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ABSTRACT

BLIND AUDIO SOURCE SEPARATION USING INDEPENDENT
COMPONENT ANALYSIS AND INDEPENDENT VECTOR
ANALYSIS METHODS

Alyaa MAHDI

Department of Computer Engineering
MSc. Thesis

Adviser: Prof. Dr. Nizamettin AYDIN

Blind Source Separation (BSS) is one of the most challenging problems in the field of
audio and speech processing. Many different methods have been proposed to solve BSS
problem in the literature. In addition, speaker recognition systems have gained
considerable interest from researchers for decades due to the breadth of their field of
application.

In this study, we have compared the performance of three popular BSS methods
implementations: Fast-ICA, Kernel-ICA and Fast-IVA which are based on Independent
Component analysis (ICA) and Independent Vector Analysis (IVA) respectively.
Initially, classical performance comparison metrics such as Source-to-Artifact Ratio,
Source-to- Distortion Ratio, Source-to-Noise Ratio, are implemented for comparison.

For further investigation, speaker recognition system has been developed to examine
the effect of speech separation on the performance of these recognition systems.

In our experiments, we used two data set the first one is in Arabic languge and contains
voice records frome 13 speaker: 3 female , 10 male.the second data set is the ELSDSR
data which in English languge and contains voice records from 22 speakers: 10 female,
12 male.

The performance of BSS methods is measured under four scenarios. The first three is
composed to see the effect of noise. Therefore, we used the mixture of clean source
signals, the mixture of source signals with additive Gaussian noise, adding Gaussian
noise to clean source mixture. In the fourth scenario, we applied speaker recognition
system based on Gaussian mixture models (GMMs) and I-vectors, the performance of
the speaker recognition system is measured by Equal Error Ratio (EER), which is, the
most reliable measurement in this field.



Experimental results show that the Fast-1VA has better performance than the Fast-ICA
method according to performance metrics used in this study. In terms of EER, I-vector
gives the better result than GMM for separated signals by IVA and ICA.

Key words: Blind source separation, Independent component analysis, Independent
vector analysis, kernel Independent component analysis.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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OZET

BAGIMSIZ BILESEN ANALIZi VE BAGIMSIZ VEKTOR ANALIZi
KULLARAK SES SINYALLERINDE KOR KAYNAK
AYRISTIRIMI

Alyaa MAHDI

Bilgisayar Mithendisligi Anabilim Dali
Yiksek Lisans Tezi

Tez Damismani: Prof. Dr. Nizamettin AYDIN

Kor kaynak ayristirma (KKA) ses ve konusma isleme alanindaki 6nemli problemlerden
birisidir. Bu problemi ¢6zmek igin literatiirde farkli yontemler Onerilmistir. Buna ek
olarak konusmaci tanima da arastirmacilar i¢in onyillarca lizerinde c¢alismalarin
yapildigr bir calisma alanidir. Bu ¢alismada kor kaynak ayristirma problemini ¢ozmek
icin kullanilan Bagimsiz bilesen analizi (BBA) ve bagimsiz vektor analizi (BVA)
yontemlerinin uygulamalari olan Hizli — BBA, Cekirdek - BBA ve Hizli — BVA
algoritmalar1 iizerinde karsilastirmalar yapilmistir. ilk olarak Source-to-Artifact oran,
Source-to- Distortion orani, Source-t0-Noise orani karsilastirma yapmak igin
uygulanmistir. Daha sonraki arastirmalar i¢in konusmaci tanima sistemi kaynak
ayristtrma  islemlerinin = konusmaci tanima  etkisini incelemek  maksadiyla
olusturulmustur. Calismada 10 kadindan ve 12 erkekten olusan 22 konusmacidan elde
edilen ELSDSR veri seti kullanilmigtir. KKA sisteminin performansi dort farkli senaryo
ile test edilmistir.

Bunlardan ilk Ug¢ tanesi giirtiltiiniin sisteme etkisini gérmek i¢in yapilmistir. Dolayisiyla
bunu yapmak i¢in giiriiltii icermeyen karistirilmig sinyaller, karistirilmig sinyallere
Gauss giiriiltiisii eklenmis yeni sinyal ve gliriiltii icermeyen sinyallere Gauss giirtiltiisii
eklenmis sinyaller kullanilmistir. Calismadaki dordiincii senaryo ise konusmaci tanima
sisteminin Gauss Karigim modeli ve Ivector yontemlerinin konusmaci tanima sistemi
performanslarinin siklikla kullanilan Esit Hata Oran1 (EHO) ile karsilastirilmasini
icermektedir. Deneysel sonuglar; EHO olgiitiine gore Hizli-BVA algoritmasinin Hizli-
BBA algoritmasinin daha basarili oldugunu gostermektedir. Ayrica EHO 6lciitii

xii



acisindan BVA ve BBA tarafindan ayrilan sinyallerin I-Vektdr yonteminin Gauss
Karisim Modelinden daha basarili sonuglar vermistir.

Anahtar Kelimeler: Kor Kaynak Ayristirma, Bagimsiz Bilesen Analizi, bagimsiz
vektor analizi , Cekirdek Bagimsiz Bilesen Analizi.

YILDIZ TEKNIiK UNiVERSITESI FEN BILIMLERI ENSTITUSU

Xiii



CHAPTER 1

INTRODUCTION

1.1 Literature Review

The Blind Source Separation (BSS) Problem has expansive attention for many decades.
The simple description of this problem when two or more people were in a room and
many conversations might happen simultaneously, so how can we accurately determine
what a particular people talks among several people that are talking at the same time?”.
Humans can overcome this problem according to the remarkable abilities of their brain
for sorting the mixture of auditory sources, but it is considered as complicated problem
for digital signal processing. This problem is also known as “cocktail party problem” that
was first proposed by Colin Cherry in 1953, many efforts have been dedicated to this
problem in variety of science fields: physiology, neurobiology, psychophysiology,
cognitive psychology, biophysics, computer science, and engineering [1].

Several techniques were proposed to solve BSS problem specifically the Blind Audio
Source separation problem was firstly addressed by Herault and Jutten in 1985 [2]. In
their work, the sound is directly transmitted to the microphones without any delay which
is known as standard blind source separation. Then in 1995, Bell and Sejnowski
developed the Independent Component Analysis (ICA) method to separate the sources
when they are mixed simultaneously [3]. Also, some representational algorithms of ICA
were proposed. In 1997 Aapo Hyvarien and Erkki Oja, proposed the Fast-Fixed Point
ICA algorithm and could successfully prove that new algorithm is 10 to 100 times faster
than gradient algorithm [4], the Joint Approximate Diagonalization of Eigen matrices
(JADE-ICA) technique has been proposed by Jean-Fran cois Cardoso in 1999[5], the
Extended Generalized Lambda Distribution EGLD-ICA approach was addressed by
J.Eriksson, J.Karvanen, V.Koivunen, in 2000 [6]. Furthermore, the MS-ICA approach is



proposed to offer the ability to separate the nonlinear mixture sources in 1994[7], and the
Kernel-ICA technique which was proposed by R. Bach, Michael I. Jordan in 2002[8].

According to the fact of sound wave reflection from the ground, the ceiling and all the
furniture inside the room in real life, the sound waves take multiple paths before reaching
the microphone. As a result, this problem becomes more complicated for real room
environment and this speech propagation problem is called convolutive blind source
separation (CBSS) [9].

