

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

DECEMBER, 2017

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE

EFFECTS ON SOFTWARE QUALITY

BAYDAA M. MERZAH

MSc. THESIS

DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM OF COMPUTER ENGINEERING

ADVISER

ASSIST.PROF. DR. YUNUS EMRE SELCUK

ISTANBUL, 2017

REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE

EFFECTS ON SOFTWARE QUALITY

A thesis submitted by Baydaa M. MERZAH in partial fulfillment of the requirements

for the degree of MASTER OF SCIENCE is approved by the committee on

01.12.2017 in Department of Computer Engineering.

Thesis Adviser

Assist.Prof.Dr. Yunus SELCUK

Yıldız Technical University

Approved By the Examining Committee

Assist.Prof.Dr. Yunus SELCUK

Yıldız Technical University _____________________

Assist.Prof.Dr. Mehmet S. AKTAŞ, Member

Yıldız Technical University _____________________

Prof.Dr. Selim AKYOKUŞ, Member

İstanbul University _____________________

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisor Assistant Professor Yunus Emre SELCUK for

his support and encouragement during this research. This thesis would not have been

completed without his invaluable guidance and help.

I appreciate the love, caring and support of my parents for their unlimited support and

their prayer for me to achieve my goals in the life.

My husband Ammar deserves special thanks for his sensible encouragements, precious

support and endless love. He supported me in all stages of my research and my life.

I would like to thank my brother and sisters all my family members for supporting me

spiritually throughout writing this thesis and my life in general.

Last but not the least; I take this opportunity to express gratitude to Al-Nahrain

University specially my college for their financial support.

December, 2017

Baydaa M. MERZAH

v

TABLE OF CONTENTS

Page

LIST OF SYMBOLS .. vii

LIST OF ABBREVIATIONS .. viii

LIST OF FIGURES ... ix

LIST OF TABLES .. x

ABSTRACT ... xi

ÖZET ... xiii

CHAPTER 1

INTRODUCTION .. 1

Literatural Review .. 1 1.1

Objective of the Thesis .. .2 1.2

Hypothesis .. .3 1.3

CHAPTER 2

GENERAL REVIEW ... 4

Quality ... 4 2.1 Software

Quality Models ... 4 2.1.1

 2.1.2 Quality Metrics ... 10

2.2 Code Smells .. 15

 .. 17 2.2.1 Refused Bequest

 .. 19 2.2.2 Feature Envy

CHAPTER 3

MATRIALS AND METHODS .. 21

Methodology ... 21 3.1

Detection Approach .. 23 3.2

Attributes of The Test code ... 27 3.3

Tools Used During The Analysis Process .. 29 3.4

vi

CHAPTER 4

RESULTS AND DISCUSSION………………………………………………………..33

4.1 Refused Bequest Results and Discussion..33

4.2 Feature Envy Results and Discussion..54

General Discussion ... 61 4.3

CHAPTER 5

CONCLUSION AND FUTURE WORK ... 65

REFERENCES ... 67

APPENDIX-A

FULL PATH TABLES ... 71

APPENDIX-B

CODE LISTING ... 80

CURRICULUM VITAE ... 87

vii

LIST OF SYMBOLS

∩ Intersection

µ Mean

σ Standard deviation

⋃ Union

LIST OF ABBREVIATIONS

ACCO Average Cyclomatic Complexity of Overridden Methods

ASM Average Similarity between Methods

ATFD Access to Foreign Data Metric

BOvR Base class Overriding Ratio

C Complexity of the program

CC Cyclomatic Complexity

E Number of edges (transfer of control)

fan-in Local information flow input

fan-out Local information flow output

FDP Foreign Data Provider

GoF Gang of Four

i intersection

IV Instance Variables

L Length of the procedure

LAA Locality of Attribute Access

N Number of nodes

P Number of disconnected parts of the flow

RS Response set

SIV Set of Instance Variables

LIST OF FIGURES

Page

Figure 2.1 Categorization of software quality models ... 5

Figure 2.2 McCall’s quality factors .. 6

Figure 2.3 Detailed hierarchy of McCall’s quality model .. 7

Figure 2.4 Boehm’s quality model characteristics .. 8

Figure 2.5 ISO 25000 Series ... 9

Figure 2.6 Metrics types ... 10

Figure 2.7 Object oriented metrics ... 11

Figure 2.8 General causes of code smells ... 15

Figure 3.1 Proposed method of detecting refused bequest instances 25

Figure 3.2 Proposed method of detecting feature envy instances 27

Figure 3.3 Design examples .. 28

Figure 3.4 Internal structure of the iPlasma .. 29

Figure 3.5 INSIDER’s front-end .. 30

Figure 3.6 Selecting the class group ... 30

Figure 3.7 Selecting the methods group ... 31

Figure 3.8 Inheritance trees in the tested code .. 31

Figure 3.9 Metrics obtained by metrics 1.3.6 plugin .. 32

Figure 3.10 Dependency graph view .. 32

Figure 4.1 Case-1- Class Diagram .. 47

Figure 4.2 Case-2- Class Diagram .. 48

Figure 4.3 Case-3- Class Diagram .. 48

Figure 4.4 Case-4- Class Diagram .. 49

Figure 4.5 Case-5- Class Diagram .. 50

Figure 4.6 Relation between ATFD and LAA metrics ... 54

LIST OF TABLES

Page

Table 3.1 Software projects training set ... 22

Table 3.2 Metrics’ threshold values .. 25

Table 3.3 Metrics’ threshold values .. 27

Table 3.4 General attributes of sweet home 4.0 software ... 28

Table 4.1 Metrics of each hierarchy ... 34

Table 4.2 Original and Given Names of the Classes .. 38

Table 4.3 Similarity between methods for hierarchy 2 ... 38

Table 4.4 Similarity between Methods for Hierarchy 7 ... 38

Table 4.5 Similarity between Methods for Hierarchy 13 ... 38

Table 4.6 Similarity between Methods for Hierarchy 18 ... 39

Table 4.7 Similarity between Methods for Hierarchy 19 ... 39

Table 4.8 Similarity between Methods for Hierarchy 20 ... 39

Table 4.9 Similarity between Methods for Hierarchy 22 ... 40

Table 4.10 Similarity between Methods for Hierarchy 23 ... 40

Table 4.11 Similarity between Methods for Hierarchy 25-C39 40

Table 4.12 Similarity between Methods for Hierarchy 25-C41 41

Table 4.13 Similarity between Methods for Hierarchy 25-C40 41

Table 4.14 Similarity between Methods for Hierarchy 27 ... 42

Table 4.15 Similarity between Methods for Hierarchy 29-C47, 48, 49, 50 42

Table 4.16 Similarity between Methods for Hierarchy 30 ... 43

Table 4.17 ASM metric cases ... 43

Table 4.18 Metrics Values of the Hierarchies .. 44

Table 4.19 Refused Bequest Candidate Classes ... 46

Table 4.20 Number of detected instances in each tool ... 50

Table 4.21 Results of different tools ... 51

Table 4.22 Results of Feature Envy .. 52

Table 4.23 Number of detected cases in each tool ... 54

Table 4.24 Results of different tools ... 52

Table 4.25 Correlation between metrics ... 55

ABSTRACT

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE

EFFECTS ON SOFTWARE QUALITY

Baydaa M. MERZAH

Department of Computer Engineering

MSc. Thesis

Adviser: Assist.Prof. Dr. Yunus SELCUK

The quality of IT software systems outlined by how well it has been designed from the

internal and external points of view, also by how well the prerequisites have been met .

Ease of developing and maintenance are the targeted factors that ensure successful

completion and continuous use. From Steve McCall’s perspective[1], software quality

characteristics can be categorized for: External and Internal factors .The external quality

factors such as reliability, correctness, accuracy, reusability and integrity concern the

end user. The external software quality isn’t mentioned in this study. The most reveal

factors of internal software quality are maintainability, re-usability, flexibility and

testability. These factors concern the developers and they ease development and

maintenance also.

However, they are affected negativly by bad coding styles in the source code that is

known as Code Smells. One of the important princepals in object orienred

programming is to build classes with high cohesion and losely coupled. This principle

can be violated by one type of code smells known as Feature Envy. In the same context

of object-oriented programming, the concept of inheritance has been known as a key

feature proposed to increase the amount of software reusability. However, using

inheritance is not always the best solution, particularly if it is utilized in improper cases

where other types of relationships would be more appropriate. One of the particular

issues that violate inheritance principles is the Refused Bequest code smell.These

design smells can be detected by expert developers and when they are detected, it is

very important to refactor them to bring up with a better coding design that improves

the system’s code quality.

 Manually searching for code smells in a large code base will take a significant amount

of time. Software metrics gives a clear view of the tested software status.Metric based

detection technique eases the detection task. Even new developers will have the ability

to analyze and detect code flaws automatically without the need for an experts. Metrics

values have the important role in modern developing procedures. Therefore automatic

detection of code smells can be done in reasonable time and effort. And consecuently

reflects on the software quality.

This study aims to detect some types of code smells in Java code. We have used object

oriented metrics, static code analysis techniques to detect the code smells.

Keywords: software quality, code smells, refused bequest, feature envy, object oriented

metrics, similarity between methods

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

xiii

ÖZET

YAZILIM KALİTESİ ÜZERİNDE OLUMSUZ ETKİLERE NEDEN

OLAN OTOMATİK KOD ALGILAMA

Baydaa M. MERZAH

Bilgisayar Mühendisliği Anabilim Dalı

Yüksek Lisans Tezi

Tez Danışmanı: Yrd.Doç.Dr. Yunus SELCUK

BT yazılım sistemlerinin kalitesi, ana hatları ile iç ve dış bakış açılarına göre ne kadar

iyi tasarlandığına ve ön koşulların ne derece iyi karşılandığına bağlı olarak belirtilir.

Yazılım sisteminin geliştirilmesinin ve bakımının kolay oluşu, başarılı bir şekilde

tamamlanmasını ve sürekli kullanılmasını sağlayan hedef faktörlerdir. Steve McCall'ın

bakış açısına göre [1], yazılım kalite özellikleri Dış ve İç Faktörler için kategorize

edilebilir: Güvenilirlik, doğruluk, kesinlik, tekrar kullanılabilirlik ve bütünlük gibi dış

kalite faktörleri son kullanıcıyı ilgilendirir. Bu çalışmada dış yazılım kalitesinden söz

edilmemektedir. İç yazılım kalitesinin en açık göstergeleri, sürdürülebilirlik, yeniden

kullanılabilirlik, esneklik ve test edilebilirliktir. Bu faktörler geliştiricileri ilgilendirir ve

geliştirme ve bakım işlemlerini de kolaylaştırırlar ancak Kod Kokuları olarak bilinen

kaynak kodundaki kötü kodlama stilleri tarafından olumsuz etkilenirler.

Nesneye yönelik programlamadaki önemli ilkelerden biri, yüksek uyum ve düşük

bağlaşıma sahip sınıflar oluşturmaktır. Bu ilke, Feature Envy olarak bilinen bir kod

kokusu tarafından ihlal edilebilir. Nesneye yönelik programlamada kalıtım kavramı,

yazılımın tekrar kullanılabilirliğini artırmak için önerilen önemli bir özellik olarak

bilinmektedir. Bununla birlikte, kalıtımın kullanılması her zaman en iyi çözüm değildir,

özellikle de diğer türdeki ilişkilerin daha uygun olacağı durumlarda kullanılırsa. Kalıtım

ilkelerini ihlal eden kod kokularından biri de Refused Bequest kod kokusudur. Bu

xiv

tasarım kokuları uzman geliştiriciler tarafından tespit edilebilir ve tespit edildiklerinde,

sistemin kod kalitesini geliştiren daha iyi bir kodlama tasarımıyla yeniden

yapılandırılmaları çok önemlidir.

Büyük bir kod tabanında kod kokularının manuel araştırılması önemli ölçüde zaman

alacaktır. Yazılım ölçütleri, test edilen yazılım durumunun net bir görünümünü verir.

Metrik tabanlı algılama teknikleri algılama görevini kolaylaştırır. Böylece yeni

geliştiriciler bile, bir uzmana ihtiyaç duymadan kod kusurlarını otomatik olarak analiz

ve tespit etme yeteneğine sahip olacaklardır. Metrik değerlerinin modern geliştirme

prosedürlerinde önemli bir yeri vardır. Bu nedenle, kod kokularının otomatik

algılanması makul zaman ve çabayla yapılabilir.

Bu çalışma yukarıda belirtilen kod kokularının Java kodunda tespit edilmesini

amaçlamaktadır. Refused Bequest ve Feature Envy kod kokularını algılamak için

nesneye yönelik metrikleri ve statik kod analiz teknikleri kullanılmıştır. İlgili metrikler

ağırlıklandırılarak kullanılmıştır.

Anahtar Kelimeler: Yazılım kalitesi, kod kusurları, Refused Bequest, metodları

arasında benzerlik , Feature Envy, nesne dayalı ölçümleri.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

1

CHAPTER 1

INTRODUCTION

 Literature Review 1.1

The production of high quality software within short time and reasonable cost is a major

aim of software engineering. By translating the quality to a measurable format, the

quality control procedure becomes more manageable. So, putting the software quality

on a quantifiable basis is a significant work on which many researches and studies have

been fulfilled in multiple disciplines and with different applications.

In the International Standard ISO/IEC 9126-1[2], a software quality model is

established based on the Factor-Criteria-Metrics (FCM) Quality Model [3]. As reported

by the standard, quality is affected by factors and these factors can be assessed by

means of criteria. The major factors that evaluating the quality of the software is

determined as usability, functionality, reliability, maintainability, efficiency and

portability. The relation between these factors are mapped obviously with the related

criteria, while the mapping of which criterion is affected by which metric still obscure.

The factors defined are influenced by the involved technology, the used hardware,

design of software, etc. The maintainability factor is the most design-related factor

among all. Since most of the metrics are design-related this makes maintainability to be

the most interested factor in the field of internal design quality.

From the software design perspective, nowadays the most prevalent coding technique is

OO design. Object-Oriented Design (OOD) is the idea of building the computed system

with interactive objects to achieve the required aim. The procedural programming is less

maintainable than OO approach [4] and it presents the object concept in addition to

important notions like inheritance, polymorphism and encapsulation [5]. OO design

improves the modularity of the code compared to functional design. Modularity

2

increases understandability and as a result the maintenance of the code can be done

without any potential difficulties [6]. As OO paradigm has presented new features, new

metrics had been introduced to measure these features and concepts. Object-Oriented

metrics are useful at summarizing the important aspects and give signs of the internal

characteristics of the software [6]. They also help the developers to decide if there is

any object has a problem to be refactored or not. MOOD metrics are used for measuring

inheritance, polymorphism, and coupling [7] while Chidamber and Kemerer metrics has

been developed for class level code measurement [4]. There are many metrics suits in

the field of software quality and they will be illustrated in detail in Chapter 2.

As a particular type of software projects, our study is done on object-oriented software

projects written in Java programming language. In this study we will present metric-

based detection technique which aims to detect special types of code fragments that

cause negative effect on the software quality and known as code smells. These smells

are: Refused Bequest and Feature Envy smells. By translating the related symptoms to

metrics and giving appropriate weight for each metric, then writing a detection

algorithm to reform the results with the specified threshold values, the aforementioned

smells are detected. These values are computed from analyzing stable versions of group

of open source projects.

The remainder of the thesis is organized as follows:

In Chapter 2, software quality models and metrics will be reviewed. A literature review

on code smells as general concept. Also a literature review for smells under

investigation “Refused Bequest” and “Feature Envy” will be included in this chapter. In

Chapter 3, the materials and methods used in the research will be explained in details. In

Chapter 4, the obtained results will discuss in detail.

 Objective of the Thesis 1.2

This study aims to detect bad code styling that effect negatively on the source code

quality. Two types of code smells will be detected in this research: Refused Bequest

and Feature Envy. Our detection approach depends on static code analysis with metric-

based detection. Some metrics is well known while the others are identified by us. The

new defined metrics is the translation of the symptoms related to each smell in our

study. Threshold values are used to each metric in order to get more precise detection

mechanism.

3

1.3 Hypothesis

Our research question is: What symptoms of a particular code smells can be formulated

as software metrics?

In this study we will use static code analysis approach to analyze object oriented

software projects written in Java. For this purpose, we will observe the symptoms of

determined code smells and map them into related metrics. We will also observe the

normal threshold values or normal ranges of the used metrics. By comparing on the

obtained metrics values with the normal values and with the detection algorithm we will

enable the developers to detect abnormal values and hence the related code smells

automatically without the need for experts’ decisions.

4

CHAPTER 2

GENERAL REVIEW

2.1 Software Quality

IT software systems are coming to be ubiquitous in contemporary life. Users over the

world base on interconnected computers, as well as the global information

infrastructure, such as the Internet and the World Wide Web (WWW), to accomplish

their requirements for data processing, search, storage and information backups, archive

and retrieval. All the mentioned needs are come across the boost of strong software

bases. This reliance requires the software to be easy to use, to function accurately over

the time, and have the ability to develop to meet the future needs easily. Generally, the

need for high quality software requires the satisfactions of the development and claims

about quality require to be prooven based on pragmatic analyses and measurements.

These measurements had been translated to what are known as metrics. Metrics have

many applied fields in recent research on software engineering, as we will see in the

later section of this chapter.

This chapter introduces various concepts related to quality models, quality metrics and

code smells that have negative effects on the code quality.

