GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

DECEMBER, 2017

REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE
EFFECTS ON SOFTWARE QUALITY

BAYDAA M. MERZAH

MSc. THESIS
DEPARTMENT OF COMPUTER ENGINEERING
PROGRAM OF COMPUTER ENGINEERING

ADVISER
ASSIST.PROF. DR. YUNUS EMRE SELCUK

ISTANBUL, 2017

REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE
EFFECTS ON SOFTWARE QUALITY

A thesis submitted by Baydaa M. MERZAH in partial fulfillment of the requirements
for the degree of MASTER OF SCIENCE is approved by the committee on
01.12.2017 in Department of Computer Engineering.

Thesis Adviser
Assist.Prof.Dr. Yunus SELCUK
Yildiz Technical University

Approved By the Examining Committee
Assist.Prof.Dr. Yunus SELCUK
Yildiz Technical University

Assist.Prof.Dr. Mehmet S. AKTAS, Member
Yildiz Technical University

Prof.Dr. Selim AKYOKUS, Member

Istanbul University

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Assistant Professor Yunus Emre SELCUK for
his support and encouragement during this research. This thesis would not have been
completed without his invaluable guidance and help.

| appreciate the love, caring and support of my parents for their unlimited support and
their prayer for me to achieve my goals in the life.

My husband Ammar deserves special thanks for his sensible encouragements, precious
support and endless love. He supported me in all stages of my research and my life.

| would like to thank my brother and sisters all my family members for supporting me
spiritually throughout writing this thesis and my life in general.

Last but not the least; | take this opportunity to express gratitude to Al-Nahrain
University specially my college for their financial support.

December, 2017

Baydaa M. MERZAH

TABLE OF CONTENTS

Page
LIST OF SYMBOLS ...ttt bbbt vii
LIST OF ABBREVIATIONS.......c.ooiiiiiiitsesie ettt e nneas viii
LIST OF FIGURES ..ottt sttt nennennaens iX
LIST OF TABLESottt st neara e ene e e X
ABSTRACT ..ttt bbbttt bbb b b r et b bbb reanes Xi
OZET v . A A MR ... xiii
CHAPTER 1
INTRODUCTION ...ttt sttt et e s e saesaesnennesreanaeneeneenns 1
1.1 Literatural REVIBWccocouiiiiiiee et 1
1.2 Objective 0f the ThESISccviiiiicc e 2
1.3 HYPOTNESIS ..o 3
CHAPTER 2
GENERAL REVIEW ...ttt sna e 4
2.1 Software QUAIITYcoorviiiiiii e 4
2.1.1 Quality MOEIS ..o 4
2.1.2 QUALIEY IMELIICS ..o 10
2.2 C00E SIMEIIS ... et 15
2.2.1 RefuSed BEOUESLocveieieiiiicieie et 17
2.2.2 FEAUIE ENVY ..ot 19
CHAPTER 3
MATRIALS AND METHODSooit ittt 21
T80 |V 1=11 o o (] [0 | USSR 21
3.2 DeteCtion APPrOACKcuiiieiiieie ettt e 23
3.3 Attributes of The TeSt COURcooviiiiiiiiriiieee e 27
3.4 Tools Used During The Analysis ProCesscccuereriienieenennesen e 29

CHAPTER 4

RESULTS AND DISCUSSION. ...t 33
4.1 Refused Bequest Results and DiSCUSSION...........cccvvieeeeiierienienieneneesieeeens 33
4.2 Feature Envy Results and DiSCUSSION.........ccceveiieiverieiieseesie e see e e 54
4.3 General DISCUSSIONccueiieiieiisiesteeie st stee et sae e sae e snes 61

CHAPTER 5

CONCLUSION AND FUTURE WORKcoiiiiiieiisiese e 65

REFERENGCES ...ttt sttt ettt reena e e e e e 67

APPENDIX-A

FULL PATH TABLES. ...t 71

APPENDIX-B

CODE LISTING ..ot itteieieiteite ettt sttt tesresteeneenaeneeneenes 80

CURRICULUM VITAE ...ttt st be bbb 87

Vi

LIST OF SYMBOLS

C @& DO

Intersection
Mean
Standard deviation

Union

vii

LIST OF ABBREVIATIONS

ACCO Average Cyclomatic Complexity of Overridden Methods

ASM Average Similarity between Methods
ATFD Access to Foreign Data Metric
BOVR Base class Overriding Ratio

C Complexity of the program

CcC Cyclomatic Complexity

E Number of edges (transfer of control)
fan-in Local information flow input

fan-out Local information flow output

FDP Foreign Data Provider

GoF Gang of Four

i intersection

v Instance Variables

L Length of the procedure

LAA Locality of Attribute Access

N Number of nodes

P Number of disconnected parts of the flow
RS Response set

SIV Set of Instance Variables

LIST OF FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Page
Categorization of software quality modelsccccocoeviiiiiiiiiciicicce, 5
McCall’s qQUALItY TACTOTS ...ouviiiveiiieiiiiesiee e 6
Detailed hierarchy of McCall’s quality model............cccooiiiiiiiiiiiiinnnnnn, 7
Boehm’s quality model charaCteristiCs..........coovvveieienenciensieeeeeee 8
ISO 25000 SEIES....c.viveviiiiirieiieiieie e ste sttt st sbe e ne e es 9
IMIBETTCS TYPES vttt 10
Object oriented MELFICSccveiieeieeiecee e 11
General causes of COdE SMEIIS.........cooiiiiiiiiieeee e 15
Proposed method of detecting refused bequest instancesc.c....... 25
Proposed method of detecting feature envy instances.........ccccccocevveeenne. 27
DeSIgN EXAMPIES.....ccveeiiiieiicse et ere s 28
Internal structure of the IPIasma............ccccooviiiiiieiii e 29
INSIDER’S front-BN0cooiiiiieiiie ettt re e 30
Selecting the Class GroUPcoviiiieiieese e 30
Selecting the Methods groupccccveveeiicc i 31
Inheritance trees in the tested COOE..........ccoovriiiiiiiiii e 31
Metrics obtained by metrics 1.3.6 plugin.........cccccoeviiieiievecc e, 32
Dependency graph VIBWcoeiiiiiiienincneeeeeee e 32
Case-1- Class DIagramcccccveieeiieiieieeie e sre et 47
Case-2- Class DIagram.......ccceiureririerieniesie sttt 48
Case-3- Class DIagramMcccveiieiiieeiie et 48
Case-4- Class DIagram.........ccuureeieiieieniesie st 49
Case-5- Class DIagramMccccveviriieeiiie e 50
Relation between ATFD and LAA MEtriCS......cccovvverineieieniseseeieees 54

LIST OF TABLES

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9
Table 4.10
Table 4.11
Table 4.12
Table 4.13
Table 4.14
Table 4.15
Table 4.16
Table 4.17
Table 4.18
Table 4.19
Table 4.20
Table 4.21
Table 4.22
Table 4.23
Table 4.24
Table 4.25

Page
Software Projects traiNing STcoevererereresieeee e 22
Metrics’ threshold values...........cccceoiiiiiii i 25
Metrics’ threshold ValUues..........cooiviviiiiiiiiii e 27
General attributes of sweet home 4.0 SOftware..........ccocoeceverviinenieiinnnenn, 28
Metrics Of eaCh hIEFarChyccocoieiiiiiiiii e 34
Original and Given Names of the ClassesSccccceveiiieiievecie e, 38
Similarity between methods for hierarchy 2..........cccocooeiiiiiiiiiiiee 38
Similarity between Methods for Hierarchy 7cccoooevveviieieeiecen, 38
Similarity between Methods for Hierarchy 13ccooiiiiiinininienn 38
Similarity between Methods for Hierarchy 18cccccoveviiieiiciicienen, 39
Similarity between Methods for Hierarchy 19cccccoooeiiiiiiniiiiicn 39
Similarity between Methods for Hierarchy 20ccccooveviiieieciecienen, 39
Similarity between Methods for Hierarchy 22cccocoviiininnicnnn 40
Similarity between Methods for Hierarchy 23cccooveiiiieieciecee, 40
Similarity between Methods for Hierarchy 25-C39ccccoovviivicnnnn 40
Similarity between Methods for Hierarchy 25-C41cccoevveiveienen, 41
Similarity between Methods for Hierarchy 25-C40ccccoovvviiiiennn 41
Similarity between Methods for Hierarchy 27ccccooveiiiieiiececennn, 42
Similarity between Methods for Hierarchy 29-C47, 48, 49, 50 42
Similarity between Methods for Hierarchy 30cccoooveviiieciececenen, 43
ASIM MELIIC CASES ..vveveeiieieeiiesieeie e stee e ereesreeee e sreeeesreesreeneeeneesreeeennes 43
Metrics Values of the Hierarchies ..., 44
Refused Bequest Candidate Classesccevvreeiverieiiieneerir e seeee e, 46
Number of detected instances in €ach toolcccceveveiiiiiiiiiiccee, 50
Results of different toolS..........ooveiiiiiii 51
RESUILS OF FEALUIE ENVY ..ot 52
Number of detected cases in each toolccoveieiiiiii i, 54
Results of different t00IS.........c.ccovevveiiiece e 52
Correlation DEtWEEN MELFICSeivveiieiiiie e 55

ABSTRACT

AUTOMATIC DETECTION OF CODE CAUSING NEGATIVE
EFFECTS ON SOFTWARE QUALITY

Baydaa M. MERZAH

Department of Computer Engineering

MSc. Thesis

Adviser: Assist.Prof. Dr. Yunus SELCUK

The quality of IT software systems outlined by how well it has been designed from the
internal and external points of view, also by how well the prerequisites have been met .
Ease of developing and maintenance are the targeted factors that ensure successful
completion and continuous use. From Steve McCall’s perspective[1], software quality
characteristics can be categorized for: External and Internal factors .The external quality
factors such as reliability, correctness, accuracy, reusability and integrity concern the
end user. The external software quality isn’t mentioned in this study. The most reveal
factors of internal software quality are maintainability, re-usability, flexibility and
testability. These factors concern the developers and they ease development and
maintenance also.

However, they are affected negativly by bad coding styles in the source code that is
known as Code Smells. One of the important princepals in object orienred
programming is to build classes with high cohesion and losely coupled. This principle
can be violated by one type of code smells known as Feature Envy. In the same context
of object-oriented programming, the concept of inheritance has been known as a key
feature proposed to increase the amount of software reusability. However, using
inheritance is not always the best solution, particularly if it is utilized in improper cases
where other types of relationships would be more appropriate. One of the particular
issues that violate inheritance principles is the Refused Bequest code smell.These
design smells can be detected by expert developers and when they are detected, it is

very important to refactor them to bring up with a better coding design that improves
the system’s code quality.

Manually searching for code smells in a large code base will take a significant amount

of time. Software metrics gives a clear view of the tested software status.Metric based
detection technique eases the detection task. Even new developers will have the ability
to analyze and detect code flaws automatically without the need for an experts. Metrics
values have the important role in modern developing procedures. Therefore automatic
detection of code smells can be done in reasonable time and effort. And consecuently
reflects on the software quality.

This study aims to detect some types of code smells in Java code. We have used object
oriented metrics, static code analysis techniques to detect the code smells.

Keywords: software quality, code smells, refused bequest, feature envy, object oriented
metrics, similarity between methods

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OZET

YAZILIM KALITESI UZERINDE OLUMSUZ ETKIiLERE NEDEN
OLAN OTOMATIK KOD ALGILAMA

Baydaa M. MERZAH

Bilgisayar Miihendisligi Anabilim Dal1

Yilksek Lisans Tezi

Tez Danigsmant: Yrd.Dog.Dr. Yunus SELCUK

BT yazilim sistemlerinin kalitesi, ana hatlar1 ile i¢ ve dis bakis agilarina gore ne kadar
1yi tasarlandigina ve 6n kosullarin ne derece iyi karsilandigina bagli olarak belirtilir.
Yazilim sisteminin gelistirilmesinin ve bakimmin kolay olusu, basarili bir sekilde
tamamlanmasini ve siirekli kullanilmasini saglayan hedef faktorlerdir. Steve McCall'in
bakis agisma gore [1], yazilhim kalite dzellikleri Dis ve I¢ Faktorler icin kategorize
edilebilir: Giivenilirlik, dogruluk, kesinlik, tekrar kullanilabilirlik ve biitlinliik gibi dig
kalite faktorleri son kullaniciyr ilgilendirir. Bu ¢aligmada dis yazilim kalitesinden s6z
edilmemektedir. I¢ yazilim kalitesinin en acik gostergeleri, siirdiiriilebilirlik, yeniden
kullanilabilirlik, esneklik ve test edilebilirliktir. Bu faktorler gelistiricileri ilgilendirir ve
gelistirme ve bakim islemlerini de kolaylastirirlar ancak Kod Kokular1 olarak bilinen
kaynak kodundaki kotii kodlama stilleri tarafindan olumsuz etkilenirler.

Nesneye yonelik programlamadaki onemli ilkelerden biri, yiiksek uyum ve diistik
baglasima sahip smiflar olusturmaktir. Bu ilke, Feature Envy olarak bilinen bir kod
kokusu tarafindan ihlal edilebilir. Nesneye yonelik programlamada kalittm kavrami,
yazilimin tekrar kullanilabilirligini artirmak igin Onerilen 6nemli bir Ozellik olarak
bilinmektedir. Bununla birlikte, kalitimin kullanilmasi her zaman en iyi ¢6ziim degildir,
ozellikle de diger tiirdeki iliskilerin daha uygun olacagi durumlarda kullanilirsa. Kalitim
ilkelerini ihlal eden kod kokularindan biri de Refused Bequest kod kokusudur. Bu

Xiii

tasarim kokular1 uzman gelistiriciler tarafindan tespit edilebilir ve tespit edildiklerinde,
sistemin kod kalitesini gelistiren daha iyi bir kodlama tasarimiyla yeniden
yapilandirilmalar1 ¢ok énemlidir.

Biiyiik bir kod tabaninda kod kokularinin manuel arastirilmas: 6nemli dlgiide zaman
alacaktir. Yazilim oOlgiitleri, test edilen yazilim durumunun net bir goriiniimiinii verir.
Metrik tabanli algilama teknikleri algilama gorevini kolaylastirir. Boylece yeni
gelistiriciler bile, bir uzmana ihtiya¢c duymadan kod kusurlarini otomatik olarak analiz
ve tespit etme yetenegine sahip olacaklardir. Metrik degerlerinin modern gelistirme
prosediirlerinde onemli bir yeri vardir. Bu nedenle, kod kokularinin otomatik
algilanmasi makul zaman ve ¢abayla yapilabilir.

Bu calisma yukarida belirtilen kod kokulariin Java kodunda tespit edilmesini
amaglamaktadir. Refused Bequest ve Feature Envy kod kokularini algilamak igin
nesneye yonelik metrikleri ve statik kod analiz teknikleri kullanilmustir. ilgili metrikler
agirliklandirilarak kullanilmistir.

Anahtar Kelimeler: Yazilim kalitesi, kod Kusurlari, Refused Bequest, metodlar
arasinda benzerlik , Feature Envy, nesne dayali 6lglimleri.

YILDIZ TEKNIK UNIiVERSITESI FEN BILIMLERI ENSTITUSU

Xiv

CHAPTER 1

INTRODUCTION

1.1 Literature Review

The production of high quality software within short time and reasonable cost is a major
aim of software engineering. By translating the quality to a measurable format, the
quality control procedure becomes more manageable. So, putting the software quality
on a quantifiable basis is a significant work on which many researches and studies have
been fulfilled in multiple disciplines and with different applications.

In the International Standard ISO/IEC 9126-1[2], a software quality model is
established based on the Factor-Criteria-Metrics (FCM) Quality Model [3]. As reported
by the standard, quality is affected by factors and these factors can be assessed by
means of criteria. The major factors that evaluating the quality of the software is
determined as usability, functionality, reliability, maintainability, efficiency and
portability. The relation between these factors are mapped obviously with the related
criteria, while the mapping of which criterion is affected by which metric still obscure.
The factors defined are influenced by the involved technology, the used hardware,
design of software, etc. The maintainability factor is the most design-related factor
among all. Since most of the metrics are design-related this makes maintainability to be

the most interested factor in the field of internal design quality.

From the software design perspective, nowadays the most prevalent coding technique is
OO design. Object-Oriented Design (OOD) is the idea of building the computed system
with interactive objects to achieve the required aim. The procedural programming is less
maintainable than OO approach [4] and it presents the object concept in addition to
important notions like inheritance, polymorphism and encapsulation [5]. OO design

improves the modularity of the code compared to functional design. Modularity

increases understandability and as a result the maintenance of the code can be done
without any potential difficulties [6]. As OO paradigm has presented new features, new
metrics had been introduced to measure these features and concepts. Object-Oriented
metrics are useful at summarizing the important aspects and give signs of the internal
characteristics of the software [6]. They also help the developers to decide if there is
any object has a problem to be refactored or not. MOOD metrics are used for measuring
inheritance, polymorphism, and coupling [7] while Chidamber and Kemerer metrics has
been developed for class level code measurement [4]. There are many metrics suits in

the field of software quality and they will be illustrated in detail in Chapter 2.

As a particular type of software projects, our study is done on object-oriented software
projects written in Java programming language. In this study we will present metric-
based detection technique which aims to detect special types of code fragments that
cause negative effect on the software quality and known as code smells. These smells
are: Refused Bequest and Feature Envy smells. By translating the related symptoms to
metrics and giving appropriate weight for each metric, then writing a detection
algorithm to reform the results with the specified threshold values, the aforementioned
smells are detected. These values are computed from analyzing stable versions of group

of open source projects.
The remainder of the thesis is organized as follows:

In Chapter 2, software quality models and metrics will be reviewed. A literature review
on code smells as general concept. Also a literature review for smells under
investigation “Refused Bequest” and “Feature Envy” will be included in this chapter. In
Chapter 3, the materials and methods used in the research will be explained in details. In

Chapter 4, the obtained results will discuss in detail.

1.2 Objective of the Thesis

This study aims to detect bad code styling that effect negatively on the source code
quality. Two types of code smells will be detected in this research: Refused Bequest
and Feature Envy. Our detection approach depends on static code analysis with metric-
based detection. Some metrics is well known while the others are identified by us. The
new defined metrics is the translation of the symptoms related to each smell in our
study. Threshold values are used to each metric in order to get more precise detection

mechanism.

1.3 Hypothesis

Our research question is: What symptoms of a particular code smells can be formulated

as software metrics?

In this study we will use static code analysis approach to analyze object oriented
software projects written in Java. For this purpose, we will observe the symptoms of
determined code smells and map them into related metrics. We will also observe the
normal threshold values or normal ranges of the used metrics. By comparing on the
obtained metrics values with the normal values and with the detection algorithm we will
enable the developers to detect abnormal values and hence the related code smells

automatically without the need for experts’ decisions.