Initially, the solutions were posed in the time domain. Due to the complicated
calculation caused by convolution, Parra et al [10] suggested another method based on
the frequency domain. In the frequency domain, the convolution is replaced with
multiplication to have low cost in terms of execution time. However, this method still
has scaling and permutation ambiguities. One of the proposed methods to solve the
scaling ambiguities was matrix normalization [11, 12]. The permutation problem was
more challenging to solve, in [13, 14] the authors solve the permutation ambiguities
successfully by using the inverse of de-correlating metrics and the envelope of the sound
signal depending on the theory that the speech signal is stationary in short period of time.
Furthermore, more efforts to overcome these ambiguities have been submitted as shown
in [15]. To overcome difficulties that ICA has been faced to separate Multivariate
sources, an advanced method named independent vector analysis (IVA) was proposed by
Kim et al [16]. The IVA method was developed later by 1. Lee, T. Kim, T.-W. Lee to
produce Fast — fixed point Independent vector analysis Fast-1VA algorithm [17, 18].

On the other hand, researchers show high interest in speaker recognition systems for
more than five decades ago duo to the widespread of automatic speech recognition
system application such as automatic call processing in telephone networks and query-
based information systems that provide updated travel information, stock price
quotations, weather reports, etc. Working in speaker recognition field has begun in
1960’s when Bell Labs submitted the experiment that worked over dialed-up telephone
lines [19]. The development of speaker recognition system that based on Hidden
Markov Model (HMM) began in 1980°s. In 1990’s the score normalization and text
induced methods were evolved. In 2000’s the text independent speaker recognition

systems were successfully developed [20].



Additionally, Blind Source Separation techniques have been used to improve the
performance of speaker recognition system as shown in [21, 22] where the number of
sources equal to the number of microphones. Furthermore, the Over-determined Blind
Speech Separation (OBSS) case also was studied in [23], where the number of
microphones was more than the number of sources. The extra number of microphones
have a positive effect on the performance of the process and speaker recognition system
at the same time. In the [24] novel solution to the (OBSS) problem was proposed to
enhance the speaker recognition performance. In [25], Martin showed the effect of BSS
methods of the Speaker Recognition System ARS performance by comparing the
performance of the SRS before and after separation mixed speech signals for the
teleconferences. He used the Diarization Error Rate (DER) for measure the performance
of speaker recognition system. The DER value was 0% for SRS before separating and

66% after separating. He used IVA in his work for sources separation.

1.2 Objective of the Thesis

The objective of this thesis is to implement Blind Source Separation methods on the
mixture of speech signals and apply speaker recognition system to the separating signals

in order to find the better method that has high performance than the others.

In this thesis, three different proposed scenarios are followed by mixing and separating
the speech signals. For each scenario, the speech signals are mixed in pairs. Fast-ICA,
Kernel-ICA, and Fast-IVA algorithms are used for separating signals. In the fourth
scenario, speaker recognition system including speaker identification and speaker
verification is applied for all the separated signals that obtained from each three

previous scenarios.



1.3 Hypothesis

Blind Source Separation (BSS) is one of the most challenging problems that has been
attracted the attention of researchers in different fields of since. This problem describes
the situation of focusing on one speaker in case of several persons talking
simultaneously in the same room. To separate the mixed speech signals and obtain just a
speech signal which belongs to a particular speaker is very challenging and complicated
problem [1]. The challenge of this problem is the estimation of the sources without any
prior knowledge about the original sources or mixing matrix. Three statistical methods
were utilized in this work to separate the mixture speech signals on two databases such
as Fast-ICA, Kernel-ICA, and Fast-1VA.

Due to the significant importance of the Speaker Recognition systems that have
widespread applications in various fields, the effect of BSS methods of the speaker
recognition system have been examined in this work. Figure 1.1 shows the main
structure of this thesis work. The Speaker recognition System can be divided into two
main tasks: speaker identification and speaker verification, this work deals with both of

these tasks.

For speaker identification, the Gaussian Mixture Model (GMM) is used as a
classification method which is, based on Mel-Frequency Cepstrum Coefficients

(MFCC) for feature extraction. The i-vectors method is used for speaker verification.

Speaker Recognition is applied for all separated speech signals that have been separated

by BSS methods which are used in this work.

The speech Mixing Mixed speech BSS Separated Speaker
— . . tod : Recognition
signals processing signals Methods  /speech signals

System

Figure 1.1 the main structure



1.4 Thesis Organization

This thesis was organized as follow: Chapter 1 includes the general introduction of this
thesis wok. Chapter 2 gives the information with details about the Blind source
Separation BSS methods and the Speaker Recognition System. Moreover, this chapter
includes the explanation of the implementation of these methods. The proposed
scenarios, the results of our experiments, the discussion of these results and the future

work were presented in Chapter 3. Finally, the conclusion was included in Chapter 4.



CHAPTER 2

METHODS AND METARIALS

2.1 Blind Sources Separation

The blind source separation (BSS) is the process of separation mixed sources. When
two or more people were talking in a room that has microphones placed in a different
location, the observed records by one or more of these microphones would detect
several conversations at once. The term “blind” refers to the ability to estimate the
original sources from the observation signals by microphones array without knowing
the characteristic of the transmission channel or how these sources have been mixed.
The number of sources and microphones determine the BSS problem model. Thus,
when the number of microphone is more than number of sources (N < M) this is known
as Over-determined BSS [23, 24]. The Underdetermined BSS expression refers to the
situation when the number of microphones is less than the number of sources
(N>M)[26], and classical BSS when the number of sources and microphone are equal

(N=M) as shown in figure 2.1.

Source 1 Stereo Mixture Estimated 1
Left Channel

s o]0 " A
'*-\, BSS
Source 2 ‘ Methiass Estimated 2
| "

R

‘”mm Right Channel mm

Figure 2.1 classical BSS



Additionally, each of BSS model can occur with two different mixture model.

Instantaneous Mature model: in this model, the sources signals reach the

microphones at the same time without any delay in time.

Convolutive mixture model:This model refers to the mixing process that happened in a
real room so, due to the reflection that caused by the room walls and the furniture of the
room the source signal would not arrive at the microphone at the same time. Hence, this

model is more complicated than the Instantaneous Mature model .

2.1.1 Independent Component Analysis

Independent Component Analysis (ICA) is one of the most popular BSS methods. ICA
was used extensively for many applications in the various fields of science and
engineering. ICA, which is a statistical computational method, is employed to find
underlying hidden factors among a set of random vectors. The main aim of ICA method
is to obtain the independent components (ICs), which are linearly independent or as
independent as possible.

For deep analysis, let us explain the ICA Model in the time domain.

Mathmatically, we can expresses N number of differrent source signals with sources

index i=1,2,.....N as a vector in this way :

S(t) = (51(6), S2 (), e veer Sy (E))T (2.1)

Also we can define the observed signals observed signal x(t) and the noise signal n(t)

with microphone index j=1,2,......M as a vector as follow :

X(t) = (1.(8), X3 () wee oo Xy ()T (2.2)

n(t) = (ny(t), Ny (), e oo .y ()7 (2.3)

Where M refers to the number of microphones and t is the time index.

Thus, for the Instantaneous Mixture Model we can define each observed signal as:

x; () = XLy aji.si (£) +n;(0) (2.4)



Where, aj; represents the weighted vector parameter that depends on the distance

between the source and the microphone, i is the sources index and j is the observed

signals index.

By using vector-matrix notation instead of summations like in equation (2.4), we obtain

the following expression:

Xx=As+n (2.5)

For noise-free mixture model we can rewrite the equation (2.5) as following way:

X=As (2.6)

Where A is the mixing matrix, x is a vector of the observed signals and s is a vector of

the source signals.