2.1.1 Quality Models

Software quality models are initiated to define characteristics that affect quality, to set

up a group of metrics that measure these characteristics, to gather data that will help to

assess the quality of software systems. Since the first presentation of the software

quality concept, the researchers in this field have proposed diverse types of software

quality models. Each model has its own characteristics and quality perspectives. Many

quality models were initiated to assess the factors and sub-factors in field of software

5

products or systems. All quality models are categorized into three basic paradigms [8],

as shown in figure 2.1.

• Legacy based Software Quality Model

• Object-Oriented based Quality Model

• Aspect-Oriented based Quality Model

Figure 2.1: Categorization of software quality models [8]

6

Among all the previously mentioned models, the most important models which widely

used and have a major role in the field of software quality, and within the scope of our

study we will focus on a set of standard models which are: McCall’s , Boehm’s and

ISO/IEC 25000 Quality Models, as we will see in this section.

A. McCall’s quality model: McCall tried to find a common link between

developers and users by concentrating on a set of software quality factors that define

both the users’ points of view and the developers’ preferences. This model has, as

shown in Figure 2.2, three major perspectives for clarifying the quality of a software

product[1]:

Figure 2.2 McCall’s quality factors

Product revision (ability to change at the code level), includes maintainability (the

required effort in order to determine the code fragments that have faults and fix them),

flexibility (the simplicity of doing any required changes in the operating environment)

and testability (the easiness of testing the program ad units and the as integrated parts,

to confirm that it is error-free and meets its specified requirements).

Product transition (the ability to adapt to multiple environments) and (the functional

properties), is all about portability (the required effort to convey a program from one

environment to another), reusability (the simplicity of reusing software in a different

context) and interoperability (the effort required to pair the system with anthers).

7

Quality of product operations depends on correctness (the degree of accomplishing the

specification), reliability (the degree of accuracy), efficiency (the optimum use of

resources, e.g. processor time, storage), integrity (the protection of the program from

unauthorized access) and usability (the easiness of using the software).

Moreover, the model listed three crucial quality perspectives in a hierarchy of factors,

criteria and metrics as illustrated in Figure 2.3:

 Factors: 11 factors are used to characterize the view of the users and summarize

the external view of the software.

 Criteria: 23 quality criteria used to design the software as seen by the

developers and describe the internal structure of the software

 Metrics (To control): They are used to control the design steps by providing a

scale and method for measurement.

 Figure 2.3 detailed hierarchy of McCall’s quality model

B. Boehm’s Quality Model

In 1978 Boehm presented a new quality model [9]. Boehm combined all the previously

defined models and illustrated their shortcomings that assess the quality of software in

quantitative and automatic means. His model attempts to define software quality

qualitatively by clarifying a set of metrics and attributes. Boehm's model has a

8

similarity with McCall Quality Model in the point of presenting a hierarchical model.

This model organized in the following format and as shown in Figure 2.4:

 High-level: 3 characteristics represent the high level requirements to evaluate the

software, which are: General Utility, As-is Utility, Maintainability.

 Intermediate level characteristics.

 Primitive characteristics.

Figure 2.4 Boehm’s quality model characteristics

Each high level characteristic correlated to set of factors, and these factors are

fragmented to primitive constructs.

C. ISO/IEC 25000 (SQuaRE)

The series of standards ISO/IEC 25000, also known as SQuaRE (The Systems and

software Quality Requirements and Evaluation) adopt the purpose of designing a

comprehensive framework for evaluating the quality of software products. This model

was the consequence of the gradual development of the previously published standards;

particularly from ISO/IEC 9126, which explained the evaluation of software product as

Factors

Requirements

Construct

s

9

a quality model, and ISO/IEC 14598, which defines the process for software product

evaluation. This family of standards ISO/IEC 25000 composed of five parts [10]:

 ISO/IEC 2500n – Quality Management Division: define all common models,

terms and definitions referred further by all other standards from SQuaRE family.

 ISO/IEC 2501n – Quality Model Division: present quality models in details for

computer systems and software products, quality in use, and data.

 ISO/IEC 2502n – Quality Measurement Division: include a software product

quality measurement reference model, mathematical definitions of quality measures,

and empirical guidance for their application. Presented measures apply to software

product quality.

 ISO/IEC 2503n – Quality Requirements Division: assists in determining the

requirements of the quality. These requirements can be used in the process of quality

requirements induction for a software product to be developed or as a feed in for an

evaluation process.

 ISO/IEC 2504n – Quality Evaluation Division: supply requirements, advices and

suggestions for software product evaluation.

Figure 2.5 ISO 25000 Series

As with other standards, ISO/IEC 25000 describes what to evaluate but does not

determine how to apply it. In other words, it does not mention any information about the

thresholds for the metrics to evaluate them in the use, nor does it illustrate how to class

these metrics in order to set an ideal value to a software product [11].

10

2.1.2 Software Quality Metrics

In the software production lifecycle as whole, the topic of software metrics is valuable.

Software metrics give a clear review on the examined project status. Metrics measure

the internal software structure and the software development process, also there is a set

of metrics specialized to measure the project’s status from the external view. It also

enables the developers to gain the quality level before the final submission of the

product [12]. In this study we will deal with the metrics which are defined at code level.

This helps us to characterize the project’s code and evaluate the design and by trying to

detect code flaws some suggestions will be provided from the most significant

refactoring solutions in the literature [13].

Generally software metrics characterize software engineering aspects such as product

(source code, design and test case), process (like analysis, coding and design) and

people (like the efficiency developers or the productivity of an individual designer)

[14]. From the most general overview, the metrics are two groups which are software

quality metrics and object oriented metrics. The software quality metrics can be

classified into four main groups [15]:

A. Size Related Metrics

B. Complexity Metrics

C. Halstead Metrics

D. Quality Metrics

11

In figures 2.6 and 2.7, we can see that each set has its own metrics suite:

Figure 2.6 Metrics types

Figure 2.7 Object oriented metrics

12

1. Software Quality Metrics

A. Size Related Metrics :

This set of metrics is used to measure the size of the software. It has three main types:

i. Line of code (LOC): this metric is used to count the number of lines in the source

code of the program. Some researchers built this metric by counting the number of

lines include the whitespaces and comments, while the others just count the number

of actual code statements. Generally, it is used to measure the complexity and

productivity of the examined code.

ii. Function Point Metrics (FPM): This metric proposed by Albrecht [16], it is used

to estimate the required lines of code during the software development lifecycle

depending on the inputs, outputs and inquiries. Thus, the estimation of the needed

effort for the development process becomes easily.

iii. Function Bang: DeMarco [17] proposed that the size of a software product can be

estimated from the elements of a Structured Analysis (SA) description during the

phase of requirements specification phase. For precise measurement, DeMarco

classified the systems into three groups: function-strong, data-strong, and hybrid

systems. This classification is based on the ratio RE/FF, where RE is the number of

relationships in the retained data model and FP means the number of functional

primitives (bottom-level processes) in a dataflow diagram (DFD). If the ratio

RE/FP has a ratio less than 0.7 the system is function-strong. If the ratio RE/FP has

a value more than 1.5 the system is data-strong, else the system is a hybrid one. A

function metric for function-strong systems, called a Function Bang, is counted

from a DFD based on the complexity of the dataflow and the types of operations

(functions) operating on these dataflows.

B. Complexity Metrics: This set of metrics has different means depending on the

presenter; all of them have the same aim which is finding the degree of

complication for the source code. The following are the main metrics used in this

field:

i. Cyclomatic Complexity (CC): McCabe's cyclomatic complexity is a software

quality metric that measures the complexity of a software program. Complexity is

deduced from finding the number of all distinct paths in the source code of the

program. The more complicated code which have a high value. The complexity of

13

the code means that it is difficult to understand and hard to maintain. Cyclomatic

complexity is derived from the dataflow graph of a program as follows:

Cyclomatic complexity (CC) = E - N + 2P (1.1)

ii. Extended Cyclomatic Complexity (ECC): Myers [18] has extended the concept of

cyclomatic complexity to cover some aspects not mentioned in McCabe’s notion. He

proposed that decision points with multiple conditions are more complicated than

decisions with one condition. In this extension, complexity is measured as an interval

rather than a single value. The lower bound of the interval is the number of decisions

plus one or the cyclomatic complexity of the program. The upper bound of the

interval is the number of individual conditions plus one. Specifying the complexity

as an interval accounts for both the decisions and the conditions in a program.

iii. Information Flow: Kafura and Henry [19] presented their metric to measure the

complexity of a program as information flow. This metric depends on counting the

number of local information flows input (fan-in) and flows output (fan-out). The

following formula (2) defines the metric :

 [] [() ()] (1.2)

C. Quality Metrics: this type of metrics don’t have fixed format or particular type, it

depends on the requirements of the product. At the end of the requirements

specification phase, the project’s manger determines the quality level and chooses

the appropriate metrics to evaluate the satisfaction of the user’s needs. Generally,

few types of this metrics are available like: Defect Metric, Reliability Metrics and

Maintainability Metrics.

2. Object Oriented Metrics

Object-oriented programming has powerful features that characterize its work, such as

encapsulation, information hiding, polymorphism inheritance and dynamic binding.

These features simplify the reusability and unit-based development processes. However,

they might cause some types of bad styling code fragments that are not easy to detect by

traditional testing techniques. Traditional testing techniques, such as functional testing

and branch testing, are not feasible to diagnose OO problems. To overcome these

scarcities, it is important to adopt an object-oriented testing technique that takes these

features with cost balancing into account. Object-oriented metrics have been studied

and proposed as good detectors for different types of code smells, as we will see in the

14

later sections. In this section we will focus on one popular OO metrics suites in the

literature.

i. Metrics for object-oriented software engineering (MOOSE): This suite proposed

by Chidamber and Kemerer (CK) et al. [20]. This metrics have led to a considerable

amount of interest and are widely used in many studies in the field of object-oriented

software since it had been published until now. The CK metrics suite consists of six

metrics that evaluate the characteristics of the object-oriented design are:

ii. Weighted Methods per Class (WMC): This metric measured by computing the

total complexity of all the methods in a class. A large number of methods in a class

may have a potentially larger impact on the derived classes since the methods in the

parent will be inherited by the child.

iii. Depth of Inheritance Tree (DIT): This metric is used to find the maximum length

from the root node to the node in the lowest level (leave) in the hierarchy of the code.

The complexity of a class can be represented by DIT. Thus, a system which has a lot

of inheritance layers will be hard to understand. Also, it will be an indication to the

reusability of many methods.

iv. Number of children (NOC): this metric is defined as the directly derived leaves in

the classes’ hierarchy. These points are used to know the number of subclasses that

will inherit the methods of the base class. The great value of this metric means that

base class has improper abstraction.

v. Coupling between Objects (CBO): is used to count the number of classes that

related to the current class. The abundant coupling drops the modularity of the class

making it less responsive to the reusability. Also it will increase the sensitivity and

difficulty to the changes during the code maintenance.

vi. Response for class (RFC): this metric is used to find the response set of the class by

the combination of two sets: the first is the set of methods called by appropriate one

method (M) and the second is set of all methods in the class (Ri), as illustrated in the

following equation (3). Large value makes the testing and debugging of the object

more complicated.

15

 { } { } (1.3)

vii. Lack of Cohesion in Methods (LCOM): This metric is used to count the number of

null intersection methods pairs minus the number of similar method pairs used in the

class. The null intersection methods have no shared instance variables, while the

similar methods have minimum of one common instance variable. It is used for

measuring the pairs of methods within a class using the same instance variable.

2.2 Code Smells

The concept of code smell is introduced by Fowler [21] as signs of internal design

flaws within the software. He defined 22 kinds of code smells. Each type has its own

symptoms and different effects on the code development process. Therefore, the

detection of code smells has become a mandatory technique to enclose the code issues

that may affect negatively on the software quality by causing problems for further

development and maintenance ([6], [21], and [22]). Accordingly, the consensus is that

all types of code smells need to be detect firstly and then refactored to deny or diminish

such issues [23].

In this section we will have a general review on the code smells sorts and the main

reasons to cause them, then devote our review on the types under investigation in the

thesis work, which are Refused Bequest and Feature Envy code smells.

Since bad smells have an impact on code quality, it is mandatory to have a look on the

main causes led to these smells to appear into the software design. Suryanarayana [24]

mentioned in his book the prime reasons that leads to code smells occurrence, as shown

in Figure 2.8.

16

Figure 2.8 General causes of code smells

2.2.1 Code Smells Categories

According to Mantyla et al [25], some code smells defined by Fowler [21] have

common features and can be grouped to gather. He classified them into seven main

groups as:

i. Bloaters: They represent code fragments that have abnormal size that it cannot be

handled in an appropriate manner. The following smells can be included under this

set: Large Class, Primitive Obsession, Long Method, Data Clumps and Long

Parameter List.

ii. Object-Orientation Abusers: This type of smells is related to the violation of

object oriented programming principles or applying these rules in improper manner.

This group has the following types: Switch Statements, Refused Bequest,

Temporary Field, Parallel Inheritance Hierarchies and Alternative Classes with

Different Interfaces.

iii. Change Preventers: The code structure in this category has the problem of

difficult modification. This category has two code smells: Shotgun Surgery and

Divergent Change.

17

iv. Dispensables: This type can be defined as an unnecessary part of code which

should remove or giving additional responsibilities to improve its status. It has the

following kinds: Data Class, Duplicate Code, Lazy Class and Speculative

Generality.

v. Encapsulators: This set’s elements shared the violation of OO encapsulation rule

but in different ways. It has the following two elements: Message Chains and

Middle Man.

vi. Couplers: This type of issues caused because the classes are highly coupled while

the OO aim is to have loosely coupled classes. It include: Feature Envy and

Inappropriate Intimacy.

vii. Others: This category includes the two remaining smells: Comments and

Incomplete Library Class. They are do not fit into any of the categories above.

In the rest of this chapter, we will have a constraint overview on the types of code

smells that will be study in our research which are Refused Bequest and Feature envy.

Also we will discuss the detection strategies used in the literature to detect these types.

2.2.2 Refused Bequest Code Smell

In the context of object-oriented programming, the concept of inheritance has been

known as a key feature proposed to increase the amount of software reusability.

However, using inheritance is not always the best solution, particularly if it is utilized in

improper cases where other types of relationships would be more appropriate. One of

the particular issues that violate inheritance principles is the Refused Bequest code

smell. It is related to an inheritance hierarchy where a subclass does not obligate the

interface inherited from its parent class.

More precisely, Refused Bequest smell is present if the inherited functionality by the

sub-class is not actually used or specialized by means of overriding. The appropriate

refactoring in this case is the “Replace Inheritance with Delegation” [21] which dictates

to transform an inheritance relationship into composition where the sub-class has a

reference to an object of the base class and uses only the needed functionality. This

refactoring agrees with the GoF suggestion “Favour Composition over Inheritance”

[26]. We can infer from that Refused Bequest smell can’t appear in abstract classes or

interfaces, so we excluded them during our analysis.

18

There are two main approaches for Refused Bequest code smell detection as well. These

approaches are based on either static code analysis or a combination of static and

dynamic code analysis[27].

A) Static Code Analysis Detection

Stefan Slinger proposed a detection strategy employing the static code analysis of the

source code [28]. In this approach, a parser analyses the Java source code files and

produces abstract syntax trees. When the parser is done, an analyzer (visitor) traverses

the abstract syntax trees, collects smell aspects and stores them in a repository. For

refused bequest identification, smell aspects such as information on parent classes,

methods, fields, and the methods and fields that are used by a class are needed. A Grok

script is then executed on the smell aspect or fact repository to identify the classes that

contain refused bequest code smells. This detection strategy combines appropriate code

metrics with definition of threshold values proposed by Lanza and Marinescu [6].

 In a paper by Marinescu, a set of rules and software metrics are identified by static

analysis of selected software projects’ source code. These software metrics are

compared with threshold values to identify design flaws or code smells [29].

B) Combination of Static and Dynamic Analysis Based Approach

The necessity to analyse hierarchy clients to identify original intent of a generalization

has been emphasized by P.F.Mihancea in his paper [30]. A suite of metrics which

quantify the uniformity of clients’ calls with respect to the services provided by a

hierarchy had been proposed. Then these metrics are used to depict class hierarchy and

to recognize if there are any anomalies in the design. He evaluated the approach on two

medium-sized projects and found that the approach does actually aid to make the

characterizing of the essence for the base class with respect to interface reuse.

 Amin Milani Fard et al. proposed an approach that uses a metric-based algorithm, and

combines static with dynamic analysis to detect these smells in JavaScript code [31].

Due to the dynamic nature of JavaScript, static code analysis alone is not sufficient.

Therefore, in addition to static code analysis, dynamic analysis is also employed in the

paper to monitor and infer information about objects and their relations at runtime.

JavaScript objects, their types, and properties are inferred dynamically by querying the

browser at runtime. Finally, based on all the static and dynamic data collected, code

smell is detected using the metrics.

19

The approach proposed by T. Tourwe et al was making use of logic meta-programming

to differentiate improper interfaces [32]. In this paper, all direct subclasses of a base

class are identified and then all 3 possible subset of these identified classes are used to

recognize inappropriate interfaces.

A combination of dynamic and static analysis is used to identify refused bequest by

Elvis Ligu et al. [33]. In that paper, introduction of intentional error in sub-classes’ non-

overridden inherited methods is used to identify client’s usage of super class methods.

Measuring symptom severity on a smell thermometer can underline suspicious

hierarchies that warrant the need to be refactored.