CHAPTER 2

GENERAL REVIEW

2.1 Software Quality

IT software systems are coming to be ubiquitous in contemporary life. Users over the
world base on interconnected computers, as well as the global information
infrastructure, such as the Internet and the World Wide Web (WWW), to accomplish
their requirements for data processing, search, storage and information backups, archive
and retrieval. All the mentioned needs are come across the boost of strong software
bases. This reliance requires the software to be easy to use, to function accurately over
the time, and have the ability to develop to meet the future needs easily. Generally, the
need for high quality software requires the satisfactions of the development and claims
about quality require to be prooven based on pragmatic analyses and measurements.
These measurements had been translated to what are known as metrics. Metrics have
many applied fields in recent research on software engineering, as we will see in the

later section of this chapter.

This chapter introduces various concepts related to quality models, quality metrics and

code smells that have negative effects on the code quality.

2.1.1 Quality Models

Software quality models are initiated to define characteristics that affect quality, to set
up a group of metrics that measure these characteristics, to gather data that will help to
assess the quality of software systems. Since the first presentation of the software
quality concept, the researchers in this field have proposed diverse types of software
quality models. Each model has its own characteristics and quality perspectives. Many
quality models were initiated to assess the factors and sub-factors in field of software

4

products or systems. All quality models are categorized into three basic paradigms [8],
as shown in figure 2.1.

* Legacy based Software Quality Model
* Object-Oriented based Quality Model
* Aspect-Oriented based Quality Model

Quality Model

Categorization
Software
MecCall’s Quality Model
Boehm’s Quality Model
Legacy Murine & Carpenter Model
based Quality NEC (Azuma)Model
Model MQ Model

Evans & Marciniak’s Quality Model
Deutsch & Will’s Quality Model

Object-Oriented
based Quality
Model

FURPS Quality Model

CMM Model

ISO/IEC 9126 Quality Model

Dromey’s Quality Model

Quality Model for Object-Oriented Design
(QMOO0D)

Quality Attributes for COTS component

A New Software Quality Model for Evaluating
COTS Components

Aspect-Oriented | AOSQUAMO Model
based Quality REASQ Model
Model AOSQ Model

Figure 2.1: Categorization of software quality models [8]

Among all the previously mentioned models, the most important models which widely
used and have a major role in the field of software quality, and within the scope of our
study we will focus on a set of standard models which are: McCall’s , Boehm’s and

ISO/IEC 25000 Quality Models, as we will see in this section.

A. McCall’s quality model: McCall tried to find a common link between
developers and users by concentrating on a set of software quality factors that define
both the users’ points of view and the developers’ preferences. This model has, as
shown in Figure 2.2, three major perspectives for clarifying the quality of a software
product[1]:

Maintainability Portability
Flexibility ® PRODUCT REVISION PRODUCTYRANSITION ® Reusability
Testability Interoperability

°
Correctness Reliability Efficiency Integrity Usability

Figure 2.2 McCall’s quality factors

Product revision (ability to change at the code level), includes maintainability (the
required effort in order to determine the code fragments that have faults and fix them),
flexibility (the simplicity of doing any required changes in the operating environment)
and testability (the easiness of testing the program ad units and the as integrated parts,

to confirm that it is error-free and meets its specified requirements).

Product transition (the ability to adapt to multiple environments) and (the functional
properties), is all about portability (the required effort to convey a program from one
environment to another), reusability (the simplicity of reusing software in a different

context) and interoperability (the effort required to pair the system with anthers).

Quality of product operations depends on correctness (the degree of accomplishing the
specification), reliability (the degree of accuracy), efficiency (the optimum use of
resources, e.g. processor time, storage), integrity (the protection of the program from

unauthorized access) and usability (the easiness of using the software).

Moreover, the model listed three crucial quality perspectives in a hierarchy of factors,

criteria and metrics as illustrated in Figure 2.3:

e Factors: 11 factors are used to characterize the view of the users and summarize
the external view of the software.

e Criteria: 23 quality criteria used to design the software as seen by the
developers and describe the internal structure of the software

e Metrics (To control): They are used to control the design steps by providing a

scale and method for measurement.

Quality Quality Metrics
Factors Criteria

Traceability
Completeness

Relia bility Consistency — |
Accuracy
Fraduct

o : Efficie ncy Error tolerance
peration Execution efficiency

Storage efficiency ———

Access contr) ———

Access audit
Operability
Training
Communicativeness
7 Simplicity
"~ Conciseness

Carrectness

Usability

Fraduct
Rewtsion

Instrumentation

Froduct
Transition fachine independence
Comrmunications commonality —

Data cormmonality

Interoperability

Figure 2.3 detailed hierarchy of McCall’s quality model
B. Boehm’s Quality Model

In 1978 Boehm presented a new quality model [9]. Boehm combined all the previously
defined models and illustrated their shortcomings that assess the quality of software in
quantitative and automatic means. His model attempts to define software quality

qualitatively by clarifying a set of metrics and attributes. Boehm's model has a

7

similarity with McCall Quality Model in the point of presenting a hierarchical model.
This model organized in the following format and as shown in Figure 2.4:

e High-level: 3 characteristics represent the high level requirements to evaluate the
software, which are: General Utility, As-is Utility, Maintainability.

e Intermediate level characteristics.

e Primitive characteristics.

Construct
Factors
Device
Independence
Portability
Self Containedness |

|

Requirements

General Utility

Maintainability

| Self Descriptiveness |

| Structuredness |

I Conciseness

| Legibility
Augmentability

Figure 2.4 Boehm’s quality model characteristics

Each high level characteristic correlated to set of factors, and these factors are

fragmented to primitive constructs.
C. ISO/IEC 25000 (SQuaRE)

The series of standards ISO/IEC 25000, also known as SQuaRE (The Systems and
software Quality Requirements and Evaluation) adopt the purpose of designing a
comprehensive framework for evaluating the quality of software products. This model
was the consequence of the gradual development of the previously published standards;

particularly from ISO/IEC 9126, which explained the evaluation of software product as

a quality model, and ISO/IEC 14598, which defines the process for software product
evaluation. This family of standards ISO/IEC 25000 composed of five parts [10]:

e |ISO/IEC 2500n — Quality Management Division: define all common models,
terms and definitions referred further by all other standards from SQuaRE family.

e ISO/IEC 2501n — Quality Model Division: present quality models in details for

computer systems and software products, quality in use, and data.

e |ISO/IEC 2502n — Quality Measurement Division: include a software product
quality measurement reference model, mathematical definitions of quality measures,
and empirical guidance for their application. Presented measures apply to software

product quality.

e ISO/IEC 2503n — Quality Requirements Division: assists in determining the
requirements of the quality. These requirements can be used in the process of quality
requirements induction for a software product to be developed or as a feed in for an

evaluation process.

e |ISO/IEC 2504n — Quality Evaluation Division: supply requirements, advices and

suggestions for software product evaluation.

ISO 25000 Series

- - -~
Y i Y
| |

| ISO/IEC 2500n | |

ISOMEC 2501n |

| ISO/IEC 2502n | ‘ ISO/IEC 2503n | | ISO/IEC 2504n |

Figure 2.5 ISO 25000 Series
As with other standards, ISO/IEC 25000 describes what to evaluate but does not
determine how to apply it. In other words, it does not mention any information about the
thresholds for the metrics to evaluate them in the use, nor does it illustrate how to class

these metrics in order to set an ideal value to a software product [11].

2.1.2 Software Quality Metrics

In the software production lifecycle as whole, the topic of software metrics is valuable.
Software metrics give a clear review on the examined project status. Metrics measure
the internal software structure and the software development process, also there is a set
of metrics specialized to measure the project’s status from the external view. It also
enables the developers to gain the quality level before the final submission of the
product [12]. In this study we will deal with the metrics which are defined at code level.
This helps us to characterize the project’s code and evaluate the design and by trying to
detect code flaws some suggestions will be provided from the most significant
refactoring solutions in the literature [13].

Generally software metrics characterize software engineering aspects such as product
(source code, design and test case), process (like analysis, coding and design) and
people (like the efficiency developers or the productivity of an individual designer)
[14]. From the most general overview, the metrics are two groups which are software
quality metrics and object oriented metrics. The software quality metrics can be

classified into four main groups [15]:

A. Size Related Metrics
B. Complexity Metrics
C. Halstead Metrics
D. Quality Metrics

10

In figures 2.6 and 2.7, we can see that each set has its own metrics suite:

METRICS

I

[

Software Quality Object Oriented
Metrics Metrics *
[
[| | |
Size Related Ci:;‘::;’;ity Halstead Metrics Quality Metrics |
CC IF PV PN DM PI
ECC Pn RM
Figure 2.6 Metrics types
*Object Oriented Metrics
\ |
| | | | \
CHEN MORRIS L&K MOOSE EMOOSE L1
MOOD GQM QMOOD SATY

Figure 2.7 Object oriented metrics

11

1. Software Quality Metrics
A. Size Related Metrics :

This set of metrics is used to measure the size of the software. It has three main types:

code of the program. Some researchers built this metric by counting the number of
lines include the whitespaces and comments, while the others just count the number

of actual code statements. Generally, it is used to measure the complexity and

productivity of the examined code.

to estimate the required lines of code during the software development lifecycle

depending on the inputs, outputs and inquiries. Thus, the estimation of the needed

effort for the development process becomes easily.

estimated from the elements of a Structured Analysis (SA) description during the
phase of requirements specification phase. For precise measurement, DeMarco
classified the systems into three groups: function-strong, data-strong, and hybrid
systems. This classification is based on the ratio RE/FF, where RE is the number of
relationships in the retained data model and FP means the number of functional
primitives (bottom-level processes) in a dataflow diagram (DFD). If the ratio
RE/FP has a ratio less than 0.7 the system is function-strong. If the ratio RE/FP has
a value more than 1.5 the system is data-strong, else the system is a hybrid one. A
function metric for function-strong systems, called a Function Bang, is counted

from a DFD based on the complexity of the dataflow and the types of operations

(functions) operating on these dataflows.

B. Complexity Metrics: This set of metrics has different means depending on the
presenter; all of them have the same aim which is finding the degree of

complication for the source code. The following are the main metrics used in this

field:

Cyclomatic Complexity (CC): McCabe's cyclomatic complexity is a software
quality metric that measures the complexity of a software program. Complexity is
deduced from finding the number of all distinct paths in the source code of the

program. The more complicated code which have a high value. The complexity of

12

Line of code (LOC): this metric is used to count the number of lines in the source

Function Point Metrics (FPM): This metric proposed by Albrecht [16], it is used

Function Bang: DeMarco [17] proposed that the size of a software product can be

the code means that it is difficult to understand and hard to maintain. Cyclomatic
complexity is derived from the dataflow graph of a program as follows:

Cyclomatic complexity (CC) =E-N + 2P (1.1)

Extended Cyclomatic Complexity (ECC): Myers [18] has extended the concept of
cyclomatic complexity to cover some aspects not mentioned in McCabe’s notion. He
proposed that decision points with multiple conditions are more complicated than
decisions with one condition. In this extension, complexity is measured as an interval
rather than a single value. The lower bound of the interval is the number of decisions
plus one or the cyclomatic complexity of the program. The upper bound of the
interval is the number of individual conditions plus one. Specifying the complexity
as an interval accounts for both the decisions and the conditions in a program.

Information Flow: Kafura and Henry [19] presented their metric to measure the
complexity of a program as information flow. This metric depends on counting the
number of local information flows input (fan-in) and flows output (fan-out). The

following formula (2) defines the metric :

C = [L] # [(fan — in) — (fan — out)]2 (1.2)

C. Quality Metrics: this type of metrics don’t have fixed format or particular type, it

2.

depends on the requirements of the product. At the end of the requirements
specification phase, the project’s manger determines the quality level and chooses
the appropriate metrics to evaluate the satisfaction of the user’s needs. Generally,
few types of this metrics are available like: Defect Metric, Reliability Metrics and
Maintainability Metrics.

Object Oriented Metrics

Object-oriented programming has powerful features that characterize its work, such as

encapsulation, information hiding, polymorphism inheritance and dynamic binding.

These features simplify the reusability and unit-based development processes. However,

they might cause some types of bad styling code fragments that are not easy to detect by

traditional testing techniques. Traditional testing techniques, such as functional testing

and branch testing, are not feasible to diagnose OO problems. To overcome these

scarcities, it is important to adopt an object-oriented testing technique that takes these

features with cost balancing into account. Object-oriented metrics have been studied

and proposed as good detectors for different types of code smells, as we will see in the

13

later sections. In this section we will focus on one popular OO metrics suites in the

literature.

Vi.

Metrics for object-oriented software engineering (MOOSE): This suite proposed
by Chidamber and Kemerer (CK) et al. [20]. This metrics have led to a considerable
amount of interest and are widely used in many studies in the field of object-oriented
software since it had been published until now. The CK metrics suite consists of six
metrics that evaluate the characteristics of the object-oriented design are:

Weighted Methods per Class (WMC): This metric measured by computing the
total complexity of all the methods in a class. A large number of methods in a class
may have a potentially larger impact on the derived classes since the methods in the

parent will be inherited by the child.

Depth of Inheritance Tree (DIT): This metric is used to find the maximum length
from the root node to the node in the lowest level (leave) in the hierarchy of the code.
The complexity of a class can be represented by DIT. Thus, a system which has a lot
of inheritance layers will be hard to understand. Also, it will be an indication to the

reusability of many methods.

Number of children (NOC): this metric is defined as the directly derived leaves in
the classes’ hierarchy. These points are used to know the number of subclasses that
will inherit the methods of the base class. The great value of this metric means that
base class has improper abstraction.

Coupling between Objects (CBO): is used to count the number of classes that
related to the current class. The abundant coupling drops the modularity of the class
making it less responsive to the reusability. Also it will increase the sensitivity and

difficulty to the changes during the code maintenance.

Response for class (RFC): this metric is used to find the response set of the class by
the combination of two sets: the first is the set of methods called by appropriate one
method (M) and the second is set of all methods in the class (Ri), as illustrated in the
following equation (3). Large value makes the testing and debugging of the object

more complicated.

14

Vii.

RS={M}ualli{Ri} (1.3)
Lack of Cohesion in Methods (LCOM): This metric is used to count the number of
null intersection methods pairs minus the number of similar method pairs used in the
class. The null intersection methods have no shared instance variables, while the
similar methods have minimum of one common instance variable. It is used for

measuring the pairs of methods within a class using the same instance variable.

2.2 Code Smells

The concept of code smell is introduced by Fowler [21] as signs of internal design
flaws within the software. He defined 22 kinds of code smells. Each type has its own
symptoms and different effects on the code development process. Therefore, the
detection of code smells has become a mandatory technique to enclose the code issues
that may affect negatively on the software quality by causing problems for further
development and maintenance ([6], [21], and [22]). Accordingly, the consensus is that
all types of code smells need to be detect firstly and then refactored to deny or diminish

such issues [23].

In this section we will have a general review on the code smells sorts and the main
reasons to cause them, then devote our review on the types under investigation in the

thesis work, which are Refused Bequest and Feature Envy code smells.

Since bad smells have an impact on code quality, it is mandatory to have a look on the
main causes led to these smells to appear into the software design. Suryanarayana [24]
mentioned in his book the prime reasons that leads to code smells occurrence, as shown

in Figure 2.8.

15

221

Violation of Design Principles

Inappropriate Use of Patterns

Language Limitations

Code Smells Causes

Procedural Thinking in OO

Viscosity

Nonadherence to Best Practices
and Processes

Figure 2.8 General causes of code smells

Code Smells Categories

According to Mantyla et al [25], some code smells defined by Fowler [21] have
common features and can be grouped to gather. He classified them into seven main

groups as:

Bloaters: They represent code fragments that have abnormal size that it cannot be
handled in an appropriate manner. The following smells can be included under this
set: Large Class, Primitive Obsession, Long Method, Data Clumps and Long
Parameter List.

Object-Orientation Abusers: This type of smells is related to the violation of
object oriented programming principles or applying these rules in improper manner.
This group has the following types: Switch Statements, Refused Bequest,
Temporary Field, Parallel Inheritance Hierarchies and Alternative Classes with
Different Interfaces.

Change Preventers: The code structure in this category has the problem of
difficult modification. This category has two code smells: Shotgun Surgery and

Divergent Change.

16

iv. Dispensables: This type can be defined as an unnecessary part of code which
should remove or giving additional responsibilities to improve its status. It has the
following kinds: Data Class, Duplicate Code, Lazy Class and Speculative
Generality.

v. Encapsulators: This set’s elements shared the violation of OO encapsulation rule
but in different ways. It has the following two elements: Message Chains and
Middle Man.

vi. Couplers: This type of issues caused because the classes are highly coupled while
the OO aim is to have loosely coupled classes. It include: Feature Envy and
Inappropriate Intimacy.

vii. Others: This category includes the two remaining smells: Comments and

Incomplete Library Class. They are do not fit into any of the categories above.

In the rest of this chapter, we will have a constraint overview on the types of code
smells that will be study in our research which are Refused Bequest and Feature envy.

Also we will discuss the detection strategies used in the literature to detect these types.
2.2.2 Refused Bequest Code Smell

In the context of object-oriented programming, the concept of inheritance has been
known as a key feature proposed to increase the amount of software reusability.
However, using inheritance is not always the best solution, particularly if it is utilized in
improper cases where other types of relationships would be more appropriate. One of
the particular issues that violate inheritance principles is the Refused Bequest code
smell. It is related to an inheritance hierarchy where a subclass does not obligate the

interface inherited from its parent class.

More precisely, Refused Bequest smell is present if the inherited functionality by the
sub-class is not actually used or specialized by means of overriding. The appropriate
refactoring in this case is the “Replace Inheritance with Delegation” [21] which dictates
to transform an inheritance relationship into composition where the sub-class has a
reference to an object of the base class and uses only the needed functionality. This
refactoring agrees with the GoF suggestion “Favour Composition over Inheritance”
[26]. We can infer from that Refused Bequest smell can’t appear in abstract classes or

interfaces, so we excluded them during our analysis.

17

There are two main approaches for Refused Bequest code smell detection as well. These
approaches are based on either static code analysis or a combination of static and

dynamic code analysis[27].
A) Static Code Analysis Detection

Stefan Slinger proposed a detection strategy employing the static code analysis of the
source code [28]. In this approach, a parser analyses the Java source code files and
produces abstract syntax trees. When the parser is done, an analyzer (visitor) traverses
the abstract syntax trees, collects smell aspects and stores them in a repository. For
refused bequest identification, smell aspects such as information on parent classes,
methods, fields, and the methods and fields that are used by a class are needed. A Grok
script is then executed on the smell aspect or fact repository to identify the classes that
contain refused bequest code smells. This detection strategy combines appropriate code

metrics with definition of threshold values proposed by Lanza and Marinescu [6].

In a paper by Marinescu, a set of rules and software metrics are identified by static
analysis of selected software projects’ source code. These software metrics are

compared with threshold values to identify design flaws or code smells [29].
B) Combination of Static and Dynamic Analysis Based Approach

The necessity to analyse hierarchy clients to identify original intent of a generalization
has been emphasized by P.F.Mihancea in his paper [30]. A suite of metrics which
quantify the uniformity of clients’ calls with respect to the services provided by a
hierarchy had been proposed. Then these metrics are used to depict class hierarchy and
to recognize if there are any anomalies in the design. He evaluated the approach on two
medium-sized projects and found that the approach does actually aid to make the

characterizing of the essence for the base class with respect to interface reuse.