For the classical BSS model when the number of sources and microphones are equal,
The ICA method achieves its aim by finding the un-mixing matrix W which is, the

inverse of mixing matrix A. This can be written as:

W=A"! 2.7)

As a result, ICs denoted by vy is obtained simply by:

W X (2.8)

<
1



To simplify the complicated calculation in convolution BSS [9], ICA in the frequency
domain are used. The convolution in the time domain is the multiplication in the
frequency domain. So that, for free- noise model and by applying Fourier transform we

can rewrite the Equation (2.4) in the following:

X () = X Aix (W)sy () (2.9)

We can rewrite the previous equation in vector-matrix notation as follow:
X(w)=4A(w).S(w) (2.10)

Thus, the estimation of the sources can be occurred by finding the un-mixing matrix
W(w) for each frequency w = 2 nf . Where the un-mixing matrix W(w) is equal to the

inverse of A(w):
W(w) = A(w)™?! (2.11)

Hence, we can obtain the estimated signals Y (w) as follow:

Y(w) =W(w). X (w)
=A(w) . X (w) (2.12)

As we know the speech signal is not- stationary signal and under the assumption that the
non-stationary signal transformed to the stationary signal in short blocks. So we need to
apply the short-time Fourier transform (STFT), windowing and a discrete Fourier
transform (DFT). Thus we can describe each observed signal x(f, i) in the time-
frequency domain for each frequency bin as below:

x\ =[x %], Xl T (2.13)
Here, i is the time index refers to the i-th block and f is the index of the frequency

Thus, we can refer to the estimated source Y in each block for each frequency bin as

below:
Y = WS, xf

= @)t (2.14)



ICA assumptions
In order to make ICA model work properly, a few assumptions must be made.

The first assumption: The original sources should be statistically independent [27].
Statistical independence is defined in terms of probability density function (PDF) of the
sources signals. Thus, the joint probability density function (PDF) of N different

original sources (s;) can be expressed as:

Pn(S1,S2) wen oo ySn) =P1(51)-P2(S2)P2 ... .pn(Sn) (2.15)

Similarly, independence could be defined by replacing the pdf by the respective

cumulative distributive functions as:

E{ p1(51) P2(S2), e oo, PN (SN} = E{ 91(51)} L 91 (S1)} oo E{ gn(sn)} (2.16)

Where E{.} is the expectation operator.

The Second assumption: The sources (s;) have non-Gaussian distribution.

Theoretically, a Gaussian distribution signal can be considered as a linear combination
of many independent signals, thus, a Gaussian signal cannot be distinguished by ICA
method as a single source, so that ICA method assumed that the sources signals have
non-Gaussian distribution in order to recognize them effectively. Several measurements
methods such as kurtosis and entropy methods are used to measure the non-Gaussianity
distribution of the sources.

Kurtosis is the statistical method that used for measuring the non-Gaussianity. The

basic definition of Kurtosis for signal (s) that has zero mean can be expressed by:

Kurt (s) = E{s*}- 3(E{s*})? (2.17)

10



In another word, kurtosis method measures the skewness of the distribution. Its value
gives the description of the distribution tails. So, this method is known with its

sensitivity to the outliers and statically kurtosis is not robust for ICA method.

Entropy is the measurement of any disorder system. Theoretically, it can be used to

measure the randomness of the signal. The entropy H of the signal (S) can be defined as:
H(S) =— [ P(S) log P(S) ds (2.18)

According to the information theory, the signal that has Gaussian- distribution it has
largest entropy value and vice versa. Thus the entropy can be considered as the non-

Gaussian measurement.

For simplicity, the entropy measurement has been normalized to produce a new
measurement that called Negentropy. We can define Negentropy measurement ] as

follow:

J(S) = H(Sgaussian ) — H(S) (2.19)

According to equation (2.13), the Negentropy value would be positive or zero with a

pure Gaussian signal.

The third assumption: The unknown mixing matrix A is assumed to be invertible or
pseudo-invertible that makes it possible to invert or pseudo-invert the missing matrix W
and estimate the source components using the equation (2.8).

ICA Ambiguities

ICA method has two ambiguities: the magnitude and scaling ambiguity and the

permutation ambiguity.
e Magnitude and scaling ambiguity

This ambiguity occurred because of the disability to determine the true variance of the

sources. For more illustration, we can rewrite the mixing in equation (2.6) as follow:

11
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D=
2
&

-
1l
fuy

(2.20)

Where, a; refers to the j-th column of the mixing matrix A. Since neither the
coefficients of the mixing matrix nor the original sources s; are unknown, we can
rewrite the Equation (2.20) in this way:

N

X = 2(1/aj a;)(a;s;) (2.21)

j=1

e Permutation ambiguity

Since the ICA method separates the mixed of independent sources blindly without any
information about the original sources. Thus, the order of the sources is unknown and
that led to estimate the sources probably in different order. The Equation bellow

expresses that ambiguity in this way:
x=AP~1Ps

x=A's' (2.22)

The elements of Ps are the original sources, but in a different order, and A'= AP~ 1is the
unknown mixing matrix. The expression in Equation (2.22) cannot be distinguished
within the ICA framework. This problem is insignificant in time domain since it only
causes that the estimated signal will be in different order than the original sources, but
imagine this problem in the frequency domain when the separation process is done in

each frequency bin.
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Preprocessing

Some preprocessing steps can be performed to improve the performance of ICA

methods. Useful preprocessing techniques are discussed below.

1. Centering

In this step the observed vector x is centered by subtracting its mean vector m=E{x} to

obtain zero mean. The center vector x., can be defined as follows:

X,=X-m (2.23)

Thus, the un-mixing matrix will be estimated using the centered data. The ICs are

estimated using the following equation:

Y= A"1(x.+ m) (2.24)

After performing this preprocessing without affecting the estimation of the mixing

matrix, all the observing vectors can be considered as centered.

2. Whitening

Whitening of the observation vector x is a useful and important step for ICA algorithm.
It includes linearly transforming the observation vector x such that its components are
uncorrelated and have unit variance. The eigenvalue decomposition (EVD) is used to
perform the whitening transformation in a simple way [28]. Thus, decomposition of the

covariance matrix of x is calculated as follows:

E {xxT} =VDVT (2.25)

Where E{xxT} is the covariance matrix of x, V denotes the matrix of eigenvectors of

E{xx"},and D is the diagonal matrix of eigenvalues, i.e. D = diag{A;, A,, ..... A, }.
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The following transformation is employed to whiten the observation vector.

Xy =VD~ /2 yTx (2.26)

Where the matrix D~%/2is obtained by a simple component-wise operation as D~/2 =
diag {A, "%, 2,7 Y2, ... A, *?}. Whitening transforms the mixing matrix into a new

orthogonal matrix:

Xw =VD Y2 VT A = A,s (2.27)

Whitening reduces the numbers of parameters to be estimated. The new orthogonal
mixing matrix is needed to be estimated. As a result, whitening can solve a half of ICA

problem.

Fast Fixed-point ICA (Fast-1CA)

One of the algorithms that based on ICA method is the fast fixed-point ICA algorithm
(Fast-ICA), which transforms the neural network rule into a fixed-point iteration. So it
is known for its simplicity and speed when it is compared with the gradient based
algorithms. The (Fast-ICA) is used for separating sources and extracting features [4].
Fast-ICA algorithm has two estimation approaches : deflation approach to estimate ICs
one by one and symmetric approach to estimate 1Cs simultaneously.

1. The default estimation approach for Fast -ICA algorithm:

Under the assumption that we obtain the whitening vector x,, of the observed signal
after applying the whitening pre-processing as we explained previously and due to
Eq.(2.27) and (2.17). Fast fixed-point Algorithm estimates the sources one by one by

estimating the un-mixing matrix w as shown in the following steps:
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1- Initialize with a random vector value w (0) of norm 1 let p=1.

