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ABSTRACT

NEW ROBUST PENALIZED ESTIMATORS
FOR LİNEAR AND LOGİSTİC REGRESSION

Fatma Sevinç KURNAZ

Department of Statistics
PhD. Thesis

Adviser: Assoc. Prof. Dr. Atıf Ahmet EVREN
Co-adviser: Prof. Dr. Peter FILZMOSER

The least squares (LS) regression estimator can be very sensitive in the presence of
multicollinearity among predictors and outliers in the data. As a solution, we introduce a
new robust version of Liu estimator. Although the proposed estimator is useful for low
dimensional data, there are some restrictions of it for high-dimensional data, namely some
calculation problems. Respecting this situation, a new robust Liu-type estimator with
similar idea is introduced for high-dimensional data. By considering weights, also the
resulting estimators are highly robust, but also the estimations of the biasing parameters
are robustified.

The main focus of this thesis is to provide a family to literature which is able to deal with
multicollinearity among predictors and outliers in the data, particularly high-dimensional
data. Concerning improving interpretibility and increasing the model predictive ability in
high-dimensional data, variable selection has attracted much research interest. Modern
regularization methods have become a popular choice because they perform intrinsic
variable selection and parameter estimation simultaneously. However, the estimation
procedure becomes more difficult and challenging task when the data suffer from outliers.
As a solution, recently, researchers started to improve robust versions of those regualarization
methods. With this aim, fully robust versions of the elastic net estimator are introduced for
linear regression. Conserning the binary response case, the idea is extended for logistic
regression. The algorithms to compute the newly proposed estimators are based on the
idea of repeatedly applying the non-robust classical estimators to data subsets only. It is
shown how outlier-free subsets can be identified efficiently, and how appropriate tuning
parameters for the elastic net penalties can be selected for corresponding model. A final

xiv



reweighting steps are thought to improve the efficiency of the estimators.

Simulation studies compare with non-robust and other competing robust estimators and
reveal the superiority of the newly proposed methods. This is also supported by a reasonable
computation time. Additionaly, some real data examples show the advantages of the
proposed estimators.

Keywords: Elastic net penalty, Least trimmed squares, C-step algorithm, High dimensional
data, Robustness, Sparse estimation, Liu Estimator.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
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ÖZET

LİNEER VE LOJİSTİK REGRESYON İÇİN
YENİ CEZALI ROBUST TAHMİN EDİCİLER

Fatma Sevinç KURNAZ

İstatistik Bolumu
Doktora Tezi

Danışman: Doç. Dr. Atıf Ahmet EVREN
Eş Danışman: Prof. Dr. Peter FILZMOSER

Veri kümesi sapan değerler içerdiğinde ve açıklayıcı değişkenler arasında çoklu iç ilişki
bulunduğunda, En Küçük Kareler (EKK) tahmin edicisi çok hassas olabilmektedir. Çözüm
olarak, Liu tahmin edicisinin yeni bir robust (dirençli, sağlam) versiyonunu takdim
etmekteyiz. Önerilen bu tahmin edici küçük boyutlu veri kümeleri için kullanışlı olmasına
rağmen, çok boyutlu veri kümeleri için bazı sınırlamalara, yani bazı hesaplama problemlerine,
sahiptir. Bu durumu göz önüne alarak, çok boyutlu veri kümeleri için benzer bir fikirle yeni
bir robust Liu-tip tahmin edici önermekteyiz. Gözlemler ağırlıklandırılarak, yalnızca elde
edilen bu tahmin edicilerin sapan değerlere dirençli olması sağlanmamış, aynı zamanda
yanlılık parametrelerinin tahmin edicileri de robust hale getirilmiştir.

Bu tezdeki temel amacımız verilerdeki (özellikle çok boyutlu verilerdeki) sapan değerler
ve açıklayıcı değişkenler arasındaki çoklu iç ilişki problemini çözmek için yeni bir tahmin
edici ailesini literatüre kazandırmaktır. Çok boyutlu veri kümelerinde modelin tahmin
yeteneğini artırmak ve yorumlamayı kolaylaştırmak hususları göz önüne alındığında,
değişken seçimi konusu araştırmacıların yoğun ilgisini cezbetmektedir. Modern düzenleme
yöntemleri aynı anda hem değişken seçimi hem de parametre tahminine imkan verdiği
için tercih edilir hale gelmiştir. Ancak veriler sapan değerlerden zarar gördüğünde, tahmin
prosedürü daha zor bir hale gelmektedir. Çözüm olarak, araştırmacılar son zamanlarda bu
düzenleme yöntemlerinin robust versiyonlarını geliştirmeye başlamışlardır. Bu amaçla,
lineer regresyon için elastik net tahmin edicisinin bütünüyle robust bir versionunu takdim
etmekteyiz. Yanıt değişkeninin iki kategorili olduğu durum göz önüne alınarak, önerilen bu
yöntem lojistik regresyon için genişletilmiştir. Önerilen yeni tahmin edicileri hesaplamak
için verilen algoritmalar, robust olmayan klasik tahmin edicilerin verilerin sadece alt
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kümelerine tekrar tekrar uygulanması üzerine inşa edilmiştir. Sapan değerlerden ayıklanmış
alt kümelerin nasıl belirlenebileceği ve karşılık gelen model için elastik net cezasına ait
yanlılık parametrelerinin nasıl uygun bir şekilde seçilebileceği gösterilmiştir. Son olarak,
tahmin edicilerin etkinliğini arttırmak için yeniden ağırlıklandırma adımı kullanılmıştır.

Simulasyon çalışmaları robust olmayan tahmin edicilerle ve alternatif robust tahmin
edicilerle, önerilen tahmin edicilerin karşılaştırılmasını yapmaktadır ve önerilen tahmin
edicilerin üstünlüğünü ortaya koymaktadır. Bu durum, önerilen tahmin edicinin makul bir
hesaplama süresine sahip olduğu gösterilerek de desteklenmiştir. Ek olarak, bazı gerçek
veri kümeleri üzerinde önerilen tahmin edicilerin avantajları gösterilmektedir.

Anahtar Kelimeler: Elastik net cezası, En küçük kırpılmış kareler, C-adımlar algoritması,
Yüksek boyutlu veri kümeleri, Dirençlilik, Sparse tahmin edici, Liu tahmin edici.

YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ
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CHAPTER 1

INTRODUCTION

1.1 Literature Review

Linear regression is generally designed for low dimensional data sets where the number of

observations (n) is greater than the number of predictors (p), and the ordinary least squares

(LS) regression is the most common method for linear regression. However, in presence

of multicollinearity among predictors, the assumptions of LS regression are violated and

the results might give misleading information. As an alternative to LS, the ridge estimator

is defined adding an l2 penalty on the coefficient estimator to the objective function of

LS [1]. Another common approach for a biased estimator is the Liu estimator [2]. The

idea behind of Liu estimator is to propose an estimator which has similar properties as

the ridge estimator, but with an easier calculation of the biasing parameter λ by means

of a linear function of λ . This estimator is directly using the LS-estimator, thus it can be

affected by outliers in data – observations which are unusually far away from the data

center are often referred to as outliers. However, there are two proposals available that

are devoted to robustifying the Liu estimator against outliers. The first proposal employs

the M-estimator, and the resulting robustified Liu estimator is called as M-Liu estimator,

see [3]. Since the M-estimator is not robust against leverage points, the M-Liu estimator

has the same drawback. Another robust proposal is the LTS-Liu estimator [4]. Although

the LTS-estimator is robust against both leverage points and vertical outliers, there is a

question whether this robustness also implies robustness of the LTS-Liu estimator.

On the other hand, high dimensional data sets have also been a current issue due to

the growth of improved technology which allows monitoring of thousands of variables.
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Analyzing such data sets (n� p) has become a focus for many researchers in a wide

range of scientific fields such as chemometrics, biometrics, econometrics, social sciences

and etc. Therefore, the huge demand of resolutions for various statistical problems have

emerged in those scientific areas. Particularly in chemometrics, the partial least squares

(PLS) regression has become a main tool since years, whose history is closely connected

with the history of chemometrics [5, 6]. Another important thing with high dimensional

data is that they can include many uninformative variables which have no effect on the

predictand or have very small contribution to the model. A regression model including

uninformative variables gives unstable results and the interpretation of it is a challenging

task. As a solution, sparse estimation methods are proposed to handle the high dimensional

data issue. One of the common methods for sparse estimation is the lasso estimator which

leads to coefficients of exactly zero [7]. This means the lasso returns a smaller subset of the

variables that have highest importance for the model. Therefore lasso can be regarded as

variable selection method. The term sparse is used for a model with exact zero coefficients.

Roughly speaking, adding an l1 constrait for the coefficient estimates to the objective

function yields sparse solutions. The lasso estimator is able to select at most n variables

when n < p and this situation has restrictive influence on its variable selection property

[7]. Another sparse method, the elastic net, which is the penalized version of LS with both

l1 and l2 penalties, is introduced by Zou and Hastie [8]. The elastic net estimator is able

to select variables like lasso and able to shrink the coefficients according to ridge. For an

overview of sparse methods, see [9].

Besides most real world data sets have more variables than observations, which is high

dimensional, they also contain outliers that have remarkably large or small values when

compared with majority of the data set. Therefore, another important problem in regression

analysis are outliers in the data set, which might be only vertical outliers (outliers in

the predictand space), only leverage points (outliers in predictors space) or both types.

Even though the sparse regression estimation methods are particularly useful for high

dimensional data, they are seriously distorted by outliers since they are not robust. To deal

with this problem, we need to consider robust statistical techniques. For a wide overview

to robust methods, see [10]. As mentioned in low dimensional case, one common and
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well studied method is the Least Trimmed Squares (LTS) estimator [11]. Although the

LTS estimator has a simple definition and high robustness to outliers, the computational

time increases extremely for larger data set. To overcome this problem, the FAST-LTS

algorithm was proposed by Rousseeuw [12]. The main idea of the FAST-LTS algorithm is

the ”concentration step” or C-step algorithm based on looking for an index subset, which

excludes undesired observations by taking the smallest squared residuals. Even if it is

very effective method for larger data sets, it does not work due to rank problem of the

design matrix when p > n and does not yield a sparse solution. One of the few existing

sparse and robust methods is defined adding an l1 penalty to the objective function of

the LTS estimator and is called the sparse least trimmed squares (sparse LTS) regression

estimator [13]. The sparse LTS estimator is robust to both vertical outliers and leverage

points. Nevertheless, the sparse LTS estimator can be effected by some problems which

come from the lasso. For instance, multicollinearity among the predictors may lead to

instability of the estimator since it has only l1 penalty. Another related approaches are

based on adding an l1 penalty to the objective function of MM-estimators [14, 15].

Logistic regression is a standard probabilistic statistical classification model that is widely

used in many fields. The main difference to linear regression is that, the response in

logistic regression is a binary variable, coding the class-membership of two groups. The

most famous method to estimate unknown coefficients is the maximum likelihood (ML)

estimator. Similar to linear regression, it is not possible to calculate the ML estimator

without modifications when p > n. Recently, to solve this problem, Friedman et al. [16]

suggested a new estimator using an elastic net penalty, which is obtained by maximizing

the penalized binomial log-likelihood function. Whereas the elastic net penalty yields

sparse solution thanks to l1 penalty, the estimated coefficients may be seriously affected

by outliers. Several robust but non-sparse alternatives have been proposed in literature

[17, 18]. Finding a way to adapt the trimming idea to logistic regression may seem quite

attractive to provide a robust method. However, Albert and Anderson [19] proved the ML

estimator exists if there is overlap between the observations from each classes. Trimming

observations may cause non-overlapping and thus existence problem of the ML estimator.

The penalized binomial log-likelihood function overcomes this problem, and lead to a
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solution even if there is no overlapping [16, 20]. One robust and sparse estimator for

logistic regression is introduced using weights to reduce the influence of outliers by [21].

Their approach is to perform outlier detection in a principal component analysis (PCA)

space, obtain weights based on robust Mahalanobis distances in the PCA score space

and derive weights from these distances. These weights are then used to down-weight

the negative log-likelihood in the penalized objective function to reduce the influence of

outliers. However, it is not guaranteed that outliers can be detected in the PCA score space.

An increasing number of uninformative variables will disguise observations deviating from

the majority only in few informative variables, but these hidden outlying observations can

still distort the model. Therefore, model based outlier detection is highly recommended as

proposed in our algorithm.

1.2 Objective of the Thesis

In this study, we focus not only on robust estimation, but also on the multicollinearity

problem in both low dimension and high dimension. With this aim, we proposed robust

version of Liu estimator using the highly robust and efficient MM-estimator as a plug-in

estimator. Secondly, we have also provided another robust Liu estimator for the use

with high-dimensional small sample size data. This estimator uses the PRM-estimator, a

robustified partial least-squares (PLS) estimator [22], as a plug-in estimator.