Amin Milani Fard et al. proposed an approach that uses a metric-based algorithm, and
combines static with dynamic analysis to detect these smells in JavaScript code [31].
Due to the dynamic nature of JavaScript, static code analysis alone is not sufficient.
Therefore, in addition to static code analysis, dynamic analysis is also employed in the
paper to monitor and infer information about objects and their relations at runtime.
JavaScript objects, their types, and properties are inferred dynamically by querying the
browser at runtime. Finally, based on all the static and dynamic data collected, code

smell is detected using the metrics.

18

The approach proposed by T. Tourwe et al was making use of logic meta-programming
to differentiate improper interfaces [32]. In this paper, all direct subclasses of a base
class are identified and then all 3 possible subset of these identified classes are used to

recognize inappropriate interfaces.

A combination of dynamic and static analysis is used to identify refused bequest by
Elvis Ligu et al. [33]. In that paper, introduction of intentional error in sub-classes’ non-
overridden inherited methods is used to identify client’s usage of super class methods.
Measuring symptom severity on a smell thermometer can underline suspicious

hierarchies that warrant the need to be refactored.
2.2.3 Feature Envy Code Smell

In the object oriented programming context, misplacing the members of the class is one
of the main flaws. Also, distributing the responsibilities among classes must be in the
right way and avoid making the class responsible for tasks that should be manipulated
by other classes. In the same context, classes must be loosely coupled and highly
cohesive. The code smell that violates the previous mentioned rules is known as Feature
Envy. Feature Envy code smell is a symptom of improper association between classes.
It occurs when a method within one class is more concern in some members of other
classes that it is currently defined in. The higher the coupling between classes, the
higher the number of classes are influenced when changes are needed to be done in the
system. In strongly coupled classes even a tiny deliberate modification could result in a
long series of unpredicted changes in a lot of classes. Consequently, the
interdependence between classes should be remained to the lowest value if possible.

In the field of Feature Envy detection, many studies had been presented. Tsantalis and
Chatzigeorgiou presented a method of detection by computing the similarity degree
between a class and method using entity sets [34]. The entity set of a method have the
members that it accesses whereas the entity set of a class include all members that be
owned by the class (excluding getters and setters). The inner and outer entity distances
are calculated. Inner entity distances should be as low as possible to attain high
cohesion; while the distance of the outer entity should be as large as possible for low
coupling. Their entity placement metric of a class is the ratio of average inner to
average outer entity distances. If the ratio is high, the class may not be cohesive or it is

highly coupled with other class.

19

The approach proposed by Sales et al. [35] involves evaluating dependency sets for a
given method m in a class C. Two average similarity coefficients are calculated. The
first is the average similarity identifies the dependencies between m and the remaining
methods in the class. The second is the average similarity determines the dependencies
between m and methods in another class Ci. If the second average is greater than the
first average, then m has high similarity to methods in in the class Ci than its current

class C and Ci could be the appropriate class for m.

Oliveto et al. [36] submitted another technique to detect Feature Envy bad smell by
identifying method friendships. They adapted the viewpoint of classes and methods are
quite similar to sets of people. In this approach, the degree of similarity among methods

in the system is determined and friendships among these methods are ranked.

Dexun et al. [37] proposed weight based distance metrics theory to show up the
candidates of Feature Envy. They calculated distance between entities (attributes and
methods) and classes. The weight based distance metric depends on the multiple
invoking relationships between each two entities. They compared their results with

simple distance based approach.

Another approach which is related directly to work will be discussed later in the

discussion chapter.

20

CHAPTER 3

MATERIALS AND METHODS

The importance of producing software with high quality has been mentioned in the
previous chapters. Many quality models are being used to evaluate the quality level and
many of them rely on software metrics. Many approaches had been presented to detect
the code fragments that cause negative effect on the product’s quality. The simplicity of
the used technique simplifies the assessment process for the developers. By connecting
the information gained from the previous chapters the following question may come in
the light:

"How to evaluate the quality of the software from the developers’ perspective?"

Software development is usually done under time pressure. So developers need simple
and accurate techniques to detect code smells and find the appropriate refactoring
methods to bring up the quality to the required level. Since metrics measure the internal
software structure and the software development process, this helps us to characterize

the software projects and evaluate the design.

In this chapter, the methodology of detecting the code smell types which were
mentioned in Chapter 2 will be explained. The tools that helped us in the measurements
of the selected metrics will be illustrated. A general description for the software projects

which are used as the test code in the work will be presented.

3.1 Methodology

In our study, we used object oriented metrics and static code analysis. Threshold values
for the metrics are calculated from a pool of selected open source software projects
written in Java. We selected a group of stable releases of each software project as
training set and build a data set of metrics for each project separately. These projects are

21

from different domains to support the variety of actual metric values. Software projects
had been selected from Qualitas Corpus Index [38]. Table 3.1 shows the training set and

their details.
Table 3.1 Software projects training set

Name Status Full Name Domain NOC | Release date Latest Selected

Release | Release

ArgoUML Active ArgoUML Diagram 2560 | 15.12.2011 0.34 0.34
generator

JasperReports Active | JasperReports Diagram 1844 | 20.07.2010 6.4.0 6.2.2
generator

Velocity Active | Velocity Engine Diagram 261 10.05.2010 1.7 1.6.4
generator

Springframework2 | Active Spring middleware 3089 20.10.2010 25.6 2.0.8

Framework
Struts Active Struts middleware 1074 16.08.2010 2.3.32 2.3.24
Tomcat Active Tomcat middleware 1739 11.08.2010 9.0.0 7.0.42

After we collected the metrics from these six big projects, now we need for a robust
technique to have a standard threshold values. We proposed to determine the minimum
and maximum threshold values by the Equation 3.1 where STDV is the standard

deviation.
UW— 20 < Threshold < p+ o (3.2)

Some metrics values were collected readily by available tool [39] while the new defined
metrics were computed partially by the tool and partially by manual computations. The
definition of the metrics used in our approach and their threshold values will be

explained later in this chapter.

22

3.2 Detection Approach

Within the scope of the thesis, we selected two types of code smells which are directly
related with the violation of object oriented programming concepts. As mentioned in the
previous chapter, the code smells under investigation are Refused Bequest and Feature
Envy.

Our detection approach depends on object oriented metrics. Each code smell has a set of
symptoms that differentiate it from other types. In the following section we will
illustrate the symptoms for each code smell in our study and try to translate them to

corresponding metrics.

3.2.1 Refused Bequest Detection

Before we start the explanation of the metrics used to detect Refused Bequest smell,
first we will give an idea about the background to one of the new defined metrics. This
is the similarity between methods.

Similarity of methods is based on how related they are on usage of instance variables of
the class. The same notion is used in our own approach as well. The similarity of two
sets can be determined by comparing the ratio for number of elements in their
intersection to the number of elements in their union. This definition of similarity can be
expanded to similarity between methods [20]. Consequently, the value of similarity
between two methods can be calculated by finding the ratio for the set of common
instance variables used by both methods to the set of total number (union) of instance
variables used by the two methods [40]. Two methods have high similarity ratio if the
number of elements in the intersection of the set of common instance variables is high.
Consider two methods M1 and M2. Let {SIV1} and {SIV2} be the set of instance
variables used by M1 and M2, respectively. We define:

ISIV| ., = {SIV1} U {SIV2} (3.2)

ISIV|; = {SIV1} N {SIV2} (3.3)

That means; |SIV| , is the total number of instance variables used by the two methods
and [SIV] i is the number of mutual instance variables used by both methods. Then,
method similarity (MS) between the two methods can be defined as:

ISty

MS = ISIV[u

(3.4)

23

The maximum similarity value between two specified methods is 1 while the minimum
value is 0 where MS value of 0 refers no common instance variables shared by the two
methods and MS value of 1 refers to the two methods used the same instance variables.
As an example, consider two methods M1 and M2 where {SIV1} = {X, y, z} is the set
of instance variables used by method M1, and {SIV2} = {z, t, e} is the set of instance
variables used by method M2. Then, we have: {SIV1} U {SIV2} = {x,y, z, t, e} and
{SIV1} N {SIV2} = {z} resulting in |[SIV| u =5 and |[SIV| i = 1. The Similarity between
these two methods then becomes MS =1/5 = 0.2. This gave us the basis for formulating
the new metric presented in our approach. We propose to use this approach in refused
bequest detection strategy, by calculating the similarity between the superclass methods
and the overridden methods in the derived class. Then we compute the average for the
computed values. The new metric’s name is ASM (Average Similarity of Overriding
Methods). If the value is less than the threshold value and with a combination with other
predefined metrics then the class is a candidate of refused bequest. We propose a

metrics based smell detection strategy for object-oriented software systems.

There are two main symptoms should be available in a subclass in order to be a Refused

Bequest candidate. They had been explained by [30] in details. These are:

- Sub-class doesn’t use superclass’s bequests. This symptom can be translated to

multiple metrics. In our approach we used the following metrics: BOVR and ASM.

- Sub-class is too long and complex. In this study this symptom is translated to the
following metric: ACCO.

BOVR metric represent the ratio of the number of overridden methods from the base
class to the total number of methods in the sub-class. The ACCO metric is defined by
us. It computes the average cyclomatic complexity of the overridden methods in the
sub-class. The ASM metric represents the average of similarity of overridden methods
in the sub-class. Thresholds for each metric had been illustrated in Table 3.2. The values
are calculated from the software projects that were listed in Table 3.1.

24

Table 3.2 Metrics’ Threshold Values

Metric Name Threshold (+) Threshold (-) Average
ASM 1 0 0,5
(Average Similarity between Methods)
ACCO 9,431 0 4,716
(Average Cyclomatic Complexity of Overridden
methods)
BOVR 0,332 0 0,166

(Base- class Overriding Ratio)

According to the values in Table 3.2, we propose to mark a class as a Refused Bequest
instance if its ASM or ACCO value exceeds their respective thresholds. The BOVR
metric is used to support the ACCO metric in the detection in case it has a value below

the threshold value. The entire calculation process is shown in Figure 3.1.

L ASM< 0,5 ﬂ

\\
L ACCO > 9,431 J] — Aﬂ) 019\; L Refused Bequest Class ﬂ

L BOVR < 0,332 JJ

Figure 3.1 Proposed method of detecting refused bequest instances

25

3.2.2 Feature Envy

From all the approaches of Feature Envy detection presented in Chapter 2, we used a
modified version of the metric based detection mechanism presented by Marinescu [6]
in our work. Our proposal is a combination of object oriented metrics with some
implementation rules which has been used to form the final detection strategy. The most

important symptoms in this method are:

- Method uses directly attributes from unrelated classes that are accessed directly or by
invoking accessor method. This symptom is translated to Access to Foreign Data
metric (ATFD).

- The attributes from external classes used by the method is more than the attributes it
has. The Locality of Attributes Accesses (LAA) is the equivalent metric to this
symptom.

- The envied attributes may be belonging to many other classes or just from particular
classes. In case of using attributes from multiple classes this will act as a controller
[41]. But in case of the envied attributes are from particular few classes this will be
an indication of method misplacing and an indication of Feature Envy. This sign can
be measured by Foreign Data Provider (FDP) metric.

This detection mechanism takes into consideration all the details and conditions that

make the inspected method as a Feature Envy candidate. But the weakness of this

approach is the ambiguity of the actual threshold values for the used metrics. We tried
to find standard values for them but they are not available in the literature. In our thesis
we analysed open source software projects as mentioned previously in this chapter and
we used the standard static formula to produce a standard threshold values for the used
metrics and make them as standard values for the next studies. The threshold values are

shown in Table 3.2 and our detection approach is given in Figure 3.2

26

Table 3.2 Metrics’ Threshold Values

Metric Name Threshold (+) Threshold (-) = Average
ATFD 3,598 0 0,521
(Access to Foreign Data).
LAA 1,373 0,492 0,933
(Locality of Attribute Access)
FDP 1 0 0,5

(Foreign Data Provider)

L ATFD > 3,598]

L LAA < 0,492 ﬂ AN]Q L Feature Envy Method ﬂ
L FDP = | ﬂ

Figure 3.2 Proposed method of detecting feature envy instances

3.3 Attributes of the Software Under Test

To apply our methodology, we selected an open source Java project. This project is
known as Sweet Home3D version 4.0 distributed under GNU General Public License
[42]. It is public domain software. It is free internal design structure application that
helps the designer to draw the plan of your house, arrange furniture on it and visit the
results in 3D. It can be run under Windows, Mac OS X 10.4 to 10.12, Linux and Solaris.
It is available in 25 different languages. The selected version reported that have bugs
and had been fixed in later releases. It has multiple releases; the last one was the 5.4 on
31-01-2017. Figure 3.3 are showing an example from the designs achieved by the

application published on the application’s website.

27

Figure 3.3 design examples

The general attributes for Sweet Home 3D version 4.0 is illustrated in Table 3.3. The

metrics in Table 3.3 had been collected by metrics 1.3.6 plugin [43] for Eclipse.

Table 3.3 General attributes of sweet home 4.0 software

Metric Name Metric Value

Lines of Code (LOC) 76572
Number of Methods (NOM) 4154
Number of Overridden Methods 411
(NORM)
Number of Classes (NOC) 376
Number of children 144
Number of Packages (NOP) 9
Depth of Inheritance Tree (DIT) 6
Number of Hierarchies 37

28

3.4 Tools used during the Analysis Process

Software tools are used during our work to collect the metrics used in the detection
technique. These tools facilitated the metrics values gathering process. Each tool is
specialised in a set of metrics. Also they can be either a stand-alone applications or as

plugins. Now, let’s explain briefly each tool used in the work.

1- iPlasma: Integrated Platform for Software Modelling and Analysis. It is a free
stand-alone tool presented by LOOSE Research Group for the first time in 2005
[44] and the last updated version 6.1 was in 2012. The internal structure of the tool

appears in figure 3.4.

| INSIDER |
Front-end
l integrate
. Detection ualit
A Strategies CIorIxDeUDl?e'tEect. 3odelz
Analyses | | | |
use
'c_'_'_-_ —————————— 4 — 3
| HisMo ! m
Models SEnCLmEEe :
1 build

[MCC / FAST (C++)] [Memoria/ Recoder (Java)]
Model Extractors

Figure 3.4 Internal structure of the iPlasma

In our work we used the front-end (INSIDER) to upload the java project which we want
to analyse. It can be run by using the command prompt of windows and execute a batch
file to run the insider graphical user interface (GUI) .Then we selected the group’s
category as classes, methods or any other available groups; depending on the target

under investigation and the metric needed in the study, as shown in figures 3.5 - 3.7.

In our work, we selected to group the source code as classes to obtain the some metrics
of Refused Bequest, and in the other phase we used the methods’ group to get the
metrics of Feature Envy. Figure 3.5 shows the INSIDER front-end with the uploaded

Java source code for the Sweet Home 3D 4.0.

29

i atidiin a4

Ready to go

Figure 3.5 INSIDER’s front-end

Load

Class

IModel s

Classification Disharmony

Data Providers For Large-God Classes
Identity Disharmony

Newty Added Methods (NAS)
accessed model data

all descendants

all potential clients

annotations group

applies-to group

base classes

class group

current class and ancestors

direct overriden methods

extemnal clients group

fanin class group

foreign data

global function group

group of changing classes

group of variables of this type
heavy service providers

local variable group

methad group

methods depending on base class
methads inherited but not overriden
methads not inherited

namespace group

operations calling me

overridden by

package group

refused ancestors

same hierarchy duplicated methods
subclasses dependencies
temporary flelds

unrelated methods with duplication

Collaboration Disharmony

BExternal Service Providers (methods)
Identity Harmony (critical methods)
accessed model classes

all ancestors Name
all inheritance relations

annotation instances (for all entities)
appliable-for group

attribute group

basic block group

companent group

derived classes

efferent coupling

external service providers for class

fanout class group

foreign data providers
global variable group
group of changing methods

21

heavy called methods

internal clients group

max call path

methods accessing varlable
methods inherited and overriding
methods inherited but overriden
methods overriden

operations called

operations calling me virtually
ovarwriting methods

parameter group

same hierarchy class duplication
similar methods

subsystem group

type of variable h-levels and base-classes with few directly denved sub-classes)
variables accessed

Figure 3.6 Selecting the class group

30

Load

~rat

cycl
Intery

Class

Model s

Classification Dishamnany

Data Providers For Large-God Classes
Identity Disharmony

Newly Added Methods (NAS)
atcessed model data

all descendants

all potential clients

annotations group

applies-to group

base classes

class group

current class and ancestors

direct overriden methods

external clients group

fanin class group

foreign data

global function group

group of changing classes

group of variables of this type
heavy service providers

local variable group

method group

methods depending on base class
methods inherited but not overriden
methods not inherited

namespace group

operations calling me

overridden by

package group

refused ancestors

same hierarchy duplicated methods
subclasses dependencies
temporary fields

unrelated methods with duplication

Collaboration Disharmony
External Service Providers (methods)
Identity Harmony (critical methads)
accessed model classes

all ancestors

all inheritance relations
annatation instances (for all entities)
appliable-for group

attribute group

basic block group

component group

derived classes

efferent coupling

external service providers for class
fanout class group

foreign data providers.

global variable group

group of changing methods

heavy called methads

internal clients group

max call path

methods accessing variable
methods inherited and overriding
methods inherited but overriden
methods overriden

operations called

operations calling me virually
overwiiting methods

parameter group

same hierarchy class duplication
similar methods

subsystem group

type of variable

variables accessed

PisiasA)

Name

=101

h-levels and base-classes with few directly derived sub-classes)

Figure 3.7 selecting the methods group

This tool has an important role for us to understand the inheritance hierarchal tree of the

test project. By using the system complexity overview option as shown in Figure 3.8,

we can have a clear view of the available inheritance hierarchies in the source code. The

edges represent the inheritance relationship [6]. There are many other meanings related

to the node size and colour, edge width and colour, but they are beyond the scope of our

study, it can be found in [6] for more details.

"

]
o

]

n
o

Je)| £+

File Zoom

Doy g o
R = ¢

0 o pn @8
DEWDDDE“H%
o
o

1]

]

(=2

DUD 9P

= o I
2oy [& 1
0
s

I
aooodtngt gighe

g

]
DDD

fi[uis]

ae 0o

[Name:TexturesCatalog] width[NOA:8.0] heightNOM:15.0] colorViMC:15.0]

System Complexity Overview on src

31

Figure 3.8 the inheritance trees of the tested code

Bl TurR o030 []

2- Metrics 1.3.6 plugin: by Frank Sauer is an open source metrics calculation and
dependency analyzer plugin for the Eclipse IDE. It measures various metrics and
detects cycles in package and type dependencies. It provides two types of views;
one for the layered package graph view and the other for the dependency graph
view as shown in Figure 3.9 .This plugin is used in our work to find the metrics
in Table 3.3.