2- Letw (p) = E x(w(p - 1)T x)® —3w(p - 1), Estimate the expectation using a large
sample of x vectors.

3- Divide w (p) by its norm.

4- If |(w(p)Tw(p- 1)| is not close enough to 1, consider p = p + 1 and go back to step

2, otherwise return the vector w(p) as output.

Where, the output vector w (p) is equal to one of orthogonal matrix column A,, . Thus

in terms of BSS problem that mean w (p) separate one of non-Gaussian sources signal
2. Symmetric approach to estimate 1Cs simultaneously:

Typically, we obtain several estimated sources by several running of the algorithm but
we need to be sure that they are different. So an orthogonalizing projection is added to

the step 3 of the algorithm
3- Let w(p) = w(p)- AAT w(p).Divide w (p) by its norm.

Where, the columns of A matrix are previously found the columns of the orthogonal

matrix A,, .
Kernel Independent Component Analysis

The Kernel Independent Component Analysis (Kernel-ICA) is a different version of
ICA model that based on the minimization of a contrast function based on kernel ideas
[8]. Kernel _ICA model has two different algorithms The Kernel ICA-KCCA algorithm
and the Kernel ICA-KGV algorithm.

Let us first define the contrast function that measures the dependence of random
variables. In a case of two variable x,, x, and F is the vector space of functions from R
to R so we can describe the F- correlation PF as follow:

max cov(f1 (x1),f2(x2))

P_F = flr};lgg corr (fl (xl )’ fz (xz)) = fl‘fzeF (vaT‘f1 (xl )) 1/2(,Ua,rf1 (xl )) B (2'28)
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PF is the maximal correlation betweenf; (x; )and f,(x,) ,where f; and f, ranges are

over F

In order to implement the F-correlation, the reproducing kernel Hilbert space (RKHS)
ideas are used. With considering that F is an RKHS on R, and K(x; y) is the associated
kernel, and ¢(x) = K(.; x) is the feature map, where K(.; X) is a function in F for each x.

We then have the well-known reproducing property:

f(x)=(px),f)Vf€EFx€ER:

This implies:

corr (fy (x1), f(x2)) = corr ({p(x1), fi). (P (x2), f2)) (2.29)

The maximal correlation between one dimension projection ¢ (x;) and ¢ (x,) is denoted
by the F-correlation. Thus, depending on that definition that similar to the definition of
the first canonical correlation between ¢(x;) andg(x,). Hence, the canonical
correlation in function space can be computed based on the ICA contrast function.
Canonical correlation analysis (CCA) is a statistical technique which is similar to
principal component analysis (PCA) technique, but the (CCA) works with a pair of
random vectors and maximizes correlation between sets of projections and leads to
generalized eigenvector problem (instead of work on one random vector as in (PCA).
Thus, the (CCA) is carried out to compute the contrast function for ICA by using the

kernel trick.

2.1.2 Independent Vector Analysis

Due to the problems that ICA method had faced such as the promotion problem in the
frequency domain and separating the multivariate sources, the Independent Vector
Analysis (IVA) which is one of the most advanced methods that shows better
performance in the field of BSS [16] was proposed. It is designed according to an
assumption that all the elements of one source vector over all the frequency bins are
dependent, but the elements of different sources vectors within one frequency bin are
independent. Thus, we can represent each source vector as s = [s1,s?,.....,sF] and

each mixture vector as x = [x},x2,.....,xF] where F is the number of the frequency
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bins [17]. Fig. 2.2 shows the instruments mixture model of IVVA for two sources and two

microphones.

Xl
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Figure 2.2 The instantaneous mixture model of IVA for 2 sources and 2 microphones
the sources vector and the observed vector are represented as vertical pillars

An objective function is defined to separate multivariate sources from multivariate
observations, Kullback-Leibler divergence between two functions as the measure of
dependence is employed in IVA. The kullback-Leibler divergence between the joint
probability density function p=S;,.....S, and the product of probability density

functions of the individual source vectors []q(5;) ) can be defined as follow:

J =KkL(PGy - 80) [ TIAGD)
= const — Yj=q log |det(W (k)| — XiL, E[logq(8,)] (2.30)

We can keep the dependency among the components of each vector, and remove the

dependency between the source vectors if the cost function is minimized [18].

In literature, there is a different version of IVA such as NG-IVA, Fast-IVA and Aux-
IVA [18]. In this study, Fast-IVA algorithm is used for BSS.
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Fast fixed-point Independent Vector Analysis (Fast-1VA)

This algorithm utilizes Newton's method for updating the original VA method, which
converges quadratically and it's free from selecting an efficient learning rate. The
quadratic Taylor series polynomial approximation is introduced in the notations of
complex variables. Thus Newton's method can be applied in the update rules. A
quadratic Taylor series polynomial can be used for a contrast function of complex-

valued variables [18]. The contrast function used by Fast IVA is as follows:

A(K)

J =2 (B[G2Eoy 18 2] - SR A (wi (wiyH - 1) (231)

Where, 4; is the ith Lagrange multiplier, and w; % denotes the ith row of the unmixing

matrix W, G (+) is the nonlinearity function, which can take on several different forms as

discussed in [18]. With normalization, the learning rule is:

() e(ge)
K K

2
o )xK] (2.32)

(W < E

x (wOHH —E[(§§K>) «G (ZK

Where G'(-) and G''(-) denote the derivative and second derivative of G(-),

respectively. If this is used for all sources, an un-mixing matrix W (k) can be
constructed which must be de-correlated with

W (W(K)(W<K))”)—1/2W<K) (2.33)

In this study, we implemented Fast-IVA in the frequency domain. Figure (2.8) shows

the flowchart of this algorithm.

18



2.2 Speaker Recognition System

Speech is not only words or messages being spoken, speech carry information about
language that is being said and also specific information about the speaker. Thus, this
information used to achieve the goal of speech and speaker recognition systems.

Speaker recognition includes several fields [29] that shown in fig 2.3.

[ Speaker Recognition J

l

[Spcakcr Detection ]

—

[ Speaker Identification [ Speaker verification

N 7N\

* text * text

-/

* text ® text

Independent Independent Independent Dependent
« Unwitting * Cooperative « Cooperative » Cooperative
Speaker Speaker Speaker Speaker

* High Quality * High Quality
speech speech

« High Quality
speech

* Variable
Quality speech

Figure 2.3 Speaker Recognition
This thesis work deals with speaker identification and speaker verification. In speaker
identification, the goal is to specify the identity of the input speaker voice by finding
which one of the known speaker sound group is best matches with input speaker sound
sample.

In speaker verification, the goal is to determine from a voice sample if a person is whom

he or she claims.

Typically, the standard speaker recognition system consists of two main processing:

extracting features and classification, which is also known as pattern recognition.

2.2.1 Feature Extraction

In order to reduce the amount of the data of speech signal that used in speaker
recogntion system and obtain the vocal characteristics the feature extraction process
were utilized for both training and test data. Several approaches addressed the problem

of feature extraction such as Linear Predictive Coding (LPC), Local Discriminant Bases
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(LDB) [30 ]. In our work, we used Mel-frequency cepstral coefficients (MFCC) [31]
which is the most popular and efficient in speech and audio processing. Fig 2.3
describes the diagram of (MFCC).