Another important contribution of this work can be divided into twofold: A new robust and

sparse regression estimator is proposed with combined l1 and l2 penalties. This robustified

elastic net regression estimator overcomes the limitations of lasso type estimators concerning

the low number of variables in the models, and concerning the instability of the estimator

in case of high multicollinearity among the predictors [7]. As a second contribution, the

idea for the linear regression is extended to logistic regression. The resulting estimator

is a robust elastic net version of logistic regression. To provide robustification we use

the trimming idea. This idea could cause to overlapping problem. However, using the

elastic net penalty also solves the non-existence problem of the estimator in case of

non-overlapping groups [19, 16, 20]. Therefore, proposed robust and sparse estimators act
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like a variable selection method by returning a smaller subset of variables being relevant

for the model, inheriting this property from elastic net penalty.

1.3 Hypothesis

This dissertation aims to address the solutions to main problems in regression analysis such

as multicollinearity among predictors and outliers in data. With this goal, we introduce

the robust and sparse parameter estimation and therefore variable selection for linear

regression. Therefore, the proposed method is quite useful for high dimensonal data.

Another contribution of this thesis is that those problems are also taken into consideration

in context of logistic regression and thus make a first step to extend the algorithm for

generalized methods. The robustness of the estimator is achieved by trimming the penalized

log-likelihood function, and using weights. For linear regression, weights are determined

in the same way with [13]. As for logistic regression, weights are calculated as proposed

in the context of robust logistic regression [17, 18]. These weights can also be applied in a

reweighting step which increases the efficiency of the robust elastic net linear and logistic

regression estimators.
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CHAPTER 2

REVIEW TO THE EXISTING METHODS

This chapter is dedicated to give an overview of the existing methods in linear regression

and logistic regression in the context of low and high dimensional data. But before going

there, we would like to mention some important charactarizations in terms of robustness,

such as breakdown point (BP) and influence function (IF).

Breakdown Point

A common measure allowing us to describe the robustness of an estimator is its breakdown

point (BP), which is generally defined as the minimum fraction of outliers that is able to

completely distort the estimator, i.e. the estimator yields any arbitrary result [10]. On the

other side, a simple and intuitive definition of the BP for finite samples was introduced by

[23]. Mathematically, let β̃ββ be an estimator for a data set Z = {(xi,yi) : 1≤ i≤ n}. Then,

the BP of β̃ββ is the

ε
∗(β̃ββ ) = min{m

n
sup

Z̃

∥∥∥β̃ββ

∥∥∥
2
= ∞} (2.1)

where Z̃ indicates outliers obtained from Z by replacing m of the originally n observations

by arbitrary values.

Influence Function

The influence function (IF) is a measure of the asymptotic bias of an estimator when the
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assumed model is subject to a small amount of contamination by a point mass distribution,

and therefore provides only a local approximation to the act of the estimator [24]. The IF

of β̃ββ is defined as

IF
β̃ββ
(x0,F) = lim

ε↓0

β̃ββ ∞ ((1− ε)F + εδx0)− β̃ββ ∞(F)

ε
(2.2)

where δx0 is the point mass at x0, ”↓” denotes ”limit from right side”, ε is a fraction of

outliers and β̃ββ ∞ is the asymptotic value of the estimator β̃ββ at distribution F. For more

information, see [24, 10].

2.1 Linear Regression

We consider the multiple linear regression model

y = Xβββ +εεε, (2.3)

where y=(y1, . . . ,yn)
′ contains the n observations of the response variable. The information

of the p explanatory variables observed for the same n observations is collected in the

n× (p+1) matrix X, where the first column of this matrix consists of ones, taking care

of the intercept term. Thus, the rows of X are (1,x′i), where xi = (xi1, . . . ,xip)
′ is the

i-th observation of the explanatory variables, for i = 1, . . . ,n. The unknown regression

coefficients are βββ = (β0,β1, . . . ,βp)
′ (β0 is the intercept), and εεε = (ε1, . . . ,εn)

′ is the error

term, assumed to have mean vector zero and covariance matrix σ2In.

The most common method to estimate the regression coefficients is the ordinary Least

Squares estimator (LS), which is defined as

β̂ββ LS = argmin
βββ

n

∑
i=1

(ri(βββ ))
2, (2.4)

where ri(βββ ) = yi−(1,x′i)βββ are the residuals. Although the LS-estimator has many desirable

statistical properties as compared to other unbiased linear estimators, it can be affected by

outliers in the data, i.e. outliers either in the response or in the explanatory variables (or
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both) [10]. Thus, the breakdown point of the LS-estimator is zero.

In our study, we focus not only on robust estimation, but also on the multicollinearity

problem. Multicollinearity is that two or more predictor variables in a multiple regression

model are highly correlated. In practice, generally the issue of near multicollinearity

arises, which means that there is an approximate linear relationship among two or more

predictor variables. It is well known that with near multicollinearity the LS-estimator

becomes unstable since X′X is nearly singular. There are several proposals to deal with

this problem.

2.1.1 Ridge Estimator

A first solution was provided by [1] who introduced the ridge regression estimator,

β̂ββ Ridge = argmin
βββ

(
n

∑
i=1

(ri(βββ ))
2 +λ

p

∑
j=1

β
2
j

)
(2.5)

with the complexity parameter λ ≥ 0 that needs to be selected appropriately in order to

optimize the prediction accuracy. The minimization problem (2.5) leads to the closed-form

solution

β̂ββ Ridge = (X′X+λ I)−1X′y. (2.6)

The choice λ = 0 leads to the unbiased LS-estimator, and for λ > 0 one gets a biased

estimator.

2.1.2 Liu Estimator

A different proposal for a biased estimator, the LS-Liu estimator, defined as

β̂ββ Liu = (X′X+ I)−1(X′X+λLSI)β̂ββ LS (2.7)
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where 0 < λLS < 1 is the biasing parameter [2]. The idea was to propose an estimator

which has similar properties as the ridge estimator, but with an easier calculation of the

biasing parameter since β̂ββ Liu is a linear function of λLS. Since this estimator is directly

using the LS-estimator, it is not robust against outliers.

Although these methods till here are very useful in case multicollinearity among predictors,

they are distorted when data include outliers. In the linear regression setting, outliers may

appear in the space of the predictand (so-called vertical outliers), or in the space of the

predictor variables (leverage points) [10]. There are two different versions of the leverage

points, namely a leverage point is called as ”good leverage point ” if it follows the pattern

of the majority, and it is called as ”bad leverage point” if it is far away from the majority.

If data includes outliers, robust methods are the most appropriate methods to use. The

main robust methods are summarized below for low dimensional case:

2.1.3 LTS Estimator

A further limitation of the previously mentioned estimators is their lack of robustness

against data outliers. In practice, the presence of outliers in data is quite common, and

thus robust statistical methods are frequently used, see, for example [25, 26]. The Least

Trimmed Squares (LTS) estimator has been among the first proposals of a regression

estimator being fully robust against both types of outliers [11]. It is defined as

β̂ββ LTS = argmin
βββ

h

∑
i=1

r2
(i)(βββ ), (2.8)

where the r(i) are the ordered absolute residuals |r(1)| ≤ |r(2)| ≤ · · · ≤ |r(n)|, and ri =

yi−xT
i βββ [27]. The number h is chosen between b(n+ p+1)/2c and n, where bac refers

to the largest integer ≤ a, and it determines the robustness properties of the estimator [27].

The LTS estimator also became popular due to the proposal of a quick algorithm for its

computation, the so-called FAST-LTS algorithm [12]. The key feature of this algorithm is

the “concentration step” or C-step, which is an efficient way to arrive at outlier-free data
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subsets where the LS estimator can be applied. The LTS estimator achieves the maximum

breakdown point of 50% for h =
[n+p

2

]
, but it only has a low efficiency (since it is an S

estimator).

2.1.4 MM Estimator

One of the several alternative regression estimators that are robust to both types outliers is

the MM-estimator of regression. It has high breakdown point of 50% and high efficiency

[28]. The MM-regression estimator is based on the M-estimator of regression

β̂ββ M = argmin
βββ

n

∑
i=1

ρ

(
ri(βββ )

σ̂(βββ )

)
, (2.9)

where ρ is a bounded function, like Tukey’s biweight function [10]. Here, σ̂ is the scale

estimator of the residuals. In Figure 2.1 it is observed that the bisquare objective function

levels off for |t|> M and the weight function give reduced weights at the tails instead of

giving weight one to all observations. The M-estimator is not robust against leverage points

[10], and thus the MM-estimator uses as a robust residual scale estimator an M-estimator

of scale, which is the solution of the equation

n

∑
i=1

ρ̃

(
ri(βββ )

σ(βββ )

)
= δ , (2.10)

with ρ̃ taken e.g. as the bisquare function [10], and the tuning constant δ . Regression

estimators with σ̂ given by (2.10) are called S estimators, and they can be generally defined

as

β̂ββ S = argmin
βββ

σ̂ (r1(βββ ), . . .rn(βββ )) . (2.11)

S estimators have high breakdown point but low efficiency [10]. It was shown in [28] that

the MM-estimator inherits the breakdown point of the S estimator, but allows for a tunable

efficiency.
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Figure 2.1 ρB and wB functions for Tukey’s biweight (bisquare) estimator.

2.2 High Dimensional Linear Regression

The methods are mentioned untill here are very useful for linear regression, but can not

implemented when p exceeds n due to computational problems. Several altervatives have

been proposed for this case. In this section, we give a short overview to some them.

2.2.1 PLS Estimator

A prominent biased estimator in case of p > n is the Partial Least-Squares (PLS) estimator

[29], which is based on modeling the predictor variables by means of a small set of latent

variables. The latent variables are determined by maximizing the covariance between the

response and a projection of the predictor variables, by employing appropriate orthogonality

constraints.

More plainly, PLS regression aim to find a linear relation between the predictor variables

and predictand vector, like (2.3), but rather than finding this relation directly, X and y

are modeled by linear latent variables according to the regression models. Let us show

predictor matrix X modeling by linear latent variables according to the regression model
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as follows

X = TPT +εεεx (2.12)

where εεεx is error matrix, T = [t1, t2, . . . , ta] is the score matrix , which collects x-scores

and can be considered as good summaries of the x-variables and P is the loading matrix

with columns size of a, which can be estimated by CV. The relationship between x-scores

and y becomes

y = Td+h (2.13)

where h is the residuals and d corresponds to regression parameters. If for instance the

linear relationship between t1 and y is strong (if the elements of h are small), then the

x-score of the first PLS component is good for predicting y. For more detail see [5].

So, PLS balances the maximal correlation criteria for OLS given in (2.4) with the

requirement of explaining as much as variability in both x and y-space. Although PLS is

useful for p > n, it is very sensitive to outlying observations.

2.2.2 Lasso Estimator

The lasso estimator is proposed by [7] adding an l1 penalty to the objective function of LS

as follows

β̂ββ lasso = argmin
βββ

{
n

∑
i=1

(yi−xT
i βββ )2 +λ |βββ |1

}
(2.14)

for some λ ≥ 0. Although this does no longer allow for a closed form solution for the

estimated regression coefficients, the lasso estimator gets sparse, which means that some of

the regression coefficients are shrunken to zero. This means that lasso acts like a variable

selection method by returning a smaller subset of variables being relevant for the model.

Therefore lasso can be regarded as variable selection method. Roughly speaking, adding

an l1 constrait for the coefficient estimates to the objective function yields sparse solutions.
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This is appropriate in particular for high dimensional low sample size data sets (n� p),

arising from applications in chemometrics, biometrics, econometrics, social sciences and

many other fields, where the data include many uninformative variables which have no

effect on the predictand or have very small contribution to the model.

2.2.3 Elastic Net Estimator

There is a limitation of the lasso estimator, since it is able to select only at most n variables

when n < p. If n is very small, or if the number of informative variables (variables which

are relevant for the model) is expected to be greater than n, the model performance can

become poor. As a way out, the elastic net (enet) estimator has been introduced [8], which

combines both l1 and l2 penalties:

β̂ββ enet = argmin
βββ

{
n

∑
i=1

(yi−xT
i βββ )2 +λPα(βββ )

}
(2.15)

Here, y = (y1, . . . ,yn)
T , the observations xT

i form the rows of X, and the penalty term Pα

is defined as

Pα(βββ ) = (1−α)
1
2
‖βββ‖2

2 +α‖βββ‖1 =
p

∑
j=1

[
(1−α)

1
2

β
2
j +α|β j|

]
. (2.16)

The entire strength of the penalty is controlled by the tuning parameter λ ≥ 0. The other

tuning parameter α is the mixing proportion of the ridge and lasso penalties and takes

value in [0,1]. The elastic net estimator is able to select variables like in lasso regression,

and shrink the coefficients according to ridge. For an overview of sparse methods, see [9].

2.2.4 PRM Estimator

PLS is vey useful for p > n, not it loose much of its power in case of contaminated data set.

Therefore, a robust version named Partial Robust M-estimator (PRM) has been proposed,

which is based on M-estimation on latent variables, and also downweights leverage points

[22]. In the PRM algorithm, two types of weights strategy are taken to obtain a total
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robustness, namely weights for the residuals wr
i as well as weights for the leverage points

wx
i , which are measuring the leverage of each score vector, are calculated seperately, then

wi can be combined to as follows

wi = wr
i w

x
i for i = 1, . . . ,n. (2.17)

An iterative reweighted partial least squares algorithm is used to calculate PRM [22].