File Edit Mavigate Search Project Run Window Help
(nid 2D Ny OTQvHEGY S - - - - - Quick Acces: : &

Declaration = Progress T Metrics - src - Number of Packages ¢ | I Layered Package Graph View wll s
s Metric Total Mean Std. Dev. Maxi.. Resource causing Maximum Method

Weighted methods per Class 663 /Sw

(avg/max per type) 11187 20753 60,508

etHom c/com/eteks/sweeth.

Number of ter 2 tHc ateks CatalogPieceOf

Number g/max per type) 353 0939 3768 :
Efferent Cou a/max per packageFragment) 14444 15078
Specialization Index (avg/max per type) 0338 0664 :
Number of Classes (avg/max per pac ment) 376 41778 48157 -
Numbser of Static Methads (ava/max per ty 108 0287 1503 fsre/comyeteks/s

Number of Atributes (avg/max per type) 2472 6574 9126 c/com/eteks/s

Abstractness (avg/max per packageFragment 0084 0108

Normalized Distance (avg/max per packagefragment) 0458

Number of Interfaces (ava/max per packagefragment) 31 3444

Total Lines of Code 76572

Number of Methods (avg/max per type) 4154 11,048 19,337
Depth of Inheritance Tree (ava/max per type) 230 1,52
Number of Packages 9

Instabil

{ava/max per packageFragment) 0.458
or plest ax per methad 2529
d 7

/mas per type]

ack of Cohesion of Methads (;

Method Lines of Code (a ax per method) 54360 initGeographicP.

Number of Overridden Methods (ava/max per type} 411

Afferent Coupling nax per packageFragment)

Number of Children (ava/max per typel 144

Paused. 0 items in the queue

Figure 3.9 Metrics obtained by metrics 1.3.6 plugin

File Edit Source Refactor Navigate Search Project Run Window Help

- SODWNBTOTATIEGTISE S viP il o Yuick Acces o

Declaration = Progress LI Dependency Graph View ©1 T Metrics - AutoCommitSpinner II Layered Package Graph View

Figure 3.10 Dependency graph view

32

CHAPTER 4

RESULTS AND DISSCUTION

In the previous chapter we discussed our approach theoretically. In this chapter we
present the results we have obtained by applying our methodology on some other
software projects. The results will be presented in two subsections and the next

subsection will contain discussions.
4.1 Refused Bequest’s Results and Discussion :

Our target in this level is to examine all the sub-classes in the test project’s source code.
The key idea behind the proposed detection technique lies in the detection of whether
the average similarity of the overridden methods in a subclass in a given hierarchy is
less than the threshold value. In addition, our approach takes other metrics into account
to detect and evaluate the suspicious classes. The first metric is Base Class Overriding
Ratio (BOVR) which measures the ratio of the number of overridden methods from the
base class to the total number of methods in the tested sub-class. This gives us an idea
about the amount of reused code from the parent class. The other factor that may have
an effect on the inheritance properties is the Average Cyclomatic Complexity of
Overridden methods (ACCO). In normal cases; when the sub-class inherits and
overrides the methods these methods be like the original version but with the variables
or parameters of the sub-class, or adding additional functionality related with the nature
of the sub-class. So; the ACCO should be near to the upper limit of the standard

threshold value.

Our test is done on open source Java project Sweet Home 3D 4.0, as mentioned in
section 3.3 of chapter 3. We presented the general code properties in Table 3.3, but the
general metrics for each separated hierarchy is illustrated in Table 4.1. The class
diagrams of some hierarchies which indicated as Refused Bequest candidate will be

presented in later sections.

33

Table 4.1 The Metrics of each hierarchy

Hierarchy Hierarchy Root Name Root Class Number of DIT
Number Type Classes
1 HomeApplication Abstract 3 1
2 FurnitureController Class 2 1
3 NullableSpinnerNumberModel Class 2 1
4 VisualTransferHandler Class 2 1
5 AutoCommitSpinner Class 2 1
6 ResourceAction Class 2 1
7 Camera Class 2 1
8 TexturesCatalog Class 2 1
9 FurnitureCatalog Class 2 1
10 RecorderException Class 2 1
11 UserPreferencesChangeL.istener Abstract 3 1
12 AbstractPhotoController Abstract 3 1
13 HomeController Class 3 2
14 FrameGenerator Class 3 1
15 PieceOfFurnitureTopView Abstract 3 1
16 LocatedTransferHandler Abstract 3 1
17 ScaledlmageComponent class 3 1
18 FileContentManager Class 3 1
19 CatalogPieceOfFurniture Class 3 1
20 CameraControllerState Abstract 3 1
21 PointWithAngleMagnetism Class 3 1
22 URLContent Class 4 1
23 UserPreferences Abstract 4 1
24 HomePieceOfFurniture Class 4 1
25 WizardController Abstract 4 1
26 ModifiedPieceOfFurniture Class 4 1
27 Object3DBranch Abstract 5 1
28 ModelPreviewComponents Class 5 2
29 AbstarctDecoratedAction Class 5 2
30 WizardControllerStepState Abstract 4 1
31 BackgroundlmageWizardStepState Abstract 4 1
32 ImportFurnitureWizardStepState Abstract 5 1
33 ImportedTextureWizardStepState Abstract 3 1
34 ControllerState Abstract 27 2

34

Table 4.1 (cont’d)

35 AbstarctModeChangeState Abstract 6 1
36 AbstarctWallState Abstract 3 1
37 AbstarctRoomState Abstract 3 1

According to [33], when a designer employs a generalization relationship and places an
abstract class or an interface on the root of the hierarchy, the intention is rather clear:
The goal is to apply the Dependency Inversion Principle and essentially to allow
polymorphic behavior where the public interface of the base abstract class (or interface)
is implemented by a corresponding subclass. In these cases it is theoretically impossible
to encounter a Refused Bequest symptom, since the same benefit cannot be achieved by
other means. In other words, it is clearly evident that the employed generalization is on
purpose, well-designed and constitutes an "is-a" relationship. Also, the methods in the
interfaces have no body of code to compare with overridden version in the sub-class. On
the other hand, overriding the abstract methods of the abstract super-class is mandatory,
so the sub-class will be obligated to inherit and reuse these methods. In this case there
will be no big chance to refuse its parent’s bequest. So, we excluded the hierarchies in

which the base class is either an interface or an abstract class.

To facilitate dealing with classes’ names during the analysis phase we proposed to give

appropriate latter to each class, start from C1 to C55 as illustrated in Table 4.2.

35

Table 4.2 Original and Given Names of the Classes

No. Original class Name Given Letter
1 FurnitureController C1
2 PlanController Cc2
3 NullableSpinnerNumberModel C3
4 NullableSpinnerLengthModel C4
5 VisualTransferHandler C5
6 FurnitureCatalogTransferHandler C6
7 AutoCommitSpinner C7
8 NullableSpinner C8
9 ResourceAction C9
10 ControllerAction C10
11 Camera Cl1
12 ObserverCamera C12
13 TexturesCatalog C13
14 DefaultTextureCatalog Cl14
15 FurnitureCatalog C15
16 DefaultFurnitureCatalog C16
17 RecorderException C17
18 InterruptedRecorderException C18
19 HomeController C19
20 HomePluginController C20
21 HomeAppletController C21
22 ScaledlmageComponent C22
23 ScaledImagePreviewComponent C23
24 OriginallmagePreviewComponent C24
25 FileContentManager C25
26 AppletContentManager C26
27 | FileContentManagerWithRecordedLastDirectories C27
28 CatalogPieceOfFurniture Cc28
29 CatalogDoorOrWindow C29
30 CatalogLight C30
31 PointWithAngleMagnetism C31
32 WallPointWithAngleMagnetism C32
33 RoomPointWithAngleMagnetism C33
34 URLContent C34
35 HomeURL Content C35
36 ResourceURLContent C36

36

Table 4.2 (cont’d)

37 TemporaryURLContent C37
38 HomePieceOfFurniture C38
39 HomeDoorOrWindow C39
40 HomeFurnitureGroup C40
41 HomeLight C41
42 ModifiedPieceOfFurniture C42
43 ModifiedDoorOrWindow C43
44 ModifiedLight Ca4
45 ModifiedFurnitureGroup C45
46 ModelPreviewComponents C46
47 AbstractModelPreviewComponent C47
48 RotationPreviewComponent C48
49 AttributePreviewcomponent C49
50 IconPreviewcomponent C50
51 AbstarctDecoratedAction C51
52 PopupMenueltemAction C52
53 MenueltemAction C53
54 ToolBarAction C54
55 Buttonaction C55

The calculation of the ASM metric was done manually on our test code. It had been
started from the calculation of similarity between methods concept [41] [42]. In this
study we focused on the similarity between the original methods in the base class and
the overridden methods in the sub-class. The similarity between methods for some
hierarchies of the tested code is shown in the following Tables (Table 4.3- 4.16). Colors
indicate overridden methods and their base versions. For example, one method of a base
class denoted with m1l is overridden by the method denoted by m*1 and both methods
have the color green.

37

Table 4.3 Similarity between methods for hierarchy 2

C1l-C2 Original Methods
Overridden
ml m2
Methods

m*1 \0.5

—~a

m*2 ‘0\

From Table 4.3 we can see that m1 is overridden by (m*1) with similarity equal to 0. 5

and m2 is overridden by (m*2) with similarity also equal to 0. The ASM for C2 is equal

to 0.25.
Table 4.4 Similarity between methods for hierarchy 7
Cl1-C12 Original Methods
Overridden Methods m1 m2 m3 m4 m5 m6 m7 m8
m*1 0.25
m*2 0.25 1
m*3 0.25 1 1
m*4 0.167 0.33 0.33 1
m*5 0.2 0.5 0.5 0.25 1
m*6 0.2 0.5 0.5 0.25 0.33 1
m*7 0.2 0.5 0.5 0.25 0.33 0.33 1
m*8 Null Null Null Null Null Null Null Null

In the previous Table there are 8 overridden methods most of them has a high similarity

values except (m*8) and (m8) have no instance variables. The ASM for C12 is equal to

0.893.

Table 4.5 Similarity between methods for hierarchy 13

C19-C21 Original Methods
Overridden Methods ml m2 m3 mé4
m*1 0.667
m*2 0.4 1
m*3 0.33 0 0
m*4 0.33 0.167 0 0.5

38

From Table 4.5 we can see that the sub-class C21 has four overridden methods from the
base class C19 with ASM equal to 0.542.
Table 4.6 Similarity between methods for hierarchy 18

C22-C23 Original Methods C22-C24 Original Methods
Overridden Overridden
ml ml
Methods Methods
m*1 1 m*1 1

In the hierarchy number 18 there are two sub-classes C23 and C24 with one overridden
method in each of them. The ASM has a value of 1 for both sub-classes.

Table 4.7 Similarity between methods for hierarchy 19

C25-C26 Original Methods C25-C27 Original Methods
Overridden Mecthods | ml m2 m3 m4 Overridden Methods mil m2
m*1 1 m*1 Null Null
m*2 0 1 m*2 Null Null
m*3 0 0 0.333
m*4 0 0 0.333 0.5

In the hierarchy 19 there are two sub-classes C26 and C27. In C26 there are four
overridden methods with ASM equal to 0,708. While in C27 there are two overridden
methods but they don’t use the instance variables. So, the result is Null.

Table 4.8 Similarity between Methods for Hierarchy 20

C28-C29 Original Methods C28-C30 Original Methods
Overridden Methods ml
Overridden Methods NA
m*1 Null

Hierarchy 20 also has two sub-classes C29 and C30. C29 has one overridden method
with ASM equal to Null; because the overridden methods do not have instance
variables. C30 has no overridden methods, so the ASM metric is not applicable in this

case and has a value of NA.

39

Table 4.9 Similarity between Methods for Hierarchy 22

C31-C32

Original Methods

C31-C33

Original Methods

Overridden Methods

NA

Overridden Methods

NA

From Table 4.9 we can see that we have two sub-classes C32 and C33. These sub-

classes don’t have any overridden methods from their parent class and the value of

ASM is NA.

Table 4.10 Similarity between Methods for Hierarchy 23

C34-C35

Original Methods

Overridden Methods

NA

C34-C36

Original Methods

Overridden Methods

NA

C34-C37

Original Methods

Overridden Methods

NA

Hierarchy 23 has 3 sub-classes C35, C36 and C37. All of them have no overridden
methods and the ASM equal to NA.
Table 4.11 Similarity between methods for hierarchy 25-C39

C38-C39 Original Methods
Overridden
ml m2 m3 m4 m3 mé
Methods
m*1 1
m#*2 0 -
m*3 0 0 1
m*4 0 0 0 1
m*S 0 0 0 0 0.333
m*6 0 0 0 0 0 0.333

40

Table 4.12 Similarity between methods for hierarchy 25-C41

C38-C41 Original Methods
Overridden
ml m2 m3 m4

Methods

m*1 1

m*2 0.5 0.5

m*3 0.5 0.2 1

m*4 0.5 0.2 1 1

Table 4.13 Similarity between methods for hierarchy 25-C40

C39-C40

Original Methods

Overridden
Methods

3
[y

3
o1

m10

mll | m12

ml3

m1l4

m15

ml6

ml17 [m18 | m19

m20

m21

m22

m23

m24

m25

m*1

m*5

m*10

m*11

o|o|o(F-

[EEN

m*12

o
w

o
(63}

m*13

-

m*14

o

m*15

o

m*16

o
(63}

o
ol

m*17

m*18

m*19

m*20

m*21

m*22

m*23

[N

m*24

o

[N

m*25

OO|O|0O|0O|0O|O|O|O|0|O|Oo|O]:;

o000 |0O|0(0O|0O|0|0O|O0|0|O0|0|O0|O|k

OO |0O|0|0O|0O|0O|0|0|0|O|O|O|O0|O|o

OO|0O|0|0|O(0O|0|0|0|O|O|O|;
O|O|O|O|O|O|Oo|O|o|Oo|o|o|o|-

OO|O|0|O|O|0|0|O|;

O|O|O|0O|O|O|0O|0|O|O|O(F

OoO|Oo|O|Oo|o|o|o|o|o|o|F-

OO|O|0|O|O|O|0|O|;
O|O|0O|0|0O(O|O|O|F
o|Oo|Oo|o|o|o|o|o
Oo|o|Oo|Oo|o|o|o

Oo|Oo|O|O|o|o

o|o|o|o|o

o|o|o|o

In hierarchy 25 we have three sub-classes C39, C40 and C41. C39 has six overridden
methods with ASM equal to 0.611. C40 has eighteen overridden methods with ASM

equal to 0.694 and C41 has four overridden methods with ASM value equal to 0.875.

41

Table 4.14 Similarity between methods for hierarchy 27

C42-C43 Original Methods C42-C44 Original Methods
Overridden Methods fil Overridden Methods m1
m*1 1 — 1
C42-C45 Original Methods
Overridden Methods i
1

m*1

We can see in hierarchy 27 there are three sub-classes with one overridden method in
each and with ASM value of 1.

Table 4.15 Similarity between methods for hierarchy 29-C47, 48, 49, 50

C46-C47 Original Methods C46-C48 Original Methods
Overridden Methods Overridden Methods ml
NA m*1 Null
C46-C49 Original Methods C46-C50 Original Methods
Overridden Methods Overridden Methods ml m2
N m*1 0 2
m*2

For hierarchy 29 we have four sub-classes C47, C48, C49 and C50. C47 and C49 have
no overridden methods with ASM equal to NA. C48 has one overridden method but it

doesn’t use the instance variables, so the ASM equal to Null. C50 has two overridden
methods and the ASM equal to 0.5.

Table 4.16 Similarity between methods for hierarchy 30

C51-C52 Original Methods
Overridden Methods ml
m*1 1

C51-C54 Original Methods
Overridden Methods ml
m*1 1

C51-C53 Original Methods
Overridden Methods ml
m*1 1

C51-C55 Original Methods
Overridden Methods ml
m*1 1

Finally, hierarchy 31 has four sub-classes C52, C53, C54 and C55. Each one has one

overridden method with ASM equal to 1.

42

During the calculations of the ASM metrics for all the hierarchies in our test project, we
noticed that there are different cases for it. There are two important factors that have
great effect in the application of this metric. These are the availability of instance
variables in the base class and the availability of overridden methods in the sub-class. In
some cases this metric is not applicable because either no overridden methods in the
sub-class or there are no instance variables in the base class. Table 4.17 shows the

details of these cases.

Table 4.17 ASM metric cases

Case No. Vs Overridden Methods in the Sub-class ASM Status
Case -1- Auvailable Auvailable Applicable
Case -2- Auvailable Not available NA
Case -3- Not Auvailable NA

available
Case -4- Available Available(no IVs in the overridden Applicable = Null
methods)
Case -5- Available | Available(no Vs in the overridden methods Applicable = Null
(Not used)

The Null value means that ASM metric has met its requirements and it is applicable, but
it has no value. This state can be happened if the overridden methods don’t use the
instance variables or the original methods in the base class don’t use the available

instance variables.
The other two metrics ACCO and BOVR are collected and combined with the ASM for

our test code and the results are shown in Table 4.18.

43

Table 4.18 Metrics Values of the Hierarchies

Hierarchy . Class
Number Hierarchy T ASM ACCO | BOVR
ype
1 FurnitureController Base- - - -
Class
-PlanController sub-class 0.25 22 0.0089
2 NullableSpinnerNumberModel Base- - - -
Class
-NullableSpinnerLengthModel sub-class NA 0 0
(case-2-)
3 Visual TransferHandler Base- - - -
Class
-FurnitureCatalogTransferHandler sub-class NA Null 0
(case-2-)
4 AutoCommitSpinner Base- - - -
Class
-NullableSpinner sub-class NA Null 0
(case-3-)
5 ResourceAction Base- - - -
Class
-ControllerAction sub-class NA 1 0.333
(case-5-)
6 Camera Base- - - -
Class
-ObserverCamera sub-class 0.893 1.167 0.4
7 TexturesCatalog Base- - - -
Class
-DefaultTextureCatalog sub-class NA Null 0
(case-2-)
8 FurnitureCatalog Base- - - -
Class
-DefaultFurnitureCatalog sub-class NA Null 0
(case-2-)
9 RecorderException Base- - - -
Class
-InterruptedRecorderException sub-class NA Null 0
(case-2-)
10 HomeController Base- - - -
Class
-HomePluginController Sub- NA Null 0
class (case-2-)
-HomeAppletController Sub- 0.542 1.25 0.667
class
11 ScaledlmageComponent Base- - - -
Class
-ScalelmagePreviewComponent Sub- 1 2 0.25
class
-OriginallmagePreviewComponent Sub- 1 2 0.25
class
12 FileContentManager Base- - - -
Class
-AppletContentManager Sub- 0.708 4 0.667
class
- Sub- Null 45 0.667
FileContentManagerWithRecordedLastDirectories class (case-4-)
13 CatalogPieceOfFurniture Base- - - -
Class
-CatalogDoorOrWindow Sub- Null 15 0.1
class (case-4-)
-CatalogL.ight Sub- NA 2 0
class (case-2-)

44

Table 4.18 (cont’d)

Class
-WallPointWithAngleMagnetism Sub- NA Null 0
class (case-2-)
-RoomPointWithAngleMagnetism Sub- NA Null 0
class (case-2-)
15 URLContent Base- - - -
Class
-HomeURLContent Sub- NA Null 0
class (case-2-)
-ResourceURL Content Sub- NA Null 0
class (case-2-)
-TemporaryURLContent Sub- NA Null 0
class (case-2-)
16 HomePieceOfFurniture Base- - - -
Class
-HomeDoorOrWindow Sub- 0.611 1.71 0.5
class
-HomeFurnitureGroup Sub- 0.694 1.97 0.4186
class
-HomeL.ight Sub- 0.875 1.2 0.5
class
17 ModifiedPieceOfFurniture Base- - - -
Class
-ModifiedDoorOrWindow Sub- 1 1 1
class
-ModifiedLight Sub- 1 1 1
class
-ModifiedFurnitureGroup Sub- 1 3 0.5
class
18 ModelPreviewComponents Base-
Class
-AbstractModelPreviewComponent Inner- NA Null 0
class (case-2-)
-RotationPreviewComponent Sub- Null Null 0.125
class (case-4-)
-AttributePreviewcomponent Sub- NA Null 0
class (case-2-)
-lconPreviewcomponent Sub- 0.5 1 1
class
19 AbstarctDecoratedAction Base- - - -
Class
-PopupMenueltemAction Sub- 1 6 1
class
-MenueltemAction Sub- 1 5 1
class
-ToolBarAction Sub- 1 2 1
class
-Buttonaction Sub- 1 3 1
class

The cases where the ASM metric of case -2-, which means the sub-class is not

recommended being Refused Bequest candidate, because it accepts all the inherited

bequests of its parent class without any specialization or any change in its functionality.