Continues
speech

Frame

: Windowing
Blocking

Mel-frequency

Cepstrum Wrapping

cepstrum

Figure 2.4 The structure of an MFCC processor
In order to obtain MFCCs we need several steps:
1. Frame Booking:

Theoretically, the speech signal is a non-stationary signal, so it is broken down into
short frames. As a result, it seems stationary in each frame. This process is carryed out
by blocking the speech signal into frames. Each frame size between 30 to 100-
millisecond. Fig 2.5 shows the first frame with N samples and the adjusted frame with
M samples. The overlapping is occurred by N-M . Overlapping is used to smooth the

transition from one frame to the other.

Framing and Windowing - 30 ms Frame Size and 15 ms Hop Size
0.06 T T T T
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Figure 2.5 Frame blocking and overlapping
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2. Windowing:

In this step, we minimize the spectral distortion and the discontinuities by using the

window. So the signal will be zero at the beginning and ending of each frame.

3. Fast Fourier Transform FFT:

We need to apply the Fast Fourier transform (FFT) for each frame in order to transform
the signal from time domain into frequency domain. As we know FFT is the fast
algorithm of discrete Fourier transform (DFT) that can be define as follow:

Xe= ) xpe 27N |k =012....N—1 (2.34)

4. Mel- Frequency Wrapping :

Warpping step containing filtering the signal energy by triangular-band filters called
(mel_filters), these filters makes our features match more closely to the human auditory

system. Fig 2.6 show an example of the mel —flters bank
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Figure 2.6 Example of mel-spaced frequency bank
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5. Cepstrum:

Since these filters are applied in the frequency domain, discrete cosine transform (DCT)
Is used to convert the log Mel spectrum back to the time domain in the final step

Cepstrum, so we can get the MFCCs as follow:

K

1

Cp = Z(log Sk) cos [n (K _E)%] n=201..,K-1 (235)
K=1

Where K represents the number of Mel spectrum coefficients and S as an output of
mel_filters. Finally, we can obtain n number of MFCCs as features for each speech
frame. These features can be represented as the feature vector, thus the feature vectors

for all frames can be represented as feature matrix.

2.2.2 Classification

In classification the feature matrix is compared with calculated speaker models, thus
recognize the speech sample is best fits with which model. In this work, for
identification task, we chose Gaussian Mixture Model (GMM) and the I-vector

technique for verification task.

The likelihood ratio is frequently used to explain the variability of speech when
biometric data is used for identity verification [32 ]. The speech utterance recorded from
a sensor (source), and the records stored in the database (references) are described with
the same type of features to form a dataset. The main goal is to determine whether the
source and reference are derived from the same speaker or not. An ideal system should
be able to provide reliable verification results without being affected by speech length

and quality.

A source record X is transformed into the data vector X = [x1, X2, ..., xd] after passing
through the feature extraction process. The speaker, the source of the speech vector X,
is modeled mathematically by the set of mean vector p and covariance matrix £ from
the Gaussian distribution of all the speech utterances stored in the dataset that belongs to
the speaker, and this set is denoted by A0. The likelihood ratio (LR) of X belonging to

the target speaker is expressed as follows, with the target speaker model A0 and the
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alternative model AA (Universal Background Model, UBM) which is generated by the

other registered speaker's utterances.

P(X]20)

2.36
PXite) (2:30)

For scaling purposes, the logarithm of likelihood ratio is often used:
A(X) =log P(X|Ag) - log P(X|An) (2.37)

In verification systems, the general consensus is to verify the source X as an authentic
speech sample from the target speaker if the calculated LR is greater than some
threshold. Determining an appropriate threshold is; however, a difficult task. Since our
main problem is not speaker verification, for the purpose of simplification we used

maximum likelihood ratio criteria.

Gaussian Mixture Model

This method has strong classification tools in pattern recognition, especially in speech
recognition. Furthermore, (GMM) has better performance than Hidden Markov models
(HMM) in text independent speaker recognition [32]. Moreover, (GMM) has based on
well-understood statistical models.

The other reason for using Gaussian mixture densities for speaker identification is the
capability of Gaussian basis functions for modeling a large class of sample distributions.
A GMM can form smooth approximations to arbitrarily shaped densities. Thus, for
these reasons that we mentioned above, we choose Gaussian Mixture Model (GMM) in
our work to calculat speaker models. (GMM) is the weighted sum of N components

Gaussian densities [32] as the equation follow:

N
Pl = ) wipi () (2:38)

Where X is the extraction features vector and w; representing the mixture weights.
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Each component Gaussian densities are computed as follow:
1 1 ——
Pi(¥) = Goprm e OXP {— S(x—p) Xit(x - Hi)} (2.39)

Where y; is the mean vector and Y}; is the covariance matrix and they considered as
GMM parameters. By considering the log of Gaussian distribution and after the
derivative is carried out [33], the linear super-position of Gaussians can be defined as
follow:

K

PO = ) mpi(®) (2.40)

k=1

Where K is the number of mixture Gaussians and m, is the Mixing coefficient

The Expectation Maximization algorithm (EM) was used to compute the GMM
parameters. Typically, EM algorithm is an iterative method that has two basic steps

1. Estimation step: in this step the parameter values are estimated by computing the
latent variabley;.

T Pre (X)

ST 7,0 (2.41)

Yj (x) =

2. Maximization step: updates the value of GMM parameters depending on the latent
variable y; .

Iy (Gn)xn v = In=1Yj (o= 1) Cen=)"
J =1 vj (xn) ] =1 vj (xn)

1 N
T = Nz Y (xn) (2.42)

I-vector

I-vectors are widely used in speaker recognition field. The i-vector extraction can be
considered as a compressed process that reduces the dimensionality of speech-session.
Each patterned speech (speech signal component) consists of speakers and channel

dependent components as given in Equation (2.43). These are speaker-independent
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Universal Background Model (UBM) components (m), speaker components (VYy),

channel components (Ux), and residual components (Dz).

S=m+Vy+Ux+Dz (2.43)

The i-vector approach assumes that Vy + Ux + Dz component resides on a lower-
dimensional subspace of the Eq.( 2.43). According to this approach, a speech utterance
is modeled as in Eq.(2.44) where M denotes the super-vector connected to the utterance,
m_UBM denotes the super-vector of the UBM, T denotes the matrix of eigen-voices

(total variation matrix) and X is the i-vector to be extracted [34], [35].

M — mUBM + Tx (244)

Unlike GMM, which uses UBM and MAP to be used in modeling a speaker for
verification, the i-vector method passes the entire data set through the same i-vector
extraction algorithm. By adapting the T matrix via EM, a speaker model is constructed

for all target speakers.

For a mixture c of the UBM, Baum-Welch Null (Nc) and 1st degree (Fc) statistics are
assumed to summarize an uncompleted observation of each utterance super-vector. As
shown in Eq.(2.45) and Eq.(2.46), statistical values are calculated for vy.(c) =

p(c|O0¢, Aypm) Where Oy is the t'th observation.

Ne(S) = ) 7,(0) (2.45)
tes
F(s) = Ye(©)Yy —mN, (2.46)

Hence, the i-vector x is extracted using Eq.(2.47) and Eq.(2.48).

Cov(xx) = (I + Z N, T:T,)" (2.47)
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x = Cov(xX) z T:F, (2.48)
C

In this multidimensional model, dimensionality reduction is performed with GPLDA

[35] to extract non-speaker-specific dimensions.

2.3 The Performance Evaluation

In order to measure the performance of algorithms that we used in our work, we utilized
SAR, SDR, SIR, and SNR as performance metrics in sources separation field, and EER

measurement in speaker recognition field.