2.2.3 Feature Envy Code Smell

In the object oriented programming context, misplacing the members of the class is one

of the main flaws. Also, distributing the responsibilities among classes must be in the

right way and avoid making the class responsible for tasks that should be manipulated

by other classes. In the same context, classes must be loosely coupled and highly

cohesive. The code smell that violates the previous mentioned rules is known as Feature

Envy. Feature Envy code smell is a symptom of improper association between classes.

It occurs when a method within one class is more concern in some members of other

classes that it is currently defined in. The higher the coupling between classes, the

higher the number of classes are influenced when changes are needed to be done in the

system. In strongly coupled classes even a tiny deliberate modification could result in a

long series of unpredicted changes in a lot of classes. Consequently, the

interdependence between classes should be remained to the lowest value if possible.

In the field of Feature Envy detection, many studies had been presented. Tsantalis and

Chatzigeorgiou presented a method of detection by computing the similarity degree

between a class and method using entity sets [34]. The entity set of a method have the

members that it accesses whereas the entity set of a class include all members that be

owned by the class (excluding getters and setters). The inner and outer entity distances

are calculated. Inner entity distances should be as low as possible to attain high

cohesion; while the distance of the outer entity should be as large as possible for low

coupling. Their entity placement metric of a class is the ratio of average inner to

average outer entity distances. If the ratio is high, the class may not be cohesive or it is

highly coupled with other class.

20

The approach proposed by Sales et al. [35] involves evaluating dependency sets for a

given method m in a class C. Two average similarity coefficients are calculated. The

first is the average similarity identifies the dependencies between m and the remaining

methods in the class. The second is the average similarity determines the dependencies

between m and methods in another class Ci. If the second average is greater than the

first average, then m has high similarity to methods in in the class Ci than its current

class C and Ci could be the appropriate class for m.

Oliveto et al. [36] submitted another technique to detect Feature Envy bad smell by

identifying method friendships. They adapted the viewpoint of classes and methods are

quite similar to sets of people. In this approach, the degree of similarity among methods

in the system is determined and friendships among these methods are ranked.

Dexun et al. [37] proposed weight based distance metrics theory to show up the

candidates of Feature Envy. They calculated distance between entities (attributes and

methods) and classes. The weight based distance metric depends on the multiple

invoking relationships between each two entities. They compared their results with

simple distance based approach.

Another approach which is related directly to work will be discussed later in the

discussion chapter.

21

CHAPTER 3

MATERIALS AND METHODS

The importance of producing software with high quality has been mentioned in the

previous chapters. Many quality models are being used to evaluate the quality level and

many of them rely on software metrics. Many approaches had been presented to detect

the code fragments that cause negative effect on the product’s quality. The simplicity of

the used technique simplifies the assessment process for the developers. By connecting

the information gained from the previous chapters the following question may come in

the light:

"How to evaluate the quality of the software from the developers’ perspective?"

Software development is usually done under time pressure. So developers need simple

and accurate techniques to detect code smells and find the appropriate refactoring

methods to bring up the quality to the required level. Since metrics measure the internal

software structure and the software development process, this helps us to characterize

the software projects and evaluate the design.

In this chapter, the methodology of detecting the code smell types which were

mentioned in Chapter 2 will be explained. The tools that helped us in the measurements

of the selected metrics will be illustrated. A general description for the software projects

which are used as the test code in the work will be presented.

3.1 Methodology

In our study, we used object oriented metrics and static code analysis. Threshold values

for the metrics are calculated from a pool of selected open source software projects

written in Java. We selected a group of stable releases of each software project as

training set and build a data set of metrics for each project separately. These projects are

22

from different domains to support the variety of actual metric values. Software projects

had been selected from Qualitas Corpus Index [38]. Table 3.1 shows the training set and

their details.

Table 3.1 Software projects training set

Name Status Full Name Domain NOC Release date Latest

Release

Selected

Release

ArgoUML Active ArgoUML Diagram

generator

2560 15.12.2011 0.34 0.34

JasperReports Active JasperReports Diagram

generator

1844 20.07.2010 6.4.0 6.2.2

Velocity Active Velocity Engine Diagram

generator

261 10.05.2010 1.7 1.6.4

Springframework2 Active Spring

Framework

middleware 3089 20.10.2010 2.5.6 2.0.8

Struts Active Struts middleware 1074 16.08.2010 2.3.32 2.3.24

Tomcat Active Tomcat middleware 1739 11.08.2010 9.0.0 7.0.42

After we collected the metrics from these six big projects, now we need for a robust

technique to have a standard threshold values. We proposed to determine the minimum

and maximum threshold values by the Equation 3.1 where STDV is the standard

deviation.

 (3.1)

Some metrics values were collected readily by available tool [39] while the new defined

metrics were computed partially by the tool and partially by manual computations. The

definition of the metrics used in our approach and their threshold values will be

explained later in this chapter.

23

3.2 Detection Approach

Within the scope of the thesis, we selected two types of code smells which are directly

related with the violation of object oriented programming concepts. As mentioned in the

previous chapter, the code smells under investigation are Refused Bequest and Feature

Envy.

Our detection approach depends on object oriented metrics. Each code smell has a set of

symptoms that differentiate it from other types. In the following section we will

illustrate the symptoms for each code smell in our study and try to translate them to

corresponding metrics.

3.2.1 Refused Bequest Detection

Before we start the explanation of the metrics used to detect Refused Bequest smell,

first we will give an idea about the background to one of the new defined metrics. This

is the similarity between methods.

Similarity of methods is based on how related they are on usage of instance variables of

the class. The same notion is used in our own approach as well. The similarity of two

sets can be determined by comparing the ratio for number of elements in their

intersection to the number of elements in their union. This definition of similarity can be

expanded to similarity between methods [20]. Consequently, the value of similarity

between two methods can be calculated by finding the ratio for the set of common

instance variables used by both methods to the set of total number (union) of instance

variables used by the two methods [40]. Two methods have high similarity ratio if the

number of elements in the intersection of the set of common instance variables is high.

Consider two methods M1 and M2. Let {SIV1} and {SIV2} be the set of instance

variables used by M1 and M2, respectively. We define:

|SIV| u = {SIV1} ⋃ {SIV2} (3.2)

|SIV| i = {SIV1} ∩ {SIV2} (3.3)

That means; |SIV| u is the total number of instance variables used by the two methods

and |SIV| i is the number of mutual instance variables used by both methods. Then,

method similarity (MS) between the two methods can be defined as:

 (3.4)

24

The maximum similarity value between two specified methods is 1 while the minimum

value is 0 where MS value of 0 refers no common instance variables shared by the two

methods and MS value of 1 refers to the two methods used the same instance variables.

As an example, consider two methods M1 and M2 where {SIV1} = {x, y, z} is the set

of instance variables used by method M1, and {SIV2} = {z, t, e} is the set of instance

variables used by method M2. Then, we have: {SIV1} U {SIV2} = {x, y, z, t, e} and

{SIV1} ∩ {SIV2} = {z} resulting in |SIV| u = 5 and |SIV| i = 1. The Similarity between

these two methods then becomes MS =1/5 = 0.2. This gave us the basis for formulating

the new metric presented in our approach. We propose to use this approach in refused

bequest detection strategy, by calculating the similarity between the superclass methods

and the overridden methods in the derived class. Then we compute the average for the

computed values. The new metric’s name is ASM (Average Similarity of Overriding

Methods). If the value is less than the threshold value and with a combination with other

predefined metrics then the class is a candidate of refused bequest. We propose a

metrics based smell detection strategy for object-oriented software systems.

There are two main symptoms should be available in a subclass in order to be a Refused

Bequest candidate. They had been explained by [30] in details. These are:

- Sub-class doesn’t use superclass’s bequests. This symptom can be translated to

multiple metrics. In our approach we used the following metrics: BOvR and ASM.

- Sub-class is too long and complex. In this study this symptom is translated to the

following metric: ACCO.

BOvR metric represent the ratio of the number of overridden methods from the base

class to the total number of methods in the sub-class. The ACCO metric is defined by

us. It computes the average cyclomatic complexity of the overridden methods in the

sub-class. The ASM metric represents the average of similarity of overridden methods

in the sub-class. Thresholds for each metric had been illustrated in Table 3.2. The values

are calculated from the software projects that were listed in Table 3.1.

25

Table 3.2 Metrics’ Threshold Values

Metric Name Threshold (+) Threshold (-) Average

ASM
(Average Similarity between Methods)

1 0 0,5

ACCO
(Average Cyclomatic Complexity of Overridden

methods)

9,431 0 4,716

BOvR
(Base- class Overriding Ratio)

0,332 0 0,166

According to the values in Table 3.2, we propose to mark a class as a Refused Bequest

instance if its ASM or ACCO value exceeds their respective thresholds. The BOvR

metric is used to support the ACCO metric in the detection in case it has a value below

the threshold value. The entire calculation process is shown in Figure 3.1.

Figure 3.1 Proposed method of detecting refused bequest instances

26

3.2.2 Feature Envy

From all the approaches of Feature Envy detection presented in Chapter 2, we used a

modified version of the metric based detection mechanism presented by Marinescu [6]

in our work. Our proposal is a combination of object oriented metrics with some

implementation rules which has been used to form the final detection strategy. The most

important symptoms in this method are:

- Method uses directly attributes from unrelated classes that are accessed directly or by

invoking accessor method. This symptom is translated to Access to Foreign Data

metric (ATFD).

- The attributes from external classes used by the method is more than the attributes it

has. The Locality of Attributes Accesses (LAA) is the equivalent metric to this

symptom.

- The envied attributes may be belonging to many other classes or just from particular

classes. In case of using attributes from multiple classes this will act as a controller

[41]. But in case of the envied attributes are from particular few classes this will be

an indication of method misplacing and an indication of Feature Envy. This sign can

be measured by Foreign Data Provider (FDP) metric.

This detection mechanism takes into consideration all the details and conditions that

make the inspected method as a Feature Envy candidate. But the weakness of this

approach is the ambiguity of the actual threshold values for the used metrics. We tried

to find standard values for them but they are not available in the literature. In our thesis

we analysed open source software projects as mentioned previously in this chapter and

we used the standard static formula to produce a standard threshold values for the used

metrics and make them as standard values for the next studies. The threshold values are

shown in Table 3.2 and our detection approach is given in Figure 3.2

27

 Table 3.2 Metrics’ Threshold Values

Metric Name Threshold (+) Threshold (-) Average

ATFD
(Access to Foreign Data).

3,598 0 0,521

LAA
(Locality of Attribute Access)

1,373 0,492 0,933

FDP
(Foreign Data Provider)

1 0 0,5

Figure 3.2 Proposed method of detecting feature envy instances

3.3 Attributes of the Software Under Test

To apply our methodology, we selected an open source Java project. This project is

known as Sweet Home3D version 4.0 distributed under GNU General Public License

[42]. It is public domain software. It is free internal design structure application that

helps the designer to draw the plan of your house, arrange furniture on it and visit the

results in 3D. It can be run under Windows, Mac OS X 10.4 to 10.12, Linux and Solaris.

It is available in 25 different languages. The selected version reported that have bugs

and had been fixed in later releases. It has multiple releases; the last one was the 5.4 on

31-01-2017. Figure 3.3 are showing an example from the designs achieved by the

application published on the application’s website.

28

Figure 3.3 design examples

The general attributes for Sweet Home 3D version 4.0 is illustrated in Table 3.3. The

metrics in Table 3.3 had been collected by metrics 1.3.6 plugin [43] for Eclipse.

Table 3.3 General attributes of sweet home 4.0 software

Metric Name Metric Value

Lines of Code (LOC) 76572

Number of Methods (NOM) 4154

Number of Overridden Methods

(NORM)

411

Number of Classes (NOC) 376

Number of children 144

Number of Packages (NOP) 9

Depth of Inheritance Tree (DIT) 6

Number of Hierarchies 37

29

3.4 Tools used during the Analysis Process

Software tools are used during our work to collect the metrics used in the detection

technique. These tools facilitated the metrics values gathering process. Each tool is

specialised in a set of metrics. Also they can be either a stand-alone applications or as

plugins. Now, let’s explain briefly each tool used in the work.

1- iPlasma: Integrated Platform for Software Modelling and Analysis. It is a free

stand-alone tool presented by LOOSE Research Group for the first time in 2005

[44] and the last updated version 6.1 was in 2012. The internal structure of the tool

appears in figure 3.4.

Figure 3.4 Internal structure of the iPlasma

In our work we used the front-end (INSIDER) to upload the java project which we want

to analyse. It can be run by using the command prompt of windows and execute a batch

file to run the insider graphical user interface (GUI) .Then we selected the group’s

category as classes, methods or any other available groups; depending on the target

under investigation and the metric needed in the study, as shown in figures 3.5 - 3.7.

 In our work, we selected to group the source code as classes to obtain the some metrics

of Refused Bequest, and in the other phase we used the methods’ group to get the

metrics of Feature Envy. Figure 3.5 shows the INSIDER front-end with the uploaded

Java source code for the Sweet Home 3D 4.0.

30

Figure 3.6 Selecting the class group

Figure 3.5 INSIDER’s front-end

31

Figure 3.7 selecting the methods group

This tool has an important role for us to understand the inheritance hierarchal tree of the

test project. By using the system complexity overview option as shown in Figure 3.8,

we can have a clear view of the available inheritance hierarchies in the source code. The

edges represent the inheritance relationship [6]. There are many other meanings related

to the node size and colour, edge width and colour, but they are beyond the scope of our

study, it can be found in [6] for more details.

Figure 3.8 the inheritance trees of the tested code

32

2- Metrics 1.3.6 plugin: by Frank Sauer is an open source metrics calculation and

dependency analyzer plugin for the Eclipse IDE. It measures various metrics and

detects cycles in package and type dependencies. It provides two types of views;

one for the layered package graph view and the other for the dependency graph

view as shown in Figure 3.9 .This plugin is used in our work to find the metrics

in Table 3.3.

Figure 3.9 Metrics obtained by metrics 1.3.6 plugin

Figure 3.10 Dependency graph view

33

CHAPTER 4

RESULTS AND DISSCUTION

In the previous chapter we discussed our approach theoretically. In this chapter we

present the results we have obtained by applying our methodology on some other

software projects. The results will be presented in two subsections and the next

subsection will contain discussions.

4.1 Refused Bequest’s Results and Discussion :

Our target in this level is to examine all the sub-classes in the test project’s source code.

The key idea behind the proposed detection technique lies in the detection of whether

the average similarity of the overridden methods in a subclass in a given hierarchy is

less than the threshold value. In addition, our approach takes other metrics into account

to detect and evaluate the suspicious classes. The first metric is Base Class Overriding

Ratio (BOvR) which measures the ratio of the number of overridden methods from the

base class to the total number of methods in the tested sub-class. This gives us an idea

about the amount of reused code from the parent class. The other factor that may have

an effect on the inheritance properties is the Average Cyclomatic Complexity of

Overridden methods (ACCO). In normal cases; when the sub-class inherits and

overrides the methods these methods be like the original version but with the variables

or parameters of the sub-class, or adding additional functionality related with the nature

of the sub-class. So; the ACCO should be near to the upper limit of the standard

threshold value.

Our test is done on open source Java project Sweet Home 3D 4.0, as mentioned in

section 3.3 of chapter 3. We presented the general code properties in Table 3.3, but the

general metrics for each separated hierarchy is illustrated in Table 4.1. The class

diagrams of some hierarchies which indicated as Refused Bequest candidate will be

presented in later sections.

34

Table 4.1 The Metrics of each hierarchy

Hierarchy

Number

Hierarchy Root Name Root Class

Type

Number of

Classes

DIT

1 HomeApplication Abstract 3 1

2 FurnitureController Class 2 1

3 NullableSpinnerNumberModel Class 2 1

4 VisualTransferHandler Class 2 1

5 AutoCommitSpinner Class 2 1

6 ResourceAction Class 2 1

7 Camera Class 2 1

8 TexturesCatalog Class 2 1

9 FurnitureCatalog Class 2 1

10 RecorderException Class 2 1

11 UserPreferencesChangeListener Abstract 3 1

12 AbstractPhotoController Abstract 3 1

13 HomeController Class 3 2

14 FrameGenerator Class 3 1

15 PieceOfFurnitureTopView Abstract 3 1

16 LocatedTransferHandler Abstract 3 1

17 ScaledImageComponent class 3 1

18 FileContentManager Class 3 1

19 CatalogPieceOfFurniture Class 3 1

20 CameraControllerState Abstract 3 1

21 PointWithAngleMagnetism Class 3 1

22 URLContent Class 4 1

23 UserPreferences Abstract 4 1

24 HomePieceOfFurniture Class 4 1

25 WizardController Abstract 4 1

26 ModifiedPieceOfFurniture Class 4 1

27 Object3DBranch Abstract 5 1

28 ModelPreviewComponents Class 5 2

29 AbstarctDecoratedAction Class 5 2

30 WizardControllerStepState Abstract 4 1

31 BackgroundImageWizardStepState Abstract 4 1

32 ImportFurnitureWizardStepState Abstract 5 1

33 ImportedTextureWizardStepState Abstract 3 1

34 ControllerState Abstract 27 2

35

Table 4.1 (cont’d)

35 AbstarctModeChangeState Abstract 6 1

36 AbstarctWallState Abstract 3 1

37 AbstarctRoomState Abstract 3 1

According to [33], when a designer employs a generalization relationship and places an

abstract class or an interface on the root of the hierarchy, the intention is rather clear:

The goal is to apply the Dependency Inversion Principle and essentially to allow

polymorphic behavior where the public interface of the base abstract class (or interface)

is implemented by a corresponding subclass. In these cases it is theoretically impossible

to encounter a Refused Bequest symptom, since the same benefit cannot be achieved by

other means. In other words, it is clearly evident that the employed generalization is on

purpose, well-designed and constitutes an "is-a" relationship. Also, the methods in the

interfaces have no body of code to compare with overridden version in the sub-class. On

the other hand, overriding the abstract methods of the abstract super-class is mandatory,

so the sub-class will be obligated to inherit and reuse these methods. In this case there

will be no big chance to refuse its parent’s bequest. So, we excluded the hierarchies in

which the base class is either an interface or an abstract class.