2.2.5 M-Liu Estimator

One proposal to robustify the Liu estimator is to employ the M-estimator, namely shrinking

the M-estimator instead of the LS estimator, and the resulting robustified Liu estimator is

defined as

β̂ββ M−Liu = (X′X+ I)−1(X′X+λMI)β̂ββ M, (2.18)

with the biasing parameter λM, see [3]. Since the M-estimator is not robust against leverage

points, the M-Liu estimator has the same drawback.

2.2.6 LTS-Liu Estimator

Another proposal to robustify the Liu estimator is to use LTS estimator and the resulting

estimator is called the LTS-Liu estimator. LTS-Liu estimator is defined as

β̂ββ LTS−Liu = (X′X+ I)−1(X′X+λLTSI)β̂ββ LTS, (2.19)

with the biasing parameter λLTS [4]. The LTS-estimator β̂ββ LTS is robust against both y- and

x-outliers. However, there is a question whether this robustness also implies robustness of

the LTS-Liu estimator.
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2.2.7 Sparse LTS Linear Regression

The sparse LTS regression estimator has been proposed for high dimensional problems

[13]:

β̂ββ sparseLTS = argmin
βββ

{
h

∑
i=1

r2
(i)(βββ )+hλ‖βββ‖1

}
. (2.20)

This estimator adds an l1 penalty to the objective function of the LTS estimator, and it can

thus be seen as a robust counterpart of the lasso estimator. The idea of the calculation

is inspried from the LTS estimator. Namely, the sparse LTS corresponds to finding the

subset of h≤ n observations whose lasso fit produces the smallest penalized residual sum

of squares. This optimal subset is calculated by an analogue of the FAST-LTS algorithm

[12]. The key feature of this algorithm is the “concentration step” or C-step, which is an

efficient way to arrive at outlier-free data subsets where the lasso estimator can be applied.

The FAST-LTS algorithm for LTS estimator used elemental subsets of size p, since any LS

regression requires at least as many observations as the dimension p. But when the lasso

estimator is used instead of LS, there is a situation that the data can include more variables

than the observations, namely p > n, and this would make the algorithm not applicable.

Fortunately the lasso is already well defined for samples of size 3, even for large values of

p. Therefore, the elemental subsets of size 3 are only used to construct the initial subsets

of size h for the C-step algorithms and then C-steps are continued on the subsets of size h

till converge.

The sparse LTS estimator is robust to both vertical outliers and leverage points, and also

a fast algorithm has been developed for its computation [30]. But the sparse LTS can

suffer from the same problem as LTS, namely a low efficiency. To improve efficiency, a

reweigthing step is carried out.
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2.3 Logistic Regression

With a binary predictand vector y coded in the form yi ∈ {0,1}, let us consider the logistic

regression model

yi = πi + εi, i = 1, . . . ,n, (2.21)

where πi denotes the conditional probability for observation i

πi = Pr(y = 1|X = x) =
exT

i βββ

1+ exT
i βββ

(2.22)

and εi is the error term assumed to have binomial distribution. Explicitly, the binary

logistic regression can be regarded as a generalized linear model determined by the logit

transformation

log
(

πi

1−πi

)
= xT

i βββ

as a link function [31]. Therefore, the transformation of the model ensures that probabilities

lie between 0 and 1. The most popular way to estimate the model parameters is the

maximum likelihood (ML) estimator which is based on maximizing the log-likelihood

function or, equivalently, minimizing the negative log-likelihood function,

β̂ββ ML = argmin
βββ

n

∑
i=1

d(xT
i βββ ,yi), (2.23)

with the deviances

d(xT
i βββ ,yi) =−yi logπi− (1− yi) log(1−πi) =−yixT

i βββ + log
(

1+ exT
i βββ

)
. (2.24)

The estimation of the model parameters with this method is not reliable when there is

multicollinearity among the predictors and is not feasible when p > n because of the need

to invert near-singular and ill-conditioned information matrices.
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2.3.1 Elastic Net Estimator

To deal with multicollinearity problem among the predictors and to provide a feasible

solution in case of high dimensional data, Friedman et al. [16] suggested a new method

which is based on minimization of a penalized negative log-likelihood function,

β̂ββ enet = argmin
βββ

{
n

∑
i=1

d(xT
i βββ ,yi)+nλPα(βββ )

}
. (2.25)

Here, Pα(βββ ) is the elastic net penalty as given in Equation (2.16), and thus this estimator

extends (2.15) to the logistic regression setting. Using the elastic net penalty also solves

the non-existence problem of the estimator in case of non-overlapping groups [19, 16, 20].

Nevertheless, the estimator (2.25) is not robust, and thus the results are badly affected

in presence of outliers. In context of logistic regression, the definition of the vertical

outliers needs to be re-defined because of the categorical predictand values. Therefore,

misclassified observations are called vertical outliers.

2.3.2 BY Estimator

A highly robust estimator, the so called the BY estimator, is suggested by Bianco and

Yohai [18] as follows

β̂ββ BY = argmin
βββ

n

∑
i=1

ϕ(xT
i βββ ;yi) (2.26)

where ϕ denotes a positive and almost everywhere differentiable function. The BY

estimator was well analysed by Croux and Haesbroeck [5]. For easier notation they define

the univariate function φBY(xT
i βββ ), which corresponds to yi = 0, instead of ϕ(xT

i βββ ;yi) since

ϕ(xT
i βββ ;0) = ϕ(−xT

i βββ ;1) for any observation i. With s = xT
i βββ , the explicit formulation of

φBY(s) is as follows

φBY(s) = ρ (− ln(1−F(s)))+G(F(s))+G(1−F(s))−G(1) (2.27)
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where F presents the increasing cumulative distribution function defined by F(s) = 1/(1+

e−s) and

G(t) =

te−
√
− ln t + e

1
4
√

πΦ

(√
2
(1

2 +
√
− ln t

))
− e−

1
4
√

π if t≤ e−d

e−
√
−dt− e

1
4
√

π + e−
1
4
√

πΦ

(√
2
(1

2 +
√
−d
))

otherwise
(2.28)

where the constant d is the tuning parameter to compromise between robustness and

efficiency and Φ is the normal cumulative distribution. The function φBY(s) in equation

(2.27) depends on the function ρ , therefore the choice of function ρ has a critical effect on

BY estimator. Croux and Haesbroeck [17] suggested using the following ρ function.

ρ(t) =

te−
√

d if t≤ d

−2e−
√

t(1+
√

t)+ e−
√

d(2(1+
√

d)+d) otherwise
(2.29)
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Figure 2.2 φBY and ψBY functions for Bianco and Yohai estimator correspond to ρ

function in Eq. (2.29).

The function φBY (s) yields large but bounded values for large positive scores (which

correspond to misclassified observations). Therefore, the derivative of the function φBY (s)

avoids to downweight misclassified observations too severely. Those effects of φBY and

ψBY are displayed in Figure 2.2. For more information, see [17].
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CHAPTER 3

ROBUST LINEAR REGRESSION

In this chapter two robust Liu-type estimators will be introduced: the first one is the

MM-Liu estimator which inherits the property of MM estimator, so robust to both types

of outliers and, the second one is the PRM-Liu estimator which is useful in case of high

dimensional data.

3.1 MM-Liu Estimator

A fully robust version of a Liu estimator also needs to be robust for the choice of the

biasing parameter. Consider the general form of a Liu-type estimator as given in Eq. (2.7)

with an unbiased plug-in estimator β̂ββ . Thus, E(β̂ββ ) = βββ , with the true parameter vector βββ .

The biasing parameter λ can be determined by a mean-squared error (MSE) criterion [3].

Denote the bias of this Liu estimator as bias(β̂ββ Liu) and the covariance by cov(β̂ββ Liu). Then

the MSE is defined as

MSE(β̂ββ Liu,λ ) = bias(β̂ββ Liu)
′bias(β̂ββ Liu)+ tr(cov(β̂ββ Liu)) (3.1)

where tr denotes the trace. Simple calculus shows that

bias(β̂ββ Liu) = E(β̂ββ Liu−βββ ) = (X′X+ I)−1(λ −1)βββ (3.2)

[see 2].

The appropriate choice of λ is for the minimum value of the MSE in equation (3.1). It can
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be seen immediately that leverage points affect this MSE criterion, and thus the choice of

λ may be misleading. Similar arguments were given by [32] in the context of robust ridge

regression, and a robustification of this criterion can be made by introducing weights for

the observations. Fortunately, a robust plug-in estimator for (2.7) also provides weights

wi for each of the n observations, which can be arranged in the diagonal of the matrix

W = diag(w1, . . . ,wn). The weights are based on the scaled residuals, wi =W (ri/σ̂), using

the weight function W (r) = ρ ′(r)/r, where ρ ′ is the derivative of the ρ-function used in

(2.9), see [10].

Accordingly, we propose the following robust Liu estimator,

β̂ββ MM−Liu = (X′WX+ I)−1(X′WX+λMMI)β̂ββ MM (3.3)

which uses the MM-estimator β̂ββ MM as plug-in estimator, as well as the weights W resulting

from the MM-estimator [33]. Note that these weights are taken after MM-estimation and

thus fixed for the robust Liu estimator.

3.1.1 Selection of the Tuning Parameter

For the optimal choice for the biasing parameter λMM we use two ways. One is to minimize

the MSE given by following equation

MSE(β̂ββ MM−Liu,λMM) = bias(β̂ββ MM−Liu)
′bias(β̂ββ MM−Liu)+ tr(cov(β̂ββ MM−Liu)), (3.4)

where

bias(β̂ββ MM−Liu) = E(β̂ββ MM−Liu−βββ ) = (X′WX+ I)−1(λMM−1)βββ . (3.5)

The use of weights robustifies the bias calculation and thus leads to a robust choice of the

biasing parameter. The optimal biasing parameter is then calculated as follows [33]

λ̂MM = argmin
λMM

MSE(β̂ββ MM−Liu,λMM). (3.6)
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Note that tr(cov(β̂ββ MM−Liu)) needs to be estimated robustly. This is done by using the

procedure proposed in [17].

There is also another aspect of using weights. Consider the singular value decomposition

of the n× p matrix X, with n > p, X = UDV′, with the singular values d1, . . . ,dp in the

diagonal of D, the orthonormal columns u1, . . . ,up of U, and the orthonormal columns

v1, . . . ,vp of V. Using equation (2.7), the predicted values are

ŷLiu = Xβ̂ββ Liu = UD(D2 + I)−1(D2 +λ I)V′β̂ββ =
p

∑
j=1

u j
d j(d2

j +λ )

d2
j +1

v′jβ̂ββ . (3.7)

On the other hand, the predicted values from the MM-Liu estimator (3.3) are

ŷMM−Liu = Xβ̂ββ MM−Liu =
p

∑
j=1

u j
d j(d j(u′jWu j)d j +λMM)

d j(u′jWu j)d j +1
v′jβ̂ββ MM−Liu. (3.8)

Outlying “scores” in U are downweighted by u′jWu j in equation (3.8), which is not the

case in the unweighted version (3.7). This has an effect on the amount of shrinkage, and it

can thus be seen as robustifying the shrinkage with respect to leverage points. In this case,

we investigate the performance of the β̂ββ MM−Liu by

MSE(ŷMM−Liu,λMM) =
1
n

[
(y− ŷMM−Liu)

′(y− ŷMM−Liu)
]
. (3.9)

On the other hand, we also use cross-validation (CV) with k = 5. In more detail, for k-fold

CV, the data are randomly split into k blocks of approximately equal size. Each block is

left out once, the model is fitted to the ”training set” contained in the k−1 blocks, and it is

applied to the left-out block with the ”test set”. Therefore MSE calculated by means of

5-fold CV

MSECV(ŷCV
MM−Liu,λMM) =

1
n

[
(y− ŷCV

MM−Liu)
′(y− ŷCV

MM−Liu)
]
, (3.10)

for comparing the performance of the estimator, since it gives more reliable results than

the classical calculation method.
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3.2 PRM-Liu Estimator

As mentioned before, the (classical) Liu estimator has been proposed for a situation with

near multicollinearity. In case of collinearity, the unbiased LS-estimator could not be

computed and used as a plug-in estimator. This problem typically occurs if the number

of explanatory variables p is larger than the number of observations n. While the ridge

estimator and various other biased estimators like Lasso [7] still work in this situation, one

could also think about modifying the Liu estimator in order to cope with p > n problems.

A prominent biased estimator in case of p > n is the Partial Least-Squares (PLS) estimator

[29], which is based on modeling the predictor variables by means of a small set of latent

variables. The latent variables are determined by maximizing the covariance between the

response and a projection of the predictor variables, by employing appropriate orthogonality

constraints. Although PLS is useful for p > n, it is very sensitive to outlying observations.

Therefore, a robust version named Partial Robust M-estimator (PRM) has been proposed,

which is based on M-estimation on latent variables, and also downweights leverage points

[22]. Thus, weights for the residuals wr
i as well as weights for the leverage points wx

i are

computed, which can be combined to wi = wr
i w

x
i for i = 1, . . . ,n. Using these weights in

the diagonal of the matrix W, the PRM-Liu estimator is defined as

β̂ββ PRM−Liu = (X′WX+ I)−1(X′WX+λPRMI)β̂ββ PRM, (3.11)

where β̂ββ PRM is the PRM estimator, and λPRM is the biasing parameter.