2.3.1 Evaluation for Sources Separation

There are several performance measurement metrics to evaluate the quality of estimated
signals obtained by BSS methods. The performance of BSS algorithms is measured by
comparing each estimated source §j to a given true source sj. The measurement
processing includes two successive steps [36]. The first step involves decomposing sj

as:

A

Sj: Starget+ einterf+enoise+eartif (2-50)

Where  Sigrger = f (sj) denotes the version of s; modified by an allowed distortion,
Sinterf + Snoise @Nd Sapir denotes the interferences, noise, and artifacts error terms,
respectively.

The second step involves computing the energy ratios in order to estimate the relative
amount of each of these four terms either on the local frames of the signal or the whole
signal duration. The way of how to decompose into four terms are given in [36] in

detail. Relevant energy ratios between these terms are defined.

After the decomposition of §; following the procedures given in [36], numerical
performance criteria was defined by computing energy ratios expressed in decibels.

Definition of source-to-distortion ratio (SDR), the source- to- interference ratio (SIR),
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source to artifact ratio SAR and source to noise ratio (SNR) are given below,
respectively

2
SDR:= 1010g10 = [[Stargetl| (251)
inter

f+enoise+eartifl|?

— [IStarget| |2
SIR== 10log,g ———— (2.52)

10
lleintersl 1

2
SAR := 10log; 2rEet intert*enoisel (2.53)
lleartifll?
. 2
SNR 1= 10l0g3o e inierrL (250

2.3.2 Evaluation for Speaker Recognition

The equal error rate (EER) is a measure to evaluate the speaker recognition system
performance. Whenever the value of EER is lower, the system performance is better
[37]. Typically in order to obtain the EER value, two values have to be found:False
Positive Rate FPR representing the value of false acceptance of impostor patterns
divided by all the number of all impostor patterns; False Negative Rate FNR
representing the value of false rejection of client pattern divided by the total number of
client patterns. Thus the intersect point of FPR and FNR which is the same for both of
them represent the EER value.
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2.4 The Methods Implementation

2.4.1 Fast-Fixed Independent Compenent Analysis algorithm Implementation

Fast-ICA is implemented in MATLAB. This algorithm uses the fixed-point algorithm

developed by Aapo Hyvarinen [38]. The flowchart in figure 2.7 illustrate the steps of

Fast-ICAalgorithm [35].
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Figure 2.7 Fast —ICA algorithm flowchart
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As we mentioned before the fast fixed point algorithm has two approaches: the
symmetric and the default approaches. The Fig 2.7 illustrates the default approach. The
Fast-ICA algorithm starts with setting the counter (p) with the same number (m) of the

original sources.

Considering a random values for the first un-mixing matrix Wp, for each iteration, this
algorithm will estimate one source by the following steps:

Centering: In this step we center the observed data vector x. Thus, the product of this

step is a vector with zero mean.

Whitening: In whitening step the mixing matrix is transformed into a new orthogonal
matrix. Hence, the problem dimension is reduced as we explain in whitening

preprocessing section.

Find the w by non-linearity: Finding the un-mixing matrix by using one of non-

linearity (pow3, than, Gauss) according to the inputs of the function (fpica function).

Normalize W: Normalizing the un—mixing matrix (divided it by its norm). If the matrix
values achieve the function condition, the algorithm estimated the W matrix for the first

source.

The algorithm will start again to estimate the un-mixing matrix for the next source if the

counter value p is not equal of the number of the sources.
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2.4.2 Kernel Independent Component Analysis algorithm Implementation

Implementing the kernel-ICA algorithm on the given mixtures returns a un-mixing
matrix W. Thus, the estimated sources are obtained by multiplying the un-mixing matrix

by the mixture signal.
The Kernel- ICA algorithm consists of the following steps

Centering and scaling: These processes simplify the work of the algorithm by

reducing the dimension of the problem.

SVD Technique: The second step is to apply the singular value decomposition (SVD).
This linear algebra technique supplies a method for dividing the matrix into several
simpler parts. This technique is used in this algorithm to divide the matrix (from the
previous step) into three simpler matrixes. They are simpler because each of them has
fewer parameters to infer, so it will be simple also to invert them. Thus, we can get the

initial value of the un-mixing matrix.

Applying the Steepest descent method: Applying this method in order to find the
minima in the Stiefel manifold of orthogonal matrices. After finding the global
minimization of the contract function, in this work, we use ‘kcca’ the default contrast
function. Hence, the output of this step is the un- mixing matrix and by multiplying it
with the observed data vector x we will get the independent components.
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2.4.3 Fast-Fixed-Point Independent Vector Analysis Algorithm Implementation

Fast —IVA algorithm was implemented in MATLAB as written by Taesu Kim, 2005

[17].
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Figure 2.8 Fast —IVA flowchart

As flowchart in figure 2.8 shows, the Fast-1VVA algorithm consists of these steps:

STFT: Since the speech mixture signal is un-stationary signal a short-time Fourier
transform is used, in order to get short blocks that are stationary. The sampling rate of
16 kHz and a window size of 1024 samples have been used.
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PCA Method Implementation: The PCA method is applied for each frequency bin in
order to simplify the problem by reducing the dimension and find the principle

components. In this step, we initialize the value of the un-mixing matrix.

Calculate Hessian and nonlinear function: As we mention previously, the fast -IVA
algorithm uses Newton’s method and a quadratic Taylor series polynomial as a contrast
function of complex-valued variables. Thus, in order to calculate the quadratic

approximation we need first find the Hessian matrix of it.

ISTFT: The inverse short — time Fourier transform is applied to transform the signal
back to the time domain after the separation is done. Thus, the separated signals could
be heard

2.4.4 Speaker Recognition System

The speaker recognition system is implemented in this thesis by using the MSR Identity
Toolkit v1.0 and voicebox which was downloaded from [39]. As mentioned before in
2.2, this system workes by creating GMM based on MFCCs for feature extracting. All
speech signals that entered to this system have the frequency of 16 KH. The universal
background model UBM is the GMM based model and we have used the MAP

(Maximum a posteriori) method for the adaptation.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Proposed Scenarios

In order to examine the performance of the BSS methods that we used in this work (the
Fast-ICA, the Kernel-ICA, and Fast —IVA) we proposed three different scenarios. In
each scenario we mixed the sources signals as pairs by using random valuse. Thus,

obtaining the mixed signal X as shown in Eq(3.1) , Eq (3.2) :
Mi=y*x S +z xS,
My=zx S +y x5, (3.2)

X=M, + M, (3.2)

Where vy, z are represent the random values added to the S; , S, the orginal sources. M,
, M, are the left and right channel respectively of the stereo mixed signal X .The first
proposed scenario includes measuring and comparing the performance of these BSS
methods for separating mixing speech signals without noise, as shown in Figure 3.1.
Figure 3.2 illustrates the second scenario which shows the performance of these
methods for separating mixed speech signals with the Additive white Gaussian noise
(AWGN) added to signals before mixing. In the third scenario, we add the Additive
white Gaussian noise (AWGN) [40] to the signals after mixing as shown in Figure 3.3.
Since Gaussian noise is added to the sources or mixtures in second and third scenarios,
Savitzky-Golay smoothing filter [41] is performed to enhance the signals before the

separation.
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3.2 Additive white Gaussian noise

It is a simple model of noise. We use the term “additive” because we add this noise to

the signal instead of multiplying it with the signal.

y (B=x(®)+n(t) 3.3)

Where x(t) is the clean signal and n(t) is the noise.

It is Gaussian because it has 0 mean and its variance value depends on its power. Of

course, it is not deterministic otherwise we can subtract it from y (t) signal.

In the frequency domain, this type of noise has the same power for all frequencies so
that it is called white. It has a flat level in every frequency.