To facilitate dealing with classes’ names during the analysis phase we proposed to give

appropriate latter to each class, start from C1 to C55 as illustrated in Table 4.2.

36

Table 4.2 Original and Given Names of the Classes

No. Original class Name Given Letter

1 FurnitureController C1

2 PlanController C2

3 NullableSpinnerNumberModel C3

4 NullableSpinnerLengthModel C4

5 VisualTransferHandler C5

6 FurnitureCatalogTransferHandler C6

7 AutoCommitSpinner C7

8 NullableSpinner C8

9 ResourceAction C9

10 ControllerAction C10

11 Camera C11

12 ObserverCamera C12

13 TexturesCatalog C13

14 DefaultTextureCatalog C14

15 FurnitureCatalog C15

16 DefaultFurnitureCatalog C16

17 RecorderException C17

18 InterruptedRecorderException C18

19 HomeController C19

20 HomePluginController C20

21 HomeAppletController C21

22 ScaledImageComponent C22

23 ScaledImagePreviewComponent C23

24 OriginalImagePreviewComponent C24

25 FileContentManager C25

26 AppletContentManager C26

27 FileContentManagerWithRecordedLastDirectories C27

28 CatalogPieceOfFurniture C28

29 CatalogDoorOrWindow C29

30 CatalogLight C30

31 PointWithAngleMagnetism C31

32 WallPointWithAngleMagnetism C32

33 RoomPointWithAngleMagnetism C33

34 URLContent C34

35 HomeURLContent C35

36 ResourceURLContent C36

37

Table 4.2 (cont’d)

37 TemporaryURLContent C37

38 HomePieceOfFurniture C38

39 HomeDoorOrWindow C39

40 HomeFurnitureGroup C40

41 HomeLight C41

42 ModifiedPieceOfFurniture C42

43 ModifiedDoorOrWindow C43

44 ModifiedLight C44

45 ModifiedFurnitureGroup C45

46 ModelPreviewComponents C46

47 AbstractModelPreviewComponent C47

48 RotationPreviewComponent C48

49 AttributePreviewcomponent C49

50 IconPreviewcomponent C50

51 AbstarctDecoratedAction C51

52 PopupMenueItemAction C52

53 MenueItemAction C53

54 ToolBarAction C54

55 Buttonaction C55

The calculation of the ASM metric was done manually on our test code. It had been

started from the calculation of similarity between methods concept [41] [42]. In this

study we focused on the similarity between the original methods in the base class and

the overridden methods in the sub-class. The similarity between methods for some

hierarchies of the tested code is shown in the following Tables (Table 4.3- 4.16). Colors

indicate overridden methods and their base versions. For example, one method of a base

class denoted with m1 is overridden by the method denoted by m*1 and both methods

have the color green.

38

Table 4.3 Similarity between methods for hierarchy 2

C1-C2 Original Methods

Overridden

Methods
m1 m2

m*1 0.5 1

m*2 0 0

From Table 4.3 we can see that m1 is overridden by (m*1) with similarity equal to 0. 5

and m2 is overridden by (m*2) with similarity also equal to 0. The ASM for C2 is equal

to 0.25.

Table 4.4 Similarity between methods for hierarchy 7

C11-C12 Original Methods

Overridden Methods m1 m2 m3 m4 m5 m6 m7 m8

m*1 0.25

m*2 0.25 1

m*3 0.25 1 1

m*4 0.167 0.33 0.33 1

m*5 0.2 0.5 0.5 0.25 1

m*6 0.2 0.5 0.5 0.25 0.33 1

m*7 0.2 0.5 0.5 0.25 0.33 0.33 1

m*8 Null Null Null Null Null Null Null Null

In the previous Table there are 8 overridden methods most of them has a high similarity

values except (m*8) and (m8) have no instance variables. The ASM for C12 is equal to

0.893.

Table 4.5 Similarity between methods for hierarchy 13

C19-C21 Original Methods

Overridden Methods m1 m2 m3 m4

m*1 0.667

m*2 0.4 1

m*3 0.33 0 0

m*4 0.33 0.167 0 0.5

39

From Table 4.5 we can see that the sub-class C21 has four overridden methods from the

base class C19 with ASM equal to 0.542.

Table 4.6 Similarity between methods for hierarchy 18

In the hierarchy number 18 there are two sub-classes C23 and C24 with one overridden

method in each of them. The ASM has a value of 1 for both sub-classes.

Table 4.7 Similarity between methods for hierarchy 19

In the hierarchy 19 there are two sub-classes C26 and C27. In C26 there are four

overridden methods with ASM equal to 0,708. While in C27 there are two overridden

methods but they don’t use the instance variables. So, the result is Null.

Table 4.8 Similarity between Methods for Hierarchy 20

Hierarchy 20 also has two sub-classes C29 and C30. C29 has one overridden method

with ASM equal to Null; because the overridden methods do not have instance

variables. C30 has no overridden methods, so the ASM metric is not applicable in this

case and has a value of NA.

40

Table 4.9 Similarity between Methods for Hierarchy 22

From Table 4.9 we can see that we have two sub-classes C32 and C33. These sub-

classes don’t have any overridden methods from their parent class and the value of

ASM is NA.

Table 4.10 Similarity between Methods for Hierarchy 23

Hierarchy 23 has 3 sub-classes C35, C36 and C37. All of them have no overridden

methods and the ASM equal to NA.

Table 4.11 Similarity between methods for hierarchy 25-C39

41

Table 4.12 Similarity between methods for hierarchy 25-C41

C38-C41 Original Methods

Overridden

Methods
m1 m2 m3 m4

m*1 1

m*2 0.5 0.5

m*3 0.5 0.2 1

m*4 0.5 0.2 1 1

Table 4.13 Similarity between methods for hierarchy 25-C40

C39-C40 Original Methods

Overridden

Methods
m1 m5 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20 m21 m22 m23 m24 m25

m*1 1

m*5 0 1

m*10 0 0 0

m*11 0 0 0 1

m*12 0.3 0 0 0.5 1

m*13 0 0 0 0 0 1

m*14 0 0 0 0 0 0 1

m*15 0 0 0 0 0 0 0 1

m*16 0 0 0 0 0 0.5 0 0 0.5

m*17 0 0 0 0 0 0 0 0 0 1

m*18 0 0 0 0 0 0 0 0 0 0 0

m*19 0 0 0 0 0 0 0 0 0 0 0 0

m*20 0 0 0 0 0 0 0 0 0 0 0 0 0

m*21 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m*22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m*23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

m*24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

m*25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

In hierarchy 25 we have three sub-classes C39, C40 and C41. C39 has six overridden

methods with ASM equal to 0.611. C40 has eighteen overridden methods with ASM

equal to 0.694 and C41 has four overridden methods with ASM value equal to 0.875.

42

Table 4.14 Similarity between methods for hierarchy 27

We can see in hierarchy 27 there are three sub-classes with one overridden method in

each and with ASM value of 1.

Table 4.15 Similarity between methods for hierarchy 29-C47, 48, 49, 50

For hierarchy 29 we have four sub-classes C47, C48, C49 and C50. C47 and C49 have

no overridden methods with ASM equal to NA. C48 has one overridden method but it

doesn’t use the instance variables, so the ASM equal to Null. C50 has two overridden

methods and the ASM equal to 0.5.

Table 4.16 Similarity between methods for hierarchy 30

Finally, hierarchy 31 has four sub-classes C52, C53, C54 and C55. Each one has one

overridden method with ASM equal to 1.

43

During the calculations of the ASM metrics for all the hierarchies in our test project, we

noticed that there are different cases for it. There are two important factors that have

great effect in the application of this metric. These are the availability of instance

variables in the base class and the availability of overridden methods in the sub-class. In

some cases this metric is not applicable because either no overridden methods in the

sub-class or there are no instance variables in the base class. Table 4.17 shows the

details of these cases.

Table 4.17 ASM metric cases

Case No. IVs Overridden Methods in the Sub-class ASM Status

Case -1- Available Available Applicable

Case -2- Available Not available NA

Case -3- Not

available

Available NA

Case -4- Available Available(no IVs in the overridden

methods)

Applicable = Null

Case -5- Available

(Not used)

Available(no IVs in the overridden methods Applicable = Null

The Null value means that ASM metric has met its requirements and it is applicable, but

it has no value. This state can be happened if the overridden methods don’t use the

instance variables or the original methods in the base class don’t use the available

instance variables.

The other two metrics ACCO and BOvR are collected and combined with the ASM for

our test code and the results are shown in Table 4.18.

44

Table 4.18 Metrics Values of the Hierarchies

Hierarchy

Number Hierarchy
Class

Type
ASM ACCO BOvR

1 FurnitureController Base-

Class

- - -

 -PlanController sub-class 0.25 2.2 0.0089

2 NullableSpinnerNumberModel Base-

Class

- - -

 -NullableSpinnerLengthModel sub-class NA

(case-2-)

0 0

3 VisualTransferHandler Base-

Class

- - -

 -FurnitureCatalogTransferHandler sub-class NA

(case-2-)

Null 0

4 AutoCommitSpinner Base-

Class

- - -

 -NullableSpinner sub-class NA

(case-3-)

Null 0

5 ResourceAction Base-

Class

- - -

 -ControllerAction sub-class NA

(case-5-)

1 0.333

6 Camera Base-

Class

- - -

 -ObserverCamera sub-class 0.893 1.167 0.4

7 TexturesCatalog Base-

Class

- - -

 -DefaultTextureCatalog sub-class NA

(case-2-)

Null 0

8 FurnitureCatalog Base-

Class

- - -

 -DefaultFurnitureCatalog sub-class NA

(case-2-)

Null 0

9 RecorderException Base-

Class

- - -

 -InterruptedRecorderException sub-class NA

(case-2-)

Null 0

10 HomeController Base-

Class

- - -

 -HomePluginController Sub-

class

NA

(case-2-)

Null 0

 -HomeAppletController Sub-

class

0.542 1.25 0.667

11 ScaledImageComponent Base-

Class

- - -

 -ScaleImagePreviewComponent Sub-

class

1 2 0.25

 -OriginalImagePreviewComponent Sub-

class

1 2 0.25

12 FileContentManager Base-

Class

- - -

 -AppletContentManager Sub-

class

0.708 4 0.667

 -

FileContentManagerWithRecordedLastDirectories

Sub-

class

Null

(case-4-)

4.5 0.667

13 CatalogPieceOfFurniture Base-

Class

- - -

 -CatalogDoorOrWindow Sub-

class

Null

(case-4-)

1.5 0.1

 -CatalogLight Sub-

class

NA

(case-2-)

2 0

45

Table 4.18 (cont’d)

 Class

 -WallPointWithAngleMagnetism Sub-

class

NA

(case-2-)

Null 0

 -RoomPointWithAngleMagnetism Sub-

class

NA

(case-2-)

Null 0

15 URLContent Base-

Class

- - -

 -HomeURLContent Sub-

class

NA

(case-2-)

Null 0

 -ResourceURLContent Sub-

class

NA

(case-2-)

Null 0

 -TemporaryURLContent Sub-

class

NA

(case-2-)

Null 0

16 HomePieceOfFurniture Base-

Class

- - -

 -HomeDoorOrWindow Sub-

class

0.611 1.71 0.5

 -HomeFurnitureGroup Sub-

class

0.694 1.97 0.4186

 -HomeLight Sub-

class

0.875

1.2 0.5

17 ModifiedPieceOfFurniture Base-

Class

- - -

 -ModifiedDoorOrWindow Sub-

class

1 1 1

 -ModifiedLight Sub-

class

1 1 1

 -ModifiedFurnitureGroup Sub-

class

1 3 0.5

18 ModelPreviewComponents Base-

Class

 -AbstractModelPreviewComponent Inner-

class

NA

(case-2-)

Null 0

 -RotationPreviewComponent Sub-

class

Null

(case-4-)

Null 0.125

 -AttributePreviewcomponent Sub-

class

NA

(case-2-)

Null 0

 -IconPreviewcomponent Sub-

class

0.5 1 1

19 AbstarctDecoratedAction Base-

Class

- - -

 -PopupMenueItemAction Sub-

class

1 6 1

 -MenueItemAction Sub-

class

1 5 1

 -ToolBarAction Sub-

class

1 2 1

 -Buttonaction Sub-

class

1 3 1

The cases where the ASM metric of case -2-, which means the sub-class is not

recommended being Refused Bequest candidate, because it accepts all the inherited

bequests of its parent class without any specialization or any change in its functionality.

This can be considered as a sign of design problem or abuse for the inheritance. In case

of the ASM is applicable we need to see the metrics and compare the results with our

46

threshold values. The following Table shows us the Refused Bequest candidate classes

and we will explain each case separately with its class diagram.

Table 4.19 Refused bequest candidate classes

No. Sub-Class Name ASM ACCO BOvR

1. NullableSpinnerLengthModel NA Null 0

2. NullableSpinner NA Null 0

3. ControllerAction Null 1 0.333

4. DefaultTextureCatalog NA 0 0

5. DefaultFurnitureCatalog NA 0 0

6. InterruptedRecorderException NA 0 0

7. HomePluginController NA 0 0

8. CatalogLight NA 2 0

9. WallPointWithAngleMagnetism NA Null 0

10. RoomPointWithAngleMagnetism NA Null 0

11. HomeURLContent NA Null 0

12. ResourceURLContent NA Null 0

13. TemporaryURLContent NA Null 0

14. RotationPreviewComponent Null Null 0.125

15. AttributePreviewcomponent NA Null 0

16. FurnitureCatalogTransferHandler NA 0 0

17. FileContentManagerWithRecordedLastDirectories Null 4.5 0.667

18. CatalogDoorOrWindow Null 1.5 0.1

19. AbstractModelPreviewComponent NA 0 0

20. PlanController 0.25 2.2 0.0089

In order to clarify the obtained results and make the results more clear; we will discuss

the ASM cases and explain one example from each case by using the class diagram.

47

o Case -1- : in this case the two main requirements to calculate the ASM metric was

met. We can see that clearly in the hierarchy number 11 from Table 4.18, as shown

in the class diagram in Figure 4.1.

Figure 4.1 Case-1- class diagram

Figure 4.1 shows us that the base class ScaledImageComponent has two instance

variables, which is one of the requirements to apply the ASM metric. For the first sub-

class ScaleImagePreviewComponent there is one overridden method from its

base class paintComponent (). The ASM of the sub-class is equal to 1. Also, for

the second sub-class has an ASM equal to 1. Depending on our approach, that means

they applied the inheritance principle in a good way.

48

o Case -2-: In this case one of the requirements needed for ASM calculation is

missing. There are no overridden methods in the sub-class. This can be considered

as the sub-class utilizes all bequests from its parent. An example of this case is

shown in Figure 4.2. As we can see that the sub-class

FurnitureCatalogTransferHandler doesn’t reused any overridden

methods from its parent.

Figure 4.2 Case-2- class diagram

49

o Case -3-: this case missed the availability of instance variables in the base class.

That means even if there is an overridden method it will be impossible to compute

the ASM metric. We can see an example in the sub-class AutoCommitSpinner

in figure 4.3.

Figure 4.3 Case-3- class diagram

50

o Case -4- : This case is a special case of case-1-, where the two requirements are

available but we couldn’t obtain a real value for our metric. This case happens

when there are overridden methods in the sub-class but they don’t use the instance

variables of the base class neither directly nor indirect way.

Figure 4.4 show us the sub-class

FileContentManagerWithRecordedLastDirectories which

overridden the method getLastDirectory () and setLastDirectory

(), but they don’t use any instance variable. In this case the ratio of intersection set

of the instance variables to the set of union will be empty set. We proposed to put a

Null as a value for the ASM in this case.

Figure 4.4: Case-4- class diagram

51

o Case -5- : In the last case, we indicated that the original methods of the base class

don’t use the instance variables of its class. So, the intersection and the union sets

will be empty. Consequently, this will effect on the calculation of our ASM metric.

In this case we proposed to give a Null value.

Figure 4.5: Case-5- class diagram

Figure 4.5 shows us that sub-class ControllerAction overridden the

method actionPerformed (), but when we investigated the code of the

base class and the sub-class we found that no instance variables used in the

original version of the method.

52

It is important to mention that we don’t use the zero value in case -4- and case-5-;

because this value is given when the two requirements of the ASM metric are met but

there is no similarity between methods.

When we analysed the results in Table 4.19, we noticed that some cases of Refused

Bequest classes even that their ASM value are Null or NA they have a clear values for

the ACCO metric. We can conclude from that the sub-class in this case doesn’t override

methods from its parent, while it overrides methods from other classes or interfaces.

 Another important note, some sub-classes have a Null or NA values, while the BOvR

metric has a numerical value not equal to zero. This can be translated as; even there is

no similarity between the methods in the base class with the overridden version in the

child class but they apply the case-4- and case-5- where the main requirements are met

but the application was in wrong way.