3.2.1 Selection of the Tuning Parameter

Selecting the biasing parameter λPRM according to a MSE error like in (3.4) is no longer

possible in this case, since

bias(β̂ββ PRM−Liu) = (X′WX+ I)−1(X′WX+λPRMI) E(β̂ββ PRM)−βββ , (3.12)
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and E(β̂ββ PRM) cannot be derived analytically. Therefore, we will use CV to compute

MSECV(ŷCV
PRM−Liu,λPRM) =

1
n

[
(y− ŷCV

PRM−Liu)
′(y− ŷCV

PRM−Liu)
]
, (3.13)

where ŷCV
PRM−Liu are the predicted values using the PRM-Liu estimator for values of λPRM

within a CV scheme. We use 5-fold CV for this purpose. Therefore the optimal biasing

parameter is calculated by

λ̂PRM = argmin
λPRM

MSE(ŷCV
PRM−Liu,λPRM). (3.14)

which corresponds to minimization of the Eq. (3.13).
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CHAPTER 4

ROBUST AND SPARSE LINEAR REGRESSION

4.1 Robust and Sparse Linear Regression with Elastic Net Penalty

A robust and sparse elastic net estimator in linear regression can be defined with the

objective function

Q(H,βββ ) = ∑
i∈H

(yi−xT
i βββ )2 +hλPα(βββ ) (4.1)

where H ⊆ {1,2, . . . ,n} with |H|= h, λ ∈ [0,λ0], and Pα indicates the elastic net penalty

with α ∈ [0,1] as in Equation (2.16). We call this estimator the enet-LTS estimator, since

it uses a trimmed sum of squared residuals, like the sparse LTS estimator (2.20). The

minimum of the objective function (4.1) determines the optimal subset of size h,

Hopt = argmin
H⊆1,2,...,n:|H|=h

Q(H,β̂ββ H), (4.2)

which is supposed to be outlier-free. The coefficient estimates β̂ββ H depend on the subset H.

For this subset Hopt , the enet-LTS estimator is given by

β̂ββ enetLT S = argminQ(Hopt ,βββ ). (4.3)

It is not trivial to identify this optimal subset, and practically one has to use an algorithm to

approximate the solution. This algorithm uses C-steps: Suppose that the current h-subset

in the kth iteration of the algorithm is denoted by Hk, and the resulting estimator by β̂ββ Hk
.
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Then the next subset Hk+1 is formed by the indexes of those observations which correspond

to the smallest h squared residuals

r2
k,i = (yi−xT

i β̂ββ Hk
)2, for i = 1, . . . ,n. (4.4)

If β̂ββ Hk+1
denotes the estimator based on Hk+1, then by construction of the h-subsets it

follows immediately:

Q(Hk+1,β̂ββ Hk+1
)≤ Q(Hk+1,β̂ββ Hk

)≤ Q(Hk,β̂ββ Hk
) (4.5)

This means that the C-steps decrease the objective function (4.1) successively, and lead to

a local optimum after convergence. The global optimum is approximated by performing

the C-steps with several initial subsets. However, in order to keep the runtime of the

algorithm low, it is crucial that the initial subsets are chosen carefully. As motivated in

[13], for a certain combination of the penalty parameters α and λ , elemental subsets are

created consisting of the indexes of three randomly selected observations. Using only three

observations increases the possibility of having no outliers in the elemental subsets. Let us

denote these elemental subsets by

Hs
el = { js

1, js
2, js

3}, (4.6)

where s ∈ {1,2, . . . ,500}. The resulting estimators based on the three observations are

denoted by β̂ββ Hs
el

. Now the squared residuals (yi − xiβ̂ββ Hs
el
)2 can be computed for all

observations i = 1, . . . ,n, and two C-steps are carried out, starting with the h-subset

defined by the indexes of the smallest squared residuals. Then only those 10 h-subsets

with the smallest values of the objective function (4.1) are kept as candidates. With these

candidate subsets, the C-steps are performed until convergence (no further decrease), and

the best subset is defined as that one with the smallest value of the objective function. This

best subset also defines the estimator for this particular combination of α and λ .

Basically, one can apply this procedure now for a grid of values in the interval α ∈ [0,1]

and λ ∈ [0,λ0]. Practically, this may still be quite time consuming, and therefore, for a
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new parameter combination, the best subset of the neighboring grid value of α and/or λ , is

taken, and the C-steps are started from this best subset until convergence. This technique,

called warm starts, is repeated for each combination over the grid of α and λ values, and

thus the start based on the elemental subsets is carried out only once.

Note that at the beginning of the algorithm for linear regression, the predictand is centered,

and the predictor variables are centered robustly by the median and scaled by the MAD.

Within the C-steps of the algorithm, we additionally mean-center the response variable and

scale the predictors by their arithmetic means and standard deviations, calculated on each

current subset, see also [13].

4.2 Selection of the Tuning Parameters

Section 4.1 outlined the algorithm to arrive at a best subset for robust elastic net linear

regression, for each combination of the tuning parameters α ∈ [0,1] and λ ∈ [0,λ0]. In

this section we define the strategy to select the optimal combination αopt and λopt , leading

to the optimal subset. For this purpose we are using k-fold cross-validation (CV) on those

best subsets of size h, with k = 5. In more detail, for k-fold CV, the data are randomly split

into k blocks of approximately equal size. Each block is left out once, the model is fitted to

the “training data” contained in the k−1 blocks, using a fixed parameter combination for α

and λ , and it is applied to the left-out block with the “test data”. In this way, h fitted values

are obtained from k models, and they are compared to the corresponding original response

by using the following evaluation criterion, which is the root mean squared prediction error

(RMSPE)

RMSPE(α,λ ) =

√√√√1
h

h

∑
i=1

r2
i (β̂ββ α,λ ) (4.7)

where ri = yi−xT
i β̂ββ α,λ presents the test set residuals from the models estimated on the

training sets with a specific α and λ (for simplicity we omitted here the index k denoting

the models where the k-th block was left out and the corresponding test data from this

block).
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Note that the evaluation criterion given by (4.7) is robust against outliers, because it is

based on the best subsets of size h, which are supposed to be outlier free.

In order to obtain more stable results, we repeat the k-fold CV five times and take the

average of the corresponding evaluation measure. Finally, the optimal parameters αopt and

λopt are defined as that couple for which the evaluation criterion gives the minimal value.

The corresponding best subset is determined as the optimal subset.

Note that the optimal couple αopt and λopt is searched on a grid of values α ∈ [0,1] and

λ ∈ [0,λ0]. In our experiments we used 41 equally spaced values for α , and λ was varied

in steps of size 0.025λ0. For determining λ0 in the linear regression case we used the same

approach as in Alfons et al. [13]. To clarify the idea behind, let us look at the following

equation

λ0 =
2
n

max
j∈{1,...,p}

Cor(y,x j), (4.8)

where Cor(y,x j) presents the Pearson correlation between y and the jth predictor variable

x j of the design matrix X. We took the robustified version of the Pearson correlation given

in Eq. (5.5) as in Alfons et al. [13]. Here robustification is provided by calculating the

Pearson correlation on bivariate winsorizated data [34].

4.3 Reweighting Step

The LTS estimator has a low efficiency, and thus it is common to use a reweighting step

[11]. This idea is also used for the estimators introduced here. Generally, in a reweighting

step the outliers according to the current model are identified and downweighted. For the

linear regression model we will use the same reweighting scheme as proposed in Alfons et

al. [13], which is based on standardized residuals. Explicitly, under the normal error model,

observations with standardized residuals larger than a certain quantile of the standard

normal distribution may be proclaimed as outliers. First step will be calculating the center
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of the residuals. A common estimate for the center of the residuals is

µraw =
1
h ∑

i∈Hopt

ri, h ∈ Hopt (4.9)

where ri = yi−xiβββ enetLT S and Hopt stands for the optimal subset given in Eq. 4.2. Then

the residual scale estimate of the raw enet-LTS estimator is given by

σ̂raw = kα

√√√√1
h

h

∑
i=1

(r2
c)1:n, (4.10)

where r2
c = ((r1− µ̂raw)

2, . . . ,(rn− µ̂raw)
2)T and kα is a factor to garantee that raw σ̂ is a

consistent estimate of the standard deviation at the normal model and given with following

equation

kα =

(
1
α

∫
Φ−1(α+1)/2

−Φ−1(α+1)/2
u2dΦ(u)

)−1/2

. (4.11)

For simplicity, we indicate the standardized residuals from the linear regression case by rs
i .

Then the weights are defined by

wi =

1, if |rs
i | ≤Φ−1(1−δ )

0, if |rs
i |> Φ−1(1−δ )

i = 1,2, . . . ,n, (4.12)

where δ = 0.0125, such that 2.5% of the observations are flagged as outliers in the normal

model. The reweighted enet-LTS estimator is defined as

β̂ββ reweighted = argmin
βββ

{
n

∑
i=1

wi f (xi;yi)+λupdnwPαopt (βββ )

}
, (4.13)

where wi, i = 1, . . . ,n stands for the vector of binary weights, nw = ∑
n
i=1 wi, and f

corresponds to squared residuals for linear regression. Since h ≤ nw, and because the

optimal parameters αopt and λopt have been derived with h observations, the penalty

can act (slightly) differently in (4.13) than for the raw estimator. For this reason, the

parameter λopt has to be updated, while the αopt regulating the tradeoff between the l1 and
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l2 penalty is kept the same. The updated parameter λupd is determined by 5-fold CV, with

the simplification that αopt is already fixed.

29



CHAPTER 5

ROBUST AND SPARSE LOGISTIC REGRESSION

5.1 Robust and Sparse Logistic Regression with Elastic Net Penalty

Based on the definition (2.25) of the elastic net logistic regression estimator, it is straightforward

to define the objective function of its robust counterpart based on trimming,

Q(H,βββ ) = ∑
i∈H

d(xT
i βββ ,yi)+hλPα(βββ ), (5.1)

where again H ⊆ {1,2, . . . ,n} with |H|= h, and Pα is the elastic net penalty as defined in

Equation (2.16). As outlined in Section 4.1 for linear regression case, the task is to find the

optimal subset which minimizes the objective function and defines the robust sparse elastic

net estimator for logistic regression. It turns out that the algorithm explained previously in

the linear regression setting can be successfully used to find the approximative solution. In

the following we will explain the modifications that need to be carried out.

C-steps: In the linear regression case, the C-steps were based on the squared residuals

(4.4). Now the h-subsets are determined according to the indexes of those observations

with the smallest values of the deviances d(xT
i β̂ββ Hk

,yi). However, here it needs to

be made sure that the original group sizes are in the same proportion. Denote

n0 and n1 the number of observations in both groups, with n0 + n1 = n. Then

h0 = b(n0 +1)h/nc and h1 = h−h0 define the group sizes in each h-subset. A new

h-subset is created with the h0 indexes of the smallest deviances d(xT
i β̂ββ Hk

,yi = 0)

and with the h1 indexes of the smallest deviances d(xT
i β̂ββ Hk

,yi = 1).

Elemental subsets: In the linear regression case, the elemental subsets consisted of the
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indexes of three randomly selected observations, see (4.6). Now four observations

are randomly selected to form the elemental subsets, two from each group. This

allows to compute the estimator, and the two C-steps are based on the h smallest

values of the deviances. As before, this is carried out for 500 elemental subsets, and

only the “best” 10 h-subsets are kept. Here, “best” refers to an evaluation that is

borrowed from a robustified deviance measure proposed in Croux and Haesbroeck

[35] in the context of robust logistic regression (but not in high dimension). These

authors replace the deviance function (2.24) used in (2.23) by a function ϕBY to

define the so-called Bianco Yohai (BY) estimator

β̂ββ BY = argmin
βββ

n

∑
i=1

ϕ(xT
i βββ ;yi), (5.2)

a highly robust logistic regression estimator, see also [18]. The form of the function

ϕBY is shown in Figure 5.1, see [17] for details.

We use this function as follows: Positive scores xT
i β̂ββ of group 1, i.e. yi = 1, refer to

correct classification and receive the highest values for ϕBY , while negative scores

refer to misclassification, with small or zero ϕBY values. For the scores of group

0 we have the reverse behavior, see Figure 5.1. When evaluating an h-subset, the

sum over the h values of ϕBY (xT
i β̂ββ H) for i ∈ H is computed, and this sum should be

as large as possible. This means that we aim at identifying an h-subset where the

groups are separated as much as possible. Points on the wrong side have almost no

contribution, but also the contribution of outliers on the correct side is bounded. In

this way, outliers will not dominate the sum.

With the best 10 h-subsets we continue the C-steps until convergence. Finally, the

subset with the largest sum ϕBY (xT
i β̂ββ H) over all i ∈ H forms the best index set.

The selection of the optimal parameters αopt and λopt is discussed in Section 5.2. The

subset corresponding to these optimal tuning parameters is defined as the optimal subset of

size h. The enet-LTS logistic regression estimator is then calculated on the optimal subset

with αopt and λopt .
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Figure 5.1 Function ϕBY used for evaluating an h-subset, based on the scores xT
i β̂ββ for the

two groups.