This can be considered as a sign of design problem or abuse for the inheritance. In case

of the ASM is applicable we need to see the metrics and compare the results with our

45

threshold values. The following Table shows us the Refused Bequest candidate classes

and we will explain each case separately with its class diagram.

No.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Table 4.19 Refused bequest candidate classes

Sub-Class Name
NullableSpinnerLengthModel
NullableSpinner
ControllerAction
DefaultTextureCatalog
DefaultFurnitureCatalog
InterruptedRecorderException
HomePluginController
CatalogLight
WallPointWithAngleMagnetism
RoomPointWithAngleMagnetism
HomeURLContent
ResourceURLContent
TemporaryURLContent
RotationPreviewComponent
AttributePreviewcomponent

FurnitureCatalogTransferHandler

CatalogDoorOrWindow

AbstractModelPreviewComponent

PlanController

FileContentManagerWithRecordedLastDirectories ~ Null

ASM ACCO
NA Null
NA Null
Null 1
NA 0
NA 0
NA 0
NA 0
NA 2
NA Null
NA Null
NA Null
NA Null
NA Null
Null Null
NA Null
NA 0

4.5
Null 15
NA 0
0.25 2.2

BOVR

0.667
0.1
0

0.0089

In order to clarify the obtained results and make the results more clear; we will discuss

the ASM cases and explain one example from each case by using the class diagram.

46

Case -1- : in this case the two main requirements to calculate the ASM metric was
met. We can see that clearly in the hierarchy number 11 from Table 4.18, as shown

in the class diagram in Figure 4.1.

ScaledimageComponent

-image:Bufferedimage
-imageEnlargementEnabled:boolean

#getlmageScale():float
#getlmageTranslation():Point
#isPointinimage(int, int):boolean
#paintComponent(Graphics):void
#paintimage(Graphics, AlphaComposite):void
+ScaledimageComponent()
+getlmage():Bufferedimage
+getPreferredSize():Dimension
+setlmage(Bufferedimage):void

N

ScalelmagePreviewComponent
«Internal>

OriginlmagePreviewComponent
<Internal>

-controller:BackgroundimageWizardController

-controller:BackgroundimageWizardController

#paintComponent(Graphics):void
+ScalelmagePreviewComponent()
+addMouselisteners(BackgroundimageWizardController):void
-addChangelisteners(BackgroundlmageWizardController):void

#paintComponent(Graphics):void
+O0riginlmagePreviewComponent()
+addMouseListener(BackgroundimageWizardController):void
-addChangelisteners(BackgroundimageWizardController):void

Figure 4.1 Case-1- class diagram

Figure 4.1 shows us that the base class ScaledImageComponent has two instance
variables, which is one of the requirements to apply the ASM metric. For the first sub-
class ScaleImagePreviewComponent there is one overridden method from its
base class paintComponent (). The ASM of the sub-class is equal to 1. Also, for
the second sub-class has an ASM equal to 1. Depending on our approach, that means

they applied the inheritance principle in a good way.

47

o Case -2-: In this case one of the requirements needed for ASM calculation is
missing. There are no overridden methods in the sub-class. This can be considered
as the sub-class utilizes all bequests from its parent. An example of this case is
shown in Figure 4.2. As we can see that the sub-class
FurnitureCatalogTransferHandler doesn’t reused any overridden

methods from its parent.

VisualTransferHandler

-dragGestureRecognizerWithVisualRepresentation:DragGestureRecognizerWithVisualRepresentation

+exportAsDrag(JComponent, InputEvent, int):void
Ji)

FurnitureCatalogTransferHandler

-catalogController:FurnitureCatalogController
-contentManager:ContentManager
-furnitureController:FurnitureController

#createTransferable(JComponent):Transferable
+canimportJComponent, DataFlavor[]):boolean
+getSourceActions(JComponent)int
+getVisualRepresentation(Transferable):Icon
+importData(JComponent, Transferable):boolean

Figure 4.2 Case-2- class diagram

48

o Case -3-: this case missed the availability of instance variables in the base class.
That means even if there is an overridden method it will be impossible to compute
the ASM metric. We can see an example in the sub-class AutoCommitSpinner

in figure 4.3.

AutoCommitSpinner

+AutoCommitSpinner()

NullableSpinner

+NullableSpinner()

Figure 4.3 Case-3- class diagram

49

o Case -4- : This case is a special case of case-1-, where the two requirements are
available but we couldn’t obtain a real value for our metric. This case happens
when there are overridden methods in the sub-class but they don’t use the instance
variables of the base class neither directly nor indirect way.

Figure 4.4 show us the sub-class
FileContentManagerWithRecordedLastDirectories which
overridden the method getLastDirectory () and setLastDirectory
() , but they don’t use any instance variable. In this case the ratio of intersection set
of the instance variables to the set of union will be empty set. We proposed to put a

Null as a value for the ASM in this case.

FileContentManager

-defaultFileExtensions:Map<ContentType,String >
-fileFilters:Map <ContentType, FileFilter[] >
-furnitureLibraryFileExtension:String
-languageLibraryFileExtension:String
-lastDirectories:Map <ContentType, File>
-pluginFileExtension:String
-preferences:UserPreferences
-sweetHome3DFileExtension:String
-texturesLibraryFileExtension:String

#confirmQverwrite(View, String):boolean
#getFileDialogTitle(boolean):String
#getFileFilter(ContentType):FileFilter[]
#getlastDirectory(ContentType):File
#isDirectory(ContentType):boolean
#setlastDirectory(ContentType, File):void

+FileContentManager()

+getContent(String):Content
+getDefaultFileExtension(ContentType):String
+getPresentationName(String, ContentType):String
+isAcceptable(String, ContentType):boolean
+showOpenDialog(View, String, ContentType):String
+showSaveDialog(View, String, ContentType, String):String
-showFileChooser(View, String, ContentType, String, boolean):String
-showFileDialog(View, String, ContentType, String, boolean):String

7 &

AppletContentManager FileContentManagerWithRecordedLastDirectories

<«Internal»
-LAST_DEFAULT_DIRECTORY:String
-LAST_DIRECTORY:String
-mainClass:Class<? extends SweetHome3D>

-preferences:UserPreferences
-recorder:HomeRecorder

+AppletContentManager()

+getPresentationName(String, ContentType):String
+isAcceptable(String, ContentType):boolean
+showQpenDialog(View, String, ContentType):String
+showSaveDialog(View, String, ContentType, String):String
-showeError(View, String):void

#getlastDirectory(ContentType):File
#setlLastDirectory(ContentType, File):void
+FileContentManagerWithRecordedLastDirectories()

Figure 4.4: Case-4- class diagram

50

o Case -5- : In the last case, we indicated that the original methods of the base class
don’t use the instance variables of its class. So, the intersection and the union sets
will be empty. Consequently, this will effect on the calculation of our ASM metric.

In this case we proposed to give a Null value.

ResourceAction

+POPUP:String
+TOGGLE_BUTTON_MODEL:String

+ResourceAction()

+actionPerformed(ActionEvent):void
-getOptionalString(UserPreferences, Class<?>, String, boolean):String
-readActionProperties(UserPreferences, Class<?>, String):void

Jis

ControllerAction

-controller:Object
-controllerMethod:Method
-parameters:Object(]
+ControllerAction()
+actionPerformed(ActionEvent):void

Figure 4.5: Case-5- class diagram

Figure 4.5 shows us that sub-class ControllerAction overridden the
method actionPerformed (), but when we investigated the code of the
base class and the sub-class we found that no instance variables used in the

original version of the method.

o1

It is important to mention that we don’t use the zero value in case -4- and case-5-;
because this value is given when the two requirements of the ASM metric are met but

there is no similarity between methods.

When we analysed the results in Table 4.19, we noticed that some cases of Refused
Bequest classes even that their ASM value are Null or NA they have a clear values for
the ACCO metric. We can conclude from that the sub-class in this case doesn’t override

methods from its parent, while it overrides methods from other classes or interfaces.

Another important note, some sub-classes have a Null or NA values, while the BOVR
metric has a numerical value not equal to zero. This can be translated as; even there is
no similarity between the methods in the base class with the overridden version in the
child class but they apply the case-4- and case-5- where the main requirements are met

but the application was in wrong way.

We evaluated our results with another two tools. These tools are iPlasma [38] and Ptidej
tool [46]. The results are shown in Table 4.21. All the instances detected by Ptidej tool
as Refused Bequest candidates are detected by our approach. While not all the
candidates detected by our metrics are able to be detected by Ptidej and iPlasma tools.
These results give as a high confidence with our proposed metrics and our detection
mechanism. The number of detected instances for each tool is shown in the following
Table.

Table 4.20: number of detected instances in each tool

Our Approach Ptidej iPlasma

52

Table 4.21 Results of different tools

Sub-Class Name Our Ptidej iPlasma Is Code \
Approach Smell?
1. PlanController v v/ X v
2. NullableSpinner v v X v
3. ControllerAction v v/ X v
4, DefaultTexturesCatalog X v X X
5 DefaultFurnitureCatalog X v/ v X
6. InterruptedRecorderException X v X X
7. HomePluginController X v X X
8. FileContentManagerWithRecordedLastDirectories v X X v
9. CatalogDoorOrWindow v v X X
10. CatalogLight X v X X
11. HomeURLContent X v X X
12. ResourceURLContent X v X X
13. TemporaryURLContent X v X X
14. HomeDoorOrWindow X X X X
15. RotationPreviewComponent v X X v
16. HomeAppletController X v X X

53

4.2 Feature Envy’s Results and Discussion:

At this level our aim is to search about a method which is interested in the data of
another class more than the class it belongs to. It happens when the source of the envied
data comes from only one or two classes. This refers to method misplacing. During the
metrics collecting phase we grouped the source code of our test code as methods and
then we obtained the metrics for each method. After completing the previous phase,
now the data set is ready to filter by our threshold values on the data. Our methods and
metrics data set initially has 4660 methods. We proposed to filter them by removing the
constructors. Depending on the nature of the constructors it just used to initialize the
attributes of the class it belongs to, so it rarely to find a constructor is a Feature Envy

candidate. After applying this filter the data set became 3335 methods. The final results

are shown in Table 4.22.

Table 4.22 Results of feature envy

No. Method Name ATFD LAA FDP
1 addAreaSidesGeometry 8 0 1
2 getAreaOnFloor 7 0 1
3 updateView 6 0 1
4 updateViewPlatformTransform 5 0 1
5 updateWall 4 0 1
6 paintComponent 4 0.43 1
7 computeTransform 5 0.29 1
8 updateShininessRadioButtons 4 0 1
9 propertyChange 7 0.12 1
10 paintRoomNameOffsetIndicator 5 0 1
11 paintRoomAreaOffsetindicator 4 0 1
12 paintWallsOutline 7 0 1
13 paintWallResizelndicator 11 0 1
14 paintPieceOFFurniturelndicators 8 0 1
15 paintDimensionLineResizelndicator 5 0 1
16 paintLabels 0.17 1
17 paintWallAlignmentFeedback 16 0.11 1
18 equalsWallPoint 4 0 1
19 paintDimensionLineAlignmentFeedback 16 0.16 1
20 equalsDimensionLinePoint 4 0 1
21 getPageFormat 7 0 1
22 setBackFaceShown 6 0.4 1
23 getValueAt 5 0.17 1
24 createComponents 6 0 1
25 createComponents 7 0 1

54

Table 4.22 (cont’d)

26 compareCameralLocation 7 1
27 getApplicationOrLibraryUpdateMessage 8 1
28 updateProperties 8 0.2 1
29 storeCamera 9 0.1 1
30 alignPieceOfFurnitureAlongSides 5 0 1
31 doReverseWallsDirection 16 0 1
32 splitSelectedwall 10 0.17 1
33 getReferenceWall 4 0 1
34 adjustPieceOfFurnitureSideBySideAt 37 0.08 1
35 isIntersectionEmpty 10 0 1
36 isIntersectionEmpty 5 0 1
37 joinNewWallEndToWall 4 0 1
38 getPieceOfFurnitureRotatedNameAt 7 0.12 1
39 moveltems 6 0 1
40 moveWallStartPoint 11 0 1
41 moveWallEndPoint 11 0 1
42 reverseDimensionLine 5 0 1
43 doAddWalls 5 0.29 1
44 postWallResize 4 0.2 1
45 postDimensionLineResize 4 0.2 1
46 moveWallPoints 10 0 1
a7 pressMouse 23 0 1
48 setMode 5 0 1
49 setMode 5 0 1
50 moveMouse 4 0.33 1
51 moveMouse 8 0.2 1
52 moveMouse 5 0.44 1
53 setMode 5 0 1
54 enter 5 0.17 1
55 pressMouse 5 0.17 1
56 getDimensionLineAngle 4 0.33 1
57 moveMouse 4 0.2 1
58 setMode 5 0 1
59 moveMouse 4 0.33 1
60 moveMouse 4 0.33 1
61 moveMouse 4 0.33 1
62 moveMouse 4 0.33 1
63 equalswallPoint 4 0 1
64 setMode 6 0 1
65 getWallAnglelnDegrees 10 0 1
66 showWallAngleFeedback 27 0 1

55

We can see from the Table above that there are duplicated methods. These methods
have the same name but they are in different classes. They are overridden methods for
an abstract class ControllerState. The same thing is with setMode () method

and from the same abstract class.

If we compared the results of the ATFD and LAA metrics (FDP is fixed for all) we can
see that when the value of LAA increase (greater than 0.2) the value of ATFD
decreased. But; when it reaches near the zero value the value of ATFD increased.

0 — 0.4

0.2

Max ATFD =8 Max ATFD =8
Min ATFD =4 Min ATFD =4

Figure 4.6 Relation between ATFD and LAA metrics

We selected two other tools to detect Feature Envy methods. These tools are iPlasma
tool [38] and JDeodorant eclipse plugin [47].The number of detected Feature Envy
cases for each tool is available in the following Table.

Table 4.23 Number of detected cases in each tool

Our Approach JDeodorant iPlasma

56

Table 4.24 Results of different tools

Method Name

Our

iPlasma JDeodorant

Is Code

Approach

Smell?

1 addAreaSidesGeometry () v v v v
2 getAreaOnFloor () v v v v
3 updateViewn () v v v v
4 updateViewPlatformTransform () v v v v
5 updateWall () v v X v
6 paintComponent () v X X X
7 computeTransform () v v X v
8 updateShininessRadioButtons () v v X v
9 propertyChange () v v X v/
10 paintRoomNameOffsetIndicator () v v v v
11 paintRoomAreaOffsetindicator () v v v v
12 paintWallsOutline () v v X v
13 paintWallResizelndicator () v v X v
14 paintPieceOFFurniturelndicators () v v X v
15 paintDimensionLineResizelndicator () v v X v
16 paintLabels () v v X v
17 paintWallAlignmentFeedback () v v X v
18 equalsWallPoint () v v v v
19 paintDimensionLineAlignmentFeedback() v v X v
20 equalsDimensionLinePoint() v v v v
21 getPageFormat() v v X v
22 setBackFaceShown() v X X X
23 getValueAt() v v X v
24 createComponents() v v X v
25 createComponents () v v X v
26 compareCameralocation() v v v v
27 getApplicationOrLibraryUpdateMessage() v v X v
28 updateProperties() v v X v
29 storeCamera() v v v v
30 alignPieceOfFurnitureAlongSides() v v v v
31 doReverseWallsDirection() v v X v
32 splitSelectedwWall() v v X v
33 getReferenceWall() v v X v
34 adjustPieceOfFurnitureSideBySideAt() v v X v
35 isIntersectionEmpty() v v v v
36 isIntersectionEmpty() v v v v
37 joinNewWallEndToWall() v v v v
38 getPieceOfFurnitureRotatedNameAt() v v X v
39 moveltems() v v X v
40 moveWallStartPoint() v v X v
41 moveWallEndPoint() v v X v
42 reverseDimensionLine() v v v v
43 doAddWalls() v v v 4
44 postWallResize() v v X 4
45 postDimensionLineResize() v v X v
46 moveWallPoints() v v X v

57

Table 4.24 (cont’d)

47 pressMouse() v v X v
48 setMode() v v X v
49 setMode() v v X v
50 moveMouse() v v X v
51 moveMouse() v v X v
52 moveMouse() v v X v
53 setMode() v v X v
54 enter() v v X v
55 pressMouse() v v X v
56 getDimensionLineAngle() v X v v
57 moveMouse() v v X 4
58 setMode() v v X v
59 moveMouse() v v X v
60 moveMouse() v X X X
61 moveMouse() v X X X
62 moveMouse() v X X X
63 equalsWallPoint() v v v 4
64 setMode() v X X X
65 getWallAngleInDegrees() v v X 4
66 showWallAngleFeedback() v v X v
67 DimensionLine() X X v X
68 getDoorOrWindowShapeAtWalllntersection() X v v v
69 getDoorOrWindowSashShape() X v v v
70 addSelectObjectMenultems() X X v X
71 moveDimensionLinePoint() X X v X
72 getTextureCoordinates() X X v X
73 getSunDirection() X X v X
74 getPieceBoundingRectangleWidth() X v v v
75 getPieceBoundingRectangleHeight() X v v v
76 computeRoomBorderGeometry() X v v v
77 getFurnitureComparator() X X v X
78 toggleCameraSelection() X X v X
79 isPieceOfFurniturePartOfBasePlan() X X v X
80 sortFurniture() X X v X
81 addComponent3DRenderingErrorObserver() X X v X
82 getOptionalLocalizedString() X X v X
83 createNavigationPanel() X X v X
84 setPlanRulersVisible() X X v X
85 cloneHomelnEventDispatchThread() X X v X
86 getOptionalString() X X v X
87 getTextures() X X v X
88 getMinX() X X v X
89 getMaxX() X X v X
90 getMinY () X X v X
91 getMaxY () X X v X
92 getObserverCameraMinimumElevation() X X v X
93 getRoomSideLength() X X v X
94 getRoomSideAngle() X X v X

58

Table 4.24 (cont’d)

95 getPaintedltems() X X v X
96 moveHomeltemsToLevel() X X v X
97 alignPieceOfFurnitureAlongLeftOrRightSides() X v v v
98 updateOpenRecentHomeMenu() X X v X
99 doAddFurniture() X X v X
100 doToggleBackgroundImageVisibility() X X v X
101 isPieceOfFurnitureVisibleAtSelectedLevel() X X v X
102 getDetecTableRoomsAtSelectedLevel() X X v X
103 getDetecTableWallsAtSelectedLevel() X X v X
104 postPieceOfFurnitureWidthAndDepthResize() X v v v
105 selectLevelFromSelectedltems() X X v X
106 computeRoomPartGeometry() X X v X
107 getHeaderRenderer() X X v X
108 createLockUnlockBasePlanButton() X X v X
109 addColorListener() X X v X
110 addlconYawListener() X X v X
111 savePhoto() X X v X
112 deleteLastRecordedCameralLocation() X X v X
113 doDeleteFurniture() X X v X
113 toggleFurnitureSort() X X v X
114 toggleFurnitureVisibleProperty() X X v X
115 writePreferences() X X v X
116 deleteCameras() X X v X
117 doDeleteWalls() X X v X
118 doAddRooms() X X v X
119 doDeleteRooms() X X v X
120 doAddDimensionLines() X X v X
121 doDeleteDimensionLines() X X v X
122 doAddLabels() X X v X
123 doDeleteLabels() X X v X
124 postPieceOfFurnitureHeightResize() X v v v
125 getVisibleltemsAtSelectedLevel() X X v X
126 doDeleteltems() X X v X
127 addSizeL.isteners() X X v X
128 goToCamera() X X v X
129 alignFurnitureSideBySide() X v v v
130 addRooms() X X v X
131 createWall() X X v X
132 selectltems() X X v X
133 addDimensionLines() X X v X
134 addLabels() X X v X

59

We examined and analysed some cases of our detected results as illustrated in this

section.