We evaluated our results with another two tools. These tools are iPlasma [38] and Ptidej

tool [46]. The results are shown in Table 4.21. All the instances detected by Ptidej tool

as Refused Bequest candidates are detected by our approach. While not all the

candidates detected by our metrics are able to be detected by Ptidej and iPlasma tools.

These results give as a high confidence with our proposed metrics and our detection

mechanism. The number of detected instances for each tool is shown in the following

Table.

Table 4.20: number of detected instances in each tool

Our Approach Ptidej iPlasma

6 13 1

53

Table 4.21 Results of different tools

NO. Sub-Class Name Our

Approach

Ptidej iPlasma Is Code

Smell?

1. PlanController ✓ ✓ ✕ ✓

2. NullableSpinner ✓ ✓ ✕ ✓

3. ControllerAction ✓ ✓ ✕ ✓

4. DefaultTexturesCatalog ✕ ✓ ✕ ✕

5. DefaultFurnitureCatalog ✕ ✓ ✓ ✕

6. InterruptedRecorderException ✕ ✓ ✕ ✕

7. HomePluginController ✕ ✓ ✕ ✕

8. FileContentManagerWithRecordedLastDirectories ✓ ✕ ✕ ✓

9. CatalogDoorOrWindow ✓ ✓ ✕ ✕

10. CatalogLight ✕ ✓ ✕ ✕

11. HomeURLContent ✕ ✓ ✕ ✕

12. ResourceURLContent ✕ ✓ ✕ ✕

13. TemporaryURLContent ✕ ✓ ✕ ✕

14. HomeDoorOrWindow ✕ ✕ ✕ ✕

15. RotationPreviewComponent ✓ ✕ ✕ ✓

16. HomeAppletController ✕ ✓ ✕ ✕

54

4.2 Feature Envy’s Results and Discussion:

At this level our aim is to search about a method which is interested in the data of

another class more than the class it belongs to. It happens when the source of the envied

data comes from only one or two classes. This refers to method misplacing. During the

metrics collecting phase we grouped the source code of our test code as methods and

then we obtained the metrics for each method. After completing the previous phase,

now the data set is ready to filter by our threshold values on the data. Our methods and

metrics data set initially has 4660 methods. We proposed to filter them by removing the

constructors. Depending on the nature of the constructors it just used to initialize the

attributes of the class it belongs to, so it rarely to find a constructor is a Feature Envy

candidate. After applying this filter the data set became 3335 methods. The final results

are shown in Table 4.22.

Table 4.22 Results of feature envy

No. Method Name ATFD LAA FDP

1 addAreaSidesGeometry 8 0 1

2 getAreaOnFloor 7 0 1

3 updateView 6 0 1

4 updateViewPlatformTransform 5 0 1

5 updateWall 4 0 1

6 paintComponent 4 0.43 1

7 computeTransform 5 0.29 1

8 updateShininessRadioButtons 4 0 1

9 propertyChange 7 0.12 1

10 paintRoomNameOffsetIndicator 5 0 1

11 paintRoomAreaOffsetIndicator 4 0 1

12 paintWallsOutline 7 0 1

13 paintWallResizeIndicator 11 0 1

14 paintPieceOFFurnitureIndicators 8 0 1

15 paintDimensionLineResizeIndicator 5 0 1

16 paintLabels 5 0.17 1

17 paintWallAlignmentFeedback 16 0.11 1

18 equalsWallPoint 4 0 1

19 paintDimensionLineAlignmentFeedback 16 0.16 1

20 equalsDimensionLinePoint 4 0 1

21 getPageFormat 7 0 1

22 setBackFaceShown 6 0.4 1

23 getValueAt 5 0.17 1

24 createComponents 6 0 1

25 createComponents 7 0 1

55

Table 4.22 (cont’d)

26 compareCameraLocation 7 0 1

27 getApplicationOrLibraryUpdateMessage 8 0 1

28 updateProperties 8 0.2 1

29 storeCamera 9 0.1 1

30 alignPieceOfFurnitureAlongSides 5 0 1

31 doReverseWallsDirection 16 0 1

32 splitSelectedWall 10 0.17 1

33 getReferenceWall 4 0 1

34 adjustPieceOfFurnitureSideBySideAt 37 0.08 1

35 isIntersectionEmpty 10 0 1

36 isIntersectionEmpty 5 0 1

37 joinNewWallEndToWall 4 0 1

38 getPieceOfFurnitureRotatedNameAt 7 0.12 1

39 moveItems 6 0 1

40 moveWallStartPoint 11 0 1

41 moveWallEndPoint 11 0 1

42 reverseDimensionLine 5 0 1

43 doAddWalls 5 0.29 1

44 postWallResize 4 0.2 1

45 postDimensionLineResize 4 0.2 1

46 moveWallPoints 10 0 1

47 pressMouse 23 0 1

48 setMode 5 0 1

49 setMode 5 0 1

50 moveMouse 4 0.33 1

51 moveMouse 8 0.2 1

52 moveMouse 5 0.44 1

53 setMode 5 0 1

54 enter 5 0.17 1

55 pressMouse 5 0.17 1

56 getDimensionLineAngle 4 0.33 1

57 moveMouse 4 0.2 1

58 setMode 5 0 1

59 moveMouse 4 0.33 1

60 moveMouse 4 0.33 1

61 moveMouse 4 0.33 1

62 moveMouse 4 0.33 1

63 equalsWallPoint 4 0 1

64 setMode 6 0 1

65 getWallAngleInDegrees 10 0 1

66 showWallAngleFeedback 27 0 1

56

We can see from the Table above that there are duplicated methods. These methods

have the same name but they are in different classes. They are overridden methods for

an abstract class ControllerState. The same thing is with setMode () method

and from the same abstract class.

If we compared the results of the ATFD and LAA metrics (FDP is fixed for all) we can

see that when the value of LAA increase (greater than 0.2) the value of ATFD

decreased. But; when it reaches near the zero value the value of ATFD increased.

Figure 4.6 Relation between ATFD and LAA metrics

We selected two other tools to detect Feature Envy methods. These tools are iPlasma

tool [38] and JDeodorant eclipse plugin [47].The number of detected Feature Envy

cases for each tool is available in the following Table.

Table 4.23 Number of detected cases in each tool

Our Approach JDeodorant iPlasma

66 87 149

57

Table 4.24 Results of different tools

No. Method Name Our

Approach

iPlasma JDeodorant Is Code

Smell?

1 addAreaSidesGeometry () ✓ ✓ ✓ ✓

2 getAreaOnFloor () ✓ ✓ ✓ ✓

3 updateViewn () ✓ ✓ ✓ ✓

4 updateViewPlatformTransform () ✓ ✓ ✓ ✓

5 updateWall () ✓ ✓ ✕ ✓

6 paintComponent () ✓ ✕ ✕ ✕

7 computeTransform () ✓ ✓ ✕ ✓

8 updateShininessRadioButtons () ✓ ✓ ✕ ✓

9 propertyChange () ✓ ✓ ✕ ✓

10 paintRoomNameOffsetIndicator () ✓ ✓ ✓ ✓

11 paintRoomAreaOffsetIndicator () ✓ ✓ ✓ ✓

12 paintWallsOutline () ✓ ✓ ✕ ✓

13 paintWallResizeIndicator () ✓ ✓ ✕ ✓

14 paintPieceOFFurnitureIndicators () ✓ ✓ ✕ ✓

15 paintDimensionLineResizeIndicator () ✓ ✓ ✕ ✓

16 paintLabels () ✓ ✓ ✕ ✓

17 paintWallAlignmentFeedback () ✓ ✓ ✕ ✓

18 equalsWallPoint () ✓ ✓ ✓ ✓

19 paintDimensionLineAlignmentFeedback() ✓ ✓ ✕ ✓

20 equalsDimensionLinePoint() ✓ ✓ ✓ ✓

21 getPageFormat() ✓ ✓ ✕ ✓

22 setBackFaceShown() ✓ ✕ ✕ ✕

23 getValueAt() ✓ ✓ ✕ ✓

24 createComponents() ✓ ✓ ✕ ✓

25 createComponents () ✓ ✓ ✕ ✓

26 compareCameraLocation() ✓ ✓ ✓ ✓

27 getApplicationOrLibraryUpdateMessage() ✓ ✓ ✕ ✓

 28 updateProperties() ✓ ✓ ✕ ✓

29 storeCamera() ✓ ✓ ✓ ✓

30 alignPieceOfFurnitureAlongSides() ✓ ✓ ✓ ✓

31 doReverseWallsDirection() ✓ ✓ ✕ ✓

32 splitSelectedWall() ✓ ✓ ✕ ✓

33 getReferenceWall() ✓ ✓ ✕ ✓

34 adjustPieceOfFurnitureSideBySideAt() ✓ ✓ ✕ ✓

35 isIntersectionEmpty() ✓ ✓ ✓ ✓

36 isIntersectionEmpty() ✓ ✓ ✓ ✓

37 joinNewWallEndToWall() ✓ ✓ ✓ ✓

38 getPieceOfFurnitureRotatedNameAt() ✓ ✓ ✕ ✓

39 moveItems() ✓ ✓ ✕ ✓

40 moveWallStartPoint() ✓ ✓ ✕ ✓

41 moveWallEndPoint() ✓ ✓ ✕ ✓

42 reverseDimensionLine() ✓ ✓ ✓ ✓

43 doAddWalls() ✓ ✓ ✓ ✓

44 postWallResize() ✓ ✓ ✕ ✓

45 postDimensionLineResize() ✓ ✓ ✕ ✓

46 moveWallPoints() ✓ ✓ ✕ ✓

58

Table 4.24 (cont’d)

47 pressMouse() ✓ ✓ ✕ ✓

48 setMode() ✓ ✓ ✕ ✓

49 setMode() ✓ ✓ ✕ ✓

50 moveMouse() ✓ ✓ ✕ ✓

51 moveMouse() ✓ ✓ ✕ ✓

52 moveMouse() ✓ ✓ ✕ ✓

53 setMode() ✓ ✓ ✕ ✓

54 enter() ✓ ✓ ✕ ✓

55 pressMouse() ✓ ✓ ✕ ✓

56 getDimensionLineAngle() ✓ ✕ ✓ ✓

57 moveMouse() ✓ ✓ ✕ ✓

58 setMode() ✓ ✓ ✕ ✓

59 moveMouse() ✓ ✓ ✕ ✓

60 moveMouse() ✓ ✕ ✕ ✕

61 moveMouse() ✓ ✕ ✕ ✕

62 moveMouse() ✓ ✕ ✕ ✕

63 equalsWallPoint() ✓ ✓ ✓ ✓

64 setMode() ✓ ✕ ✕ ✕

65 getWallAngleInDegrees() ✓ ✓ ✕ ✓

66 showWallAngleFeedback() ✓ ✓ ✕ ✓

67 DimensionLine() ✕ ✕ ✓ ✕

68 getDoorOrWindowShapeAtWallIntersection() ✕ ✓ ✓ ✓

69 getDoorOrWindowSashShape() ✕ ✓ ✓ ✓

70 addSelectObjectMenuItems() ✕ ✕ ✓ ✕

71 moveDimensionLinePoint() ✕ ✕ ✓ ✕

72 getTextureCoordinates() ✕ ✕ ✓ ✕

73 getSunDirection() ✕ ✕ ✓ ✕

74 getPieceBoundingRectangleWidth() ✕ ✓ ✓ ✓

75 getPieceBoundingRectangleHeight() ✕ ✓ ✓ ✓

76 computeRoomBorderGeometry() ✕ ✓ ✓ ✓

77 getFurnitureComparator() ✕ ✕ ✓ ✕

78 toggleCameraSelection() ✕ ✕ ✓ ✕

79 isPieceOfFurniturePartOfBasePlan() ✕ ✕ ✓ ✕

80 sortFurniture() ✕ ✕ ✓ ✕

81 addComponent3DRenderingErrorObserver() ✕ ✕ ✓ ✕

82 getOptionalLocalizedString() ✕ ✕ ✓ ✕

83 createNavigationPanel() ✕ ✕ ✓ ✕

84 setPlanRulersVisible() ✕ ✕ ✓ ✕

85 cloneHomeInEventDispatchThread() ✕ ✕ ✓ ✕

86 getOptionalString() ✕ ✕ ✓ ✕

87 getTextures() ✕ ✕ ✓ ✕

88 getMinX() ✕ ✕ ✓ ✕

89 getMaxX() ✕ ✕ ✓ ✕

90 getMinY() ✕ ✕ ✓ ✕

91 getMaxY() ✕ ✕ ✓ ✕

92 getObserverCameraMinimumElevation() ✕ ✕ ✓ ✕

93 getRoomSideLength() ✕ ✕ ✓ ✕

94 getRoomSideAngle() ✕ ✕ ✓ ✕

59

Table 4.24 (cont’d)

95 getPaintedItems() ✕ ✕ ✓ ✕

96 moveHomeItemsToLevel() ✕ ✕ ✓ ✕

97 alignPieceOfFurnitureAlongLeftOrRightSides() ✕ ✓ ✓ ✓

98 updateOpenRecentHomeMenu() ✕ ✕ ✓ ✕

99 doAddFurniture() ✕ ✕ ✓ ✕

100 doToggleBackgroundImageVisibility() ✕ ✕ ✓ ✕

101 isPieceOfFurnitureVisibleAtSelectedLevel() ✕ ✕ ✓ ✕

102 getDetecTableRoomsAtSelectedLevel() ✕ ✕ ✓ ✕

103 getDetecTableWallsAtSelectedLevel() ✕ ✕ ✓ ✕

104 postPieceOfFurnitureWidthAndDepthResize() ✕ ✓ ✓ ✓

105 selectLevelFromSelectedItems() ✕ ✕ ✓ ✕

106 computeRoomPartGeometry() ✕ ✕ ✓ ✕

107 getHeaderRenderer() ✕ ✕ ✓ ✕

108 createLockUnlockBasePlanButton() ✕ ✕ ✓ ✕

109 addColorListener() ✕ ✕ ✓ ✕

110 addIconYawListener() ✕ ✕ ✓ ✕

111 savePhoto() ✕ ✕ ✓ ✕

112 deleteLastRecordedCameraLocation() ✕ ✕ ✓ ✕

113 doDeleteFurniture() ✕ ✕ ✓ ✕

113 toggleFurnitureSort() ✕ ✕ ✓ ✕

114 toggleFurnitureVisibleProperty() ✕ ✕ ✓ ✕

115 writePreferences() ✕ ✕ ✓ ✕

116 deleteCameras() ✕ ✕ ✓ ✕

117 doDeleteWalls() ✕ ✕ ✓ ✕

118 doAddRooms() ✕ ✕ ✓ ✕

119 doDeleteRooms() ✕ ✕ ✓ ✕

120 doAddDimensionLines() ✕ ✕ ✓ ✕

121 doDeleteDimensionLines() ✕ ✕ ✓ ✕

122 doAddLabels() ✕ ✕ ✓ ✕

123 doDeleteLabels() ✕ ✕ ✓ ✕

124 postPieceOfFurnitureHeightResize() ✕ ✓ ✓ ✓

125 getVisibleItemsAtSelectedLevel() ✕ ✕ ✓ ✕

126 doDeleteItems() ✕ ✕ ✓ ✕

127 addSizeListeners() ✕ ✕ ✓ ✕

128 goToCamera() ✕ ✕ ✓ ✕

129 alignFurnitureSideBySide() ✕ ✓ ✓ ✓

130 addRooms() ✕ ✕ ✓ ✕

131 createWall() ✕ ✕ ✓ ✕

132 selectItems() ✕ ✕ ✓ ✕

133 addDimensionLines() ✕ ✕ ✓ ✕

134 addLabels() ✕ ✕ ✓ ✕

60

We examined and analysed some cases of our detected results as illustrated in this

section.

Looking at our test code (the code of the methods is available in appendix B) we find

the method addAreaSidesGeometry in the class Ground3D is a Feature Envy

candidates. It doesn’t use data from its definition class with LAA equal to zero. The

method invokes much more methods and access fields from the class HomeTexture

than its own class with value of ATFD equal to 8.

We can see another case in our test code. The method

updateViewPlatformTransform is available in the class HomeComponent3D.

From our obtained metrics we can see that it is using data of the class Camera more

than its own class with ATFD equal to 5. Also, it doesn’t use any data from the class it

belongs to.

We have another case from our test code. There is a method

adjustPieceOfFurnitureSideBySideAt is allocated in the class

PlanController. It has 37 attributes from the class HomePieceOfFurniture

with ATFD equal to 37, while the number of attributes from its class is equal to 3 with

LAA of 0. 08.

When we analysed the relation between the metrics as shown in Table 4.25, it is so clear

that ATFD and FDP is related positively (their values increase together as a linear

relationship). While the relation between LAA and the other two metrics is negatively

related. That means when the value of LAA metric increases the other two metrics

should be decreased linearly.

Table 4.25 Correlation between metrics

 ATFD LAA FDP

ATFD 1

LAA -0.5805 1

FDP 0.709703 -0.75583 1

61

LAA metric has an important role in the detection of Feature Envy candidates. It is the

ratio of the local data used by the method from its class to the total number of data used

including data from foreign class. We noticed that all methods with LAA equal to zero

are undetectable by JDeodorant plugin, while they are detectable by our approach and

iPlasma tool. This is a defect point in the use of JDeodorant tool. In other hand, iPlasma

tool detected Feature Envy methods more than the other two approaches, while they

may not be actual Feature Envy instances. The ambiguity of the threshold values is the

main reason for these cases. It used meaningful thresholds and this is not accurate in the

final results. We enhanced this approach by computing numerical threshold values

depending on statistical formula. The comparison with clear values is easier and more

accurate. These values can be set a standard for the future work.