3.3 Savitzky -Golay Filters:

These filters are known for its ability to provide quick and easy smoothing for the data
and it can also determine the derivatives at each point in a set of data that equally
spaced in the abscissa. Savitzky — Golay filters use the polynomial model that fitting the
subset of the data. Moreover, the coefficients of the polynomial model are used to
determine the calculated derivatives. Some factors can affect the determination of the
filters, the order of the polynomial, the number of data points that used in the fit and the
time at wich the smooth value and the derivatives are discovered. In another word with
considering that the input data is set of y-values, the Savitzky — Golay filter is a vector
with size equal to the number of sequences. y-values to be used in the determination and
whose dot product with those y-values provides the desired derivative.
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3.4 The Datasets
In this thesis, two data sets are used.

The first data is in the Arabic language. We collected this data by recording the voice
of 13 speakers: 3 female, and 10 male, in a real room, each record being length of 10
sec in with 16 kHz.

The second data is the ELSDSER [42] data that contains voice records from 22
speakers: 10 female, 12 male, each record being length of 10sec in the English language
with 16 kHz. The ages are covered from 24 to 63. The test set of ELSDSER data
consists of 2 records for each speaker, (2*22) 44 records. The training set of ELSDSER
data consists of 7 records for each speaker, (7*22) 154 records.

3.5 Mixing Approach

The speech signals are mixed in pairs by using different parameters (each speaker
record is mixed with the rest of speakers records of the data).So that, as shown in table
3.1 the Arabic data 77 mixture signals are created from 13 original signals. Thus, we get
154 separated signals. For ELSDSR data there were 231 different mixture signals from
22 original sources. So we obtain 462 separating signals.

Table 3.1 mixing approach

The data Number of . o
The mixing probabilities

set speakers
(1,2); (1,3); (1,4); (1,5); (1,6);(1,7);(1,8);(1,9);(1,10);(1,11);
(1,12); (1,13)5(2,3); (2,4); (2,5); (2,6); (2,7); (2,8); (2,9);
(2,10);(2,11); (2,12); (2,13); (3,4); (3,5); (3,6); (3,7); (3,8); (3.9);
The Arabic (3,10);(3,11); (3,12); (3,13);(4,5); (4,6); (4,7); (4,8); (3,9);

13 (4,10);(4,11); (4,12); (4,13); (5,6); (5,7); (5.8); (5.,9);
(5,10);(5,11); (5,12); (5,13); (6,7);(6,8); (6,9); (6,10);(6,11);
(6,12); (6,13); (7,8); (7,9); (7,10);(7,11); (7,12); (7,13); (8,9);
(8,10):(8,11); (8,12); (8,13); (9,10);(9,11); (9,12); (9,13);(10,11);
(10,12); (10,13); (11,12); (11,13);(12,13).

data set
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Table 3.2 Mixing Approach (cont’d)

The data Number of The mixing probabilities
set speakers
(1,2); (1,3); (1,4); (1,5);(1,6);(1,7)5(1,8):(1,9);(1,10);(1,11);
(1,12); (1,13); (1,14); (1,15); (1,16); (1,17);
(1,18);(1,19);(1,20);(1,21);(1,22); (2,3); (2,4); (2,5);
(2,6);(2,7);(2,8);(2,9):(2,10);(2,11); (2,12); (2,13); (2,14); (2,15);
(2,16); (2,17); (2,18);(2,19);(2,20);(2,21);(2,22); (3,4); (3,5);
(3,6):(3,7):(3,8);(3,9):(3,10);(3,11); (3,12); (3,13); (3,14); (3,15);
(3,16); (3,17); (3,18);(3,19);(3,20);(3,21);(3,22); (4,5);
(4,6);(4,7);(4,8);(4,9);(4,10);(4,11); (4,12); (4,13); (4,14); (4,15);
(4,16); (4,17); (4,18);(4,19);(4,20);(4,21);(4,22);
(5,6);(5,7);(5,8):(5,9);(5,10);(5,11); (5,12); (5,13); (5,14); (5,15);
(5,16); (5,17); (5,18);(5,19);(5,20);(5,21);(5,22); (6,7);
(6,8);(6,9):(6,10);(6,11); (6,12); (6,13); (6,14); (6,15); (6,16);
(6,17); (6,18);(6,19);(6,20);(6,21);(6,22); (7,8);
(7,9):(7,10);(7,11); (7,12); (7,13); (7,14); (7,15); (7,16); (7,17);
The (7,18);(7,19);(7,20);(7,21);(7,22); (8,9); (8,10);(8,11); (8,12);
ELSDSR 22 (8,13); (8,14); (8,15); (8,16); (8,17);
data (8,18);(8,19);(8,20);(8,21);(8,22); (9,10); (9,11); (9,12); (9,13);

(9,14); (9,15); (9,16); (9,17); (9,18);(9,19);(9,20);(9,21);(9,22);
(10,11); (10,12); (10,13); (10,14); (10,15); (10,16); (10,17);
(10,18);(10,19);(10,20);(10,21);(10,22); (11,12); (11,13);
(11,14); (11,15); (11,16); (11,17);
(11,18);(11,19);(11,20);(11,21);(11,22); (12,13); (12,14);
(12,15); (12,16); (12,17);
(12,18);(12,19);(12,20);(12,21);(12,22); (13,14); (13,15);
(13,16); (13,17); (13,18);(13,19);(13,20);(13,21);(13,22);
(14,15); (14,16); (14,17);
(14,18);(14,19);(14,20);(14,21);(14,22); (15,16); (15,17);
(15,18);(15,19);(15,20);(15,21);(15,22); (16,17);
(16,18);(16,19);(16,20);(16,21);(16,22); (17,18);
(17,19);(17,20);(17,21);(17,22); (18,19);(18,20);(18,21);(18,22);
(19,20);(19,21);(19,22); (20,21);(20,22);(21,22)
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3.6 Results of Experiment 1

In this experiment, the three proposed scenarios that we mentioned previously are
applied on Arabic data. The performance of Fast-ICA, Kernel-ICA and Fast-IVA
methods for separating mixing speech signals was compared. The Fast-1VA has better
performance than the Fast- ICA based methods according to performance metrics of
Source-to-Artifact Ratio, Source-to-Distortion Ratio, and Source-to-Noise Ratio. But
Fast-ICA methods give better results than Fast-IVA according to the Source-to-
Interference Ratio as shown in Table 3.2, Table 3.3, and Table 3.4.

Table 3.3 Comparison Results for the first scenario for Arabic data

Algorithm | Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)
Average 6.114 6.087 29.671 -13.47
Fast-ICA
STdev 1.084 1.087 2.3746 3.0666
Average 6.1374 6.1130 29.9469 -13.328
Kernel-ICA
STdev 1.0889 1.0904 2.03176 | 3.14367
Average 21.651 18.873 24.181 8.6396
Fast-1IVA
STdev 7.6494 8.278 9.4262 8.7521

Table 3.3 Comparison Results for the second scenario for Arabic data

Algorithm Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)
Average 5.0701 5.0289 27.705 -13.660
Fast-ICA
STdev 1.8008 1.7975 3.0743 2.8805
Average 4,792 4,822 28.657 -13.611
Kernel-ICA
STdev 2.678 2.976 4,987 2.954
Average 8.8899 6.4275 15.2160 2.0444
Fast-1IVA
STdev 3.2868 5.5514 10.2810 1.8588
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Table 3.4 Comparison Results for the third scenario for Arabic data

Algorithm | Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)

Average 5.0037 4.9645 27.8722 -13.745

Fast-ICA
STdev 1.8200 1.8168 3.1256 2.7637
Average 4.9694 4.9435 28.9186 -14.035
Kernel-
ICA STdev 1.8174 1.8199 2.61689 2.6280
Average 8.8166 6.3595 15.0365 2.0093
Fast-1VA

STdev 3.3440 5.4436 9.9977 1.9585

3.7 Results of Experiment 2

In this experiment, we focus only on Fast-ICA and Fast-1IVA methods. We applied these
methods to ELSDSR data set. The performance of Fast-ICA and Fast-1VA methods for
separating mixing speech signals was compared. For each three scenarios, again the
Fast-IVA has better performance than the Fast-ICA method according to performance
metrics of Source-to-Artifact Ratio, Source-to-Distortion Ratio, and Source-to-Noise
Ratio. But Fast-ICA method give better results than Fast-1VA according to the Source-

to-Interference Ratio as shown in Table 3.5, Table 3.6, and Table 3.7.