Looking at our test code (the code of the methods is available in appendix B) we find
the method addAreaSidesGeometry in the class Ground3D is a Feature Envy
candidates. It doesn’t use data from its definition class with LAA equal to zero. The
method invokes much more methods and access fields from the class HomeTexture

than its own class with value of ATFD equal to 8.

We can see another case in our test code. The method
updateViewPlatformTransform isavailable in the class HomeComponent3D.
From our obtained metrics we can see that it is using data of the class Camera more
than its own class with ATFD equal to 5. Also, it doesn’t use any data from the class it

belongs to.

We have another case from our test code. There is a method
adjustPieceOfFurnitureSideBySideAt is allocated in the class
PlanController. It has 37 attributes from the class HomePieceOfFurniture
with ATFD equal to 37, while the number of attributes from its class is equal to 3 with
LAA of 0. 08.

When we analysed the relation between the metrics as shown in Table 4.25, it is so clear
that ATFD and FDP is related positively (their values increase together as a linear
relationship). While the relation between LAA and the other two metrics is negatively
related. That means when the value of LAA metric increases the other two metrics
should be decreased linearly.

Table 4.25 Correlation between metrics

ATFD LAA FDP
ATFD 1
LAA -0.5805 1
FDP 0.709703 | -0.75583 1

60

LAA metric has an important role in the detection of Feature Envy candidates. It is the
ratio of the local data used by the method from its class to the total number of data used
including data from foreign class. We noticed that all methods with LAA equal to zero
are undetectable by JDeodorant plugin, while they are detectable by our approach and
iIPlasma tool. This is a defect point in the use of JDeodorant tool. In other hand, iPlasma
tool detected Feature Envy methods more than the other two approaches, while they
may not be actual Feature Envy instances. The ambiguity of the threshold values is the
main reason for these cases. It used meaningful thresholds and this is not accurate in the
final results. We enhanced this approach by computing numerical threshold values
depending on statistical formula. The comparison with clear values is easier and more

accurate. These values can be set a standard for the future work.
4.3. General Discussion

This thesis work proposes a method for detecting Feature Envy code smell and another
method for detecting Refused Bequest code smell. Code smell detection is challenging
because mapping metrics to code smell symptoms is not always straightforward task.
These mappings can lead to false-negative and false-positive detections. A manual code
review is needed to validate detected code smell instances but manual review can also

miss some true-positive code smell cases.

For the results in Table 4.21 and Table 4.24, we computed the confusion matrices and

we found the accuracy for each tool.

61

Table 4.26 Confusion matrix of our approach results

Actual Refused Bequest

Refused Bequest NOT Refused Bequest

Our Approach | Refused Bequest 5 1
Not Refused Bequest 0 10
Table 4.27 Confusion matrix of ptidej tool results
Actual Refused Bequest
Refused Bequest NOT Refused Bequest
Ptidej Tool Refused Bequest 3 10
Not Refused Bequest 2 1
Table 4.28 Confusion matrix of iPlasma tool results
Actual Refused Bequest
Refused Bequest NOT Refused Bequest
iPlasma Tool Refused Bequest 0 1
Not Refused Bequest 5 10
Table 4.29 Accuracy table of refused bequest results
Our Approach iPlasma Tool Ptidej Tool
Accuracy C0.9375) < 0.625 > 0.25
Recall 1 0 0.6
Miss.Rate 0. 0625 0.375 0.75
Fall out 0.09 0.091 0.91

62

Table 4.30 Confusion matrix of our approach

Actual Feature Envy

Feature Envy

NOT Feature Envy

Our Approach Feature Envy 62 4
Not Feature Envy 9 60
Table 4.31 Confusion matrix of iPlasma tool
Actual Feature Envy
Feature Envy NOT Feature Envy
iPlasma Feature Envy 68 0
Not Feature Envy 3 63
Table 4.32 Confusion matrix of JDeodorant tool
Actual Feature Envy
Feature Envy NOT Feature Envy
JDeodorant Feature Envy 27 TP 60 FP
Not Feature Envy 41 FN 6 TN

Table 4.33 Accuracy table of feature envy results

Our Approach iPlasma Tool JDeodorant Tool
Accuracy 0.91 @ @
Recall 0.873 0. 958 0. 397
Miss.Rate 0. 097 0. 022 0. 754
Fall out 0. 0625 0 0. 909

63

We compared the results in Table 4.32, that our approach has the highest accuracy
among the other tools. Which means it is able to detect the actual Refused Bequest
candidates precisely and with misclassification error equal to 0.0625. Our approach is
more accurate than the other tools .iPlasma tool came at the second place with accuracy
equal to 0.625. It has a high error rate equal to 0.375. The Ptidej tool is the lowest
accuracy with value of 0.25 and with highest error rate value reach to 0.75.

Table 4.33 show us the accuracy for the tools used to detect Feature Envy code smell.
The highest accuracy is for iPlasma tool with value of 0.978. Our approach came in the
second place with accuracy equal to 0.91, while the JDeodorant tool has the lowest
accuracy value equal to 0.246.

For a decisive comparison of different proposals of code smell and anti-pattern
detection, a comprehensive data set is needed but to the best of our knowledge, such a
set has not been documented.

Our proposed code smell detection methods have not been implemented yet as software
tools. After their implementation, more complex software projects can be examined and
further comparison with other code smell detection methods can be done. In their
current states, our methods can identify some code smell instances that are not

identified by other tools as seen in Sections 4.1 and 4.2.

64

CHAPTER 5

CONCLUSION AND FUTURE WORK

Code smell detection is an extremely challenging task, because the available detection
tools do not deal with all types of code smells. That makes the task of assuring high
quality software more difficult for the developers. In this thesis we proposed a metric
based detection technique of Refused Bequest and Feature Envy smells. Only a few
studies had been made to detect Refused Bequest type of code smell. Also, we built a
standard threshold values for the detection of Feature Envy code smell by analyzing six

open source Java projects.

We tried to diagnose Refused Bequest sub-classes by investigating more details about
the symptoms that we can convert to an appropriate metrics. We focused in our study on
the similarity measure between the overriding methods with the original ones and
finding the Average similarity for the sub-class under inspection. This helps us to detect
this type of code smells precisely. In other hand, we used our threshold values to detect
Feature Envy methods. These values are calculated precisely and when we compared
them with actual needs they are acceptable values. The validation of our approach is

based on a Java project of 367 classes.

As a plan for our future work, we will work to detect more code smells and build a fully
automated tool for the analysis and detection processes. After such an implementation,
we will use more complex software for validation. Also, we plan to use other techniques

to find an accurate threshold values and compare the results with the current work.

For the detection of code smells we will investigate the ability to use machine learning

algorithms to detect types of code smell and compare the results with the current work.

65

Our goal is to cooperate with all researchers in this field all over the world to put
standard criteria in the detection of each code smell and build a standard tool able to
analyze, detect and refactor all code smells types in all object oriented programming
languages. Since the first definition of code smell types by Fowler in 1979 until now
there are no standard rules or unified tool to do that. We hope to integrate all these
offers and produce one global tool. That will help the developers to develop and
maintain their software projects in short time and with high quality. This is an important

mission in order to close the folder of such problems.

66

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). Factors in Software
Quality: Concept and Definitions of Software Quality. Rome Air Development
Center, Air Force Systems Command, Griffiss Air Force Base, New York, 1(3).

International Organization for Standardization, and International Electro
Technical Commission. (2001). Software Engineering-Product Quality: Quality
model. ISO/IEC 9126.1.

Henry, S., Humphrey, M., and Lewis, J. (1990)."Evaluation of the
Maintainability of Object-Oriented Software". In Computer and Communication
Systems, 1990 IEEE Region 10 Conference on: pp. 404-409.

Zou, Y. (2005). "Quality Driven Software Migration Of Procedural Code to
Object-Oriented Design. In Software Maintenance”. ICSM'05. Proceedings of
the 21st IEEE International Conference: 709-713.

Shalloway, A., Trott, J. (2004), Design Patterns Explained: A New Perspective
on Object-Oriented Design, 2nd edition, Addison-Wesley.

Lanza, M. and Marinescu, R. (2007). Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer.

Abreu, F. B., and Melo, W. (1996). "Evaluating The Impact of Object-Oriented
Design on Software Quality”. In Software Metrics Symposium, Proceedings of
the 3rd International: 90-99.

Kumar, P., and Singh, S. K. (2016). "A Comprehensive Evaluation of Aspect-
Oriented Software Quality (AOSQ) Model Using Analytic Hierarchy Process
(AHP) Technique”. In Advances in Computing, Communication, and
Automation (ICACCA)(Fall), International Conference: 1-7.

Boehm, B. W., Brown, J. R., and Lipow, M. (1976)."Quantitative Evaluation of
Software Quality”. In Proceedings of the 2nd international conference on
Software Engineering: 592-605.

1ISO25000, http://is025000.com, access date: 24-07-2017 .

Rodriguez, M., and Piattini, M. (2014). "Software Product Quality Evaluation
Using ISO/IEC 25000". ERCIM NEWS: 39-40.

Shaik, A., Manda, B., Prakashini, C., Deepthi, K., and Reddy, C. R. K. (2010).
"Metrics for Object Oriented Design Software Systems: A Survey". Journal of
Emerging Trends in Engineering and Applied Sciences, 1(2): 190-198.

67

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

Yadav, V., and Singh, R. (2012). "Validating Object Oriented Design Quality
Using Software Metrics”. Inat International Conference on Advances in
Electronics, Electrical and Computer Science Engineering-EEC.

R.S.Pressman, (1997).Software Engineering-A Practioners Approach. Fourth
Edition, McGraw Hill International Edition.

Sharma, A., and Dubey, S. K. (2012)."Comparison of Software Quality Metrics
for Object-Oriented Oriented System"”. I1JCSMS International Journal of
Computer Science and Management Studies, 12: 2231 —5268.

Albrecht, A. J., and Gaffney, J. E. (1983). "Software Function, Source Lines of

Code, and Development Effort Prediction: A Software Science Validation™.
IEEE transactions on software engineering, (6): 639-648.

DeMarco, T. (1978).Structured Analysis and System Specification, New York:
Yourdon.

Myers, G. J. (1977). "An Extension to the Cyclomatic Measure of Program
Complexity". ACM Sigplan Notices, 12(10): 61-64.

Henry, S., and Kafura, D. (1981). “Software Structure Metrics Based on
Information Flow". IEEE transactions on Software Engineering, (5): 510-518.

Chidamber, S. R., and Kemerer, C. F. (1994). "A Metrics Suite for Object
Oriented Design". IEEE Transactions on software engineering, 20(6): 476-493.

Fowler, M., and Beck, K. (1999). Refactoring: Improving the Design of EXisting
Code, Addison-Wesley Professional.

N. Moha, Y-G. Gueheneuc, L. Duchien, and A-F. Le Meur, (2010). "DECOR: A
Method for the Specification and Detection of Code and Design Smells”, IEEE
Trans. Software Eng., 36(1): 20-36.

Mens, T., and Tourwé, T. (2004). "A Survey of Software Refactoring”, IEEE
Transaction on Software Engineering, 30(2): 126-139.

Suryanarayana, G., Samarthyam, G., and Sharma, T. (2014). Refactoring for
Software Design Smells: Managing technical debt, Morgan Kaufmann.

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003)." A Taxonomy and an Initial
Empirical Study of Bad Smells in Code". In Software Maintenance, 2003. ICSM
2003. Proceedings. International Conference: 381-384.

Vlissides, J., Helm, R., Johnson, R., and Gamma, E. (1995). Design patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 49(120):11.

Palomba, F., De Lucia, A., Bavota, G., and Oliveto, R. (2015)."Anti-Pattern
Detection: Methods, Challenges, and Open Issues”. Advances in Computers,
95:201-238.

Slinger, S. (2005)."Code Smell Detection in Eclipse”. Delft University of
Technology. Netherlands.

Marinescu, R. (2004)." Detection Strategies: Metrics-Based Rules for Detecting
Design Flaws". Software Maintenance Proceedings. 20th IEEE International
Conference: 350-359.

Mihancea, P. F. (2006). "Towards A Client Driven Characterization of Class
Hierarchies". 14th IEEE International Conference: 285-294.

68

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

Fard, A. M., and Mesbah, A. (2013)." JSNOSE: Detecting JavaScript Code
Smells”. In Source Code Analysis and Manipulation (SCAM), IEEE 13th
International Working Conference: 116-125.

Tourwé, T., and Mens, T. (2003)." Identifying Refactoring Opportunities Using
Logic Meta Programming”. In Software Maintenance and Reengineering.
Proceedings. Seventh European Conference: 91-100.

Ligu, E., Chatzigeorgiou, A., Chaikalis, T., and Ygeionomakis, N. (2013).
"Identification of Refused Bequest Code Smells". In Software Maintenance
(ICSM), 29th IEEE International Conference: 392-395.

Tsantalis, N., and Chatzigeorgiou, A. (2009). "Identification of Move Method
Refactoring Opportunities”. IEEE Transactions on Software Engineering, 35(3):
347-367.

Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013). “Recommending
Move Method Refactorings Using Dependency Sets”. In Reverse Engineering
(WCRE), 20th Working Conference: 232-241.

Oliveto, R., Gethers, M., Bavota, G., Poshyvanyk, D., and De Lucia, A. (2011).
"Identifying Method Friendships to Remove the Feature Envy Bad Smell (NIER
track)". In Proceedings of the 33rd International Conference on Software
Engineering: 820-823.

Dexun, J., Peijun, M., Xiaohong, S., and Tiantian, W. (2012). “Detecting Bad
Smells with Weight Based Distance Metrics Theory". In Instrumentation,
Measurement, Computer, Communication and Control (IMCCC), Second
International Conference: 299-304.

Qualitas Corpus Index: Release (20130901):http://qualitascorpus.
com/docs/cataloque/20130901/corpus-catalogue-evolution.html, access date:; 01-
04-2017.

LOOSE Research Group website, http://www.loose.upt.ro/reengineering, access
date: 07-05-2017.

Kan, S. H. (2002).Metrics and Models in Software Quality Engineering,
Addison-Wesley Longman Publishing.

Bonja, C., and Kidanmariam, E. (2006). "Metrics for Class Cohesion and
Similarity Between Methods". In Proceedings of the 44th annual Southeast
regional conference: 91-95.

Riel, A. J. (1996). Object-Oriented Design Heuristics, Addison-Wesley.

Sweet Home 3D 4.0 releases. http://www.sweethome3d.com/, access date: 12-
08-2017.

Sauer, F. (2013). Eclipse metrics plugin 1.3.6, http://metrics.sourceforge.net/.
Access date: 20-08-2017.

Marinescu, C., Marinescu, R., Mihancea, P. F., and Wettel, R. (2005). “iPlasma:
An Integrated Platform for Quality Assessment of Object-Oriented Design”. In
ICSM (Industrial and Tool Volume).

Ptidej: Pattern Trace Identification, Detection, and Enhancement in Java,
http://www.ptidej.net/tools/. Access date: 28-10-2017.

69

[47] Concordia University, https://users.encs.concordia.ca/~nikolaos/jdeodorant/.
Access date: 07-10-2017.

70

APPENDIX-A

FULL PATH TABLES

The full path Tables of all methods mentioned in chapter 4 are listed in this appendix.