4.3. General Discussion

This thesis work proposes a method for detecting Feature Envy code smell and another

method for detecting Refused Bequest code smell. Code smell detection is challenging

because mapping metrics to code smell symptoms is not always straightforward task.

These mappings can lead to false-negative and false-positive detections. A manual code

review is needed to validate detected code smell instances but manual review can also

miss some true-positive code smell cases.

For the results in Table 4.21 and Table 4.24, we computed the confusion matrices and

we found the accuracy for each tool.

62

Table 4.26 Confusion matrix of our approach results

 Actual Refused Bequest

Refused Bequest NOT Refused Bequest

Our Approach Refused Bequest 5 1

Not Refused Bequest 0 10

Table 4.27 Confusion matrix of ptidej tool results

 Actual Refused Bequest

Refused Bequest NOT Refused Bequest

Ptidej Tool Refused Bequest 3 10

Not Refused Bequest 2 1

Table 4.28 Confusion matrix of iPlasma tool results

 Actual Refused Bequest

Refused Bequest NOT Refused Bequest

iPlasma Tool Refused Bequest 0 1

Not Refused Bequest 5 10

Table 4.29 Accuracy table of refused bequest results

 Our Approach iPlasma Tool Ptidej Tool

Accuracy 0. 9375 0.625 0. 25

Recall 1 0 0. 6

Miss.Rate 0. 0625 0.375 0.75

Fall out 0. 09 0.091 0. 91

63

Table 4.30 Confusion matrix of our approach

 Actual Feature Envy

Feature Envy NOT Feature Envy

Our Approach Feature Envy 62 4

Not Feature Envy 9 60

 Table 4.31 Confusion matrix of iPlasma tool

 Actual Feature Envy

Feature Envy NOT Feature Envy

iPlasma Feature Envy 68 0

Not Feature Envy 3 63

Table 4.32 Confusion matrix of JDeodorant tool

 Actual Feature Envy

Feature Envy NOT Feature Envy

JDeodorant Feature Envy 27 TP 60 FP

Not Feature Envy 41 FN 6 TN

Table 4.33 Accuracy table of feature envy results

 Our Approach iPlasma Tool JDeodorant Tool

Accuracy 0. 91 0. 978 0. 246

Recall 0. 873 0. 958 0. 397

Miss.Rate 0. 097 0. 022 0. 754

Fall out 0. 0625 0 0. 909

64

We compared the results in Table 4.32, that our approach has the highest accuracy

among the other tools. Which means it is able to detect the actual Refused Bequest

candidates precisely and with misclassification error equal to 0.0625. Our approach is

more accurate than the other tools .iPlasma tool came at the second place with accuracy

equal to 0.625. It has a high error rate equal to 0.375. The Ptidej tool is the lowest

accuracy with value of 0.25 and with highest error rate value reach to 0.75.

Table 4.33 show us the accuracy for the tools used to detect Feature Envy code smell.

The highest accuracy is for iPlasma tool with value of 0.978. Our approach came in the

second place with accuracy equal to 0.91, while the JDeodorant tool has the lowest

accuracy value equal to 0.246.

For a decisive comparison of different proposals of code smell and anti-pattern

detection, a comprehensive data set is needed but to the best of our knowledge, such a

set has not been documented.

Our proposed code smell detection methods have not been implemented yet as software

tools. After their implementation, more complex software projects can be examined and

further comparison with other code smell detection methods can be done. In their

current states, our methods can identify some code smell instances that are not

identified by other tools as seen in Sections 4.1 and 4.2.

65

CHAPTER 5

CONCLUSION AND FUTURE WORK

Code smell detection is an extremely challenging task, because the available detection

tools do not deal with all types of code smells. That makes the task of assuring high

quality software more difficult for the developers. In this thesis we proposed a metric

based detection technique of Refused Bequest and Feature Envy smells. Only a few

studies had been made to detect Refused Bequest type of code smell. Also, we built a

standard threshold values for the detection of Feature Envy code smell by analyzing six

open source Java projects.

 We tried to diagnose Refused Bequest sub-classes by investigating more details about

the symptoms that we can convert to an appropriate metrics. We focused in our study on

the similarity measure between the overriding methods with the original ones and

finding the Average similarity for the sub-class under inspection. This helps us to detect

this type of code smells precisely. In other hand, we used our threshold values to detect

Feature Envy methods. These values are calculated precisely and when we compared

them with actual needs they are acceptable values. The validation of our approach is

based on a Java project of 367 classes.

As a plan for our future work, we will work to detect more code smells and build a fully

automated tool for the analysis and detection processes. After such an implementation,

we will use more complex software for validation. Also, we plan to use other techniques

to find an accurate threshold values and compare the results with the current work.

For the detection of code smells we will investigate the ability to use machine learning

algorithms to detect types of code smell and compare the results with the current work.

66

Our goal is to cooperate with all researchers in this field all over the world to put

standard criteria in the detection of each code smell and build a standard tool able to

analyze, detect and refactor all code smells types in all object oriented programming

languages. Since the first definition of code smell types by Fowler in 1979 until now

there are no standard rules or unified tool to do that. We hope to integrate all these

offers and produce one global tool. That will help the developers to develop and

maintain their software projects in short time and with high quality. This is an important

mission in order to close the folder of such problems.

67

REFERENCES

[1] McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in Software

Quality: Concept and Definitions of Software Quality. Rome Air Development

Center, Air Force Systems Command, Griffiss Air Force Base, New York, 1(3).

[2] International Organization for Standardization, and International Electro

Technical Commission. (2001). Software Engineering-Product Quality: Quality

model. ISO/IEC 9126.1.

[3] Henry, S., Humphrey, M., and Lewis, J. (1990)."Evaluation of the

Maintainability of Object-Oriented Software". In Computer and Communication

Systems, 1990 IEEE Region 10 Conference on: pp. 404-409.

[4] Zou, Y. (2005). "Quality Driven Software Migration Of Procedural Code to

Object-Oriented Design. In Software Maintenance". ICSM'05. Proceedings of

the 21st IEEE International Conference: 709-713.

[5] Shalloway, A., Trott, J. (2004), Design Patterns Explained: A New Perspective

on Object-Oriented Design, 2nd edition, Addison-Wesley.

[6] Lanza, M. and Marinescu, R. (2007). Object-Oriented Metrics in Practice: Using

Software Metrics to Characterize, Evaluate, and Improve the Design of Object-

Oriented Systems. Springer.

[7] Abreu, F. B., and Melo, W. (1996). "Evaluating The Impact of Object-Oriented

Design on Software Quality". In Software Metrics Symposium, Proceedings of

the 3rd International: 90-99.

[8] Kumar, P., and Singh, S. K. (2016). "A Comprehensive Evaluation of Aspect-

Oriented Software Quality (AOSQ) Model Using Analytic Hierarchy Process

(AHP) Technique". In Advances in Computing, Communication, and

Automation (ICACCA)(Fall), International Conference: 1-7.

[9] Boehm, B. W., Brown, J. R., and Lipow, M. (1976)."Quantitative Evaluation of

Software Quality". In Proceedings of the 2nd international conference on

Software Engineering: 592-605.

[10] ISO25000, http://iso25000.com, access date: 24-07-2017 .

[11] Rodríguez, M., and Piattini, M. (2014). "Software Product Quality Evaluation

Using ISO/IEC 25000". ERCIM NEWS: 39-40.

[12] Shaik, A., Manda, B., Prakashini, C., Deepthi, K., and Reddy, C. R. K. (2010).

"Metrics for Object Oriented Design Software Systems: A Survey". Journal of

Emerging Trends in Engineering and Applied Sciences, 1(2): 190-198.

68

[13] Yadav, V., and Singh, R. (2012). "Validating Object Oriented Design Quality

Using Software Metrics". In at International Conference on Advances in

Electronics, Electrical and Computer Science Engineering-EEC.

[14] R.S.Pressman, (1997).Software Engineering-A Practioners Approach. Fourth

Edition, McGraw Hill International Edition.

[15] Sharma, A., and Dubey, S. K. (2012)."Comparison of Software Quality Metrics

for Object-Oriented Oriented System". IJCSMS International Journal of

Computer Science and Management Studies, 12: 2231 –5268.

[16] Albrecht, A. J., and Gaffney, J. E. (1983). "Software Function, Source Lines of

Code, and Development Effort Prediction: A Software Science Validation".

IEEE transactions on software engineering, (6): 639-648.

[17] DeMarco, T. (1978).Structured Analysis and System Specification, New York:

Yourdon.

[18] Myers, G. J. (1977). "An Extension to the Cyclomatic Measure of Program

Complexity". ACM Sigplan Notices, 12(10): 61-64.

[19] Henry, S., and Kafura, D. (1981). “Software Structure Metrics Based on

Information Flow". IEEE transactions on Software Engineering, (5): 510-518.

[20] Chidamber, S. R., and Kemerer, C. F. (1994). "A Metrics Suite for Object

Oriented Design". IEEE Transactions on software engineering, 20(6): 476-493.

[21] Fowler, M., and Beck, K. (1999). Refactoring: Improving the Design of Existing

Code, Addison-Wesley Professional.

[22] N. Moha, Y-G. Gueheneuc, L. Duchien, and A-F. Le Meur, (2010). "DECOR: A

Method for the Specification and Detection of Code and Design Smells", IEEE

Trans. Software Eng., 36(1): 20-36.

[23] Mens, T., and Tourwé, T. (2004). "A Survey of Software Refactoring", IEEE

Transaction on Software Engineering, 30(2): 126-139.

[24] Suryanarayana, G., Samarthyam, G., and Sharma, T. (2014). Refactoring for

Software Design Smells: Managing technical debt, Morgan Kaufmann.

[25] Mantyla, M., Vanhanen, J., & Lassenius, C. (2003)." A Taxonomy and an Initial

Empirical Study of Bad Smells in Code". In Software Maintenance, 2003. ICSM

2003. Proceedings. International Conference: 381-384.

[26] Vlissides, J., Helm, R., Johnson, R., and Gamma, E. (1995). Design patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, 49(120):11.

[27] Palomba, F., De Lucia, A., Bavota, G., and Oliveto, R. (2015)."Anti-Pattern

Detection: Methods, Challenges, and Open Issues". Advances in Computers,

95:201-238.

[28] Slinger, S. (2005)."Code Smell Detection in Eclipse". Delft University of

Technology. Netherlands.

[29] Marinescu, R. (2004)." Detection Strategies: Metrics-Based Rules for Detecting

Design Flaws". Software Maintenance Proceedings. 20th IEEE International

Conference: 350-359.

[30] Mihancea, P. F. (2006). "Towards A Client Driven Characterization of Class

Hierarchies". 14th IEEE International Conference: 285-294.

69

[31] Fard, A. M., and Mesbah, A. (2013)." JSNOSE: Detecting JavaScript Code

Smells". In Source Code Analysis and Manipulation (SCAM), IEEE 13th

International Working Conference: 116-125.

[32] Tourwé, T., and Mens, T. (2003)." Identifying Refactoring Opportunities Using

Logic Meta Programming". In Software Maintenance and Reengineering.

Proceedings. Seventh European Conference: 91-100.

[33] Ligu, E., Chatzigeorgiou, A., Chaikalis, T., and Ygeionomakis, N. (2013).

"Identification of Refused Bequest Code Smells". In Software Maintenance

(ICSM), 29th IEEE International Conference: 392-395.

[34] Tsantalis, N., and Chatzigeorgiou, A. (2009). "Identification of Move Method

Refactoring Opportunities". IEEE Transactions on Software Engineering, 35(3):

347-367.

[35] Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013). “Recommending

Move Method Refactorings Using Dependency Sets". In Reverse Engineering

(WCRE), 20th Working Conference: 232-241.

[36] Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., and De Lucia, A. (2011).

"Identifying Method Friendships to Remove the Feature Envy Bad Smell (NIER

track)". In Proceedings of the 33rd International Conference on Software

Engineering: 820-823.

[37] Dexun, J., Peijun, M., Xiaohong, S., and Tiantian, W. (2012). “Detecting Bad

Smells with Weight Based Distance Metrics Theory". In Instrumentation,

Measurement, Computer, Communication and Control (IMCCC), Second

International Conference: 299-304.

[38] Qualitas Corpus Index: Release (20130901):http://qualitascorpus.

com/docs/catalogue/20130901/corpus-catalogue-evolution.html, access date: 01-

04-2017.

[39] LOOSE Research Group website, http://www.loose.upt.ro/reengineering, access

date: 07-05-2017.

[40] Kan, S. H. (2002).Metrics and Models in Software Quality Engineering,

Addison-Wesley Longman Publishing.

[41] Bonja, C., and Kidanmariam, E. (2006). "Metrics for Class Cohesion and

Similarity Between Methods". In Proceedings of the 44th annual Southeast

regional conference: 91-95.

[42] Riel, A. J. (1996). Object-Oriented Design Heuristics, Addison-Wesley.

[43] Sweet Home 3D 4.0 releases. http://www.sweethome3d.com/, access date: 12-

08-2017.

[44] Sauer, F. (2013). Eclipse metrics plugin 1.3.6, http://metrics.sourceforge.net/.

Access date: 20-08-2017.

[45] Marinescu, C., Marinescu, R., Mihancea, P. F., and Wettel, R. (2005). “iPlasma:

An Integrated Platform for Quality Assessment of Object-Oriented Design". In

ICSM (Industrial and Tool Volume).

[46] Ptidej: Pattern Trace Identification, Detection, and Enhancement in Java,

http://www.ptidej.net/tools/. Access date: 28-10-2017.

70

[47] Concordia University, https://users.encs.concordia.ca/~nikolaos/jdeodorant/.

Access date: 07-10-2017.

71

APPENDIX-A

FULL PATH TABLES

The full path Tables of all methods mentioned in chapter 4 are listed in this appendix.

Table -1- Full path of our approach methods results

Method Name Full Path

addAreaSidesGeometry com.eteks.sweethome3d.j3d.Ground3D.addAreaSidesGeometry()

getAreaOnFloor com.eteks.sweethome3d.j3d.ModelManager.getAreaOnFloor()

updateView com.eteks.sweethome3d.swing.HomeComponent3D.updateView()

updateViewPlatformTransform com.eteks.sweethome3d.swing.HomeComponent3D.updateViewPlatformTransform()

updateWall com.eteks.sweethome3d.swing.HomeComponent3D.updateWall(l)

updateShininessRadioButtons com.eteks.sweethome3d.swing.HomeFurniturePanel.updateShininessRadioButtons()

propertyChange HomePane.FocusOwnerChangeListener.propertyChange()

paintRoomNameOffsetIndicator com.eteks.sweethome3d.swing.PlanComponent.paintRoomNameOffsetIndicator()

paintRoomAreaOffsetIndicator com.eteks.sweethome3d.swing.PlanComponent.paintRoomAreaOffsetIndicator()

paintWallsOutline com.eteks.sweethome3d.swing.PlanComponent.paintWallsOutline()

paintWallResizeIndicator com.eteks.sweethome3d.swing.PlanComponent.paintWallResizeIndicator()

paintPieceOFFurnitureIndicators com.eteks.sweethome3d.swing.PlanComponent.paintPieceOFFurnitureIndicators()

paintDimensionLineResizeIndicator com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineResizeIndicator()

paintLabels com.eteks.sweethome3d.swing.PlanComponent.paintLabels()

paintWallAlignmentFeedback com.eteks.sweethome3d.swing.PlanComponent.paintWallAlignmentFeedback()

equalsWallPoint com.eteks.sweethome3d.swing.PlanComponent.equalsWallPoint()

paintDimensionLineAlignmentFeedback com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineAlignmentFeedback()

equalsDimensionLinePoint com.eteks.sweethome3d.swing.PlanComponent.equalsDimensionLinePoint()

getPageFormat com.eteks.sweethome3d.swing.HomePrinTableComponent.getPageFormat()

getValueAt LevelPanel.LevelsTableModel.getValueAt()

createComponents com.eteks.sweethome3d.swing.PhotoSizeAndQualityPanel.createComponents()

createComponents com.eteks.sweethome3d.swing.RoomPanel.createComponents()

compareCameraLocation com.eteks.sweethome3d.swing.VideoPanel.compareCameraLocation()

getApplicationOrLibraryUpdateMessage com.eteks.sweethome3d.viewcontroller.HomeController.getApplicationOrLibraryUpdateMessage()

storeCamera com.eteks.sweethome3d.viewcontroller.HomeController3D.storeCamera()

alignPieceOfFurnitureAlongSides com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurnitureAlongSides()