The same procedure as linear regression is applied for logistic regression, except for

centering the predictand. In the end, the coefficients are back-transformed to the original

scale.

5.2 Selection of the Tuning Parameters

Section 5.1 outlined the algorithm to arrive at a best subset for robust elastic net logistic

regression, for each combination of the tuning parameters α ∈ [0,1] and λ ∈ [0,λ0]. In

this section we define the strategy to select the optimal combination αopt and λopt , leading

to the optimal subset. For this purpose we are using k-fold cross-validation (CV) on those

best subsets of size h, with k = 5. In more detail, for k-fold CV, the data are randomly split

into k blocks of approximately equal size. In case of logistic regression, each block needs

to consist of observations from both classes with approximately the same class proportions

as in the complete data set. Each block is left out once, the model is fitted to the “training

data” contained in the k− 1 blocks, using a fixed parameter combination for α and λ ,

and it is applied to the left-out block with the “test data”. In this way, h fitted values are

obtained from k models, and they are compared to the corresponding original response by

using the following evaluation criteria:

32



For logistic regression we use the mean of the negative log-likelihoods or deviances

(MNLL)

MNLL(α,λ ) =
1
h

h

∑
i=1

di(β̂ββ α,λ ), (5.3)

where di = d(xT
i β̂ββ α,λ ,yi) presents the test set deviances from the models estimated on the

training sets with a specific α and λ .

Note that the evaluation criterion given by (5.3) is robust against outliers, because it is

based on the best subsets of size h, therefore it is supposed to be outlier free.

In order to obtain more stable results, we repeat the k-fold CV five times and take the

average of the corresponding evaluation measure. Finally, the optimal parameters αopt and

λopt are defined as that couple for which the evaluation criterion gives the minimal value.

The corresponding best subset is determined as the optimal subset.

Note that the optimal couple αopt and λopt is searched on a grid of values α ∈ [0,1] and

λ ∈ [0,λ0]. In our experiments we used 41 equally spaced values for α , and λ was varied

in steps of size 0.025λ0. For determining λ0 in logistic regression we replaced the Pearson

correlation, which is used in case of linear regression, by a robustified point-biserial

correlation. Explicitly, we denote the group sizes of the two groups by n0 and n1, and

by m0
j and m1

j the medians of the jth predictor variable for the data from the two groups,

respectively. Then the robustified point-biserial correlation between y and x j is defined as

rpb(y,x j) =
m1

j −m0
j

MAD(x j)
·
√

n0n1

n(n−1)
, (5.4)

where MAD(x j) is the MAD of x j, and n = n0 +n1. Finally, the border of interval for λ

will be determined using following equation

λ0 =
2
n

max
j∈{1,...,p}

rpb(y,x j), (5.5)

where the correlation is calculated on bivariate winsorized data to obtain robust version.
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5.3 Reweighting Step

The LTS estimator has a low efficiency, and thus it is common to use a reweighting step

[11]. We also take into consideration this idea for the estimator introduced here. Generally,

in a reweighting step the outliers are identified and downweighted. In case of logistic

regression we compute the Pearson residuals which are approximately standard normally

distributed and given by

rs
i =

yi−πi

πi (1−πi)
, (5.6)

with πi the conditional probabilities from (2.22).

Then the weights are defined by

wi =

1, if |rs
i | ≤Φ−1(1−δ )

0, if |rs
i |> Φ−1(1−δ )

i = 1,2, . . . ,n, (5.7)

where δ = 0.0125, such that 2.5% of the observations are flagged as outliers in the normal

model. The reweighted enet-LTS estimator is defined as

β̂ββ reweighted = argmin
βββ

{
n

∑
i=1

wi f (xi;yi)+λupdnwPαopt (βββ )

}
, (5.8)

where wi, i = 1, . . . ,n stands for the vector of binary weights (according to the current

model), nw = ∑
n
i=1 wi, and f corresponds to squared residuals for linear regression or

to the deviances in case of logistic regression. Since h ≤ nw, and because the optimal

parameters αopt and λopt have been derived with h observations, the penalty can act

(slightly) differently in (5.8) than for the raw estimator. For this reason, the parameter

λopt has to be updated, while the αopt regulating the tradeoff between the l1 and l2 penalty

is kept the same. The updated parameter λupd is determined by 5-fold CV, with the

simplification that αopt is already fixed.
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CHAPTER 6

SIMULATIONS

In this chapter, some simulation studies are conducted to demonstrate the goodness of the

proposed estimators. There are three main parts for each proposed estimators. First part

gives the details of the generated data sets. Second part introduces which performance

measures are used to compare the proposed estimators. Finaly, the results are shown in last

part.

6.1 Simulation Studies for Robust Linear Regression

6.1.1 Sampling Schemes for Robust Regression

Let us describe sampling schemes by means of generating a ”low dimensional” data set

with n = 50 and p = 10 and a ”high dimensional” data set with n = 30 and p = 40. The

simulated data sets are generated in analogy to [32] for robust ridge regression, which

consists of the following steps: The explanatory variables (x1, . . . ,xp) are generated from

a normal distribution Np(0,V), where V = [v jk] with v j j = 1 and v jk = ρ for j 6= k,

j,k = 1, . . . , p. Random errors ei are generated from standard normal distribution Np(0,1).

The observations of the response variable are then determined by

yi = xT
i βββ true + ei, (6.1)

where βββ true =
√

pRb. Note that βββ true is determined randomly because b has a uniform

distribution with bT b = 1 and where the “Signal to Noise Ratio” (SNR) is given by
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R= ‖β
ββ true‖2

pVar(e) . The first m observations (xi,yi) are changed to leverage points, where m= [nε]

and ε ∈ (0,1), and [·] denotes the integer part. Their magnitude is controlled by the

parameters for leverage (klev) and slope (kslo) through xi = x0 and yi = xT
0 βββ true(1+ kslo),

where x0 = kleva/
√

aT V−1a is selected randomly with aT 1p = 0. Therefore, x0 creates

leverage points that are most influential to the estimator. The values for kslo are modified

in a grid in order to produce the largest MSE for each estimator.

Since the estimators PLS [29] and PRM [22] have good properties when p > n, we also

take into account these estimators for comparisons. Moreover, we also compare with the

non-robust PLS-Liu estimator, which is introduced in analogy to the PRM-Liu estimator as

β̂ββ PLS−Liu = (X′X+ I)−1(X′X+λPLSI)β̂ββ PLS, (6.2)

where λPLS presents the biasing parameter, and β̂ββ PLS is the PLS estimator.

We decide to take ρ = 0.9, ε ∈ {0,0.1,0.2}, and klev = 10, since these already allow to

get a general picture of the performance of the different estimators. We choose SNR

∈ {0.1,1,10} for low dimensional data and SNR ∈ {0.1,0.5,1} for high dimensional

data. Note that three contamination levels are provided for a wide perspective to highly

contaminated data from uncontaminated data. The first case corresponds to the uncontaminated

data, the second case includes 10% outliers and the third case has 20% outliers; both

scenarios might be quite realistic in practice. The range of values for kslo is limited to 30,

which is sufficient to deliver the maximum of the MSE for the robust estimators. Note,

however, that the MSE of the classical estimators could be increased artificially just by

increasing kslo, and thus the MSE will not be reported for classical estimators if ε > 0.

The simulated explanatory variables are first mean-centered and normalized to unit scale.

For the classical estimators, mean and standard deviation are used, while for the robust

estimators we use median and median absolute deviation (MAD). After estimation, the

regression parameters are back-transformed to the original scale.
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6.1.2 Performance Measures

The performance of the estimator β̂ββ =
(

β̂0,β̂ββ
T
1

)T
is evaluated by

MSE(β̂ββ , λ̂ ) = E(y0− β̂0−xT
0 β̂ββ 1)

2 = 1+∆, (6.3)

where

∆ = β̂
2
0 +(β̂ββ 1−βββ true)

T V(β̂ββ 1−βββ true)

and λ̂ is the optimized Liu parameter, see equations (3.6) and (3.14). In addition, the

prediction performance of the model using β̂ββ with the optimized parameter λ̂ to predict

the response ŷ = Xβ̂ββ is evaluated through 5-fold cross-validation by

MSECV(ŷ, λ̂ ) =
1
n

[
(y− ŷCV)T (y− ŷCV)

]
. (6.4)

Each setting in the simulation study is repeated 200 times. The resulting MSE values are

summarized by the 10% upper trimmed mean, because typically robust estimators are

characterized by heavy-tailed distributions.

6.1.3 Results for Robust Linear Regression

All results given below correspond to this trimmed MSE for both contaminated and

uncontaminated data sets for reasons of comparability.

Before presenting the simulation results, we first provide more insight into the design of

the simulation. Figure 6.1 shows the resulting MSEs according to equations (6.3) (left

picture) and (6.4) (right picture) for one simulated data set with p = 10, n = 50, SNR= 1,

and ε = 0.1. Here the values for kslo are varied between 0 and 30. The LS-Liu estimator

increases quickly with a larger value of kslo, and it would become unbounded for kslo

tending to infinity. The robust estimators are bounded, and for values of kslo larger than 5

the values do almost not change any more. In the simulation tables below we will report

only the maximum MSE values that are attained when varying the parameter kslo. For the
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non-robust LS-Liu estimator we will not report results in case of contamination, since the

maximum MSE is infinity.
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Figure 6.1 Simulated MSEs for n = 50, p = 10, SNR= 1, and ε = 0.1, for the MSE
according to (6.3) (left) and (6.4) (right), for the MM-Liu, LTS-Liu and LS-Liu estimators,

as a function of contamination slope.

Table 6.1 lists the results of the maximum trimmed MSEs calculated by (6.3), denoted

as “(MSE)”, and (6.4), denoted as “(CV)”. We used the parameters p = 10, n = 50, and

different values for SNR. This table represents the uncontaminated case (ε = 0). The

results for the contaminated case for ε = 0.1 and ε = 0.2 are shown in Table 6.2.

One can see from Table 6.1 that the LS-Liu estimator increases only slightly with increasing

signal-to-noise ratio, whereas this increase is larger for the robust estimators. The MM-Liu

estimator outperforms the LTS-Liu estimator with respect to both MSE measurements.

Table 6.1 Maximum trimmed MSEs of estimates for p = 10, n = 50, and ε =0.

SNR
10 1 0.1

MM-Liu (MSE) 2.21 1.31 1.20
LTS-Liu (MSE) 2.60 1.53 1.37

LS-Liu (MSE) 1.24 1.18 1.17
MM-Liu (CV) 1.65 0.90 0.79
LTS-Liu (CV) 1.75 0.99 0.87

LS-Liu (CV) 0.76 0.74 0.75
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Table 6.2 shows the results in presence of contamination. Generally, the MSEs clearly

increase with higher SNR and higher contamination. There is, however, a clear advantage

of the MM-Liu estimator over the LTS-Liu estimator. In particular the MSEs of β̂ββ LTS

increase enormously compared to those of β̂ββ MM. This behavior was already visible in

Figure 6.1. The reason for the difference is not only due to the higher efficiency of the

MM-estimator compared to the LTS-estimator, but also due to the use of weights within

the definition of the MM-Liu estimator.

Table 6.2 Maximum trimmed MSEs of estimates for p = 10, n = 50 under contamination.

SNR: 10 1 0.1
ε : 0.1 0.2 0.1 0.2 0.1 0.2

MM-Liu (MSE) 8.56 29.31 2.65 8.34 1.79 3.65
LTS-Liu (MSE) 20.39 142.97 5.52 34.47 3.46 13.30

MM-Liu (CV) 5.96 19.02 1.85 5.43 1.23 2.38
LTS-Liu (CV) 7.32 24.92 2.10 6.14 1.45 3.21

In a further simulation study we increase the ratio p/n by taking p = 10 and n = 25.

The results are reported in Table 6.3 for the uncontaminated case, and in Table 6.4 for

contamination with ε = 0.1. We come to quite similar conclusions as before: The robust

estimators lead to a loss in efficiency compared to the LS counterpart, in particular for high

SNR. In case of contamination, the MM-Liu estimator again outperforms the LTS-Liu

estimator, and the difference gets more pronounced for higher SNR values.

Table 6.3 Maximum trimmed MSEs of estimates for p = 10, n = 25, and ε =0.

SNR
10 1 0.1

MM-Liu (MSE) 3.95 1.81 1.54
LTS-Liu (MSE) 4.83 1.92 1.62

LS-Liu (MSE) 1.60 1.37 1.34
MM-Liu (CV) 2.06 0.80 0.66
LTS-Liu (CV) 2.46 1.00 0.83

LS-Liu (CV) 0.58 0.56 0.56

Table 6.5 shows the results for the uncontaminated case, whereas the results for the

contaminated cases are in Table 6.6. Here the MSEs refer to values calculated according to

(6.4), and again we use upper 10% trimming of the 200 simulation replications. Note that
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Table 6.4 Maximum trimmed MSEs of estimates for p = 10, n = 25, and ε =0.1.