Table -1- Full path of our approach methods results

Method Name

Full Path

addAreaSidesGeometry

com.eteks.sweethome3d.j3d.Ground3D.addAreaSidesGeometry()

getAreaOnFloor

com.eteks.sweethome3d.j3d.ModelManager.getAreaOnFloor()

updateView

com.eteks.sweethome3d.swing.HomeComponent3D.updateView()

updateViewPlatformTransform

com.eteks.sweethome3d.swing. HomeComponent3D.updateViewPlatformTransform()

updateWall

com.eteks.sweethome3d.swing.HomeComponent3D.updateWall(l)

updateShininessRadioButtons

com.eteks.sweethome3d.swing.HomeFurniturePanel.updateShininessRadioButtons()

propertyChange

HomePane.FocusOwnerChangeListener.propertyChange()

paintRoomNameOffsetIndicator

com.eteks.sweethome3d.swing.PlanComponent.paintRoomNameOffsetIndicator()

paintRoomAreaOffsetindicator

com.eteks.sweethome3d.swing.PlanComponent.paintRoomAreaOffsetIndicator()

paintWallsOutline

com.eteks.sweethome3d.swing.PlanComponent.paintWallsOutline()

paintWallResizelndicator

com.eteks.sweethome3d.swing.PlanComponent.paintWallResizelndicator()

paintPieceOFFurniturelndicators

com.eteks.sweethome3d.swing.PlanComponent.paintPieceOFFurniturelndicators()

paintDimensionLineResizelndicator

com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineResizelndicator()

paintLabels

com.eteks.sweethome3d.swing.PlanComponent.paintLabels()

paintWallAlignmentFeedback

com.eteks.sweethome3d.swing.PlanComponent.paintWallAlignmentFeedback()

equalswWallPoint

com.eteks.sweethome3d.swing.PlanComponent.equalsWallPoint()

paintDimensionLineAlignmentFeedback

com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineAlignmentFeedback()

equalsDimensionLinePoint

com.eteks.sweethome3d.swing.PlanComponent.equalsDimensionLinePoint()

getPageFormat com.eteks.sweethome3d.swing.HomePrinTableComponent.getPageFormat()
getValueAt LevelPanel.LevelsTableModel.getValueAt()

createComponents com.eteks.sweethome3d.swing.PhotoSize AndQualityPanel.createComponents()
createComponents com.eteks.sweethome3d.swing.RoomPanel.createComponents()

compareCameralocation

com.eteks.sweethome3d.swing.VideoPanel.compareCameraLocation()

getApplicationOrLibraryUpdateMessage

com.eteks.sweethome3d.viewcontroller.HomeController.getApplicationOrLibraryUpdateMessage()

storeCamera

com.eteks.sweethome3d.viewcontroller. HomeController3D.storeCamera()

alignPieceOfFurnitureAlongSides

com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurnitureAlongSides()

71

Table -1- (cont'd)

doReverseWallsDirection

com.eteks.sweethome3d.viewcontroller.PlanController.doReverseWallsDirection()

splitSelectedWall

com.eteks.sweethome3d.viewcontroller.PlanController.splitSelectedWall()

getReferenceWall

com.eteks.sweethome3d.viewcontroller.PlanController.getReferenceWall()

adjustPieceOfFurnitureSideBySide At

com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureSideBySideAt()

isIntersectionEmpty

com.eteks.sweethome3d.viewcontroller.PlanController.isintersectionEmpty()

isIntersectionEmpty

com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

joinNewWallEndToWall

com.eteks.sweethome3d.viewcontroller.PlanController.joinNewWallEndToWall()

getPieceOfFurnitureRotatedNameAt

com.eteks.sweethome3d.viewcontroller.PlanController.getPieceOfFurnitureRotatedNameAt()

moveltems

com.eteks.sweethome3d.viewcontroller.PlanController.moveltems()

moveWallStartPoint

com.eteks.sweethome3d.viewcontroller.PlanController.moveWallStartPoint()

moveWallEndPoint

com.eteks.sweethome3d.viewcontroller.PlanController.moveWallEndPoint()

reverseDimensionLine

com.eteks.sweethome3d.viewcontroller.PlanController.reverseDimensionLine()

moveWallPoints

com.eteks.sweethome3d.viewcontroller.WallController.moveWallPoints()

pressMouse PlanController.SelectionState.pressMouse()

setMode PlanController.PanningState.setMode()

setMode PlanController.WallDrawingState.setMode()

setMode PlanController.DimensionLineDrawingState.setMode()
enter PlanController.DimensionLineDrawingState.enter()
pressMouse PlanController.DimensionLineDrawingState.pressMouse()
setMode PlanController. RoomDrawingState.setMode()

equalswWallPoint

PlanController.WallPointWithAngleMagnetism.equalsWallPoint()

setMode

PlanController.AbstractModeChangeState.setMode()

getWallAnglelnDegrees

PlanController. AbstractWallState.getWallAngleInDegrees()

showWallAngleFeedback

PlanController.AbstractWallState.showWallAngleFeedback()

72

Table -2- Full path of iPlasma methods results

Method Name

Full Path

addAreaSidesGeometry

com.eteks.sweethome3d.j3d.Ground3D.addAreaSidesGeometry()

getAreaOnFloor

com.eteks.sweethome3d.j3d.ModelManager.getAreaOnFloor()

computeRoomBorderGeometry

com.eteks.sweethome3d.j3d.Room3D.computeRoomBorderGeometry()

updateView

com.eteks.sweethome3d.swing.HomeComponent3D.updateView()

updateViewPlatformTransform

com.eteks.sweethome3d.swing.HomeComponent3D.updateViewPlatformTransform()

updateWall

com.eteks.sweethome3d.swing.HomeComponent3D.updateWall()

addShadowOnFloor

com.eteks.sweethome3d.swing.HomeComponent3D.addShadowOnFloor()

createActions

com.eteks.sweethome3d.swing.HomePane.createActions()

createTransferHandlers

com.eteks.sweethome3d.swing.HomePane.createTransferHandlers()

createlmportModifyBackgroundIlmageAction

com.eteks.sweethome3d.swing.HomePane.createlmportModifyBackgroundimageAction()

createHideShowBackgroundImageAction

com.eteks.sweethome3d.swing.HomePane.createHideShowBackgroundlmageAction()

propertyChange

FurnitureCatalogL istPanel.PreferencesChangeListener.propertyChange()

getToolTipText

com.eteks.sweethome3d.swing.FurnitureCatalogTree.getTool TipText()

moveCamera

HomeComponent3D.Cameralnterpolator.moveCamera()

computeTransform

HomeComponent3D.Cameralnterpolator.computeTransform()

updateShininessRadioButtons

com.eteks.sweethome3d.swing.HomeFurniturePanel.updateShininessRadioButtons()

propertyChange

HomePane.FocusOwnerChangeL.istener.propertyChange()

print

com.eteks.sweethome3d.swing.PlanComponent.print()

paintRoomsNameAndArea

com.eteks.sweethome3d.swing.PlanComponent.paintRoomsNameAndArea()

paintRoomNameOffsetIndicator

com.eteks.sweethome3d.swing.PlanComponent.paintRoomNameOffsetIndicator()

paintRoomAreaOffsetIndicator

com.eteks.sweethome3d.swing.PlanComponent.paintRoomAreaOffsetindicator()

paintWallsOutline

com.eteks.sweethome3d.swing.PlanComponent.paintWallsOutline()

paintWallResizelndicator

com.eteks.sweethome3d.swing.PlanComponent.paintWallResizelndicator()

getWallAreas

com.eteks.sweethome3d.swing.PlanComponent.getWallAreas()

getDoorOrWindowShapeAtWalllntersection

com.eteks.sweethome3d.swing.PlanComponent.getDoorOrWindowShape AtWallIntersection()

getDoorOrWindowSashShape

com.eteks.sweethome3d.swing.PlanComponent.getDoorOrWindowSashShape()

paintFurnitureName

com.eteks.sweethome3d.swing.PlanComponent.paintFurnitureName()

paintPieceOfFurniturelcon

com.eteks.sweethome3d.swing.PlanComponent.paintPieceOfFurniturelcon()

paintPieceOFFurniturelndicators

com.eteks.sweethome3d.swing.PlanComponent.paintPieceOFFurniturelndicators()

paintDimensionLines

com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLines()

paintDimensionLineResizelndicator

com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineResizelndicator()

paintLabels

com.eteks.sweethome3d.swing.PlanComponent.paintLabels()

paintCompass

com.eteks.sweethome3d.swing.PlanComponent.paintCompass()

paintCompassOutline

com.eteks.sweethome3d.swing.PlanComponent.paintCompassOutline()

paintWallAlignmentFeedback

com.eteks.sweethome3d.swing.PlanComponent.paintWallAlignmentFeedback()

equalswWallPoint

com.eteks.sweethome3d.swing.PlanComponent.equalsWallPoint()

paintDimensionLineAlignmentFeedback

com.eteks.sweethome3d.swing.PlanComponent.paintDimensionLineAlignmentFeedback()

equalsDimensionLinePoint

com.eteks.sweethome3d.swing.PlanComponent.equalsDimensionLinePoint()

paintCamera

com.eteks.sweethome3d.swing.PlanComponent.paintCamera()

getPageFormat com.eteks.sweethome3d.swing.HomePrinTableComponent.getPageFormat()
getValueAt LevelPanel.LevelsTableModel.getValueAt()

setMaterial At ModelMaterialsPanel.MaterialsListModel.setMaterial At()

createComponents com.eteks.sweethome3d.swing.PhotoSizeAndQualityPanel.createComponents()

showWallAngleFeedback

PlanController.AbstractWallState.showWallAngleFeedback()

73

Table-2- (cont'd)

createComponents

com.eteks.sweethome3d.swing.RoomPanel.createComponents()

collectionChanged

TexturePanel. TexturesCatalogListener.collectionChanged()

createComponents

com.eteks.sweethome3d.swing.UserPreferencesPanel.createComponents()

compareCameralocation

com.eteks.sweethome3d.swing.VideoPanel.compareCameraLocation()

getVideoFramesPath

com.eteks.sweethome3d.swing.VideoPanel.getVideoFramesPath()

enableDefaultActions

com.eteks.sweethome3d.viewcontroller.HomeController.enableDefaultActions()

addNotUndoableModificationListeners

com.eteks.sweethome3d.viewcontroller.HomeController.addNotUndoableModificationListeners()

getApplicationOrLibraryUpdateMessage

com.eteks.sweethome3d.viewcontroller.HomeController.getApplicationOrLibraryUpdateMessage()

updateProperties com.eteks.sweethome3d.viewcontroller.UserPreferencesController.updateProperties()
storeCamera com.eteks.sweethome3d.viewcontroller.HomeController3D.storeCamera(java.lang.String)
updateProperties com.eteks.sweethome3d.viewcontroller.CompassController.updateProperties()

alignFurnitureSideBySide

com.eteks.sweethome3d.viewcontroller.FurnitureController.alignFurnitureSideBySide()

alignPieceOfFurnitureAlongSides

com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurniture AlongSides()

alignPieceOfFurnitureAlongLeftOrRightSides

com.eteks.sweethome3d.viewcontroller.FurnitureController.alignPieceOfFurnitureAlongLeftOrRightSides()

getPieceBoundingRectangleWidth

com.eteks.sweethome3d.viewcontroller.FurnitureController.getPieceBoundingRectangleWidth()

getPieceBoundingRectangleHeight

com.eteks.sweethome3d.viewcontroller.FurnitureController.getPieceBoundingRectangleHeight()

undoAlignFurniture

com.eteks.sweethome3d.viewcontroller.FurnitureController.undoAlignFurniture()

updateProperties

com.eteks.sweethome3d.viewcontroller.Home3DAttributesController.updateProperties()

doReverseWallsDirection

com.eteks.sweethome3d.viewcontroller.PlanController.doReverseWallsDirection()

splitSelectedWall

com.eteks.sweethome3d.viewcontroller.PlanController.splitSelectedWall()

getReferenceWall

com.eteks.sweethome3d.viewcontroller.PlanController.getReferenceWall()

getDimensionLinesAlongWall

com.eteks.sweethome3d.viewcontroller.PlanController.getDimensionLinesAlongWall()

adjustPieceOfFurnitureElevation

com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureElevation()

adjustPieceOfFurnitureSideBySide At

com.eteks.sweethome3d.viewcontroller.PlanController.adjustPieceOfFurnitureSideBySide At()

isIntersectionEmpty

com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

isIntersectionEmpty

com.eteks.sweethome3d.viewcontroller.PlanController.isIntersectionEmpty()

joinNewWallEndToWall

com.eteks.sweethome3d.viewcontroller.PlanController.joinNewWall[EndToWall()

getRoomRotatedNameAt

com.eteks.sweethome3d.viewcontroller.PlanController.getRoomRotatedNameAt()

getPieceOfFurnitureRotatedNameAt

com.eteks.sweethome3d.viewcontroller.PlanController.getPieceOfFurnitureRotatedNameAt()

getRotatedLabel At

com.eteks.sweethome3d.viewcontroller.PlanController.getRotatedLabel At()

moveltems

com.eteks.sweethome3d.viewcontroller.PlanController.moveltems()

moveWallStartPoint

com.eteks.sweethome3d.viewcontroller.PlanController.moveWallStartPoint()

moveWallEndPoint

com.eteks.sweethome3d.viewcontroller.PlanController.moveWallEndPoint()

reverseDimensionL.ine

com.eteks.sweethome3d.viewcontroller.PlanController.reverseDimensionLine()

doAddWalls

com.eteks.sweethome3d.viewcontroller.PlanController.doAddWalls()

postPieceOfFurnitureMove

com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureMove()

postWallResize

com.eteks.sweethome3d.viewcontroller.PlanController.postWallResize()

postPieceOfFurnitureHeightResize

com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureHeightResize()

postPieceOfFurnitureWidthAndDepthResize

com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureWidthAndDepthResize()

postPieceOfFurnitureResize

com.eteks.sweethome3d.viewcontroller.PlanController.postPieceOfFurnitureResize()

postDimensionLineResize

com.eteks.sweethome3d.viewcontroller.PlanController.postDimensionLineResize()

updateProperties

com.eteks.sweethome3d.viewcontroller.LevelController.updateProperties()

updateProperties

com.eteks.sweethome3d.viewcontroller. AbstractPhotoController.updateProperties()

moveWallPoints

com.eteks.sweethome3d.viewcontroller.WallController.moveWallPoints()

74

Table-2- (cont'd)

moveCamera

HomeController3D.ObserverCameraState.moveCamera()

updateAerialViewBounds

HomeController3D.TopCameraState.updateAerial ViewBounds()

enter

PlanController.SelectionState.enter()

pressMouse

PlanController.SelectionState.pressMouse()

toggleMagnetism

PlanController.SelectionMoveState.toggleMagnetism()

enter PlanController.RectangleSelectionState.enter()
setMode PlanController.PanningState.setMode()
enter PlanController.DragAndDropState.enter()

toggleMagnetism

PlanController.WallCreationState.toggleMagnetism()

setMode

PlanController.WallDrawingState.setMode()

toggleMagnetism

PlanController.WallDrawingState.toggleMagnetism()

toggleMagnetism

PlanController.WallResizeState.toggleMagnetism()

enter

PlanController.PieceOfFurnitureRotationState.enter()

toggleMagnetism

PlanController.PieceOfFurnitureRotationState.toggleMagnetism()

enter

PlanController.PieceOfFurnitureElevationState.enter()

moveMouse

PlanController.PieceOfFurnitureElevationState.moveMouse()

toggleMagnetism

PlanController.PieceOfFurnitureElevationState.toggleMagnetism()

enter

PlanController.PieceOfFurnitureHeightState.enter()

toggleMagnetism

PlanController.PieceOfFurnitureHeightState.toggleMagnetism()

enter

PlanController.PieceOfFurnitureResizeState.enter()

toggleMagnetism

PlanController.PieceOfFurnitureResizeState.toggleMagnetism()

enter

PlanController.LightPowerModificationState.enter()

moveMouse

PlanController.PieceOfFurnitureNameRotationState. moveMouse()

toggleMagnetism

PlanController.PieceOfFurnitureNameRotationState.toggleMagnetism()

enter PlanController.CameraPitchRotationState.enter()
moveMouse PlanController.CameraPitchRotationState.moveMouse()
enter PlanController.CameraElevationState.enter()

toggleMagnetism

PlanController.DimensionLineCreationState.toggleMagnetism()

setMode PlanController.DimensionLineDrawingState.setMode(e)
enter PlanController.DimensionLineDrawingState.enter()
pressMouse PlanController.DimensionLineDrawingState.pressMouse()

toggleMagnetism

PlanController.DimensionLineDrawingState.toggleMagnetism()

enter

PlanController.DimensionLineResizeState.enter()

toggleMagnetism

PlanController.DimensionLineResizeState.toggleMagnetism()

moveMouse

PlanController.DimensionLineOffsetState.moveMouse()

toggleMagnetism

PlanController.RoomCreationState.toggleMagnetism()

setMode

PlanController.RoomDrawingState.setMode()

toggleMagnetism

PlanController. RoomDrawingState.toggleMagnetism()

toggleMagnetism

PlanController.RoomResizeState.toggleMagnetism()

toggleMagnetism

PlanController.RoomAreaRotationState.toggleMagnetism()

toggleMagnetism

PlanController.RoomNameRotationState.toggleMagnetism()

toggleMagnetism

PlanController.LabelRotationState.toggleMagnetism()

enter

PlanController.CompassRotationState.enter()

enter

PlanController.CompassResizeState.enter()

equalsWallPoint

PlanController.WallPointWithAngleMagnetism.equalsWallPoint()

75

Table-2- (cont'd)

setMode PlanController.AbstractModeChangeState.setMode()
deleteSelection PlanController.AbstractModeChangeState.deleteSelection()
getWallAngleInDegrees PlanController. AbstractWallState.getWallAngleInDegrees()

76

Table -3- Full path of JDeodorant tool methods results

Method Name

Full Path

reverseDimensionLine()

com.eteks.sweethome3d.viewcontroller.PlanController::reverseDimensionLine()

joinNewWallEndToWall()

com.eteks.sweethome3d.viewcontroller.PlanController::joinNewWallEndToWall()

getDoorOrWindowShapeAtWalllntersection()

com.eteks.sweethome3d.swing.PlanComponent::getDoorOrWindowShapeAtWallIntersection()

compareCameralLocation()

com.eteks.sweethome3d.swing.VideoPanel::compareCameraLocation()

getDoorOrWindowSashShape()

com.eteks.sweethome3d.swing.PlanComponent::getDoorOrWindowSashShape()

addSelectObjectMenultems()

com.eteks.sweethome3d.swing.HomePane::addSelectObjectMenultems()

equalswWallPoint()

com.eteks.sweethome3d.swing.PlanComponent::equalsWallPoint()

equalsDimensionLinePoint()

com.eteks.sweethome3d.swing.PlanComponent::equalsDimensionLinePoint()

moveDimensionLinePoint()

com.eteks.sweethome3d.viewcontroller.PlanController::moveDimensionLinePoint()

equalsWallPoint()

com.eteks.sweethome3d.viewcontroller.PlanController.WallPointWithAngleMagnetism::equalsWallPoint()

getTextureCoordinates()

com.eteks.sweethome3d.j3d.HomePieceOfFurniture3D::getTextureCoordinates()

getSunDirection()

com.eteks.sweethome3d.j3d.PhotoRenderer::getSunDirection()

getPieceBoundingRectangleWidth()

com.eteks.sweethome3d.viewcontroller. FurnitureController::getPieceBoundingRectangleWidth()

getPieceBoundingRectangleHeight()

com.eteks.sweethome3d.viewcontroller.FurnitureController::getPieceBoundingRectangleHeight()

addAreaSidesGeometry()

com.eteks.sweethome3d.j3d.Ground3D::addAreaSidesGeometry()

computeRoomBorderGeometry()

com.eteks.sweethome3d.j3d.Room3D::computeRoomBorderGeometry()

getFurnitureComparator()

com.eteks.sweethome3d.swing.Furniture Table.FurnitureTreeTableModel::getFurnitureComparator()

toggleCameraSelection()

com.eteks.sweethome3d.swing.PhotosPanel::toggleCameraSelection()

isPieceOfFurniturePartOfBasePlan()

com.eteks.sweethome3d.viewcontroller. FurnitureController::isPieceOfFurniturePartOfBasePlan()

sortFurniture()

com.eteks.sweethome3d.viewcontroller.FurnitureController::sortFurniture()

addComponent3DRenderingErrorObserver()

com.eteks.sweethome3d.applet.ViewerHelper::addComponent3DRenderingErrorObserver()

getOptionalLocalizedString()

com.eteks.sweethome3d.io.DefaultUserPreferences::getOptional LocalizedString()

createNavigationPanel()

com.eteks.sweethome3d.swing.HomeComponent3D::createNavigationPanel()

setPlanRulersVisible()

com.eteks.sweethome3d.swing.HomePane::setPlanRulersVisible()

cloneHomelnEventDispatchThread()

com.eteks.sweethome3d.swing.HomePane::cloneHomelnEventDispatchThread()

getOptionalString()

com.eteks.sweethome3d.swing.ResourceAction::getOptionalString()

getTextures() com.eteks.sweethome3d.swing. TextureChoiceComponent. TexturePanel::getTextures()
getMinX() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMinX()
getMaxX() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMaxX()
getMinY() com.eteks.sweethome3d.viewcontroller.FurnitureController::getMinY/()
getMaxY () com.eteks.sweethome3d.viewcontroller.FurnitureController::getMaxY ()

getObserverCameraMinimumElevation()

com.eteks.sweethome3d.viewcontroller.HomeController3D::getObserverCameraMinimumElevation()

getRoomSideLength()

com.eteks.sweethome3d.viewcontroller.PlanController. AbstractRoomState::getRoomSideLength()

getRoomSideAngle()

com.eteks.sweethome3d.viewcontroller.PlanController. AbstractRoomState::getRoomSideAngle()

getPaintedltems()

com.eteks.sweethome3d.swing.PlanComponent::getPaintedltems()

isIntersectionEmpty()

com.eteks.sweethome3d.viewcontroller.PlanController::isIntersectionEmpty()

moveHomeltemsToLevel()

com.eteks.sweethome3d.viewcontroller.PlanController::moveHomeltemsToLevel()

getDimensionLineAngle()

com.eteks.sweethome3d.viewcontroller.PlanController.DimensionLineResizeState::getDimensionLineAngle()

sortFurniture()

com.eteks.sweethome3d.viewcontroller.FurnitureController::sortFurniture()

alignPieceOfFurnitureAlongLeftOrRightSides()

com.eteks.sweethome3d.viewcontroller.FurnitureController::alignPieceOfFurnitureAlongLeftOrRightSides()

updateOpenRecentHomeMenu()

com.eteks.sweethome3d.swing.HomePane::updateOpenRecentHomeMenu()