Table 3.5 Comparison Results for the first scenario for ELSDSR data

Algorithm | Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)

Average 7.8727 7.7271 25.8788 -20.75

Fast-ICA
STdev 0.7774 0.8123 455227 3.141

Average 14.063 10.079 13.7579 6.7344

Fast- IVA
STdev 5.8238 7.0582 8.19038 5.4886
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Table 3.6 Comparison Results for the second scenario for ELSDSR data

Algorithm | Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)
Average | 7.17496 6.9337 24.3245 | -20.839
Fast-ICA
STdev 1.0280 1.5377 5.0973 2.47148
Average | 8.8185 49718 9.8079 2.81872
Fast-1IVA
STdev 3.2309 5.2678 7.9537 2.39165

Table 3.7 Comparison Results for the third scenario for ELSDSR data

Algorithm | Criteria | SAR(dB) | SDR(dB) | SIR(dB) | SNR(dB)
Average | 7120913 | 6.909553 | 24.39968 | -20.8539
Fast-1CA
STdev 1.018439 | 1.235233 | 4.612443 | 2.463391
Average | gg35028 | 5.151567 | 9.95961 | 2.966636
Fast-1VA
STdev 2922471 | 4.998545 | 7.744064 | 2.292565

3.8 Results of Experiment 3

Speaker recognition system including ldentification and Verification tasks were applied
on the separated signals that we obtained from the second experiment. According to the
results of the Identification task that shown in figures 3.4, 3.5 and 3.6, the Fast-IVA has
higher performance than Fast —ICA. The same result is also clear in table 3.8 for the

Verification task.
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Table 3.8. EER values of Speaker Recognition system

) ) EER value EER value
Scenario number Algorithm
I-Vector GMM
Fast-ICA 15.806 % 64. 285 %
First scenario
Fast-1VA 10.210 % 42.857 %
Fast-ICA 35.708 % 67.857 %
Second scenario
Fast-IVA 34.898 % 35.714%
Fast-ICA 38.169 % 71.152 %
Third scenario
Fast-IVA 34.472 % 35.714 %
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3.9 Discussion and Future work

In this study, we make comparison among the most three popular BSS methods (Fast-
ICA, Kernel-ICA, and Fast-IVA). As a major result of our investigation that Fast — IVA
method has better performance than Fast-ICA and Kernel-ICA. We can minutely

discuss our results of our experiments as follow:

The Results of the first experiment on Arabic data: We used the performance metrics
of Source-to-Artifact Ratio (SAR), Source-to-Distortion Ratio (SDR), Source-to-
Interference Ratio (SIR) and Source-to-Noise Ratio (SNR). Since the Artifact,
Distortion, Interference and Noise value of the signal represents the denominator of
Equations (34, 35, 36, 37) that we use to calculate the value of those metrics. Therefore,

whenever the values of these metrics are highest, that mean the BSS methods have
better performance. So according to Table 3.2 which show the result for the first
proposed scenario, the Kernel-ICA method has better performance than Fast - ICA
method. But, the Fast-IVA method has better performance than the Kernel-ICA method
and Fast - ICA method. In terms of Table 3.3 and Table 3.4 that show the results for the
second and third scenarios respectively, the Fast - ICA method has better performance
than Kernel-ICA method. But, the Fast-IVA method has better performance than the
Kernel-ICA method and Fast - ICA method. On the other hand, the ICA methods give
better results than Fast-IVA according to the Source-to-Interference Ratio (SIR) that
was the unexpected result but we may get this result according to applying the Fast —

IVA in the frequency domain.

The Results of the Second experiment on ELSDSR data: According to the Table 3.5,
3.6 and Table 3.7 that show the results for our three proposed scenarios respectively, the
Fast-IVA method has better performance than the Fast -ICA method and Kernel - ICA
method. But, the Fast -ICA method give better results than Fast-IVA according to the
Source-to-Interference Ratio (SIR) for the first scenario and according to both Source-
to-Interference Ratio (SIR) and Source-to-Distortion Ratio (SDR). Getting this result
may be because of adding the additive white gaussian noise (awgn ) in the second and

third scenarios.

The Results of the third experiment on ELSDSR data for speaker recognition
system: Speaker recognition system faced difficulties for recognition with mixture
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speech signal [25], so that when BSS methods and the recognition system are connected
that will improve the performance of the recognition system.

In this thesis we evaluate the performance of BSS algorithms in speaker recognition
system. The figures 3.4, 3.5, 3.6 and Table 3.8 show the results of this experiment for
speaker Identification and speaker verification. We use (EER) measurement for
measuring the speaker recognition system’s performance. As we mention before
whenever the EER has a lower value, that means the speaker recognition system has
better performance. Hence, our results confirm that the Fast-IVA method gives better
results than Fast —ICA method.

It should be noted that I-vector gives different EER values for each different run. EER is
the intersection point of FAR and FRR. The respective evaluation functions in i-vector
toolbox used in this study, these rates are calculated using log likelihood ratios. LLR
depends very highly on feature values, and since feature values are obtained using a
randomized matrix, the differences may occur. In such non-deterministic procedures,
one of the common practices is to run the experiment several times, and take the
average. In this study, I-vector is run 10 times and then the average of EER values are

used as a result.

For the future work, we will attempt to apply different BSS methods such as the Axul-
IVA method, the ICA method in the frequncy domain or the Jade-ICA method etc.

Also, we can test our proposed scenario on the other data set that is well- known.
Additionally, we attempt to work on meeting problem by using these BSS methods to
separate the speech signals of the meeting and applying the speaker recognition system

to recognize who was talking and what he said in a specific period of time.

Moreover, we can apply for this work in real time, so it will be more effective in our

real life.
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CHAPTER 4

CONCLUSION

Blind source separation (BSS) is one of the most interesting and challenging problems
for the researchers in audio and speech processing fields. In this study, we implemented
and compared three popular BSS methods, which are Fast-ICA, Kernel-ICA, and Fast-
IVA. Three different scenarios were proposed to test the performance of BSS methods
extensively. The first scenario includes mixing and separating the clear speech signal.
We add the additive wait Gaussians noise to the speech signal before mixing the signal
in the second scenario, and adding this type of noise after mixing in the third scenario in
order to test the effect of the noise on the BSS methods. We used four different
commonly performance metrics (SAR), (SDR), (SIR) and (SNR) to evaluate the
performance of the BSS methods. Two data set have been used; the Arabic data set that
we calculated by recording the voice messages for 13 students of Yildiz Technical
University and the second data is the ELSDSR data which consist of 22 speakers.
According to experimental results, Fast-IVA method has high performance than Fast-
ICA method and Kernel-ICA method. Additionally, we evaluated the performance of
BSS algorithms in speaker recognition system. According to EER values, Fast-IVA
again has high performance than Fast-ICA.
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