SNR
10 1 0.1

MM-Liu (MSE) 14.69 4.84 3.32
LTS-Liu (MSE) 28.41 7.89 4.49

MM-Liu (CV) 5.49 1.72 1.19
LTS-Liu (CV) 8.01 2.33 1.53

here also the optimal number of PLS (PRM) components needs to be determined, which

is done by 5-fold CV. The results from both tables reveal that the plug-in estimators PLS

or PRM can not be improved within the Liu estimation. There are only slight differences

visible, which are essentially due to different optimal numbers of components. Since

this optimal number of components is determined by the smallest MSE using CV for

each simulated data set, it can be different for the PLS (PRM) estimator and the PLS-Liu

(PRM-Liu) estimator.

Table 6.5 Maximum trimmed MSEs of estimates for p = 40, n = 30, and ε = 0.

SNR
1 0.5 0.1

PLS-Liu (CV) 0.6 0.7 0.7
PLS (CV) 0.7 0.7 0.7

PRM-Liu (CV) 2.3 1.4 1.0
PRM (CV) 2.2 1.4 1.0

Table 6.6 Maximum trimmed MSEs of estimates for p = 40, n = 30, under contamination.

SNR: 1 0.5 0.1
ε : 0.1 0.2 0.1 0.2 0.1 0.2

PRM-Liu (CV) 8.5 20.6 5.2 9.7 1.8 3.4
PRM (CV) 8.8 20.6 5.5 9.5 1.8 3.4
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6.2 Simulation Studies for Robust and Sparse Linear Regression

6.2.1 Sampling Schemes for Robust and Sparse Linear Regression

Let us consider two different scenarios by means of generating a “low dimensional”

data set with n = 150 and p = 60 and a “high dimensional” data set with n = 50 and

p = 100. We generate a data matrix where the variables are forming correlated blocks,

X = (Xa1,Xa2,Xb), where Xa1 , Xa2 and Xb have the dimensions n× pa1 ,n× pa2 and n× pb,

with p= pa1 + pa2 + pb. Such a block structure can be assumed in many applications, and it

mimics different underlying hidden processes. The observations of the blocks are generated

independently from each other, from a multivariate normal distribution Npa1
(0,ΣΣΣa1) with

ΣΣΣa1 = ρ
| j−k|
a1 , 1≤ j, k≤ pa1 , Npa2

(0,ΣΣΣa2) with ΣΣΣa2 = ρ
| j−k|
a2 , 1≤ j, k≤ pa2 , and Npb(0,ΣΣΣb)

with ΣΣΣb = ρ
| j−k|
b , 1 ≤ j, k ≤ pb, respectively. While the first two blocks belong to the

informative variables with sizes of pa1 = 0.05p and pa2 = 0.05p, the third block represents

uninformative variables with pb = 0.9p. Furthermore, we take ρa1 = ρa2 = 0.9 to allow for

a high correlation among the informative variables, and ρb = 0.2 to have low correlation

among the uninformative variables.

To create sparsity, the true parameter vector βββ consists of zeros for the last 90% of the

entries referring to the uninformative variables, while the first 10% of the entries are

assigned to one. The response variable is calculated by

yi = 1+xT
i βββ + ei, (6.5)

where the error term ei is distributed according to a standard normal distribution N (0,1),

for i = 1, . . . ,n.

This is the design for the simulations with clean data. For the simulation scenarios with

outliers we replace the first 10% of the observations of the block of informative variables by

values coming from independent normal distributions N (20,1) for each variable. Further,

the error terms for these 10% outliers are replaced by values from N (20σ̂y,1) instead

of N (0,1), where σ̂y represents the estimated standard deviation of the clean predictand
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vector. In this way, the contaminated data consist of both vertical outliers and leverage

points.

6.2.2 Performance Measures

For the evaluation of the different estimators, training and test data sets are generated

according to the explained sampling schemes. The models are fit to the training data and

evaluated on the test data. The test data are always generated without outliers.

As performance measures we use the root mean squared prediction error (RMSPE) for

linear regression,

RMSPE(β̂ββ ) =

√
1
n

n

∑
i=1

(
yi− β̂0−xT

i β̂ββ

)2
. (6.6)

where yi and xi, i = 1, . . . ,n, indicate the observations of the test data set, β̂ββ denotes the

coefficient vector and β̂0 stands for the estimated intercept term obtained from the training

data set. Further, we consider the precision of the coefficient estimate as a quality criterion,

defined by

PRECISION(β̂ββ ) =

√
p

∑
i=0

(
βi− β̂i

)2
, (6.7)

In order to compare the sparsity of the coefficient estimators, we evaluate the False Positive

Rate (FPR) and the False Negative Rate (FNR), defined as

FPR(β̂ββ ) =
|{ j = 0, . . . , p : β̂ j 6= 0∧β j = 0}|
|{ j = 0, . . . , p : β j = 0}|

, (6.8)

FNR(β̂ββ ) =
|{ j = 0, . . . , p : β̂ j = 0∧β j 6= 0}|
|{ j = 0, . . . , p : β j 6= 0}|

. (6.9)

The FPR is the proportion of non-informative variables that are incorrectly included in

the model. On the other hand, the FNR is the proportion of informative variables that

are incorrectly excluded from the model. A high FNR usually has a bad effect on the
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prediction performance since it inflates the variance of the estimator.

These evaluation measures are calculated for the generated data in each of 100 simulation

replications separately, and then summarized by boxplots. The smaller the value for these

criteria, the better the performance of the method.

6.2.3 Results for Robust and Sparse Linear Regression

The outcome of the simulations for linear regression is summarized in Figures 6.2–6.5.

The left plots in these figures are for the simulations with low dimensional data, and the

right plots for the high dimensional configuration. Figure 6.2 compares the RMSPE. All

methods yield similar results in the low dimensional non-contaminated case, while in the

high dimensional clean data case the elastic net method is clearly better. However, in the

contaminated case, elastic net leads to poor performance, which is also the case for sparse

LTS. Enet-LTS performs even slightly better with contaminated data, and there is also a

slight improvement visible in the reweighted version of this estimator. The PRECISION

in Figure 6.3 shows essentially the same behavior. The FPR in Figure 6.4, reflecting the

proportion of incorrectly added noise variables to the models, shows a very low rate for

sparse LTS. Here, the elastic net even improves in the contaminated setting, and the same

is true for enet-LTS. A quite different picture is shown in Figure 6.5 with the FNR. Sparse

LTS and elastic net miss a high proportion of informative variables in the contaminated

data scenario, which is the reason for their poor overall performance. Note that the outliers

are placed in the informative variables, which seems to be particularly difficult for sparse

LTS.

In Table 6.7 and 6.8, the averaged results for low dimensional simultion schemes are

displayed for clean and contaminated structures, respectively. All averaged results for high

dimesional simulation configurations, which are clean and contaminated, are shown in

Table 6.9 and 6.10, respectively.
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Figure 6.2 Root mean squared prediction error (RMSPE) for linear regression. Left: low
dimensional data set (n = 150 and p = 60); right: high dimensional data set (n = 50 and

p = 100).
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Figure 6.3 Precision of the estimators (PRECISION) for linear regression. Left: low
dimensional data set (n = 150 and p = 60); right: high dimensional data set (n = 50 and

p = 100).

Table 6.7 Results for low dimensional scheme for lienar regression (n = 150 and p = 60)
with no contamimation: The root mean squared prediction error (RMSPE), the bias of the
estimators (Bias), the false positive rate (FPR) and the false negative rate (FNR), averaged

over m=100 runs.

No Contamination
mean of: RMSPE Bias FPR FNR
enet-LTS 1.21 0.73 0.43 0.00

raw enet-LTS 1.28 0.86 0.50 0.00
sparseLTS 1.16 0.67 0.05 0.00
elastic net 1.06 0.47 0.21 0.00
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Figure 6.4 False positive rate (FPR) for linear regression. Left: low dimensional data set
(n = 150 and p = 60); right: high dimensional data set (n = 50 and p = 100).
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Figure 6.5 False negative rate (FNR) for linear regression. Left: low dimensional data set
(n = 150 and p = 60); right: high dimensional data set (n = 50 and p = 100).

Table 6.8 Results for low dimensional scheme for lienar regression (n = 150 and p = 60)
with contamination: The root mean squared prediction error (RMSPE), the bias of the

estimators (Bias), the false positive rate (FPR) and the false negative rate (FNR), averaged
over m=100 runs.

Contaminated
mean of: RMSPE Bias FPR FNR
enet-LTS 1.12 0.63 0.23 0.00

raw enet-LTS 1.20 0.77 0.25 0.00
sparseLTS 3.04 1.97 0.18 0.42
elastic net 3.29 2.04 0.16 0.41
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Table 6.9 Results for high dimensional scheme for lienar regression (n = 50 and p = 100)
with no contamination: The root mean squared prediction error (RMSPE), the bias of the
estimators (Bias), the false positive rate (FPR) and the false negative rate (FNR), averaged

over m=100 runs.

No Contamination
mean of: RMSPE Bias FPR FNR
enet-LTS 2.27 2.00 0.13 0.10

raw enet-LTS 2.25 2.01 0.20 0.09
sparseLTS 2.29 2.31 0.05 0.18
elastic net 1.28 1.18 0.14 0.01

Table 6.10 Results for high dimensional scheme for lienar regression (n = 50 and
p = 100) with contamination: The root mean squared prediction error (RMSPE), the bias
of the estimators (Bias), the false positive rate (FPR) and the false negative rate (FNR),

averaged over m=100 runs.

Contaminated
mean of: RMSPE Bias FPR FNR
enet-LTS 1.91 1.87 0.10 0.09

raw enet-LTS 1.97 1.97 0.15 0.10
sparseLTS 4.51 2.80 0.01 0.54
elastic net 5.17 3.18 0.11 0.48

6.3 Simulation Studies for Robust and Sparse Logistic Regression

6.3.1 Sampling schemes for robust and sparse logistic regression

We also consider two different scenarios for logistic regression, a “low dimensional”

data set with n = 150 and p = 50 and a “high dimensional” data set with n = 50 and

p = 100. The data matrix is X = (Xa,Xb), where Xa has the dimension n× pa and Xb is of

dimension n× pb, with p = pa + pb. The data matrices are generated independently from

Npa(0,ΣΣΣa) with ΣΣΣa = ρ
| j−k|
a , 1≤ j, k≤ pa, and Npb(0,ΣΣΣb) with ΣΣΣb = ρ

| j−k|
b , 1≤ j, k≤ pb,

respectively. While the first block consists of the informative variables with pa = 0.1p, the

second block represents uninformative variables with pb = 0.9p. We take ρa = 0.9 for a

high correlation among the informative variables, and ρb = 0.5 for moderate correlation

among the uninformative variables.

The coefficient vector βββ consists of ones for the first 10% of the entries, and zeros for
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the remaining uninformative block. The elements of the error term εi are generated

independently from N (0,1). The grouping variable is then generated according to the

model

yi =

0, if 1+xT
i βββ + εi ≤ 0

1, if 1+xT
i βββ + εi > 0

i = 1,2, . . . ,n. (6.10)

With this setting, both groups are of approximately the same size.

Contamination is introduced by adding outliers only to the informative variables. Denote

n0 the number of observations in class 0. Then the first b0.1n0c observations of group 0

are replaced by values generated from N (20,1). In order to create “vertical” outliers in

addition to leverage points, we assign those first 0.1n0 observations of class 0 a wrong

class membership.

6.3.2 Performance Measures

The mean of the negative log-likelihoods or deviances (MNLL) for logistic regression,

MNLL(β̂ββ ) =
1
n

n

∑
i=1

d(β̂0 +xT
i β̂ββ ,yi), (6.11)

where yi and xi, i = 1, . . . ,n, indicate the observations of the test data set, β̂ββ denotes the

coefficient vector and β̂0 stands for the estimated intercept term obtained from the training

data set. In logistic regression we also calculate the misclassification rate (MCR), defined

as

MCR =
m
n

(6.12)

where m is the number of misclassified observations from the test data after fitting the

model on the training data. Similarly, we consider the precision of the coefficient estimate

as a quality criterion, defined by Eq. (6.7). Additionally, the sparsity of the coefficient

estimators is compared by FPR and the FNR defined as Eq. (6.8) and (6.9).

47



As mentioned before while the FPR is the proportion of non-informative variables that

are incorrectly included in the model, the FNR is the proportion of informative variables

that are incorrectly excluded from the model. A high FNR usually has a bad effect on the

prediction performance since it inflates the variance of the estimator.

These evaluation measures are calculated for the generated data in each of 100 simulation

replications separately, and then summarized by boxplots. The smaller the value for these

criteria, the better the performance of the method.

6.3.3 Results for Robust and Sparse Logistic Regression

Figures 6.6–6.10 summarize the simulation results for logistic regression. As before, the

left plots refer to the low dimensional case, and the right plots to the high dimensional

data. Within one plot, the results for uncontaminated and contaminated data are directly

compared. The misclassification rate in Figure 6.6 is around 10% for all methods, and it is

slightly higher in the high dimensional situation. In case of contamination, however, this

rate increases enormously for the classical method elastic net.

The average deviances in Figure 6.7 show that the reweighting of the enet-LTS estimator

clearly improves the raw estimate in both the low and high dimensional cases. It can also

be seen that elastic net is sensitive to the outliers. The precision of the parameter estimates

in Figure 6.8 reveal a remarkable improvement for the reweighted enet-LTS estimator

compared to the raw version, while there is not any clear effect of the contamination on

the classical elastic net estimator.

