hash function.

The probability of the hashes being equal (i.e. collusion) is given [72];

Pr[h(u) = h(v)] = 1−
θ (u,v)
π

(3.2)
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Table 3.5 LSH bucket-key examples

Binary bucket-key Discrete bucket-key
"1111010010" "-3,0,0,0,0,-2,-1,-2,-2,-1"
"1011101010" "-4,2,-2,0,0,0,-4,-5,-3,-1"
"0110000100" "0,-1,-1,-5,0,-3,-1,-1,3,2"
"1100111100" "-2,2,-2,-1,-2,-1,-1,3,0,1"
"0111010001" "-1,-1,0,-1,1,0,-2,-1,1,0"
"0010100100" "5,-2,1,-3,-1,0,3,1,-2,0"
"0000110110" "2,-2,2,-1,-3,-3,-2,1,-3,0"
"0101110011" "-3,-1,0,-3,0,-1,0,0,0,0"

#projection=10, LSH bin-width=4

θ (u,v)/π is closely related to cos(θ (u,v)) for small angles as can be seen in Fig. 3.9.

Figure 3.9 1− θ/π approximation to cos(θ )

Hashing generates just a single bit (i.e. binary) in this setting. The probability of hash

bits of two vectors match is proportional to the cosine of the angle between them.

In binary setting, n-th hash bit is calculated based on input vector v whether lies on the

positive or negative side of the hyperplane defined by n-th normal vector (Eq. (4.3)).

The permutation of the hash bits define the bucket-key, and for the possible buckets

where the input vector belongs. If a bin-width value is used, the projection value is

not quantized to a binary, but instead divided by the bin-width value (Eq. (4.4)), and

using the bin index in each random projection as part of the bucket-key. Examples

of generated bucket-key scheme for both binary and discrete values are given in

Table. 3.5.

hash(P)i =







1; pi > 0

0; otherwise
(3.3)

hash(P)i = bpi/bin-widthc (3.4)
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Table 3.6 ROC AUC scores using LSH

Real-valued hashes
LSH bin-width dim=96 dim=64 dim=32 dim=16 dim=8

LSH top-t=20
25 0.966 0.945 0.967 0.940 0.929
20 0.965 0.939 0.959 0.944 0.946
10 0.936 0.916 0.927 0.940 0.913

LSH top-t=10
25 0.974 0.958 0.966 0.952 0.941
20 0.973 0.958 0.966 0.952 0.941
10 0.949 0.935 0.932 0.946 0.928

Binary-valued hashes (piece-wise thresholding)
LSH bin-width dim=256 dim=128 dim=64 dim=32 dim=16

LSH top-t=20
25 0.886 0.916 0.907 0.914 0.906
20 0.851 0.892 0.917 0.914 0.905
10 0.606 0.699 0.792 0.874 0.913

LSH top-t=10
25 0.919 0.923 0.932 0.931 0.917
20 0.867 0.914 0.913 0.935 0.921
10 0.687 0.722 0.845 0.903 0.922

Retrieval results using LSH technique and querying 10-second long probe signals

with additional noise superimposed with a range of SNR values between [0,3] are

shown in followings table and figures. Results are conducted for various fingerprint

dimensions for both real and binary (using piece-wise threshold embedding model)

hashes. Table 3.6 shows ROC AUC scores for real-valued and binary-valued hashes.

Fig. 3.10 and Fig. 3.11 show ROC curves for real-valued and binary-valued hashes

with various output dimensions respectively.
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(a) bin-width=25 top-t=20 (b) bin-width=20 top-t=20 (c) bin-width=10 top-t=20

(d) bin-width=25 top-t=10 (e) bin-width=20 top-t=10 (f) bin-width=10 top-t=10

Figure 3.10 ROC curves using LSH with real-valued hashes

(a) bin-width=25 top-t=20 (b) bin-width=20 top-t=20 (c) bin-width=10 top-t=20

(d) bin-width=25 top-t=10 (e) bin-width=20 top-t=10 (f) bin-width=10 top-t=10

Figure 3.11 ROC curves using LSH with binary-valued hashes
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4
Conclusion and Recommendations

An audio fingerprint is a content-based compact signature that represents audio signal.

Fingerprinting/hashing is an engineering task which includes fingerprint design,

similarity metric and matching search for verification and recognition/identification of

data in the interested domain. Real-world applications for audio fingerprinting varies

from query-by-example music recognition, audio labeling, content-based integrity

verification to copyright detection systems. For instance popular online music labeling

systems are available including Shazam [6] [21], SoundHound [27] and Google Sound

Search [73] with client-server architecture. A general architecture for a fingerprinting

& recognition systems is depicted in Fig. 4.1.

Figure 4.1 General architecture of an audio fingerprinting system

Considering the tradeoff of system resources of real-world scenarios, precision/recall

and response time requirements, what the academic research is mainly focused on

is design of fingerprints that are essential i.e. being robust to various degradations,

alignment problems in matching step, feature extraction/calculation complexity and

compactness for fast retrieval. An audio signal may undergo many kind of distortions

like additional background noise, reverberations, pitch shifting, interference in

transmission, quantization and/or compression artifacts (i.e. GSM or MP3). The

designed system should tackle with these obstacles.

76



In this study we explored a two-stage feature extraction method combining scattering

wavelet transform (SWT) and deep embedding hash model to generate final

fingerprints. SWT generates contractive representation of signals and provides

Lipschitz continuity to deformations [74]. That is the distance between the transforms

of the degraded and the original signals are bounded for a group of deformations

satisfying necessary conditions. Then we build our deep hashing network based on

combination of first-order and second-order scattering coefficients to model musical

data efficiently. We first experimented with naive comparison method not to be

influenced by database precision artifacts and later also with LSH techniques to

be feasible working with large dimensional audio fingerprint data for retrieval and

identification.

With an adaptive scoring scheme we can retrieve 0.982 ROC score for 96-dimensional

hash fingerprints using naive comparisons. Our database is sparse, indexing only 96

floating-values (i.e 96× 4 = 384bytes) per second for indexed audio signals without

overlapping. Also limiting the hash dimension doesn’t seem to have great impact as

we suspect that because the database size is limited. For 16-dimensional hashes (64

bytes/sec.) the ROC score is above %95. Also in a feasible application settings, by

using LSH method %97 ROC score is retrieved for 96-dimensional model.

In this study we tried to tackle most common obstacle for audio identification from

the end-user perspective that is musical audio tampered with environmental noise.

Noted that, this study does not focus on robustness of types pitch and tempo changes,

which makes the application not suitable for scenarios like copyright detection where

same content can be played back with different pitch and time-scale modifications.

To be more comprehensive other group of degradation should be considered, such as

how sampling rate changes effect the output our framework or could using features

of long durations (i.e. one second) compensate linear-speed modification of audio

signal should be answered. If the latter is not, keeping minimal duration of features

vs. storage footprint trade-off should be adjusted carefully. Also other and/or

larger datasets should be experimented with, and GTZAN dataset’s faults should be

considered (e.g. mostly repetitions in the song structures) [75] while extending this

study.
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