72

Table -1- (cont'd)

doReverseWallsDirection com.eteks.sweethome3d.viewcontroller.PlanController.doReverseWallsDirection()

splitSelectedWall com.eteks.sweethome3d.viewcontroller.PlanController.splitSelectedWall()

getReferenceWall com.eteks.sweethome3d.viewcontroller.PlanController.getReferenceWall()

adjustPieceOfFurnitureSideBySideAt com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureSideBySideAt()

isIntersectionEmpty com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

isIntersectionEmpty com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

joinNewWallEndToWall com.eteks.sweethome3d.viewcontroller.PlanController.joinNewWallEndToWall()

getPieceOfFurnitureRotatedNameAt com.eteks.sweethome3d.viewcontroller.PlanController.getPieceOfFurnitureRotatedNameAt()

moveItems com.eteks.sweethome3d.viewcontroller.PlanController.moveItems()

moveWallStartPoint com.eteks.sweethome3d.viewcontroller.PlanController.moveWallStartPoint()

moveWallEndPoint com.eteks.sweethome3d.viewcontroller.PlanController.moveWallEndPoint()

reverseDimensionLine com.eteks.sweethome3d.viewcontroller.PlanController.reverseDimensionLine()

moveWallPoints com.eteks.sweethome3d.viewcontroller.WallController.moveWallPoints()

pressMouse PlanController.SelectionState.pressMouse()

setMode PlanController.PanningState.setMode()

setMode PlanController.WallDrawingState.setMode()

setMode PlanController.DimensionLineDrawingState.setMode()

enter PlanController.DimensionLineDrawingState.enter()

pressMouse PlanController.DimensionLineDrawingState.pressMouse()

setMode PlanController.RoomDrawingState.setMode()

equalsWallPoint PlanController.WallPointWithAngleMagnetism.equalsWallPoint()

setMode PlanController.AbstractModeChangeState.setMode()

getWallAngleInDegrees PlanController.AbstractWallState.getWallAngleInDegrees()

showWallAngleFeedback PlanController.AbstractWallState.showWallAngleFeedback()

73

Table -2- Full path of iPlasma methods results

Method Name Full Path

addAreaSidesGeometry com.eteks.sweethome3d.j3d.Ground3D.addAreaSidesGeometry()

getAreaOnFloor com.eteks.sweethome3d.j3d.ModelManager.getAreaOnFloor()

computeRoomBorderGeometry com.eteks.sweethome3d.j3d.Room3D.computeRoomBorderGeometry()

updateView com.eteks.sweethome3d.swing.HomeComponent3D.updateView()

updateViewPlatformTransform com.eteks.sweethome3d.swing.HomeComponent3D.updateViewPlatformTransform()

updateWall com.eteks.sweethome3d.swing.HomeComponent3D.updateWall()

addShadowOnFloor com.eteks.sweethome3d.swing.HomeComponent3D.addShadowOnFloor()

createActions com.eteks.sweethome3d.swing.HomePane.createActions()

createTransferHandlers com.eteks.sweethome3d.swing.HomePane.createTransferHandlers()

createImportModifyBackgroundImageAction com.eteks.sweethome3d.swing.HomePane.createImportModifyBackgroundImageAction()

createHideShowBackgroundImageAction com.eteks.sweethome3d.swing.HomePane.createHideShowBackgroundImageAction()

propertyChange FurnitureCatalogListPanel.PreferencesChangeListener.propertyChange()

getToolTipText com.eteks.sweethome3d.swing.FurnitureCatalogTree.getToolTipText()

moveCamera HomeComponent3D.CameraInterpolator.moveCamera()

computeTransform HomeComponent3D.CameraInterpolator.computeTransform()

updateShininessRadioButtons com.eteks.sweethome3d.swing.HomeFurniturePanel.updateShininessRadioButtons()

propertyChange HomePane.FocusOwnerChangeListener.propertyChange()

print com.eteks.sweethome3d.swing.PlanComponent.print()

paintRoomsNameAndArea com.eteks.sweethome3d.swing.PlanComponent.paintRoomsNameAndArea()

paintRoomNameOffsetIndicator com.eteks.sweethome3d.swing.PlanComponent.paintRoomNameOffsetIndicator()

paintRoomAreaOffsetIndicator com.eteks.sweethome3d.swing.PlanComponent.paintRoomAreaOffsetIndicator()

paintWallsOutline com.eteks.sweethome3d.swing.PlanComponent.paintWallsOutline()

paintWallResizeIndicator com.eteks.sweethome3d.swing.PlanComponent.paintWallResizeIndicator()

getWallAreas com.eteks.sweethome3d.swing.PlanComponent.getWallAreas()

getDoorOrWindowShapeAtWallIntersection com.eteks.sweethome3d.swing.PlanComponent.getDoorOrWindowShapeAtWallIntersection()

getDoorOrWindowSashShape com.eteks.sweethome3d.swing.PlanComponent.getDoorOrWindowSashShape()

paintFurnitureName com.eteks.sweethome3d.swing.PlanComponent.paintFurnitureName()

paintPieceOfFurnitureIcon com.eteks.sweethome3d.swing.PlanComponent.paintPieceOfFurnitureIcon()

paintPieceOFFurnitureIndicators com.eteks.sweethome3d.swing.PlanComponent.paintPieceOFFurnitureIndicators()

paintDimensionLines com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLines()

paintDimensionLineResizeIndicator com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineResizeIndicator()

paintLabels com.eteks.sweethome3d.swing.PlanComponent.paintLabels()

paintCompass com.eteks.sweethome3d.swing.PlanComponent.paintCompass()

paintCompassOutline com.eteks.sweethome3d.swing.PlanComponent.paintCompassOutline()

paintWallAlignmentFeedback com.eteks.sweethome3d.swing.PlanComponent.paintWallAlignmentFeedback()

equalsWallPoint com.eteks.sweethome3d.swing.PlanComponent.equalsWallPoint()

paintDimensionLineAlignmentFeedback com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineAlignmentFeedback()

equalsDimensionLinePoint com.eteks.sweethome3d.swing.PlanComponent.equalsDimensionLinePoint()

paintCamera com.eteks.sweethome3d.swing.PlanComponent.paintCamera()

getPageFormat com.eteks.sweethome3d.swing.HomePrinTableComponent.getPageFormat()

getValueAt LevelPanel.LevelsTableModel.getValueAt()

setMaterialAt ModelMaterialsPanel.MaterialsListModel.setMaterialAt()

createComponents com.eteks.sweethome3d.swing.PhotoSizeAndQualityPanel.createComponents()

showWallAngleFeedback PlanController.AbstractWallState.showWallAngleFeedback()

74

Table-2- (cont'd)

createComponents com.eteks.sweethome3d.swing.RoomPanel.createComponents()

collectionChanged TexturePanel.TexturesCatalogListener.collectionChanged()

createComponents com.eteks.sweethome3d.swing.UserPreferencesPanel.createComponents()

compareCameraLocation com.eteks.sweethome3d.swing.VideoPanel.compareCameraLocation()

getVideoFramesPath com.eteks.sweethome3d.swing.VideoPanel.getVideoFramesPath()

enableDefaultActions com.eteks.sweethome3d.viewcontroller.HomeController.enableDefaultActions()

addNotUndoableModificationListeners com.eteks.sweethome3d.viewcontroller.HomeController.addNotUndoableModificationListeners()

getApplicationOrLibraryUpdateMessage com.eteks.sweethome3d.viewcontroller.HomeController.getApplicationOrLibraryUpdateMessage()

updateProperties com.eteks.sweethome3d.viewcontroller.UserPreferencesController.updateProperties()

storeCamera com.eteks.sweethome3d.viewcontroller.HomeController3D.storeCamera(java.lang.String)

updateProperties com.eteks.sweethome3d.viewcontroller.CompassController.updateProperties()

alignFurnitureSideBySide com.eteks.sweethome3d.viewcontroller.FurnitureController.alignFurnitureSideBySide()

alignPieceOfFurnitureAlongSides com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurnitureAlongSides()

alignPieceOfFurnitureAlongLeftOrRightSides com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurnitureAlongLeftOrRightSides()

getPieceBoundingRectangleWidth com.eteks.sweethome3d.viewcontroller.FurnitureController.getPieceBoundingRectangleWidth()

getPieceBoundingRectangleHeight com.eteks.sweethome3d.viewcontroller.FurnitureController.getPieceBoundingRectangleHeight()

undoAlignFurniture com.eteks.sweethome3d.viewcontroller.FurnitureController.undoAlignFurniture()

updateProperties com.eteks.sweethome3d.viewcontroller.Home3DAttributesController.updateProperties()

doReverseWallsDirection com.eteks.sweethome3d.viewcontroller.PlanController.doReverseWallsDirection()

splitSelectedWall com.eteks.sweethome3d.viewcontroller.PlanController.splitSelectedWall()

getReferenceWall com.eteks.sweethome3d.viewcontroller.PlanController.getReferenceWall()

getDimensionLinesAlongWall com.eteks.sweethome3d.viewcontroller.PlanController.getDimensionLinesAlongWall()

adjustPieceOfFurnitureElevation com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureElevation()

adjustPieceOfFurnitureSideBySideAt com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureSideBySideAt()

isIntersectionEmpty com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

isIntersectionEmpty com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

joinNewWallEndToWall com.eteks.sweethome3d.viewcontroller.PlanController.joinNewWallEndToWall()

getRoomRotatedNameAt com.eteks.sweethome3d.viewcontroller.PlanController.getRoomRotatedNameAt()

getPieceOfFurnitureRotatedNameAt com.eteks.sweethome3d.viewcontroller.PlanController.getPieceOfFurnitureRotatedNameAt()

getRotatedLabelAt com.eteks.sweethome3d.viewcontroller.PlanController.getRotatedLabelAt()

moveItems com.eteks.sweethome3d.viewcontroller.PlanController.moveItems()

moveWallStartPoint com.eteks.sweethome3d.viewcontroller.PlanController.moveWallStartPoint()

moveWallEndPoint com.eteks.sweethome3d.viewcontroller.PlanController.moveWallEndPoint()

reverseDimensionLine com.eteks.sweethome3d.viewcontroller.PlanController.reverseDimensionLine()

doAddWalls com.eteks.sweethome3d.viewcontroller.PlanController.doAddWalls()

postPieceOfFurnitureMove com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureMove()

postWallResize com.eteks.sweethome3d.viewcontroller.PlanController.postWallResize()

postPieceOfFurnitureHeightResize com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureHeightResize()

postPieceOfFurnitureWidthAndDepthResize com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureWidthAndDepthResize()

postPieceOfFurnitureResize com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureResize()

postDimensionLineResize com.eteks.sweethome3d.viewcontroller.PlanController.postDimensionLineResize()

updateProperties com.eteks.sweethome3d.viewcontroller.LevelController.updateProperties()

updateProperties com.eteks.sweethome3d.viewcontroller.AbstractPhotoController.updateProperties()

moveWallPoints com.eteks.sweethome3d.viewcontroller.WallController.moveWallPoints()

75

Table-2- (cont'd)

moveCamera HomeController3D.ObserverCameraState.moveCamera()

updateAerialViewBounds HomeController3D.TopCameraState.updateAerialViewBounds()

enter PlanController.SelectionState.enter()

pressMouse PlanController.SelectionState.pressMouse()

toggleMagnetism PlanController.SelectionMoveState.toggleMagnetism()

enter PlanController.RectangleSelectionState.enter()

setMode PlanController.PanningState.setMode()

enter PlanController.DragAndDropState.enter()

toggleMagnetism PlanController.WallCreationState.toggleMagnetism()

setMode PlanController.WallDrawingState.setMode()

toggleMagnetism PlanController.WallDrawingState.toggleMagnetism()

toggleMagnetism PlanController.WallResizeState.toggleMagnetism()

enter PlanController.PieceOfFurnitureRotationState.enter()

toggleMagnetism PlanController.PieceOfFurnitureRotationState.toggleMagnetism()

enter PlanController.PieceOfFurnitureElevationState.enter()

moveMouse PlanController.PieceOfFurnitureElevationState.moveMouse()

toggleMagnetism PlanController.PieceOfFurnitureElevationState.toggleMagnetism()

enter PlanController.PieceOfFurnitureHeightState.enter()

toggleMagnetism PlanController.PieceOfFurnitureHeightState.toggleMagnetism()

enter PlanController.PieceOfFurnitureResizeState.enter()

toggleMagnetism PlanController.PieceOfFurnitureResizeState.toggleMagnetism()

enter PlanController.LightPowerModificationState.enter()

moveMouse PlanController.PieceOfFurnitureNameRotationState.moveMouse()

toggleMagnetism PlanController.PieceOfFurnitureNameRotationState.toggleMagnetism()

enter PlanController.CameraPitchRotationState.enter()

moveMouse PlanController.CameraPitchRotationState.moveMouse()

enter PlanController.CameraElevationState.enter()

toggleMagnetism PlanController.DimensionLineCreationState.toggleMagnetism()

setMode PlanController.DimensionLineDrawingState.setMode(e)

enter PlanController.DimensionLineDrawingState.enter()

pressMouse PlanController.DimensionLineDrawingState.pressMouse()

toggleMagnetism PlanController.DimensionLineDrawingState.toggleMagnetism()

enter PlanController.DimensionLineResizeState.enter()

toggleMagnetism PlanController.DimensionLineResizeState.toggleMagnetism()

moveMouse PlanController.DimensionLineOffsetState.moveMouse()

toggleMagnetism PlanController.RoomCreationState.toggleMagnetism()

setMode PlanController.RoomDrawingState.setMode()

toggleMagnetism PlanController.RoomDrawingState.toggleMagnetism()

toggleMagnetism PlanController.RoomResizeState.toggleMagnetism()

toggleMagnetism PlanController.RoomAreaRotationState.toggleMagnetism()

toggleMagnetism PlanController.RoomNameRotationState.toggleMagnetism()

toggleMagnetism PlanController.LabelRotationState.toggleMagnetism()

enter PlanController.CompassRotationState.enter()

enter PlanController.CompassResizeState.enter()

equalsWallPoint PlanController.WallPointWithAngleMagnetism.equalsWallPoint()

76

Table-2- (cont'd)

setMode PlanController.AbstractModeChangeState.setMode()

deleteSelection PlanController.AbstractModeChangeState.deleteSelection()

getWallAngleInDegrees PlanController.AbstractWallState.getWallAngleInDegrees()

77

Table -3- Full path of JDeodorant tool methods results

Method Name
Full Path

reverseDimensionLine() com.eteks.sweethome3d.viewcontroller.PlanController::reverseDimensionLine()

joinNewWallEndToWall() com.eteks.sweethome3d.viewcontroller.PlanController::joinNewWallEndToWall()

getDoorOrWindowShapeAtWallIntersection() com.eteks.sweethome3d.swing.PlanComponent::getDoorOrWindowShapeAtWallIntersection()

compareCameraLocation() com.eteks.sweethome3d.swing.VideoPanel::compareCameraLocation()

getDoorOrWindowSashShape() com.eteks.sweethome3d.swing.PlanComponent::getDoorOrWindowSashShape()

addSelectObjectMenuItems() com.eteks.sweethome3d.swing.HomePane::addSelectObjectMenuItems()

equalsWallPoint() com.eteks.sweethome3d.swing.PlanComponent::equalsWallPoint()

equalsDimensionLinePoint() com.eteks.sweethome3d.swing.PlanComponent::equalsDimensionLinePoint()

moveDimensionLinePoint() com.eteks.sweethome3d.viewcontroller.PlanController::moveDimensionLinePoint()

equalsWallPoint() com.eteks.sweethome3d.viewcontroller.PlanController.WallPointWithAngleMagnetism::equalsWallPoint()

getTextureCoordinates() com.eteks.sweethome3d.j3d.HomePieceOfFurniture3D::getTextureCoordinates()

getSunDirection() com.eteks.sweethome3d.j3d.PhotoRenderer::getSunDirection()

getPieceBoundingRectangleWidth() com.eteks.sweethome3d.viewcontroller.FurnitureController::getPieceBoundingRectangleWidth()

getPieceBoundingRectangleHeight() com.eteks.sweethome3d.viewcontroller.FurnitureController::getPieceBoundingRectangleHeight()

addAreaSidesGeometry() com.eteks.sweethome3d.j3d.Ground3D::addAreaSidesGeometry()

computeRoomBorderGeometry() com.eteks.sweethome3d.j3d.Room3D::computeRoomBorderGeometry()

getFurnitureComparator() com.eteks.sweethome3d.swing.FurnitureTable.FurnitureTreeTableModel::getFurnitureComparator()

toggleCameraSelection() com.eteks.sweethome3d.swing.PhotosPanel::toggleCameraSelection()

isPieceOfFurniturePartOfBasePlan() com.eteks.sweethome3d.viewcontroller.FurnitureController::isPieceOfFurniturePartOfBasePlan()

sortFurniture() com.eteks.sweethome3d.viewcontroller.FurnitureController::sortFurniture()

addComponent3DRenderingErrorObserver() com.eteks.sweethome3d.applet.ViewerHelper::addComponent3DRenderingErrorObserver()

getOptionalLocalizedString() com.eteks.sweethome3d.io.DefaultUserPreferences::getOptionalLocalizedString()

createNavigationPanel() com.eteks.sweethome3d.swing.HomeComponent3D::createNavigationPanel()

setPlanRulersVisible() com.eteks.sweethome3d.swing.HomePane::setPlanRulersVisible()

cloneHomeInEventDispatchThread() com.eteks.sweethome3d.swing.HomePane::cloneHomeInEventDispatchThread()

getOptionalString() com.eteks.sweethome3d.swing.ResourceAction::getOptionalString()

getTextures() com.eteks.sweethome3d.swing.TextureChoiceComponent.TexturePanel::getTextures()

getMinX() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMinX()

getMaxX() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMaxX()

getMinY() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMinY()

getMaxY() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMaxY()

getObserverCameraMinimumElevation() com.eteks.sweethome3d.viewcontroller.HomeController3D::getObserverCameraMinimumElevation()

getRoomSideLength() com.eteks.sweethome3d.viewcontroller.PlanController.AbstractRoomState::getRoomSideLength()

getRoomSideAngle() com.eteks.sweethome3d.viewcontroller.PlanController.AbstractRoomState::getRoomSideAngle()

getPaintedItems() com.eteks.sweethome3d.swing.PlanComponent::getPaintedItems()

isIntersectionEmpty() com.eteks.sweethome3d.viewcontroller.PlanController::isIntersectionEmpty()

moveHomeItemsToLevel() com.eteks.sweethome3d.viewcontroller.PlanController::moveHomeItemsToLevel()

getDimensionLineAngle() com.eteks.sweethome3d.viewcontroller.PlanController.DimensionLineResizeState::getDimensionLineAngle()

sortFurniture() com.eteks.sweethome3d.viewcontroller.FurnitureController::sortFurniture()

alignPieceOfFurnitureAlongLeftOrRightSides() com.eteks.sweethome3d.viewcontroller.FurnitureController::alignPieceOfFurnitureAlongLeftOrRightSides()

updateOpenRecentHomeMenu() com.eteks.sweethome3d.swing.HomePane::updateOpenRecentHomeMenu()