The FPR in Figure 6.9 shows a certain difference between uncontaminated and contaminated

data for the elastic net, but otherwise the results are quite comparable. A different picture

is visible from the FNR in Figure 6.10, where especially in the low dimensional case the

elastic net is very sensitive to the outliers. Overall we conclude that the enet-LTS performs

very well in case of contamination even though this was not clearly visible in the precision,

and it also yields reasonable results for clean data.

In Table 6.11 and 6.12, the averaged results for low dimensional simultion schemes are
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Figure 6.6 Misclassification rate for logistic regression. Left: low dimensional data set
(n = 150 and p = 50); right: high dimensional data set (n = 50 and p = 100).

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
N

LL

enet−LTS raw enet−LTS elastic net

●

●

●

●

●
●

●

●

●
●
●

●●

●

●●●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

clean data
cont. data

●

●

●

●

●

●●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
N

LL

enet−LTS raw enet−LTS elastic net

●

●
●
●
●

●●●

●

●

●

●●

●●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

clean data
contaminated data

Figure 6.7 The mean of negative likelihood (MNLL) function for logistic regression. Left:
low dimensional data set (n = 150 and p = 50); right: high dimensional data set (n = 50

and p = 100).
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Figure 6.8 Precision of the estimators (PRECISION) for logistic regression. Left: low
dimensional data set (n = 150 and p = 50); right: high dimensional data set (n = 50 and

p = 100).
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Figure 6.9 False positive rate (FPR) for logistic regression. Left: low dimensional data set
(n = 150 and p = 50); right: high dimensional data set (n = 50 and p = 100).
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Figure 6.10 False negative rate (FNR) for logistic regression. Left: low dimensional data
set (n = 150 and p = 50); right: high dimensional data set (n = 50 and p = 100).

displayed for clean and contaminated structures, respectively. All averaged results for high

dimesional simulation settings, which are clean and contaminated, are shown in Table 6.13

and 6.14, respectively.

Table 6.11 Results for low dimensional scheme for logistic regression (n = 150 and
p = 50) with no contamination: mean of negative log-likelihood (MNLL), the

misclassification rate (MCR), the bias of the estimators (Bias), the false positive rate (FPR)
and the false negative rate (FNR), averaged over m=100 runs.

No Contamination
mean of: MNLL MCR Bias FPR FNR
enet-LTS 0.22 0.09 2.52 0.27 0.05

raw enet-LTS 0.36 0.11 5.97 0.28 0.08
elastic net 0.22 0.09 1.75 0.37 0.01
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Table 6.12 Results for low dimensional scheme for logistic regression (n = 150 and
p = 50) with contamination: mean of negative log-likelihood (MNLL), the

misclassification rate (MCR), the bias of the estimators (Bias), the false positive rate (FPR)
and the false negative rate (FNR), averaged over m=100 runs.

Contaminated
mean of: MNLL MCR Bias FPR FNR
enet-LTS 0.10 0.10 2.96 0.27 0.06

raw enet-LTS 0.11 0.11 5.38 0.25 0.09
elastic net 0.54 0.54 2.49 0.23 0.68

Table 6.13 Results for high dimensional scheme for logistic regression (n = 50 and
p = 100) with no contamination: mean of negative log-likelihood (MNLL), the

misclassification rate (MCR), the bias of the estimators (Bias), the false positive rate (FPR)
and the false negative rate (FNR), averaged over m=100 runs.

No Contamination
mean of: MNLL MCR Bias FPR FNR
enet-LTS 0.24 0.10 2.65 0.18 0.22

raw enet-LTS 0.34 0.13 3.48 0.20 0.21
elastic net 0.24 0.10 2.61 0.20 0.19

Table 6.14 Results for high dimensional scheme for logistic regression (n = 50 and
p = 100) with contamination: mean of negative log-likelihood (MNLL), the

misclassification rate (MCR), the bias of the estimators (Bias), the false positive rate (FPR)
and the false negative rate (FNR), averaged over m=100 runs.

Contaminated
mean of: MNLL MCR Bias FPR FNR
enet-LTS 0.28 0.12 2.75 0.16 0.25

raw enet-LTS 0.36 0.15 3.33 0.18 0.25
elastic net 0.80 0.52 3.49 0.23 0.79
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CHAPTER 7

REAL DATA EXAMPLES

This chapter is dedicated to show the goodness of the proposed estimators on some different

real data sets.

7.1 Real Data Example for Robust Linear Regression

In this section we focus on applications with linear regression. The first real data is taken to

compare MM-Liu estimator with robust counterpart, LTS-Liu, and non-robust counterpart,

LS-Liu. Then, the performance of PRM-Liu estimator is shown on a high dimensional

data set. Model evaluation is done with 5-fold cross validation, i.e. each fold is used as test

set once, a model is estimated on the training set, and the mean squared error is calculated

for the test set. In these real data examples it is unknown if outliers are present. In order

to avoid an influence of potential outliers on the evaluation of a model, the 10% trimmed

mean suared error is calculated to compare the models.

7.1.1 Analysis of the Employment Data for Turkey

We consider a data set which was also used by [4] in the context of LTS-Liu regression

as follows Table 7.1. The data contain macroeconomic variables of Turkey in the

years 1988-2006. The independent variables are the non-institutionalized population

for employment older than 14 years of age, the number of unemployed people, the year,

and the gross national product (GNP). The dependent variable y represents the number

of people employed in Turkey in this time period. It is known that this data set has both
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multicollinearity problem and outliers [4].

Table 7.1 Employment data for Turkey.

Year Employment GNP($) Unemployment Population
1988 17,754 1684 1637 31,461
1989 18,222.5 1959 1712.5 31,948
1990 18,541.5 2682 1615.5 33,066
1991 19,294 2621 1725.5 34,248
1992 19,467 2708 1810 35,277
1993 18,506 3004 1821 36,153
1994 20,011 2184 1877 37,114
1995 20,594 2759 1704 38,115
1996 21,198 2928 1505 39,071
1997 21,207 3079 1557 40,020
1998 21,785 3255 1611 40,915
1999 22,056 2879 1836 41,809
2000 21,582 2965 1499 42,612
2001 21,525 2123 1969 43,455
2002 21,350 2598 2467 44,224
2003 21,146 3383 2492 44,974
2004 21,790 4172 2502 45,813
2005 22,046 5008 2519 46,620
2006 22,328 5477 2445 47,391

Figure 7.1 (left) shows the resulting MSE of the regression estimates, see equation (3.9)

and the right plot shows the MSE of the response, see equation (3.10). Thus, in the left

plot we get information on the quality of the parameter estimates (results are reported

here for scaled data), while the right plot informs about the fit between actual data and the

predicted model (here back-transformed to the original scale). Note that the value of MSE

is computed with upper 10% trimming. The case λ = 1 corresponds to the results of the

plug-in estimator (LS, LTS, and MM, respectively). All three Liu counterparts improve the

MSE. One can see that the MM-Liu estimator leads to the best solution, followed by the

LTS-Liu estimator. The LS-Liu estimator shows worst performance, in particular for the

prediction.
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Figure 7.1 Results of the Liu-type estimators for the Turkish employment data. Left:
results based on the MSE of the regression estimates; right: results based on minimizing

the MSE of the prediction.

7.1.2 Analysis of the Glass Vessels Data

We consider a data set containing information on archaeological glass vessels from the

16th and 17th century that were excavated in Antwerp. The data set originates from [36],

and the aim was to learn more about the production of these vessels, especially their

origin and possible trade connections between known producers. The number of glass

vessels is n = 180 and each of these glass vessels was analyzed by an electron-probe X-ray

microanalysis (EXPMA) leading to 1920 characteristics. It is known from previous studies

that the data contain outliers according to measurements with a different detector efficiency

[22]. Following [32], we will only consider spectra in the range 15 to 500, because outside

this range the frequencies are very low. The resulting data set has n = 180 observations and

p = 486 variables which are highly collinear. The glass vessels have also been analyzed

according to the concentration of chemical compounds. Here we focus on the oxide lead

(PbO) which is used as response variable.

In Figure 7.2 we compare the resulting MSE of prediction for the PRM-Liu estimator,

where the number of components ranges from 1 to 9. Here we employ the PRM-Liu

estimator for the original values of PbO (left) and for the log-transformed PbO values

(right), since the PbO values are heavily right-skewed. The optimal biasing parameter λ is

55



determined by 5-fold CV. One can see that log-transformation improved the MSE, and that

a three-component model with λ = 300 gives the overall best MSE. Note that the result of

the PRM estimator (without Liu) correspond to the values for λ = 1, and in case of the

log-transformed response they can be clearly improved by the PRM-Liu estimator.
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Figure 7.2 Glass vessel data: Resulting MSE of prediction based on CV for the PRM-Liu
estimator, using the original (left) and the log-transformed (right) response PbO. The

results change with the choice of the biasing parameter λ , and with the number of
components.

7.2 Real Data Example for Robust and Sparse Linear Regression

In this section we give two examples for linear regression to compare the enet-LTS

estimator and its raw version with non-robust elastic net estimator. The model selection is

conducted as described in Section 4.2. Model evaluation is done with leave-one-out cross

validation, i.e. each observation is used as test observation once, a model is estimated on

the remaining observations, and the root mean squared prediction error is calculated for

the test observation. Since in these real data examples it is unknown if outliers are present

the 25% trimmed root mean squared prediction error is calculated to compare the models

in order to avoid an influence of potential outliers on the evaluation of a model.
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7.2.1 Analysis of the NCI Data

The performance of the enet-LTS estimator in case of linear regression is shown on

the cancer data, which measures 60 human cancer cell lines, from the National Cancer

Institute. Data can be downloaded from (http://discover.nci.nih.gov/cellminer/). Since

the 40th observation has all missing values, it is out of calculation and n = 59. The gene

expression data is obtained with an Affymetrix HG-U133A chip and normalized using

the GCRMA method. The resulting data includes p = 22.283 predictors. Reverse-phase

protein lysate arrays include the expression of 162 proteins. Instead of modeling the

relationship for each protein expression seperately, we take the similar idea of Lee et al.

[37] and Alfons et al. [13], namely, we choose one of the protein expression variables as

predictand. Therefore, we focus on ADPRT–6 as predictand which corresponds to 4th of

the protein expression variables.

Concerning prediction performance, the trimmed root mean squared prediction error

(RMSPE) is computed via leave-one-out cross-validation (CV). The comparisons of raw

and reweighted enet-LTS estimators with the classical elastic net estimator are reported in

Table 7.2. According to trimmed RMSPE values, enet-LTS outperforms and is followed

by raw enet-LTS. When we look at the number of variables of each method in Table 7.2, it

seems that the selected tuning parameter αopt is quite bigger for the classical elastic net

than for the enet-LTS method. Since αopt = 0.575 for enet-LTS and 0.975 for elastic net,

this claim is verified easily.

Figure 7.3 shows residuals of the classical elastic net model and reweighted elastic net

model. While the classical elastic net estimator can not detect outliers, the proposed

method does seccesfully. To support this result, the fitted values versus response variable

are given in Figure 7.4, where (left) we can see that in some of the fitted values are very

far away from the original response values and those correspond to outliers. On the other

hand, they are not distinguisable in case of the classical elastic net model (right).
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Table 7.2 NCI data: number of variables in the optimal models, and trimmed root mean
squared prediction error from leave-one-out cross validation of the optimal models.

number variables trimmed RMSPE
enet-LTS 51 0.17190
raw enet-LTS 47 0.17600
elastic net 25 0.20664
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Figure 7.3 NCI data: Residuals of reweighted enet-LTS (left) and elastic net (right)
estimators vs indexes which correspond to ordered observations on NCI Data.
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Figure 7.4 NCI data: Fitted values of reweighted enet-LTS (left) and elastic net (right)
estimators vs response variable y.
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7.2.2 Analysis of the Glass Vessels Data

As in section 7.1.2, we consider the archaeological glass vessels data, which is analyzed

by [36], from the 16th and 17th century. The number of glass vessels is n = 180 and each

of these glass vessels was analyzed by an electron-probe X-ray microanalysis (EXPMA)

leading to p = 1920 spectra for each vessel. Similarly, we will only consider spectra in

the range 15 to 500, which have highest frequences, instead of taking all variables of size

p = 1920. Therefore the resulting data set has n = 180 observations and p = 486 variables

which are highly collinear. As response variable, we focus on the oxide lead (PbO).

The quality of the selected models is summarized in Table 7.3. The trimmed root mean

squared prediction error of the enet-LTS method is smaller than the elastic net. The

reweighting step in enet-LTS leads the model with less variable as well as improving the

model. Although both enet-LTS models include more variables than the elastic net model,

this is not a big difference as seen in Table 7.3. While the penalty gives higher emphasis on

the l1 term with αopt = 0.95 for the elastic net model, it has a moderate value αopt = 0.6

for enet-LTS.