77

Table -3- (cont'd)

doAddFurniture()

com.eteks.sweethome3d.viewcontroller.FurnitureController::doAddFurniture()

doToggleBackgroundimageVisibility()

com.eteks.sweethome3d.viewcontroller.HomeController::doToggleBackgroundimageVisibility()

storeCamera(java.lang.String)

com.eteks.sweethome3d.viewcontroller.HomeController3D::storeCamera(java.lang.String)

isPieceOfFurnitureVisibleAtSelectedLev
el()

com.eteks.sweethome3d.viewcontroller.PlanController::isPieceOfFurnitureVisibleAtSelectedLevel()

getDetecTableRoomsAtSelectedLevel()

com.eteks.sweethome3d.viewcontroller.PlanController::getDetecTableRoomsAtSelectedLevel()

getDetecTableWallsAtSelectedLevel()

com.eteks.sweethome3d.viewcontroller.PlanController::getDetecTableWallsAtSelectedLevel()

postPieceOfFurnitureWidthAndDepthRe
size()

com.eteks.sweethome3d.viewcontroller.PlanController::postPieceOfFurnitureWidthAndDepthResize()

selectLevelFromSelectedltems()

com.eteks.sweethome3d.viewcontroller.PlanController::selectLevelFromSelectedltems()

computeRoomPartGeometry()

com.eteks.sweethome3d.j3d.Room3D::computeRoomPartGeometry()

getHeaderRenderer()

com.eteks.sweethome3d.swing.Furniture Table.FurnitureTableColumnModel::getHeaderRenderer()

createLockUnlockBasePlanButton()

com.eteks.sweethome3d.swing.HomePane::createLockUnlockBasePlanButton()

addColorListener()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel. AbstractModelPreviewComponent::addCol
orListener()

addlconYawListener()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel. AbstractModelPreviewComponent::addlco
nYawListener()

savePhoto()

com.eteks.sweethome3d.swing.PhotosPanel::savePhoto()

deleteLastRecordedCameraLocation()

com.eteks.sweethome3d.swing.VideoPanel::deleteLastRecordedCameraLocation()

doDeleteFurniture()

com.eteks.sweethome3d.viewcontroller.FurnitureController::doDeleteFurniture()

toggleFurnitureSort()

com.eteks.sweethome3d.viewcontroller.FurnitureController::toggleFurnitureSort()

toggleFurnitureVisibleProperty()

com.eteks.sweethome3d.viewcontroller.FurnitureController::toggleFurnitureVisibleProperty()

writePreferences()

com.eteks.sweethome3d.viewcontroller.HomeController.UserPreferencesChangeListener::writePreferences()

deleteCameras()

com.eteks.sweethome3d.viewcontroller.HomeController3D::deleteCameras()

doAddWalls()

com.eteks.sweethome3d.viewcontroller.PlanController::doAddWalls()

doDeleteWalls()

com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteWalls()

doAddRooms()

com.eteks.sweethome3d.viewcontroller.PlanController::doAddRooms()

doDeleteRooms()

com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteRooms()

doAddDimensionLines()

com.eteks.sweethome3d.viewcontroller.PlanController::doAddDimensionLines()

doDeleteDimensionLines()

com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteDimensionLines()

doAddLabels()

com.eteks.sweethome3d.viewcontroller.PlanController::doAddLabels()

doDeleteLabels()

com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteLabels()

postPieceOfFurnitureHeightResize()

com.eteks.sweethome3d.viewcontroller.PlanController::postPieceOfFurnitureHeightResize()

paintRoomAreaOffsetIndicator()

com.eteks.sweethome3d.swing.PlanComponent::paintRoomAreaOffsetIndicator()

paintRoomNameOffsetindicator()

com.eteks.sweethome3d.swing.PlanComponent::paintRoomNameOffsetIndicator()

getAreaOnFloor()

com.eteks.sweethome3d.j3d.ModelManager::getAreaOnFloor()

getVisibleltemsAtSelectedLevel()

com.eteks.sweethome3d.viewcontroller.PlanController::getVisibleltemsAtSelectedLevel()

doDeleteltems()

com.eteks.sweethome3d.viewcontroller.PlanController::doDeleteltems()

addSizeL isteners()

com.eteks.sweethome3d.swing.ImportedFurnitureWizardStepsPanel. AbstractModelPreviewComponent::addSiz
eListeners()

updateViewPlatformTransform()

com.eteks.sweethome3d.swing.HomeComponent3D::updateViewPlatformTransform()

goToCamera()

com.eteks.sweethome3d.viewcontroller.HomeController3D::goToCamera()

updateView()

com.eteks.sweethome3d.swing.HomeComponent3D::updateView()

alignFurnitureSideBySide()

com.eteks.sweethome3d.viewcontroller.FurnitureController::alignFurnitureSideBySide()

alignPieceOfFurnitureAlongSides()

com.eteks.sweethome3d.viewcontroller.FurnitureController::alignPieceOfFurnitureAlongSides()

addRooms()

com.eteks.sweethome3d.viewcontroller.PlanController::addRooms()

createWall()

com.eteks.sweethome3d.viewcontroller.PlanController::createWall()

selectltems()

com.eteks.sweethome3d.viewcontroller.PlanController::selectltems()

78

Table -3- (cont'd)

addWalls() com.eteks.sweethome3d.viewcontroller.PlanController::addWalls()
addDimensionLines() com.eteks.sweethome3d.viewcontroller.PlanController::addDimensionLines()
addLabels() com.eteks.sweethome3d.viewcontroller.PlanController::addLabels()

79

APPENDIX-B

CODE LISTING

In this part of the thesis we are listing the actual code of the methods under the test.
These methods are indicated as Feature Envy instances by our approach and explained

in chapter 4 section 2.

private void addAreaSidesGeometry(Shape3D groundShape,
HomeTexture groundTexture,
float [][] areaPoints,
float elevation,
float sideHeight) {

Point3f [] geometryCoords = new Point3f [areaPoints.length * 4];

int [] stripCounts = new int [areaPoints.length];

int [] contourCounts = new int [stripCounts.length];

TexCoord2f [] geometryTextureCoords = groundTexture != null

? new TexCoord2f [geometryCoords.length]

: null;

Arrays.fill(stripCounts, 4);

Arrays.fill(contourCounts, 1);

for (int 1 = 9, j = @; 1 < areaPoints.length; i++) {

float [] point = areaPoints [i];

float [] nextPoint = areaPoints [i < areaPoints.length - 1 ? i +
1:09];

geometryCoords [j++] = new Point3f(point [@], elevation, point
[11);
geometryCoords [j++] = new Point3f(point [@], elevation +

sideHeight, point [1]);

80

geometryCoords [j++] = new Point3f(nextPoint [@], elevation +
sideHeight, nextPoint [1]);

geometryCoords [j++] = new Point3f(nextPoint [@], elevation,
nextPoint [1]);

if (groundTexture != null) {

float distance = (float)Point2D.distance(point [@], point [1],
nextPoint [@], nextPoint [1]);

geometryTextureCoords [j - 4] = new TexCoord2f(point [©] /
groundTexture.getWidth(), elevation /
groundTexture.getHeight());

geometryTextureCoords [j - 3] = new TexCoord2f(point [@0] /
groundTexture.getWidth(), (elevation + sideHeight) /
groundTexture.getHeight());

geometryTextureCoords [j - 2] = new TexCoord2f((point [@] -
distance) / groundTexture.getWidth(), (elevation + sideHeight) /
groundTexture.getHeight());

geometryTextureCoords [j - 1] = new TexCoord2f((point [@] -
distance) / groundTexture.getWidth(), elevation /
groundTexture.getHeight());

}

}

private void updateViewPlatformTransform(TransformGroup

viewPlatformTransform,Camera camera,boolean updateWithAnimation

) {
if (updateWithAnimation) {

// Get the camera interpolator

Cameralnterpolator cameralnterpolator =
(CameralInterpolator)viewPlatformTransform.getChild(viewPlatformT
ransform.numChildren() - 1);

cameralnterpolator.moveCamera(camera);
} else {
Transform3D transform = new Transform3D();

updateViewPlatformTransform(transform, camera.getX(),
camera.getY(),

camera.getZ(), camera.getYaw(), camera.getPitch());

viewPlatformTransform.setTransform(transform);

}

clearPrintedImageCache();

}

81

private HomePieceOfFurniture
adjustPieceOfFurnitureSideBySideAt (HomePieceOfFurniture piece,

boolean forceOrientation, Wall magnetWall) {
float [][] piecePoints = piece.getPoints();
Area pieceArea = new Area(getPath(piecePoints));

boolean doorOrWindowBoundToWall = piece instanceof
HomeDoorOrWindow && ((HomeDoorOrWindow)piece).isBoundToWall();

float pieceElevation = piece.getGroundElevation();
float margin = 2 * PIXEL_MARGIN / getScale();
BasicStroke stroke = new BasicStroke(margin);
HomePieceOfFurniture referencePiece = null;

Area intersectionWithReferencePieceArea = null;
float intersectionWithReferencePieceSurface = 0;
float [][] referencePiecePoints = null;

for (HomePieceOfFurniture homePiece : this.home.getFurniture())

{

float homePieceElevation = homePiece.getGroundElevation();

if (homePiece I= piece &&
isPieceOfFurnitureVisibleAtSelectedLevel (homePiece)

&& pieceElevation < homePieceElevation + homePiece.getHeight()
&& pieceElevation + piece.getHeight() > homePieceElevation

&& (!doorOrWindowBoundToWall

// Ignore other furniture for doors and windows bound to a wall
| | homePiece.isDoorOrWindow())) {

float [][] points = homePiece.getPoints();

GeneralPath path = getPath(points);

Area marginArea;

if (doorOrWindowBoundToWall && homePiece.isDoorOrWindow()) {

marginArea = new Area(stroke.createStrokedShape(new
Line2D.Float(points [1][@], points [1][1], points [2][@],
points [2][1])));

marginArea.add(new Area(stroke.createStrokedShape(new
Line2D.Float(points [3][@], points [3][1], points [@][@], points

[e]1[11))));

} else { marginArea =
this.furnitureSidesCache.get(homePiece);

if (marginArea == null) {

82

marginArea = new Area(stroke.createStrokedShape(path));
this.furnitureSidesCache.put(homePiece, marginArea);

} }

Area intersection = new Area(marginArea);
intersection.intersect(pieceArea);

if (lintersection.isEmpty()) {

Area exclusiveOr = new Area(pieceArea);
exclusiveOr.exclusiveOr(intersection);

if (exclusiveOr.isSingular()) {

Area insideArea = new Area(path);
insideArea.subtract(marginArea);
insideArea.intersect(pieceArea);

if (insideArea.isEmpty()) {

float surface = getArea(intersection);

if (surface > intersectionWithReferencePieceSurface) {
intersectionWithReferencePieceSurface = surface;
referencePiece = homePiece;

referencePiecePoints = points;

intersectionWithReferencePieceArea = intersection;

S = T S

if (referencePiece != null) {
boolean alignedOnReferencePieceFrontOrBackSide;

if (doorOrWindowBoundToWall && referencePiece.isDoorOrWindow())

{

alignedOnReferencePieceFrontOrBackSide = false;

}

else

{

GeneralPath referencePiecelargerBoundingBox =
getRotatedRectangle(referenePiece.getX() -
referencePiece.getWidth(),

83

referencePiece.getY() - referencePiece.getDepth(),
referencePiece.getWidth() * 2, referencePiece.getDepth() *
2,referencePiece.getAngle());

float (1] pathPoints =
getPathPoints(referencePiecelLargerBoundingBox, false);

alignedOnReferencePieceFrontOrBackSide =
isArealLargerOnFrontOrBackSide(intersectionWithReferencePieceArea
, pathPoints);

}

if (forceOrientation)

{

piece.setAngle(referencePiece.getAngle());

}

Shape pieceBoundingBox = getRotatedRectangle(0, 9,
piece.getWidth(), piece.getDepth(), piece.getAngle() -
referencePiece.getAngle());

float deltaX = 0; float deltaY = 0;

if (!alignedOnReferencePieceFrontOrBackSide) {

Line2D centerLine = new Line2D.Float(referencePiece.getX(),
referencePiece.getY(), (referencePiecePoints [0][@] +
referencePiecePoints [1][@]) / 2, (referencePiecePoints [©][1] +
referencePiecePoints [1][1]) / 2);

double rotatedBoundingBoxWidth =
pieceBoundingBox.getBounds2D().getWidth();

double distance = centerLine.relativeCCW(piece.getX(),
piece.getY())* (-referencePiece.getWidth() / 2 +
centerLine.ptLineDist(piece.getX(), piece.getY()) -
rotatedBoundingBoxWidth / 2);

deltaX = (float) (distance *
Math.cos(referencePiece.getAngle()));

deltay = (float) (distance *
Math.sin(referencePiece.getAngle()));

}

else

{

Line2D centerLine = new Line2D.Float(referencePiece.getX(),

referencePiece.getY(),

(referencePiecePoints [2][@] + referencePiecePoints [1][0]) / 2,
(referencePiecePoints [2][1] + referencePiecePoints [1][1]) /

2);

84

double rotatedBoundingBoxDepth =
pieceBoundingBox.getBounds2D().getHeight();

double distance = centerLine.relativeCCW(piece.getX(),
piece.getY())* (-referencePiece.getDepth() / 2 +
centerLine.ptLineDist(piece.getX(), piece.getY()) -
rotatedBoundingBoxDepth / 2);

deltaX = (float) (-distance *
Math.sin(referencePiece.getAngle()));

deltaY = (float)(distance *

Math.cos(referencePiece.getAngle()));
if (!isIntersectionEmpty(piece, magnetWall, deltaX, deltaY)) {
deltaX = deltaY = 0;

}
}

if (!isIntersectionEmpty(piece, referencePiece, deltaX, deltaY))

{
piece.move(deltaX, deltaY);

return referencePiece;

} else

{

if (forceOrientation)

{ piecePoints = piece.getPoints(); }

boolean alignedOnPieceFrontOrBackSide =

isArealLargerOnFrontOrBackSide(intersectionWithReferencePieceArea
, piecePoints);

Shape referencePieceBoundingBox = getRotatedRectangle(0, 0,
referencePiece.getWidth(), referencePiece.getDepth(),
referencePiece.getAngle() - piece.getAngle());

if (!alignedOnPieceFrontOrBackSide) {

// Search the distance required to align piece on its left or
right side

Line2D centerlLine = new Line2D.Float(piece.getX(), piece.getY(),

(piecePoints [@][@] + piecePoints [1][@0]) / 2, (piecePoints
[0][1] + piecePoints [1][1]) / 2);

double rotatedBoundingBoxWidth =
referencePieceBoundingBox.getBounds2D().getWidth();

double distance = centerLine.relativeCCW(referencePiece.getX(),
referencePiece.getY())* (-piece.getWidth() / 2 +
centerLine.ptLineDist(referencePiece.getX(),
referencePiece.getY()) - rotatedBoundingBoxWidth / 2);

85

deltaX = -(float)(distance * Math.cos(piece.getAngle()));
deltaY = -(float)(distance * Math.sin(piece.getAngle()));
} else

{

Line2D centerLine = new Line2D.Float(piece.getX(), piece.getY(),

(piecePoints [2][@] + piecePoints [1][@]) / 2, (piecePoints
[2][1] + piecePoints [1][1]) / 2);

double rotatedBoundingBoxDepth =
referencePieceBoundingBox.getBounds2D().getHeight();

double distance = centerlLine.relativeCCW(referencePiece.getX(),
referencePiece.getY())* (-piece.getDepth() / 2 +
centerLine.ptLineDist(referencePiece.getX(),
referencePiece.getY()) - rotatedBoundingBoxDepth / 2);

deltaX = -(float)(-distance * Math.sin(piece.getAngle()));
deltaY = -(float)(distance * Math.cos(piece.getAngle()));

if (!isIntersectionEmpty(piece, magnetWall, deltaX, deltaY)) {
deltaX = deltaY = 0; } }

if (!isIntersectionEmpty(piece, referencePiece, deltaX, deltaY))

{

piece.move(deltaX, deltaY); return referencePiece; } o}
return referencePiece; }

return null; }

86

CURRICULUM VITAE

PERSONAL INFORMATION

Name Surname : Baydaa MERZAH

Date of birth and place : 4™ of July 1982- Baghdad

Foreign Languages : English , Turkish

E-mail . baidaamuhammed@gmail.com

EDUCATION

Degree Department University Date of
Graduation

Undergraduate ~ Computer science University of Baghdad 2004

High School Scientific department Al-Faroq High School for girls 2000

WORK EXPERIENCE

Year Corporation/Institute Enrollment

2008- continue Al-Nahrain University 2008

87

PUBLISHMENTS
Conference Papers

Merzah.B, Selcuk Y. "Metric Based Detection of Refused Bequest
Code Smell™. (2017). 9th International Conference on Computational
Intelligence and Communication Networks (CICN 2017), IEEE.

1.

88