78

Table -3- (cont'd)

doAddFurniture() com.eteks.sweethome3d.viewcontroller.FurnitureController::doAddFurniture()

doToggleBackgroundImageVisibility() com.eteks.sweethome3d.viewcontroller.HomeController::doToggleBackgroundImageVisibility()

storeCamera(java.lang.String) com.eteks.sweethome3d.viewcontroller.HomeController3D::storeCamera(java.lang.String)

isPieceOfFurnitureVisibleAtSelectedLev

el() com.eteks.sweethome3d.viewcontroller.PlanController::isPieceOfFurnitureVisibleAtSelectedLevel()

getDetecTableRoomsAtSelectedLevel() com.eteks.sweethome3d.viewcontroller.PlanController::getDetecTableRoomsAtSelectedLevel()

getDetecTableWallsAtSelectedLevel() com.eteks.sweethome3d.viewcontroller.PlanController::getDetecTableWallsAtSelectedLevel()

postPieceOfFurnitureWidthAndDepthRe

size() com.eteks.sweethome3d.viewcontroller.PlanController::postPieceOfFurnitureWidthAndDepthResize()

selectLevelFromSelectedItems() com.eteks.sweethome3d.viewcontroller.PlanController::selectLevelFromSelectedItems()

computeRoomPartGeometry() com.eteks.sweethome3d.j3d.Room3D::computeRoomPartGeometry()

getHeaderRenderer() com.eteks.sweethome3d.swing.FurnitureTable.FurnitureTableColumnModel::getHeaderRenderer()

createLockUnlockBasePlanButton() com.eteks.sweethome3d.swing.HomePane::createLockUnlockBasePlanButton()

addColorListener()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel.AbstractModelPreviewComponent::addCol

orListener()

addIconYawListener()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel.AbstractModelPreviewComponent::addIco

nYawListener()

savePhoto() com.eteks.sweethome3d.swing.PhotosPanel::savePhoto()

deleteLastRecordedCameraLocation() com.eteks.sweethome3d.swing.VideoPanel::deleteLastRecordedCameraLocation()

doDeleteFurniture() com.eteks.sweethome3d.viewcontroller.FurnitureController::doDeleteFurniture()

toggleFurnitureSort() com.eteks.sweethome3d.viewcontroller.FurnitureController::toggleFurnitureSort()

toggleFurnitureVisibleProperty() com.eteks.sweethome3d.viewcontroller.FurnitureController::toggleFurnitureVisibleProperty()

writePreferences() com.eteks.sweethome3d.viewcontroller.HomeController.UserPreferencesChangeListener::writePreferences()

deleteCameras() com.eteks.sweethome3d.viewcontroller.HomeController3D::deleteCameras()

doAddWalls() com.eteks.sweethome3d.viewcontroller.PlanController::doAddWalls()

doDeleteWalls() com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteWalls()

doAddRooms() com.eteks.sweethome3d.viewcontroller.PlanController::doAddRooms()

doDeleteRooms() com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteRooms()

doAddDimensionLines() com.eteks.sweethome3d.viewcontroller.PlanController::doAddDimensionLines()

doDeleteDimensionLines() com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteDimensionLines()

doAddLabels() com.eteks.sweethome3d.viewcontroller.PlanController::doAddLabels()

doDeleteLabels() com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteLabels()

postPieceOfFurnitureHeightResize() com.eteks.sweethome3d.viewcontroller.PlanController::postPieceOfFurnitureHeightResize()

paintRoomAreaOffsetIndicator() com.eteks.sweethome3d.swing.PlanComponent::paintRoomAreaOffsetIndicator()

paintRoomNameOffsetIndicator() com.eteks.sweethome3d.swing.PlanComponent::paintRoomNameOffsetIndicator()

getAreaOnFloor() com.eteks.sweethome3d.j3d.ModelManager::getAreaOnFloor()

getVisibleItemsAtSelectedLevel() com.eteks.sweethome3d.viewcontroller.PlanController::getVisibleItemsAtSelectedLevel()

doDeleteItems() com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteItems()

addSizeListeners()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel.AbstractModelPreviewComponent::addSiz

eListeners()

updateViewPlatformTransform() com.eteks.sweethome3d.swing.HomeComponent3D::updateViewPlatformTransform()

goToCamera() com.eteks.sweethome3d.viewcontroller.HomeController3D::goToCamera()

updateView() com.eteks.sweethome3d.swing.HomeComponent3D::updateView()

alignFurnitureSideBySide() com.eteks.sweethome3d.viewcontroller.FurnitureController::alignFurnitureSideBySide()

alignPieceOfFurnitureAlongSides() com.eteks.sweethome3d.viewcontroller.FurnitureController::alignPieceOfFurnitureAlongSides()

addRooms() com.eteks.sweethome3d.viewcontroller.PlanController::addRooms()

createWall() com.eteks.sweethome3d.viewcontroller.PlanController::createWall()

selectItems() com.eteks.sweethome3d.viewcontroller.PlanController::selectItems()

79

Table -3- (cont'd)

addWalls() com.eteks.sweethome3d.viewcontroller.PlanController::addWalls()

addDimensionLines() com.eteks.sweethome3d.viewcontroller.PlanController::addDimensionLines()

addLabels() com.eteks.sweethome3d.viewcontroller.PlanController::addLabels()

80

APPENDIX-B

CODE LISTING

In this part of the thesis we are listing the actual code of the methods under the test.

These methods are indicated as Feature Envy instances by our approach and explained

in chapter 4 section 2.

private void addAreaSidesGeometry(Shape3D groundShape,

 HomeTexture groundTexture,

 float [][] areaPoints,

 float elevation,

 float sideHeight) {

Point3f [] geometryCoords = new Point3f [areaPoints.length * 4];

int [] stripCounts = new int [areaPoints.length];

int [] contourCounts = new int [stripCounts.length];

TexCoord2f [] geometryTextureCoords = groundTexture != null

? new TexCoord2f [geometryCoords.length]

: null;

Arrays.fill(stripCounts, 4);

Arrays.fill(contourCounts, 1);

for (int i = 0, j = 0; i < areaPoints.length; i++) {

float [] point = areaPoints [i];

float [] nextPoint = areaPoints [i < areaPoints.length - 1 ? i +
1 : 0];

geometryCoords [j++] = new Point3f(point [0], elevation, point
[1]);

geometryCoords [j++] = new Point3f(point [0], elevation +
sideHeight, point [1]);

81

geometryCoords [j++] = new Point3f(nextPoint [0], elevation +
sideHeight, nextPoint [1]);

geometryCoords [j++] = new Point3f(nextPoint [0], elevation,
nextPoint [1]);

if (groundTexture != null) {

float distance = (float)Point2D.distance(point [0], point [1],
nextPoint [0], nextPoint [1]);

geometryTextureCoords [j - 4] = new TexCoord2f(point [0] /
groundTexture.getWidth(), elevation /
groundTexture.getHeight());

geometryTextureCoords [j - 3] = new TexCoord2f(point [0] /
groundTexture.getWidth(), (elevation + sideHeight) /
groundTexture.getHeight());

geometryTextureCoords [j - 2] = new TexCoord2f((point [0] -
distance) / groundTexture.getWidth(), (elevation + sideHeight) /
groundTexture.getHeight());

geometryTextureCoords [j - 1] = new TexCoord2f((point [0] -
distance) / groundTexture.getWidth(), elevation /
groundTexture.getHeight());

}

}

private void updateViewPlatformTransform(TransformGroup
viewPlatformTransform,Camera camera,boolean updateWithAnimation
) {

if (updateWithAnimation) {

// Get the camera interpolator

CameraInterpolator cameraInterpolator =
(CameraInterpolator)viewPlatformTransform.getChild(viewPlatformT
ransform.numChildren() - 1);

cameraInterpolator.moveCamera(camera);

} else {

Transform3D transform = new Transform3D();

updateViewPlatformTransform(transform, camera.getX(),
camera.getY(),

camera.getZ(), camera.getYaw(), camera.getPitch());

viewPlatformTransform.setTransform(transform);

}

clearPrintedImageCache();

}

82

private HomePieceOfFurniture
adjustPieceOfFurnitureSideBySideAt(HomePieceOfFurniture piece,

boolean forceOrientation, Wall magnetWall) {

float [][] piecePoints = piece.getPoints();

Area pieceArea = new Area(getPath(piecePoints));

boolean doorOrWindowBoundToWall = piece instanceof
HomeDoorOrWindow && ((HomeDoorOrWindow)piece).isBoundToWall();

float pieceElevation = piece.getGroundElevation();

float margin = 2 * PIXEL_MARGIN / getScale();

BasicStroke stroke = new BasicStroke(margin);

HomePieceOfFurniture referencePiece = null;

Area intersectionWithReferencePieceArea = null;

float intersectionWithReferencePieceSurface = 0;

float [][] referencePiecePoints = null;

for (HomePieceOfFurniture homePiece : this.home.getFurniture())
{

float homePieceElevation = homePiece.getGroundElevation();

if (homePiece != piece &&
isPieceOfFurnitureVisibleAtSelectedLevel(homePiece)

&& pieceElevation < homePieceElevation + homePiece.getHeight()

&& pieceElevation + piece.getHeight() > homePieceElevation

&& (!doorOrWindowBoundToWall

// Ignore other furniture for doors and windows bound to a wall

|| homePiece.isDoorOrWindow())) {

float [][] points = homePiece.getPoints();

GeneralPath path = getPath(points);

Area marginArea;

if (doorOrWindowBoundToWall && homePiece.isDoorOrWindow()) {

marginArea = new Area(stroke.createStrokedShape(new
Line2D.Float(points [1][0], points [1][1], points [2][0],
points [2][1])));

marginArea.add(new Area(stroke.createStrokedShape(new
Line2D.Float(points [3][0], points [3][1], points [0][0], points
[0][1]))));

} else { marginArea =
this.furnitureSidesCache.get(homePiece);

if (marginArea == null) {

83

marginArea = new Area(stroke.createStrokedShape(path));

this.furnitureSidesCache.put(homePiece, marginArea);

} }

Area intersection = new Area(marginArea);

intersection.intersect(pieceArea);

if (!intersection.isEmpty()) {

Area exclusiveOr = new Area(pieceArea);

exclusiveOr.exclusiveOr(intersection);

if (exclusiveOr.isSingular()) {

Area insideArea = new Area(path);

insideArea.subtract(marginArea);

insideArea.intersect(pieceArea);

if (insideArea.isEmpty()) {

float surface = getArea(intersection);

if (surface > intersectionWithReferencePieceSurface) {

intersectionWithReferencePieceSurface = surface;

referencePiece = homePiece;

referencePiecePoints = points;

intersectionWithReferencePieceArea = intersection;

}

}

}

}

}

}

if (referencePiece != null) {

boolean alignedOnReferencePieceFrontOrBackSide;

if (doorOrWindowBoundToWall && referencePiece.isDoorOrWindow())
{

alignedOnReferencePieceFrontOrBackSide = false;

 }

 else

{

GeneralPath referencePieceLargerBoundingBox =
getRotatedRectangle(referenePiece.getX() -
referencePiece.getWidth(),

84

referencePiece.getY() - referencePiece.getDepth(),
referencePiece.getWidth() * 2, referencePiece.getDepth() *
2,referencePiece.getAngle());

float [][] pathPoints =
getPathPoints(referencePieceLargerBoundingBox, false);

alignedOnReferencePieceFrontOrBackSide =
isAreaLargerOnFrontOrBackSide(intersectionWithReferencePieceArea
, pathPoints);

}

if (forceOrientation)

{

piece.setAngle(referencePiece.getAngle());

}

Shape pieceBoundingBox = getRotatedRectangle(0, 0,
piece.getWidth(), piece.getDepth(), piece.getAngle() -
referencePiece.getAngle());

float deltaX = 0; float deltaY = 0;

if (!alignedOnReferencePieceFrontOrBackSide) {

Line2D centerLine = new Line2D.Float(referencePiece.getX(),
referencePiece.getY(), (referencePiecePoints [0][0] +
referencePiecePoints [1][0]) / 2, (referencePiecePoints [0][1] +
referencePiecePoints [1][1]) / 2);

double rotatedBoundingBoxWidth =
pieceBoundingBox.getBounds2D().getWidth();

double distance = centerLine.relativeCCW(piece.getX(),
piece.getY())* (-referencePiece.getWidth() / 2 +
centerLine.ptLineDist(piece.getX(), piece.getY()) -
rotatedBoundingBoxWidth / 2);

deltaX = (float)(distance *
Math.cos(referencePiece.getAngle()));

deltaY = (float)(distance *
Math.sin(referencePiece.getAngle()));

}

else

{

Line2D centerLine = new Line2D.Float(referencePiece.getX(),
referencePiece.getY(),

(referencePiecePoints [2][0] + referencePiecePoints [1][0]) / 2,
(referencePiecePoints [2][1] + referencePiecePoints [1][1]) /
2);

85

double rotatedBoundingBoxDepth =
pieceBoundingBox.getBounds2D().getHeight();

double distance = centerLine.relativeCCW(piece.getX(),
piece.getY())* (-referencePiece.getDepth() / 2 +
centerLine.ptLineDist(piece.getX(), piece.getY()) -
rotatedBoundingBoxDepth / 2);

deltaX = (float)(-distance *
Math.sin(referencePiece.getAngle()));

deltaY = (float)(distance *
Math.cos(referencePiece.getAngle()));

if (!isIntersectionEmpty(piece, magnetWall, deltaX, deltaY)) {

deltaX = deltaY = 0;

}

}

if (!isIntersectionEmpty(piece, referencePiece, deltaX, deltaY))
{

piece.move(deltaX, deltaY);

return referencePiece;

} else

{

if (forceOrientation)

{ piecePoints = piece.getPoints(); }

boolean alignedOnPieceFrontOrBackSide =
isAreaLargerOnFrontOrBackSide(intersectionWithReferencePieceArea
, piecePoints);

Shape referencePieceBoundingBox = getRotatedRectangle(0, 0,
referencePiece.getWidth(), referencePiece.getDepth(),
referencePiece.getAngle() - piece.getAngle());

if (!alignedOnPieceFrontOrBackSide) {

// Search the distance required to align piece on its left or
right side

Line2D centerLine = new Line2D.Float(piece.getX(), piece.getY(),

(piecePoints [0][0] + piecePoints [1][0]) / 2, (piecePoints
[0][1] + piecePoints [1][1]) / 2);

double rotatedBoundingBoxWidth =
referencePieceBoundingBox.getBounds2D().getWidth();

double distance = centerLine.relativeCCW(referencePiece.getX(),
referencePiece.getY())* (-piece.getWidth() / 2 +
centerLine.ptLineDist(referencePiece.getX(),
referencePiece.getY()) - rotatedBoundingBoxWidth / 2);

86

deltaX = -(float)(distance * Math.cos(piece.getAngle()));

deltaY = -(float)(distance * Math.sin(piece.getAngle()));

} else

{

Line2D centerLine = new Line2D.Float(piece.getX(), piece.getY(),

(piecePoints [2][0] + piecePoints [1][0]) / 2, (piecePoints
[2][1] + piecePoints [1][1]) / 2);

double rotatedBoundingBoxDepth =
referencePieceBoundingBox.getBounds2D().getHeight();

double distance = centerLine.relativeCCW(referencePiece.getX(),
referencePiece.getY())* (-piece.getDepth() / 2 +
centerLine.ptLineDist(referencePiece.getX(),
referencePiece.getY()) - rotatedBoundingBoxDepth / 2);

deltaX = -(float)(-distance * Math.sin(piece.getAngle()));

deltaY = -(float)(distance * Math.cos(piece.getAngle()));

if (!isIntersectionEmpty(piece, magnetWall, deltaX, deltaY)) {

deltaX = deltaY = 0; } }

if (!isIntersectionEmpty(piece, referencePiece, deltaX, deltaY))
{

piece.move(deltaX, deltaY); return referencePiece; } }
return referencePiece; }

return null; }

87

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Baydaa MERZAH

Date of birth and place : 4
th

 of July 1982- Baghdad

Foreign Languages : English , Turkish

E-mail : baidaamuhammed@gmail.com

EDUCATION

Degree Department University Date of

Graduation

Undergraduate Computer science University of Baghdad 2004

High School Scientific department Al-Faroq High School for girls 2000

WORK EXPERIENCE

Year Corporation/Institute Enrollment

2008- continue Al-Nahrain University 2008

88

PUBLISHMENTS

Conference Papers

1.
Merzah.B, Selcuk Y. "Metric Based Detection of Refused Bequest

Code Smell". (2017). 9th International Conference on Computational

Intelligence and Communication Networks (CICN 2017), IEEE.