Figure 7.5 (left) shows residuals of the reweighted enet-LTS model. In this case, some of

the resiuals are quite far away from the zero line, therefore corresponding observations

to them are determined as outliers. As expected all observations behave very closely to

each other in case of elastic net model Figure 7.5 (right). Further, it can be observed that

neighboring variables, which are correlated, have similar coefficients. This is favored by

the l2 term in the elastic net penalty. In Figure 7.10 (right) the coefficient estimates of the

elastic net model are visualized. Fewer coefficients are non-zero than for enet-LTS which

was favored by the l1 term in the elastic net penalty, but in the second block of non-zero

coefficients neighboring variables receive very different coefficient estimates.
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Table 7.3 Glass vessel data: number of variables in the optimal models, and trimmed root
mean squared prediction error from leave-one-out cross validation of the optimal models.

number variables trimmed RMSPE
enet-LTS 43 0.00279
raw enet-LTS 61 0.00294
elastic net 39 0.00446
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Figure 7.5 Glass vessel data: Residuals of reweighted enet-LTS (left) and elastic net (right)
estimators vs indexes which correspond to ordered observations on Glass Vessels Data.
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Figure 7.6 Glass vessel data: coefficient estimate of the reweighted enet-LTS (left) and
coefficient estimate of the elastic net (right)
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7.3 Real Data Example for Robust and Sparse Logistic Regression

In this section we focus on applications with logistic regression, and compare the non-robust

elastic net estimator with the robust enet-LTS method. The model selection is conducted

as described in Section 5.2. Model evaluation is done with leave-one-out cross validation,

i.e. each observation is used as test observation once, a model is estimated on the remaining

observations, and the negative log-likelihood is calculated for the test observation. In these

real data examples it is unknown if outliers are present. In order to avoid an influence of

potential outliers on the evaluation of a model, the 25% trimmed mean of the negative

log-likelihoods is calculated to compare the models.

7.3.1 Analysis of the Meteorite Data

The time-of-flight secondary iron mass spectroscope COSIMA [38] was sent to the

comet Churyumov-Gerasimenko in the Rosetta space mission by the ESA to analyze

the elemental composition of comet particles which were collected there [39]. As reference

measurements, samples of meteorites provided by the Natural History Museum Vienna

were analyzed with the same type of spectroscope at Max Planck Institute for Solar System

Research in Göttingen.

Here we apply our proposed method for logistic regression to the measurements from

particles from the meteorites Ochansk and Renazzo with 160 and 110 spectra, respectively.

We restrict the mass range to 1-100mu, consider only mass windows where inorganic

and organic ions can be expected as described in [40] and variables with positive median

absolute deviation. So we obtain p = 1540 variables. Further, the data is normalized to

have constant row sum 100.

Table 7.4 summarizes the results for the comparison of the methods. The trimmed MNLL

is much smaller for the enet-LTS estimator than for the classical elastic net method. The

reweighting step improves the quality of the model further. The selected tuning parameter

αopt is much smaller for enet-LTS than for the classical elastic net method which strongly

influences the number of variables in the models.
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Table 7.4 Renazzo and Ochansk: Number of variables in the optimal models and trimmed
mean negative log-likelihood from leave-one-out cross validation of the optimal models.

number variables trimmed MNLL
enet-LTS 397 0.00014
raw enet-LTS 294 0.00030
elastic net 136 0.00866

Figure 7.7 compares the Pearson residuals of the elastic net model and the enet-LTS model.

In the classical approach no abnormal observations can be detected. With the enet-LTS

model several observations are identified as outliers by the 1.25% and 98.25% quantiles

of the standard normal distribution, which are marked as horizontal lines in Figure 7.7.

Closer investigation showed that these spectra lie on the outer border of the measurement

area and are potentially measured on the target instead of the meteorite particle. Their

multivariate structure for those variables which are included in the model is visualized in

Figure 7.8, where we can see that in some variables they have particularly large values

compared to the majority of the group.
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Figure 7.7 Renazzo and Ochansk: The Pearson residuals of elastic net and the raw
enet-LTS estimator. The horizontal lines indicate the 0.0125 and the 0.9875 quantiles of

the standard normal distribution.
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Figure 7.8 Renazzo and Ochansk: The index refers to the index of the variables included
in the model of raw enet-LTS. The detected outliers are visualized by grey lines, while the
black lines represent the 5% and 95% quantile of the non-outlying spectra for Ochansk

(left) and Renazzo (right).

7.3.2 Analysis of the Glass Vessels Data

Archaeological glass vessels where analyzed with electron-probe X-ray micro-analysis

to investigate the chemical concentrations of elements in order to learn more about their

origin and the trade market at the time of their making in the 16th and 17th century [36].

Four different groups were identified, i.e. sodic, potassic, potasso-calcic and calcic glass

vessels as seen in Figure 7.9. For demonstration of the performance of logistic regression,

two groups are selected from the glass vessels data set. The first group is the potassic

group with 15 spectra, the second group the potasso-calcic group with 10 spectra. As in

[41] we remove variables with MAD equal to zero, resulting in p = 1905 variables.

The quality of the selected models is described in Table 7.5. The trimmed mean of the

negative log likelihoods is much smaller for enet-LTS than for elastic net. The reweighting

step in enet-LTS hardly improves the model, but includes more variables. Again, both

enet-LTS models include more variables than the elastic net model. In the elastic net

model the penalty gives higher emphasis on the l1 term, i.e. αopt = 0.8; for enet-LTS it is

αopt = 0.05.
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Figure 7.9 Glass vessels data visualisation: Ratio CaO/(CaO+K2O) plotted against
Na2O concentration for all Glass vessels analyzed.

Table 7.5 Glass vessel data: number of variables in the optimal models, and trimmed mean
negative log-likelihood from leave-one-out cross validation of the optimal models.

number variables trimmed MNLL
enet-LTS 448 0.000338
raw enet-LTS 375 0.000345
elastic net 50 0.004290
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Different behavior of the coefficient estimates can be expected. Figure 7.10 (left) shows

coefficients of the reweighted enet-LTS model corresponding to variables associated

with potassium and calcium. The band which is associated with potassium has positive

coefficients, i.e. high values of these variables correspond to the potassic group which

is coded with ones in the response. High values of the variables in the band which is

associated with calcium will favor a classification to the potasso-calcic group (coded with

zero), since the coefficients for these variables are negative. Further, it can be observed that

neighboring variables, which are correlated, have similar coefficients. This is favored by

the l2 term in the elastic net penalty. In Figure 7.10 (right) the coefficient estimates of the

elastic net model are visualized. Fewer coefficients are non-zero than for enet-LTS which

was favored by the l1 term in the elastic net penalty, but in the second block of non-zero

coefficients neighboring variables receive very different coefficient estimates.
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Figure 7.10 Glass vessels: coefficient estimate of the reweighted enet-LTS model (left)
and coefficient estimate of the elastic net mode (right) for a selected variable range.
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CHAPTER 8

COMPUTATION TIME

For our algorithm we employ the classical elastic net estimator as it is implemented in the

R package glmnet [20]. So, it is natural to compare the computation time of our algorithm

with this method. In the linear regression case we also compare with the sparse LTS

estimator implemented in the R package robustHD [30]. For calculating the estimators we

take a grid of five values for both tuning parameters α and λ . The data sets are simulated

as in Chapter 6 for a fixed number of observations n = 150, but for a varying number

of variables p in a range from 50 to 2000. In Figure 8.1 (left: linear regression, right:

logistic regression), the CPU time is reported in seconds, as an average over 5 replications.

In order to show the dependency on the number of observations n, we also simulated

data sets for a fixed number of variables p = 100 with a varying number of observations

n = 50,100, . . . ,500. The results for linear and logistic regression are summarized in

Figure 8.2. The computations have been performed on an Intel Core 2 Q9650 @ 3000

GHz×4 processor.

Let us first consider the dependency of the computation time on the number of variables p

for linear regression, shown in the left plot of Figure 8.1. Sparse LTS increases strongly

with the number of variables p since it is based on the LARS algorithm which has a

computational complexity of O(p3+np2) [42]. Also for the smallest number of considered

variables, the computation time is considerably higher than for the other two methods. The

reason is that for each value of λ and each step in the CV the best subset is determined

starting with 500 elemental subsets. In this setting at least 25,000 estimations of a Lasso

model are needed, because for each cross validation step at each of the 5 values of λ , two

C-steps for 500 elemental subsets are carried out, and for the 10 subsamples with lowest
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p = 100 and varying n; left: for linear regression; right: for logistic regression.
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value of the objective function, further C-steps are performed. In contrast, the enet-LTS

estimator starts with 500 elemental subsets only for one combination of α and λ , and

takes the warm start strategy for subsequent combinations. This saves computation time,

and there is indeed only a slight increase with p visible when compared to the elastic net

estimator. In total approximately 1,700 elastic net models are estimated in this procedure,

which are considerably fewer than for the sparse LTS approach. The computation time of

sparse LTS also increases with n due to the computational complexity of LARS, while the

increase is only minor for enet-LTS, see Figure 8.2 (left).

The results for the computation time in logistic regression are presented in Figure 8.1

(right) and 8.2 (right). Here we can only compare the classical elastic net estimator and the

proposed robustified enet-LTS version. The difference in computation time between elastic

net and enet-LTS is again due to the many calls of the glmnet function within enet-LTS.

The robust estimator is considerably slower in logistic regression when compared to linear

regression for the same number of explanatory variables or observations. The reason is that

more C-steps are necessary to identify the optimal subset for each parameter combination

of α and λ .
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CHAPTER 9

RESULTS AND SUGGESTIONS

In this thesis, different robust methods for high dimensional data sets are introduced

to solve the problems such as outliers in data, multicollinearity among the predictors.

With this aim, first a fully robust version of the Liu estimator is proposed. The resulting

MM-Liu estimator uses as a plug-in estimator the highly robust and efficient MM-estimator.

Moreover, the definition of the Liu estimator was modified to include weights in order to

downweight leverage points. This step makes also the selection of the biasing parameter

robust, and it was not considered in the proposal of [4] who used the robust but inefficient

LTS-estimator as a plug-in estimator. According to the simulation studies, the MM-Liu

estimator outperforms the LTS-Liu estimator in all settings. In case of contamination,

the MM-Liu estimator clearly outperforms the classical Liu estimator, but even without

contamination the loss in performance is very low.

Afterwards, the idea of the robust Liu estimator is extended for the use with high-dimensional

small sample size data. This estimator uses as a plug-in the PRM-estimator, a robustified

partial least-squares (PLS) estimator [22]. Also in the definition of the resulting PRM-Liu

estimator we used weights that result from the PRM-estimator for downweighting outliers.

Although this concept does not really correspond to the philosophy of the Liu estimator,

since the PRM-estimator is already applicable in case of multicollinearity, it could

well be that “tuning” the PRM with an additional biasing parameter may lead to an

improvement. Note that there is also another “tuned” version of the PLS-estimator,

continuum regression, which allows to select between the “continuum” from LS-regression

to principal component regression, with PLS as a special case [43]. The simulation study
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has clearly demonstrated the advantage of PRM-Liu over the non-robust counterpart

PLS-Liu in case of contamination, which is due to the robustness of the PRM-estimator.

However, an advantage of PRM-Liu over PRM could not be seen in this setting. Only

in the data example we could find an improvement of the PRM-estimator when using

the PRM-Liu estimator. The example better accommodates the usability of PLS than the

simulation setting, since PLS is assumed to perform well in case of an inherent latent

structure.

Later on, concerning the another important thing with high dimensional data that they

can include many uninformative variables which have no effect on the predictand or have

very small contribution to the model, we not only focused on studying sparse estimation

methods but also robust methods for linear and logistic regression with high dimensional.

While robustness has been achieved by using trimming, sparsity is provided using the

elastic net penalty. Therefore, this penalty allows for variable selection, can deal with high

multicollinearity among the variables, and is thus very appropriate in high dimensional

sparse settings. However, the idea of trimming usually leads to a loss in efficiency, and

therefore a reweighting step was introduced. Overall, the outlined algorithms for linear and

logistic regression turned out to yield good performance in different simulation settings,

but also with respect to computation time. Particularly, it was shown that the idea of using

“warm starts” for parameter tuning allows to save computation time, while the precision

is still preserved. A competing method for robust high dimensional linear regression,

the sparse LTS estimator [30], does not use this idea, and is thus much less attractive

concerning computation time, especially in case of many explanatory variables. We should

also admit that for other simulation settings (not shown here), the difference between

sparse LTS and the enet-LTS estimator is not so big, or even marginal, depending on the

exact setting.

For this reason, a further focus was on the robust high dimensional logistic regression

case. We consider such a method as highly relevant, since in many modern applications

in chemometrics or bio-informatics, one is confronted with data information from two

groups, with the task to find a classification rule and to identify marker variables which

support the rules. Outliers in the data are frequently a problem, and they can affect the
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identification of the marker variables as well as the performance of the classifier. For this

reason it is desirable to treat outliers appropriately. It was shown in simulation studies as

well as in data examples, that in presence of outliers the new proposal still works well,

while its classical non-robust counterpart can lead to poor performance.

The algorithms to compute the proposed estimators are implemented in R functions. The

basis for the computation of the robust estimator is the R package glmnet [20]. This

package also implements the case of multinomial and Poisson regression. Naturally, a

further extension of the algorithms introduced here could go into these directions. Further

work will be devoted to the theoretical properties of the family of enet-LTS estimators.
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